

APPENDIX B.3.1-1 Stability Analysis of Canal Banks

1. Slope of Concrete Lined Section

Data:

1) Friction Angle

$$\phi = 32^{\circ}$$

The careful trimming should be carried out for slope behind the concrete lining by using a slope trimming machine.

2) Unit Weight (wetted) of Fill

$$\gamma t = 1.8 \text{ t/m}^3$$

Results

Slope	Safety Factor	Remarks
1:2.0	1.254>1.2	Refer to Figure 1 and Table 1.
1:1.5	0.941<1.2	Refer to Figure 2 and Table 2

2. Slope other than Concrete Lined Section

Data:

1) Friction Angle

$$\phi = 32^{\circ}$$

The outside portion of the slope will be disturbed by trimming and/or excavating operations by heavy machinery and its N values are estimated at 4-10.

The friction angle can be estimated by using Dunham's formula:

$$\phi = 15 + (12 \times N)^{1/2} = 22^{\circ} - 26^{\circ} = 24^{\circ}$$
 (Ave.)

2) Unit Weight (wetted) of Fill

$$\gamma t = 1.8 \text{ t/m}^3$$

Results

Slope	Safety Factor	Remarks
1:3.0	1.339>1.2	Refer to Figure 3 and Table 3.
1:2.5	1.116<1.2	Refer to Figure 4 and Table 4.

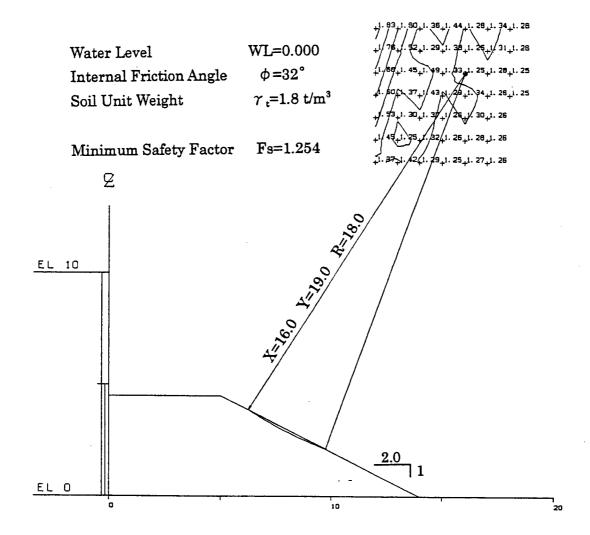


Figure 1 Stability Analysis of Lining Slope of Conveyance Canal

Table 1		Stability Analysis of Lining Slope of Conveyance Canal				
X (M)	Y (M)	R (M)	CL (TON/M)	NTAN (M\NOT)	T (TON/M)	F.S.
16.00 19.00		19.00	0.0	8.700	6.297	1.382
		18.00	0.0	0.279	0.222	1.254
16.00	20.00	20.00	0.0	9.826	6.894	1.425
		19.00	0.0	0.804	0.640	1.257
16.00	21.00	21.00	0.0	10.939	7.441	1.470
		20.00	0.0	1.431	1.110	1.288

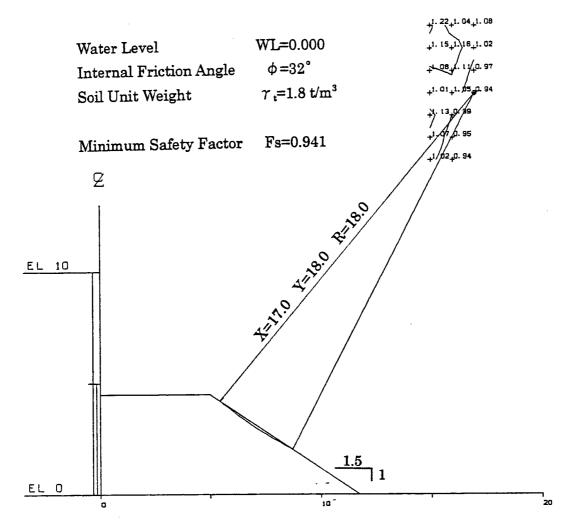


Figure 2 Stability Analysis of Lining Slope of Conveyance Canal

Stability Analysis of Lining Slope of Conveyance Canal Table 2 F.S. NTAN Т CL X Y R (M\NOT) (M/NOT) (M/NOT) (M) (M) (M) 1.167 5.307 4.549 0.0 16.00 20.00 20.00 1.221 21.00 0.0 6.334 5.188 16.00 21.00 1.046 0.260 0.271 20.00 0.0 0.272 0.941 0.256 18.00 0.0 17.00 18.00 0.0 0.998 1.024 0.975 19.00 19.00 17.00 1.779 1.030 1.832 20.00 0.0 17.00 20.00 1.085 2.501 0.0 2.715 21.00 21.00 17.00

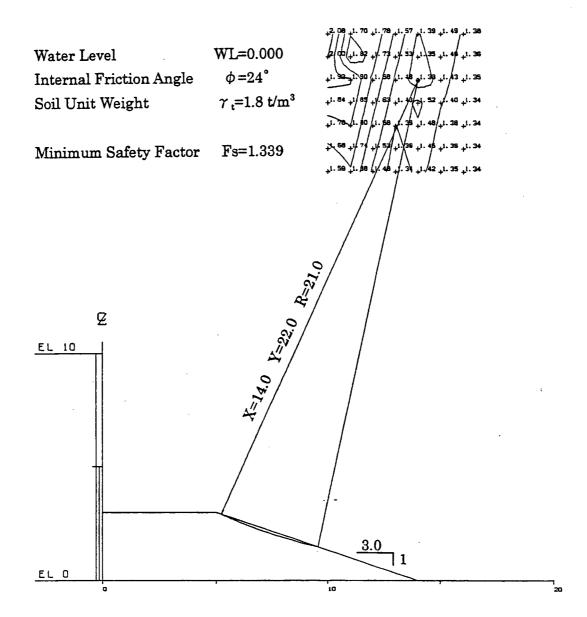


Figure 3 Stability Analysis of Embanked Slope of Conveyance Canal

Table 3 Stability Analysis of Embanked Slope of Conveyance Canal

X (M)	Y (M)	R (M)	CL (TON/M)	NTAN (TON/M)	T (M/NOT)	F.S.
14.00	22.00	22.00	0.0	6.838	4.386	1.559
		21.00	0.0	0.286	0.214	1.339
14.00	23.00	23.00	0.0	7.256	4.547	1.596
		22.00	0.0	0.476	0.350	1.358
14.00	24.00	24.00	0.0	7.665	4.693	1.633
		23.00	0.0	0.676	0.487	1.390

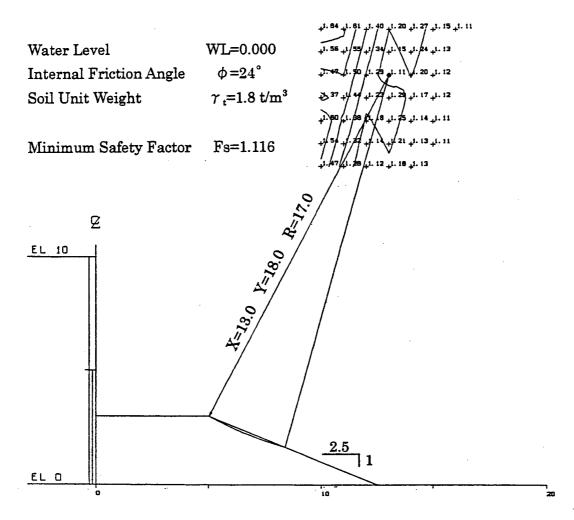
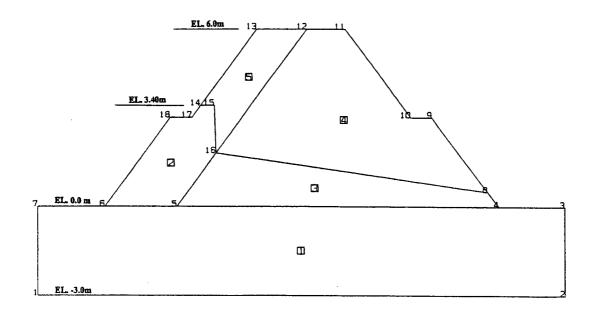
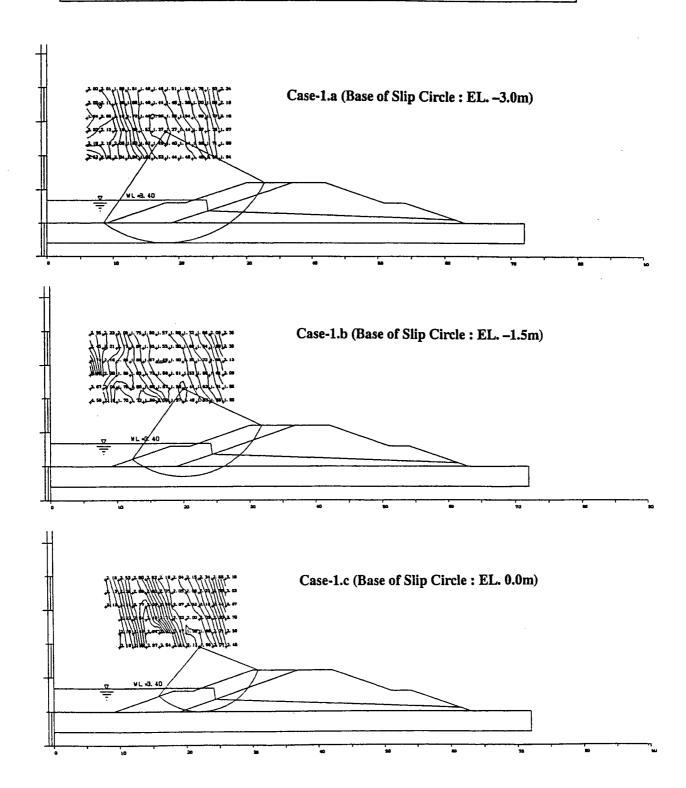



Figure 4 Stability Analysis of Embanked Slope of Conveyance Canal

Table 4		Stability Analysis of Embanked Slope of Conveyance Canal				
X (M)	Y (M)	R (M)	CL (TON/M)	NTAN (TON/M)	T (M/MOT)	F.S.
13.00	18.00	18.00	0.0	5.622	4.207	1.336
		17.00	0.0	0.173	0.155	1.116
13.00	19.00	19.00	0.0	6.078	4.406	1.380
		18.00	0.0	0.369	0.319	1.156
13.00	20.00	20.00	0.0	6.531	4.591	1.423
		19.00	0.0	0.586	0.488	1.201
14.00	14.00	14.00	0.0	1.510	1.337	1.130
14.00	15.00	15.00	0.0	1.961	1.733	1.131

APPENDIX B.3.2-1 Stability Analysis of Dike


ZONING OF DIKE

DESIGN VALUES FOR STABILITY ANALYSIS

Zone	Case-1 (W.L. EL.3.40m)		3.40m)	Case-2 (W.L. EL.0.0m)		
	С	φ	r	С	φ	7
1	0	22°	0.8t/m ³	0	22°	0.8t/m ³
2	0	35°	1.0t/m ³	0	32°	1.8t/m ³
3	0	32°	0.8t/m ³	0	32°	1.8t/m ³
4	0	32°	1.8t/m ³	0	32°	1.8t/m ³
5	0	35°	2.0t/m ³	0	32°	1.8t/m ³


RESULT OF CASE-1 (W.L. EL. 3.40m)

CASE	Base of Slip Circle	Safety Factor (calculated)
Case-1.a	EL. –3.0 m	1.37 < 1.5
Case-1.b	EL. –1.5 m	1.45 < 1.5
Case-1.c	EL. 0.0 m	1.96

RESULT OF CASE-2 (W.L. EL. 0.0m)

CASE	Base of Slip Circle	Safety Factor (calculated)
Case-2.a	EL3.0 m	1.46 < 1.5
Case-2.b	EL1.5 m	1.39 < 1.5
Case-2.c	EL. 0.0 m	1.90

APPENDIX B.3.3-1 Detailed Stability Analysis for Slope of Excavation of No.7 Pumping Station

The results of detailed stability analysis for slope of excavation of No.7 Pumping Station are shown in Table B.3.3-1 ~ B.3.3-4.

Table B.3.3-1 Case 1: Slope Stability Analysis of Excavation of No.7 P.S.

Coordi	Coordination X (m) Y (m)		Radius N tan ϕ		Safety Factor
			(tf/m)	(tf/m)	Fs
14.00	15.00	14.00	2.988	3.094	0.966
15.00	14.00	14.00	5.402	5.748	0.939
15.00	15.00	14.00	0.275	0.316	0.871
15.00	16.00	15.00	0.964	1.080	0.892
16.00	15.00	15.00	2.684	3.008	0.892

Table B.3.3-2 Case 2 : Slope Stability Analysis of Excavation of No.7 P.S.

Coordi	Coordination		N tan ∅	T	Safety Factor	
X (m)	Y (m)	R (m)	(tf/m)	(tf/m)	Fs	
14.00	20.00	18.00	2.437	1.865	1.307	
15.00	19.00	18.00	6.537	5.035	1.298	
15.00	20.00	18.00	0.275	0.222	1.158	
15.00	21.00	19.00	0.679	0.568	1.195	
16.00	20.00	19.00	3.814	3.124	1.221	

Table B.3.3-3 Case 3: Slope Stability Analysis of Excavation of No.7 P.S.

Coordi	Coordination		N tan ϕ	T	Safety Factor
X (m)	Y (m)	R (m)	(tf/m)	(tf/m)	Fs
9.00	5.00	5.00	2.729	2.623	1.039
9.00	6.00	6.00	4.296	3.534	1.216
10.00	6.00	6.00	0.905	0.991	0.913
10.00	7.00	7.00	2.103	1.965	1.069
11.00	8.00	8.00	0.451	0.484	0.933

Table B.3.3-4 Case 4: Slope Stability Analysis of Excavation of No.7 P.S.

	Coordination		Coordination Radius N $\tan \phi$		T	Safety Factor	
	X (m)	Y (m)	R (m)	(tf/m)	(tf/m)	Fs	
Ī	11.00	7.00	7.00	1.210	0.933	1.296	
ı	11.00	8.00	8.00	2.313	1.732	1.336	
	12.00	9.00	9.00	0.286	0.225	1.269	
	12.00	10.00	10.00	1.107	0.851	1.301	
	12.00	11.00	11.00	2.077	1.492	1.393	

APPENDIX C STRUCTURAL DESIGN

APPENDIX C.4.2-1 Selection of Type of Conveyance Structure over Depressions in the route of the Box Culvert Conduit

To secure safety against drift sand, the box culvert conduit is planned in the section between KM 94.3 and KM 101.8 where drift sand dunes are prevailing. However, the section between KM 97.251 and KM 97.509 is a depression and requests a high embankment of approx. 7 m high for the box culvert conduit that may request a comparatively high construction cost. Therefore the comparative study for selecting economic type of conveyance structure over this depression is carried out. The alternatives are:

Plan A: Box Culvert,
Plan B: Siphon and
Plan C: Elevated Flume.

The estimated construction costs are shown in the table below. The plan A (Box Culvert) is selected for this conveyance canal system because of the cheapest construction cost among three alternatives. In addition, the plan A is advantage for easy construction and more safety against leakage as compared with the plan B (Siphon).

Table 1 Construction Costs of Three Alternatives

			Plan A : B	lox Culvert	Plan B	: Siphon	Plan C : Ele	vated Flume
Pay Item	Unit	Unit Price	Quantity	Amount	Quantity	Amount	Quantity	Amount
Excavation	m3	2	5,200	10,400	26,700	53,400	11,300	22,600
Fill and Backfill	m3	3	149,000	447,000	77,200	231,600	115,100	345,300
Stone Pitching	m3	104	5,500	572,000	3,100	322,400	5,100	530,400
Laterite Pavement	m2	25	13,800	345,000	10,100	252,500	5,800	145,000
Gravel Bedding	m3	43	5,600	240,800	5,800	249,400	5,400	232,200
Reinforced Concrete	m3	575	6,240	3,588,000	7,330	4,214,750	8,560	4,922,000
Plain Concrete	m3	184	920	169,280	960	176,640	1,060	195,040
Asphalt Paved Road	m	700	258	180,600	258	180,600	258	180,600
Water Stop	m	43	890	38,270	1,080	46,440	690	29,670
Stop-Log, Screen, etc	L.S.				100%	50,000		
Total				5,591,350		5,777,730		6,602,810
Order				1		2		3

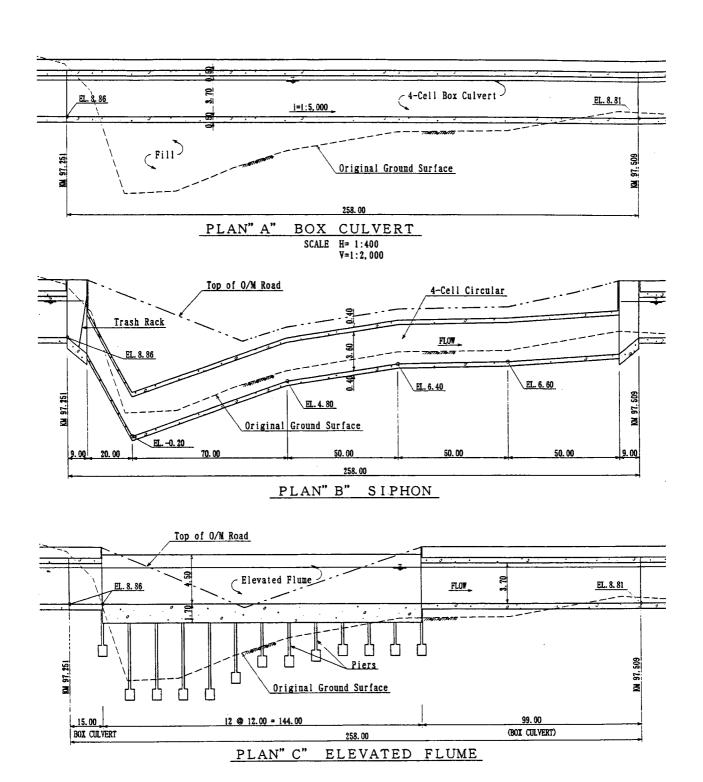
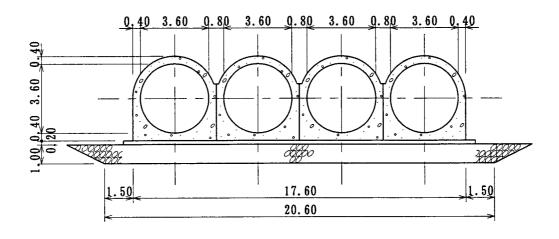
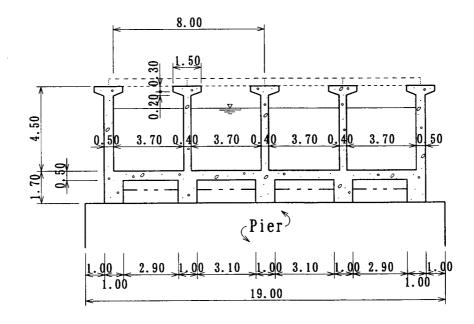




Figure 1 Profile of Three Alternative Plans

SIPHON SCALE 1:200

ELEVATED FLUME
SCALE 1:200

Figure 2 Typical Section of Siphon and Elevated Flume

APPENDIX C.4.2-2 Structural Computation of Road Bridges

- 1. Design of Cast-in-place concrete beam span (T-beam type), Bridge No.1
- 1.1 Design Conditions
- 1.1.1 General Conditions
- (1) Type: Cast-in-place concrete beam span (T-beam type)
- (2) Total bridge length: 31.500m (3 spans)
- (3) Beam length: 10.480m
- (4) Span length: 9.68m
- (5) Bridge width: 2sides × 10.000m (side-walk)+14.000m(roadway)=14.000m(total width)
- (6) Skew: Right angle 90°
- (7) Live load: T.L.-70
- (8) Impact coefficient: Slab

i = 20/(50+1)

Main beam

i = 0.4 - 0.0081

(9) Sectional slope: Roadway 2.0% slope

Side-walk 0.0% (level)

- (10) Longitudinal slope: Level
- (11) Pavement: Concrete pavement for roadway

Concrete pavement for side-walk

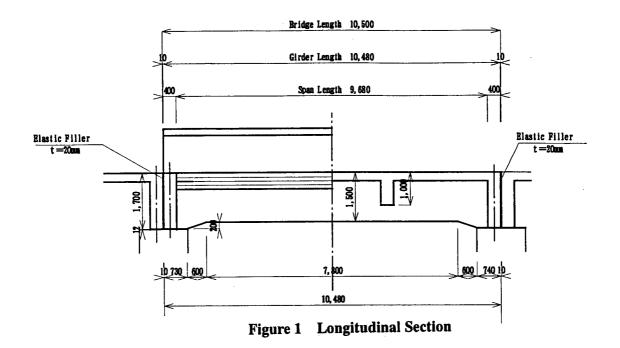
- 1.1.2 Construction material and allowable stresses
- (1) Reinforced concrete

Material strength and allowable stress of reinforced concrete are shown in Table 1.

Table 1 Material Strength and Allowable Stress of Reinforced Concrete

I	tem	Allowable stress
Design concrete stre	ngth at 28 days (σ_{ck})	275 kg/cm ²
Bending compressiv		85 kg/cm ²
Shear stress	Beams (T al)	8 kg/cm ²
	Slabs (τ_{a2})	10 kg/cm ²
Bond stress of defor		16 kg/cm ²
Bearing stress		70 kg/cm ²

(2) Reinforcing bar


Material of reinforcing bar is Steel/52, and allowable tensile stresses are shown as follows.

for slabs

 $\sigma_{sa} = 2000 \text{ kg/cm}^2$

for beams

 σ_{sa} =1800 kg/cm²

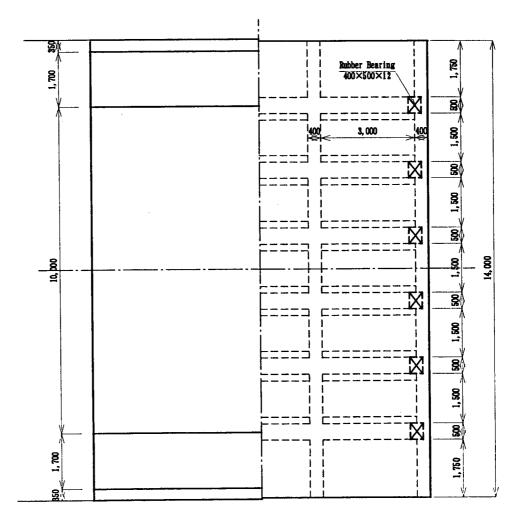


Figure 2 Plan

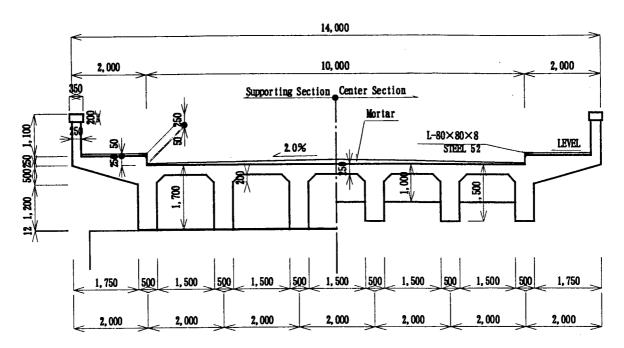


Figure 3 Center Section

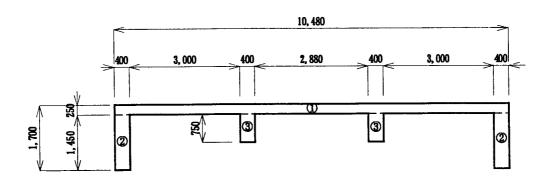


Figure 4 Partition of Cross Beam Section

1.2 Design of superstructure

1.2.1 Dimension of slab

The dimensions of the superstructure are shown in Figures 1 to 4.

- 1.2.2 Design of slab
- (1) Loads
- (a) Dead load

Pavement (7.5cm in mean thickness) $0.075 \times 2300 = 173 \text{ kg/cm}^2$

Slab (25cm in thickness) 0.25×2450

 $= 613 \text{ kg/cm}^2$

Total

 $\omega_{\rm d} = 786 \, \rm kg/ \, cm^2$

- (b) Live load by vehicle
- P=11700 kg (T-70)
- (c) Impact coefficient
- $i = 0.4 0.008 \cdot L_1$
- (2) Bending moment
- (a) Bending moment due to dead load
- 1 Bending moment at the beam center

$$M_{d1} = 1/10 \times 786 \times 2.00^2 = 314 \text{ kg} \cdot \text{m/m}$$

2 Bending moment at supporting portion

In case of more than 3 spans

$$M_{d2} = -1/10 \times 786 \times 2.00^2 = -314 \text{ kg} \cdot \text{m/m}$$

(b) Bending moment due to live load

Impact coefficient Japanese standard; $i_1 = 20/(50 + 9.68) = 0.335$

Egyptian standard;
$$i_2 = 0.4 - 0.008 \times 9.68 = 0.323 = i1$$

Bending moment at beam center

L≦6.0m

$$M_{11} = (0.1+0.075 \cdot l) \times P$$
 (including impact)
= $(0.1+0.075 \times 2.00) \times 11700 = 2925 \text{ kg} \cdot \text{m/m}$

① Bending moment at supporting portion

L≦6.0m

$$M_{12} = -(0.125 + 0.15 \cdot l) \times P$$

= $-(0.125 + 0.15 \times 2.00) \times 11700 = -4973 \text{ kg} \cdot \text{m/m}$

(c) Total bending moment

Span center

$$\Sigma M_1 = 314 + 2925 = 3239 \text{ kg} \cdot \text{m/m}$$

Supporting portion

$$\Sigma M_2 = -(314 + 4973) = -5287 \text{ kg} \cdot \text{m/m}$$

- (3) Section and stress
- (a) Span center
- ① Stress estimated at section

$$\sigma_{ca} = 85 \text{kg/cm}^2$$
, $\sigma_{sa} = 2000 \text{kg/cm}^2 \rightarrow C_1 = 0.264$
 $d = 0.264 \times \sqrt{(323900/100)} = 15.0 \text{ cm}$

Therefore, the section is estimated as effective height of 19cm, covering of 6cm and slab thickness of 25cm.

$$\sigma_{ca}$$
 = 85kg/cm², σ_{sa} = 2000kg/cm² \rightarrow j=0.870

Required reinforcing bar area is as follows.

As'=373900/(2000
$$\times$$
0.870 \times 9)=11.31 cm²/m

In case of using number of 8 and D16 of diameter of reinforcing bar, reinforcing bar area is as follows.

$$As = 8 \times 2.01 = 16.08 > 11.31 \text{ cm}^2$$

2 Checking of stress in section

Section is checked as rectangular section in simple reinforcing bar arrangement by (1.9) formula

p=16.08×(100×19)=0.0085
$$\rightarrow$$
 k=0.393, j=0.869
 σ_c =2×323900/(0.393×0.869×100×19²)= 52.5kg/cm²< σ_c =85 kg/ cm²
 σ_s =323900/(16.08×0.869×19)= 1220kg/ cm²< σ_s =2000kg/ cm²

- (b) Supporting portion
- ① Stress estimated at section

$$d=0.264 \times \sqrt{(528700/100)}=19.2 \text{ cm}$$

Hunch of the supporting portion shall be added in the section.

Therefore, slab thickness including hunch is 31.67 (=25+20/3)cm. In case of effective height of 25.67cm and covering of 6cm, required reinforcing bar area is estimated as follows.

$$As = 528700/(2000 \times 0.870 \times 25.67) = 11.8 \text{ cm}^2/\text{m}$$

Required reinforcing bar interval is the same as the span center.

② Checking of stress in section

p=16.08/(100×25.67)=0.0063
$$\rightarrow$$
 k=0.350, j=0.883
 σ_c =2×528700/(0.350×0.883×100×25.67²)= 51.9kg/ cm²< σ_c =85 kg/ cm²
 σ_s =528700/(16.08×0.883×25.67)= 1451kg/ cm²< σ_s =2000kg/ cm²

- (4) Reinforcing bar arrangement at the axis direction of bridge
- (a) Design bending moment

$$M_{11} = \alpha (0.1+0.075 \cdot l) \times P \quad (l \le 6.0m)$$

 $\alpha = 0.66+0.04 \cdot l \quad (l \le 6.0m)$
 $= 0.66+0.04 \times 2.0 = 0.74$

$$M_{11} = 0.74 \times (0.1 + 0.075 \times 2.0) \times 11700 = 2165 \text{ kg} \cdot \text{m/m}$$

(b) Distribution reinforcing bar

Effective height

$$d=19-1/2\times(1.6+1.6)=17.4$$
 cm

Required reinforcing bar area

As'=
$$216500/(2000 \times 7/8 \times 17.4) = 7.11 \text{cm}^2/\text{m}$$

In case of using number of 4 and D16 of diameter of reinforcing bar, reinforcing bar area is as follows.

$$As = 4 \times 2.01 = 8.04 > 7.11 \text{ cm}^2/\text{m}$$

- 1.2.3 Design of slab by cantilever type at side-walk
- (1) Dimension of slab

The section is checked at the end of the slab.

- (3) Loads
- (a) Dead load

Slab by cantilever type $1/2 \times (0.25 + 0.75) \times 1.75 \times 2450$ = 2144 kg/m Pavement (5cm in thickness) $0.05 \times 1.75 \times 2300$ = 201 kg/m Hand rail $(0.20 \times 0.35 + 0.90 \times 0.25) \times 2450$ = 723 kg/m Total ω_d = 3068 kg/cm2

(b) Live load

A uniform distributed load on side-walk

$$\omega = 300 \times 1.75 = 525 \text{ kg/m}$$

- (3) Bending moment at section E∼E
- (a) Bending moment due to dead load

Bending moment of the slab by cantilever

$$2144 \times 1.75/3 \times (0.75 + 2 \times 0.25)/(0.25 + 0.75) = 1563 \text{ kg} \cdot \text{m/m}$$

Pavement

$$201 \times 1/2 \times 1.75 = 176 \text{ kg} \cdot \text{m/m}$$

Hand rail

$$723 \times (1.75 - 1/2 \times 0.25) = 1175 \text{ kg} \cdot \text{m/m}$$

Total

2914 kg·m/m

(b) Bending moment due to live load

$$M_{\omega} = 525 \times (-1.75/2) = -459 \text{ kg} \cdot \text{m/m}$$

(c) Total bending moment

$$\Sigma M = -(2914 + 459) = -3373 \text{ kg} \cdot \text{m/m} > -5287 \text{ kg} \cdot \text{m/m}$$

Total bending moment of 3373 kg·m/m is smaller than that at the supporting potion in the middle of the slab.

Therefore, the section of the slab by cantilever type is the same as that in slab of the superstructure.

1.3 Design of main beam

1.3.1 Estimation of coefficient of load distribution

- (1) Grid parameter
- (a) Dimensions of main beam

1	Radius	of	gyration
---	--------	----	----------

No.	Dimension (cm)	$A(cm^2)$	y (cm)	Ay (cm ³)	Ay^2 (cm ⁴)	Io (cm^4)
1	1400×25	35000	12.5	437500	5468750	1822916
2	6@50×145	43500	97.5	4241250	413521875	76215625
3	$10@20 \times 20$	2000	31.7	63400	2009780	44444
Total		80500		4742150	421000405	78082985

 $\delta = 4742150/80500 = 58.91 \text{ cm}$

I. = $421000405 + 78082985 - 80500 \times 58.91^2 = 219717148 \text{ cm}^4$

2 Torsional moment of inertia

 $\beta = 1/3 - 64/\pi^5 \times b/a$

-, -					
No.	Dimension (cm)	a/b $(a>b)$	β	J =	$= \beta \times a \times b^3 \text{ (cm}^4)$
1	1400×25	1400/25 = 56	0.330		7218750
2	6@50×145	145/50 = 2.9	0.261		28383750
Total				J.	35602500

(b) Dimensions of cross beam

1 Radius of gyration

No.	Dimension (cm)	$A (cm^2)$	y (cm)	Ay (cm ³)	Ay ² (cm ⁴)	Io (cm ⁴)
1	1047×25	26175	12.5	327187	4089843	1363281
2	$2@40 \times 145$	11600	97.5	1131000	110272500	20324166
3	2@40×75	6000	62.5	375000	23437500	2812500
Total		43775		1833187	137799843	24499947

 $\delta = 1833187/43775 = 41.88 \text{ cm}$

 $I_t = 137799843 + 24499947 - 43775 \times 41.88^2 = 85521311 \text{ cm}^4$

2 Torsional moment of inertia

 $\beta = 1/3 - 64/\pi^{5} \times b/a$

No.	Dimension (cm)	a/b $(a>b)$	β	J =	$\beta \times a \times b^3$ (cm ⁴)
1	1047×25	1047/25 = 41.9	0.328		5365875
2	2@40×145	145/40 = 3.6	0.275		5104000
3	2@40× 75	75/40 = 1.9	0.223		2140800
Total	_			J,	12610675

(c) Bending stiffness modulus

$$\theta = b/l \times \sqrt[4]{(E \cdot I \cdot /E_t \cdot I_t)}$$

$$b=14.00/2=7.00 \text{ m}$$

• =
$$9.67$$
m

$$E = E_t = 2.67 \times 10^5 \text{cm}^4$$

$$I = 219717148/1400 = 156941 \text{ cm}^4/\text{cm}$$

$$I_t = 85521311/1047 = 81682 \text{ cm}^4/\text{cm}$$

$$\theta = 7.00/9.68 \times \sqrt[4]{(156941/81682)} = 0.851 = 0.85$$

(d) Torsional stiffness modulus

$$\alpha = (G \cdot J \cdot + G_t \cdot J_t)/2\sqrt{(E \cdot I \cdot \times E_t \cdot I_t)}$$

$$G = G_1 = 0.43 \times E$$
.

$$J = 35602500/1400 = 25430 \text{ cm}^4/\text{m}$$

$$J_t = 12610675/1047 = 12045 \text{ cm}^4/\text{m}$$

$$\alpha = 0.43 \cdot E \cdot \times (25430 + 12045)/(2 \times E \cdot \times \sqrt{(156941 \times 81682)}) = 0.07116$$

$$\sqrt{\alpha} = \sqrt{0.07116} = 0.267 = 0.27$$

<u>K0</u>

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
	$\theta = 0.85$	-0.370	0.330	1.050	1.700	2.050	1.700	1.050	0.330	-0.370	
0	$\theta = 0.85$	-0.370	0.330	1.050	1.700	2.050	1.700	1.050	0.330	-0.370	
	$\theta = 0.85$	-0.370	0.330	1.050	1.700	2.050	1.700	1.050	0.330	-0.370	
	$\theta = 0.85$	-0.550	-0.020	0.510	1.110		2.030	1.670	1.020	0.250	
1/4b	$\theta = 0.85$	-0.550	-0.020	0.510	1.110		2.030	1.670	1.020	0.250	
	$\theta = 0.85$	-0.550	-0.020	0.510	1.110		2.030	1.670	1.020	0.250	
	$\theta = 0.85$	-0.430	-0.180	0.100				2.120	2.020	1.700	
1/2b	$\theta = 0.85$	-0.430	-0.180	0.100				2.120	2.020	1.700	
	$\theta = 0.85$	-0.430	-0.180	0.100				2.120	2.020	1.700	
	$\theta = 0.85$	-0.250	-0.230						3.200	4.180	
3/4b	$\theta = 0.85$	-0.250	-0.230						3.200	4.180	
	$\theta = 0.85$	-0.250	-0.230						3.200	4.180	
	$\theta = 0.85$	-0.070								6.943	
b	$\theta = 0.85$	-0.070								6.943	
	$\theta = 0.85$	-0.070								6.943	

<u>K1</u>

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
	$\theta = 0.85$	0.580	0.750	0.970	1.270	1.450	1.270	0.970	0.750	0.580	
0	$\theta = 0.85$	0.580	0.750	0.970	1.270	1.450	1.270	0.970	0.750	0.580	
	$\theta = 0.85$	0.580	0.750	0.970	1.270	1.450	1.270	0.970	0.750	0.580	
	$\theta = 0.85$	0.350	0.470	0.640	0.920		1.500	1.370	1.150	0.970	
1/4b	$\theta = 0.85$	0.350	0.470	0.640	0.920		1.500	1.370	1.150	0.970	
	$\theta = 0.85$	0.350	0.470	0.640	0.920		1.500	1.370	1.150	0.970	
	$\theta = 0.85$	0.220	0.300	0.430				1.700	1.670	1.560	
1/2b	$\theta = 0.85$	0.220	0.300	0.430				1.700	1.670	1.560	
	$\theta = 0.85$	0.220	0.300	0.430				1.700	1.670	1.560	
	$\theta = 0.85$	0.130	0.200						2.170	2.430	
3/4b	$\theta = 0.85$	0.130	0.200						2.170	2.430	
	$\theta = 0.85$	0.130	0.200						2.170	2.430	
	$\theta = 0.85$	0.120								3.570	
b	$\theta = 0.85$	0.120								3.570	
	$\theta = 0.85$	0.120								3.570	

<u>Κα</u>

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
,	K 0	-0.370	0.330	1.050	1.700	2.050	1.700	1.050	0.330	-0.370	
0	K 1	0.580	0.750	0.970	1.270	1.450	1.270	0.970	0.750	0.580	
	Κα	-0.114	0.443	1.028	1.584	1.888	1.584	1.028	0.443	-0.114	7.886
	K 0	-0.550	-0.020	0.510	1.110		2.030	1.670	1.020	0.250	
1/4b	K 1	0.350	0.470	0.640	0.920		1.500	1.370	1.150	0.970	
	Κα	-0.307	0.112	0.545	1.059	1.584	1.887	1.589	1.055	0.444	7.900
	K 0	-0.430	-0.180	0.100				2.120	2.020	1.700	
1/2b	K 1	0.220	0.300	0.430				1.700	1.670	1.560	
	Κα	-0.255	-0.050	0.189	0.545	1.028	1.589	2.007	1.926	1.662	7.937
	K 0	-0.250	-0.230						3.200	4.180	
3/4b	K 1	0.130	0.200						2.170	2.430	
	Κα	-0.147	-0.114	-0.050	0.112	0.443	1.055	1.926	2.922	3.708	8.074
	K 0	-0.070								6.943	
b	K 1	0.120								3.570	
	Κα	-0.019	-0.147	-0.255	-0.307	-0.114	0.444	1.662	3.708	6.032	7.998

Summary K α

	-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
-b	6.032	3.708	1.662	0.444	-0.114	-0.307	-0.255	-0.147	-0.019	7.998
-3/4b	3.708	2.922	1.926	1.055	0.443	0.112	-0.050	-0.114	-0.147	8.074
-1/2b	1.662	1.926	2.007	1.589	1.028	0.545	0.189	-0.050	-0.255	7.937
-1/4b	0.444	1.055	1.589	1.887	1.584	1.059	0.545	0.112	-0.307	7.900
0	-0.114	0.443	1.028	1.584	1.888	1.584	1.028	0.443	-0.114	7.886
1/4b	-0.307	0.112	0.545	1.059	1.584	1.887	1.589	1.055	0.444	7.900
1/2b	-0.255	-0.050	0.189	0.545	1.028	1.589	2.007	1.926	1.662	7.937
3/4b	-0.147	-0.114	-0.050	0.112	0.443	1.055	1.926	2.922	3.708	8.074
b	-0.019	-0.147	-0.255	-0.307	-0.114	0.444	1.662	3.708	6.032	7.998

Summary K α

Dis	tance 0.00	1.75	3.50	5.25	7.00	8.75	10.50	12.25	14.00	TOTAL
-b	6.032	3.708	1.662	0.444	-0.114	-0.307	-0.255	-0.147	-0.019	7.998
-3/4b	3.708	2.922	1.926	1.055	0.443	0.112	-0.050	-0.114	-0.147	8.074
-1/2b	1.662	1.926	2.007	1.589	1.028	0.545	0.189	-0.050	-0.255	7.937
-1/4b	0.444	1.055	1.589	1.887	1.584	1.059	0.545	0.112	-0.307	7.900
0	-0.114	0.443	1.028	1.584	1.888	1.584	1.028	0.443	-0.114	7.886
1/4b	-0.307	0.112	0.545	1.059	1.584	1.887	1.589	1.055	0.444	7.900
1/2b	-0.255	-0.050	0.189	0.545	1.028	1.589	2.007	1.926	1.662	7.937
3/4b	-0.147	-0.114	-0.050	0.112	0.443	1.055	1.926	2.922	3.708	8.074
b	-0.019	-0.147	-0.255	-0.307	-0.114	0.444	1.662	3.708	6.032	7.998

<u>Distributution Coefficient(Before Rivise)</u>

	Distance	2.00	4.00	6.00	8.00	10.00	12.00	TOTAL
-b		3.415	1.314	0.205	-0.224	-0.270	-0.163	4.279
-3/4b		2.780	1.677	0.793	0.254	-0.004	-0.105	5.395
-1/2b		1.937	1.887	1.349	0.752	0.291	-0.016	6.200
-1/4b		1.131	1.674	1.757	1.284	0.692	0.174	6.712
0		0.527	1.187	1.714	1.714	1.187	0.527	6.857
1/4b		0.174	0.692	1.284	1.757	1.674	1.131	6.712
1/2b		-0.016	0.291	0.752	1.349	1.887	1.937	6.200
3/4b		-0.105	-0.004	0.254	0.793	1.677	2.780	5.395
b		-0.163	-0.270	-0.224	0.205	1.314	3.415	4.279

Distributution Coefficient(After Rivise)

	Distance	2.00	4.00	6.00	8.00	10.00	12.00	TOTAL
-b	0.00	4.789	1.843	0.288	-0.314	-0.378	-0.228	6.000
-3/4b	1.75	3.091	1.865	0.882	0.283	-0.004	-0.117	6.000
-1/2b	3.50	1.875	1.826	1.305	0.728	0.281	-0.016	6.000
-1/4b	5.25	1.011	1.496	1.571	1.148	0.618	0.156	6.000
0	7.00	0.461	1.039	1.500	1.500	1.039	0.461	6.000
1/4b	8.75	0.156	0.618	1.148	1.571	1.496	1.011	6.000
1/2b	10.50	-0.016	0.281	0.728	1.305	1.826	1.875	6.000
3/4b	12.25	-0.117	-0.004	0.283	0.882	1.865	3.091	6.000
b	14.00	-0.228	-0.378	-0.314	0.288	1.843	4.789	6.000

Coefficient of load Distribution

Distance	G1	G 2	G 3	G 4	G 5	G 6	TOTAL
0.125	4.668	1.845	0.330	-0.272	-0.351	-0.220	6.000
0.250	4.547	1.846	0.373	-0.229	-0.325	-0.212	6.000
2.000	2.918	1.859	0.942	0.346	0.036	-0.102	6.000
9.000	0.131	0.570	1.088	1.533	1.544	1.135	6.000
10.337	0.000	0.313	0.767	1.330	1.796	1.794	6.000
12.000	-0.102	0.036	0.346	0.942	1.859	2.918	6.000
13.750	-0.212	-0.325	-0.229	0.373	1.846	4.547	6.000
13.875	-0.220	-0.351	-0.272	0.330	1.845	4.668	6.000

1.3.2 Estimation of Loads

- (1) Dead loads
- (a) Beam weight
- ① G1 and G6 beam

Slab by cantilever type $1/2 \times 0.50 \times 1.75 \times 2450 = 1072 \text{ kg/m}$

 $0.25 \times 2.00 \times 2450$ = 1225 kg/m

 $1/2 \times 0.25 \times 1.50 \times 2450 = 459 \text{ kg/m}$

Hunch $1/2 \times 0.20 \times 0.20 \times 2450 = 49 \text{ kg/m}$

Main Beam $0.50 \times 1.70 \times 2450$ = 2083 kg/mTotal = 4888 kg/m

 $W_{d1} = 4900 \text{ kg/m}$

Cross Beam $W_{d2} = 0.40 \times 0.75 \times 2450 \times 1/2 \times 1.50 = 551 \text{ kg/m}$

2 G2, G3 and G4 beam

Slab $0.25 \times 1.50 \times 2450 = 919 \text{ kg/m}$ Hunch $2 \times 1/2 \times 0.20 \times 0.20 \times 2450 = 98 \text{ kg/m}$

Main Beam $0.50 \times 1.70 \times 2450 = 2083 \text{ kg/m}$

Total $W_{d1} = 3100 \text{ kg/m}$

Cross Beam $W_{d2} = 0.40 \times 0.75 \times 2450 \times 1.50 = 1103 \text{ kg/m}$

(b) Others

Weights of pavement and hand rail are added as dead loads.

- ① Hand rail $P_1 = 723 \text{ kg/m}$
- ② Pavement of side-walk (5 cm in thickness)

 $W_1 = 0.05 \times 1.75 \times 2300 = 201 \text{ kg/m}^2$

3 Pavement of road way (7.5 cm in mean thickness)

 $W_2 = 0.075 \times 2300 = 173 \text{ kg/m}^2$

- (2) Live loads
- (a) Uniformed distribution load at side-walk $w = 300 \text{ kg/m}^2$
- (b) Live load at road way

Main load Sub load

Concentrated load $P = 8000 \text{ kg/m} \quad P/2 = 4000 \text{ kg/m}$

Uniformed distribution load $P = 500 \text{ kg/m}^2 \text{ P/2} = 250 \text{ kg/m}^2$

 $P=23.4/(3.5-0.55)=7.93 \text{ t/m} \rightarrow 8.00 \text{ t/m}$

(3) Impact Coefficient

 $i=0.4-0.008 \cdot L=0.4-0.008 \times 9.68 = 0.323$

(3)Load Distribution

			S	ide Walk(L	ı)			
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
0.250	4.547	· ·	0.250	1.846		0.250	0.373	
1.750	3.091	5.729	1.750	1.865	2.783	1.750	0.882	0.941
2.000	2.918	0.751	2.000	1.859	0.466	2.000	0.942	0.228
TO'	ΓAL	6.480	ТО	ΓAL	3.249	TO'	ΓAL	1.169

			S	ide Walk(R	2)			
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
12.000	-0.102		12.000	-0.004		12.000	0.346	
12.250	-0.117	-0.027	12.250	-0.325	-0.041	12.250	0.283	0.079
13.750	-0.212	-0.247	13.750	-0.351	-0.507	13.079	0.000	0.117
						13.750	-0.229	-0.077
TO'	ΓAL	-0.274	TO'	TAL	-0.548	TO'	TAL	0.119

			•	Road Way				
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
2.000	2.918		2.000	1.859		2.000	0.942	
3.500	1.875	3.595	3.500	1.826	2.764	3.500	1.305	1.685
5.250	1.011	2.525	5.250	1.496	2.907	5.250	1.571	2.517
7.000	0.461	1.288	7.000	1.039	2.218	7.000	1.500	2.687
8.750	0.156	0.540	8.750	0.618	1.450	8.750	1.148	2.317
10.337	0.000	0.769	10.500	0.281	2.310	10.500	0.728	3.899
10.500	-0.016	-0.001	12.000	0.036	0.238	12.000	0.346	0.806
12.000	-0.102	-0.089						
TO'	ΓAL	8.627	TO'	TAL	11.886	TO'	TAL	13.910

			Ma	in Live Lo	ad			
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
2.000	2.918		2.000	1.859		2.000	0.942	
3.500	1.875	3.595	3.500	1.826	2.764	3.500	1.305	1.685
5.250	1.011	2.525	5.250	1.496	2.907	5.250	1.571	2.517
7.000	0.461	1.288	7.000	1.039	2.218	7.000	1.500	2.687
8.750	0.156	0.540	8.750	0.618	1.450	8.750	1.148	2.317
9.000	0.131	0.592	9.000	0.570	1.609	9.000	1.088	2.588
TO'	TAL	8.540	TO'	TAL	10.948	TO'	ΓAL	11.794

			Sı	ıb Live Loa	ıd			
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
9.000	0.131		9.000	0.570		9.000	1.088	
10.337	0.000	0.088	10.500	0.281	0.638	10.500	0.728	1.362
			12.000	0.036	0.238	12.000	0.346	0.806
TO'	TAL	0.088	TO'	TAL	0.876	TO'	TAL	2.168

			Side	Walk Live	Load			
	G 1			G 2			G 3	
Position	Coefficient	Area	Position	Coefficient	Area	Position	Coefficient	Area
0.250	4.547		0.250	1.846		0.250	0.373	
1.750	3.091	5.729	1.750	1.865	2.783	1.750	0.882	0.941
2.000	2.918	0.751	2.000	1.859	0.466	2.000	0.942	0.228
							-	
			12.000	0.036		12.000	0.346	
			12.225	0.000	0.004	12.250	0.283	0.079
						13.079	0.000	0.117
TO'	TAL	6.480	TO'	TAL	3.253	TO'	TAL	1.365

Strength of Other Dead Load

		G		G 2	2	G 3	3	G 4	4	G 5	2	9 S	
		AOR n	Wd2	AOR n	Wd2	AORn	Wd2	AOR n	Wd2	AOR n	Wd2	AORn	Wd2
Hand Rail(L)	723 Kg/m	4.668	3375	1.845	1334	0.330	239	-0.272	-196	-0.351	-254	-0.220	-159
Hand Rail(R)	723 Kg/m	-0.220	-159	-0.351	-254	-0.272	•196	0.330	239	1.845	1334	4.668	3375
Pavement of S-Walk(L)	201 Kg/m2	6.480	1302	3.249	653	1.169	235	1.169	235	3.249	653	6.480	1302
Pavement of S-Walk(R)	201 Kg/m2	-0.274	-55	-0.548	-110	0.119	24	0.119	24	-0.548	.110	-0.274	-55
Pavement of Roadway	173 Kg/m2	8.627	1493	11.886	2056	13.910	2406	13.910	2406	11.886	2056	8.627	1493
∑ Wd3			5956		3679		2708		2708		3679		5956
2 Wd3/6			993		613		451		451		613		993
Design Load			1000		620		460		460		620		1000

Table 2 Estimation of Bending Moment(t·m)

	9 68		9/			1/3			1/2	
	00.5	1 2	1 6 5	6.3	G 1	G 2	G 3	G1	G 2	G3
Trefluoren	now.	1	1 344)		2.151			2.420	
T inc	n m		0.807			1.613			2.420	
auric 1	Α.		6.507			10.411			11.713	
	Wd1kg/m	4900	3100	3100	4900	3100	3100	4900	3100	3100
Dead	Wd2kg	551	1103	1103	551	1103	1103	551	1103	1103
	Wd3kg/m	1000	620	460	1000	620	460	1000	620	460
Load	Md1	31.88	20.17	20.17	51.02	32.28	32.28	57.39	36.31	36.31
	Md2	0.44	0.89	0.89	68.0	1.78	1.78	1.33	2.67	2.67
	Md3	6.51	4.03	2.99	10.41	6.46	4.79	11.71	7.26	5.39
	TOTAL Md	38.84	25.10	24.06	62.32	40.51	38.84	70.44	46.24	44.37
	W	330	170	70	330	170	10	088	170	70
	Ы	11450	15190	17180	11450	15190	17180	11450	15190	17180
Live	α	720	950	1080	720	950	1080	720	950	1080
			0.323			0.323			0.323	
Load	Mw	2.15	1.11	0.46	3.44	1.77	0.73	3.87	1.99	0.82
	MP	15.39	20.42	23.10	24.63	32.68	36.96	27.71	36.76	41.58
	dМ	4.69	6.18	7.03	7.50	9.89	11.24	8.43	11.13	12.65
	M i	6.49	8.59	9.73	10.38	13.75	15.57	11.67	15.47	17.51
	TOTAL ML	28.71	36.30	40.31	45.94	58.08	64.50	51.68	65.35	72.56
TOT	TOTAL SM	67.55	61.40	64.37	108.26	98.59	103.34	122.12	111.59	116.93
)										

Table 3 Estimation of Shearing Strength

]=	89.6		0			1/2	
		G 1	G 2	G 3	G 1	G 2	G 3
	n max	1.000		0.000	0.500		-0.500
Influence	m u		0.500		0.500		-0.500
Line	A, -A	4.840		0.000	1.210		-1.210
	Ad		4.840			0.000	
	Wd1kg/m	4900	3100	3100	4900	3100	3100
	m Wd2kg	551	1103	1103	551	1103	1103
Dead	Wd3kg/m	1000	620	460	1000	620	460
	Sd1	23.72	15.00	15.00	•	•	
Load	Sd2	0.55	1.10	1.10	0.55	1.10	1.10
	Sd3	4.84	3.00	2.23	•		•
	TOTAL Sd	29.11	19.11	18.33	0.55	1.10	1.10
	W	330	170	02	330	170	70
	Ъ	11450	15190	17180	11450	15190	17180
	ď	720	950	1080	720	950	1080
Live	i		0.323			0.323	
	Sw	1.60	0.82	0.34	0.40	0.21	0.08
Load	SP	11.45	15.19	17.18	5.73	09.7	8.59
	Sp	3.48	4.60	5.23	0.87	1.15	1.31
	Si	4.82	6:39	7.24	2.13	2.82	3.20
	TOTAL SL	21.36	27.00	29.98	9.13	11.77	13.18
TOTAL	AL SS	50.46	46.11	48.32	89.6	12.88	14.28

1.3.3 Estimation of section force

(1) Bending moment

The bending moments of the main beam are estimated in Table 2.

(2) Shearing force

Shearing force is calculated as shown in Table 3.

1.3.4 Design of section

(1) Effective width of compression flange

$$\lambda = 1/8$$
 $(\lambda \le b)$
= 1300/8=162.5 > b₁=135cm

- (2) Design due to flexural stress
- (a) Estimation of required reinforcing bar area

In case of T-beam type, dimensions of the section are fixed whether the necessary reinforcing bars can be arranged in the supposed web section. Therefore, as the compression stress of the reinforced concrete is hardly over the allowable value, the following formula can be used to estimate the required reinforcing bar area.

$$A_s = M/(d-t/2) \times \sigma_{sa}$$

Slab thickness t=20 cm

The effective height is estimated d=159.5cm (=170-10.5).

	M (t·m)	d-t/2	$\sigma_{\rm sa}$	Required	RB	RBA
	`			RBA	to be used	to be used
G_1	121.91	149.5	1800	45.3	D25-10	49.1
$\overline{G_2}$	111.41	149.5	1800	41.4	D25-10	49.1
G ₃	116.75	149.5	1800	43.4	D25-10	49.1

RBA: Reinforcing bar area, RB: Reinforcing bar

(b) Bending Stress and resisted bending moment

Bending stresses are estimated by the following formula.

$$x=(n\times As\times d+b\times t^2/2)/(n\times As+b\times t)$$

$$y=x-t/2+t^2/(6\times (2x-t))$$

$$\sigma_s = M/(As \times (d-x+y))$$

$$\sigma_c = \sigma_s \times x/(n \times (d-x))$$

Resisting moment is estimated as follows,

$$M_{rs} = As \times (d - x + y) \times \sigma_{sa}$$

$$M_{rc} = (d-x+y) \times n \times (d-x) \times As \times \sigma_{ca}/x$$

- (3) Design due to shearing stress
- (a) Shearing stress at each beams

Shearing force is estimated by the following formula.

$$\tau = S/(b_o \cdot Z) = S/b_o \cdot (d - t/2)$$

Although the effective height of d is changed according to the bending of the main reinforcing bar, it is assumed the section is the same as the middle of the beam.

$$\tau = S/(50 \times (159.5 - 20/2)) = 0.134 \text{ S kg/cm}^2$$

where, S: shearing force (t)

Allowable shearing stress is 8.0 kg/cm², in case diagonal tensile stress is supported only by reinforced concrete. Therefore, there is no need the bend-up bars.

Estimation of Bending Stress

	-		10.D25 = 49.1cm ²			,	$<\sigma sa=1800$		$< \sigma ca=85$
G 3	116.93	200	49.1	33.2	24.7	7410.9	1577.8	0.01756	27.7
G 2	111.59	200	49.1	33.2	24.7	7410.9	1505.7	0.01756	26.4
G 1	122.12	200	49.1	33.2	24.7	7410.9	1647.9	0.01756	28.9
	$M(t \cdot m)$	Effective Width of Slab(b)	Reinforcing Bar(As)	x (cm)	V (cm)	As(d-x+y)	σs	(x-p)(x)	QC

t = 20d = 159.5

Estimation of Shearing Stress

			$< \tau a = 8.0$
3	Center	14.28	1.91
G 3	Supporting	48.32	6.47
~ 1	Center	12.88	1.73
G 2	Supporting	46.11	6.18
	Center	89.6	1.30
5)	Supporting	50.46	6.76
		(+) S	$\tau (\mathrm{kg/cm2})$

1.4 Design of cross beam

1.4.1 Formula of bending moment

Bending moment of the cross beam is calculated by the following Guyon - Massonnet formula.

$$M_v = \sum u \cdot b \cdot \lambda \cdot r \cdot \sin(\pi \cdot \chi / 1)$$

Where λ : interval of cross beam

b: 1/2 of effective width on slub

1: span klength

x: distance between the supporting potion and the position of M_v to be estimated

r: first amplitude of which load is shown by the Fourier series

"r" is estimated by the following formula, in case of the concentrated load is effected at the point of "u" from the supporting portion.

$$r=2P/l \cdot \sin(\pi \cdot u/l)$$

On the other hand, the formula is changed in case of the uniform distribution load is effected.

$$r=4p/\pi=4p/3.14=1.274$$

1.4.2 Loads

(1) Dead load

Slab weight $0.20 \times 10.08/2 \times 2450$ = 2470 kg/m Cross bean (see design of main bean) = 551 kg/m Total W_{d1} = 3021 kg/m

(2) Other dead load

Hand rail $P_1 = 723 \text{ kg/m}$ Pavement of side-walk $W_1 = 201 \text{ kg/m}^2$ Pavement of Road way $W_2 = 173 \text{ kg/m}^2$

(3) Live loads

(a) Live load

Uniform distribution load of side-walk $\omega = 300 \text{ kg/m}^2$ Concentrated load of road way P = 8000 kg/mUniform distribution load of road way $p = 500 \text{ kg/m}^2$

Impact coefficient $i=0.4-0.008\times9.68=0.323$

1.4.3 Influence line of the bending moment

" μ_0 " and " μ_1 " are estimated from the figure as same as using K factor and the same grid parameter, $\theta=0.85$, $\alpha=0.07116$ and $\sqrt{\alpha}=0.27$, calculated in the design of main beam. " μ_{α} " is estimated by the following formula.

$$\mu_{\alpha} = \mu_{0} + (\mu_{1} - \mu_{0})\sqrt{\alpha}$$

It is practically allowed that this influence line is considered as that in middle point of the cross beam. Therefore, design shall be done used "0" point in diagram of the influence line.

$\mu 0 \times 10-4$

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
	$\theta = 0.85$	-720	-500	-150	420	1400	420	-150	-500	-720	
0	$\theta = 0.85$	-720	-500	-150	420	1400	420	-150	-500	-720	
	$\theta = 0.85$	-720	-500	-150	420	1400	420	-150	-500	-720	
	$\theta = 0.85$	-360	-560	-250	-20	460	1400	250	-560	-1230	
1/4b	$\theta = 0.85$	-360	-560	-250	-20	460	1400	250	-560	-1230	
	$\theta = 0.85$	-360	-560	-250	-20	460	1400	250	-560	-1230	
	$\theta = 0.85$	-130	-150	-180	-130	60	480	1200	-300	-1700	
1/2b	$\theta = 0.85$	-130	-150	-180	-130	60	480	1200	-300	-1700	
	$\theta = 0.85$	-130	-150	-180	-130	60	480	1200	-300	-1700	
	$\theta = 0.85$	-10	-40	-60	-60	-40	80	280	610	-1500	
3/4b	$\theta = 0.85$	-10	-40	-60	-60	-40	80	280	610	-1500	
	$\theta = 0.85$	-10	-40	-60	-60	-40	80	280	610	-1500	
	$\theta = 0.85$	_									
b	$\theta = 0.85$					-	-			-	
	$\theta = 0.85$	_			_		-	_	_		

μ 1×10-4

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
	$\theta = 0.85$	-230	-220	-140	140	900	140	-140	-220	-230	
0	$\theta = 0.85$	-230	-220	-140	140	900	140	-140	-220	-230	
	$\theta = 0.85$	-230	-220	-140	140	900	140	-140	-220	-230	
	$\theta = 0.85$	-150	-160	-140	-100	110	900	90	-200	-320	
1/4b	$\theta = 0.85$	-150	-160	-140	-100	110	900	90	-200	-320	
	$\theta = 0.85$	-150	-160	-140	-100	110	900	90	-200	-320	
	$\theta = 0.85$	-100	-90	-150	-90	-120	110	840	-20	-440	
1/2b	$\theta = 0.85$	-100	-90	-150	-90	-120	110	840	-20	-440	
	$\theta = 0.85$	-100	-90	-150	-90	-120	110	840	-20	-440	
	$\theta = 0.85$	-50	-60	-70	-100	-150	-90	100	730	-430	
3/4b	$\theta = 0.85$	-50	-60	-70	-100	-150	-90	100	730	-430	
	$\theta = 0.85$	-50	-60	-70	-100	-150	-90	100	730	-430	
	$\theta = 0.85$	-	_		_	_	***				
b	$\theta = 0.85$		_	_	_	-					
	$\theta = 0.85$			_	_		_	_	-		

$\mu \alpha \times 10\text{-}4(\mu \alpha = \mu 0 + (\mu 1 - \mu 0) / \alpha)$

		-b	-3/4b	-1/2b	-1/4b	0	1/4b	1/2b	3/4b	b	TOTAL
	μ 0	-720	-500	-150	420	1400	420	-150	-500	-720	
0	μ 1	-230	-220	-140	140	900	140	-140	-220	-230	
	μα	-588	-424	-147	344	1265	344	-147	-424	-588	
	μ0	-360	-560	-250	-20	460	1400	250	-560	-1230	
1/4b	μ1	-150	-160	-140	-100	110	900	90	-200	-320	
	μα	-303	-452	-220	-42	366	1265	207	-463	-984	
	μ0	-130	-150	-180	-130	60	480	1200	-300	-1700	
1/2b	μ1	-100	-90	-150	-90	-120	110	840	-20	-440	
	μα	-122	-134	-172	-119	11	380	1103	-224	-1360	
	μ0	-10	-40	-60	-60	-40	80	280	610	-1500	
3/4b	μ1	-50	-60	-70	-100	-150	-90	100	730	-430	
	μα	-21	-45	-63	-71	-70	34	231	642	-1211	
	$\mu 0$			_	-	-		1	_	-	
b	μ 1			-				_	_		
	μα				_	-	_	-	-		

Coefficient of Load Distribution of Cross Beam Estimation of u α ,in case f=0

Distance	0.000	1.750	3.500	5.250	7.000	8.750	10.500	12.250	14.000
μα	-0.0588	-0.0424	-0.0147	0.0344	0.1265	0.0344	-0.0147	-0.0424	-0.0588

From above table

Distance	0.125	0.250	2.000	4.024	9.976	12.000	13.750	13.875	
μα	-0.0576	-0.0564	-0.0385	0.0000	0.0000	-0.0385	-0.0564	-0.0576	

C-25

Distribution of Load in Cross Beam

	Side-walk(L)	
Position	Coefficient	Area
0.250	-0.0564	
1.750	-0.0424	-0.074
2.000	-0.0385	-0.010
TO	ΓAL	-0.084

	ment of Road	lWay
Position	Coefficient	Area
2.000	-0.0385	
3.500	-0.0147	-0.040
5.250	0.0344	0.017
7.000	0.1265	0.141
8.750	0.0344	0.141
10.500	-0.0147	0.017
12.000	-0.0385	-0.040
TO	ΓAL	0.236

3	Sub Live Load	l
Position	Coefficient	Area
2.000	-0.0385	
3.500	-0.0147	-0.040
4.024	0.0000	-0.004
		_
9.976	0.0000	
10.500	-0.0147	-0.004
12.000	-0.0385	-0.040
TO'	ΓAL	-0.088

Side-walk(R)				
Position	Coefficient	Area		
12.000	-0.0385			
12.250				
13.750	-0.074			
TO	-0.084			

Main Live Load						
Position	Coefficient	Area				
4.024	0.0000					
5.250	0.0344	0.021				
7.000	0.1265	0.141				
8.750	0.0344	0.141				
9.976	0.0000	0.021				
TO	0.324					

Live Load in Side-walk						
	Load in Side-walk					
Position	Coefficient	ient Area				
0.250	-0.0564					
1.750	-0.0424	-0.074				
2.000	-0.0385	-0.010				
12.000	-0.0385					
12.250	-0.0424	-0.010				
13.750	-0.0564	-0.074				
TO'	-0.168					

1.4.4 Estimation of bending moment

- (1) Bending moment due to deal loads
- (a) Bending moment due to beam weight

$$M_{d1} = 1/8 \times 3018 \times 2.00 = 1509 \text{ kg} \cdot \text{m}$$

(b) Bending moment due to other dead load

$$\mathbf{M}_{\mathbf{v}} = \sum \mu \cdot \mathbf{b} \cdot \lambda \cdot \gamma \cdot \sin(\pi \cdot \chi / \mathbf{l})$$

Where b = 7.00 m

 $\lambda = 3.40 \text{ m}$

1 = 9.68 m

 $\chi = 5.035 \text{ m}$

 $\gamma = 1.274 \cdot p$ (uniform distributed load)

$$\chi = 1/2$$
, $\sin((\pi \cdot 1/2)/1) = \sin(\pi/2) = 1$

Therefore, $M_y = \Sigma \mu \times 7.00 \times 3.40 \times 1.274 \times p$

$$= \Sigma \mu \times 30.32 \times p$$

Hand rail

$$2 \times 30.32 \times 723 \times (-0.0576) = -2525 \text{ kg} \cdot \text{m}$$

Pavement of side-walk

$$2 \times 30.32 \times 201 \times (-0.084) = -1024 \text{ kg} \cdot \text{m}$$

Pavement of Road way

$$30.32 \times 173 \times 0.236$$

$$= 1238 \text{ kg} \cdot \text{m}$$

 $\sum M_{d2} = -2311 \text{ kg} \cdot \text{m}$

(c) Total bending moment

$$M_p = 1509 + (-2311) = -802 \text{ kg} \cdot \text{m}$$

- (2) Bending moment due to live loads
- (a) Concentrated load

$$\mathbf{M}_{v} = \sum \mu \times 7.00 \times 3.40 \times 2P/l \times \sin(\pi \cdot \mathbf{u}/l) \cdot \sin(\pi \cdot \mathbf{t}/l)$$

$$= \sum \mu \times 23.80 \times 2P/9.68 \times \sin((\pi 1/2)/1) \cdot \sin((\pi 1/2)/1)$$

$$= \Sigma \mu \times 4922 \cdot P$$

Therefore,

$$M_p = 4.922 \times 8000 \times 0.324 = 12.758 \text{ t} \cdot \text{m}$$

$$M_p = 4.922 \times 8000 \times (-0.044) = -1.733 \text{ t} \cdot \text{m}$$

(b) Uniform distributed load of road way

$$M_P = 30.32 \times 500 \times 0.324 = 4.912 \text{ t} \cdot \text{m}$$

$$M_P = 30.32 \times 500 \times (-0.044) = -0.667 \text{ t} \cdot \text{m}$$

(c) Uniform distributed load of side-walk

$$M_{\omega} = 30.32 \times 300 \times (-0.168) = -1.528 \text{ t} \cdot \text{m}$$

(d) Bending moment due to impact

$$M_i = (12.758 + 4.912) \times 0.323 = 5.707 \text{ t} \cdot \text{m}$$

$$M_i = -(1.733 + 0.667) \times 0.323 = -0.775 \text{ t} \cdot \text{m}$$

(e) Total bending moment due to live loads

$$\Sigma M_i = 12.252 + 4.912 + 5.389 = 22.871 \text{ t} \cdot \text{m}$$

$$\Sigma M_i = -(1.664 + 0.667 + 0.775 + 1.528) = -4.634 \text{ t} \cdot \text{m}$$

(C) Design bending moment

$$Mmax = -0.802 + 22.871 = 22.069 t \cdot m$$

$$Mmin = -0.802 - 4.634 = 5.436 t \cdot m$$

- 5.5.5 Section and stresses
- (1) Estimated Section
- (a) Effective width of compression flange

$$\lambda = (n-1)/6 \times C$$

where n: Number of main bean=6

C: Interval of the main beam = 2.00m

$$=(6-1)/6\times2.00=1.67 \text{ m}$$

Therefore,

$$b=2\times167+40=374$$
 cm

- (b) Required reinforcing bar area
- (i) Positive reinforcing bar

$$M = 22.07 t \cdot m$$

Effective height d=100.0-7.0=93.0 cm

Thickness of the slab t=25.0 cm

As'=
$$M/((d-t/2) \cdot \sigma_{sa}) = 2207000/((93.0-25/2) \times 1800) = 15.23 \text{ cm}^2$$

In case of using number of 4 and D25 of diameter of reinforcing bar, reinforcing bar area is as follows.

$$As = 4 \times 4.91 = 19.64 \text{ cm}^2 > 15.23 \text{ cm}^2$$

Therefore, number of 4 and D25 of diameter of reinforcing bar is arranged.

(ii) Negative reinforcing bar

$$M=-5.44 t \cdot m$$

Effective height d=100.0-7.0=93.0 cm

Width of the web $b_0 = 40.0$ cm

Section is estimated as the rectangle.

As'=
$$M/(7/8 \cdot d \cdot \sigma_{sa}) = 544000/(7/8 \times 93 \times 1800) = 3.79 \text{ cm}^2$$

In case of using number of 2 and D19 of diameter of reinforcing bar, reinforcing bar area is as follows.

$$As = 2 \times 2.835 = 5.67 \text{ cm}^2 > 3.68 \text{ c m}^2$$

Therefore, number of 2 and D19 of diameter of the positive reinforcing bar is arranged.

- (2) Stresses
- (a) Stress due to positive bending moment

Reinforcing bar area to be used As=15.20 cm²

$$\chi = (n \cdot As \cdot d + b \cdot t^2/2)/(n \cdot As + b \cdot t)$$

$$=(15\times15.20\times93+374\times25^{2}/2)/(15\times15.20+374\times25)=14.42 \text{ cm} < t=25 \text{ cm}$$

It is estimated as a rectangular section because neutral axis is in the flange.

$$p = As/(b \cdot d) = 15.20/(374 \times 93) = 0.00044$$

$$k = \sqrt{(2 \cdot n \cdot p + (n \cdot p)^2) - n \cdot p} = 0.108$$

$$j = 1 - k/3 = 1 - 0.108/3 = 0.964$$

$$\sigma_c = 2M/(k \cdot j \cdot b \cdot d^2) = 2 \times 2207000/(0.108 \times 0.964 \times 374 \times 93^2)$$

$$=13.1 \text{ kg/cm}^2 < \sigma_{ca} = 80 \text{ kg/cm}^2$$

$$\sigma_s = M/(As \cdot j \cdot d) = 2207000/(15.2 \times 0.964 \times 93)$$

$$=1620~\rm kg/cm^2 < \sigma_{sa} = 1800~\rm kg/cm^2$$

(b) Stress due to negative bending moment

Reinforcing bar area to be used $As = 5.67 \text{ cm}^2$

$$p=As/(b \cdot d)=5.67/(40 \times 93)=0.0015$$

$$k = \sqrt{(2 \cdot n \cdot p + (n \cdot p)^2) - n \cdot p} = 0.191$$

$$i = 1 - k/3 = 1 - 0.191/3 = 0.936$$

$$\sigma_c = 2M/(k \cdot j \cdot b \cdot d^2) = 2 \times 544000/(0.191 \times 0.936 \times 40 \times 93^2)$$

$$=17.6 \text{ kg/ cm}^2 < \sigma_{ca} = 80 \text{ kg/ cm}^2$$

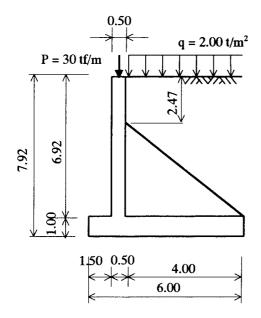
$$\sigma_s = M/(As \cdot j \cdot d) = 544000/(5.67 \times 0.936 \times 93)$$

$$=$$
1102 kg/ cm² $< \sigma$ _{sa} $=$ 1800 kg/ cm²

(3) Bar arrangement and stress Reinforcing bar arrangement and stress are summarized as follows

Name			No.1				No.2				No.3		
Span Length			89.6				10.67				11.392		
Position		Bar arrangement	σ ca	Q K	<i>1</i> 3	Bar	G ca	G G	* <u>1</u>	Bar	O sa	J Ca	7.
Middle of the span in the	Lower	8-D16	52.5	1220		8-D16	52.5	1220		8-D16	52.5	1220	
_	Upper	4-D16				4-D16				4-D16			
Supporting position of	Lower	4-D16				4-D16				4-D16			
	Upper	8-D16	51.9	1451		8-D16	51.9	1451		8-D16	51.9	1451	
Distribution bar of the slab	þ	4-D16				4-D16		:		4-D16			
pe of	Slab by cantilever type of side-walk	8-D16				8-D16				8-D16			
Main beam (G1, G6)		10-D25	28.9	1645.0	92.9	10-D28	32.5	1555.3	7.25	10-D28	36.5	1748.5	7.64
		10-D25	27.7	1575.3	6.47	10-D25	30.2	1446.7	6.75	10-D28	33.1	1582.6	6.91
	Lower	4 – D25	13.1	1620		4-D25	13.8	1484		4-D25	13.7	1318	
	Upper	2-D19	17.6	1102		2-D22	30.1	1601		2-D22	27.4	1454	

Allowable bending compressive stress; σ_{ca} =85 kg/cm²


Allowable shearing stress (beam); $\tau_s = 8.0 \text{ kg/cm}^2$ Allowable tensile stress (slab); $\sigma_{sa} = 2000 \text{ kg/cm}^2$

Allowable tensile stress (main beam); σ_{ss} = 1800 kg/cm²

APPENDIX C.4.2-3Structural Analysis of Abutment

(1) Design Criteria

(a) Sectional Dimension for Analysis

(b) Coefficient of Earth Pressure; Ka=0.333

(c) Live Load; $q=2.00 \text{ tf/m}^2$

(d) Load of Bridge; P=30.0 tf/m

(2) Check of Stability

The Wall stability analysis has been made to show the results in Table 1.

Table 1 Result of Stability Analysis

Load	Vertical Force (tf)	Arm Length (m)	Stabilizing Moment (tf•m)	Horizontal Force (tf)	Arm Length (m	Overturnin g Moment (tf m)
Wall	64.340	2.650	170.500			
Weight of Earth	173.200	4.030	697.590			
Live Load	19.200	4.000	76.800			
Earth Pressure				-57.780	2.930	0 -169.240
Bridge	72.000	1.750	126.000			
Total	328.740		1070.890	-57.780		-169.240
(Calculated about 2.4m	span)					
Total of Moment	$\Sigma M =$	901.650	(tf·m)			
Total of Vertical Force	$\Sigma V =$	328.740	(tf)			
Total of Horizontal Ford	$\Sigma H =$	-57.780	(tf)			
Stability Against Overtu Case-1 : After Construc	-	oil Reaction				
$\chi = (\Sigma M/\Sigma V) =$	2.740	(m)				
Width of Invert L =	= 6.00	(m)				
Eccentric Length e	= 0.260	(m)	<	L/6 =	1.000	(m)
Soil Reaction Q ₁	= 28.760	(tf/m^2)				
\mathbf{Q}_2	= 16.890	(tf/m^2)				
Case-2: Under Construc	ction					
$\chi' = M/V =$	= 2.650					
Eccentric Length e'	= 0.350		<	L/6 =	1.000	(m)
Soil Reaction Q ₁ '		(tf/m^2)				` /
Q_2 '	= 2.904	(tf/m^2)				
Factor of Safety Against	t Sliding					
Coefficient of friction	f=	0.600				
Cohesion	C=		(tf/m^2)			
Total of Vertical Force	$\Sigma V =$	328.740	` '			
Width of Invert	2 V = L=	6.000	, ,			
Total of Horizontal Force		57.780	` '			
Total of Horizontal For	λ Δ <u>Π</u>	31.160	(u)			
Factor of Safety	$F_s =$	3.41	=	1.50	OK	

(3) Result of Structural Analysis

Table 2 Result of Structural Analysis

1. Calcula	ation of stem	*****				
Height (m)	Bending Moment (tf • m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	Reinforcing Bar Schedule (cm²)
1.00	0.730	1.520	0.430	0.070	1.090	3-D16=6.03
3.00	1.420	2.960	0.430	0.100	2.130	3-D16=6.03
6.92	2.770	5.780	0.430	0.140	4.160	3-D16=6.03
2. Calcula	ation of Counte	rfort				
Height (m)	Bending Moment (tf * m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)	Reinforcing Bar Schedule (cm²)
2.50	3.640	3.540	0.460	0.160	5.100	2-D22=7.60
6.00	33.570	14.790	2.550	0.470	7.330	3-D22=11.40
6.92	49.060	18.960	3.160	0.570	8.620	3-D22=11.40
3. Calcula	ation of Toe					
Height (m)	Bending Moment (tf • m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	Reinforcing Bar Schedule (cm²)
0.50	2.010	8.570	0.930	0.120	1.390	3-D16+ 3-D19=14.54
1.50	18.090	24.710	0.930	0.350	12.540	3-D16+ 3-D19=14.54
4. Calcula	ation of Heel					
Height (m)	Bending Moment (tf * m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)	Reinforcing Bar Schedule (cm²)
0.00	0.840	1.740	0.930	0.070	0.510	3-D16=6.03
2.00	0.980	2.030	0.930	0.080	0.610	3-D16=6.03
4.00	1.110	2.320	0.930	0.120	0.700	3-D16=6.03
5. Calcula	ation of Connec	tion of Stem a	and Counterfor	t		
Height (m)	Shearing Force	Required Area of Tension Reinforcement (cm ²)	Reinforcing Bar Schedule (cm²)			
2.50	2.600	2.890	3-D16=6.03			
6.00	5.110	5.680	3-D19=8.51			
6.92	5.780	6.420	3-D19=8.51			
6. Calcula	ation of Connec	tion of Heel a	nd Counterfort	:		
Height (m)	Shearing Force (tf) I	(cm²)	Reinforcing Bar Schedule (cm²)			
0.00	1.740	1.940	3-D16=6.03			
4.00	2.320	2.580	3-D16=6.03			