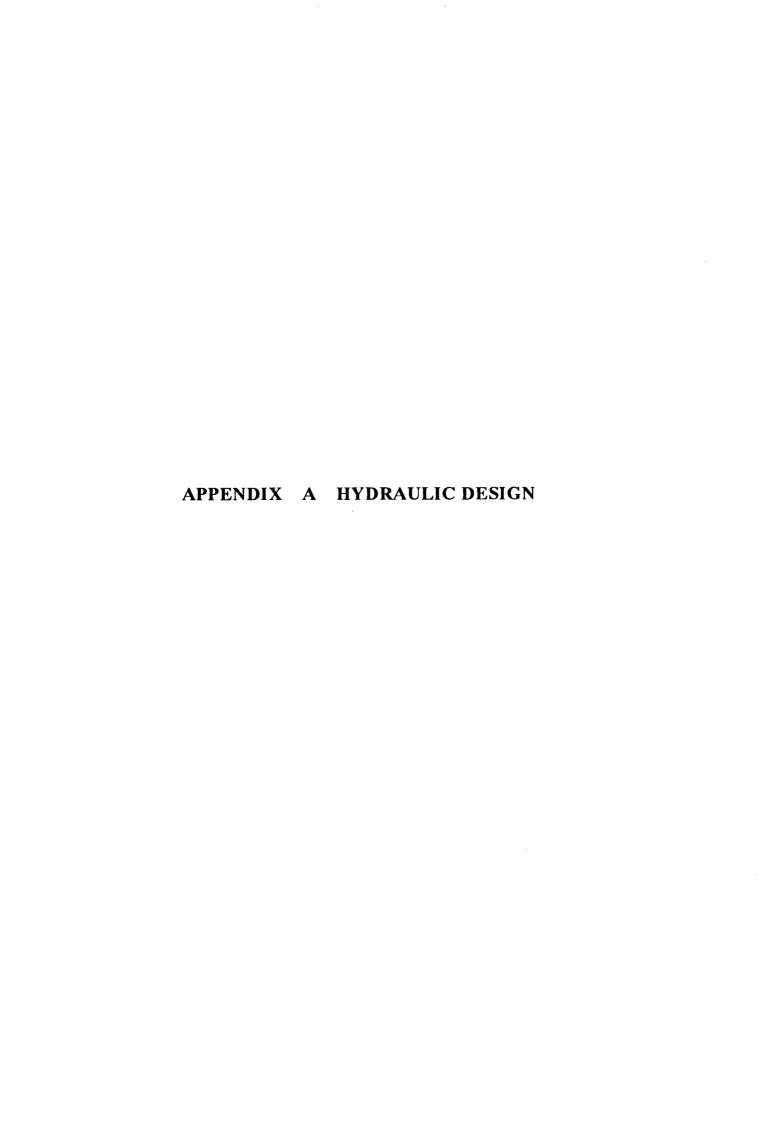
APPENDIX

APPENDIX	A	HYDR	AULIC	C DESIGN
----------	---	------	-------	----------

APPENDIX B STABILITY ANALYSIS

APPENDIX C STRUCTURAL DESIGN

APPENDIX D EQUIPMENT DESIGN


APPENDIX E MINUTES OF DISCUSSIONS

CONTENTS OF APPENDIX

APPENDIX A HYDRAULIC DESIGN

A.2.2-1	Hydraulics of Open Transitions (1), (2) and (3)	A- 1
A.2.3-1	Detailed Hydraulic Properties of Open Canal	A- 2
A.2.3-2	Detailed Hydraulic Properties of 4-Cell of Box Culvert	A- 3
A.2.3-3	Hydraulic Design of Delivery Pressure Pipeline	A- 4
A.2.4-1	Hydraulics of Gated Sections	A- 8
A.2.4-2	Hydraulic Computation of Flow in Discharge Canal	A- 9
A.2.4-3	Hydraulic Computation of Flow in Chute	A-12
A.2.4-4	Detention Pond Capacity Curve	A-13
A.2.5-1	Detailed Hydraulic Design of Sand Settling Basin	A -14
A.2.6-1	Hydraulic Design of No.7 Pumping Station	A -17
A.2.7-1	Studies of Water Hammer Analysis	A-23
A.2.7-2	Theoretical Water Hammer Calculation Comparison with	
	Experimental Result	A-29
A.2.8-1	Detailed Hydraulic Design of Discharge Tank	A-31
APPEND	IX B STABILITY ANALISIS	
B 3.1-1	Stability Analysis of Canal Banks	B- 1
B.3.2-1	Stability Analysis of Dike	B- 6
B.3.3-1	Detailed Stability Analysis for Slope of Excavation of No.7 Pumping Station	B - 9
APPEND	IX C STRUCTURAL DESIGN	
C.4.2-1	Selection of Type of Conveyance Structure over Depressions in the	
	Route of the Box Culvert Conduit	
C.4.2-2	Structural Computation of Road Bridges	C- 4
C.4.2-3	Structural Analysis of Abutment	C-31
C.4.3-1	Structural Computation of 4-Cell Box Culvert	C-34
C.4.3-2	Structural Computation of Openings	
C.4.4-1	Calculation of Detail Procedure of Steel Pipe Wall Thickness	
C.4.4-2	Required Length for Thrust Load and Restriction Force	C-55
C.4.4-3	•	
C.4.4-4	Necessary and Unnecessary of Flexible Pipe Joint	C-58
	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System	C-61
C.4.4-5	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank	C-61 C-65
C.4.4-5 C.4.4-6	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off	C-61 C-65 C-81
	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off Dimensions and Structural Design of Air Valve	C-61 C-65 C-81 C-89
C.4.4-6	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off Dimensions and Structural Design of Air Valve Structural Computation of Spillway Structures	C-61 C-65 C-81 C-96
C.4.4-6 C.4.4-7	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off Dimensions and Structural Design of Air Valve Structural Computation of Spillway Structures Structural Computation of Spillway Outlet Channel Structure	C-61 C-65 C-81 C-89 C-96
C.4.4-6 C.4.4-7 C.4.5-1	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off Dimensions and Structural Design of Air Valve Structural Computation of Spillway Structures Structural Computation of Spillway Outlet Channel Structure Structural Analysis of Retaining Wall	C-61 C-65 C-81 C-89 C-96 C-112
C.4.4-6 C.4.4-7 C.4.5-1 C.4.5-2	Necessary and Unnecessary of Flexible Pipe Joint Design of Cathodic Protection System Structural Design of Surge Tank Dimensions and Structural Design of Blow Off Dimensions and Structural Design of Air Valve Structural Computation of Spillway Structures Structural Computation of Spillway Outlet Channel Structure	C-61 C-65 C-81 C-89 C-96 C-112

C.4.7-1	Structural Analysis of Retaining Wall	C-154
C.4.7-2	Structural Calculation of Intake Canal	C-157
C.4.7-3	Structural Calculation of Pump Room	C-167
C.4.7-4	Structural Calculation of Valve Chamber	C-177
C.4.7-5	Structural Calculation of Flow Meter Chamber	C-187
C.4.8-1	Structural Analysis for Discharge Tank	C-195
C.4.9-1	Structural Calculation of Pump House	C-203
C.4.10-1	Structural Calculation of Stop Logs for Pumping Station	
C.4.10-2	Structural Calculation of Stop Logs for Spillway	
C.4.10-3	Structural Calculation of Stop Logs for Box Culvert	C-214
C.4.10-4	Structural Calculation of Bulkhead Gate for Pumping Station	C-216
C.4.10-5	Structural Calculation of Roller Gate for Sand Settling Basin	C-221
C.4.10-6	Structural Calculation of Roller Gate for Spillway	C-226
C.6.4-1	Structural Calculation of Main Substation	
C.6.4-2	Structural Calculation of Administration Building	C-235
APPEND	IX D EQUIPMENT DESIGN	
D.5.3-1	Capacity Estimates of the Appurtenant Facilities	D-1
D.5.3-1 APPEND	Capacity Estimates of the Appurtenant Facilities IX E MINUTES DISCUSSIONS	D-1
APPEND	IX E MINUTES DISCUSSIONS	E-1
APPEND	IX E MINUTES DISCUSSIONS Minutes and Resolutions for PSC Meeting held on 30 th September 1999	E-1
APPEND	IX E MINUTES DISCUSSIONS Minutes and Resolutions for PSC Meeting held on 30 th September 1999 Minutes and Resolutions for PMC Meeting held on 28 th September 1999	E-1 E-7
APPEND	Minutes and Resolutions for PSC Meeting held on 30 th September 1999 Minutes and Resolutions for PMC Meeting held on 28 th September 1999 Minutes and Resolutions for MED Meeting held on 26 th September and	E-1 E-7 E-22
E.1 E.2 E.3	Minutes and Resolutions for PSC Meeting held on 30 th September 1999	E-1 E-7 E-22
E.1 E.2 E.3	Minutes and Resolutions for PSC Meeting held on 30 th September 1999 Minutes and Resolutions for PMC Meeting held on 28 th September 1999 Minutes and Resolutions for MED Meeting held on 26 th September and 2 nd October 1999 Minutes and Resolutions for MED Meeting held on 14 th October 1999	E-1 E-7 E-22 E-26
E.1 E.2 E.3	Minutes and Resolutions for PSC Meeting held on 30 th September 1999	E-1 E-7 E-22 E-26
E.1 E.2 E.3 E.4 E.5	Minutes and Resolutions for PSC Meeting held on 30 th September 1999 Minutes and Resolutions for PMC Meeting held on 28 th September 1999 Minutes and Resolutions for MED Meeting held on 26 th September and 2 nd October 1999	E-1 E-7 E-22 E-26 E-30
E.1 E.2 E.3 E.4 E.5	Minutes and Resolutions for PSC Meeting held on 30 th September 1999	E-1 E-7 E-22 E-26 E-30 E-58
E.1 E.2 E.3 E.4 E.5	Minutes and Resolutions for PSC Meeting held on 30 th September 1999 Minutes and Resolutions for PMC Meeting held on 28 th September 1999 Minutes and Resolutions for MED Meeting held on 26 th September and 2 nd October 1999 Minutes and Resolutions for MED Meeting held on 14 th October 1999 Minutes and Resolutions for New Items from Study Team by the Letter on October 1999	E-1 E-7 E-22 E-26 E-30 E-58
E.1 E.2 E.3 E.4 E.5 E.6	Minutes and Resolutions for PSC Meeting held on 30 th September 1999	E-1 E-7 E-22 E-26 E-30 E-58 E-61

APPENDIX A.2.2-1 Hydraulics of Open Transitions (1), (2) and (3)

OPEN TRANSITION (1): (Open Canal (B=14m) → Open Canal (B=12m))

Distance	Length of Open Trans.	Bottom Elevation	Water Level	Water Depth	Velocity	Velocity Head	Head Loss	Specific Energy	Possible Bottom Elv.	Remarks
(km)	Œ)	(EL. m)	(EL. m)	(m)	(m/sec)	(m)	(m)	(EL. m)	(EL. m)	
86.500		10.14	13.64	3.50	0.716	hv1=0.03		13.67		
	15.00						0.00			
86.515		10.14*	13.45	3.31	0.854	hv2=0.04		13.67	10.36	

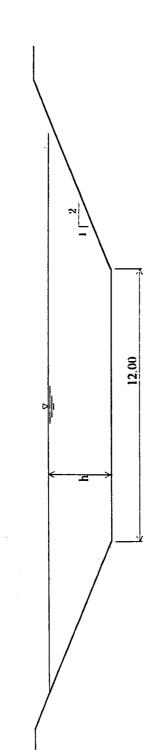
Head Loss (Transition Head Loss) = fc x (hv2 - hv1) = 0.1 x (0.04 - 0.03) = 0.00

Note: The bottom elevation at downstream end is decided to be same as the bottom elevation at upstream end in order to prevent sand deposit on the canal bottom.

OPEN TRANSITION (2): (Open Canal (B=12m) \rightarrow 4-Cell Box (3.7m x 3.7m x 4))

Remarks				
Possible Bottom Elv.	(EL. m)			9.45
Specific Energy	(EL. m)	12.87		12.86
Head Loss	(m)		0.01	
Velocity Head	(m)	hv1=0.04		hv2=0.06
Velocity	(m/sec)	0.854		1.062
Water Depth	(m)	3.31		3.35
Water Level	(EL. m)	12.83		12.80
Bottom Elevation	(EL. m)	9.52		9.45
Length of Onen Trans.	(E)		30.00	
Distance	(km)	94.270		94.300

Head Loss (Transition Head Loss) = $fc \times (hv2 - hv1) = 0.5 \times (0.06 - 0.04) = 0.01$


OPEN TRANSITION (3): $(4-Cell Box (3.7m x 3.7m x 4) \rightarrow Open Canal (B=12m))$

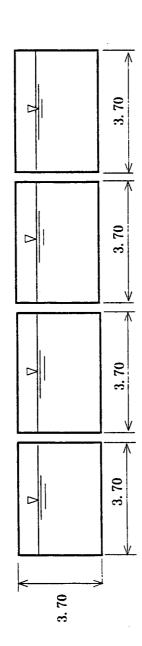
rks				
Remarks				
Possible Bottom Elv.	(EL. m)			7.99
Specific Energy	(EL. m)	11.36		11.34
Head Loss	(m)		0.02	
Velocity Head	(m)	hv1=0.06		hv2=0.04
Velocity	(m/sec)	1.062		0.854
Water Depth	(m)	3.35		3.31
Water Level	(EL. m)	11.30		11.26
Bottom Elevation	(EL. m)	26.7		*S6.7
Length of Open Trans.	(m)		30.00	
Distance	(km)	101.800		101.830

Head Loss (Transition Head Loss) = fe x (hv1 – hv2) = $1.0 \times (0.06 - 0.04) = 0.02$

Note: The bottom elevation at downstream end is decided to be same as the bottom elevation at upstream end in order to prevent sand deposit on the canal bottom.

APPENDIX A.2.3-1 Detailed Hydraulic Properties of Open Canal

	O.m.hol			Stage I			Stage II	
/	Political	_	Min. Discharge	Min. Discharge Ave. Discharge Max. Discharge Min. Discharge Ave Discharge Max. Discharge	lax. Discharge	Min. Discharge A	ve. Discharge	Max. Discharg
Design Discharge	ò	s/ _E m	60.8	16.98	32.48	13.93	28.05	52.66
Hydraulic Gradient	_		0.00008	0.00008	0.00008	80000.0	0.00008	0.00008
Roughness Coefficient	1/n		55	55	55	55	55	55
Assumed Water Depth	<u>'</u> -	Ε	1.17	1.79	2.55	1.60	2.36	3.31
Flow Area	A	m ²	16.78	27.83	43.61	24.32	39.51	61.63
Wetted Perimeter	Ъ	E	17.23	19.99	23.40	91.61	22.56	26.80
Hydraulic Radius	R	E	0.974	1.392	1.864	1.269	1.751	2.300
7	R ^{2/3}		0.983	1.247	1.515	1.172	1.453	1.742
Velocity	>	m/s	0.483	0.613	0.745	0.577	0.715	0.857
Estimated Discharge	ò	m ³ /s	8.10	17.06	32.49	14.03	28.25	52.82
Friction Velocity	j	cm/s	2.76	3.30	3.82	3.15	3.71	4.25
Critical Tractive Particle Size	d _{max}	шш	0.1	4.	30	1.3	1.7	2.3
Design Water Depth	! ——	E	1.17	1.79	2.55	_	2.36	3.31


 $Q = A \times 1/n \times R^{2/3} \times 1^{1/2}$ $U_* = (980 \times R \times 100 \times I)^{0.5}$ Manning' Formula Friction Velocity

dmax = $(U^*/1.2)^2$ x 10/55.0

Iwagaki' Formula

A-2

APPENDIX A.2.3-2 Detailed Hydraulic Properties of 4-Cell Box Culvert

				Stage I			Stage II	
	Symbol		Min. Discharge		Ave. Discharge Max. Discharge	Min. Discharge	L	Ave. Discharge Max. Discharge
Design Discharge	0	m ³ /s	8.09	86'91	32.48	13.93	28.05	52.66
Hydraulic Gradient	I		0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
Roughness Coefficient	1/n		19	19	<i>L</i> 9	29	29	19
Assumed Water Depth	14	E	0.82	1.38	2.29	1.19	1.98	3.35
Flow Area	Y	m ²	12.14	20.42	33.89	19.71	29.37	49.58
Wetted Perimeter	Ъ	ε	21.36	25.84	33.12	24.32	30.67	41.60
Hydraulic Radius	~	E	0.568	0.790	1.023	0.724	0.958	1.192
	R ²³		989'0	0.855	1.015	908.0	0.972	1.124
Velocity	>	s/m	0.650	0.810	0.962	0.764	0.921	1.065
Estimated Discharge	Ö	m³/s	7.89	16.54	32.60	13.45	27.05	52.80
Friction Velocity	'n	cm/s	3.34	3.93	4.48	3.77	4.33	4.83
Critical Tractive Particl	dmax	шш	1.4	2.0	2.5	1.8	2.4	2.9
Design Water Depth	1	E	0.82	1.38	2.29	1.19	1.98	3.35
			Manning' Formula		$Q = A \times 1/n \times R^{2/3} \times I^{1/2}$	2/3 × 1/2		
					,	\$ O		

 $U_{\bullet} = (980 \times R \times 100 \times I)^{0.5}$ dmax = $(U^{+}/1.2)^{2} \times 10/55.0$

> Friction Velocity Iwagaki' Formula

APPENDIX A.2.3-3 Hydraulic Design of Delivery Pressured Pipeline

(1) Calculation of Head Loss

Calculations of hydraulic head losses for each pump unit operation between beginning point of pipeline KM 108.985 and end point of pipeline KM 118.360 are tabulated in the following tables;

Table 1; $Q = 10.827 \text{ m}^3/\text{s}$, 3 pumps operation

Table 2; $Q = 7.977 \text{ m}^3/\text{s}$, 2 pumps operation

Table 3; $Q = 4.300 \text{ m}^3/\text{s}$, 1 pump operation

Table 1 Q=10.827 m³/s, 3 pumps operation

Calculation of Head Loss

Case: Stage I max, $Q = 10.827 m^3/s (3 Pump) \times 3 lane$

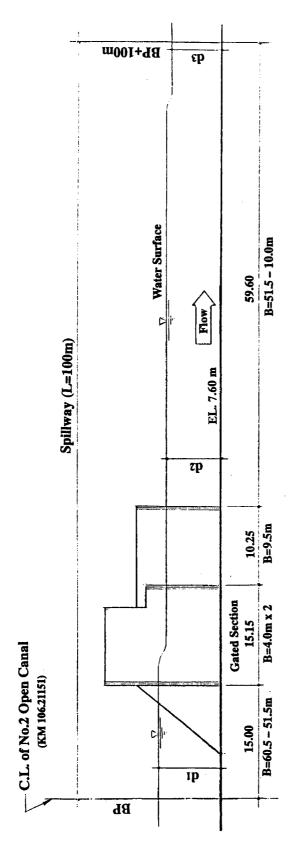
Mesure Point	Real Pipe Length(m)	_	npou	nd	Entrance (m)	Friction (m)	Bend (m)	Valve (m)	Flowmeter (m)	Branch (m)	Transition (m)	Energy (m)	Dynamic Head(m)
08km 985	0.000	0	0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	107.937	107.645
					(0.0)		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
09km157.62	172.823	34	48	45	0.000	0.261	0.029	0.000	0.000	0.000	0.000	107.647	107.355
P.16Survey	118.028	n	43	14	(0.0) 0.000	0.178	(0.100)	(0.000) 0.000	(0.000)	(0.000)	(0.000) 0.000	107.468	107.176
r.103uivey	110.020	Ū	7.5	•	(0.0)	0.17.0	(0.002)	(0.000)	(0.000)	(0.000)	(0.000)		
10km 0	760.003	0	41	15	0.000	1.149	0.001	0.000	0.000	0.000	0.000	106.318	106.026
	***				(0.0)	0.454	(0.002)	(0.000)	(0.000)	(0.000)	(0.000)	105 943	105 551
110km 300	300.167	22	32	52	0.000 (0.0)	0.454	0.021 (0.073)	0.000	(0.000)	0.000	0.000	105.843	105.551
110km315.69	15.690	22	28	45	0.000	0.024	0.021	0.000	0.000	0.000	0.000	105.798	105.506
					(0.0)		(0.072)	(0.000)	(0.000)	(0.000)	(0.000)		
110km381.69	66.000	11	29	47	0.000	0.100	0.009	0.000	0.000	0.000	0.000	105.689	105.397
110km 410	30.100	11	29	47	(0.0) 0.000	0.046	(0.031)	(0.000)	(0.000)	(0.000)	(0.000) 0.000	105.634	105.342
HOMI 410	30.100		23	٠,	(0.0)	0.040	(0.031)	(0.000)	(0.000)	(0.000)	(0.000)	100.00	100.0 .2
110km553.65	143.650	10	54	58	0.000	0.217	0.008	0.000	0.000	0.000	0.000	105.409	105.117
					(0.0)		(0.029)	(0.000)	(0.000)	(0.000)	(0.000)	105.145	104.005
IP.17	179.910	21	49	57	0.000	0.272	0.020	0.000	0.000	(0.000)	0.000	105.117	104.825
110km964.31	179.910	10	54	59	(0.0) 0.000	0.272	(0.069)	(0.000)	(0.000)	0.000	0.000	104.837	104.545
1108111704251	1,,,,,		٠.	•	(0.0)	****	(0.029)	(0.000)	(0.000)	(0.000)	(0.000)		
111km746.14	781.831	26	25	11	0.000	1.182	0.028	0.000	0.000	0.000	0.000	103.627	103.335
					(0.0)		(0.094)	(0.000)	(0.000)	(0.000)	(0.000)	102.007	100.024
111km992.58	246.445	26	25	35	0.000	0.373	0.028	0.000	0.000	(0.000)	0,000 (0.000)	103.226	102.934
112km 115.8	123.245	0	5	57	(0.0) 0.000	0.186	0.000	0.000		0.000	0.000	103.040	102.748
114Min 11510		•	-		(0.0)		(0.000)	(0.000)		(0.000)	(0.000)		
112km 500	392.825	1	23	9	0.000	0.594	0.001	0.000		0.000	0.000	102.445	102.153
	200 001		20		(0.0)	0.454	(0.004)	(0.000)		(0.000)	(0.000)	101.990	101.698
112km 800	300.001	1	39	20	0.000 (0.0)	0.454	0.001 (0.004)	0.000		0.000	0.000 (0.000)	101.550	101.076
113km 200	400.195	2	35	47	0.000	0.605	0.002	0.000		0.000	• •	101.383	101.091
					(0.0)		(0.007)	(0.000)		(0.000)	(0.000)		
IP.19	177.598	12	20	38	0.000	0.268	0.010	0,000		0.000		101.105	100.813
***** 500	117.254	•	42	14	(0.0) 0.000	0.177	(0.033)	(0.000) 0.000		(0.000)	(0.000)	100.926	100.634
113km 500	117.254		44	1.4	(0.0)	0.177	(0.007)	(0.000)		(0.000)		100.720	100.00
113km 750	250.002	0	29	56	0.000	0.378	0.000	0.000	, ,	0.000	0.000	100.548	100.256
					(0.0)		(0.001)	(0.000)		(0.000)	• ,		
IP.20	212.362	9	44	56	0.000	0.321	0.007	0.000		0.000		100.220	99.928
114km 691	733.126	23	57	17	(0.0) 0.000	1.108	(0.025)	(0.000) 0.000		0.000		99.088	98.796
114611 031	755.120		٠.	•	(0.0)		(0.081)	(0.000)		(0.000)			
114km 700	9.853	23	59	45	0.000	0.015	0.024	0.000		0.000		99.049	98.757
	40.400	_		10	(0.0)	0.061	(0.081)	(0.000)		(0.000)		98.982	98.690
114km740.1	40.100	7	37	τŋ	0.000	0.061	0.006 (0.020)	0.000		0.000		70.702	70.070
114km 770	30.170	7	44	22	0.000	0.046	0.006	0.000		0.000		98.930	98.638
					(0.0)		(0.020)	(0.000)		(0.000)			
115km 200	430.107	1	32	47	0.000	0.650	0.001	0.000		0.000		98.279	97.987
115km382.14	182.142	٥	59	50	(0.0) 0.000	0.275	(0.004)	(0.000)		(0.000)		97.996	97.704
113Kil302.14	102.142	,	JŦ	37	(0.0)	0.273	(0.026)	(0.000)		(0.000)		2.,,200	
115km558.46	164.972	9	59	59	0.000	0.249	0.008	0.000	0.000	0.000	0.000	97.739	97.447
					(0.0)		(0.026)	(0.000)		(0.000)		00.000	07 000
115km 800	241.543	0	0	0	0.000	0.365	0.000			0.000		97.374	97.082
116km 400	600.006	0	0	0	0.000	0.907	0.000			0.000		96.467	96.175
		•	-	-	(0.0)		(0.000)		(0.000)	(0.000)	(0.000)		
117km 50	650.007	2	1	37	0.000	0.983	0.002			0.000		95.482	95.190
	200 200	_		•	(0.0)	0.270	(0.005)			(0.000)		95.103	94.811
117km 300	250.200	1	43	3	0.000	0.378	(0.004)			0.000		73.103	>¬. 011
118km 0	700.035	1	15	42	0.000	1.058	0.001			0.000		94.044	93.752
		•	_	_	(0.0)		(0.003)		(0.000)	(0.000)	(0.000)		
IP.22	306.097	30	4	22	0.000	0.463	0.025			0.000		93.556	93.264
1105 260	47.350	^		0	(0.0)	0.072	(0.085)			(0.000)		93.192	92.900
118km 360	47.350	0	U	0	0.292 (1.0)	0.072	(0.000)			(0.000)		73.172	. 2
					()			,5.550,	, (=-0)				

Table 2 Q=7.977 m³/s, 2 pumps operation

Calculation of Head Loss

Case : Stage I , Q = 7.977 m^3/s (2 Pump) $\times 3$ lane

esure Point	Real Pipe Length(m)	Angle		(.S)	Entrance (m)	Friction (m)	Bend (m)	Valve (m)	Flowmeter (m)	Branch (m)	Transition (m)	Energy (m.)	Dynamic Head(m)
	*********		===	****		*******		2223222	, 22224	*****	erspresse:	*********	********
8km 985	0.000	0	0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	101.322	101.163
9km157.62	172.823	34	48	45	(0.0) 0.000	0.148	(0.000) 0.016	(0.000)	(0.000)	(0.000)	(0.000) 0.000	101.158	100.999
7KIII 37.02	174.023	54	70	7.5	(0.0)	0.140	(0.100)	(0.000)	(0.000)	(0.000)	(0.000)	101.150	100.777
16Survey	118.028	0	43	14	0.000	0.101	0.000	0.000	0.000	0.000	0.000	101.057	100.898
					(0.0)		(0.002)	(0.000)	(0.000)	(0.000)	(0.000)		
Okm O	760.003	0	41	15	0.000	0.653	0.000	0.000	(0.000	0.000	0.000	100.404	100.245
0km 300	300.167	22	32	52	(0.0) 0.000	0.258	(0.002)	(0.000)	(0.000)	(0.000)	(0.000) 0.000	100,134	99.975
OMII JOO	300.107				(0.0)		(0.073)	(0.000)	(0.000)	(0.000)	(0.000)		
0km315.69	15.690	22	28	45	0.000	0.013	0.011	0.000	0.000	0.000	0.000	100.110	99.951
					(0.0)		(0.072)	(0.000)	(0.000)	(0.000)	(0.000)		
0km381.69	66.000	11	29	47	0.000 (0.0)	0.057	0.005	0.000	0.000	0.000	0.000	100.048	99.889
0km 410	30.100	11	29	47	0.000	0.026	0.005	0.000	0.000	0.000	0.000	100.017	99.858
	20.200	•			(0.0)		(0.031)	(0.000)	(0.000)	(0.000)	(0.000)		
0km553.65	143.650	10	54	58	0.000	0.123	0.005	0.000	0.000	0.000	0.000	99.889	99.730
	100.010	~	40		(0.0)	0.55	(0.029)	(0.000)	(0.000)	(0.000)	(0.000)	CO TOT	00 544
.17	179.910	21	49	3/	0.000	0.155	0.011 (0.069)	0.000	0.000	0.000	0.000	99.723	99.564
0km964.31	179.910	10	54	59	0.000	0.155	0.005	0.000	0.000	0.000	0.000	99.563	99.404
		_			(0.0)		(0.029)	(0.000)	(0.000)	(0.000)	(0.000)		
1km746.14	781.831	26	25	11	0.000	0.672	0.015	0.000	0.000	0.000	0.000	98.876	98.717
	246 445	26	25	25	(0.0)	0.212	(0.094)	(0.000)	(0.000)	(0.000)	(0.000)	98.649	98,490
1km992.58	246.445	20	25	33	0.000 (0.0)	0.212	(0.094)	(0.000)	(0.000)	(0.000)	(0.000)	90.049	90,490
2km 115.8	123.245	0	5	57	0.000	0.106	0.000	0.000	0.000	0.000	0.000	98.543	98.384
					(0.0)		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
2km 500	392.825	1	23	9	0.000	0.337	0.001	0.000	0,000	0.000	0.000	98.205	98,046
2km 800	300.001	1	39	56	(0.0) 0.000	0.258	(0.004)	(0.000)	(0.000) 0.000	(0.000)	(0.000)	97.946	97.787
2KII 600	300.001	•	37	50	(0.0)	0.236	(0.004)	(0.000)	(0.000)	(0.000)	(0.000)	71.740	71.707
3km 200	400.195	2	35	47	0.000	0.344	0.001	0.000	0.000	0.000	0.00ó	97.601	97.442
					(0.0)		(0.007)	(0.000)	(0.000)	(0.000)	(0.000)		
.19	177.598	12	20	38	0.000	0.153	0.005	0.000	0.000	0.000		97.443	97.284
3km 500	117.254	2	42	14	(0.0) 0.000	0.101	(0.033)	(0.000) 0.000	(0.000) 0.000	(0.000)	(0.000)	97.341	97.182
300	117.204	•		• •	(0.0)	0.101	(0.007)	(0.000)	(0.000)	(0.000)			,,,,,,
13km 750	250.002	0	29	56	0.000	0.215	0.000	0.000	0.000	0.000	0.000	97.126	96.967
		_			(0.0)		(0.001)	(0.000)		(0.000)		04.040	0.4 =0.4
2.20	212.362	9	44	56	0.000	0.182	(0.025)	0.000	0.000	0.000		96.940	96.781
14km 691	733.126	23	57	17	0.000	0.630	0.013	0.000		0.000		96.297	96.138
					(0.0)		(0.081)	(0.000)	(0.000)	(0.000)	(0.000)		
14km 700	9.853	23	59	45	0.000	0.008	0.013	0.000		0.000		96.276	96.117
1 Alem 740 1	40 100	-	27	10	(0.0)	0.024	(0.081)	(0.000)		(0.000)		96.239	96.080
14km740.1	40.100	′	37	10	0.000 (0.0)	0.034	(0.020)	(0.000)		(0.000)		70.439	20.080
14km 770	30.170	7	44	22	0.000	0.026	0.003	0.000		0.000		96.210	96.051
					(0.0)		(0.020)	(0.000)		(0.000)			
15km 200	430.107	1	32	47	0.000	0.369	0.001	0.000		0.000		95.840	95.681
15km382.14	182.142	a	59	50	(0.0) 0.000	0.156	(0.004)	(0.000) 0.000		(0.000) 0.000		95.680	95.521
LJAIILJ04.14	104.144	,	Jy	29	(0.0)	0.150	(0.026)	(0.000)		(0.000)		,,,,,,,,,	,,,,,
15km558.46	164.972	9	59	59	0.000	0.142	0.004	0.000		0.000		95.534	95.375
					(0.0)		(0.026)	(0.000)		(0.000)			_
15km 800	241.543	0	0	0	0.000	0.207	0.000	0.000		0.000		95.327	95.168
16km 400	600.006	0	n	0	(0.0) 0.000	0.515	(0.000)	(0.000)		(0.000) 0.000		94.812	94.653
.UNII 700	000.000	J	v	J	(0.0)	0.545	(0.000)	(0.000)		(0.000)		, 1.012	, 1103
17km 50	650.007	2	1	37	0.000	0.558	0.001	0.000				94.253	94.094
					(0.0)	_	(0.005)	(0.000)		(0.000)			
17km 300	250,200	1	43	3	0.000	0.215	0.001	0.000		0.000		94.037	93.878
18km 0	700.035		15	42	(0.0) 0.000	0.601	(0.004)	(0.000)		(0.000) 0.000		93.435	93.27
AVAII U	700.033	1		74	(0.0)	0.001	(0.003)	(0.000)				,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
P.22	306.097	30	4	22	0.000	0.263	0.013	0.000				93.159	93.000
					(0.0)	_	(0.085)	(0.000)				_	
18km 360	47.350	0	0	.0	0.159	0.041	0.000					92.959	92.800
	7				(1.0)		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		


Table 3 $Q=4.300 \text{ m}^3/\text{s}$, 1 pump operation

Calculation of Head Loss

Case: Stage I min, $Q = 4.300 m^3/s (1 Pump) \times 3 lane$

sure Point	Real Pipe	Cor	npou	nd	Entrance	Friction	Bend	Valve	Flowmeter	Branch	Transition	Energy	Dynamic
********	Length(m)	Angle	c(D.N	1.S)	(m)	(m) ======	(m)	(m)	(m)	(m) =======	(m)	(m)	Head(m)
8km 985	0.000	0	0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	95.196	95.150
9km157.62	172.823	34	48	45	(0.0) 0.000	0.047	(0.000) 0.005	(0.000)	(0.000)	(0.000)	(0.000) 0.000	95.144	95.098
7KIII 137.02	172.025	34	70		(0.0)	3.3 . /	(0.100)	(0.000)	(0.000)	(0.000)	(0.000)		
.16Survey	118.028	0	43	14	0.000	0.032	0.000 (0.002)	0.000	0.000	0.000	0.000	95.112	95.066
0km 0	760.003	0	41	15	0.000	0.208	0.000	0.000	0.000	0.000	0.000	94.904	94.858
0km 300	300.167	22	32	52	(0.0) 0.000	0.082	(0.002)	(0.000)	(0.000)	(0.000)	(0.000) 0.000	94.819	94.773
OKIN 300	300.107		J.	J2	(0.0)		(0.073)	(0.000)	(0.000)	(0.000)	(0.000)		
0km315.69	15.690	22	28	45	0.000	0.004	0.003	0.000	0.000	0.000	0.000	94.812	94.766
0km381.69	66.000	11	29	47	0.000	0.018	0.001	0.000	0.000	0.000	0.000	94.793	94.747
Ol 410	30.100	11	29	47	(0.0) 0.000	0.008	(0.031) 0.001	(0.000)	(0.000)	(0.000)	(0.000) 0.000	94.784	94.738
0km 410	30.100	**	2,	7,	(0.0)	0.000	(0.031)	(0.000)	(0.000)	(0.000)	(0.000)		
0km553.65	143.650	10	54	58	0.000	0.039	0.001 (0.029)	0.000	0.000	0.000	0.000 (0.000)	94.744	94.698
.17	179.910	21	49	57	0.000	0.049	0.003	0.000	0.000	0.000	0.000	94.692	94.646
Dt 0.C.4. 2.1	170.010	10	54	40	(0.0) 0.000	0.049	(0.069) 0.001	(0.000)	(0.000)	(0.000)	(0.000) 0.000	94.642	94.596
0km964.31	179.910	10	34	39	(0.0)	0.049	(0.029)	(0.000)	(0.000)	(0.000)	(0.000)	, <u>-</u>	
1km746.14	781.831	26	25	11	0.000	0.214	0.004 (0.094)	0.000	0.000	0.000	0.000 (0.000)	94.424	94.378
1km992.58	246.445	26	25	35	(0.0) 0.000	0.067	0.004	0.000	0.000	0.000	0.000	94.353	94.307
	100.045				(0.0)	0.034	(0.094)	(0.000)	(0.000)	(0.000)	(0.000) 0.000	94.319	94.273
12km 115.8	123.245	0	3	57	0.000 (0.0)	0.034	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	74.517	71.21.
12km 500	392.825	1	23	9	0.000	0.108	0.000	0.000		0.000	0.000 (0.000)	94.211	94.165
12km 800	300.001	1	39	56	(0.0) 0.000	0.082	(0.004)	(0.000) 0,000	, ,	0.000	0.000	94.129	94.083
		_			(0.0)	0.110	(0.004)	(0.000)		(0.000)	(0.000) 0.000	94.019	93.973
13km 200	400.195	2	35	47	0.000	0.110	0.000 (0.007)	(0.000)		(0.000)	(0.000)	74.017	,,,,,,
2.19	177.598	12	20	38	0.000	0.049	0.002	0.000		0.000	0.000	93.968	93.922
13km 500	117.254	2	42	14	(0.0) 0.000	0.032	(0.033)	(0.000) 0.000		0.000	0.000	93.936	93.890
===	250.002		20		(0.0)	0.068	(0.007)	(0.000)	, ,	(0.000)	(0.000) 0.000	93,868	93.82
13km 750	250.002	U	29	30	0.000	0.008	(0.001)	(0.000)		(0.000)	(0.000)	75.000	, , , , , , , , , , , , , , , , , , ,
P.20	212.362	9	44	56	0.000	0.058	0.001	0.000		0.000	0.000	93.809	93.76
14km 691	733.126	23	57	17	(0.0) 0.000	0.201	(0.025)	(0.000)		0.000	0.000	93.604	93.55
					(0.0)	0.003	(0.081)	(0.000)		(0.000)	(0.000) (0.000	93.597	93.55
14km 700	9.853	23	59	45	0.000	0.003	(0.004)	(0.000)		(0.000)		73.371	93.33
14km740.1	40.100	7	37	10	0.000	0.011	0.001	0.000		0.000		93.585	93.53
14km 770	30.170	7	44	22	(0.0) 0.000	0.008	(0.020)	(0.000)		(0.000) 0.000		93.576	93.53
					(0.0)		(0.020)	(0.000)		(0.000)		93.458	93.41
15km 200	430.107	1	32	47	0.000	0.118	0.000 (0.004)	0.000(0.000		73,438	, 73.41
15km382.14	182.142	9	59	59	0.000	0.050	0.001	0.000	0.000	0.000	0.000	93.407	93.36
15km558.46	164.972	g	59	59	(0.0) 0.000	0.045	(0.026) 0.001	(0.000) (0.000		(0.000)		93.361	93.31
					(0.0)		(0.026)	(0.000	(0.000)	(0.000)	(0.000)	00.000	
15km 800	241.543	0	0	0	0.000	0.066	0.000	0.000		0.000		93.295	93.24
16km 400	600.006		0	0	0.000	0.164	0.000	0.000	0.000	0.000	0.000	93.131	93.08
17km 50	650.007		2 1	37	(0.0) 0.000	0.178	(0.000)	(0.000				92.953	92.90
LI/KIII JU	030.007				(0.0)		(0.005)	(0.000	(0.000)	(0.000)	(0.000)		
117km 300	250.200) 1	43	3	0.000	0.069	0.000 (0.004)	0.000				92.884	92.83
118km 0	700.035	. 1	1 15	42	0.000	0.192	0.000	0.00	0.000	0.000	0.000	92.692	92.64
	204 007	, ,,	٠ ،	22	(0.0) 0.000	0.084	(0.003) 0.004	(0.000				92.604	92.55
IP.22	306.097	30	, 4	22	(0.0)	0.004	(0,085)	(0.000	(0.000)	(0.000	(0.000)		
118km 360	47.350) () (0	0.046	0.013	0.000					92.54	5 92.49
					(1.0)		(0.000)	,0,000	., (0.000)	(0.000	, (3.000)		

APPENDIX A.2.4-1 Hydraulics of Gated Sections

PROFILE OF SPILLWAY

c) d3 (m) V3 (m/sec) hv3 (m) d2 (m) V1 2.61 1.95 0.20 2.91 2.62 1.97 0.20 2.92 2.63 1.98 0.20 2.93 2.63 1.98 0.20 2.93 2.65 1.99 0.20 2.95			Hydraulic Ca	Calculation of Gated Sections	ted Sections (4.	(4.0m wide x 2)		
2.61 1.95 0.20 2.91 2.62 1.97 0.20 2.92 2.63 1.98 0.20 2.93 3.65 1.99 0.20 2.93	Q (m³/sec)	d3 (m)	V3 (m/sec)		d2 (m)	V1 (m/sec)		d1 (m)
2.62 1.97 0.20 2.92 2.63 1.98 0.20 2.93 3.63 1.99 0.20 2.93	51.0	2.61	1.95		2.91	2.19		3.27
2.63 1.98 0.20 2.93 5 2.65 1.99 0.20 2.95	51.5	2.62	1.97		2.92	2.20	0.25	3.30
265 199 020 295		2.63	1.98	0.20	2.93	2.22		3.31
C::-	52.66	2.65	1.99	0.20	2.95	2.23	0.25	3.33

dz = d3 + 1.5 x hv3, $V_1 = Q / (d2 x 4.0 m x 2)$, $d_1 = d2 + 1.5 x hv1$

APPENDIX A.2.4-2 Hydraulic Computation of Flow in Discharge Canal

: BTTOM ELEVATION (EL. m)

: WETTED PERIMETER (m)

: AREA OF FLOW (m^2)

: BOTTOM WIDTH (m)

: WATER LEVEL (m) : WATER DEPTH (m) : VELOCITY HEAD (m)

: FRICTION LOSS (m)

: VELOCITY (m/sec)

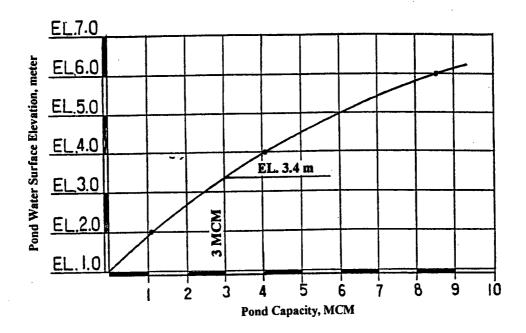
	 	1 		1		•		BED SLO	BED SLOPE: LEVEL (EL.7.60m), N=0.015	(EL.7.60m)), N=0.015	
SECTION DISTANCE DELTAL	İ	EL	3	0	e !	A	>	> 	H H H	H H H	H2	
0.000 0.000		7.600	9.014	1.414	10.000	14.140	3.724	0.708				
12.000 12.000		7.600	9.186	1.586	10.000	15.859	3.321	0.563	0.028	0.173	0.172	
24.000 12.000		7.600	9.252	1.652	10.000	16.523	3.187	0.518	0.022	0.066	990.0	田
36.000 12.000		7.600	9.303	1.703	10.000	17.031	3.092	0.488	0.020	0.050	0.051	WL
48.000 12.000		7.600	9.342	1.742	10.000	17.421	3.023	0.466	0.018	0.040	0.039	C
60.000 12.000		7.600	9.377	1.777	10.000	17.773	2.963	0.448	0.017	0.035	0.035) p
72.000 12.000		7.600	607.6	1.809	10.000	18.085	2.912	0.433	0.016	0.031	0.031	Q 1
84.000 12.000		7.600	9.436	1.836	10.000	18.359	2.868	0.420	0.015	0.028	0.027	24
96.000 12.000		2.600	6.463	1.863	10.000	18.632	2.826	0.408	0.015	0.027	0.027	∢
108.000 12.000		7.600	6.487	1.887	10.000	18.866	2.791	0.397	0.014	0.024	0.023	>
120.000 12.000		2.600	9.510	1.910	10.000	19.101	2.757	0.388	0.014	0.023	0.023	出
132.000 12.000		7.600	9.532	1.932	10.000	19.316	2.726	0.379	0.013	0.022	0.021	ΗΛ
144.000 12.000		7.600	9.551	1.951	10.000	19.511	2.699	0.372	0.013	0.020	0.020	
156.000 12.000		7.600	9.571	1.971	10.000	19.706	2.672	0.364	0.012	0.020	0.020	
168.000 12.000		7.600	9.590	1.990	10.000	19.902	2.646	0.357	0.012	0.019	0.020	
180.000 12.000		7.600	9.610	2.010	10.000	20.097	2.620	0.350	0.012	0.019	0.020	
192.000 12.000		7.600	9.627	2.027	10.000	20.273	2.598	0.344	0.011	0.017	0.018	
204.000 12.000		7.600	6.643	2.043	10.000	20.429	2.578	0.339	0.011	0.016	0.016	
216.000 12.000		7.600	9.659	2.059	10.000	20.585	2.558	0.334	0.011	0.016	0.016	
228.000 12.000		7.600	7.9.6	2.074	10.000	20.741	2.539	0.329	0.011	0.016	0.016	
240.000 12.000		7.600	069.6	2.090	10.000	20.898	2.520	0.324	0.010	0.015	0.016	
252.000 12.000		7.600	9.705	2.105	10.000	21.054	2.501	0.319	0.010	0.015	0.016	
264.000 12.000		7.600	9.719	2.119	10.000	21.191	2.485	0.315	0.010	0.014	0.014	
.000 12.000		7.600	9.733	2.133	10.000	21.327	2.469	0.311	0.010	0.014	0.014	
288.000 12.000		7.600	9.746	2.146	10.000	21.464	2.453	0.307	0.010	0.013	0.014	
300.000 12.000		7.600	9.758	2.158	10.000	21.581	2.440	0.304	600.0	0.013	0.012	
312.000 12.000		7.600	9.770	2.170	10.000	21.698	2.427	0.301	600.0	0.012	0.012	
324.000 12.000		7.600	9.782	2.182	10.000	21.815	2.414	0.297	600.0	0.012	0.012	

53	336.000	12.000	2.600	9.793	2.193	10.000	21.933	2.401	0.294	600.0	0.012	0.012
30	348.000	12.000	2.600	9.805	2.205	10.000	22.050	2.388	0.291	600.0	0.012	0.012
31	360.000	12.000	7.600	9.817	2.217	10.000	22.167	2.376	0.288	600.0	0.012	0.012
32	372.000	12.000	7.600	9.828	2.228	10.000	22.284	2.363	0.285	0.009	0.012	0.012
33	384.000	12.000	7.600	9.840	2.240	10.000	22.401	2.351	0.282	0.008	0.011	0.012
34	396.000	12.000	7.600	9.852	2.252	10.000	22.519	2.339	0.279	0.008	0.011	0.012
35	408.000	12.000	7.600	9.864	2.264	10.000	22.636	2.326	0.276	0.008	0.011	0.012
36	420.000	12.000	7.600	9.875	2.275	10.000	22.753	2.314	0.273	0.008	0.011	0.012
37	432.000	12.000	7.600	9.885	2.285	10.000	22.850	2.305	0.271	0.008	0.010	0.010
38	444.000	12.000	. 009-2	9.895	2.295	10.000	22.948	2.295	0.269	0.008	0.010	0.010
39	456.000	12.000	7.600	9.905	2.305	10.000	23.046	2.285	0.266	0.008	0.010	0.010
40	468.000	12.000	7.600	9.914	2.314	10.000	23.143	2.275	0.264	0.008	0.010	0.010
41	480.000	12.000	7.600	9.924	2.324	10.000	23.241	2.266	0.262	0.008	0.010	0.010
7 5	492.000	12.000	7.600	9.934	2.334	10.000	23.339	2.256	0.260	0.007	0.010	0.010
43	504.000	12.000	7.600	776.6	2.344	10.000	23.436	2.247	0.258	0.007	0.010	0.010
77	516.000	12.000	7.600	9.953	2.353	10.000	23.534	2.238	0.255	0.007	600.0	0.010
45	528.000	12.000	7.600	9.963	2.363	10.000	23.632	2.228	0.253	0.007	600.0	0.010
97	240.000	12.000	7.600	9.971	2.371	10.000	23.710	2.221	0.252	0.007	600.0	0.008
47	552.000	12.000	7.600	626.6	2.379	10.000	23.788	2.214	0.250	0.007	600.0	0.008
48	564.000	12.000	7.600	9.987	2.387	10.000	23.866	2.206	0.248	0.007	0.009	800.0
64	576.000	12.000	7.600	766.6	2.394	10.000	23.944	2.199	0.247	0.007	600.0	800.0
20	588.000	12.000	7.600	10.002	2.402	10.000	24.022	2.192	0.245	0.007	0.008	800.0
51	000.009	12.000	7.600	10.010	2.410	10.000	24.100	2.185	0.244	0.007	0.008	800.0
25	612.000	12.000	7.600	10.018	2.418	10.000	24.178	2.178	0.242	0.007	0.008	0.008
53	624.000	12.000	7.600	10.026	2.426	10.000	24.257	2.171	0.240	0.007	0.008	0.008
24	636.000	12.000	7.600	10.034	2.433	10.000	24.335	2.164	0.239	0.007	0.008	0.008
55	648.000	12.000	7.600	10.041	2.441	10.000	24.413	2.157	0.237	0.007	0.008	0.008
56	000.099	12.000	2.600	10.049	5.449	10.000	24.491	2.150	0.236	900.0	0.008	800.0
22	672.000	12.000	7.600	10.057	2.457	10.000	24.569	2.143	0.234	900.0	0.008	0.008
58	684.000	12.000	7.600	10.065	2.465	10.000	24.647	2.137	0.233	900.0	0.008	0.008
59	000.969	12.000	7.600	10.073	2.473	10.000	24.725	2.130	0.231	900.0	0.008	800.0
90	708.000	12.000	7.600	10.080	2.480	10.000	24.803	2.123	0.230	900.0	0.008	0.008
61	720.000	12.000	7.600	10.088	2.488	10.000	24.881	2.116	0.229	0.006	0.008	0.008

												(BP+100m)
0.002	0.002	0.002	0.202	1.988	26.483	10.000	2.648	10.248	7.600	000-7	1000.000	ď
0.006	0.006	0.005	0.202	1.990	26.463	10.000	2.646	10.246	7.600	12.000	996.000	84
0.006	0.006	0.005	0.203	1.994	26.405	10.000	2.640	10.241	7.600	12.000	984.000	83
900-0	0.006	0.005	0.204	1.999	26.346	10.000	2.635	10.235	7.600	12.000	972.000	82
0.006	900-0	0.005	0.205	2.003	26.287	10.000	2.629	10.229	7.600	12.000	000.096	81
0.006	900.0	0.005	0.206	2.008	26.229	10.000	2.623	10.223	7.600	12.000	948.000	80
0.006	0.006	0.005	0.207	2.012	26.170	10.000	2.617	10.217	7.600	12.000	936.000	29
0.006	900.0	0.005	0.208	2.017	26.112	10.000	2.611	10.211	7.600	12.000	924.000	78
0.006	900.0	0.005	0.208	2.021	26.053	10.000	2.605	10.205	7.600	12.000	912.000	7.7
0.006	900.0	0.005	0.209	2.026	25.995	10.000	2.599	10.200	7.600	12.000	900.000	92
0.006	900.0	0.005	0.210	2.030	25.936	10.000	2.594	10.194	7.600	12.000	888.000	22
0.006	0.006	0.006	0.211	2.035	25.877	10.000	2.588	10.188	7.600	12.000	876.000	7.4
0.008	0.007	0.006	0.212	2.040	25.819	10.000	2.582	10.182	7.600	12.000	864.000	73
0.008	0.007	0.006	0.214	2.046	25.741	10.000	2.574	10.174	7.600	12.000	852,000	7.2
0.008	0.007	900-0	0.215	2.052	25.663	10.000	2.566	10.166	7.600	12.000	840.000	7.1
0.008	0.007	900-0	0.216	2.058	25.584	10.000	2.558	10.159	7.600	12.000	828.000	20
0.008	0.007	900.0	0.217	2.065	25.506	10.000	2.551	10.151	7.600	12.000	816.000	69
0.008	0.007	0.006	0.219	2.071	25.428	10.000	2.543	10.143	7.600	12.000	804.000	89
0.008	0.007	900.0	0.220	2.077	25.350	10.000	2.535	10.135	7.600	12.000	792.000	29
0.008	0.007	900.0	0.222	2.084	25.272	10.000	2.527	10.127	7.600	12.000	780.000	99
0.008	0.007	0.006	0.223	2.090	25.194	10.000	2.519	10.119	7.600	12.000	768.000	65
0.008	0.007	900.0	0.224	2.097	25.116	10.000	2.512	10.112	7.600	12.000	756.000	79
0.008	0.007	900.0	0.226	2.103	25.038	10.000	2.504	10.104	7.600	12.000	744.000	63
0.008	0.008	0.006	0.227	2.110	24.960	10.000	2.496	10.096	7.600	12.000	732.000	62

APPENDIX A.2.4-3 Hydraulic Computation of Flow in Chute

	DISTANCE	DE		۵	60	 C.		C		ш ; Ц ;)	 	 0 I
(CONTROL POINT)	000.0		7.600	1.414	10.000	12.827	14.135	1.102	3.725		0.708		
	3.162	3.218	7.087	768.0	10.000	11.788	8.940	0.758	5.890	0.018	1.770	1.080	1.079
	000-9	2.991	6.141	0.705	10.000	11.410	7.050	0.618	7.470	0.049	2.847	1.126	1.125
	000.6	3.162	5.141	0.607	10.000	11.213	990.9	0.541	8.682	0.096	3.845	1.095	1.093
	12.000	3.162	4.141	0.545	10.000	11.091	5.453	0.492	9.658	0.144	4.759	1.058	1.058
	15.000	3.162	3.141	0.502	10.000	11.005	5.024	0.457	10.482	0.195	5.606	1.042	1.041
	18.000	3.162	2.141	0.471	10.000	10.941	4.707	0.430	11.189	0.247	6.387	1.029	1.030
	21.000	3.162	1.141	977-0	10.000	10.892	4.460	607.0	11.807	0.299	7.112	1.024	1.023
	22.923	2.027	0.500	0.433	10.000	10.866	4.330	0.399	12.161	0.219	7.545	0.652	0.653
(END OF CHUTE)	24.423	1.581	000.0	0.424	10.000	10.848	4.241	0.391	12.418	0.186	7.868	0.509	0.509
	25.923	1.581	-0.500	0.416	10.000	10.832	4.160	0.384	12.660	0.198	8.177	0.507	0.508
	27.423	1.581	-1.000	607.0	10.000	10.817	4.086	0.378	12.887	0.210	8.473	0.506	0.507
	28.923	1.581	-1.500	0.402	10.000	10,804	4.019	0.372	13.102	0.222	8.759	0.508	0.506
	30.423	1.581	-2.000	0.396	10.000	10.792	3.958	0.367	13.305	0.234	9.032	0.507	0.506
	31.923	1.581	-2.500	0.390	10.000	10.780	3.902	0.362	13.494	0.245	9.291	0.505	0.505


CONTROL POINT =BP+1,100.58 m END OF CHUTE=BP+1,125 m

: HYDRAULIC RADIUS (m)	: VELOCITY (m/sec)	: FRICTION LOSS (m)	: VELOCITY HEAD (m)
~	>	HF	НХ
: BTTOM ELEVATION (EL. m)	: WATER DEPTH (m)	: BOTTOM WIDTH (m)	: WETTED PERIMETER (m)
亩	Ω	В	Д

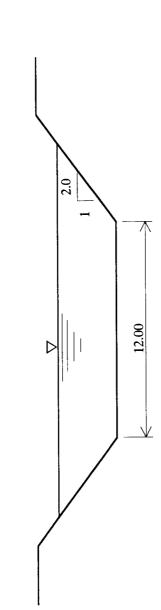
: AREA OF FLOW (m²)

∢

APPENDIX A.2.4-4 Detention Pond Capacity Curve

Pond V	Vater Surface	Pond Capacity
Elevation (EL. m)	Area (1,000m²)	(1,000 m ³)
EL. 1.0	938	0
EL. 2.0	1,209	1,073.5
EL. 4.0	1,783	4,065.5
EL. 6.0	2,675	8,523.5

APPENDIX A.2.5-1 Detailed Hydraulic Design of Sand Settling Basin


(1) Detailed Hydraulic Properties of Open Canal in Case of Pump Operation

The detailed hydraulic properties of open canal in case of pump operation are shown in Table 1.

(2) Designed Hydraulic Dimensions at Sand Settling Basin

The designed hydraulic dimensions at the sand settling basin are shown in Table 2 - 5.

Table 1 Detailed Hydraulic Properties of Open Canal in Case of Pump Operation

Dimension		
Stage I		
No. of Pump unit	unit	3
Design Discharge	s/ _c m	32.48
Stage II		
No. of Pump unit	unit	2
Design Discharge	s/ _E w	20.18

	Symbol	unit	Case of Designation	Case of Design Discharge		Case	Case of Pump Operation	ation	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Stage I	Stage II	1 unit	2 units	3 units	4 units	5 units
Design Discharge	0	m ³ /s	32.48	52.66	10.83	21.65	32.48	43.31	54.14
Hydraulic Gradient	I		0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Roughness Coefficient	1/n		55	55	55	55	55	55	55
Assumed Water Depth	þ,	Ħ	2.55	3.31	1.39	2.04	2.55	2.98	3.37
Flow Area	A	m ₂	43.61	61.63	20.54	32.80	43.61	53.52	63.15
Wetted Perimeter	Ь	8	23.40	26.80	18.22	21.12	23.40	25.33	27.07
Hydraulic Radius	R	E	1.864	2.300	1.127	1.553	1.864	2.113	2.333
-	R ^{2/3}		1.515	1.742	1.083	1.341	1.515	1.647	1.759
Velocity	^	s/m	0.745	0.857	0.533	099'0	0.745	0.810	0.865
Estimated Discharge	ó	m ³ /s	32.49	52.82	10.95	21.65	32.49	43.35	54.62
Friction Velocity	Ü.	cm/s	3.82	4.25	2.97	3.49	3.82	4.07	4.28
Critical Tractive Particle Size	dmax	mm	1.8	2.3	1.1	1.5	1.8	2.1	2.3
Design Water Depth	р	В	2.55	3.31	1.39	2.04	2.55	2.98	3.37

Manning' Formula Friction Velocity

 $Q = A \times 1/n \times R^{2/3} \times I^{1/2}$ $U = (980 \times R \times 100 \times I)^{0.5}$ $dmax = (U^* / 1.2)^2 \times 10/55.0$

Iwagaki' Formula

Table 2 Hydraulic Dimensions at KM 108.6365

	Symbol	Unit	Min. Discharge	Max. Discharge
Design Discharge	Q	m³/s	10.83	52.66
Water Depth	Н	m	1.41	3.31
Designed Water Level	WL.	m	LWL.8.80	HWL.10.72
Bottom Elevation	EL.	m	7.41	7.41

Table 3 Hydraulic Dimensions at KM 108.7115

	Symbol	Unit	Min. Discharge	Max. Discharge
Design Discharge	Q	m ³ /s	10.83	32.48
Assumed Water Depth	Н	m	1.40	3.32
Flow Area	Α	m ²	28.00	66.40
Wetted Perimeter	P	m	25.60	33.28
Hydraulic Radius	R	m	1.094	1.995
Roughness Coefficient	1/n		55	55
Velocity	V	m/s	0.387	0.489
Hydraulic Gradient	I		1 / 22,768	1 / 31,771
Loss Head	H_2	m	0.00	0.00
Designed Water Level	WL.	m	LWL.8.80	HWL.10.72
Bottom Elevation	EL.	m	7.40	7.40

Table 4 Hydraulic Dimensions at KM 108.7615

	Symbol	Unit	Min. Discharge	Max. Discharge
Design Discharge	Q	m³/s	10.83	32.48
Assumed Water Depth	Н	M	4.40	6.32
Flow Area	Α	m ²	158.40	227.52
Wetted Perimeter	P	M	53.60	61.28
Hydraulic Radius	R	M	2.955	3.713
Roughness Coefficient	1/n		55	55
Velocity	V	m/s	0.068	0.142
Hydraulic Gradient	I		0.0000004	0.0000012
Loss Head	H ₃	M	0.00	0.00
Designed Water Level	WL.	M	LWL.8.80	HWL.10.72
Bottom Elevation	EL.	M	4.40	4.40

Table 5 Hydraulic Dimensions at KM 108.855

	Symbol	Unit	Min. Discharge	Max. Discharge
Design Discharge	Q	m ³ /s	10.83	32.48
Assumed Water Depth	Н	m	4.40	6.32
Flow Area	Α	m^2	158.40	227.52
Wetted Perimeter	P	m	53.60	61.28
Hydraulic Radius	R	m	2.955	3.713
Roughness Coefficient	1/n		55	55
Velocity	V	m/s	0.068	0.142
Hydraulic Gradient	I		0.0000004	0.0000012
Loss Head	H ₄	m	0.00	0.00
Designed Water Level	WL.	m	LWL.8.80	HWL.10.72
Bottom Elevation	EL.	m	4.40	4.40

APPENDIX A.2.6-1 Hydraulic Design of No.7 Pumping Station

(1) Calculation of Hydraulic Head Losses of Pumping Station

Calculation of hydraulic head losses for each pump operation between beginning point of pumping station KM108.855 and end point of pumping station KM108.985 are tabulated in the following tables;

Table 1; Head Losses of Pumping Station (3 Pumps Operated)
Table 2; Head Losses of Pumping Station (2 Pumps Operated)
Table 3; Head Losses of Pumping Station (1 Pumps Operated)

Table 1; Head Losses of Pumping Station (3 Pumps Operated)

Calculation of Head Losses (3 pumps operated)

 $Q = 10.827 \text{ m}^3/\text{s/unit}$

					-											Σ0=	32.481	m³/s
														Head Losses	osses			
Section	Dimension	ı	0	∢	>	hv	c c	ပ	~	п	Entrance	Friction	Bend	Valve	Branch	Transition Sub-total	Sub-total	Total
		(m)	(m ³ /s)	(m ²)	(m/s)	(m)			(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
a.Head L	a.Head Losses of Screen	en																0.200
b.Head L	b.Head Losses of Suction Pipe	ion Pipe							L									
①	5.50×3.70	0.840	10.827	20.350	0.532	0.014	0.015		1.106	0.000056	0.003	0.000					0.003	
		3.870								0.0000315		0.001				0.002	0.003	
0	2.80×3.00	-	10.827	8.400	1.289	0.085	0.015		0.724	0.0000575							,	
		1.660								0.000847		0.001	0.014			0.000	0.016	
6	φ 2.80	,	10.827	6.158	1.758	0.158	0.015		0.700	0.001119								
		9.590								0.003155		0.030				0.002	0.032	
(P)	φ 2.10	1	10.827	3.464	3.126	0.499	0.015		0.525	0.005191				-			,	
		2.090								0.007023		0.015	0.149			0.001	0.165	
9	ø 1.90	-	10.827	2.835	3.819	0.744	0.015		0.475	0.008854								0.219
c.Head L	c.Head Losses of Delivery Pipe	very Pipe																
9	ϕ 1.50	7.000	10.827	1.767	6.127	1.915		130		0.014910		0.104		0.460			0.564	
		4.600								0.008075		0.037				0.191	0.229	
©	φ2.50	,	10.827	4.909	2.206	0.248		130		0.001239							,	0.793
d.Head L	d.Head Losses of Header Pipe	der Pipe																
⊗	ϕ 3.80	4.500	10.827	11.341	0.955	0.047		130		0.000161		0.001			0.219		0.220	
6	φ 2.60	-	10.827	5.309	2.039	0.212		130		0.001024					0.123		0.123	
		0.700								0.001268		0.001				0.000	0.001	
9	φ2.40	-	10.827	4.524	2.393	0.292		130		0.001512							-	0.344
e.Head L	e.Head Losses of Pipeline (untill KM108.985)	line (until	1 KM108.	985)														
	φ 2.40	69.278	10.827	4.524	2.393	0.292		130		0.001512		0.105	0.076	0.035			0.216	0.216
Total											0.003	0.295	0.239	0.495	0.342	0.197		1.772

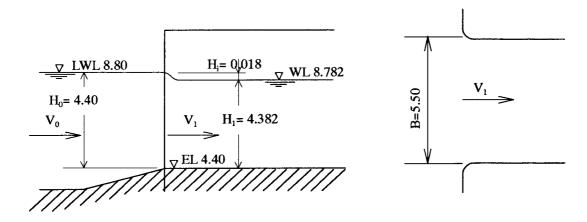
Table 2; Head Losses of Pumping Station (2 Pumps Operated)

Q= 11.965 $m^3/s/unit$ $\Sigma Q = 23.930 m^3/s$	Head Losses	Bend Valve Branch Transition Sub-total Total	(m)	0.200		0.004	0.003 0.004	•	0.017 0.000 0.019	•	0.002 0.039	1	0.182 0.002 0.202	- 0.268		0.561 0.687	0.234 0.279	- 0.965		0.266 0.267	0.088	0.000 0.001	- 0.356		0.041 0.019 0.120 0.120	
		Entrance Friction				0.004 0.000	0.001		0.002		0.037		0.018			0.126	0.045			0.001		0.001			0.060	
1						0.000068	0.000385	0.000702	0.001034	0.001367	0.003852	0.006338	0.008575	0.010811		0.017938	0.009714	0.001491		0.000194	0.000582	0.000720	0.000859		0.000859	
		æ	(m)			1.106		0.724		0.700		0.525		0.475												
		ن 														130		130		130	130		130		130	
		а	l			0.015		0.015		0.015		0.015		0.015												
ed)		hv	(B)			0.018		0.103		0.193		0.609		0.909		2.339		0.303		0.057	0.115		0.159		0.159	
operat		>	(s/m)			0.588		1.424		1.943		3.454		4.220		6.771		2.437		1.055	1.502		1.763		1.763	
2 pumps operated		4	(m ²)			20.350		8.400		6.158		3.464		2.835		1.767		4.909		11.341	5.309		4.524	985)	4.524	
		0	(m ³ /s)			11.965		11.965		11.965		11.965		11.965		11.965		11.965		11.965	7.977		7.977	KM108.	7.977	10000
lead Lo		1	ı (E		n Pipe	0.840	3.870		1.660		9.590		2.090		ery Pipe	7.000	4.600		er Pipe	4.500		0.700	,	ine (untill	69.278	
Calculation of Head Losses		Dimension		a.Head Losses of Screen	b.Head Losses of Suction Pipe	5.50×3.70		2.80×3.00		φ 2.80		φ 2.10		φ 1.90	c.Head Losses of Delivery Pipe	φ1.50		φ 2.50	d.Head Losses of Header Pipe	φ 3.80	φ 2.60		φ 2.40	e.Head Losses of Pipeline (untill KM108.985)	φ 2.40	
Calcu		Section		a.Head Lo	b.Head Lo	Θ		0		9		4		6	c.Head Lo	(e)		0	d.Head L	∞	9		9	e.Head Lo		

Table 3; Head Losses of Pumping Station (1 Pump Operated)

150	Jo moitoline	I Pool	1 30330	1						D			4			٥	12 0003/5/1	3/4/1121
Car	Calculation of fread Losses (1 pump operated	пеап Г) caseo	dilling t	operate	(n										<u>'</u>	17:300	n /s/unit
																ΣQ=	12.900	m³/s
														Head Losses	osses			
Section	Dimension	ı	o	Ą	>	hv	c	ပ	~	<u> </u>	Entrance	Friction	Bend	Valve	Branch	Transition Sub-total	Sub-total	Total
		(m)	(m ³ /s)	(m ²)	(m/s)	(m)			(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
a.Head L	a.Head Losses of Screen	ue																0.200
b.Head L	b.Head Losses of Suction Pipe	on Pipe			<u> </u>													
Θ	5.50×3.70	0.840	12.900	20.350	0.634	0.021	0.015		1.106	0.000079	0.004	00000					0.004	
		3.870								0.000448		0.002				0.003	0.005	
<u>@</u>	2.80×3.00	-	12.900	8.400	1.536	0.120	0.015		0.724	0.000816							-	
		1.660								0.001203		0.002	0.020			0.001	0.022	
0	φ 2.80	,	12.900	6.158	2.095	0.224	0.015		0.700	0.001589							,	
		9.590								0.004478		0.043				0.002	0.045	
4	φ 2.10	,	12.900	3.464	3.724	0.708	0.015		0.525	0.007368								
		2.090								0.009968		0.021	0.212			0.002	0.234	
©	φ 1.90	-	12.900	2.835	4.550	1.056	0.015		0.475	0.012568							•	0.311
c.Head L	c.Head Losses of Delivery Pipe	ery Pipe																
6	φ1.50	7.000	12.900	1.767	7.300	2.719		130		0.020617		0.144		0.653			0.797	
		4.600								0.011165		0.051				0.272	0.323	
0	\$ 2.50	1	12.900	4.909	2.628	0.352		130		0.001713							'	1.120
d.Head L	d.Head Losses of Header Pipe	ler Pipe																
8	Ø3.80	4.500	12.900	11.341	1.137	0.066		130		0.000223		0.001			0.308		0.309	
6	φ 2.60	-	4.300	5.309	0.810	0.033		130		0.000185					0.065		0.065	
		0.700								0.0000230		0.000				0.000	0.000	
9	φ 2.40	-	4.300	4.524	0.951	0.046		130		0.000274							•	0.375
e.Head L	e.Head Losses of Pipeline (untill KM108.985)	line (untill	KM108.	985)														
	φ 2.40	69.278	4.300	4.524	0.951	0.046		130		0.000274		0.019	0.012	0.006			0.036	0.036
Total											0.004	0.283	0.244	0.658	0.373	0.279		2.042

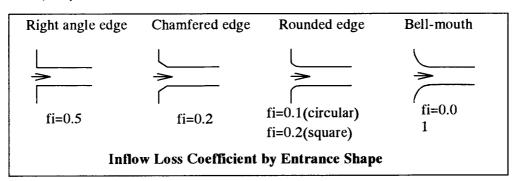
(2) Hydraulic Calculation of Intake Canal Including Screen


-Water level at the intake;

LWL8.80m

-Maximum discharge of the intake canal;

Qmax=12.90m3/s


(i) Head loss due to inflow and change of water level (Hi)

Assumed head loss due to inflow and change of water level is Hi =0.018 m, water depth after inflow is estimated H_1 =LWL8.80 m- 0.018 m-EL 4.40 m = 4.382 m.

Hi = fi
$$\cdot \frac{V_1^2}{2 \cdot g} + \frac{V_1^2 - V_0^2}{2 \cdot g}$$

Where, fi; Coefficient of head loss due to inflow 0.2

 V_0 ; Mean velocity before inflow 0 (m/s


 V_1 ; Mean velocity after inflow 0.535 (m/s)

$$V_1 = \frac{Q}{B \cdot H_1} = \frac{12.90}{5.50 \times 4.382} = 0.535 \text{ (m/s)}$$

:. Hi =
$$0.20 \times \frac{0.535^2}{19.6} + \frac{0.535^2 - 0^2}{19.6} = 0.018$$
 (m)

Therefore, coincide with assumed head loss and change of water level Hi=0.018m. So that, water level after inflow is decided WL 8.80m-0.018 = WL 8.782m.

(ii) Head loss and change of water level due to trashrack (Hs)

The head loss and change of water level due to trashrack are calculated as follows by using the Suzuki's formula.

Hs = 6.69 · sin
$$\theta \cdot \left(\frac{t}{b}\right)^{\frac{4}{3}}$$
 · exp $\left(0.074 \cdot \text{ rw } \cdot \frac{a}{H}\right) \cdot \frac{V_1^2}{2 \cdot g} + \frac{V_2^2 - V_1^2}{2 \cdot g}$

Where, θ ; Inclined angle of screen (75°, 60°)

t; Thickness of the screen bars (9mm, 9mm)

b ; Clear space between bars (50mm, 100mm)

rw; Wet unit weight of trash (200 kg/m³)

a.; Height of trash attached trashrack (0.80m, 0.40m)

H; Water depth in the upstream of the screen (m)

 V_1 ; Flow velocity in the upstream of the screen (m/s)

 V_2 ; Flow velocity in the downstream of the screen (m/s)

$$V_1 = 12.90/(5.50 \times 4.382) = 0.535 \text{m/s}$$

Assumed head loss and change of water level due to No.1 screen is $H_{s1} = 0.144$ m;

$$V_2 = 12.90/(5.50 \times 4.238) = 0.553 \text{ m/s}$$

$$H_{S1} = 6.69 \times \sin 75^{\circ} \times (9/50)^{4/3} \times \exp(0.074 \times 200 \times 0.80/4.382) \times (0.535^{2}/19.6) + (0.553^{2} - 0.535^{2})/19.6$$

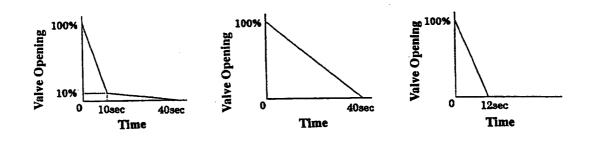
= 0.143 + 0.001 = 0.144 m OK

Assumed head loss and change of water level due to No.2 screen is $H_{S1}=0.015$ m;

$$V_3 = 12.90/(5.50 \times 4.223) = 0.555 \text{m/s}$$

$$H_{s2} = 6.69 \times \sin 60^{\circ} \times (9/100)^{4/3} \times \exp(0.074 \times 200 \times 0.40/4.233) \times (0.553^{2}/19.6) - (0.555^{2} - 0.553^{2})/19.6 = 0.015 + 0.000 = 0.015 \text{ m}$$
 OK

Therefore \cdot head losses of intake canal including No.1 and No.2 screen is Hi+H_{s1}+H_{s2}=0.177m. So that, counting on a few allowance, head losses of intake canal is decided at **0.20 m**.

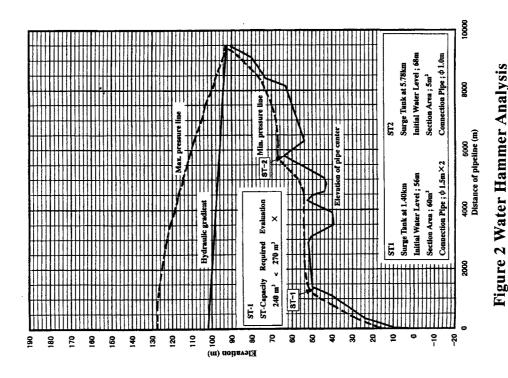

APPENDIX A. 2.7-1 .Studies of Water Hammer Analysis

(1) Valve Condition of Immediate Downstream of Pump

(a) Condition of valve closer time and characteristics

The studies on various closer times have been done and most recommendable one is the case A, which is controlled closer time by the bi-plane valve.

A Controlled closer time, B Proportional closer time, C Non controlled


(b) Result of Estimation

Case	Case-A		Case-B		Case-C	
Vacuum pressure	non	0	non	0	-9m	×
ST-1 Required capacity	approx.210m3	0	approx.270m ³	Δ	approx.205m ³	0
ST-2 Required capacity	approx.7 m ³	0	approx.7m ³	0	approx.7m ³	0
Evaluation	0	•	Δ		×	
Refer to Figure No,	Figure 2.7-1		Figure 2.7-2		Figure 2.7-3	

Case-A; The case shall be determined to the project.

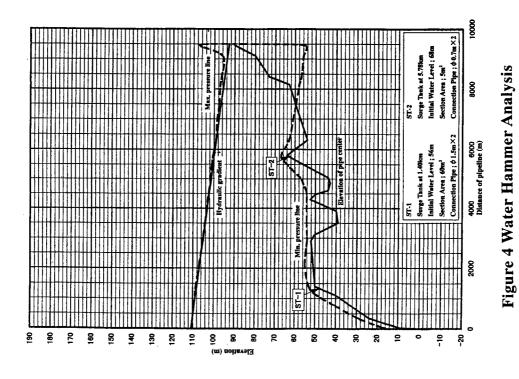
Case-B; There is much reverse flow to main pump, then required capacity of ST-1 is larger than the other case.

Case-C; There happens minus pressure of 9m at immediate downstream of main pump and big diameter such as 1.5m of quick closer check valve is not generally adopted.

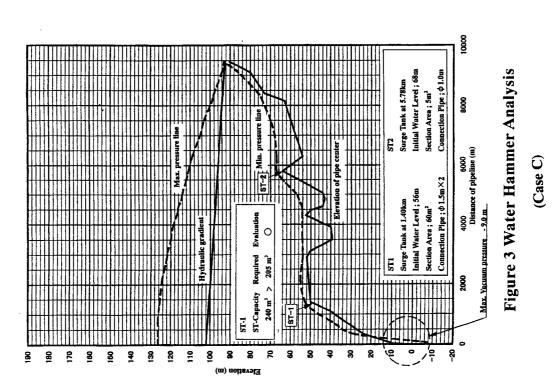
(Case B)

10000 Initial Water Level; 68m Connection Pipe; \$\phi\$ 1.0m Figure 1 Water Hammer Analysis Surge Tank at 5.78km Section Area; 5m² 8000 4000 6000 Distance of pipeline (m) (Case A) Connection Pipe ; ϕ 1.5m \times 2 Initial Water Level; 56m Surge Tank at 1.40km ST-Capacity Required Evaluation Section Area; 60m2 0 240 m³ = 240 m³

8 2 8


Ŗ

(m) §


150

051 120 120

5 8

(Case A→E)

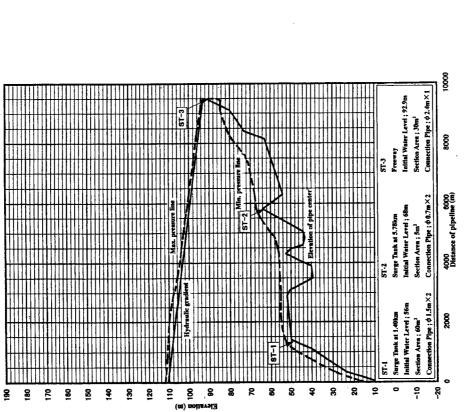
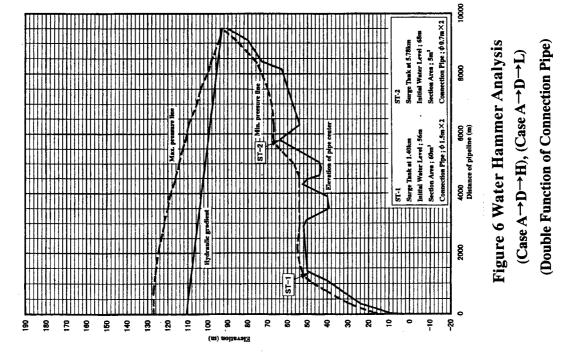



Figure 5 Water Hammer Analysis (Case A→F)

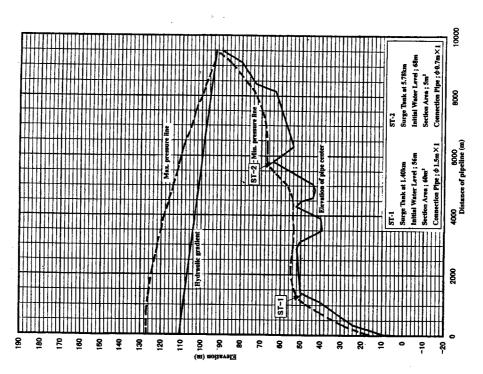


Figure 7 Water Hammer Analysis (Single Function of Connection Pipe)

(2) Type of Outflow of Discharge Tank

The purpose of this analysis is to determine and to compare the outflow method of discharge tank according to the prior studies.

The case A→D is the most recommendable because of suitable hydraulics and economical reason and referred to Figure A.2.7-7 and -8 of water hammer analysis.

The case $A\rightarrow E$ is rejected because of vacuum pressure of approx.36m as shown Figure A.2.7-4, and the case $A\rightarrow F$ is also inadequate because of economical point of view as shown Figure A.2.7-5.

(3) Initial Water Level and Section Area for Surge Tank

The purpose of this analysis is to determine initial water level and section area of surge tank. To lighten the water hammer pressure by the function of surge tank, initial water level and section area are primary factors.

Six studies have been done and the results are tabulated following tables;

Result for ST-1 (in case ϕ 1500m×2 of connection pipe)

Case study	Case A→D→G	Case A→D→H	Case A→D→I
Initial water level (m)	54	56	56
Section area (m ²)	60	60	40
Evaluation	×	0	×

Result for ST-2 (in case ϕ 700m×2 of connection pipe)

Case study	Case $A \rightarrow D \rightarrow J$	Case $A \rightarrow D \rightarrow K$	Case $A \rightarrow D \rightarrow L$
Initial water level (m)	66	68	68
Section area (m ²)	15	15	5
Evaluation	×	Δ	0

There is some possibility to suction air to main pipeline in the Case $A \rightarrow D \rightarrow G$, $A \rightarrow D \rightarrow I$. and Case $A \rightarrow D \rightarrow J$. The Case $A \rightarrow D \rightarrow K$ is functionally satisfactory but uneconomical because of large section area comparing to the Case $A \rightarrow D \rightarrow L$.

The Case $A \rightarrow D \rightarrow H$ and $A \rightarrow D \rightarrow L$ are recommendable to the project.

(4) Size and Number of Connection Pipe of the Surge Tank

As stated section 2.7.6 System reliability of water hammer protection, two sets of connection pipe shall be needed for safety of system. Then two cases of analysis are necessary, one case is two sets of connection pipe and the other is one set of these. And the results of both cases shall be satisfied. As shown Figure A.2.7-7 and A. 2.7-8, in case connection pipe one or two sets of ϕ 1.5m at ST-1 and in case connection pipe one or two sets of ϕ 0.7m at ST-2, the system is sufficiently functioned.

APPENDIX A.2.7-2 Theoretical Water Hammer Calculation Comparison with Experimental Result

The comparisons of calculation and experimental result drawn in the chart are shown as following Figures;

Figure 8 Transient Phenomena on Normal Stop

Figure 9 Transient Phenomena on One Pump Trip When Two Pump Operating

Figure 10 Transient Phenomena on Simultaneous Trip of Two Pump

The charts in above Figures indicated both of calculation and experimental result are expressed that both of results of curves are well corresponded even some differences of pressure within some percentage and its occurring time within one or two seconds. Then the program will be addressed to reproduce the transient phenomena of water hammer with sufficient accuracy.

CALCULATION OF TRANSIENT. PHENOMENA OF PUMPING SYSTEM NORMAL STOPPING BY VALVE CLOSING OF ONE PUMP AT STANDSTILL OF THE OTHER TRANSIENT VALUES FOR PUMP UNIT NO-1

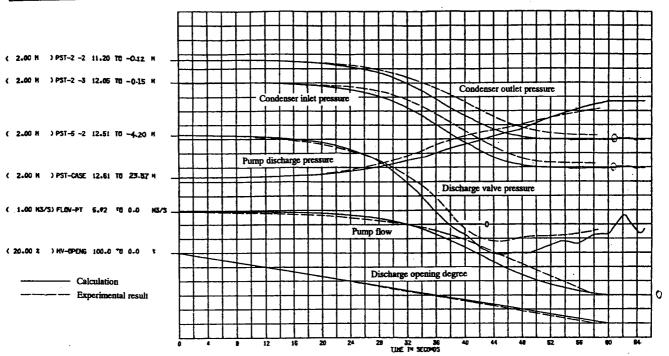


Figure 8 Transient Phenomena on Normal Stop

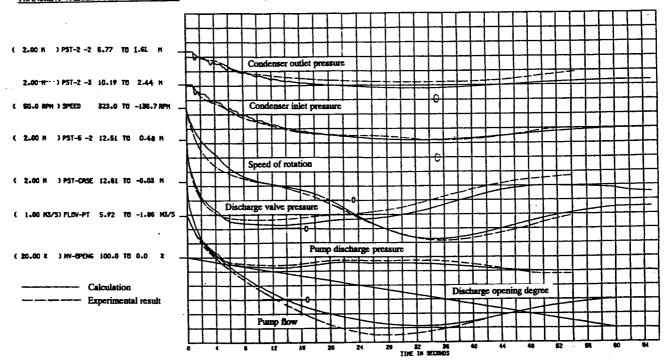


Figure 9 Transient Phenomena on One Pump Trip When Two Operating

CALCULATION OF TRANSIENT PHENOMENA OF PUMPING SYSTEM SIMULTANEOUS TRIP OF TWO PUMPS WITHOUT VALVE OPERATION TRANSIENT VALUES FOR PUMP UNIT NO-1

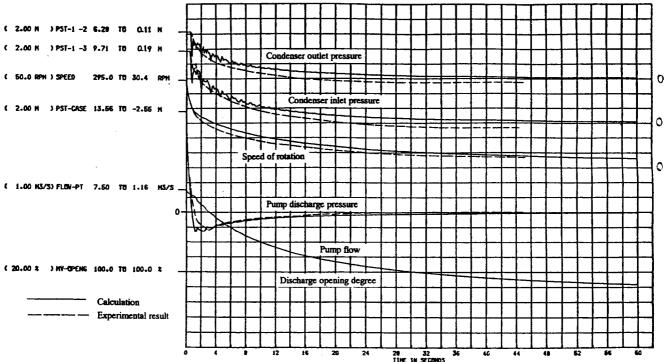


Figure 10 Transient Phenomena on Simultaneous Trip of Two Pump

APPENDIX A.2.8-1 Detailed Hydraulic Design of Discharge Tank

The designed hydraulic dimensions at the discharge tank are shown in Table 1-4.

Table 1 Hydraulic Dimensions at KM 118.560

Table 1	Juliane		Stage I	Stage II
	Symbol	Unit	Max. Discharge	Max. Discharge
Design Discharge	Q	m³/s	32.48	54.14
Water Depth	H	m	2.55	3.37
Flow Area	A	m ²	43.61	63.15
Wetted Perimeter	P	m	23.40	27.07
Hydraulic Radius	R	m	1.864	2.333
Roughness Coefficient	1/n		55	55
Hydraulic Gradient	I	***	1 / 12,500	1 / 12,500
Velocity	V	m/s	0.745	0.865
Designed Water Level	WL.	m	HWL. 91.12	HWL.91.94
Bottom Elevation	EL.	m	88.57	88.57

Table 2 Hydraulic Dimensions at KM 118.410

			Stage I	Stage II
	Symbol	Unit	Max. Discharge	Max. Discharge
Design Discharge	Q	m³/s	32.48	54.14
Water Depth	Н	m	2.55	3.37
Velocity	v	m/s	0.745	0.865
Designed Water Level	WL.	m	HWL. 91.13	HWL.91.95
Bottom Elevation	EL.	m	88.58	88.58

Table 3 Hydraulic Dimensions at KM 118.380

	<u> </u>		Stage I	Stage II
	Symbol	Unit	Max. Discharge	Max. Discharge
Design Discharge	Q	m³/s	32.48	54.14
Assumed Water Depth	Н	m	2.55	3.37
Flow Area	A	m ²	73.44	102.58
Wetted Perimeter	P	m	35.10	38.78
Hydraulic Radius	R	m	2.092	2.645
Roughness Coefficient	1/n		55	55
Velocity	V	m/s	0.442	0.528
Hydraulic Gradient	I		1 / 41,428	1 / 39,691
Loss Head	H_2	m	0.00	0.00
Designed Water Level	WL.	m	HWL. 91.13	HWL.91.95
Bottom Elevation	EL.	m	88.58	88.58

Table 4 Hydraulic Dimensions at KM 118.370

	· · · · · · · · · · · · · · · · · · ·			
	Camb al	T I	Stage I	Stage II
	Symbol	Unit	Max. Discharge	Max. Discharge
Design Discharge	Q	m ³ /s	32.48	54.14
Assumed Water Depth	Н	m	3.03	3.85
Flow Area	Α	m ²	68.18	86.63
Wetted Perimeter	P	m	40.68	45.60
Hydraulic Radius	R	m	1.676	1.900
Roughness Coefficient	1/n		55	55
Velocity	V	m/s	0.476	0.625
Hydraulic Gradient	I		1 / 26,579	1 / 18,224
Loss Head	H ₃	m	0.00	0.00
Designed Water Level	WL.	m	HWL. 91.13	HWL.91.95
Bottom Elevation	EL.	m	88.10	88.10