

Client:

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Project Name: THE STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL

IN THE ARAB REPUBLIC OF EGYPT

Factory Name:

EGYPTIAN IRON AND STEEL CO.

BASIC DESIGN (ORIGINAL)

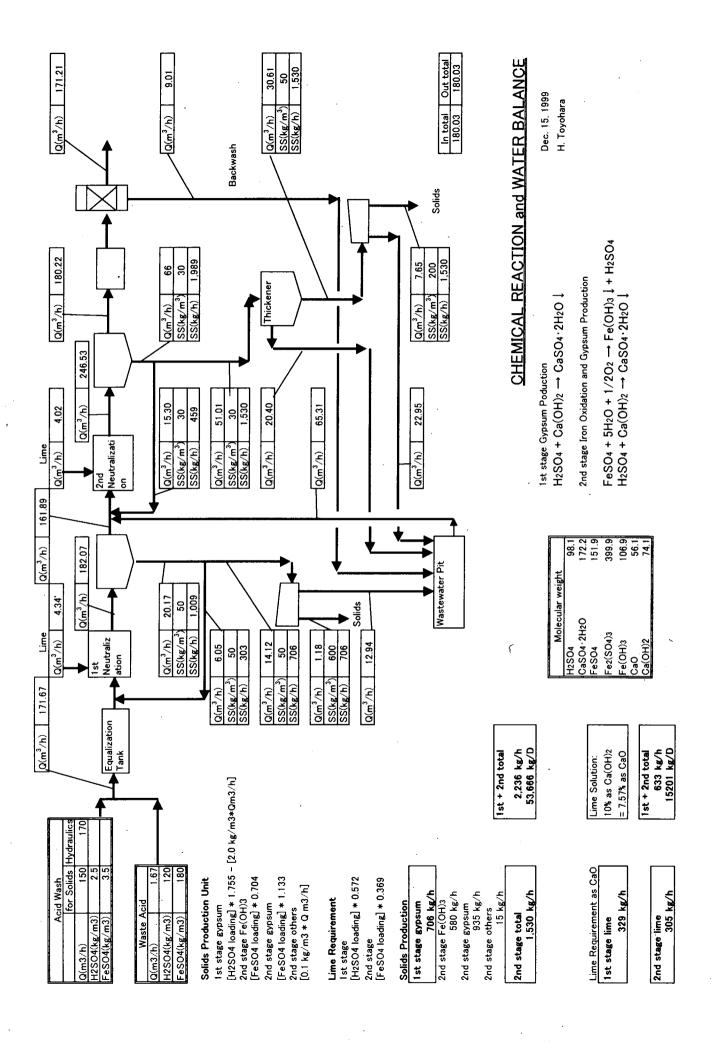
Document Title:

CALCULATION SHEET

FOR

W.W.T. DEMONSTRATION PLANT

Issued Date


September 2000

Consultant:

JICA STUDY TEAM

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

Sludge Production and Water Balance

For Solids calculation, 150 m3/h flow rate is applied.

1. De	esign Basis				EISC said	on Dec. 07
	Inlet wastewater				H2SO4	1.2 %
	Q	m3/h	150		FeSO4	2.3 %
	· ·					
		m3/D	3600		1	on Nov. 18
	H2SO4	%		estimated	i	1.2 %
	FeSO4	%	0.35		FeSO4	1.5 %
					TIMS Anal	ysis Nov. 17
					H2SO4	0.24 %
					FeSO4	0.2 %
	Marka Arid				1 6304	<u>U.Z /8</u>
	Waste Acid		40		r=====================================	
	Q	m3/d	40)	on Nov. 18,Dec. 07
	H2SO4	%	12		H2SO4	10-12 %
	FeSO4	%	18		FeSO4	16-18 %
				'		
	MW				TIMS Anal	ysis Nov. 17
	H2SO4		98.1		H2SO4	
	1	•				17 %
	CaSO4·2H2O		172.2		FeSO4	16 %
	FeSO4		151.9			
	Fe2(SO4)3		399.9			
	Fe(OH)3		106.9			
	CaO		56.1			
	Ca(OH)2		74.1			
	Ca(O1)2		/ 7.1			
	MANT Into					
	WWT Inlet	0.71	454.05			
	Q	m3/h	151.67			
	H2SO4	%	0.379		kg/m3	3.791209
	FeSO4	%	0.544		kg/m3	5.43956
	udge Production Stage Gypsum Production					
H	$2SO4 + Ca(OH)2 \rightarrow CaSO4 \cdot 2H2O$	\downarrow				
				(Wash)	(Acid)	
	H2SO4 to be treated	kg/h	575	375	200	
		kg/D	13,800	9000	4800	
	CaSO4·2H2O	kg/h				Solids + Dissolved
	0400 / 2/120	kg/D	24,225	100011	· oddotion (Dollas - Dissolvea,
	O a second self-self-self-self-self-self-self-self-					
	Concentration in WW	kg/m3	6.66	, , ,		
	Saturated concentration	kg/m3		<- To be o	discharged i	n wastewater
	Gypsum to be sedimented	kg/m3	4.66			
		kg/h	706	<- To be o	dehydrated	in Centrifuge
		kg/D	16,759			_
		0				
2nd	stage Sludge					
FeSC				(Wash)	(Acid)	
, 600		л/э т пэсОх		(114311/	(Alora)	
	FeSO4 + 5H2O + 1/2O2 -> Fe(O		0 4			
	Fe(OH)3 + H2SO4 + Ca(OH)2 ->	Fe(OH)3 ↓ + CaS	O4 · 2H2C) ↓ + H2O		
	FeSO4 to be oxidized	kg/h	825	525	300	

		19,800	12600	7200
Fe to be treated	kg/h kg/D	303 7,279		
Fe(OH)3 to be generated	kg/h kg/D	580 13,929		
2nd stage gypsum				
Gypsum from FeSO4	4	•		
SO4 in FeSO4	kg/h	522		
CaSO4·2H2O	kg/h	935		
Other Solids				
	kg/h	15.17		
	kg/D	364		
	kg/m3	0.1		
1st Lime Injection				
H2SO4 to be treated	kg/h	575		•
Lime amount Ca(OH)2	kg/h	434.4		0.571787
Lime amount CaO	kg/h	328.8		0.571787
Lime Milk Conc.	%	10.0	7.568622	0.071707
Lime Milk Flow Rate	m3/h	4.3	7.000022	
2nd Lime Injection				
SO4 to be treated in 2nd stage	kg/h	522		0.369165
Required lime Ca(OH)2	kg/h	402	•	0.369165
Lime Amount CaO	kg/h	305	•	0.303103
Lime Milk Conc.	%	10.0		
Lime Milk Flow Rate	m3/h	4.0		
Total lime consumption				
CaO	kg/h	633.3		
GaO	kg/D	1 5,200		
Ca(OH)2	-	836.8		
Oa(OFI)Z	kg/h kg/D	20,083		
		20,000		
Lime Milk Flow rate Total	m3/h	8.4		

	kg/h	kg/D	
	706	16,945	
	935.05	22.441	61.
	580.39	13,929	37.
	15.17	•	*
	1,531	36,735	100.
	2,236.67	53,680	
kg/h	706 f	or Balance Calc).
h/D	12		
	1		
%	5		
m3/h	28.24 f	or Equipment C	alc.
	h/D %	706 935.05 580.39 15.17 1,531 2,236.67 kg/h 706 f h/D 12 1 % 5	706 16,945 935.05 22,441 580.39 13,929 15.17 364 @as 1 1,531 36,735 2,236.67 53,680 kg/h h/D 12 1 % 5

Solids to be treated	kg/h	1,531
Operation	h/D	24
No. of Equipment in operation		1
Concentration to be fed	%	5
Capacity	m3/h	30.61

Water Balance (Case 3: 2 stage lime injection)	ne injection)			
	Solids	Flow	H2SO4 FeSO4	4
	kg/m3 kg/h	m3/h	kg/m3 kg/m3	13
1 Washwater		170	2.5	3.5
2 Waste Acid		1.67	120	80
3 Wastewater		171.67	3.79 5.	.44
Backflow from WWT		65.32		
3 WWT In		171.67		
Recycle from 1st Clarifier		6.06		
Neutralization in		17.72		
Lime in 1		4.34	-	
4 1st Settling Tank In		182.07		
1st Settling Tank Overflow		161.89		
1st Settling Tank Bottom	50 1,009	20.18		
To Recycle	50 303	90'9		30 % of gypsum generated from H2SO4 is recycled.
To 1st Centrifuge		14.12		24 hours operation Basis. 3 times flow rate for mech. Design
9 1st Centrifuge Sludge	600 706	1.18		
1st Centrifuge Supernatant	(3.9)	12.94		
Lime in 2		4.02		
Recycle from 2nd Clarifier		15.31		
5 2nd Clarifier In		246.54		
6 2nd Clarifier Overflow		180.22		
2nd Clarifier Bottom	30 1,990			
To recycle	30 459			30 % of generated gypsum is recycled.
To Thickener		51.02		
Thickener Bottom/To Centrifuge	50 1,531	30.61		
		20.41		
8 2nd Centrifuge sludge	200 1,531	7.65		
2nd Centrifuge supernatant	(6.9)	22.96		
Sand Filter In		180.22		
7 Sand Filter Out		171.20		
Sand Filter Backwash		9.01		

Concrete Basisn

		Z-01	Z-02
		Gypsum Pit	Clarified Water Pi
Flow rate (Normal)	m3/h	14.12	161.89
HRT	h	4	0.5
Density	kg/m3	1055	1055
Capacity	m3 .	56.48498458	80.94468846
Diameter	m		
Length	m	5.0	5.0
Width	m	6.5	6.5
Height	m	2.2	3.1
Operating Level	m	1.7	2.5
Volume	m3	72	101
Fluid Volume	m3	56	81
Fluid Velocity	m/h	1.7	2.5
D/OL	_		
Number of Vessels	_	1	1
1m3当りの重量(RC)	kg/m3	2,200	2,200
1m3当りの重量(Rubber	_	(1,000)	(1,000)
厚さ(RC)	mm	200	200
厚さ(Coat)	mm	4	4
安全係数	in .	1.05	1.05
空時(1槽当り)	ton	38.7	48.4
運転時(1槽当り)	ton	98.3	133.8
厚さ	mm	_	_
面積	m2	_	_
1槽当りの表面積 ・密閉式;屋根+側面+ 底			
· 開放式;側面+底	m2	83	104

Z−3 Treated Water Pi	Z−4 tWastewater Pit	Z-5 Sludge Pit
180.22 0.5 1055 90.10779396	2 1055	30.61 2 1055 61.22437
6. 5 6. 5 2. 6 2. 1 110 90 2. 1	6.5 2.2 1.7 172 131 1.7	5.0 6.5 2.4 1.9 78 61 1.9
2, 200 (1, 000) 200 4 1. 05 51. 2 146. 3	2,200 (1,000) 200 4 4 5 1.05 2 74.3	2, 200 (1, 000) 200 4 1.05
- -	-	
110) 159	88

IICh / Fauntian Iron	Spec Stool	# I	Left A (Maste Acid)	1	LΙ									
Industrial Pollution	Contro	の意思	MAXING CONTRACTOR	Marie Bater)	П									
Job No. 1999/11/5 1999/		44 AF 3	全部大學(t-8-石膏129-4ft, sGP, (FNIRO) 108 金属級(b数29-5-5-5 (Salf-de Sture)	f. sGP. (MEGOTOE.	106-071504)									
al fi R. I Oyonura		1 2 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	F-F-2(504)3	ì										
		整体	1-H2504 -子概集制次格技-Floc	. +#20(Flocutan(+#20)	îa									
No.			8	4	<u></u>		7	000				61		
Tag No.	PU-01 A/B	B PU-02 A/B	3 PU-03 A/B	PU-04 A/B	PU-05 A/B	PU-06 A/B	PU-07 A/B	PU-08 A/	PU-09 A/B	PU-10 A/B	PU-11 A/B	PU-12 A/B	PU-13 A/B	PU14 A/B
機器名	Wastewater Pump	No. 1 Sludge Pump	Gypsum Sludge Pump	Lime Pump	Coagulant Pump	Polymer A Pump	No. 2 Sludge Pump	No. 3 Sludge Pump	Filter Feed Pump	Backwash Pump	Wastewater return Pump	Treated Wa	Slu	Polyr
用途	RW Feed													
±4	Centrifugal	Centri fu	Centri fugal	Centri fugal	Diaphragm	Diaphragm	Centri fugal	Centrifugal	Centrifugal	Centrifugal	Centri fugal	Centrifugal	ONHON	Diaphragm
					NaHS					S			AAN	Fe2(
Q:处理重 m3/h 処理量 kg/h	171.7	7 20, 18 7 21, 186, 5	3 28.2 5 29,654.6	17,656.4	0,46 462.9l	0.46	66.3 69.642.7	30.6 32.142.8	180.2	550.0	65.3	171	3000	
					22						2		1	
		5		5	(000 1)	(1 000)	(1 050)	(01 050)	(000 1)	(000 1)	10001)		,	
粘度 cP					-		(1.0)		(1.0)		(1.0)	(1.0)	(1,000)	(2,000)
					1 6									1
	0.0				0.0	0.0	0.0	0.0	0.0	A. 0		Α. Ι.		
		15.0		2	15.0						15.0		15.0	15.0
	,			S.	505304	202304	S							
	4:66	1000	0.81	0.48	0.013					2.		29.7	60.0	1 5
ギンプ・効率 % 所要軸動力 KW	50	- 838		50	50	930		50				08 30	20	80 I
四次配券压力指生。				3 L	25				0	49.8	Ω, Δ	15.5		98 I
公公配置在力損失 m														
6計配費止刀租矢m 吸込実揚程 m														
吐出実揚程 m F・小要な宝福程 m	10	10	Ç	0.	0	0,	-							
NPSI				2	2	2	OI	01	10	10	10	10	10	10
機器仕様 台数		1 1	-	2	2	2	2	2	2	2	6	6		C
(C) 型式	Centri fugal	Centri fug	Centri fugal	Centri fugal	Diaphragm	Diaphragm	Centri fugal	Centrifugal	Centrifugal	Centri	Centr	entrifi	MOHNO	Diaphragm
П	15	15	15	151	15	15	15		216		78			
流体 一	W.		W.A.L	THA	NaHS	1.1							NAM	Fe2(S04)3
	-		A. T.	A.T.	A. T.									1 1
治療 *: 中	(1,000)		(1,050)	(1,055)	(1,000)	(1,000)	(1,050)	(1,05((1,000)	(1,000)	(1,000)	(1,000)	(1,000)	(2,000)
10/A		(1.5)	(1.5)	(4.0)	1 1		(1.0)					(1.0		
村質			1	2	1	1	1		7	7 -		2	1 1	
● 必要な軸動力 KW	(16.8)		(2 9)	(1 2)	- (0 0)	(0.05)	- 8 9)	(V E)	- (17 51)		9/			
* 必要なモナー動力 KW 動動力 KW	(22.0)	(3.0)	(3.7)	(2.2)	(0.1)	(0.1)	(11.0)	11.01	(22.0)	(110.0)	(11.0)	(33.0)	(3.0)	(0,01)
モーター(メーカー仕様) KW			I	i I	1		1 1	ı	1 1	1 1	1	1 1		
Pole	4		4	4	4	4	4	4	4	4		4	4	
Hz	50	50	415	415	415	415	415	415	415	415	415	415	415	415
							123	100	ine	Inc		inc	201	

11/5 11/5		A. F.	22.23.83.83.83.83.83.83.83.83.83.83.83.83.83	Diaphragm Diap
▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗ ▗ ▗ ▗░ ▗▗▘▍▝▗▗ ▝▔ ▘ ▘▘▘▘▘▘	17 PU-301A/B Fe2(S04)3 Bosing Pump 硫酸铁 供給 Diaphragm	Fe2(S04)3 6,08 152.8 50 (2,000) (7 - - - A.T. A.T. 10.0 10.0 SUS394	0.004	Diaphragm Diaph 0.1 0.1 0.1 0.1 E2(\$04)3 A.T. 0 (2,000) (1,

10			
(17.4			
Application Control Application Contro			
## 1			
H. Toychtarto. (4. 17) (1.			
(2.1) (2.1			
(本任 1)			
(本作 1) (大			
施		13	
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	PU-01A/8	PU-02	A PIJ-201A/R
近年 *** *** *** *** *** *** *** *** *** *			
第46 *** *** *** *** *** *** *** *** *** *	Wastewater	No. 1 Sludge Water	
200 20		Gypsum	消石灰が
近代 **1)	. RW Feed	Withdraw	
(東京 **) 10 = 1	Centriluga	Centrifugal Centrifugal	
発養機 (-	S.S.	
A 受異 Kg h	1 3	1.9	
19 19 19 19 19 19 19 19	39,500.	2,194.5	
帝氏 (本) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大		20	
株文 大子 大子 大子 大子 大子 大子 大子 大	(1,000	(1, 155)	
Mac	(1.0	(1.5)	
現成形式	01)	(1)	
NYACHT 10	A, T	A. T.	- 1
投資	0.0	0.0	0.0
所要水動力 KW KW KW KW KW KW KW K	IV.	10.0 V	1
所要大動力 KM So So So So So So So So So S			i l
15.7 分離	_		
所要権助力 KN 吸込管性工力損失 III	50) 50	50	
吸込配管圧力損失 中世紀衛生力損失 合計配管圧力損失 物心配 吸込表現程 形心所 心が不 (以下、3) が不 (放下、3) が不 (放用温度 (な下、5) が不 (放用温度 (な下、5) が不 (放用温度 (な下、5) が不 (放用温度 と変を軸動力 と変を軸動力 と変をを手・動力 と変ををす・動力 を変ををす・動力 を変をを・・・動力 を変をを・・・動力 を変をを・・・動力 を変をを・・・動力 を変をを・・・動力 を変をを・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		0.1	13.1 2.8
中世紀 (中世紀 (中世紀)			
<u> </u>			
1. 必要な実現程 1. 必要な実現程 1. 必要な実現程 点数 点数 点数 点数 点数 点数 点数 点数			
Minst 台数 地域 大学 (4×1.2) 元本 (4×1.2) 元本 (4×1.5) 元本 (4×1.5) 元本 (4×1.5) 元本 (4×1.5) 日間 (4×1.5) 日間 (4×1.5) 上述 (4×1.5) 上述 (4×1.5)	01	10	30 10
白数 型式 小計 ((1×1.2) 洗体 使用温度 355-1 ((1×1.5) 355-1 ((1×1.5) 355-1 (355-			
型式 (A) 1 ((A) 1.2) (A) 1 ((A) 1.2) (A) 1 ((A) 1.2) (A) 1 (A) 1 (A		2	2 2
流 (((ス) (ス) ((ス) (ス) ((ス) (ス) ((ス) (ス) ((ス) (ス)	Centrifuga	Centri fugal	al Centrifugal
流体 使用温度 おり・濃度 おり・濃度 おり を を を を を を を を を を を を を を を を を を	47	2.3 97	97 58
(後用温度 治療 治療 (お) (対) (対) (対) (対) (対) (対) (対) (対) (対) (対	- B - E - E - E - E - E - E - E - E - E	c s	45 IS
591・濃度 密度 松度 松度 監査 必要なモナ動力 必要なモナ動力 小男なモナ動力		÷ -	
密度 村材 材質 重量 必要なモナ動力 必要なモナ動力 キャー(よ・+ 土様)		20	0 10
75度 材図 整置 変変を軸動力 必要なモナー動力 絶動力(パーキ・仕様)	(1,000	(1, 155) (1	[]
	(1.0	(1.5)	
<u>新</u> * 公要な軸動力 KN * 必要なモナー動力 KN * 地動力 LA	10	7	
• 公要在軸動力 KN • 公要在七十動力 KN = 動動力(4+一柱供)KN = + 動動力(4+一柱供)KN			! !
● 必要な←→・動力 KW ★	(a E)	(0.2)	6) (5
輪動力 (メーキー仕様) KW エール・(ユール・レ・サボ) Wu	(5.5)	(0.4) (30	0) (7.5)
			3 1
(, , , , , , , , , , , , , , , , , , ,			1
Pole	4	4	
Volt	418	415	415 415
Hz	5(20	

Polymer B Injection

(3-5) Polymer Injection Unit for Centrifuge

Dry Sludge Amount:

1,531 kg/h

Dosage
 Concentration
 Specific gravity
 Injection rate

5) Req'd Vol. 6) Drum Dimension:

6.38 L/min (for 3days 0.5% as Dry SS= Take: 2.5m^{ID}x3.5m^H .00 m (take) wt %= $Q_{p0}=382.6523 \text{ L/h}=$ V_{p0} = Hpo= Dpo=

Polymer A Injection

(3-2) Polymer Injection Unit for 2ndary sedimentation

(PU-13) (D-0)246.54 L/h <u>[ake: 2.0m^{II)}x2.5m^H</u> m^3 (1day 00 m (take) g/h= 246.54 m3/h $200\,\mathrm{mg/L}$ 5.92 V_{p0}= Hpo= Dpo= 2) Concentration 3) Specific gravity 4) Req'd Polymer 5) Req'd Vol. 6) Demension Flow Rate: 1) Dosage

Coagulant

(3-6) Coagulant $Al_2(SO_4)_3 \cdot 18H_2O$ Injection Unit

1) Dosing Rate:
2) Concentration:
3) Specific Gravity:
4) Injection Rate:
5) Drum Vol.

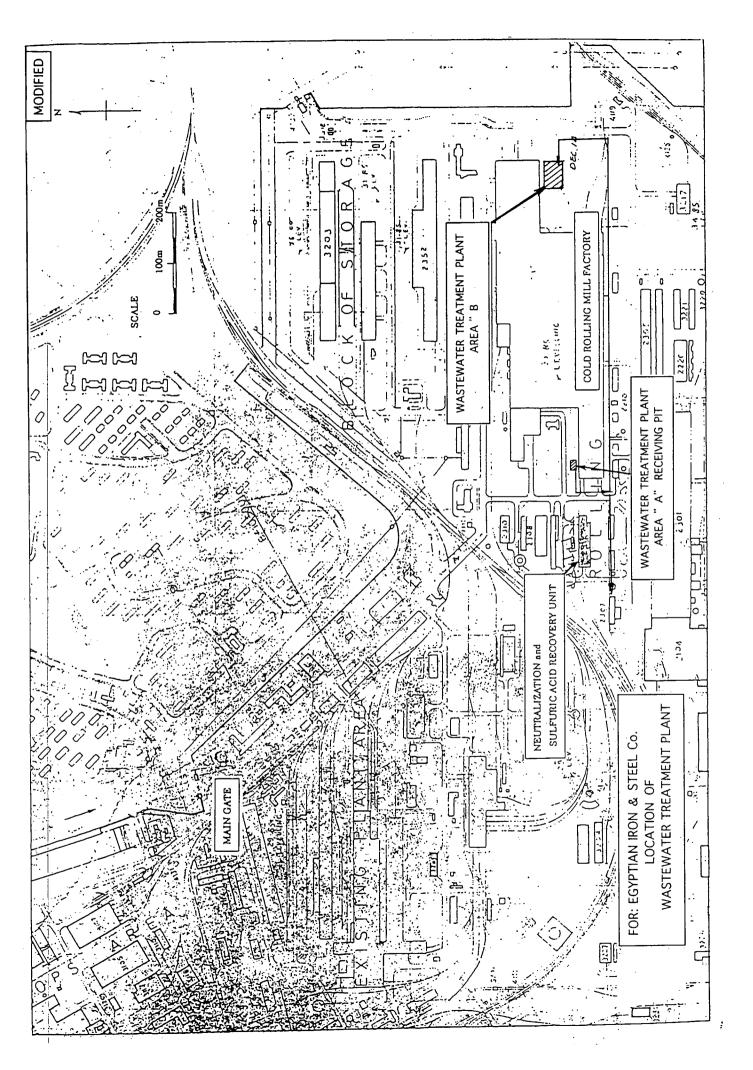
Omg/L,

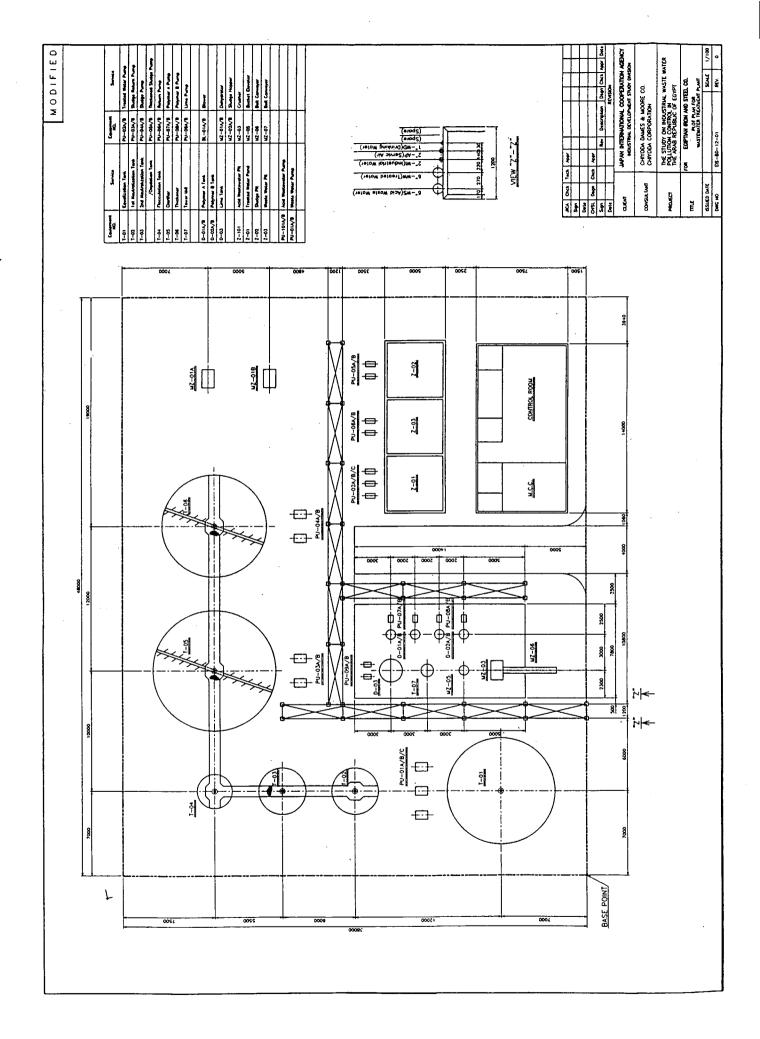
Height:

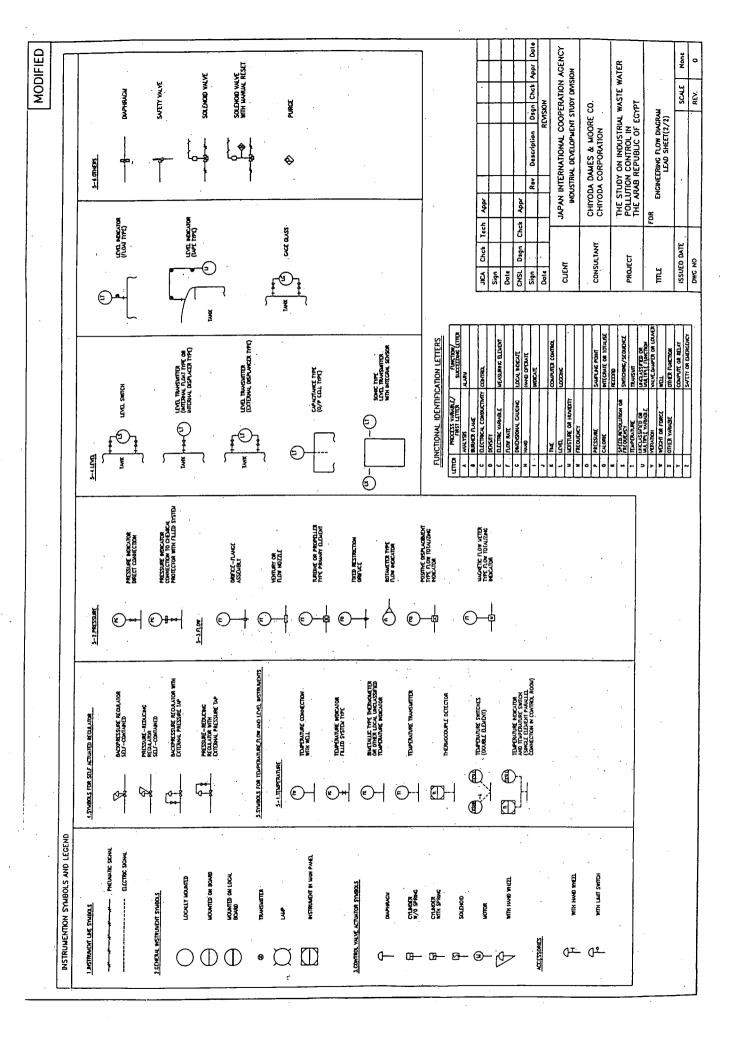
Diameter

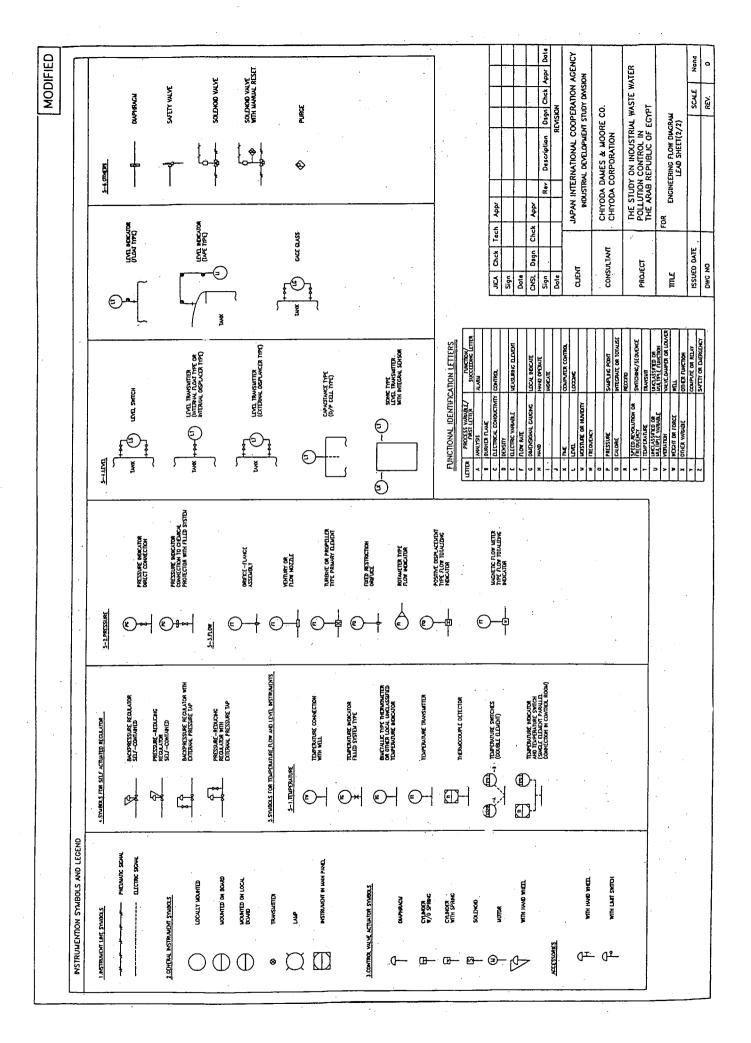
0.55 L/min 5.6 m³ (for 7days) 2.0 m (take)

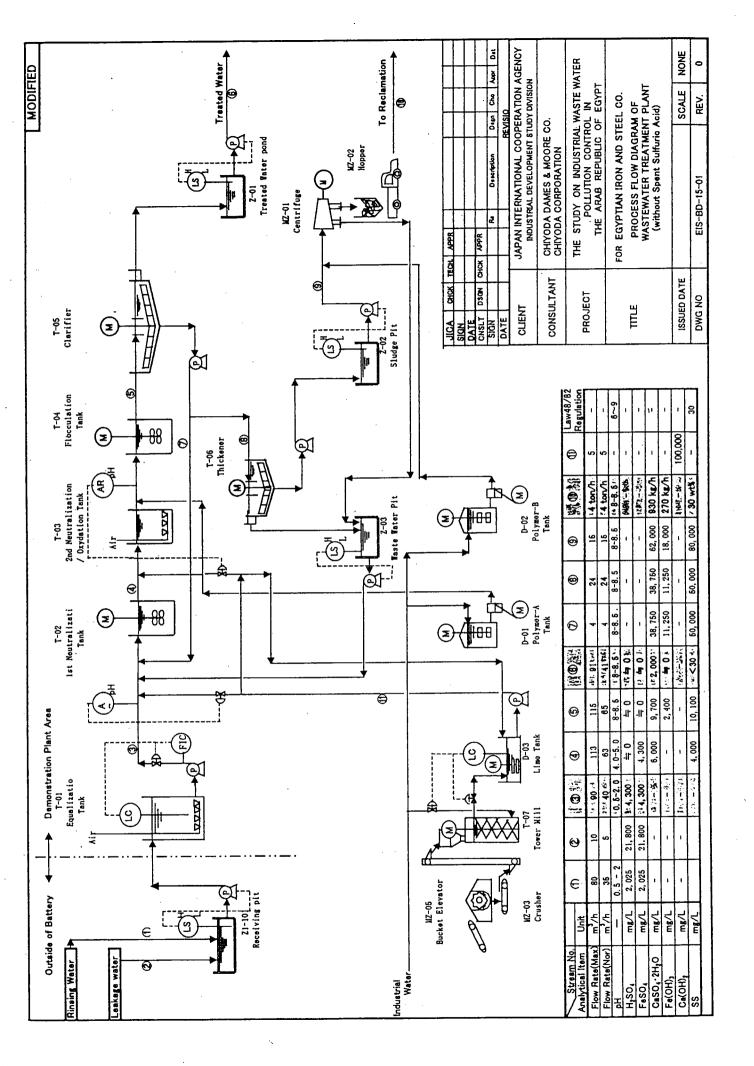
BASIC DESIGN PACKAGE OF

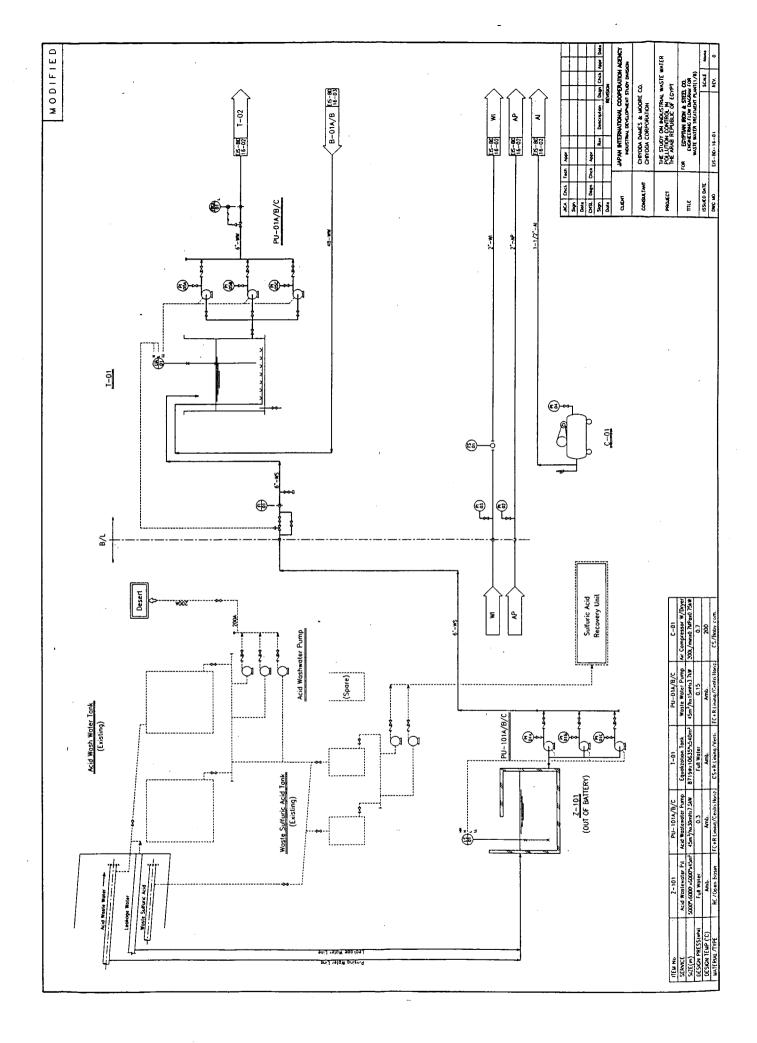

WASTEWATER TREATMENT PLANT

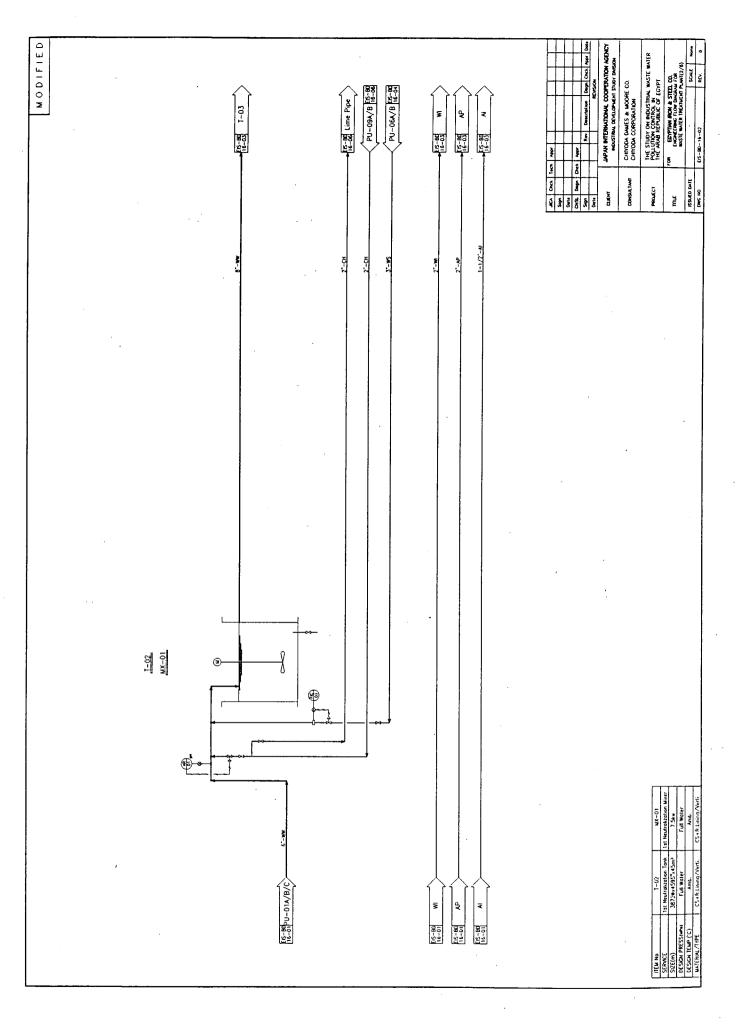

FOR

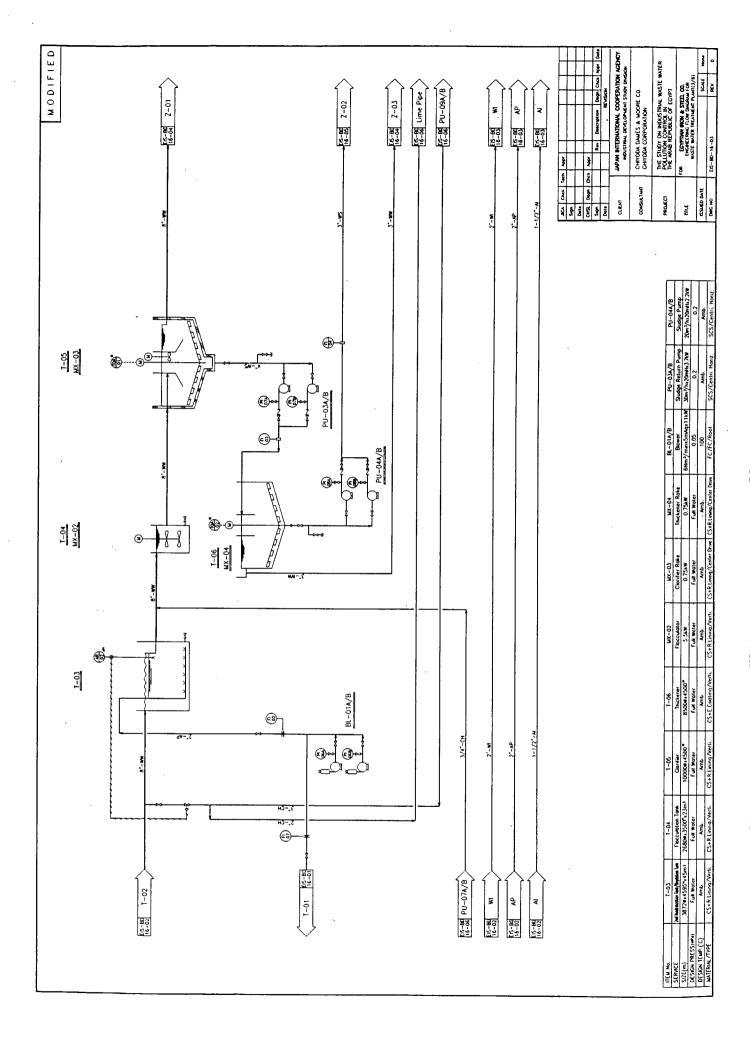

EGYPTIAN IRON AND STEEL CO.

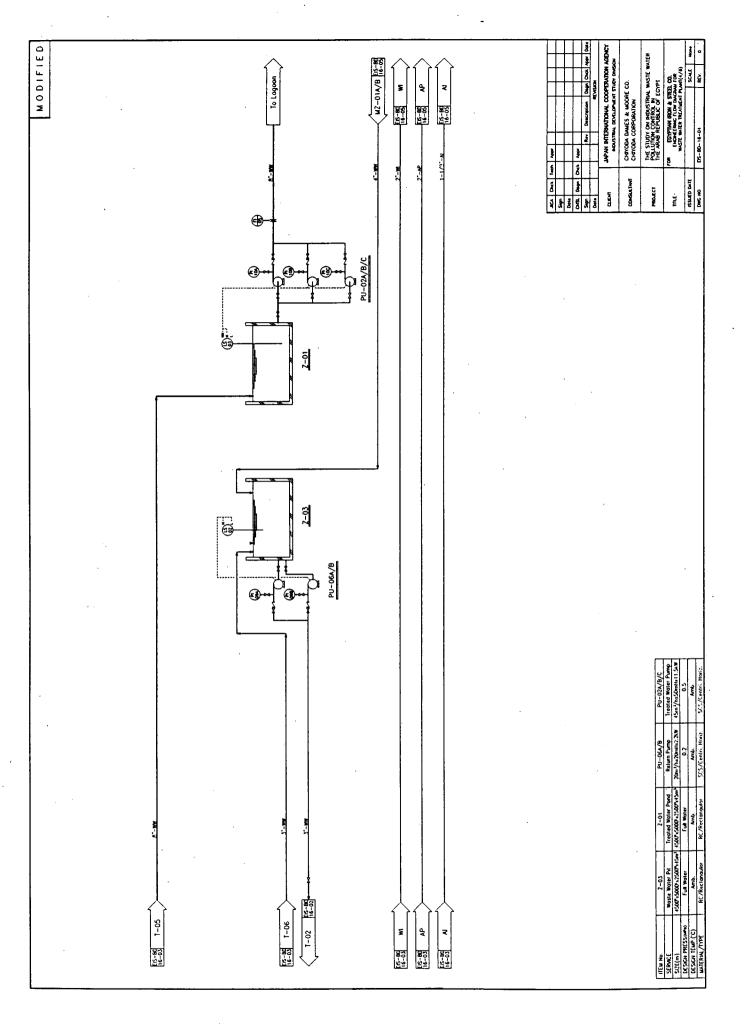

March 2000

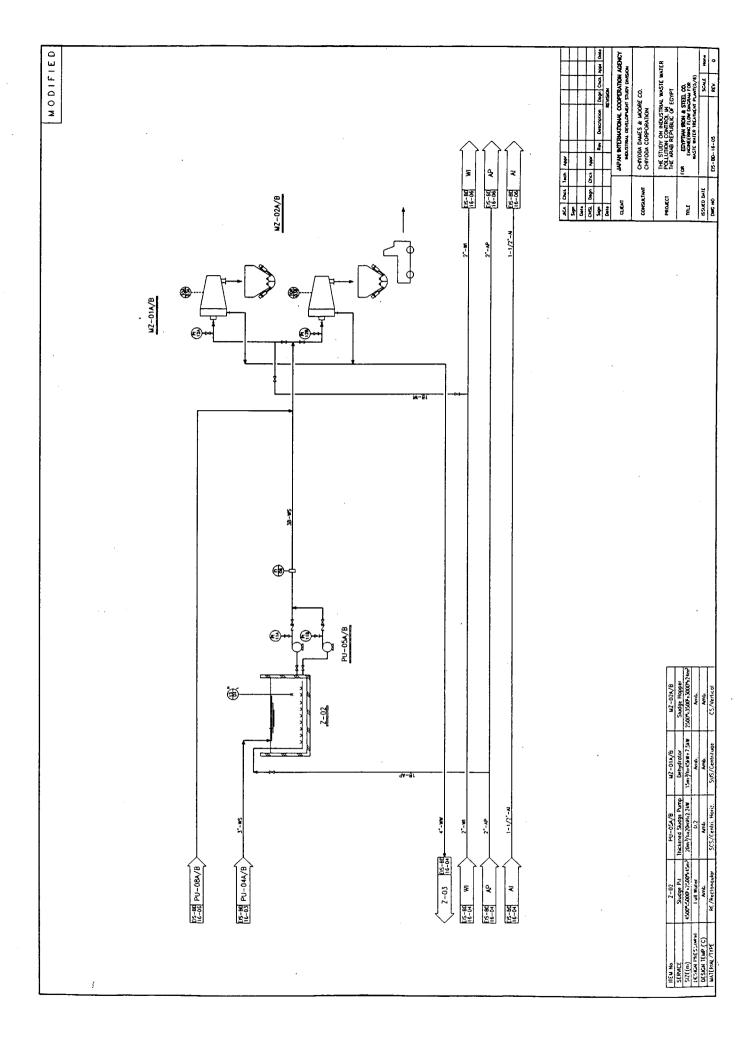

CHIYODA DAMES AND MOORE CO. CHIYODA CORPORATION

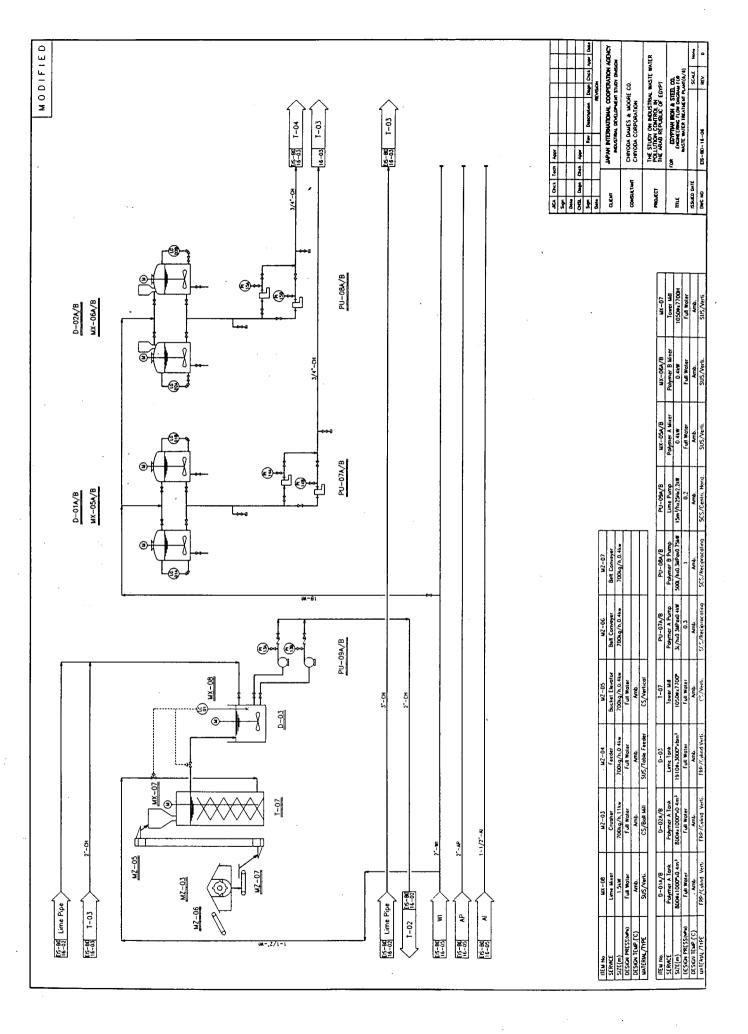


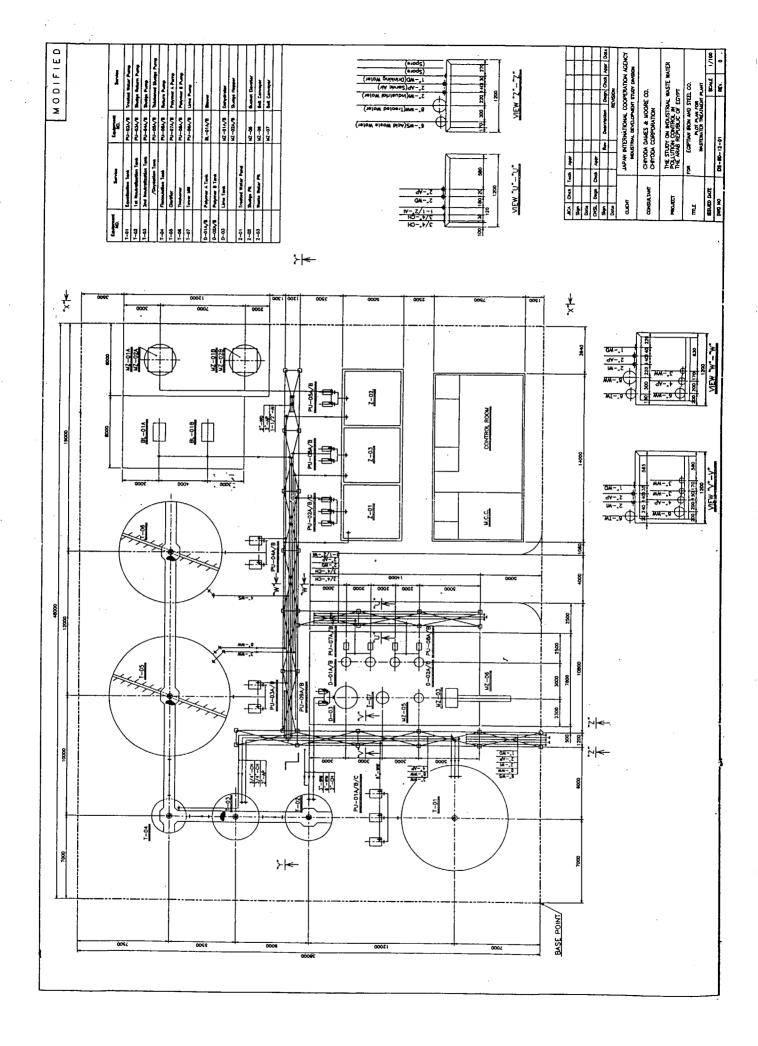


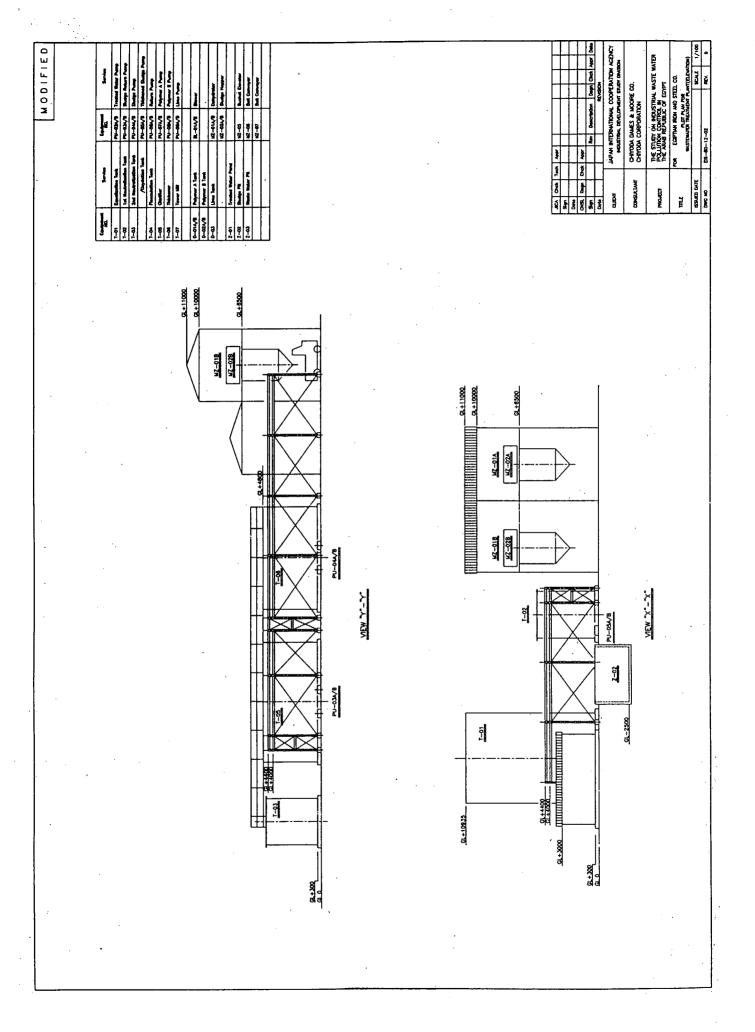


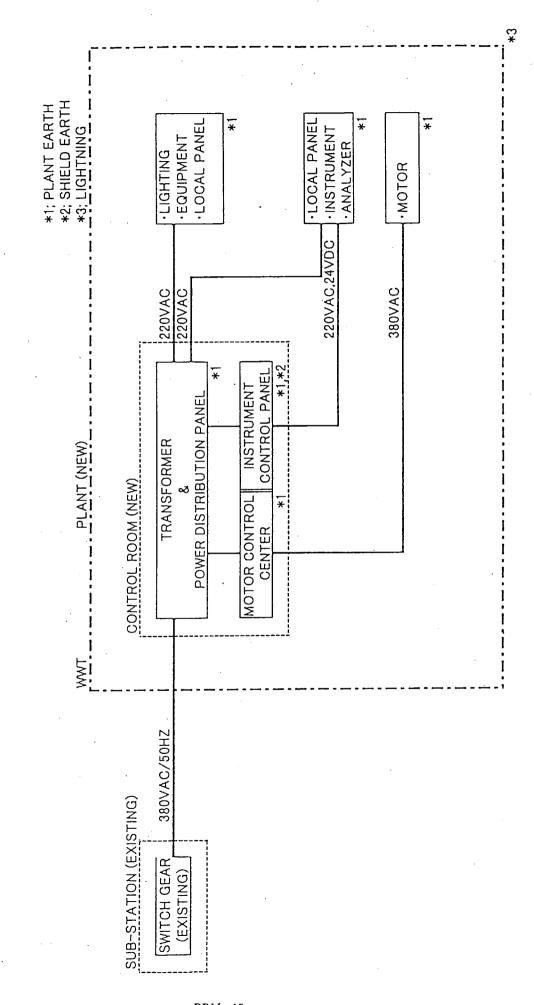


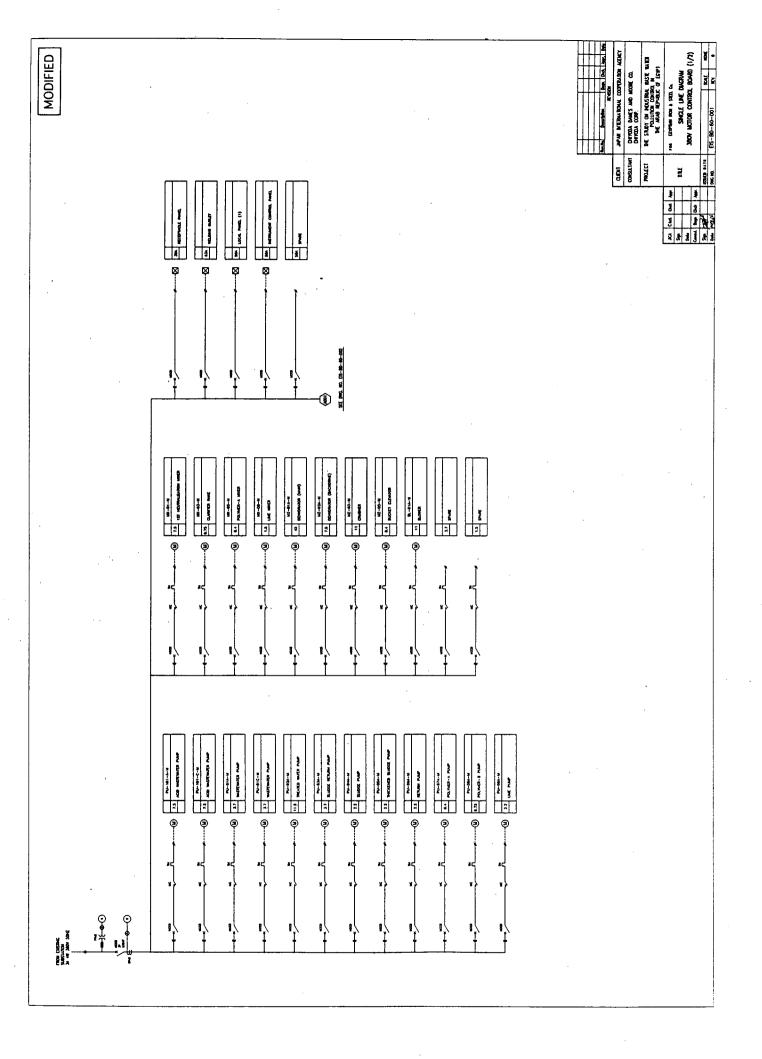


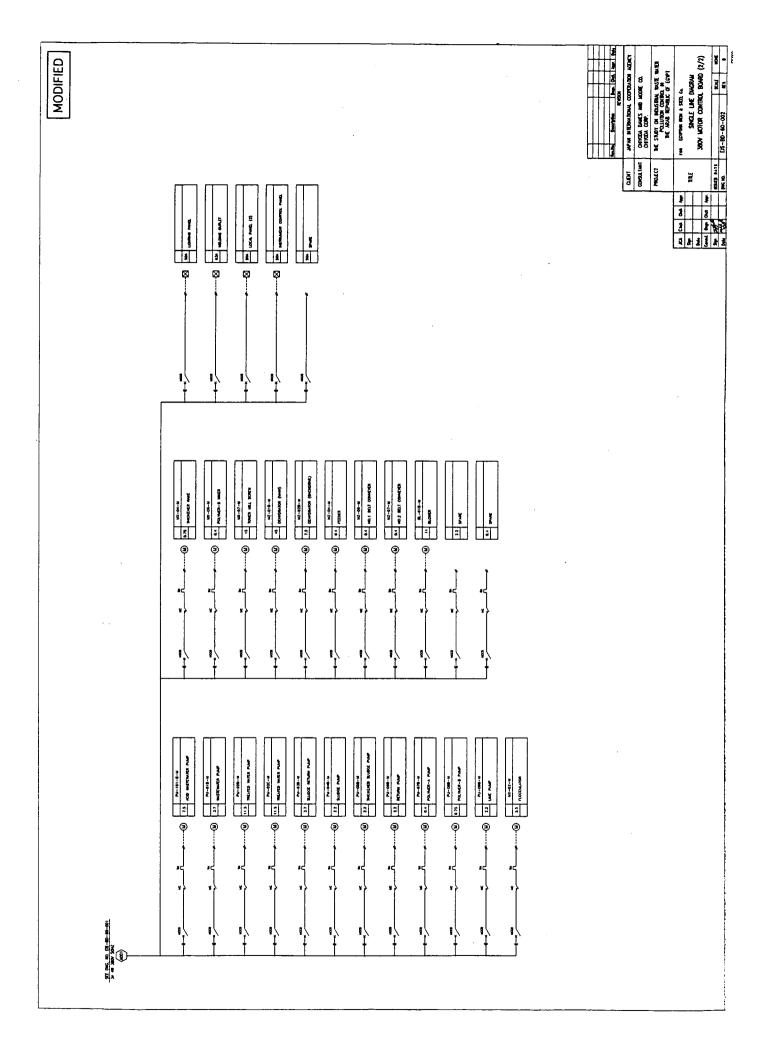


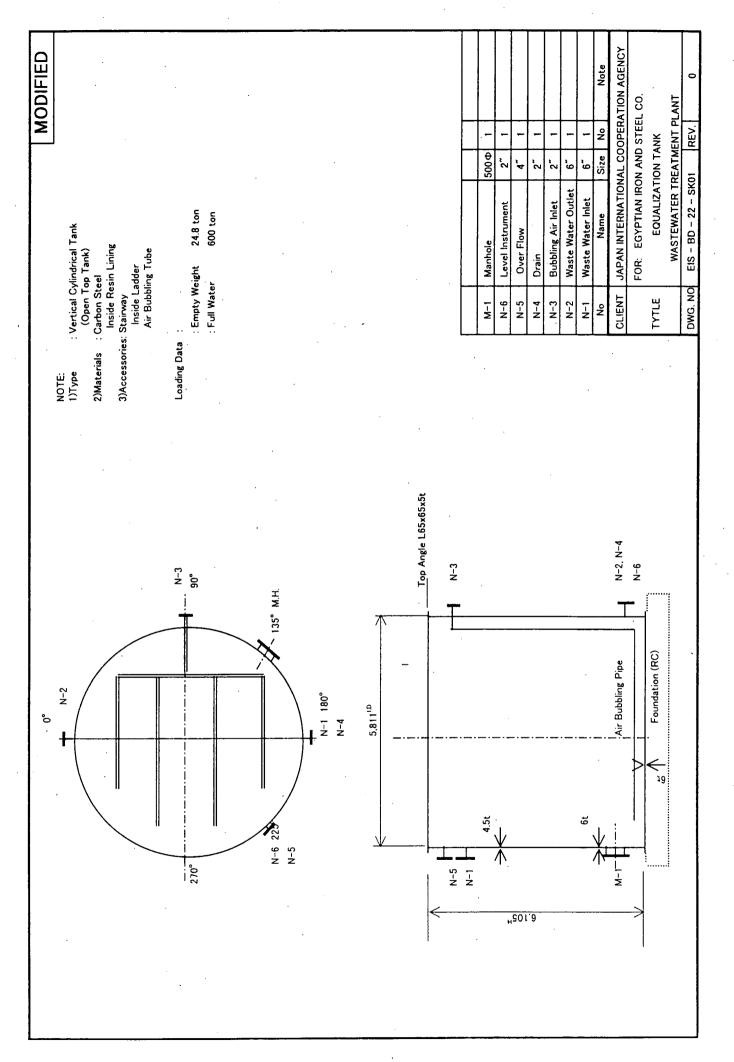


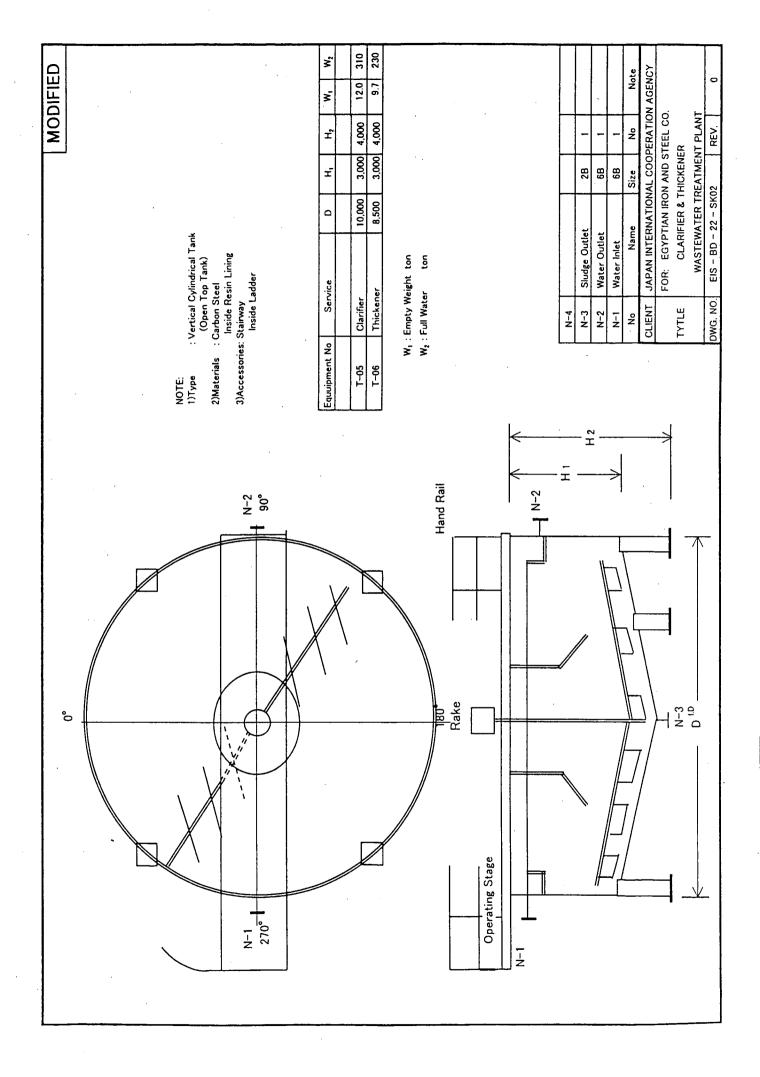


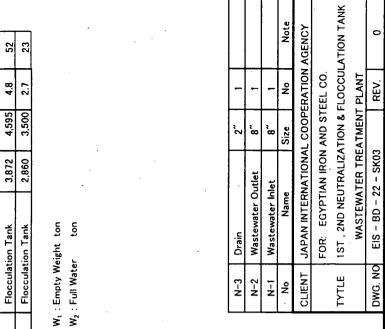


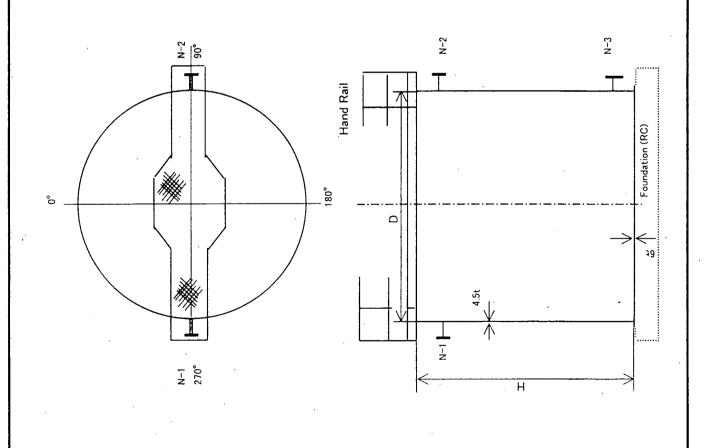


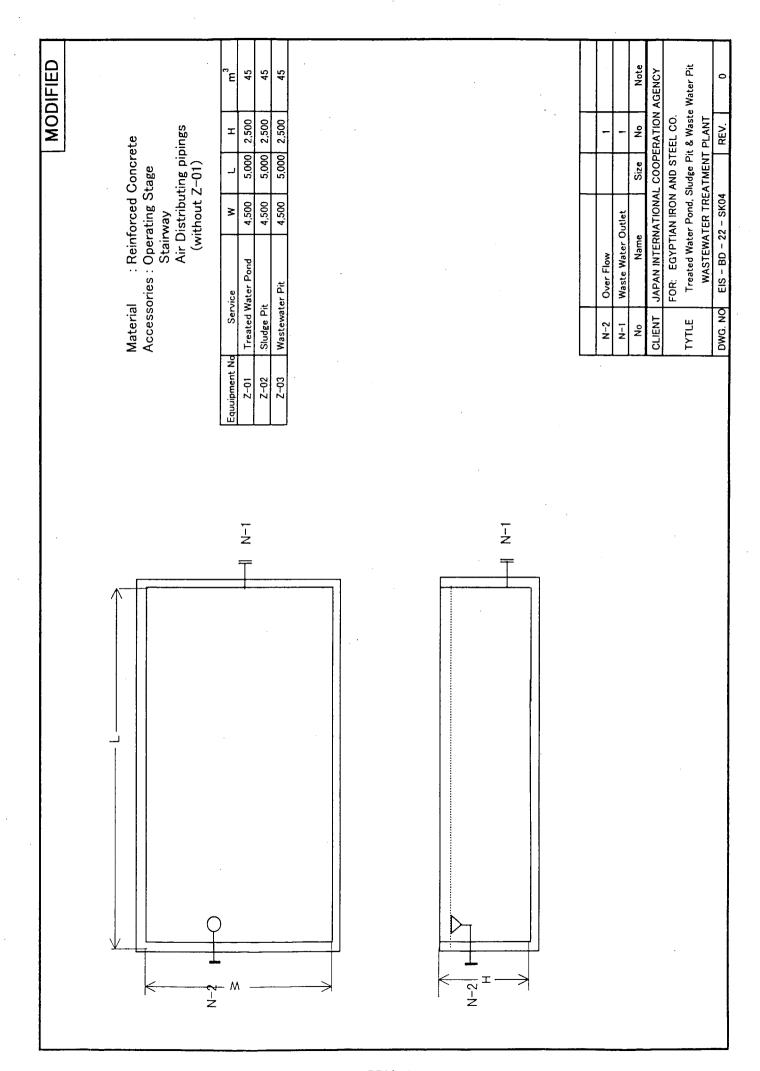

PLANT

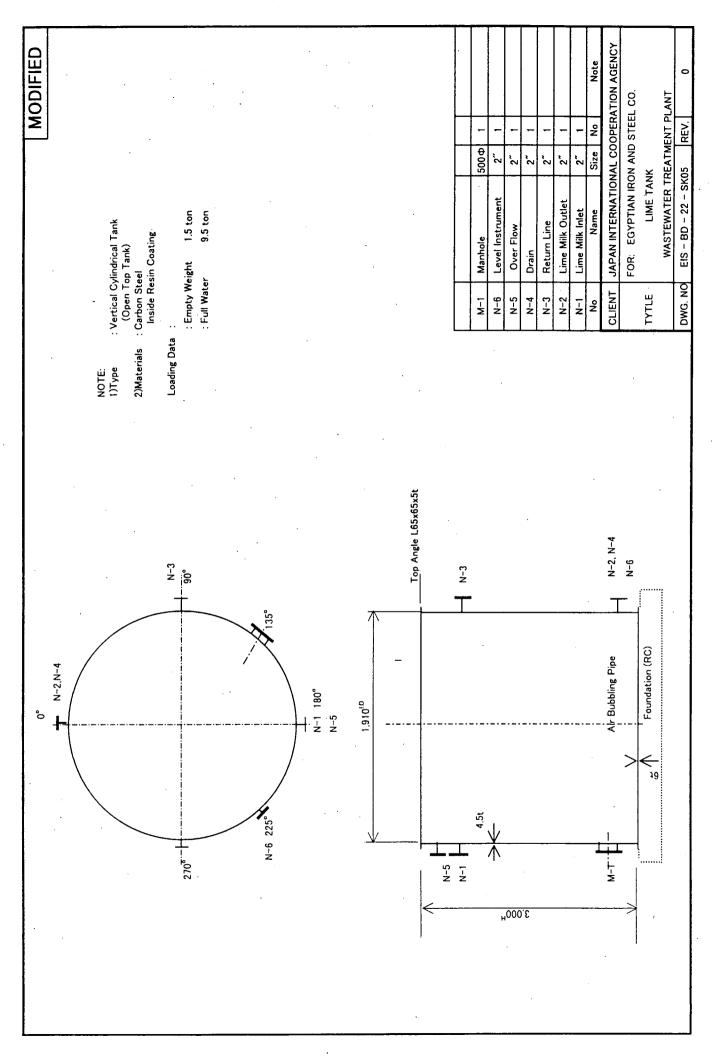

CONFIGURATION OF ELECTRICAL & INSTRUMENTATION SYSTEM FOR

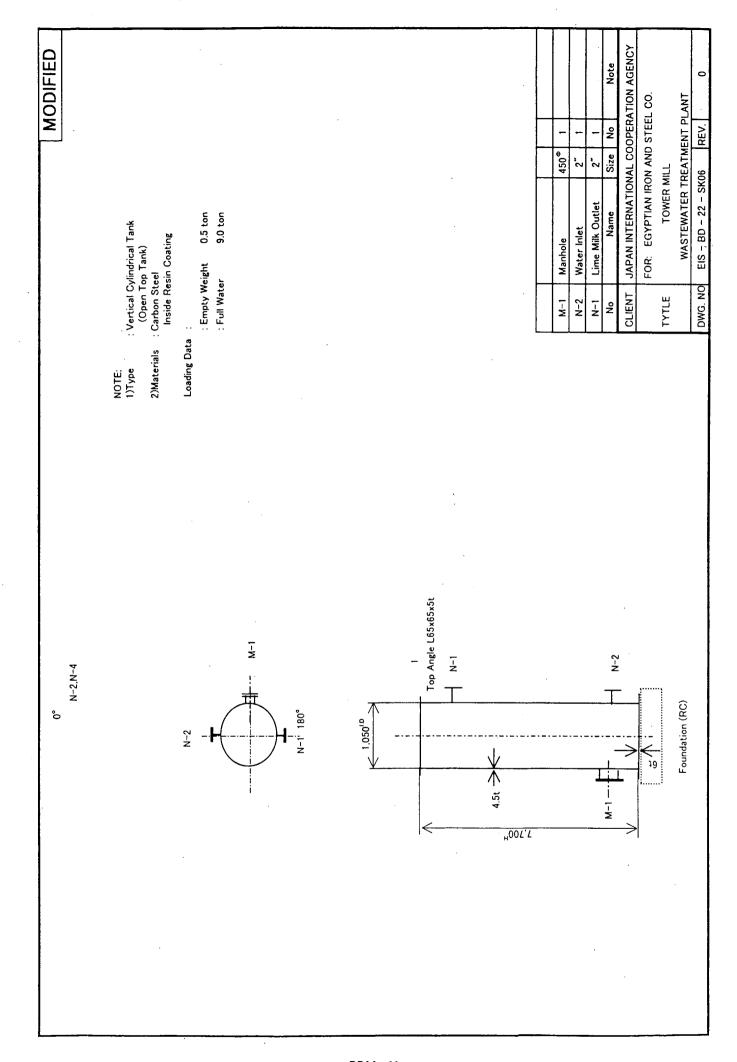


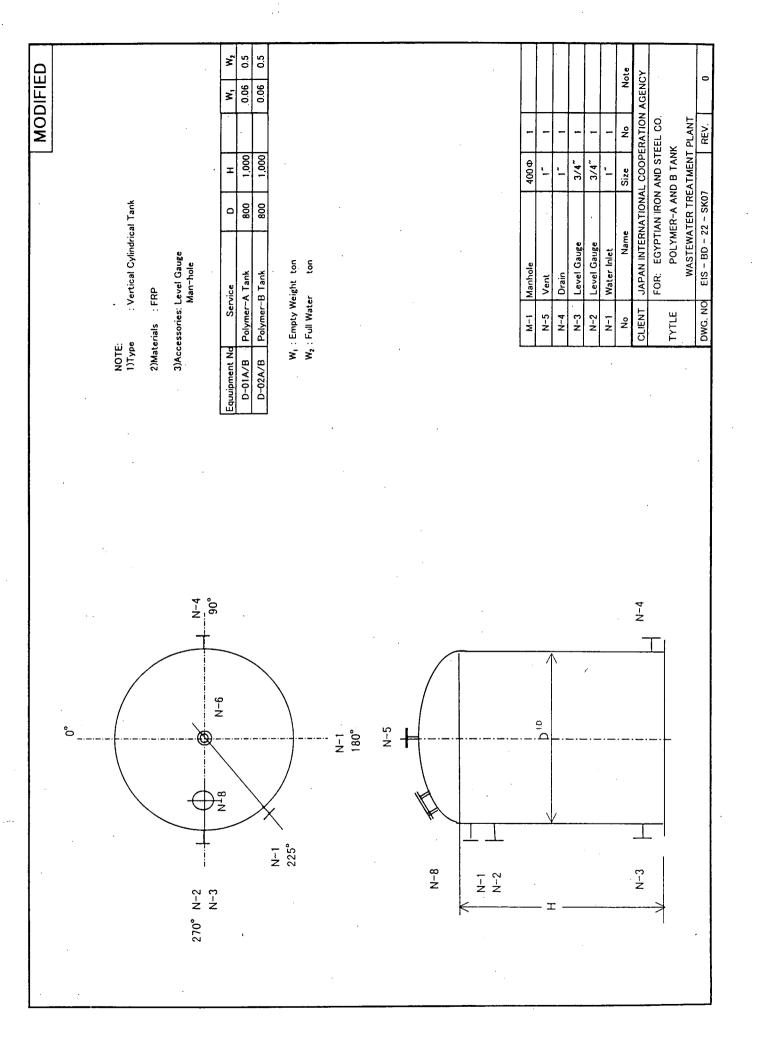

BDM - 15

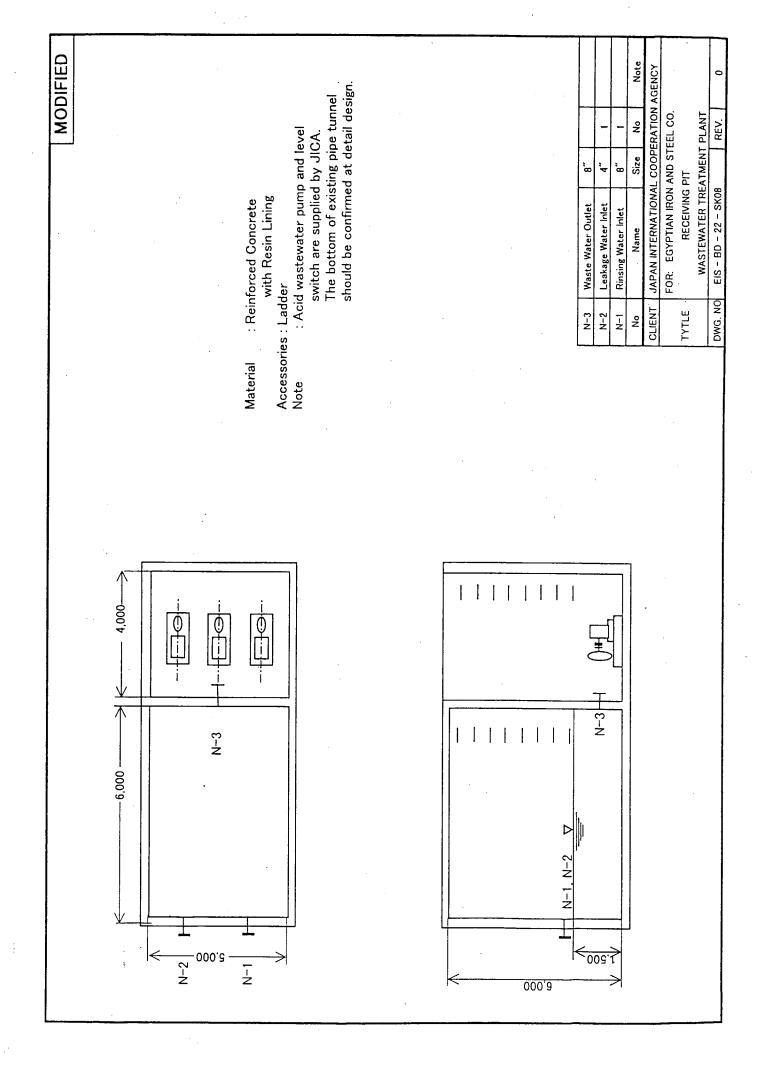


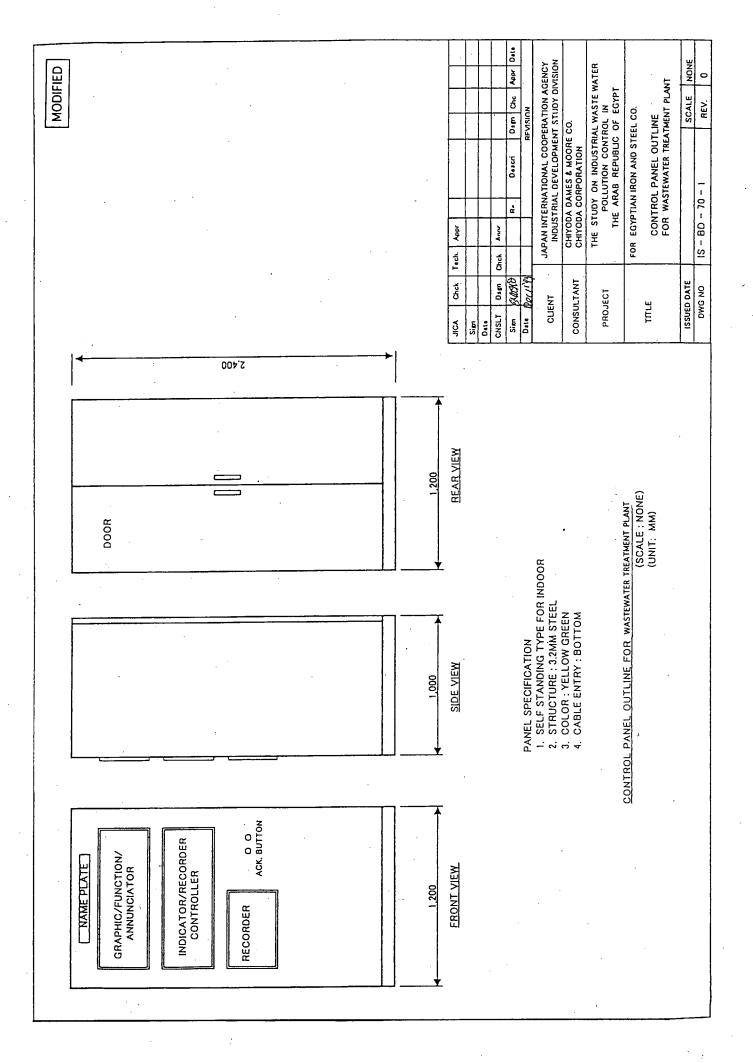


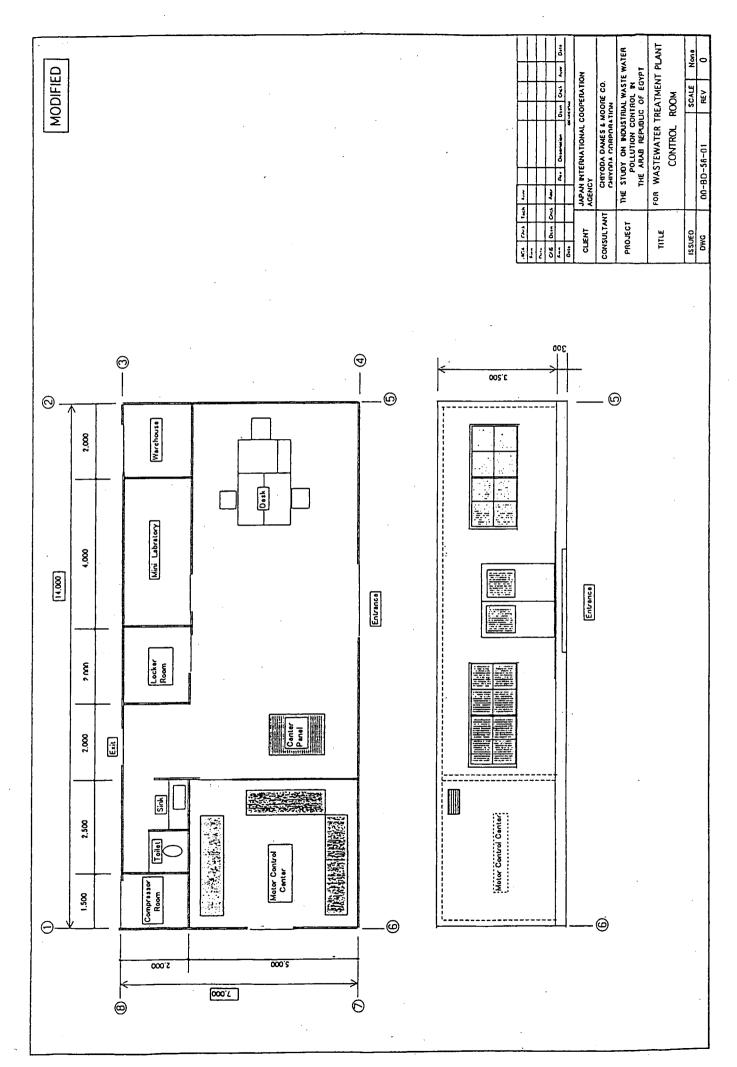

NOTE: 1)Type


1)Type : Vertical Cylindrical Tank (Open Top Tank) 2)Materials : Carbon Steel Inside Epoxy Coating 3)Accessories: Stairway


Equuipment No	Service	a	Ή	W ₁	W2
T-02	Coagulant Tank	3.872	4,595	4.8	52
T-03	Flocculation Tank	3,872	4,595	4.8	52
T-03	Flocculation Tank	2,860	3,500	2.7	23







EQUIPMENT LIST for Egyptian Iron and Steel Co.

MODIFIED

DOC. NO.	EIS-BD-L01						(1/4)
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	T. Yasukawa
PROJECT	:The Study on Industrial Waste Water Plant	BY				CKD	H. Takahashi
PLANT	:W.W.T. Demonstration Plant	APVE				APVE	I.Nagahama
WASTE W.	:Rinsing Water + Leakage Water	DATE				DATE	

Equipment NO.	Service	No. Reg'd	Type of Equipment	Remarks
T-01	Equalization Tank	1	Vertical Cylindrical Type	Carbon Steel/Resin
			$8,719^{4}\times10,635^{H}\times540~\text{m}^{3}$	Lining
T-02	lst Neutralization Tank	1	Vertical Cylindrical Type	Carbon Steel/Resin
	·	'	$3,872^{4} \times 4,595^{H} \times 45 \text{ m}^{3}$	Lining
T-03	2nd Neutralization Tank	1	Vertical Cylindrical Type	Carbon Steel/Resin
	/Oxidation Tank		$3,872^{4} \times 4,595^{H} \times 45 \text{ m}^{3}$	Lining
T-04	Flocculation Tank	1	Vertical Cylindrical Type	Carbon Steel/Resin
		201	$2,860^{4} \times 3,500^{H} \times 23 \text{ m}^{3}$	Lining
T-05	Clarifier	1	Vertical Cylindrical Type	Carbon Steel/Resin
		<u> </u>	$10,000^{\circ} \times 4,500^{H}$	Lining
T-06	Thickener	1	Vertical Cylindrical Type	Carbon Steel/Epoxy
			8,500 ⁴ × 4,500 ^H	Coating
T-07	Tower Mill	1	Vertical Cylindrical Type	Carbon Steel
			1,050 ^{\$} ×7,700 ^H	
D-01A/B	Polymer-A Tank	2	Vertical Cylindrical Type	FRP
			$800^{4} \times 1,000^{H} \times 0.4 \text{ m}^{3}$	
D-02A/B	Polymer-B Tank	2	Vertical Cylindrical Type	FRP
			$800^{4} \times 1,000^{H} \times 0.4 \text{ m}^{3}$	
D-03	Lime Tank	1	Vertical Cylindrical Type	FRP
			$1,910^{\circ} \times 3,000^{H} \times 8 \text{ m}^{3}$	
	<u></u>			

1,910 \$\times 3,000 \text{H} \times 8 m^3

Note:

EQUIPMENT LIST for Egyptian Iron and Steel Co. MODIFIED DOC. NO. EIS-BD-L01

DOC. NO. EIS-BD-L01

CLIENT : Japan International Cooperation Agency
PROJECT : The Study on Industrial Waste Water Plant
PLANT : W. W. T. Demonstration Plant
WASTE W. Rinsing Water + Leakage Water

(2/4)

REV 1 2 3 MADE T. Yasukawa

PK CKD H. Takahashi
APVE APVE I. Nagahama

DATE

DATE

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
Z-101	Acid Wastewater Pit	11	Rectangular, Underground	R.C with Resin lining
			$5,000^{\text{W}} \times 6,000^{\text{L}} \times 6,000^{\text{H}} \times 45 \text{ m}^3$	(out of Battery)
Z-01	Treated Water pond	1	Rectangular, Aboveground	Reinforced Concrete
			$4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}} \times 45 \text{ m}^3$	
Z-02	Sludge Pit	1	Rectangular, Aboveground	R. C
			$4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}} \times 45 \text{ m}^3$	
Z-03	Waste Water Pit	11	Rectangular, Aboveground	R. C
		<u> </u>	$4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}} \times 45 \text{ m}^3$	
PU-101	Acid Wastewater Pump	3	Horizontal Centrifugal Type	FC/Rubber Lining
A/B/C			45 m³/h×30 m×7.5 k₩	
PU-01	Waste Water Pump	3	Horizontal Centrifugal Type	FC/Rubber Lining
A/B/C		ļ	45 m³∕h×15 m×3.7 k₩	
PU-02	Treated Water Pump	3	Horizontal Centrifugal Type	SCS
A/B/C			45 m ³ /h×50 m×11.5 kW	
PU-03A/B	Sludge Return Pump	2	Horizontal Centrifugal Type	SCS
			$30 \text{ m}^3/\text{h} \times 20 \text{ m} \times 3.7 \text{ kW}$	
PU-04A/B	Sludge Pump	2	Horizontal Centrifugal Type	
		<u> </u>	$20 \text{ m}^3/\text{h} \times 20 \text{ m} \times 2.2 \text{ kW}$	
PU-05A/B	Thickened Sludge Pump	2	Horizontal Centrifugal Type	
			$20 \text{ m}^3/\text{h} \times 20 \text{ m} \times 2.2 \text{ kW}$	
PU-06A/B	Return Pump	2	Horizontal Centrifugal Type	
			$20 \text{ m}^3/\text{h} \times 20 \text{ m} \times 2.2 \text{ kW}$	
		<u> </u>		

Note:

EQUIPMENT LIST for Egyptian Iron and Steel Co.

MODIFIED (3/4)

DOC. NO. E15-DD-L01						(3/4)
CLIENT : Japan International Cooperation Agency	REV	1	2	3	MADE	T. Yasukawa
PROJECT :The Study on Industrial Waste Water Plant	BY				CKD	H. Takahashi
PLANT :W.W.T. Demonstration Plant	APVE				APVE	I.Nagahama
WASTE W.: Rinsing Water + Leakage Water	DATE				DATE	

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
PU-07A/B	Polymer-A Pump	2	Reciprocating Type	SCS/SCS
			3 L/h×0.3 MPa×0.4 k₩	
PU-08A/B	Polymer-B Pump	2	Reciprocating Type	SCS/SCS
			500 L/h×0.3 MPa×0.75 kW	
PU-09A/B	Lime Pump	2	Horizontal Centrifugal Type	SCS/SCS
. <u>-</u>			15 m ³ /h×25 m×2.2 kW	
BL-01A/B	Blower	2	Root Type	FC/FC
····			6 Nm³/min×5 m×11 k₩	
MX-01	1st Neutralization Mixer	1	Vertical Type	Carbon Steel with
			7.5 kW	Resin Lining
MX-02	Flocculator	1	Vertical Type	Carbon Steel with
			5.5 kW	Resin Lining
MX-03	Clarifier Rake	1	Center Drive Type	Carbon Steel with
			0.75 kW	Resin Lining
MX-04	Thickener Rake	1	Center Drive Type	Carbon Steel with
			0.75 kW	Resin Lining
MX-05A/B	Polymer-A Mixer	2	Vertical Type	SUS
			0.4 kW	
MX-06A/B	Polymer-B Mixer	2	Vertical Type	SUS
			0.4 kW	
MX-07	Tower Mill Screw	1	Vertical Type	SUS
			15 kW	
MX-08	Lime Mixer	1	Vertical Type	SUS.
	`		1.5 kW	

Note:

EQUI DOC. NO.	PMENT LIST for Egypti EIS-BD-L01	an Ir	on and St	eel (o.		MOD	IFIE	D (4/4)
CLIENT	:Japan International Cooper	ation A	Agency	REV	1	2	3	MADE	T. Yasukawa
	:The Study on Industrial Wa			BY					H. Takahashi
	:W.W.T. Demonstration Plant	· •		APVE					I.Nagahama
WASTE W.	Rinsing Water + Leakage Wat	er		DATE				DATE	
Equipment NO.	Service	No. Reg'd	Туре с	of Equi	pment			Rem	arks
IZ-01A/B	Dehydrator	2	Centrifuge	Туре			SUS		-
			$15 \text{ m}^3/\text{h} \times 45$	k₩ + 7	5 k₩		Sharp	ies PM	-50000
IZ-02A/B	Sludge Hopper	2	Vertical Ty	уре			Carbo	ı Stee	<u>l</u>
			$2,500^{\text{W}} \times 3,5$	$00^{L} \times 3$,	000 ^H ×	24 m^3			
MZ-03	Crusher	1	Ball Mill T	Гуре			Carbo	ı Stee	1
			700 kg/h, 1	1 kW					
MZ-04	Feeder	1	Table Feede	er Type	!		SUS		
			700 kg/h, 0).4 kW				-	-
MZ-05	Bucket Elevator	1	Vertical Ty	pe			Carbo	Stee	l
			700 kg/h, 0).4 kW					
MZ-06	Belt Conveyer	1	700 kg/h, 0). 4 kW					
								,	
MZ-07	Belt Conveyer	1	700 kg/h, 0).4 kW					
					 				
					,				
						:			
									-
			·						
					,				
Note:									

INSTRUMENT LIST for Egyptian Iron and Steel Co. MODIFIED

DOC. NO.	EIS-BD-L2-(1/3)						(1/3)
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	T. Yasukawa
PROJECT	:The Study on Industrial W. W. Pollution Control	BY				CKD	H. Takahashi
PLANT	:W.W.T. Demonstration Plant	APVE				APVE	I.Nagahama
WASTE W.	:Rinsing Water + Leakage Water	DATE				DATE	

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
AR-01	T-02 Inlet	1	pH_0∼14	
			pH Analyzer	C. P.
AR-02	T-03 Outlet	1	pH 0∼14	
			pH_Analyzer	C.P
FRCA-01	PU-01 Outlet Line	1	40 m ³ /h~100 m ³ /h	
			Flow Recording Controller	
FI-01	T-01 Inlet	1	40 m ³ /h~100 m ³ /h	
			Flow Meter	
FI-02	Blower Outlet	× 1	2∼10 Nm³/min	
			Flow Meter	
FI-03	PU-03A/B Outlet	1	10 m ³ /h~40 m ³ /h	
			Magnetic Flow Meter	
FI-04	PU-04A/B Outlet	1	10 m ³ /h~40 m ³ /h	
1.0			Magnetic Flow Meter	
FI-05	PU-02A/B Outlet	1	40 m ³ /h~100 m ³ /h	
			Flow Meter	
FI-06	PU-05A/B Outlet	1	10 m ³ /h~40 m ³ /h	
			Magnetic Flow Meter	
FS-01	AP Line	1	Flow Integrator	
FIC-01	Return Line	1	20 m ³ /h~10 m ³ /h	
			Flow Indicating Controller	
LS-01_	Z-101 Acid Wastewater Pit	1	1,000 mm~1,500 mm	
			Level Switch HH, H, L, LL	
LS-02	Z-03 Wastewater Pit	1	1,000 mm~2,000 mm	
			Level Switch H,L	
		<u> </u>		

Note:

C.P. = Center Panel Mount

L.P. = Local Panel Mount

INSTRUMENT LIST for Egyptian Iron and Steel Co. MODIFIED

DOC. NO.	EIS-BD-L2-(2/3)						(2/3)
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	T. Yasukawa
PROJECT	:The Study on Industrial W. W. Pollution Control	BY				CKD	H. Takahashi
PLANT	:W.W.T. Demonstration Plant	APVE				APVE	I.Nagahama
WASTE W.	: Rinsing Water + Leakage Water	DATE				DATE	

Equipment NO.	Service	No. Reg'd	Type of Equipment	Remarks
LS-03	Z-01 Treated Water Pond	1	500 mm~2,000 mm	
			Level Switch H,L	·
LS-04	Z-02 Sludge Pit	1	500 mm~2,000 mm	
			Level Switch H,L	
LIA	T-01 Equalization Tank	1	1,000 mm~9,000 mm	·
		ļ	Level Indicating Alarm	
LG-01A/B	D-01A/B Polimer A Tank	2	Tubular	
			Level Gage	
LG-02A/B	D-02A/B Polimer B Tank	2	Tubular	
			Level Gage	
LC-01	D-03 Lime Tank	2	Level Controll <u>er</u>	
			1,000 mm~2,500 mm	
PI-01A/B/C	PU-101A/B/C Outlet	3	Diaphragm	
	-4112		Pressure Indicator	
PI-02	WI Line	11	Buldon Tube	<u> </u>
L			Pressure Indicator	
PI-03	AP Line	11	Buldon Tube	
			Pressure Indicator	
PI-04	Instrument Air Line	1	Buldon Tube	
			Pressure Indicator	
PI-05A/B/C	PU-01A/B/C Outlet	3	Diaphragm	
			Pressure Indicator	
PI-06A/B	BL-01A/B Outlet	2	Buldon Tube	
			Pressure Indicator	
PI-07A/B	PU-03A/B Outlet	2	Diaphragm	
			Pressure Indicator	

Note:

C.P. = Center Panel Mount

L.P. = Local Panel Mount

PU-05A/B Outlet

INSTRUMENT LIST for Egyptian Iron and Steel Co. MODIFIED

DOC. NO.	EIS-BD-L2-(3/3)						(3/3)
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	T. Yasukawa
PROJECT	:The Study on Industrial W. W. Pollution Control	BY				CKD	H. Takahashi
PLANT	:W.W.T. Demonstration Plant	APVE				APVE	I.Nagahama
WASTE W.	:Acid Wastewater	DATE				DATE	

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
PI-08A/B	PU-04A/B Outlet	2	Diaphragm	
			Pressure Indicattor	
PI-09A/B	PU-06A/B Outlet	2	Diaphragm	
			Pressure Indicattor	
PI-10A/B/C	PU-02A/B/C Outlet	3	Buldon Tube	
			Pressure Indicattor	
	PU-05A/B Outlet	2	Diaphragm	· · · · · · · · · · · · · · · · · · ·
			Pressure Indicattor	
PI-12A/B	MZ-01A/B Inlet	2	Diaphragm	
			Pressure Indicattor	
PI-13A/B	PU-09A/B Outlet	2	Diaphragm	·
			Pressure Indicattor	
PI-14A/B	PU-07A/B Outlet	2	Diaphragm	
et et e			Pressure Indicattor	
PI-13A/B	PU-08A/B Outlet	2	Diaphragm	·
		·	Pressure Indicattor	
TQA-01	MX-03 Clarifier Rake	1	Torque Alarm	
TQA -02	MX-04 Thickener Rake	1	Torque Alarm	
1411-02	MIN-04 IIIICKCIICI KAKC		Torque Marin	
			·	

Note:

C.P. = Center Panel Mount

L.P. = Local Panel Mount

INDUCTION MOTOR LIST

DOC:NO.: EIS-BD-60-L1

CL IENT PROJECT

HADF. S REV 8Y :The Study on Industrial Waste Water Plant Japan International Cooperation Agency

APVE DATE APVE DATE

:Egyptian Iron and Steel Co.

:Acid Wastewater

WASTE W. PLANT

Rem	_	_	_		_		<u> </u>	ļ		L	_	_	_	ŀ	_		_	_	_				_	_	_	_	_	Ĺ	_	_	_	L	+
	Finish													_	,	L				ŀ													ļ
Location		ФO	go	go	00	ao	00	8	8	8	8	00	8	8	8	8	8	8	g	٩	٥	ao	8	8	8	go	٥						
Acc.																												,					
Bearing																																	
Drive		٥	٥	D	a	a	q	٥	g	Ð	a	ย	9	5	5	9	9	ŋ	g	g	5	9	5	8	8	В	8						
Cable Mounting		r	x	I	I	r	H	I	I	н	н	۸	۸	^	۸	^	^	>	>	I	н	н	н	н	н	Η	н						
			·																														
Enclose.		TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC						
Insula	tion																																
ting	Torque																																Ī
Starting	Currrent Torque																																
Time	Rating	O	ပ	O	ပ	ပ	ပ	၁	၁	υ	O	ပ	ပ	υ	ပ	O	ပ	C	၁	ပ	0	٥	O	ပ	O	O	၁						
V-Φ-Hz		380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50						
$\overline{}$	F.P.H	25/08/	\ <u>\$</u>	1500	1500	1500	4 1500	4 1500	1500	4 1500	1500	1500	4 1500	1500	1500	1500	/38/ 38/	1500	4 1500	1500	1500	1500	130	\%	1500	1500	4-1500 3						_
Revolu Pole	tion	CW 4	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	CW 4	CW	CW 4	CW	CW	CW	CW 4	CW	CW	CW	CW 4						_
_	Chrst	O	٥	O	O	Ö	ပ	O	٥	o	ပ	٥	٥	v	O	o	ပ	ပ	ပ	O	٥	ပ	٥	ပ	ပ	o	၁						_
	Final				-												-				1	+								_			_
뫍		7.5	3.7	11.5	3.7	2.2	2.2	2.2	0.4	0.75	2.2	7.5	5.5	0.75	0.75	0.4	0.4	15	1.5	45	7.5	=	0.4	0.4	0.4	0.4	Ξ	_					_
	Estimate	,	0										0	0										0				-	-	-			_
Type	<u>=</u>	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	S	SC	SC	S	SC	SC	SC	SC	SC	SC	SS	SC	SC	SC	SC	-	1		•	-	_
2	Required	2	£	<u>د</u>	7	7	7	2	2	2	2	_	-		-	7	7	-	-	2	2	-		_	-	-	2	-	-			-	_
Service		PU-101-A-C-M Acid wastewater Pump	Waste water Pump	Treated Water Pump	Studge Retun Pump	Sludge Pump	Thickened Sludge Pump	Return Pump	Polymer-A Pump	Polymer-B Pump	Lime Pump	1st Neutralization Mixer	Flocculator	Clarifier Rake	Thickener Rake	Polymer A Mixer	Polymer B Mixer	Tower Mill Screw	Lime Mixer	Dehydrator (main)	Dehydrator (Backdrive)	Crusher	Feeder	Bucket Elevator	No.1 Belt Conveyer	No.2 Belt Conveyer	Blower						
Motor No.		PU-101-A-C-M	PU-01A-C-M	PU-02A-C-M	PU-03A/B-M	PU-04A/B-M	PU-05A/B-M	PU-06A/B-M	PU-07A/B-M	PU-08A/B-M	PU-09A/B-M	MX-01-M	MX-02-M	MX-03-M	MX-04-M	MX-05-M	MX-06-M	M-07-M	MX-08-M	MZ-01A/B-M	MZ-01A/B-M	MZ-03-M	MZ-04-M	MZ-05-M	MZ-06-M	MZ-07-M	BL-01A/B-M						

: SC ≈ Squirrel Cage. W = Wound Rotor. 1. Type 2. Speed

: C = Constant. M = Multi. A = Adjustable. V = Varying.

CW = Clockwise. CCW = Counter-Clockwise. 3. Revolution Direction: Direction when viewed from coupling side.

4. Voltage : Rated Voltage

5. Time Rating: C = Continuouse. ST = Short Time. P = Periodic.

: TEFC = Totally-Enclosed Fan-Cooled. 6. Enclosure

7. Cable(or Wire): T = Top. B = Bottom, S = Side. H = Hub for conduit tube or flexible tube. : H = Horizontal. V = Vertical 8. Mounting 9. Drive

: D = Direct. B = Belt. C = Chain. G = Gear.

: ID = Indoor. OD = Outdoor. 10. Location

BDM - 35

Table ESTIMATED CONSTRUCTION COST FOR EISCO).

2000/3/23 Inside B/L Outside B/L Paid by (1000yen) ITEM Japan(Myen) | Egypt (LE) | Japan(Myen) | Egypt (LE) Japan Egypt 1. Equipment, Instruments (1) Machinery 164,500 (2)Pipings 8,830 (3)Electrical 15,400 (4) Instruments 17,540 (5) Test Equipment 3.000 1. Subtotal 0 209, 270 0 0 209, 270 O 2. Field Works (1) Tank Installation 1,075,868 (2) Corrosion Proof 474.792 (3) Instal. Machines 46,900 (4)Piping 453, 127 1,814,336 61,700 (5) Foundation 532, 758 0 (6) RC Basins 300, 590 0 (7) Paving, Road 42,888 0 (8)Structure 611,567 0 (9)pipe Rack, Stage 55, 271 0 (10)Painting 165,600 0 (11)Electrical 132,000 0 (12)Instrumentation 150.000 0 (13)Test Operation 50,000 0 2. Subtotal 0 4,091,361 0 1,814,336 139, 100 61,700 (1+2)Total 348, 376 x1000yen 61,687 x1000yen 3. Indirect Cost (1) Packing, Ocean Freight 19.500 19.500 (2) Tax., In Transportation*1 1,779,000 60,500 (3)Temporary Works*2 245, 482 8,300 (4) Construction Expense*3 1,022,840 34.800 (5) Insurance, Tax *4 9,406 1,666 3001 100 (6)Supervisor Field Expense 10,000 10.000 3. Subtotal 29,500 3,056,728 0 1,666 72,900 60,600 (1+2+3) Total 238,770 7, 148, 089 0 1,816,002 421, 270 122, 300 Total (1000yen) 238,770 243, 100 0 61,800 [IBL/OBL] Total (1000yen) 481,870 61,800 Grand Total 543,670 421, 370 122, 300

Note*1 :(Equipment/Instruments + packing/Ocean Freight) x 25%

Note*2 : Field Works Cost x 6% Note*3 : Field Works Cost x 25%

Note*4: $[1+2 \text{ (except Superviser Fee)}] \times 2.7\%$

Notes: (a) Piping Works except discharge pipeline is allocated in Inside B/L.

(b) The Cost is estemated as Japanese Contractor basis.

Unit Cost for Estimation of W.W.T. Demonstration Plant (Reference)

Factory Name: Egyptian Iron and Steel Co.

Design Case: Basic Design (Modified Case)

1. Major Equipment

Equipment Name	Unit Cost [x10 ³ Yen]	Note
(1) Acid water pumps	2,300~3,600	Material: SCS
(2) Clarifier Rake	15,000	1 set
(3) Thickener Rake	12,000	1 set
(4) Dehydrator	25,000	2 sets
(5) Limestone grinding Syste	m 19,000	1 set
(6) Motor Control Center	12,000	
(7) Center Control Panel	3,000	1 set

2. Field Work

Work Item	<u>unit</u>	unit Cost[LE]	Note
(1) Site Preparation	$[m^2]$	8	·
(2) Civil (Earth Work)	$[m^3]$	34	
(3) RC Work	$[m^3]$	1,500	Foundation, Water Basin
(3) Storage Tank	[ton]	3,430	Equalization Tank, Chemical tank
			Neutralization Tanks
(4) Structural Steel	[ton]	2,000	Pipe rack, Operating Stage
(5) Equipment Install	ation [ton]	400	Pumps, Clarifier rakes, Dehydrator
(6) Piping	[ton]	3,970	Except valves
	[in-m]	30	Except valves
(7) Painting	$[m^2]$	50	
(8) Local Building	$[m^2]$	2,600	W.W.T Control Room
(9) Electrical	[cable-m]	3	

MODIFIED

Running Cost-Egyptian Iron and Steel Co.

	i reating	bo	Consumb.	Unit	Cost-1	Cost-2	Cost-3	Unit Cost	Remarks
Items	Capacity			Cost					
	(m^3/h)	(mg/L)	(kg/h)	(LE/kg)	(LE/h)	(LE/day)	LE/year)	(LE/m^3)	
1.1 Chemical Cost									
1) CaO	06	4,000	360	0.15	54.00	1,296	427,680	0.600	
2) Polymer-A (Anionic)	06	0.1	0.01	27	0.24	9	1,925	0.003	
3) Polymer-B (Anionic)	_	ı	2.4	27	64.80	1,555	513,216	0.720	
Sub-Total	1	Ι	_	ı	119.04	2,857	942,821	1.323	
			kWh/d	LE/kWh					
1.2 Power Consumption			2,761	0.12	13.80	331.28	109,323	0.153	
			m³/dày	LE/m ³					
1.3 Industrial Water or Potable Water			200	0.528	4.40	105.60	34,848	0.049	
1.4 Maintenance Fee	15,144,000				57.36	1376.73	454,320	0.637	
(Plant Cost $*3\%/year$)								1	
514,900,000/34=15,144,000 LE									
Item 1 Total								2.16	
			Person/d	LE/P/year					
2. Operator including sludge handling	4 Persons*3 Shift+1S	3 Shift+1S	. 16	10,000	20.20	484.85	160,000	0.22	
	(2 persons : operation	: operation							~
	2 persons : sludge)	: sludge)							,
		•				·			
Total Operation Cost	1	ı		1	215	5,155	1,701,311	2.39	

Power Consumption

																						•								kWh/d
Consump.	360.00	177.60	552.00	88.80	52.80	52.80	52.80	9.60	9.60	52.80	11.25	132.00	18.00	18.00	0.40	9.60	360.00	36.00	1260.00	264.00	09.6	4.80	4.80	9.60	264.00		-		٠	3,450.85
Operation Consump.	24	24	24	24	24	24	24	24	24	24	1.5	24	24	24	1	24	24	24	24	24	24	12	12	24	24					-
No. of Ope.	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					-
κW	7.5	3.7	11.5	3.7	2.2	2.2	2.2	0.4	0.4	2.2	7.5	5.5	0.75	0.75	0.4	0.4	15	1.5	52.5	11	0.4	0.4	0.4	0.4	=					1
Tag No.	PU-101	PU-01	PU-02	PU-03	PU-04	PU-05	PU-06	PU-07	PU−08	PU-09	MX-01	MX-02	MX-03	MX-04	MX-05	MX-06	MX-07	MX-08	MZ-01	MZ-03	MZ-04	MZ-05	MZ~06	MZ-07	BL-01					Total

Client:

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Project Name: THE STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL

IN THE ARAB REPUBLIC OF EGYPT

Factory Name:

EGYPTIAN IRON AND STEEL CO.

BASIC DESIGN (MODIFIED)

Document Title:

STUDY REPORT

FOR

W.W.T. DEMONSTRATION PLANT

Issued Date

September 2000

Consultant:

JICA STUDY TEAM

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

1. Purpose

This report states the studies and discussions concerning to the detail design for Wastewater Treating Plant for Egyptian Iron and Steel Co. (hereinafter EIS), that treats wastewater from the Pickling Plant in Cold Rolling Mill Factory.

The new wastewater treating plant is defined as Modified Wastewater Treating Plant (Modified Case)

2. Basic Design (Modified Case)

2.1 Design Conditions

[1]

The Wastewater Treating Plant is designed to treat the rinsing water from the Pickling Plant except spent sulfuric acid after the existing Spent Sulfuric Acid Recovery Plant will be improved in the future.

[2]

In case that the Spent Sulfuric Acid Recovery Plant can not be operated, spent sulfuric acid should be neutralized and disposed independently.

[3]

The following water supply piping system to the Pickling Plant should be improved (Installation of new water supply pumps, replacement of piping);

- (1) Process water is supplied as spray water of Rinsing Bath and side washing water of Pickling Bath.
- (2) Potable water is supplied as make-up water to Rinsing Bath

2.2 Design Package

The following design drawings and documents were prepared:

- (1) Process Flow Diagram (PFD)
- (2) Engineering Flow Diagram (EFD)
- (3) Layout
- (4) Skeleton Drawings of Major Equipment
- (5) Single Line Diagram for Motor Control Board
- (6) Equipment List, Instrument List, Motor List
- (7) Construction Cost, Running Cost

3. Existing Wastewater Sewer System

The existing wastewater sewer system is shown on the attached drawings-1.

Almost all wastewater is recycled through the lagoon, and a part of wastewater is discharged to the Desert approx. 10km from the Factory.

4. Design Conditions

4.1 Wastewater to be treated

The wastewaters to be treated are as follows;

- (1) Rinsing Water (including side washing water of Pickling Plant) —Continuously
- (2) Leakage Water in Wastewater Pipe Trench Continuously

4.2 Wastewater Flow Rate and Qualities

(1) Wastewater Flow Rate

The results of flow rate measurement are shown on Table-1.

Table-1 Wastewater Flow Rate

Wastewater	Ave. Flow Rate	Min-Max Flow	Note
·	[m ³ /h]	[m ³ /h]	
Rinsing Water	16.9	9.8 - 21.5	Electro-magnetic
		peak Max. 32.0	TypeContinuous
Leakage Water	2.0	1.1 - 5.6	Electro-magnetic
		(11.2)*	Type—Spot (6 times)

Note 1. Rinsing Water is always discharged except long stoppage of Pickling Plant.

- 2. Peak Max. Flow of Rinsing Water means the peak value recorded on the Flow Recorder Sheet.
- 3. Leakage water decreases during stoppage of Pickling Plant operation, but flow rate will not reach to zero.
- 4. * mark: The data is measured on 10th February at pre-survey.
- 5. Pickling Plant stopped several times during our survey due to decreasing of steam pressure and mechanical troubles.

(2) Wastewater Qualities

The survey results are as follows;

1) Rinsing Water

Table-2 Rinsing Water Qualities

Item		Ave.	Min. – Max.	Note
H_2SO_4	[mg/l]	3,300	1,000 - 7,600	
$FeSO_4$	[mg/l]	4,100	500 - 10,700	
pН	[-]	1.17	0.65 - 1.53	except pH4.6
Total Fe	[mg/l]	681	169 - 1,350	
Fe ²⁺	[mg/l]	501	111 - 923	
Fe ³⁺	[mg/l]	180	38 - 595	
COD	[mg/l]	134	62- 227	
TDS	[mg/l]	2,940	720-7,725	
Water Tem	np. [°C]	45.0	37.9 - 49.3	

Note 1. Number of samples=13

2. p H is recorded continuously.

2) Leakage Water

Table-3 Leakage Water Qualities

Item	1	Ave.	Min Max.	Note
$\mathrm{H_{2}SO_{4}}$	[mg/l]	43,600	22,700-66,100	
$FeSO_4$	[mg/l]	31,700	8,700-61,200	
Total Fe	[mg/l]	26,158	3,102-55,800	
Fe ^{2+.}	[mg/l]	22,203	2,078 - 45,833	
Fe ³⁺	[mg/l]	3,955	1,024-13,300	
pН	[-]	2.20	1.00 - 3.75	
Water Ter	np. [°C]	27.9	23.8-32.2	

Note 1. Number of samples = 6

3) Calculated Wastewater Flow Rate and Qualities to be treated

The wastewater to be treated is mixed wastewater of rinsing water and leakage water. Therefore, wastewater flow rate and qualities are estimated based on calculation results.

Table-4 Calculated Flow Rate and Qualities to be treated

Item	Ave.	Min. – Max.	Note
Flow Rate [m ³ /h]	18.9	10.9 - 27.1	
H ₂ SO ₄ [mg/l]	7,565	3,296 - 13,790	
FeSO ₄ [mg/l]	7,021	1,368 - 16,044	
Water Temp. [℃]	43.2	36.2 - 47.2	

Note. Wastewater qualities are calculated at average flow rate, it means that maximum concentration must not occur at the maximum flow rate.

4.3 Design Wastewater Flow Rate and Qualities

- 4.3.1 Design Conditions at Present
- (1) Wastewater Flow Rate
 - 1) Rinsing water

[Average flow rate]

- =Average flow rate measured $(16.9 \text{ [m}^3/\text{h]}) \times (1 + \text{approx}.20\%)$
- $= 20 [m^3/h]$

[Maximum flow rate]

 $=30 [m^3/h]$

Maximum flow rate measured at sampling period was 21.5 [m³/h], but it is decided considering 32 [m³/h] of maximum flow rate that had been recorded on the recorder chart.

2) Leakage Water

[Average flow rate]

 $=5.0 \text{ [m}^3/\text{h]}$

The average flow rate measured during survey was 2.0 [m³/h], but enough allowance is considered because of old wastewater piping adhered to scale.

[Maximum flow rate]

 $=10 [m^3/h]$

The maximum flow rate measured during survey was 5.6 [m³/h], and 11.2[m³/h] had been recorded during pre-survey.

(2) Wastewater Qualities

1) The average wastewater qualities equal to the average values analyzed at the laboratory.

The average pollutant load:

It is defined as follows:

Average pollutant load =(Average flow rate) x (Wastewater qualities)

2) Concentration at the maximum flow rate:

It is assumed that the average pollutant load is always constant, only water increases at the maximum flow rate. Therefore, the concentration at the maximum flow rate is calculated as follows;

Concentration at the maximum flow rate:

=(Average pollutant load) / (Maximum flow rate)

Item Rinsing Leakage Mixed Water Water Wastewater Rate Flow Ave. 205 25 $[m^3/h]$ Max. 30 10 40 H₂SO₄ Conc. Ave. 3,300 43,600 11,360 [mg/l] Flow Max. 2,200 21,800 7,100 H₂SO₄ Load Ave: 218 66 284 [kg/h] Flow Max. 66 218 284 FeSO₄ Conc. Ave. 4,100 31,700 9,620 [mg/l]Flow Max. 2,733 15,850 6,013 FeSO₄ Load Ave. 82 158.5240.5[kg/h]Flow Max. 82 158.5240.5

Table-5 Basic Wastewater Flow Rate and Qualities

4.3.2 Design Base considering to Improvement of Water Supply Unit

(1) Necessity of Consideration

We are informed by EIS that flow rate of Rinsing Water (they called as Acid Wash Water) is 150 [m³/h]. It has been cleared that 150 [m³/h] is the design base data by Soviet Manufacturer of Pickling Plant and nobody has confirmed to be correct or not.

1) Based on our survey results, wastewater flow rate from Pickling Plant was

measured to be around $20 \sim 30$ [m³/h].

- 2) The estimated flow rate based on the pipe size, opening of valves and water pressure may be $60\sim70$ [m³/h] (Refer to the attached table).
- 3) Flow meter of ultra-sonic type could not be worked to the supply water pipeline to Rinsing Bath. One of the reasons is supposed that ultra-sonic transmittal / receiver ability is interfered by much scale on the interior surface of pipe.

On the other hand, it was informed that EIS has his plan to install new water feeding pumps and to replace water supply pipes in order to increase supply water flow rate.

- (2) Design Base of Wastewater Flow Rate and Qualities
- 1) [Wastewater flow rate] Design Base
- (a) Basic wastewater flow rate

Maximum flow rate based on Table-5

· Rinsing water:

 $30 \, [m^3/h]$

· Leakage water:

 $10 [m^3/h]$

Total

 $40 \, [\text{m}^3/\text{h}]$

(b) Design base of Maximum flow rate

Considering future improvement, the maximum flow rates were decided as follows;

i) Rinsing water:

Supply water flow rate will be two times of basic flow rate.

$$30 [m^3/h] \times 2 = 60 [m^3/h]$$

Leakage water:

The flow rate must not increase anymore.

 $10 [m^3/h]$

Wastewater to be treated (=Rinsing Water+Leakage Water):

$$60 [m^3/h] + 10 [m^3/h] = 70 [m^3/h]$$

ii) [Wastewater flow rate] $_{Design\ Base}$:

It is taken as approx. 30% design allowance (margin).

$$70 \text{ [m}^3\text{/h] x } (1+0.3) = 91 \rightarrow 90 \text{ [m}^3\text{/h]}$$

- 2) [H₂SO₄] Design Base
 - (a) [H₂SO₄ load]Design Base
 - i) At basic wastewater flow rate (40[m³/h])

It is taken approx. 1/3 (33.3%) as a design allowance (margin).

284 [kg/h] x (1+0.33) =
$$377.7 \rightarrow 380$$
 [kg/h]

ii) At the maximum flow rate (90[m³/h]),

380 [kg/h] (as same as the above)

(b) [H₂SO₄ conc.]_{Design Base}

i) At basic wastewater flow rate (40[m³/h])

$${380 \text{ [kg/h]} / 40 \text{ [m}^3/\text{h]}} \times 10^3 = 9,500 \text{ [mg/l]}$$

ii) At the maximum flow rate (90[m³/h]),

$${380 \text{ [kg/h]}/90 \text{ [m}^3/\text{h]}} \times 10^3 = 4,220 \rightarrow 4,300 \text{ [mg/l]}$$

- 3) [FeSO₄]Design Base
 - (a) [FeSO₄ load]Design Base

$$a = 240.5/284 = 0.85$$

The other hand, the ratios calculated based on the data given by EIS are;

- · Dec. $12 \sim 16$, 1999 a=1.04
- · Jan. 17~30, 2000 a=2.13

Therefore, the ratio is assumed to be 1.0, that is, concentration of $FeSO_4$ is same as H_2SO_4 .

i) At basic wastewater flow rate (40[m³/h]):

ii) At the maximum flow rate:

380 [kg/h] (same as the above)

- (b) [FeSO₄ conc.] Design Base
 - i) At basic wastewater flow rate (40[m³/h]):
 - $=380[kg/h]/40[m^3/h]=9,500[mg/l]$
 - ii) At the maximum flow rate (90[m³/h]):
 - $=380[kg/h]/90[m^3/h]=4,300[mg/l]$

Table - 6 Design Base of Wastewater Flow Rate and Qualities

		Flow Rate Max.	Conc. Max	Note
Flow Rat	e [m³/h]	40	90	
H_2SO_4	[mg/l]	9,500	4,300	
	[kg/h]	380	380	
FeSO ₄	[mg/l]	9,500	4,300	
	[kg/h]	380	380	
pН	[-]	0.5 - 1.0	0.5 - 2.0	

4.4 Target of Treated Water

(1) Water quality of dispose water

Dispose water quality is applied to the most stringent Wastewater Discharge Regulation of Egyptian Standard, that is \[\text{Discharge into Underground} \] Reservoir & Nile Branches / Canals \[\text{ of Law 48/82}. \]

(2) Consideration of TDS

Rinsing water contains high concentration of sulfuric acid, therefore TDS concentration of rinsing water is also too high (several 1,000mg/l). The treated

water (neutralized wastewater by lime) may contain approx. 2,000mg/l of gypsum in solution (saturate concentration).

TDS is specified as 800 mg/l at the Wastewater Discharge Regulation in Egypt. In order to meet the regulation, the following two methods may be applied.

1) Dilution:

A large amount of low TDS water will be required.

2) Desalination

The expensive desalination plant such as RO (reverse osmosis), Ion Exchanger (resin, membrane), Evaporator will be required. But, in this case, a little condensed waste may be generated.

In this basic design, neither dilution nor desalination is applied. Therefore, discharge wastewater quality meets to Law 48/82 except to TDS.

5. System Design

5.1 Wastewater Treating Plant

The Wastewater Treating Plant consists of the following units:

(1) Wastewater Collecting Unit: Area "A"

(2) Wastewater Treating Unit: Area "B"

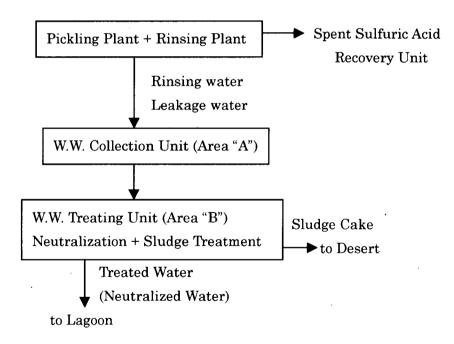


Fig.-1 Flow Scheme of Wastewater

5.2 Collection and Supply of Wastewater

- (1) A new receiving pit will be provided besides the existing pipe trench outside of Cold Roll Mill Plant (Area "A")
- (2) Two acid wastewater pumps controlled automatically by water level will be

provided at the above receiving pit.

5.3 Wastewater Treating System

- (1) Wastewater quality to be treated
 - p H control
 pH of wastewater from Pickling Plant is 0.5-2. Therefore, neutralization is required.
 - 2) COD

COD of wastewater is higher than regulation value (COD=40[mg/l]. But almost COD components come from reducing Fe²⁺, so that, COD value is easily reduced by air-oxidization.

3) Oil & Grease:

Oil and grease is contaminated, but not so high, so that it may be removed during neutralization coagulation process. Therefore, an oil separator is not required.

4) Heavy metals:

High concentration of soluble Fe is contained. It can be removed by neutralization at around pH 9. Any other heavy metals are not contained or a little negligibly.

(2) Design of Wastewater Treating System

The wastewater treatment plant consists of the following treating units: (Refer to Section 7)

Fig-2 Flow Scheme of Wastewater Treatment System

5.4 Description of Treating Unit

- (1) Equalization Tank
 - 1) Purpose

- (a) Wastewater qualities of rinsing water and leakage water are very deferent.
- (b) Flow rate of wastewater and qualities are not always constant.
- (c) Pickling Plant may stop several times in a day.

To treat such wastewater stably, Equalization Tank is provided to equalize flow rate and qualities of wastewater. And, aeration devices are provided in the tank to promote equalization and air-oxidization.

- 2) Specification, design base
- (a) Shape: Open top tank of circular and vertical type, installed above ground.
- (b) Material: Carbon steel with resin lining on the inner surface. Steel is easy to fabricate at shop and field, and inexpensive.
- (c) Volume: equal to 6 hours-retention time of maximum flow rate as general.
- (d) Attachment: Air bubbling devices (blower, air piping).

(2) 1st Neutralization Unit

1) Purpose

Described on the above, wastewater is neutralized at pH 3-4 by addition of CaO in the tank. In the tank, gypsum will generate under the following reaction:

$$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 \cdot 2H_2O \downarrow \cdots (1)$$

2) Specification, Design base

- 2-1) 1st neutralization tank
- (a) Shape: Open top tank of circular and vertical type, installed above ground.
- (b) Material: Carbon steel with resin lining on the inner surface.
- (c) Volume: equal to 30 minutes-retention time of maximum flow rate considering reaction time.
- (d) Attachment: Vertical type of mixer
- (e) All gypsum slurry will be sent to 2nd neutralization tank not to draw-off gypsum.
- 2-2) Lime Injection Unit

Alkali chemical is applied to CaO stone used same as the existing plant.

CaO injection unit consists of the following equipment:

- (a) Crusher
- (b) Bucket elevator
- (c) Tower type of mill
- (d) Injection pumps
- (e) pH control system (Instrument, control valves)

3) Description

In order to neutralize wastewater of pH 0.5-2, a large amount of CaO is consumed

at pH 3-4 and gypsum (CaSO₄) slurry is produced.

Amount of gypsum slurry is not so much because H₂SO₄ concentration of wastewater is not so high. Therefor, gypsum is not recovered and gypsum slurry is sent to 2nd neutralization tank.

(3) 2nd Neutralization Unit

1) Purpose

In order to neutralize at pH 8.5-9 completely, more CaO is injected and mixed to gypsum slurry of pH 3-4. And air is injected from the bottom of tank to accelerate oxidization of slurry.

In this reaction, ferrous sulfate ($FeSO_4$) will be ferric sulfate ($Fe_2(SO_4)_3$), and ferric hydrate ($Fe(OH)_3$) by oxidization, then they will be settled at the sedimentation tank.

Reaction at 2nd neutralization is as follows:

$$FeSO_4 + 5H_2O + 1/2 O_2 \rightarrow Fe(OH)_3 \downarrow + H_2SO_4 \cdots (2)$$

 $Fe(OH)_3 + H_2SO_4 + Ca(OH)_2 \rightarrow Fe(OH)_3 + CaSO_4 \cdot 2H_2O + H_2O \cdot (3)$

The unit consists of the following equipment to complete the above reactions:

- (a) 2nd neutralization tank
- (b) Coagulation tank
- (c) Sedimentation tank
- (d) Chemical injection unit
- Specification, Design base
- (a) Shape of tanks: Open top tank of circular and vertical type, installed above ground.
- (b) Material of tanks: Carbon steel with epoxy coating on the inner surface.
- (c) 2nd neutralization tank
 - · Volume: equal to 30 minutes-retention time of maximum flow rate considering reaction time.
 - · Attachment: Air bubbling devices (blower, aeration piping)
- (d) Coagulation tank
 - · Volume: equal to 15 minutes-retention time of maximum flow rate considering reaction time.
 - · Attachment: Vertical type of mixers
- (e) Sedimentation tank
 - · Surface load: 36m³/m²/day=1.5m³/m²/hours based on the result of laboratory test

· Attachment: Center driven type of sludge collecting rake, supporting bridge

(e) Chemical injection unit

The unit consists of chemical drums with mixers and chemical pumps. Polymer will be injected at the inlet of coagulant tank as coagulant aid.

3) Description

In order to neutralize the residue of ferrous sulfate and sulfuric acid at pH 3-4, more CaO is added until pH 8.5-9 at 2nd neutralization, then air-oxidization is proceeded. As a result, ferric hydrate and hydrate of heavy metals (Zn, Pb, etc.) can be removed as settled sludge at the sedimentation tank.

(4) Sludge Treating Unit

(4-1) Sludge Thickener

1) Purpose

In order to dehydrate effectively, a thickener is provided to thicken sludge before feeding to a dehydrator.

A part of thickened sludge from the thickener bottom will be returned to the inlet of 1st neutralization tank as seeding sludge.

- 2) Specification, design base
 - (a) Shape: Open top tank of circular and vertical type, installed above ground.
 - (b) Material of tanks: Carbon steel with epoxy coating on the inner surface.
 - (c) Surface load: $12\text{m}^3/\text{m}^2/\text{day} = 0.5\text{m}^3/\text{m}^2/\text{hours}$ (standard)
 - (d) Attachment: Center driven type of sludge collecting rake, supporting bridge

(4-2) Dehydrator (Centrifuge)

1) Purpose

In order to reduce sludge volume and to be able to treat as solid state, a dehydrator is provided to dehydrate sludge from the thickener.

- 2) Specification, design base
- (a) Shape: horizontal type of centrifuge, made of stainless steel
- (b) Operation: 12 hours/day x 2 sets or

24 hours/day x 1 set + 1 set spare

(c) SS contents: Feed sludge approx. 5% (50kg/m^3)

Sludge cake approx. 20 % (200kg/m³)

- (d) Chemical feeding unit: chemical drums with mixers and pumps
- (e) Polymer (cation or anion) is used as coagulant.

3) Description

There are many type of dehydrating equipment such as a filter press (like as the existing unit), a vacuum filter (filter cloth) and a centrifuge.

In this basic design, a centrifuge is provided as following reasons;

- 1) Easy to operate and maintain
- 2) Compact.
- 3) Water content of dehydrated cake can be expected less than 80%. Filtrate from centrifuge is returned to the inlet of 1st neutralization basin to

(5) Electrical · Instrumental Design

1) Electrical Design

treat again.

- (a) Primary power cables (380V-AC x 3 phase x 50 HZ) will be laid between the switch gear at the existing electric substation and a receiving/distributing board, transformer at the new electric substation in the W.W.T control room.
- (b) Secondary power cables (380-AC x 3 phase x 50 HZ) will be laid between MCC (Motor Control Center) at the new substation in the W.W.T. control room and each motors of equipment.
- (c) Lighting cables (220V-AC) will be laid between transformer, distribution board and each lighting implements.
- (d) Earthing work is required for steel equipment, piping and structure adequately.
- (f) EIS should be designed and constructed for primary power supplying work between the existing substation and the receiving board at the new substation in W.W.T control room.
- 2) Instrumental Design
- (a) The center instrument panel will be installed at W.W.T. control room.

 Indicators, recorders, alarms and sequence timers etc. will be mounted on the board, and W.W.T. control system can be designed so as to be operated automatically by the center control panel.
- (b) Control cables (220V-AC, 24V-DC) will be laid between transformer, center panel and each instruments at field
- (c) Electric implements and instruments are applied to tropical and dust proof type.
- (d) Control valves are operated pneumatically by compressed air.

6. Consideration in design

6.1 Location of Plant

- (1) All equipment will be installed outdoor except dehydrator unit to protect noise.
- (2) The plant (including piping and cable) layout should be designed considering and operability maintenance of equipment, instruments, piping and cables.
- (3) All W.W.T area is classified as non-hazardous.

6.2 Other requirements

(1) Operation day of W.W.T. is designed as 330 days a year.

- (2) A spare pump is provided for all pumps operated in normal.
- (3) Holding capacity of chemical tanks is designed as 1 week for normal condition.
- (4) The W.W.T. control room will have the following rooms:
 - 1) Center panel room (operator working room)
 - 2) Electric substation
 - 3) Mini. laboratory
 - 4) Toilet
 - 5) Locker room
 - 6) Warehouse
- (5) Mini-laboratory will provide the following lab-equipment:
 - 1) Jar tester (Coagulation / flocculation & sedimentation test)
 - 2) pH meter, Electric conductivity, Turbidity meter, Water content meter
 - 3) Simplified balance
 - 4) Glass ware for sampling and test

7. Discussions

7.1 Study of Gypsum (CaSO₄) Recovery

The Wastewater Treating Plant on the Basic Design (Original Case) has Gypsum Recovery Unit. In this modified case, H₂SO₄ concentration in wastewater is lower than the original case. It was studied by neutralization test in the laboratory that gypsum recovery is feasible or not in this case.

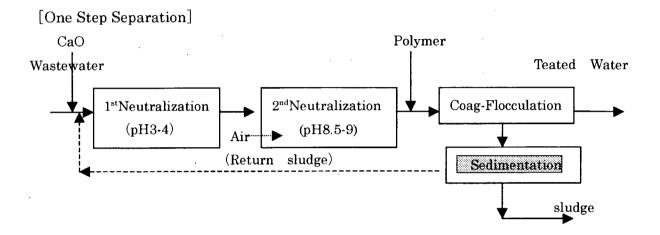
- (1)Product of gypsum will be decreased due to low H_2SO_4 concentration comparing to the original case.
- (2) Gypsum recovery plant is complicated and expensive, and running cost and manpower will increase.
- (3) Purity of gypsum may not be pure due to mixture of ferrous sulfate.
- (4) Settling velocity of sludge will decrease by removing gypsum, and sludge volume will be almost same as removing of gypsum or not.

As mention the above, gypsum recovery unit is not applied in this basic design (modified case).

7.2 Study of Two Step Separation

In general, settling velocity of high concentration sludge is small so that large surface area is required to separate sludge and water.

Two step separation method was studied (refer to Fig-3);


(1) 1st stage separation

Gypsum sludge which produced at pH 3-4 by adding CaO is separated and removed at 1st sedimentation tank.

(2) 2nd stage separation

CaO is added to supernatant at pH 3-4 until it become around pH9. Then, sludge is separated and removed. But, sludge volume is not—so—decreased—instead of gypsum sludge is removed at 1st stage separation (pH3-4). And settling velocity of sludge became smaller than 1st stage separation, therefore the surface area of settling basin can not be small and not efficiency.

As a result, two step separation can not be applied in this modified basic design.

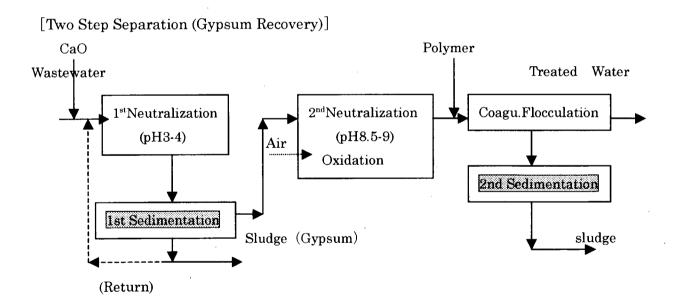


Fig.-3 Block Flow Diagram of One/Two Step Separation

7.3 Oxidation by Aeration

Oxidation (aeration) test was tried using rinsing water of EIS at the laboratory. Air is blown into neutralized slurry at pH 8.5-9 (pH 9 is upper limit of disposal regulation).

Color of slurry gradually changed from dark green to brown (approx.20min.).

As a result, Fe²⁺ was completely removed, but at below pH 8.5 residual Fe²⁺ was detected in supernatant of sample.

7.4 Selection of Polymer

Settling velocity of slurry (flocs) after neutralization at pH8.5-9 is very small in case of without any coagulant. Effect of polymer as coagulant was tested using Jar Tester at the laboratory. The results of test are as follows;

- (1) Cation and anion polymer purchased in Cairo were used.
 And it was found that coagulation/flocculation effect of each polymer is remarkable.
- (2) Cation polymer is more effective than anion polymer.
- (3) Suitable dosing rate of cation polymer is enough around 0.05mg/l based on Jar Test.

7.5 Filtration Effect

At the original basic design, Sand Filter (sand, anthracite as filter media) is planned to provide because of demonstration purpose.

As a result of neutralization test at the laboratory, total suspended solids (TSS) in supernatant at pH8.5-9 may be less than 30mg/l of disposal regulation.

Therefore, actual wastewater treating plant is not necessary Filter Unit.

7.6 Disposal of Sludge Cake

(1) Sludge hopper

By calculation result, 4-ton/h sludge cake will be generated continuously at average flow rate. In original basic design, sludge cake was piled up outdoors near the plant. In this modified basic design, 2 sets of elevated sludge cake hopper (24 m ³ x 2 sets) are provided to store and to be easy to load sludge cake on a damp truck.

(2) Sludge Cake Disposal

Sludge cake will be disposed to the Desert under management. Metal hydrates such as Fe(OH)₃, Pb(OH)₂, Zn(OH)₂ are contained in sludge cake. That hydrate may not solve into water unless acid rain falls, then they become to metal oxides such as PbO₂, ZnO, Fe₂O₃ at last. But, solution possibility of metal hydrate is not zero completely. Therefore the disposal place at Desert should be managed and metals in permeant water from sludge should be monitored until safety is confirmed.

7.7 Total Dissolved Solids (TDS)

(1) Regulation in Egypt

TDS limitation is specified at Wastewater Discharge Regulation in Egypt.

· The most stringent limitation 800 [mg/l]

· middle 1,200[mg/l]

• Others 2,000[mg/l]

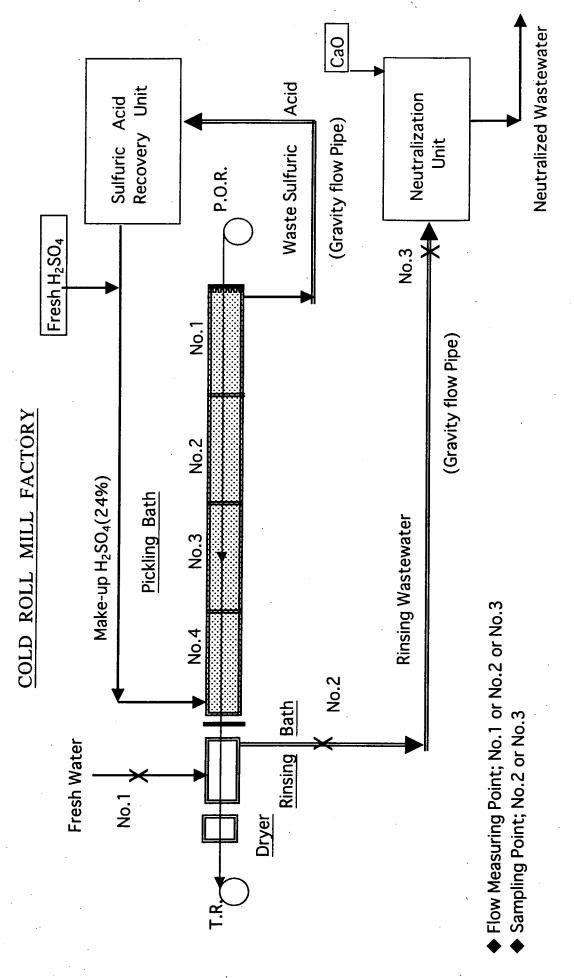
High concentration of H₂SO₄ is contained in acid wastewater and a large amount of CaO is added to neutralize. At this reaction, gypsum (CaSO₄) will generate and settle. But, approx. 2,000mg/l of gypsum saturates in water and other substances may contain. Therefor, in order to be met the regulation, dilution by a large amount of fresh water or desalination process should be applied to remove TDS.

(2) Desalination Plant

There are a few kind of desalination process, such as Reverse Osmosis (RO), Ion exchange membrane, evaporator. etc. All desalination plants are very expensive in both construction cost and maintenance cost. And also a little condensed liquid may produce from all desalination plants.

As a result, in this modified basic design, TDS limitation in the regulation is neglected

(3) Other Industrial Wastewater


Acid or alkali wastewaters of high TDS are discharged from many factories. And, the Regeneration wastewater of ion exchanger resin is discharged from the factories that high-pressure steam is used. This wastewater is contained high concentration of neutralized salt or soluble substances if neutralized, therefore TDS concentration can not be met the regulation in Egypt.

8. Performance Guarantee

The basic design (Original, Modified) of Neutralization Plant of EIS is designed based on our survey data during limited short period and given data by EIS. This design procedure may be useful.

But, it is recommended to improve the existing Pickling Plant, Rinsing Plant and Utility system and its operation management. As a result, wastewater flow rate and qualities may change from our design basis. Therefore, if the new neutralization plant will be designed and constructed by yourself after some improvements, it is required to verify and settle the design conditions based on supplemental wastewater survey, then the detail design should be proceeded to be satisfied of the specified performance of plant.

This basic design (modified case) is only reference. Therefore, the Study Team can not guarantee the plant performance if any body will construct the new neutralization plant based on this basic design (modified case) package in the future.

FLOW MEASUREMENT AND SAMPLING OF RINSING WASTEWATER

Client:

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Project Name:

THE STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL

IN THE ARAB REPUBLIC OF EGYPT

Factory Name:

EGYPTIAN IRON AND STEEL CO.

BASIC DESIGN (MODIFIED)

Document Title:

CALCULATION SHEET

FOR

W.W.T. DEMONSTRATION PLANT

Issued Date

September 2000

Consultant:

JICA STUDY TEAM

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

1. Object

This design calculation sheet is applied to the study of W.W.T. Recommendation Plant planning for [Egyptian Iron and Steel Co.].

2. Wastewater to be treated

Rinsing Water and Leakage Water except Spent Sulfuric Acid.

3. Design Conditions

- (1) Waste management system in the Factory should be organized, and operated adequately under the responsible managers.
- (2) Suitable routine works, periodical maintenance should be conducted in the whole company.

4. Contents of Wastewater Treatment plant

(1) Pre-treatment

: Equalization Tank

(2) Primary Treatment

: Neutralization/Oxidization

(3) Secondary Treatment

: Sedimentation

(4) Sludge Treatment

: Centrifuge

5. Design Basis

5.1 Qualities and Quantities of Influent Wastewater Shown on Table-1.

5.2 Qualities and Quantity of Treated Water

The Law 48/82 Non potable Surface Water (Industrial) is to basic design basis. Treated water qualities are shown on Table-1.

Table - 1 Design Basis of Wastewater Qualities and Quantities

Table		2001811 20010 0	- wastonatel	quarreres and	quarretero	
Items		Rinsing Water	Leakage water	Acid Waste.	Treated Water	Law48/82
Flow (Max.)	$[m^3/h]$	80	10	90	90	
Flow (Nor.)	$[m^3/h]$	35	5	40	40	_
рН	[-]	$0.5 \sim 2.0$	·	0.5 ~2.0	8~9	6~9
H_2SO_4	[mg/L]	2,025	21,800	4,300		
FeSO ₄	[mg/L]	2, 025	21,800	4, 300	_	
Oil & Grease	[mg/L]				< 5	<.5
TDS	[mg/L]					< 800
Water Temp.	[℃]	37 ~49		< 35	< 35	< 35

Note: Rinsing water and leakage water qualities are based on flow maximum case.

6. Unit Design

6.1 Acid Wastewater Collection (Out of Battery)/Receiving Pit

The rinsing water and leakage water are stored in Receiving Pit and pumped to Equalization Tank.

- (1) Design Condition
 - 1) Retention time : Tr= 0.5 h
 - 2) Specification : Rectangular, Underground, Reinforced Concrete with resin

Lining

- (2) Sizing
 - 1) Required Volume : Vr = 45 m³
 2) Effective Height : Hr = 1.5 m
 3) Required Area : Ar = 30 m²
 - 4) Dimension : Take $5.000^{\text{W}} \times 6.000^{\text{L}} \times 6.000^{\text{H}} \text{ (effective } 1.500^{\text{H}})$

6.2 Equalization Tank

The acid wastewater from Acid Wastewater Pump is storaged in the Equalization Tank for equalization of wastewater quantities and qualities for the further treatment.

- (1) Design Conditions
 - 1) Quality of Wastewater: Shown on Table-2
 - 2) Retention Time : 6 h
 - 3) Specification : Vertical cylindrical, 1 set
 - 4) Others : Air bubbling device
- (2) Sizing
 - 1) Required Volume : 540 m³
 - 2) Effective Height : 9 m(take)
 - 3) Required Area : $Ac = Q/Ah = 60 \text{ m}^2$ Diamete 8.74 $Take : 8.719^6 \times 10.635^H$ (Chiyada Standard Tank)
 - 4) Air Bubbling Device
 - a) Required Air (design base): 3 Nm³/m²/h
 - b) Required Air Quantity: 180 Nm³/h= 3 Nm³/min(take)

6.3 1st Neutralization Tank

- (1) Design Conditions
 - 1) Retention Time : 0.5 h
 - 2) Specification : Vertical cylindrical, 1 set
 - 3) Others : Mixing device
- (2) Sizing
 - 1) Required Volume : 45 m³
 2) Effective Height : 4.5 m(take)
 - 3) Required Area : $Ac = Q/Ah = 10 \text{ m}^2$ Diamete 3.57

```
(3) Generated Gypsum
          a) H<sub>2</sub>SO<sub>4</sub> concentration: 4,300 mg/L
          b) Lime concentration:
          c) Solubility of Gypsum: 2,000 mg/L
          d) Generated Gypsum
                                                  679 kg/h
                                                  499 kg/h
              Actual generated Gypsum W'=
             H_2SO_4 + Ca(OH)_2 = CaSO_4 \cdot 2H_2O
                98 : 74
                                      172
          e) Required Lime
                                          W1=
                                                  292 kg/h = 3,000 L/h as 10 % Ca(0H)<sub>2</sub>
             Ca0 + H_20 = Ca(0H)_2
               56
                          : 74
                                                  221 kg/h
              Required Lime Stone:
                                          ₩s=
6.4 2nd Neutralization Tank
    (1) Design Conditions
        1) Retention Time
                                          0.5 h
        2) Specification
                                        Vertical Cylindrical, 1 set
        3) Others
                                        Air mixing device
    (2) Sizing
                                           45 \, \mathrm{m}^3
        1) Required Volume
        2) Effective Height
                                          4.5 m(take)
                                                           10 \text{ m}^2
        3) Required Area
                                          Ac = Q/Ah =
                                                                              Diamete 3.57
                                     :3.872^{4}\times4.595^{H}
                                                               (Chiyada Standard Tank)
                             Take
    (3) Generated Sludge
        1) FeSO<sub>4</sub> concentration: 4,300 mg/L
       2) Lime concentration:
                                           10 %
                                         Wt = 1.210 \text{ kg/h} as dry base
        3) Generated Sludge
                                                  272 \text{ kg/h}=(
                from Fe(OH)<sub>3</sub>
                                         W1=
                from CaSO_4 \cdot 2H_2O :
                                         W2=
                                                  438 kg/h
                  FeSO_4 + Ca(OH)_2 + 2H_2O = Fe(OH)_2 + CaSO_4 \cdot 2H_2O
                  2\text{Fe}(0\text{H})_2 + 1/20_2 + \text{H}_20 = 2\text{Fe}(0\text{H})_3
                                                107
                from 1st Neutr.
                                          W3=
                                                  499 kg/h
                                                                                   937 \text{ kg/h} = (
                                                              Total gypsum=
                                                                                                   77.5 %)
                                                    4 ton/h=
                                                                   97 ton/day
        4) Dewatered Sludge
                                          Wg=
                Water content = 70 %
        5) Required Lime (2nd)
                                         Wl=
                                                  188 kg/h= 1,900 L/h as 10 % Ca(OH)<sub>2</sub>
                  Ca0 + H_20 = Ca(0H)_2
```

143 kg/h

4.900 L/h

Ws=

QT=

Total Lime Stone=

364 kg/h as 100 %

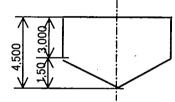
: 74

Required Lime Stone:

6) Total Lime Feed:

6.5 Flocculation Tank

- 1) Retention Time
- 0.25 h (take)
- 2) Required Volume
- V= 23 m^3
- 3) Specification
- :Vertical Cylindrical, Carbon Steel with Epoxy Coating
- 4) Number of Required:
- 1 set
- 5) Dimension
- H= 3.5 m (take)
- Req'd Area =
- $6 m^2$


D = 2.86 m

Take : $2.860^{\circ} \times 3.500^{H} \times 1$ set

6.6 Clarifier

- 1) Surface Load
- $1.5 \, \text{m}^3/\text{m}^2/\text{h} \, (\text{take})$ Ls=
- 2) Required Area
- 63 m^2 As=
- 3) Specification
- : Vertical Cylindrical, Carbon Steel with Epoxy Coating
- 4) Number of Required:
- 1 set
- 5) Retention Time
- Ts= 2 h (take)=
- 6) Dimension
- H= 3 m (take)
 - D= $9.0 \, \mathbf{m}$

Take : $10,000^{6} \times 4,500^{H} \times 1$ set

- 7) Sludge Draw off(5%):
- $24 \text{ m}^{3}/\text{h}$
- 8) Sludge recycle
- $4 \text{ m}^3/\text{h}$ Qr=

(Generated gypsum*30 % at 1st Neutr.)

6.7 Sludge Thickener

- 1) Surface Load
- $0.5 \, \text{m}^3/\text{m}^2/\text{h}$ Vss=
- 2) Total Solids
- Lto= 1.210 kg/h
- 3) Sludge Concentration: Cs=
- 8 %
- 4) Required Area
- Ath= 48 m^2
- 5) Diameter
- 7.85 m $D_{PO}=$

Take: $8,500^{6} \times 4,500^{H} \times 1$ set $15 \text{ m}^3/\text{h}$ 6) Centrifuge feed rate Qc=

6.8 Polymer

- (1) Polymer A for Coagulation
 - 1) Dosing Ratio
- $0.1 \, \text{mg/L}$
- 2) Concentration
- 0.5 wt %
- 3) Specific Gravity
- 1
- 4) Injection Rate
- 1.8 L/h $Q_{ph}=$
- 5) Tank Volume
- V_{ph} = $0.3 \, \mathrm{m}^3 \, (7 \, \mathrm{days})$
- 6) Height
- $H_{DO}=$ 0.6 m (take)
- $A_{P0} = 0.50 \text{ m}^2$

- 7) Diameter
- $0.8 \, \mathrm{m}$ $D_{PO}=$

Take: $800^{\circ} \times 1,000^{H} \times 1$ Set

(2) Polymer-B for Dewatering

1) Dosing Ratio : 0.2 % as dry SS

2) Injection Rate : Wp= 2.4 kg/h

3) Concentration : 0.5 wt %

4) Specific Gravity : Q_{oh}= 484 L/h ⇒ Continuous Injection System

6.9 Air Blower

1) Feed ratio : $Qf = 1 \text{ Nm}^3/\text{m}^3 - \text{H}_2\text{O}$

2) Required Air : $Qa = 90 \text{ Nm}^3/\text{h} = 1.5 \text{ Nm}^3/\text{min}$ 3) Total Air : $Qt = 270 \text{ Nm}^3/\text{h} = 4.5 \text{ Nm}^3/\text{min}$

6.10 Treated Water Pond

1) Retention time : Tr= 0.5 h

2) Specification : Rectangular, Underground, Reinforced Concrete

3) Required Volume : $Vr = 45 \text{ m}^3$ 4) Effective Height : Hr = 2 m5) Required Area : $Ar = 22.5 \text{ m}^2$

6) Dimension : Take $4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}} \text{ (effective } 2,000^{\text{H}})$

6.11 Sludge Pit

1) Retention time : Tr= 3 h

2) Specification : Rectangular, Underground, Reinforced Concrete

3) Required Volume : $Vr = 45 \text{ m}^3$ 4) Effective Height : Hr = 2 m5) Required Area : $Ar = 23 \text{ m}^2$

6) Dimension : Take $4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}} \text{ (effective 2,000^{\text{H}})}$

6.12 waste Water Pit

1) Retention time : Tr= 2 h

2) Specification : Rectangular, Underground, Reinforced Concrete

3) Required Volume : $Vr = 40 \text{ m}^3$ 4) Effective Height : Hr = 2 m5) Required Area : $Ar = 20 \text{ m}^2$

6) Dimension : Take $4,500^{\text{W}} \times 5,000^{\text{L}} \times 2,500^{\text{H}}$ (effective 2,000^H)

6.13 Lime Feeder

Based on vendor specification