JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

MINISTRY OF PUBLIC ENTERPRISES (MOPE)
EGYPTIAN ENVIRONMENTAL AFFAIRS AGENCY (EEAA)

STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL IN THE ARAB REPUBLIC OF EGYPT

DELTA STEEL MILL CO. DESIGN PACKAGE

DECEMBER 2000

CHIYODA-DAMES & MOORE CO., LTD. CHIYODA CORPORATION

MPI

JR

00-190(2/7)

Document Title

CONCEPTUAL DESIGN REPORT

Company Name

DELTA STEEL MILL COMPANY

Document No.

DS - CD - 00 - 01 REV. 0

Project Name

THE STUDY ON INDUSTRIAL WASTE WATER

POLLUTION CONTROL IN

THE ARAB REPUBLIC OF EGYPT

Client

JAPAN INTERNATIONAL COOPERATION AGENCY

INDUSTRIAL DEVELOPMENT STUDY DIVISION

Consultant

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

ISSUDED DATE

1999. 11. 12

JICA

	CHCK'D	TECH. APR.	APPR'D
SIGN			
DATE			

CONSULTANT

	PRP'D	CHCK,D	APPR'D
SIGN	der	More	1 Plag
DATE	11/0:49	11/10/99	Nav. 11 199

DELTA STEEL MILL CO.

1. General Outline

1.1 Factory Profile

(1) Address:

18 Emad EL-Deen St. Cairo

(2) Capital:

35 million L.E.

(3) Total Sales (Revenue):

156 million L.E./Year

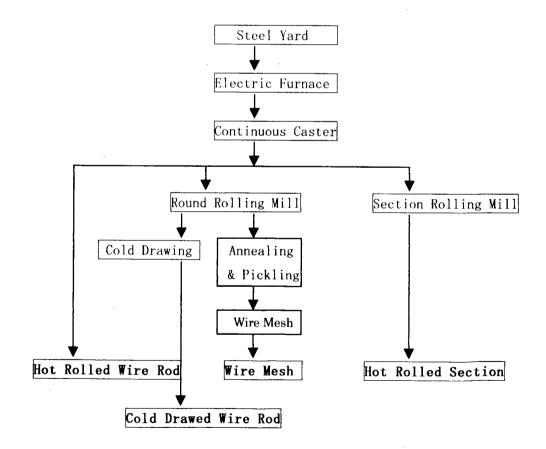
(4) Number of Employees:

2,500

(5) Area:

Factory 336,000 m²

Structure 120,000 m²


(6) Operation Hours

: 24 hrs x 330 days x 3 shifts

1.2 Production Process

(1) Production Process

Production process is as follows;

(2) Annual Production(1997)

1) Long Product

: 135,000 Ton/Year

2) Tubes & Pipes

2,000 Ton/Year

Total

: 137.000 Ton/Year

2. Waste Water Survey

2.1 Field Survey

(1)Date: Sep.06 – Sep.26, 1999.

(Sampling & Flow Measurement Sep. 08 & 09)

(2) Persons in Charge:

1) JICA Study Team

T. Yasukawa (WWT Engineer)

Y. Hiraiwa

(Process Engineer)

2)Delta Steel Mill Co.

Mr. Youssri Ibrahem

Mr. Asaad Ramsis Saleh

3)TIMS

Mr.Samiel Hammad Hassen, and others

2.2 Questionnaire

The answer sheets of questionnaire sent before visit was received at site survey.

2.3 Existing Waste Water Sewer System

Refer to DWG. NO. DS-CD-15-01.

- (1) 700 m³/h water of Nile River branch canal is used for process cooling water and some washing water after own treatment suitably. And city water of 200 m³/h is used for sanitation/domestic water and cooling tower make-up water. Intake water fee is 50,000LE/year constantly in proportion not to consumption quantity
- (2) Waste water is discharged to the Mastorod drainage canal and sanitary waste water is discharged to the public sewage, respectively.
 - The canal is extremely polluted in the cause of wastewaters from factories in the industrial district.
- (3) Major wastewater treating units are Neutralization Unit (for acid pickling waste water) and simple type of Oil Separator. It seemed that operation and maintenance of the treating units is inadequate, for example removal of floated oil in the oil separator.
- (4) The cooling water from Electric Arc Furnaces No.5 (625 m³/h) & No.6 (625 m³/h) is reused through the cooling tower.

- (5) Discharge fee of waste water to the drainage is 0.36 L.E/m³
- (6) Frankly speaking, the production process plants and water, wastewater systems are superannuated and they are not always in suitable maintenance.
- (7) The drawings of wastewater pollution improvement plan have been prepared by EGITALEC Co. in Cairo. Major treating unit is 1st, 2nd sedimentation basins with dewatering unit and rapid filtration of approx.10 filters. It is said that estimated cost is approx. 10 million LE.
- 2.4 Waste Water Sampling, Flow Measurement and Analysis
- (1) Based on the result discussion with the Factory and sewer survey at site, 5 sampling points were selected. And sampling/flow measurement method was agreed mutually.
- (2) Composite sampling (6 hrs-period x 4 times), flow measurement and wastewater qualities (pH, Turbidity, Electric conductivity, Dissolved Oxygen, Salinity, water temperature) were measured at field every sampling time.

The results of field measurement are shown on Table 1.

- (3) Sampling Point: 5 points (Refer to DWG. NO. DS-CD-15-01)
- (4) Detail of water qualities was analyzed at TIMS laboratory. (Refer to Table 2).

Table 1-1 Flow rate/Water Quality measured at Site (Sep.8&9,1999)

	1 1	Air Stati	on Outle	t		② Mixing of Roll. & Sect. Mill						
Sampling Time	21:20	3:20	9:00	15:00	Av.	20:05	4:05	9:10	3:15	Av.		
Flow rate [m³/h]	103	61	122	124	103	209	473	571	571	447		
pH [-]	7.72	7.47	7.20	7.77	7.54	7.10	7.74	7.60	7.60	7.51		
Turbidity[unit]	279	6	61	27	93	65	12	20	19	28		
EC [μS/cm]	379	330	312	325	340	326	335	321	320	330		
DO [mg/L]	6.58	6.76	7.13	7.39	7.97	8.01	8.09	8.03	7.73	7.97		
Salinity [%]	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
COD _{Mn} (P) [mg/L]	5	5	5	5	5	5	50	10	. 5	17.5		
W. Temp [℃]	31.2	34.8	32.2	27.1	31.3	27.7	29.9	28.7	27.2	28.4		

Note: $COD_{Mn}(P)$ shows the analysis data by Pack Test.

Table 1-2 Flow rate/Water Quality measured at Site (Sep.8&9, 1999)

	3Mix	ing of F	ound.Ro	I.Sect. N	/ill	④ C.W. of EAFs No.5&6							
Sampling Time	22:20	4:20	9:25	15:25	Av.	22:50	4:50	9:50	15:45	Av.			
Flow rate[m³/h]	272	854	784	1786	922	109	710	69	79	240			
pH [-]	7.10	7.74	7.60	7.60	7.61	7.61	7.66	7.70	7.87	7.72			
Turbidity[[unit]	9	54	56	13	33	6	8	9	51	19			
EC [μS/cm]	321	324	319	322	322	361	329	321	335	340			
DO [mg/L]	7.96	8.11	8.08	7.67	7.96	7.33	6.66	7.59	6.96	7.14			
Salinity [%]	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01			
$COD_{Mn}(P)[mg/L]$	5	10	10	10	8.8	5	5	10	20	10			
W. Temp [℃]	27.9	30.0	28.3	27.5	28.4	30.0	31.0	28.9	30.1	30			

Table 1-3 Flow rate/Water Quality measured at Site (Sep.8 & 9,1999)

	⑤ End	of Pipe (Middle o	f Pit)		6 Intake Water (ref.)		
Sampling Time	23:10	5:10	10:10	16:10	Av.		20:00	
Flow rate[m³/h]	_	_	_		600			
pH [-]	7.61	7.64	7.84	7.80	7.72		7.8	
Turbidity[unit]	49	11	13	18	23			
EC [μS/cm]	326	326	336	328	329			
DO [mg/L]	7.81	8.13	8.00	7.28	7.80			
Salinity [%]	0.01	0.01	0.01	0.01	0.01			
COD _{Mn} (P)[mg/L]	5	20	20	50	16.3		10	
W. Temp [℃]	28.4	29.6	27.9	27.9	28.5		29	

Table 2 Analysis Results of Waste water Quality

Sampling N	lo	1	2	3	4	5
	Point	Air Station	Mix Roll.	Mix.Fo.Ro	CW. EAFs	End of Pipe
Item		٠	& Sect.Mill	Sec Mill	No.5&6	Mid. of Pit
pН	[-]	7.54	7.51	7.61	7.72	7.72
SS	[mg/L]	22	64	56	18	34
BOD ₅	[mg/L]	15	12	10	6	15
CODcr	[mg/L]	23.2	50.4	34.9	34.8	29.1
Oil&Grease	[mg/L]	2,301	154	35	1	8.9
TDS	[mg/L]	220	230	210	210	260
PO ₄ 3-	[mg/L]	0.46	0.16	0.18	0.37	0.09
T-N	[mg/L]	0.24	0.44	0.26	0.34	0.18
W. Temp	$[\mathcal{C}]$	31.3	28.4	28.4	30	28.5

^{*} Analyzed by TIMS Laboratory.

3. Conceptual Design

3.1 Philosophy of Conceptual design

(1)Conceptual design 1

Conceptual design 1 (CD-1) shows the recommendable wastewater treating system to all wastewaters in the Factory to meet the wastewater disposal regulation to Nile River (Law No.48/1982) and water saving point of view.

But, the drawings prepared Conceptual Design of Waste Water Flow (Block Flow DS-CD-15-02) only.

(2)Conceptual design 2

Conceptual design 2 (CD-2) shows the study of wastewater treating system, in case that the demonstration plant will be applied in the factory by JICA.

Therefore, wastewaters for conceptual design were selected the following points of view:

- Quality: Wastewater should be treated by the treating system consisting of various treating unit processes.
- · Quantity: Flow rate(plant capacity) to be treated within limited JICA budget,

and wastewater are discharged continuously as possible.

The plants of wastewater source are operated constantly as possible.

3.2 Conceptual Design 1

(1) Recommendable wastewater treating system for Delta Steel Mill Co. is shown on DWG. No. EF-CD-15-02 as Block Flow Diagram.

The system consists of Oil Separator, Clarifier (coagulation/sedimentation) and Sand filter to remove suspended solids and a slice of oil as same as CD-2 (Refer to DWG. No. EF-CD-15-03)

Also, Softener planned by EGITALEC Co. is provided to remove hardness and to reuse for cooling water.

(2) But, to reuse treated water by Softener or to discharge it to the public sewage without Softener should be decided comparing with running cost of Softener and wastewater discharge fee to the public sewage.

3.3 Conceptual Design 2

(1) Design Basis

1) Waste water

: Waste water from Air Station

2) Flow rate

: Max. 120 m³/h

3) Water quality

Table 3 Water Quality

		Oil Separator	Filter	Nile Regulation
		Inlet	Outlet	Law of No.48
pH	[mg/L]	6~7	7~8	6~9
BOD	[mg/L]	20	20	20
COD	[mg/L]	30	20	30
SS	[mg/L]	200	2	30
Oil & Grease	[mg/L]	1,000	2	<5

The treated water qualities shall be meet to discharge waste water regulation "Nile River (Law No.4 of 1994)".

(2) Waste Water Treatment System

Refer to DWG. NO. DS-CD-15-03/04

1)Pre-treatment

(a)Equalization Pond

The pond is provided to equalize quantity and quality by air bubbling.

(b)Oil Separator:

120 m³/h x API Type Oil Separator, 1 train (made of concrete)

- i)Waste water from Air station contains floatable oil to be removed by gravity easily. Oil separator is designed based on API (American Petroleum Institute) manual.
- ii)Oil recovery tank should be provided, recovery oil may be used for fuel.
- iii)In case that waste water contains much settleable solids, mechanical scraper may be provided.

2) Primary treatment

[Clarifier]

120 m³/h x Conventional type, 1 set (Carbon steel/epoxy)

- · Coagulation/Flocculation unit
- · Chemical Injection Facility (drums, mixers, pumps)
- · Sedimentation Basin

by coagulants, and flocs settled in the sedimentation basin.

- (b) Supernatant of the sedimentation basin may meet to Nile River Regulation.
- (c) In order to polish treated water, it is fed to the filters.
- (d) Sludge accumulated on the bottom of sedimentation basin is discharged to Dewatering Unit automatically, periodically.

3) Advanced Treatment

[Filter Unit]

- (a) Sand Filter
 - 60 m³/h x 3 sets (1 set stand-by), carbon steel/epoxy Filter media Anthracite + sand/gravel
- (b) Backwashing unit

Filtered Water Pit, Backwash waste pit,

Backwash pumps, blowers

i)To remove micro flocs in the clarified water, Sand filters are used.

Filtered water can be reused as cooling water.

- ii) Filters are backwashed with air and filtered water once 18-24hs automatically, periodically by a sequence-timers.
- iii) Backwash wastewater is returned to Equalization Pond to treat again.
- 4) Sludge Dewatering Unit
 - (a) Sludge Thickener

Gravity separation with sludge collecting rake, carbon steel/epoxy

(b) Centrifuge

Horizontal type, stainless steel

- i)Solid content of Clarifier bottom sludge is around 1%wt(10g-SS/L). Therefore, it is thickened in Sludge Thickener by gravity, then dewatered by Centrifuge.
- ii)To thicken and dewater effectively, polymers as coagulant are injected to sludge, respectively.
- iii)Supernatant of Thickener and separated wastewater by Centrifuge are returned to Equalization Tank to treat again.
- 5) Local Control Room
 - (a) The control room (Approx. 6m x 12m, ground floor only) is built at the demonstration plant area.
 - (b) The room consists of a control panel room and an electricity distribution panel room, rest room for operators, toilet, sink locker, etc..
 - (c)Chemical storage room is also provided.

6)Electricity

- (a) Electricity (380V AC x 3 phase x 50HZ) is received from power sub-station at the corner of Casting Shop through underground buried cable along the road. Cable length is approx. 600m.
- (b) Approx. 200kVA electricity is used for power, lighting, control for instrument for wastewater treating unit, and air conditioning in the control room.

(3)Disposal of sludge

Pollutants in wastewater are removed, dewatered cake generates finally at the wastewater treatment plant. Wastewater in the Factory may not contain any harmful materials such as heavy metals and organic chlorine compounds, therefore, dewatered cake can be dumped to the specified place near desert under management.

(4) Location of Demonstration Plant

Location of Demonstration Plant to be constructed was selected preliminarily a southwest part of the Factory by JICA Study Team and the Factory personnel (Refer to DS-CD-12-02 Fig.3).

- 1) Location: Scrap Yard 50m x 50m
- 2) Power Supply: Sub-station=Charging Shop

380VAC/50HZ, underground/direct buried

(5) Budgetary Cost Estimation

- 1) Conditions of Estimation
 - (a) Major mechanical equipment, electrical equipment, instrument, and valves are purchased out of Egypt (Japan or Europe).
 - (b)Bulk materials such as pipe and fittings, re-bar, cable are purchased in Egypt.
 - (c) Large vessels (larger than 3.0m) and tanks is erected at site.
 Sand filters made of carbon steel and filter media are purchased from Japan.
 - (d) Large basins are constructed of reinforced concrete.
 - (e) Field works are conducted by Egyptian contractors under supervising by Japane'se consultants.
 - (f) Construction at site is proceeded as the standard schedule.

Table 4 Budgetary Cost Estimation

	Yen Portion	LE Por	tion			
	[x10 ³ Yen]	[LE]	[x10 ³ Yen]			
1. Equipment & Material						
(1) Mechanical	101,000					
(2) Elec./Instrument	49,000					
(3) Transportation	29,000					
Sub-Total(1)	179,000					
2.Construction(w/Local Mate) (1) Civil/Architecture (2) Installation/Piping (3) Elec. /Instrument		1,114,000 812,000 660,000				
(4) Commissioning		7,200				
Sub-Total(2)		2,593,200	88,170			
3. Indirect Cost (1) Contractor Expenses (2) Supervision Expenses		648,300	22,040 10,000			
Sub-Total(3)		648,300	32,040			
Total Cost	299,210 [x10 ³ Yen]					

Note: 1) Exchange Rate 1 LE = 34 Yen

- 2) Indirect Cost = Direct Cost (Field Portion) x 0.25
- 3) Excluded Supervision Fee by Japanese consultant
- 4) Demarcation of Scope of Work between Egyptian and Japanese Sides has not been decided yet.

(6)Standard Schedule:

Standard schedule is shown on Table 5, but it is not so easy schedule. It is scheduled so as to be passed Egypt custom without any delay.

Table 5 Standard Construction Schedule

Month														
Item		1	3	5_		7		(9			11		13_
Detail Design	*								•					
1) Procurement		* * *	***	***	*									
2) Transportation				***	* *	* *	* *	* *	<					
3)Civil Work				****	* *	* *	* *	* *	<					
4)Instal./Piping						*	* *	* >	× *	*	*	* *	:	
5)Elec./Instrument				-				* *	* *	*	*	* *	*	
6)Control Room				***	* *	*								
7)Commissioning							<u> </u>						* *	
Demonstration Operation														*

4. Recommendations of Feasible Improvement for Waste Water Treatment

(1) Improvement of existing Oil Separator/Sedimentation Basins

The floating oil and settled sludge in the existing Oil Separator/Sedimentation

Basin should be removed by manual periodically, and recovered oil can be used as fuel.

(2) Suitable routine work

- 1) Appearance (such as color, clearness, smell, floating matters, etc.) of inlet and outlet water should be checked visually at routine work, and be taken suitable action, if necessary.
- 2) Sewer ditch should be cleaned by removing accumulated scum and sludge, etc.

(3) Calibration electrode of pH meter

The electrodes of pH meter in Neutralization unit should be calibrated every week, and be always kept in water during plant shut-down too.

(4) Spare Parts and Maintenance

The flow indicators and pressure gages around pumps should be always equipped as design, and be always maintained so as to work normally.

5. Process Survey

(1).General;

This company produces the long products mainly such as "Light Section", "Round/Section Bars", "Hot Rolled/Cold Drawn Wire Rod", Cast Iron Pipe and Fittings, Grinding Media so on, using EAF, CCM, Hot Rolling Mill, Cold Work Facilities and Foundries process.

Designed production capacity 0f rolled material is about 155,000 tons annually in total but current production result (1998) is about 118,000 tons/year (76% of above) due to the market condition.

Application of longitudinal products is for general use of construction materials, and market condition is deteriorating recently, in addition total domestic production capacity has been raised by the establishment of ANSDK (Alexandria National Steel DK) who produced longitudinal products using Direct-Reduction Furnace, EAF, CCM, and Hot Rolling Mill.

But also 3 % of return on sales could be obtained in this company.

(2). Operation and Process;

Latest operational conditions provided by DSM are as follows(!999/7-8 average);

Table 6 Operation Status

Process	Production (ton/month)	Ope. time (hr/month)	Productivity (ton/hr)	Availability (%)	Yield (%)
No.5 EAF(25t)	1,200	624	2.56	75	86
No.6 EAF(25t)	3,000	624	2.56	75	86
B't-CCM	4,055	depend on	depend on	depend on	95
		EAF	EAF	EAF	
Section Mill	4,000	546	10	80	90
Round Mill	8,000	546	20	70	90

Total yield ; 73.5(%)

Note: No.4 EAF with capacity of 18 ton is stopped due to high operational cost.

Upper stream facilities consist of old EAF(F5/in'72), not so old EAF(F6/in'83) and CCM(in '86). Operation conditions such as monthly production amount and operation time so on are fluctuated due to various reasons.

Hot rolling mill consists of one old large section/round rolling mill and one modernized small round rolling mill. And, productivity of the former mill is half of the latter mill.

Depend on above operation conditions they uses big amount of purchased billets

due to the unbalance of productivity between upper stream(EAF) and down stream(rolling mills). This means, important theme on the production process and facilities to be modernized at upper stream and at down stream is existing.

(3).Equipment;

Regarding facility information, refer to ANNEX-1.

Except one EAF, CCM and small round rolling mill, almost of all facilities are aged and maintenance activity seems not to be adequately, so, leaked oil from rolling mill especially from large section/round rolling mill goes into the wastewater sewer.

Maintenance activity is very important job not only to repair the broken machine but also to get good products quality, productivity, yield, to reduce cobbles and to reduce environmental pollution so on.

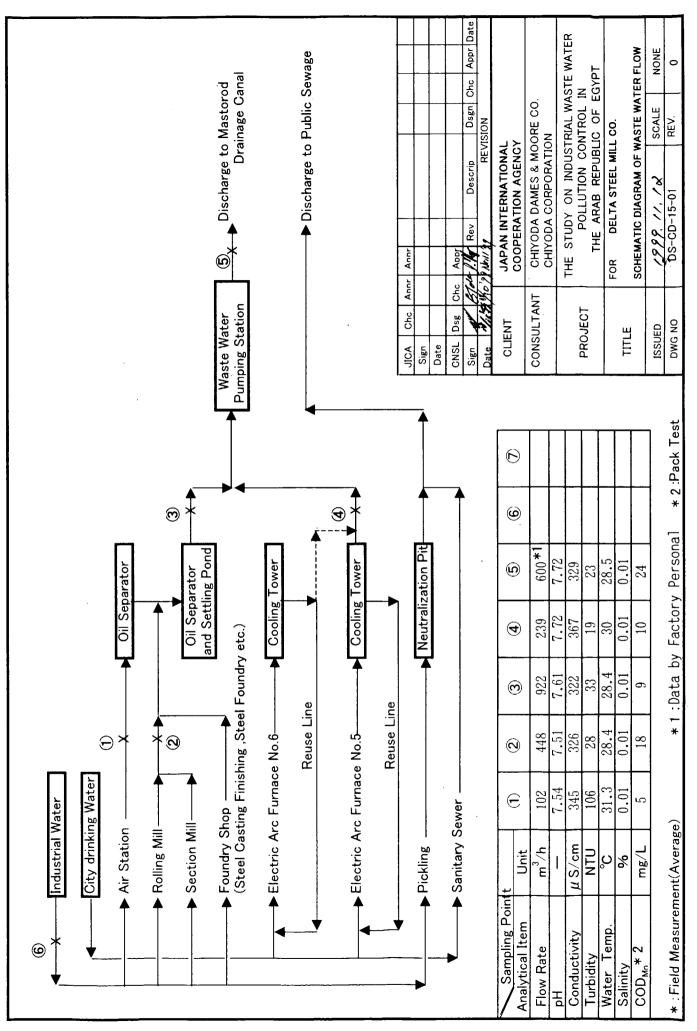
In Japan we call it "Productive Maintenance" and it is adopted by many industries. From productive and environmental points of view, adequate maintenance for rolling mill especially for section/round mill is urgent and important theme as well.

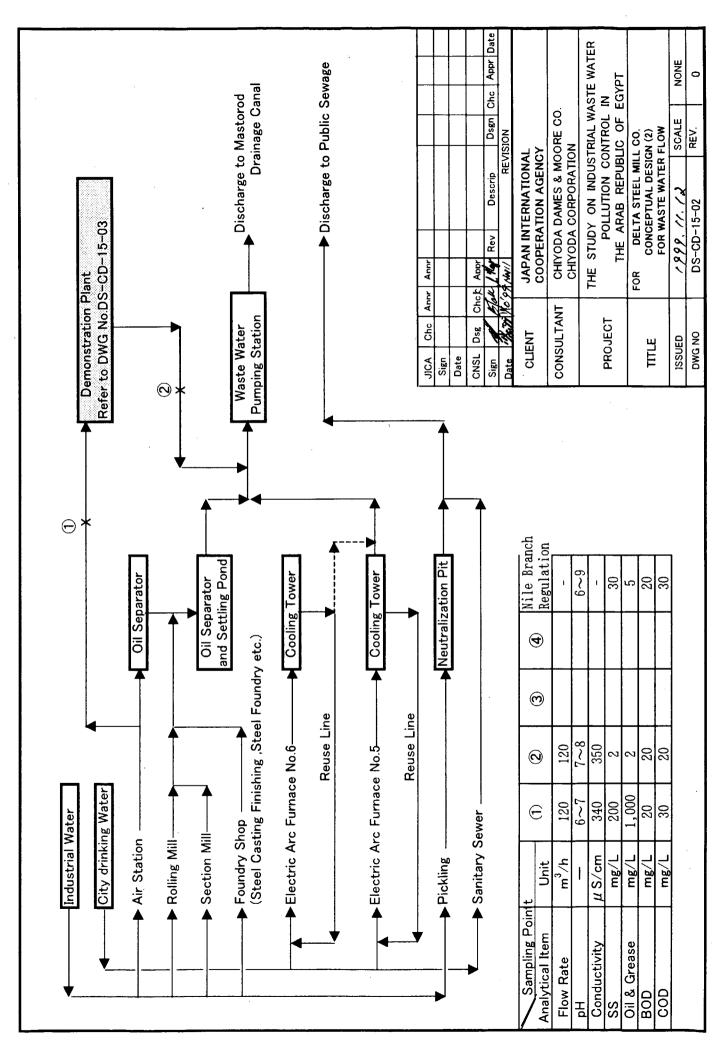
From the view point of long term theme, survey and study for modernization of process and equipment by specialists will be recommendable.

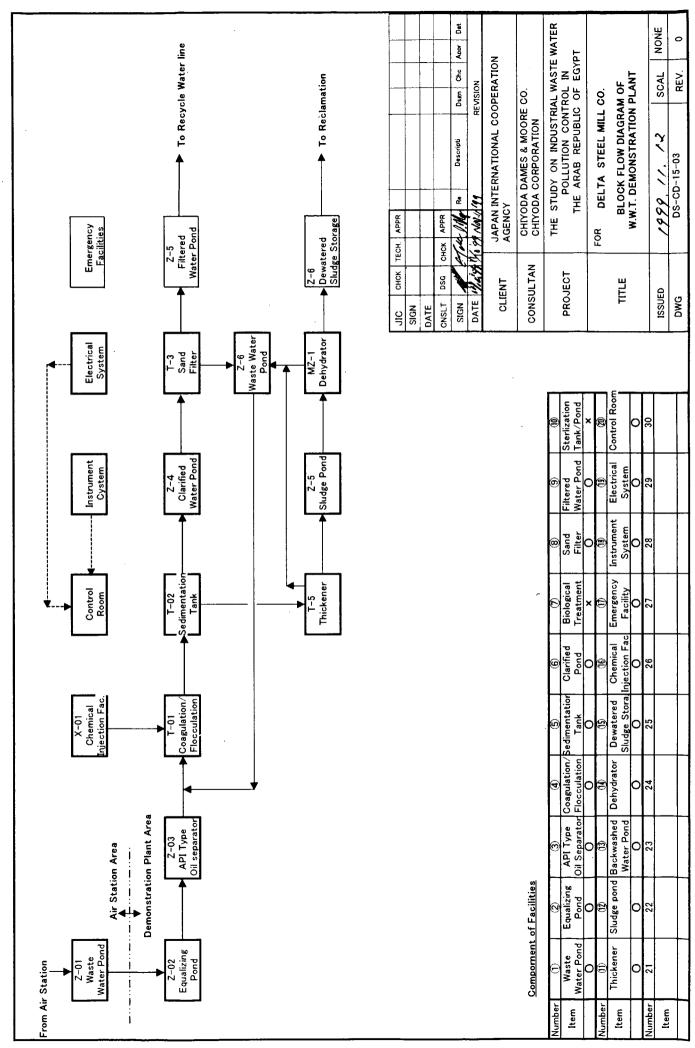
(4) Environmental;

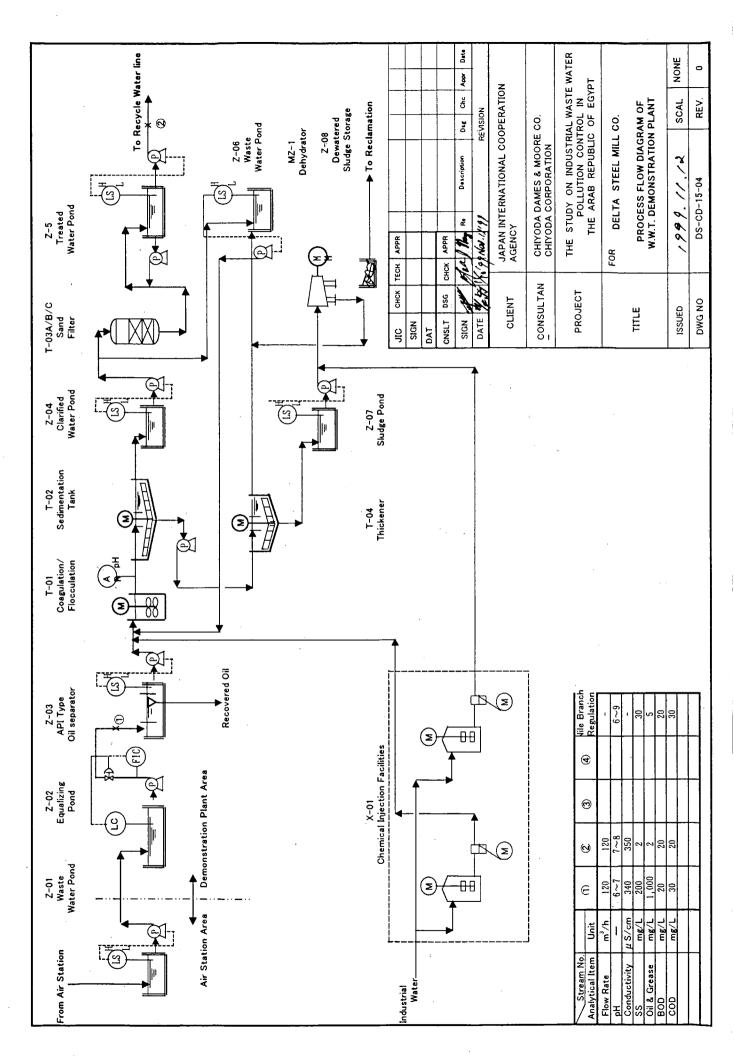
There are two serious problems on environmental matter.

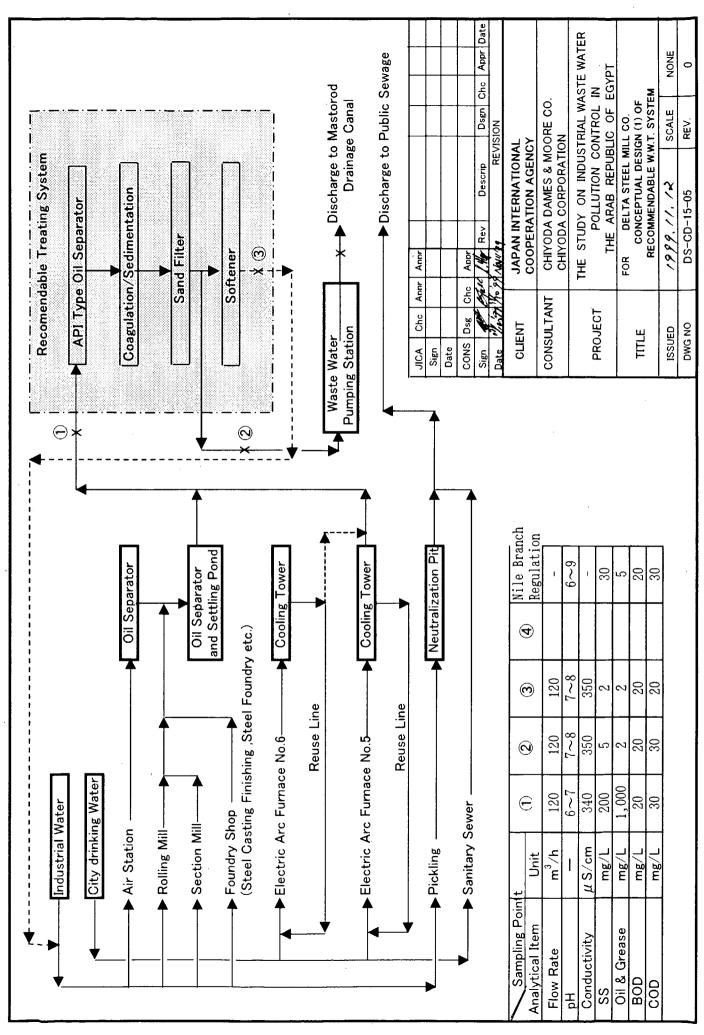
One is air pollution by dusty exhaust gas from EAF because their dust collection system doesn't work and dust is discharged into the atmosphere directly.

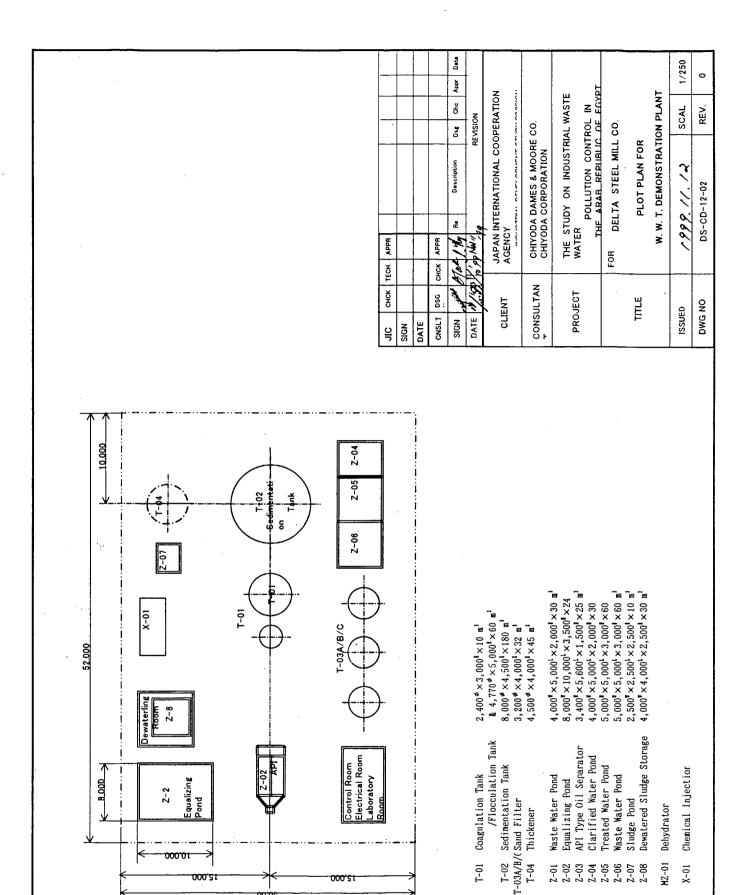

The other problem is water pollution. Large amount of leakage oil from rolling mill goes into the wastewater sewer, but function of oil and SS separation is inadequate at the simple treating units.


(5) Conclusion;


This Factory has the long history and almost of all facilities are old except some area. From the environmental and productive points of view, improvement of maintenance activity and system for production equipment and environmental protection equipment are quite important and urgent matter for pollution prevention and for increase of productivity.


DELTA STEEL MILL CO.]


			,		
NO	DRAWING NAME	DWG. NO.	REV.	DATE	NOTE
			-		
1	FLOW SHEET		-		
1)	SCHEMATIC DIAGRAM OF WASTE WATER FLOW	DS-CD-15-01	0	1999.10.13	
2)	CONCEPTUAL DESIGN OF WASTE WATER FLOW	DS-CD-15-02	0	1999.10.13	CD-1 & CD-2
3)	BLOCK FLOW DIAGRAM OF				
	WASTE WATER TREATMENT	DS-CD-15-03	0	1999.10.13	
4)	CONCEPTUAL DESIGN OF		ļ		
	WASTE WATER TREATMENT	DS-CD-15-05	0	1999.10.14	
2	PLOT PLAN		<u></u>		
1)	LOCATION OF W.W.T. DEMONSTRATION PLANT	DS-CD-12-01	0	1999.10.13	
2)	PLOT PLAN FOR CONCEPTUAL DESIGN OF				
	W.W.T. DEMONSTRATION PLANT	DS-CD-12-02	0	1999.10.13	
	·				
			1.		
		<u> </u>	1		
			1		
·······			1		
·			+		
			-		
			-		
			-		,
			-		
			ļ		
NOTE	:				



30.00

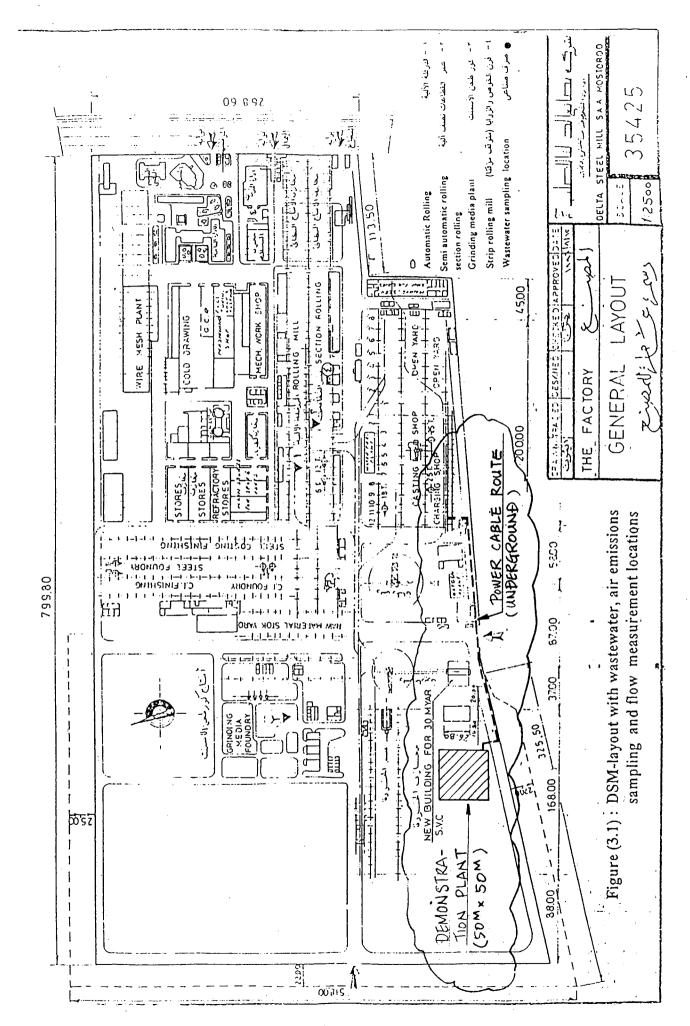
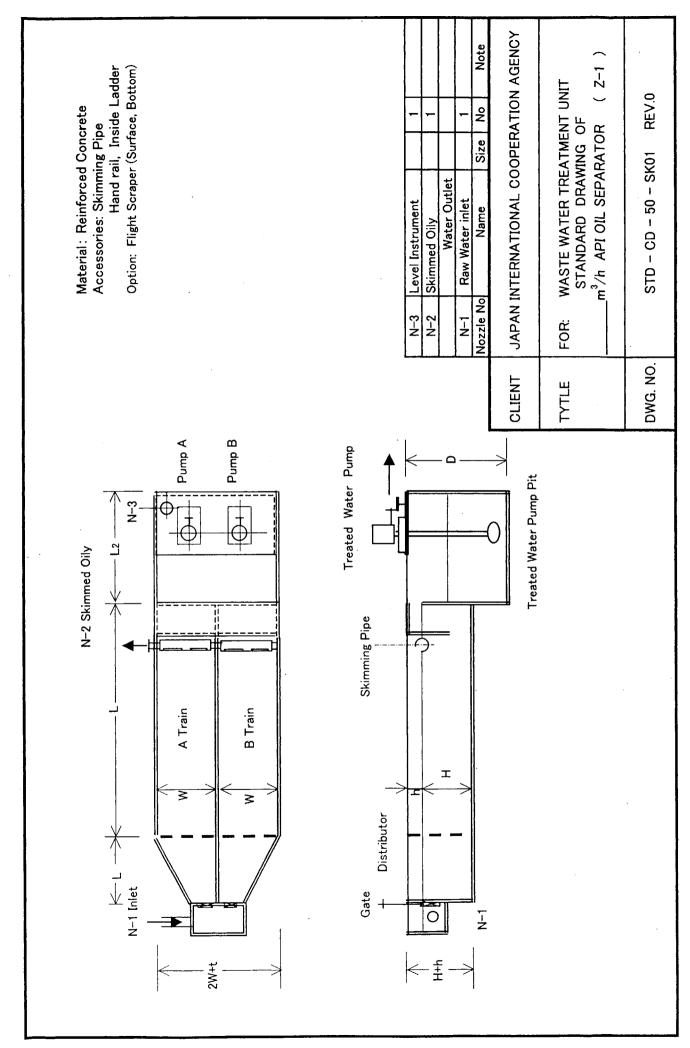


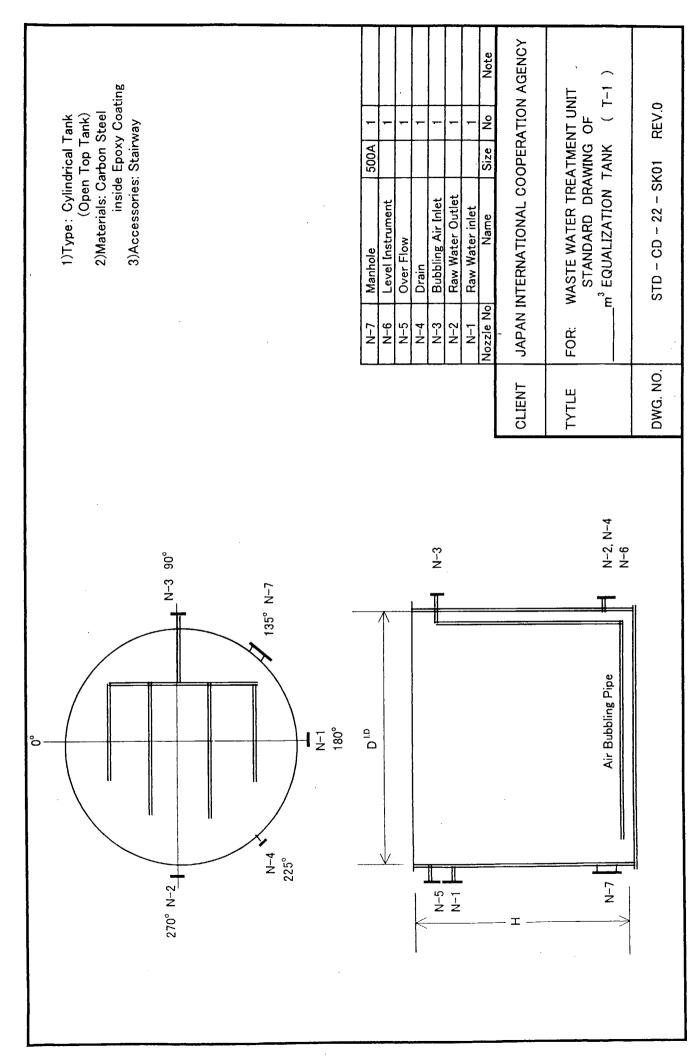
Table-1 EQUIPMENT LIST for Delta Steel Mill Co.

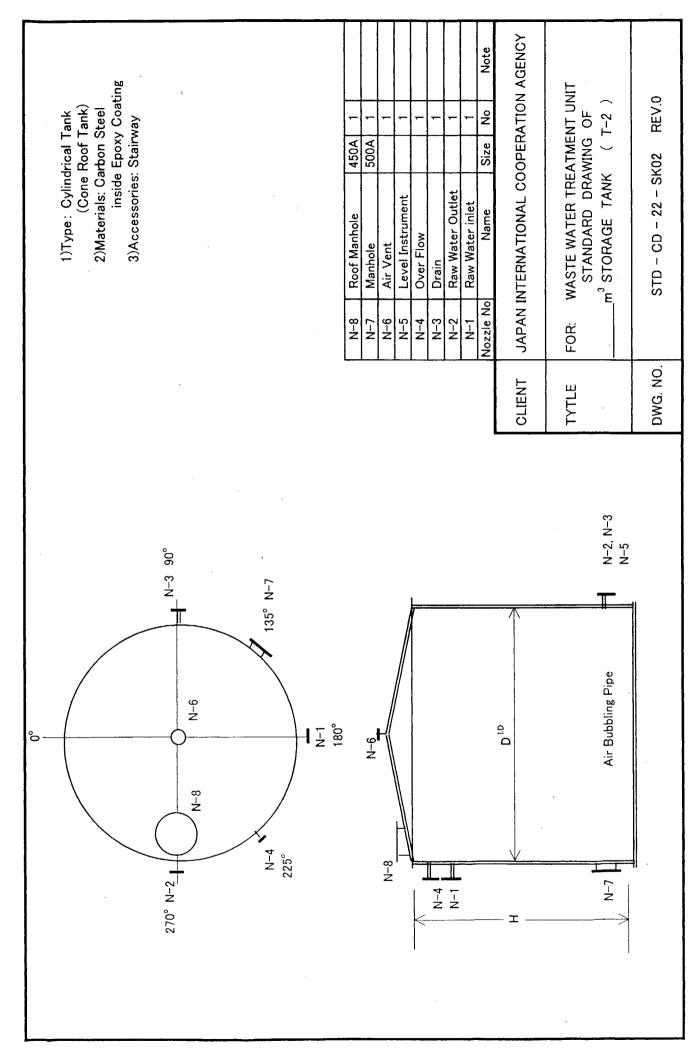
	Idolo I Equilibri Bidi Idi	0100								
CLIENT	Japan International Cooperation Agency	REV	1	2	3	MADE	Ego			
PROJECT	:The Study on Industrial Waste Water Plant	ВҮ				CKD	State			
PLANT	:Demonstration Plant	APVE				APVE	I. Nag			
WASTE W.	:Air Station Waste Water	DATE				DATE	007.10,99			

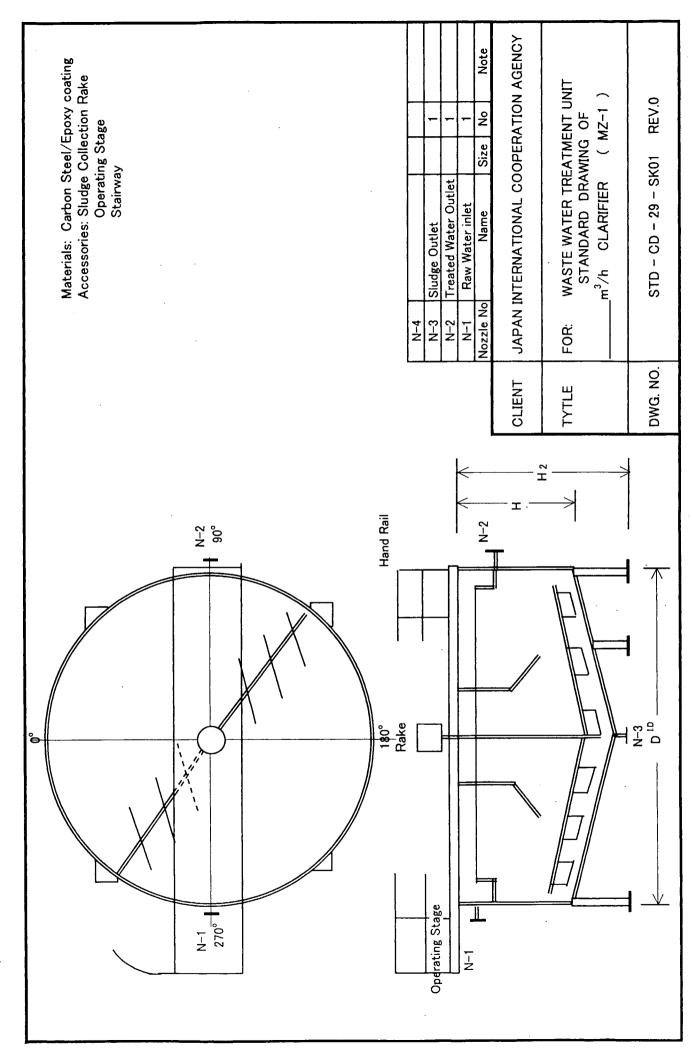
Equipment NO	Service	No. Req'd	Type of Equipment	Remarks
T-01	Coagulation Tank	1	Vertical Cylindrical Type	Carbon Steel/Epoxy
	/Flocculation Tank	÷	$2,400^{\phi} \times 3,000^{H} \times 10^{m^3}$	Coating
,			&4, $770^{\phi} \times 5$, $000^{H} \times 60 \text{ m}^{3}$	
T-02	Sedimentation Tank	1	Vertical Cylindrical Type	Carbon Steel/Epoxy
·	· · · · · · · · · · · · · · · · · · ·		$8,000^{\phi} \times 4,500^{H} \times 180 \text{ m}^{3}$	Coating
r-03A/B/C	Sand Filter	3	Vertical Cylindrical Type	Carbon Steel/Epoxy
			$3,200^{\phi} \times 4,000^{H} \times 32 \text{ m}^{3}$	Coating
T-04	Thickener	1	Vertical Cylindrical Type	Carbon Steel/Epoxy
			$4,500^{\circ} \times 4,000^{H} \times 45 \text{ m}^{3}$	Coating
Z-01	Waste Water Pond	1	Vertical Rectangular Type	
			4, $000^{\text{W}} \times 5$, $000^{\text{L}} \times 2$, $000^{\text{H}} \times 30 \text{ m}^3$,
Z-02	Equalizing Pond	1	Vertical Rectangular Type	
			$8,000^{\text{W}} \times 10,000^{\text{L}} \times 3,500^{\text{H}} \times 240$	m ³
Z-03	API Type Oil Separator	1	Vertical Rectangular Type	
			$3,400^{\text{W}} \times 5,600^{\text{L}} \times 1,500^{\text{H}} \times 25 \text{ m}^3$	
Z-04	Clarified Water Pond	1	Vertical Rectangular Type	
			$4,000^{\text{W}} \times 5,000^{\text{L}} \times 2,000^{\text{H}} \times 30 \text{ m}^3$	
Z-05	Treated Water Pond	1	Vertical Square Type	
			$5,000^{\text{W}} \times 5,000^{\text{L}} \times 3,000^{\text{H}} \times 60 \text{ m}^3$	
Z-06	Backwashed Waste Water Pond	1	Vertical Square Type	
			$5,000^{\text{W}} \times 5,000^{\text{L}} \times 3,000^{\text{H}} \times 60 \text{ m}^3$	
Z-07	Sludge Pond	1	Vertical Square Type	
			$2,500^{\text{W}} \times 2,500^{\text{L}} \times 2,500^{\text{H}} \times 10 \text{ m}^3$	

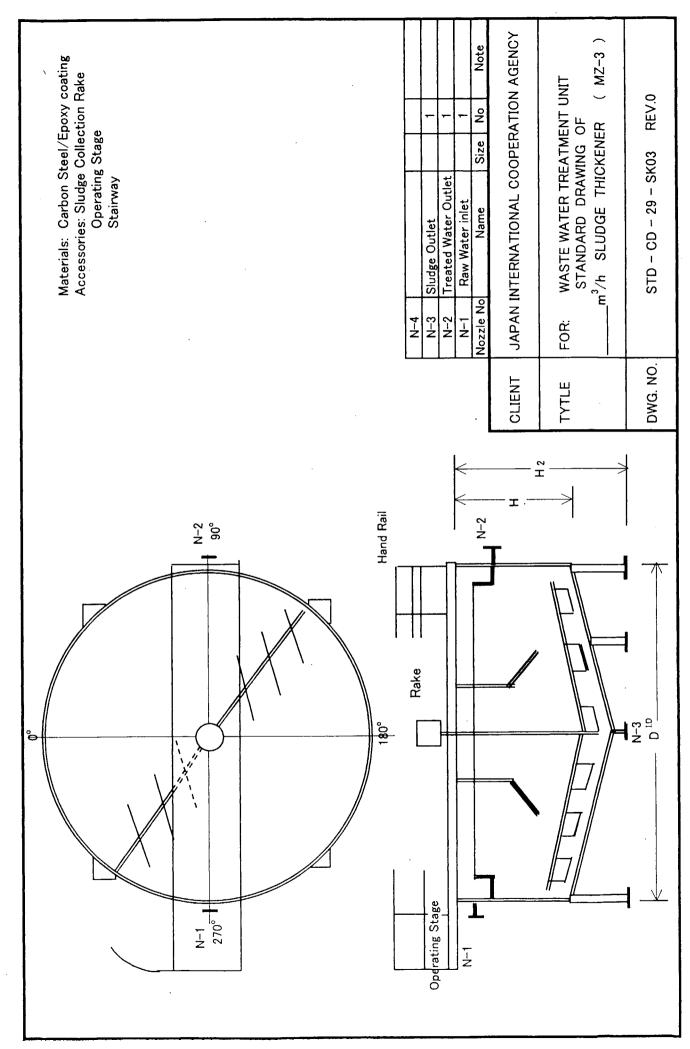
2,500^{\frac{1}{2}} \times 2,500^{\frac{1}{2}}

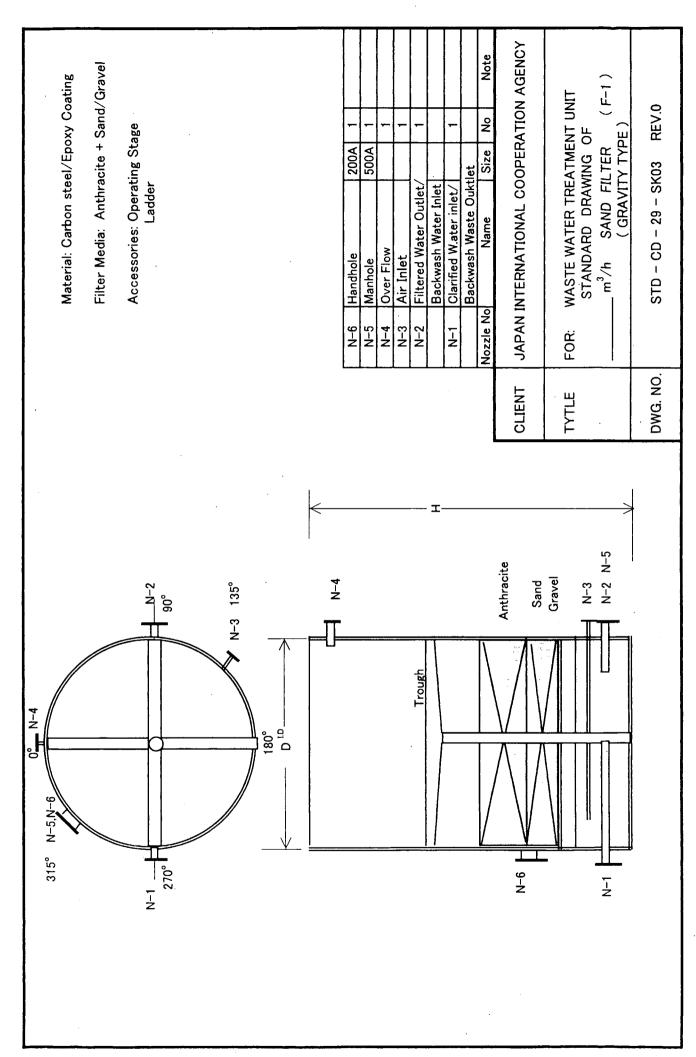

Table-1 EQUIPMENT LIST for Delta Steel Mill Co.

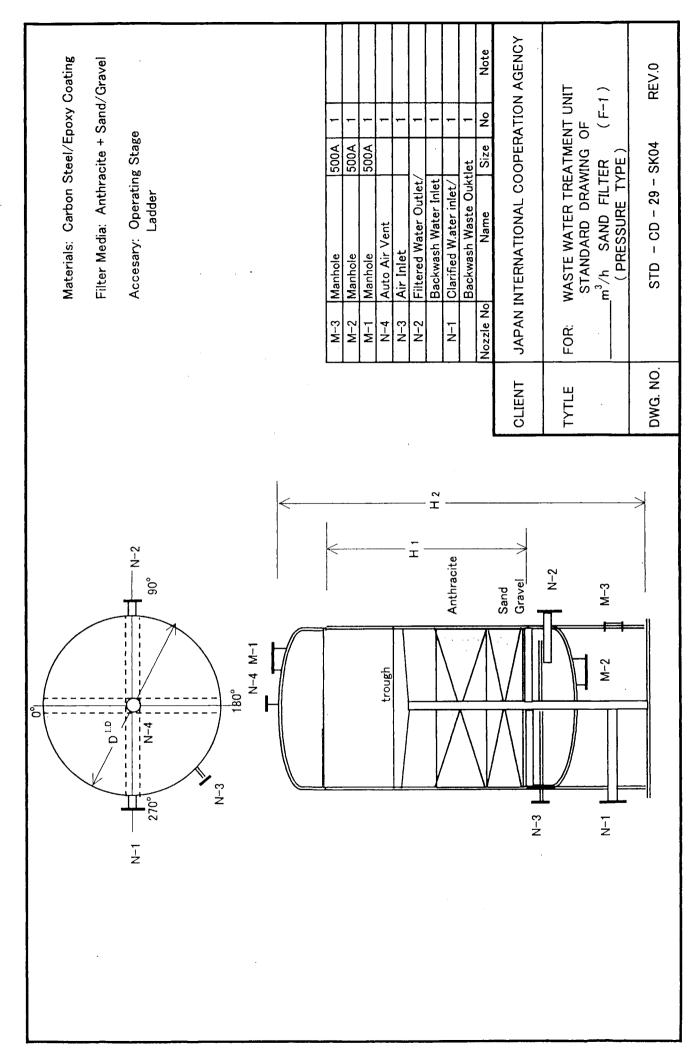

									(2/2)
CLIENT	:Japan International Cooper	ation A	gency	REV	1	2	3	MADE	SAPA
	:The Study on Industrial Waste Water Plant			BY				CKD	Stall
PLANT	:Demonstration Plant			APVE				APVE	lily
WASTE W.	:Air Station Waste Water			DATE				DATE	007.10:99
Equipment NO.	Service	No. Reg'd	Type o	f Equi	pment			Rem	arks
Z-08	Dewatered Sludge Storage	1	Vertical Square Type			Carbo	n Stee	1/Epoxy	
			$4,000^{\text{W}} \times 4,0$	$00^{L} \times 2$	500 ^H ×	(30 m^3)		Coat	ing
MZ-01	Dehydrator	1	Centrifuge	Туре			Stain	less S	teel
			1.	5 m ³ /h					
X-01	Chemical Injection	1	Tank, Mixer	, Pump	for				
	Facilities		Coagulant, F	olymer	·				
						 			
· · · · · · · · · · · · · · · · · · ·		<u> </u>			. ,				
		<u></u>				·			
,		<u> </u>							
		 							
					· · · · · · · · · · · · · · · · · · ·				
				***			-		
							ļ		
						,			
· · · · · · · · · · · · · · · · · · ·									
]						·
Note:									


Table-2 INSTRUMENT LIST for Delta Steel Mill Co.


	Iddic 2 Indikom	DIVI D.	IDI IOI D						(1/1)
CLIENT : Japan International Cooperation Agency			REV	1	2	3	MADE	Laone	
PROJECT : The Study on Industrial Waste Water Plant				BY				CKD	Efel
PLANT : Demonstration Plant				APVE				APVE	· 1.1/4
WASTE W.	:Air Station Waste Water			DATE				DATE	Oct 10 89
Instrumer NO.	Service	No. Req'd	Type o	of Equi	pment			Rem	arks
FIC-01	Sedimentation line	1	$30 \text{ m}^3/\text{h}{\sim}15$	0 m ³ /h					
			Flow Indica	ting c	ontro]	ller			
LC-01	Equalizing Pond	1	1,000 mm∼1	,500 m	m				
			Level Contr	oller					
pH-01	Sedimentation line	1	pH 4∼10						
	·		pH Analyzer	•					
LS-01	Waste Water Pond	1	500 mm~1,0	000 mm				٠	
			Level Switc	eh.					
LS-02	Oil Separator	1	1,000 mm~1		m				
			Level Switc					•	
LS-03	Clarified Water Pond		1,000 mm~1		m				
			Level Switc						
LS-04	Backwashed Waste Water P.	1	500 mm~2,0						
		_ _	Level Switc						
LS-05	Sludge Pond	1	500 mm~2,0				_		
20 00	014480-101.4		Level Switc						
LC-06	Treated Water pond	1	1,000 mm~2		m				
20 00	110d00d #d001 polid	-	Level Contr						
	,		Dever contr	OTICI				•	
								· · · · · · · · · · · · · · · · · · ·	
								**	
			<u>-</u>						
									·
									
Note:		L					L		
HO16.									
									1


DOCUMENT TYTLE:	STAN	IDARD SI	KETCH D	RAWINGS	OF			
		<u>W.W.T. M</u>	AJOR EG	UIPMENT	-			
DOCUMENT NO.	STE) - CD - 20)/50-01	·	REV. 0			
PROJECT:	THE STUE	Y ON INDL	JSTRIAL W	ASTE WAT	ER			
	POLLUTION CONTROL IN							
	TH	E ARAB R	EPUBLIC	OF EGYP	Γ			
CLIENT:	JAPAN I	NTERNAT	IONAL C	OOPERAT	TON AGENCY			
	INDUSTRIAL DEVELOPMENT STUDY DIVISION							
CONSULTANT: CHIYODA DAMES AND MOORE CO. CHIYODA CORPORATION								
ISSUDED DATE:		1000 10 1	0					
1920DED DATE:		1999. 10. 1	8					
JICA		CHCK'D	TECH.	APPR'D	i			
JICA	SIGN	CHCKD	TEGH,	AFFRU				
	DATE		•					
CONSULTANT	SIGN	DSGN	CHCK'D	APPR'D				
	5 4 7 5	 • / - 		0				





Client:

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Project Name:

THE STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL

IN THE ARAB REPUBLIC OF EGYPT

Factory Name:

DELTA STEEL MILL CO.

CONCEPTUAL DESIGN

Document Title:

CALCULATION SHEET

FOR

W.W.T. DEMONSTRATION PLANT

Issued Date

September 2000

Consultant:

JICA STUDY TEAM

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

1. Object

This design calculation sheet is applied to the study of W.W.T. Recommendation Plant planning for "Delta Steel Mill Co.".

2. Wastewater to be treated : Air Station Wastewater

3. Design Conditions

- (1) Waste management system in the Factory should be organized, and operated adequately under the responsible managers.
- (2) Suitable routine works, periodical maintainances should be conducted in the whole company.

4. Contents of Wastewater Treating Facility

(1) Primary Treatment

: API Type Oil separator

(2) Secondary Treatment

: Chemical Clarifier

(3) Tertiary Treatment

: Sand Filter

(4) Addvanced Treatment : Softener (Out of scope of work)

5. Design Basis

(1) Quality and Quantity of Influent Wastewater Shown on Table-1.

(2) Quality and Quantity of Treated Water

The Law48/82 Discharge into Mastorod drainage canal is to Conceptional Design. Treated water qualities are shown on Table-1.

Table-1 Design Basis of Wastewater Qualities and quantity

Items	Raw Water	Treated Water	Law48/82
Flow Rate [m ³ /h	120	120	
рН [-	6~7	6 ~7	6~9
SS [mg/I	200	2	30
BOD [mg/I] 20	. 15	20
COD [mg/I] 30	20	30
Oil & Grease [mg/I	1,000	2	5
Temperature [°C	27.9	29,1	< 35

- 6. Unit Design
 - 6.1 API Oil Separator

The API Oil Separator is to reduce the level of oil content in the wastewater from Air Station.

- (1) Design Condition
 - 1) Flow Rate : $Q = 120 \text{ m}^3/\text{h} = 0.0333 \text{ m}^3/\text{sec}$
 - 2) Specification : Rectangular, Underground, Reinforced Concrete
 - 3) Diameter of Globules : D= 0.015 cm
 - 4) Horizontal Velocity : V_{H} = Less Than 0.9 m/min Take 0.6 m/min= 0.01 m/sec
 - 5) Oil content of Effluent Less than 30 mg/L
 - 6) Temperature : 25 °C
 - 7) Specific gravity : 25 ° API
- (2) Sizing
 - 1) Inlet Channel
 - a) Max. Velocity: Ymax= 0.1 m/sec Take 0.05 m
 - b) Required Sec. Area: $A=0.6667 \text{ m}^2$ W= 0.8 m \therefore H= 0.8333 m
 - c) Retention Time : T= 2 min
 - d) Inlet Channel Length: L= 6 m
 - 2) API Oil Separator
 - a) Oil Globules in Wastewater

$$Vt = 0.1225 (Sw-So)/\mu (mm/sec) = 1.78 mm/sec$$

 μ = Absolute viscosity of wastewater @25°C 0.0088 Poises

Maximum allowable mean horizontal velocity, $V_{H} = 15Vt$, not exceed 15 mm/sec.

$$V_{H} = 26.7$$

This exceed 15 mm/sec; therefore, use limiting $V_H=15$.

- b) Minimum Area and Dimension
 - ① Numbers of channels

$$n \ge Q/V_{H\times}A_{c}\max \times 3.6 = 0.1543 (n_{min}=2)$$

2

120 m³/h

2.3

V_{ii}= Maximum allowable mean horizontal

A_cmax= Maximum allowable sectional area 14.4 m²

$$d/B=$$
 0.3-0.5 m take 0.4

2 Minimum cross-section area per channel

$$q_a = Q/n = 60 \text{ m}^3/\text{h}$$

 $A_c = q_a/V_H \times 3.6 = 1.11 \text{ m}^2$

Take:
$$1.7^8 \times 0.7^d$$
 : $d/B = 0.7/1.7 = 0.41$ OK

3 Length of separator chamber

 $L= F \times d \times V_H/V_t = 8.7 \text{ m}$

L= Length of separator chamber

F= Factor $V_H/V_t = 8.4 \Rightarrow 1.48$

Take: $3,400^{\text{W}} \times 9,000^{\text{L}} \times 1,200^{\text{H}}$

3) Pump Pit

1) Retention Time

0.2 h

2) Required Volume

 $V_p = 24 \text{ m}^3$

3) Effective Height

H_P= 1 m (Take)

4) Required Area

 $A_{2} = 24 \text{ m}^{2}$

5 m ∴ L= 4.8 m

Take: $5,000^{\text{W}} \times 5,000^{\text{L}} \times 1,200^{\text{H}}$

6.2 Equalization Tank

The wastewater from API Oil Separator is stored in the Equalization Tank for equalization of wastewater quantities and qualities for further treatment.

(1) Design Conditions

1) Flow Rate

 $Q = 120 \text{ m}^3/\text{h}$

2) Specification

Rectangular, Underground, Reinforced Concrete

W=

3) Retention Time

 $T_{\rm E}$ = 2 hr

4) Others

Air bubbling device

(2) Sizing

1) Required Volume : V_{ϵ} =

2) Effective Height : H_E = 3 m

3) Required Area : A_{F} = 80 m² W= 8 m \therefore L= 10 m

240 m³

Take: $8,000^{\text{W}} \times 10,000^{\text{L}} \times 3,500^{\text{H}}$

6.3 Rapid Mixing Tank

(1) Design Conditions

1) Retention Time : T_R = 5 min (Take)

2) Specification : Vertical Cylindrical, Carbon Steel

3) Others : Mechanical Mixing Device

(2) Sizing

1) Required Volume : V_R = 10 m³ 2) Effective Height : H_R = 2.5 m

3) Required Area : $A_{B} = 4 \text{ m}^{2}$ $D_{B} = 2.2573$

Take: $2,400^{\circ} \times 3,000^{H}$

6.4 Flocculation Tank

(1) Design Conditions

1) Retention Time : T_F= 30 min (Take)

2) Specification : Vertical Cylindrical, Carbon Steel

3) Others : Mechanical Mixing Device

(2) Sizing

1) Required Volume : $V_F = 60 \text{ m}^3$

2) Effective Height : H_f = 4 m (Take)

3) Required Area : $A_F = 15 \text{ m}^2$ $D_R = 4.3713 \text{ m}$

Take: $4,770^{\circ} \times 5,000^{H}$

6.5 Clarifier

The function of Chemical Clarifier is to reduce suspended solids (SS) and free oil of the wastewater.

·(1) Design Conditions

1) Surface Load : $U_c = 3 m^3/m^2/h$ (Take)

2) Specification : Vertical Cylindrical, Carbon Steel

3) Others : Mechanical Scraper

(2) Sizing

1) Effective Height : H_C = 4 m (Take)

2) Required Area : $A_c = 40 \text{ m}^2$ $D_B = 7.1383 \text{ m}$

<u>Take</u>: $8,000^{\circ} \times 4,500^{\circ}$

- (3) Generated Sludge
 - 1) Generated Sludge : Wdry= 23.76 kg/hr= 570.24 kg/day
 - 2) Conc. of Sludge : $C_S=$ 1%
 - 3) Sludge Quantity : Qs= 2376 kg/hr %= 1.98
 - 4) Dewatered Sludge(85%): W₈₅= 158.4 kg/hr= 3801.6 kg/day

6.6 Sand Filter

To remove overflow floc (SS) from Chemical Clarifier.

- (1) Design Conditions
 - 1) Surface Load : $U_F = 180 \text{ m/day} = 7.5 \text{ m/h}$
 - 2) Specification : Vertical Cylindrical, Carbon Steel, Pressure Type
 - 3) Number of Filter : 3 Sets (2 Operation + 1 standby)
 - 4) Filter Media : Anthracite + Sand + Gravel
 - 5) Backwashing : Backwashing Pump, Air Blower
- (2) Filter Sizing
 - 1) Effective Height : H_F = 4 m (Take)
 - 2) Required Area : $A_F = 8 \text{ m}^2$ $D_R = 3.1923 \text{ m}$
 - Take: $3,200^{\phi} \times 4,000^{H}$
 - 3) Filter Detail : Backwash Trough Tangential Line 0.5 m
 - Backwash Trough Filter Media 1 m Anthracite 0.8 m
 - Sand + gravel 0.7 m
 - Support Tangential Line 0.7 m
 Allowance 0.3 m
 - Total Height 4 m
- (3) Treated Water Pond and Waste Water Pond
 - 1) Retention Time : 0.5 h
 - 2) Required Volume : $V_T = 60 \text{ m}^3$
 - 3) Effective Height : H_T = 2.5 m (Take)
 - 4) Required Area : A_{ϵ} = 24 m² W= 5 m . L= 4.8 m
 - Take: $5,000^{\text{W}} \times 5,000^{\text{L}} \times 3,000^{\text{H}}$
- (4) Backwashing Pump
 - 1) Backwash Rate : U_{R} = 40 m/h (Take)
 - 2) Flow Rate : $Q_B = 320 \text{ m}^3/\text{h} \times 15 \text{ m}^{11}$
 - 3) Backwash Time : $T_B=$ 10 min (Take)
 - 4) Backwash Water Volume : $V_B = 53 \text{ m}^3/\text{h/Cycle}$