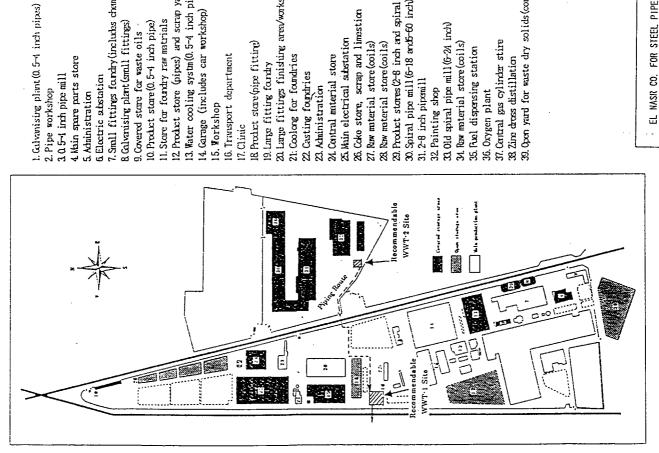
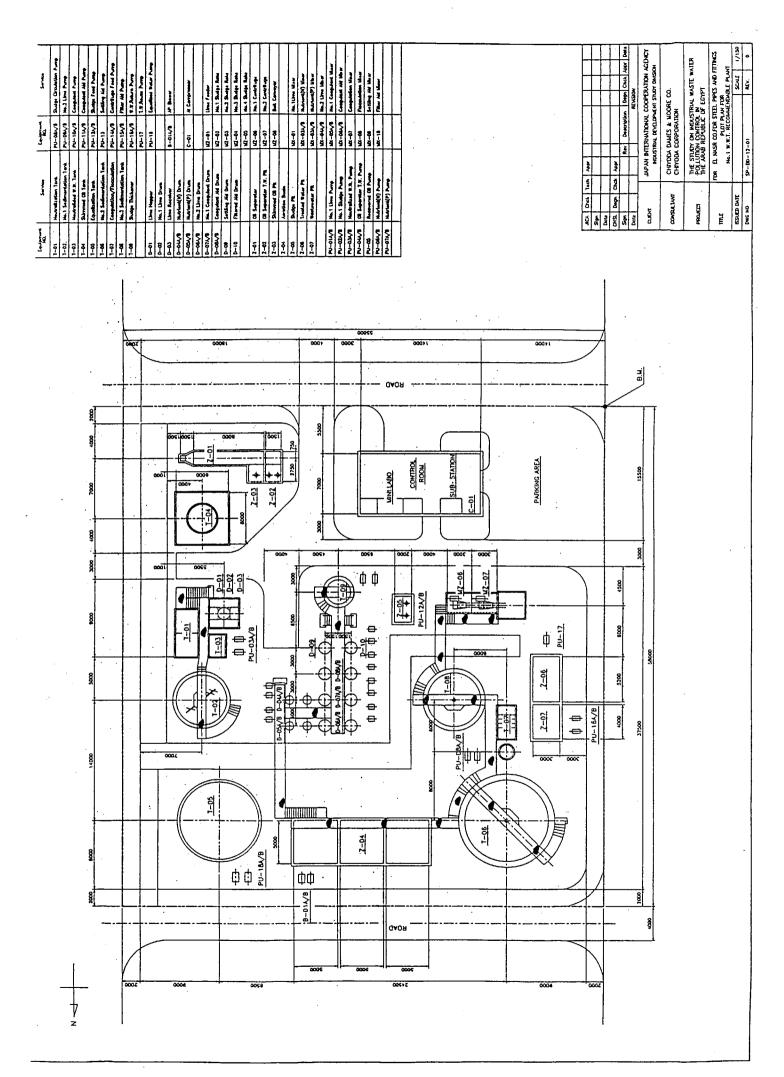
JAPAN INTERNATIONAL COOPERATION AGENCY

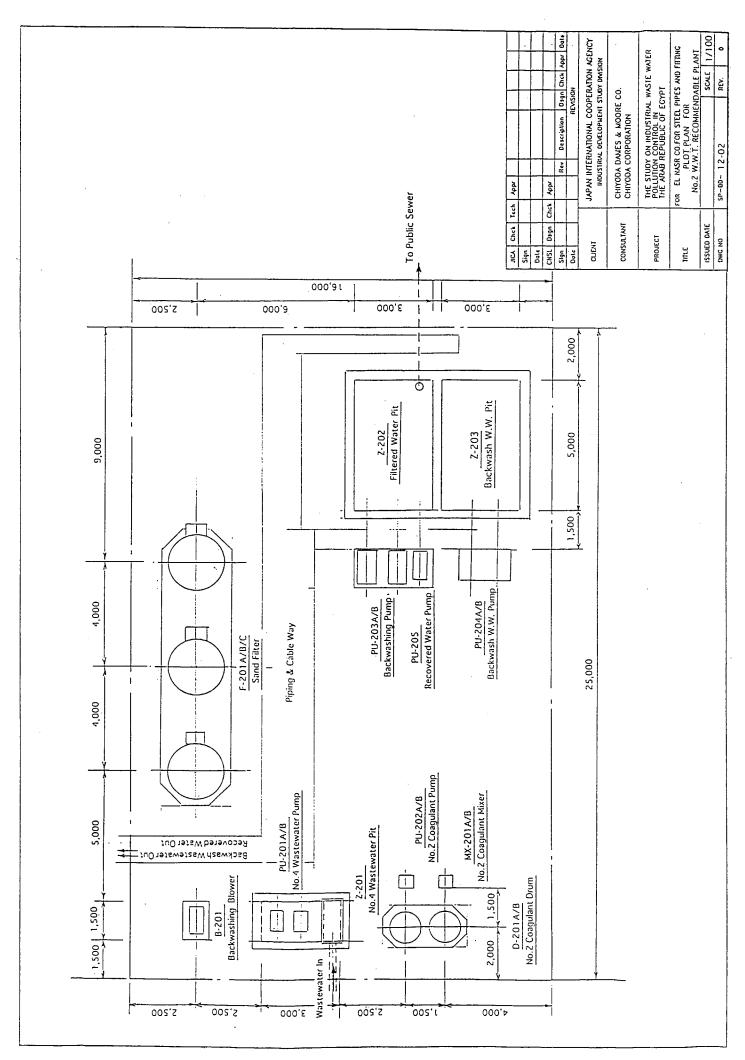
BASIC DESIGN PACKAGE OF

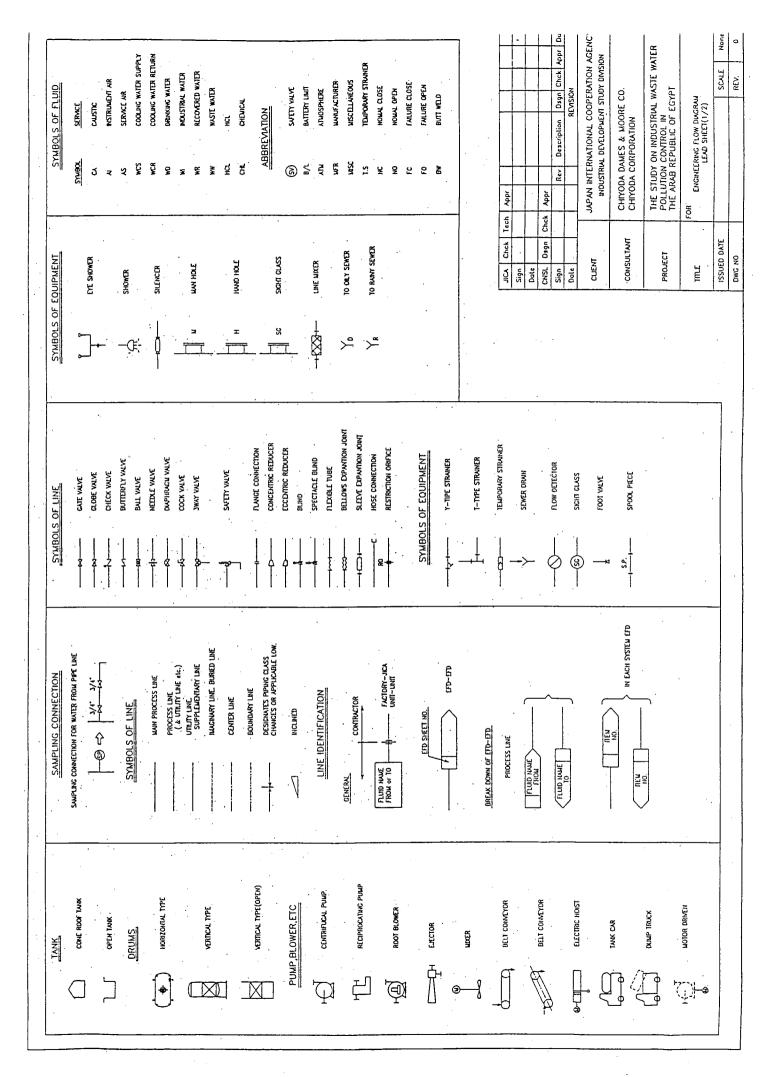
RECOMMENDABLE WASTEWATER TREATMENT PLANT

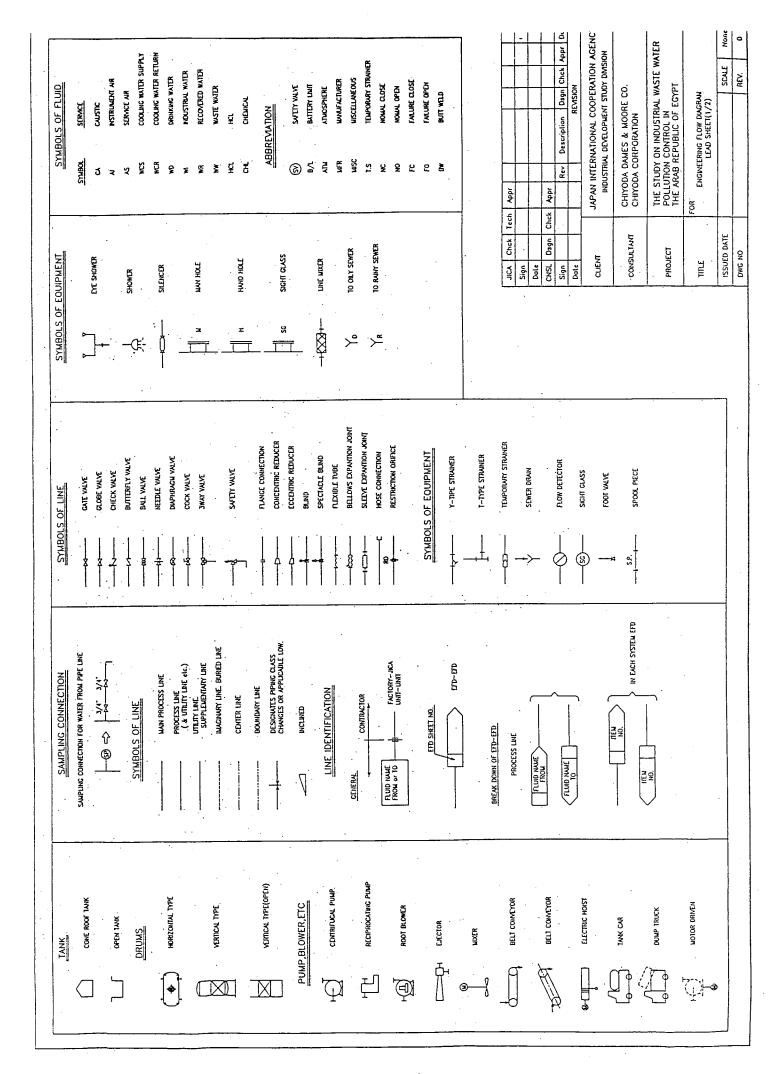
FOR

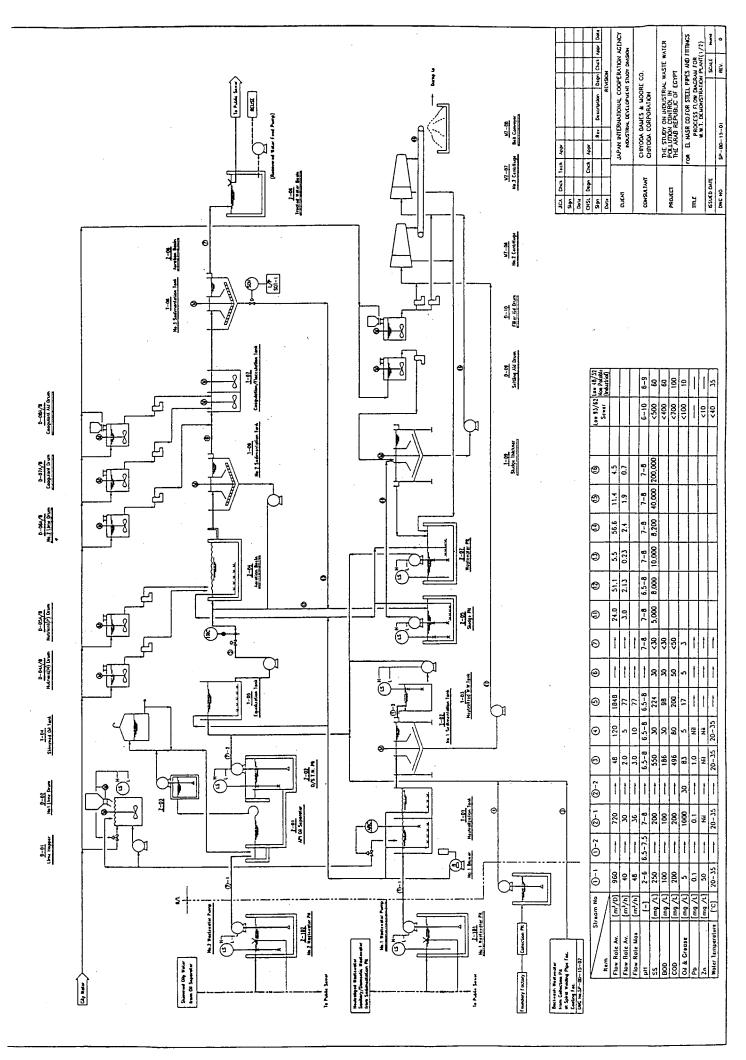

PIPES AND EL NASR CO. FOR STEEL

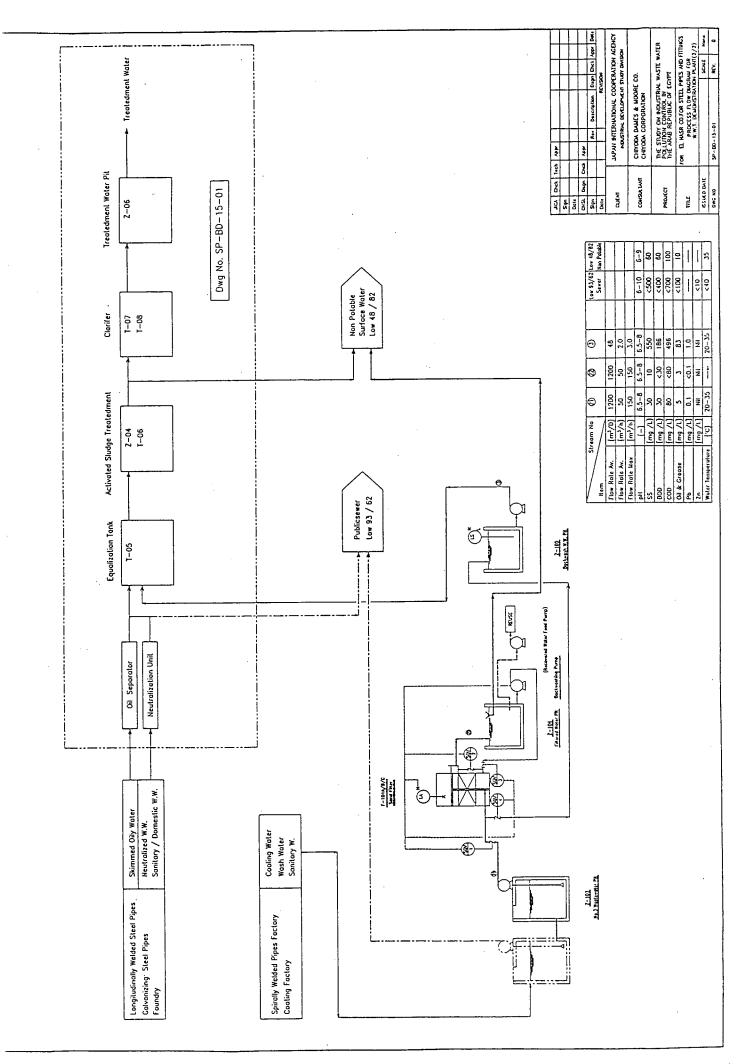

February 2000

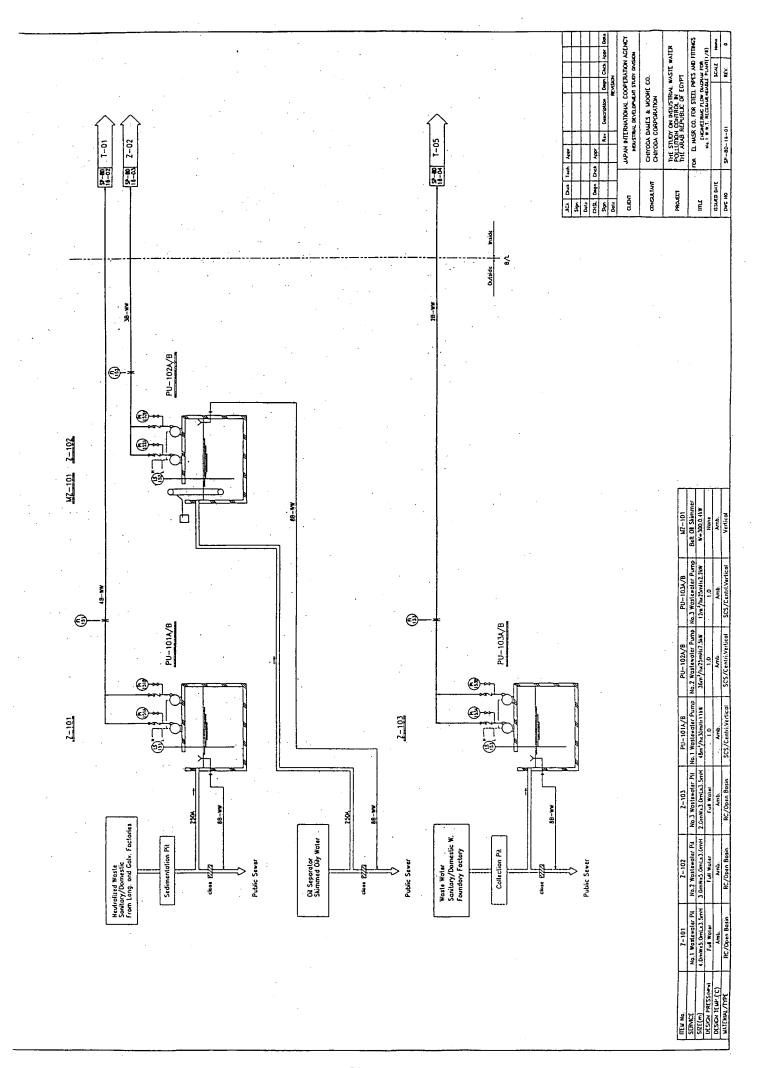

CHIYODA DAMES AND MOORE CO.

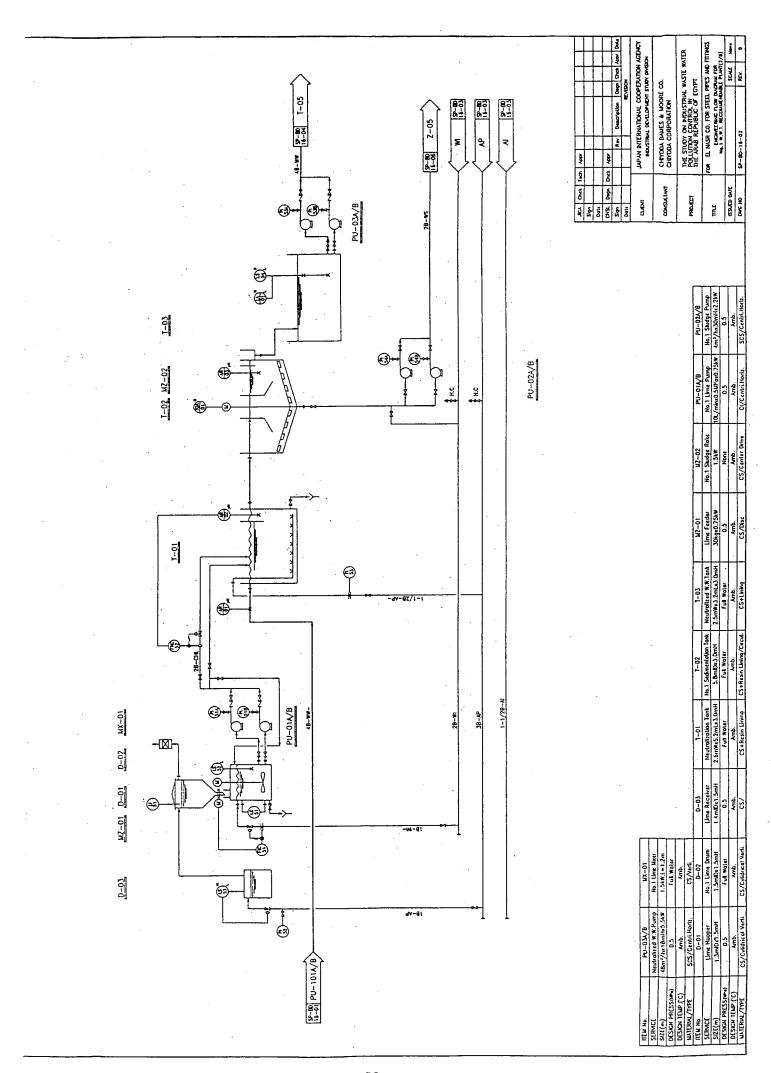

CHIYODA CORPORATION

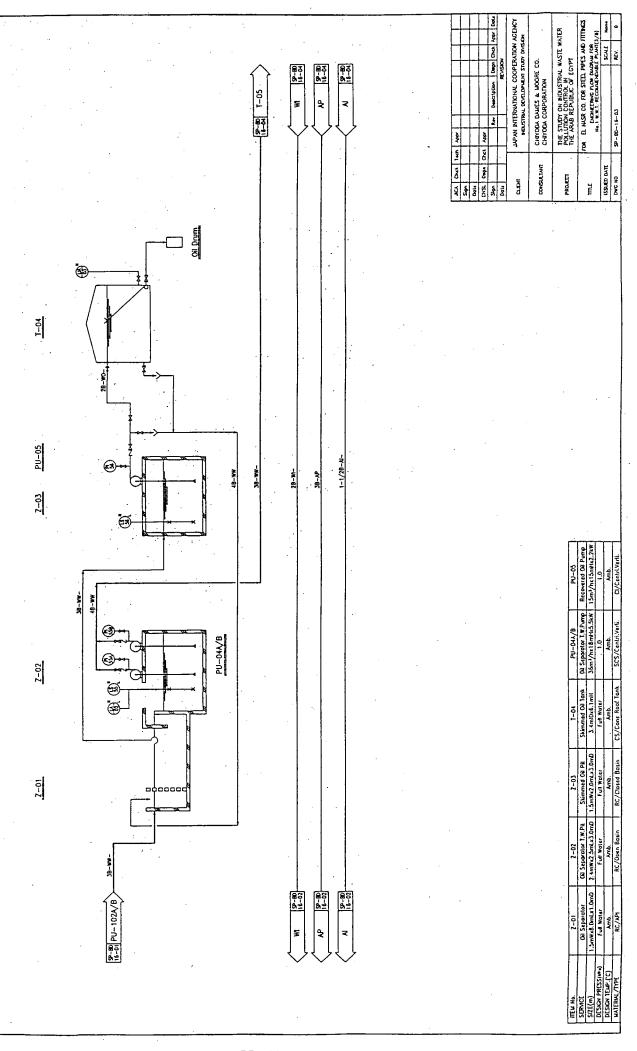

39. Open yard for waste dry solids (core sand slag etc) EL NASR CO. FOR STEEL PIPES & FITTINGS LOCATION OF WASTEWATER TREATMENT PLANT 7. Smll fittings fandry (includes chanical store) 29. Product stores (2-8 inch and spiral pipes) 20 Large fittings finishing area/workshop 13. Water cooling systm(0.5-4 inch pipes 12 Product store (pipes) and scrap yard SP-BD-12-00 30. Spiral pipe mill (6-18 and 5-60 inch) 14 Carage (includes car workshop) 26. Coke store, scrap and limestion 11. Store for fourthy raw matrials 9. Covered stare for waste oils - 10. Product stare (0.5-4 inch pipe) 8 Calvanising plant (smull fittings) 32 Painting shop 33 Old spiral pipe mill(6-24 inch) 25 Main electrical substation 18 Product stare (pipe fitting) 37. Central gas cylinder stire 27. Raw material store (coils) 28 Raw meterial store(coils) 34. Raw material store (coils) 35. Fuel dispensing station OWG. NO. Trausport department 21: Coolong for foundries 38 Zine dross distillation 24. Central material store 4 Nain spare parts store 19. Large fitting foundy 22 Casting foundries 6 Electric abstation 3054 inch pipe mill 31.2-8 inch pipanill 23. Administration 36. Oxygen plant 5. Administration 15. Workshop 17. Clinic

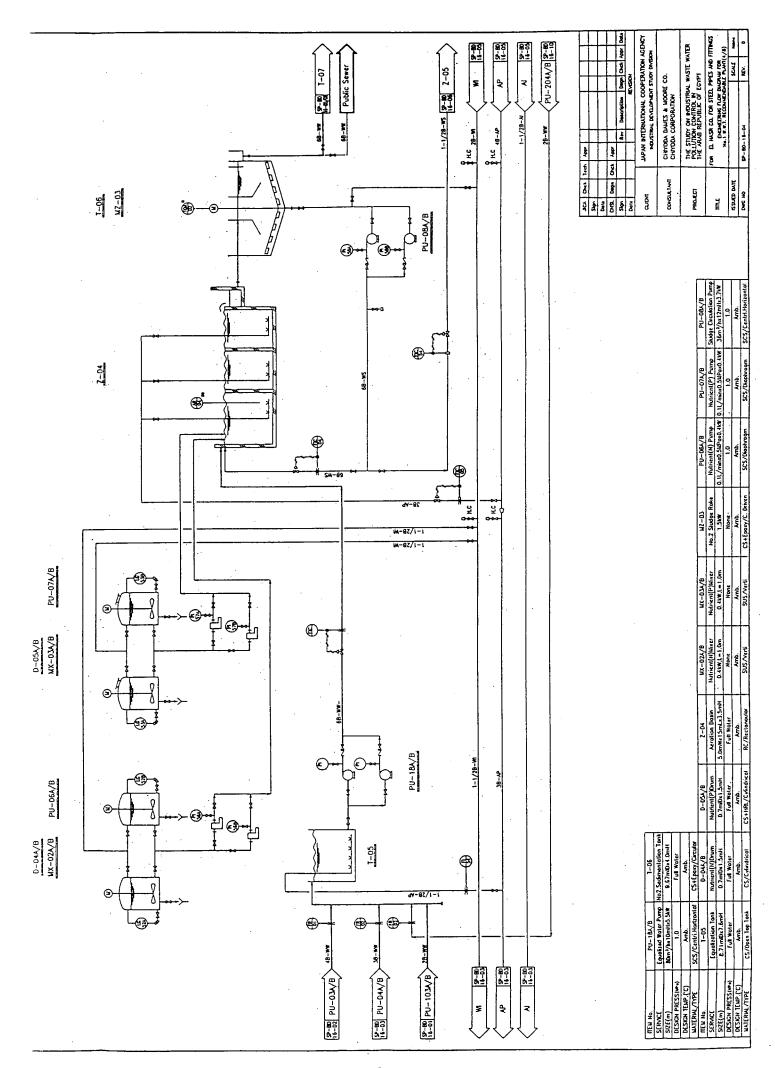


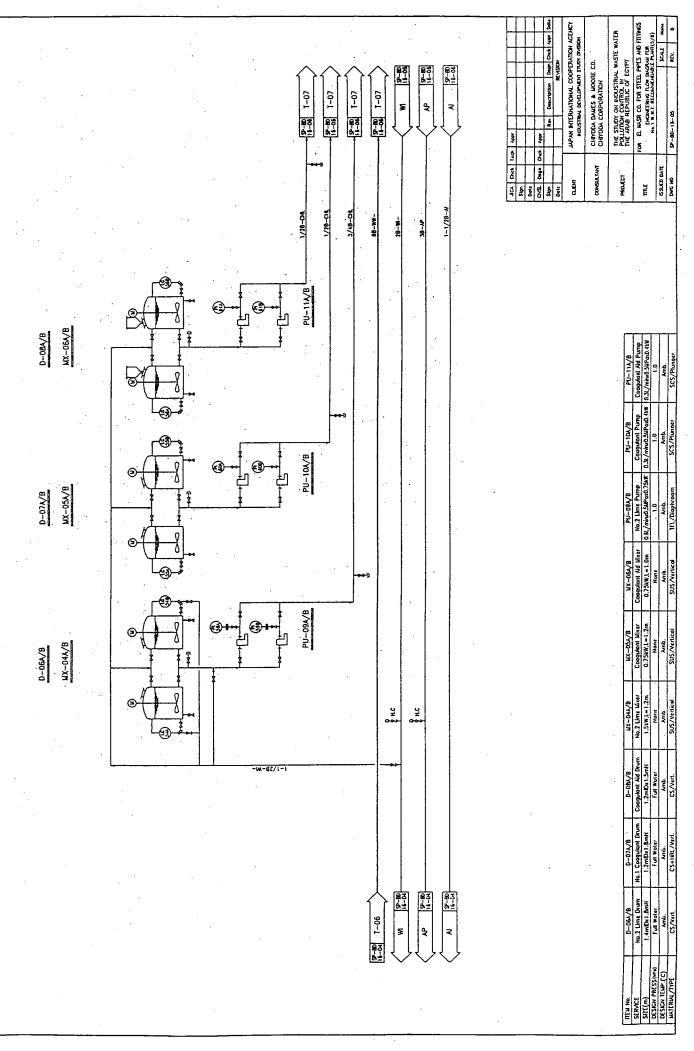


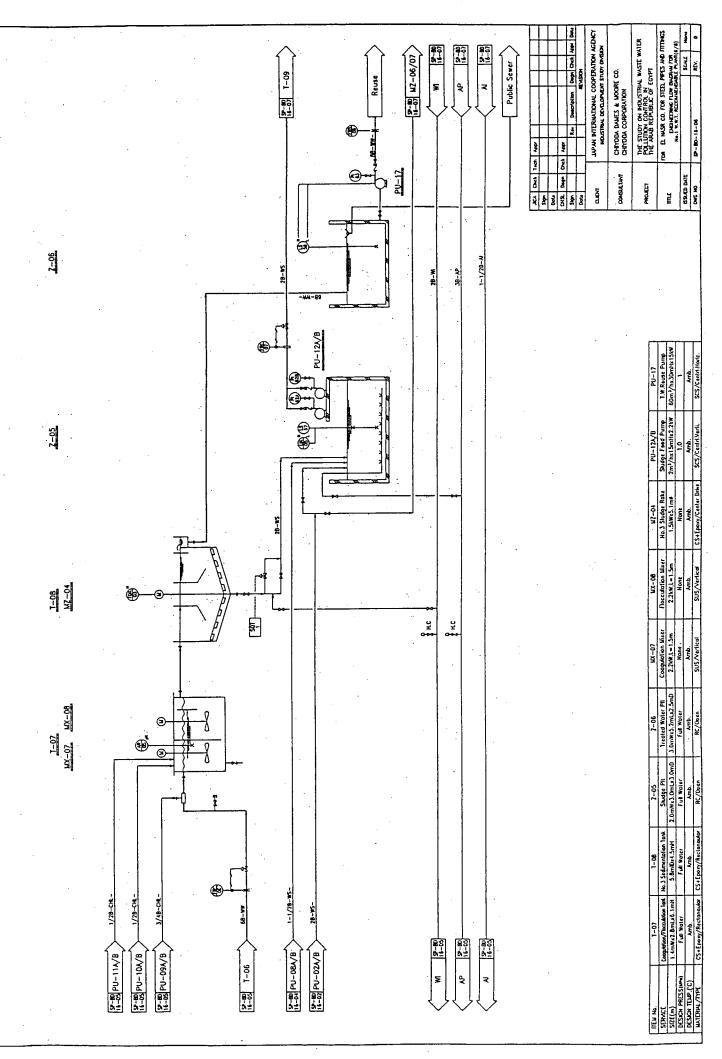


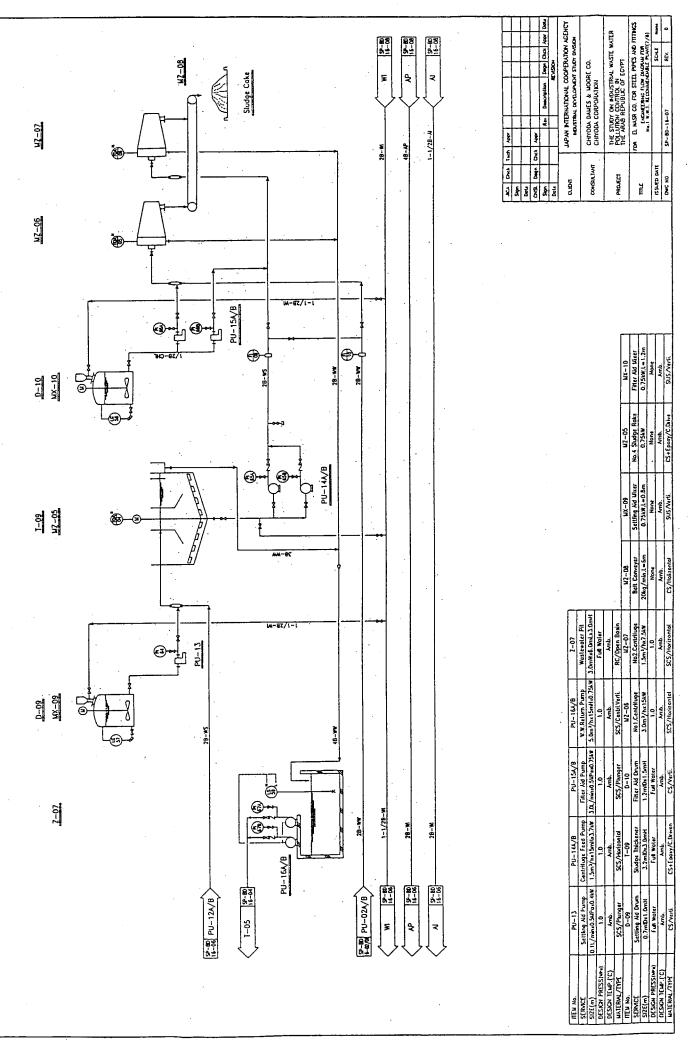


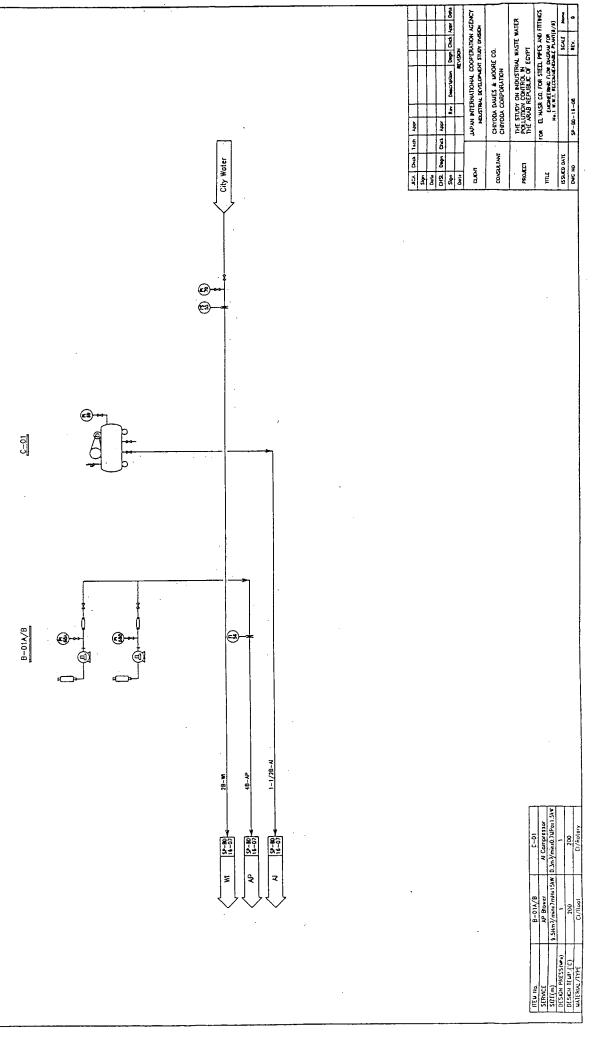


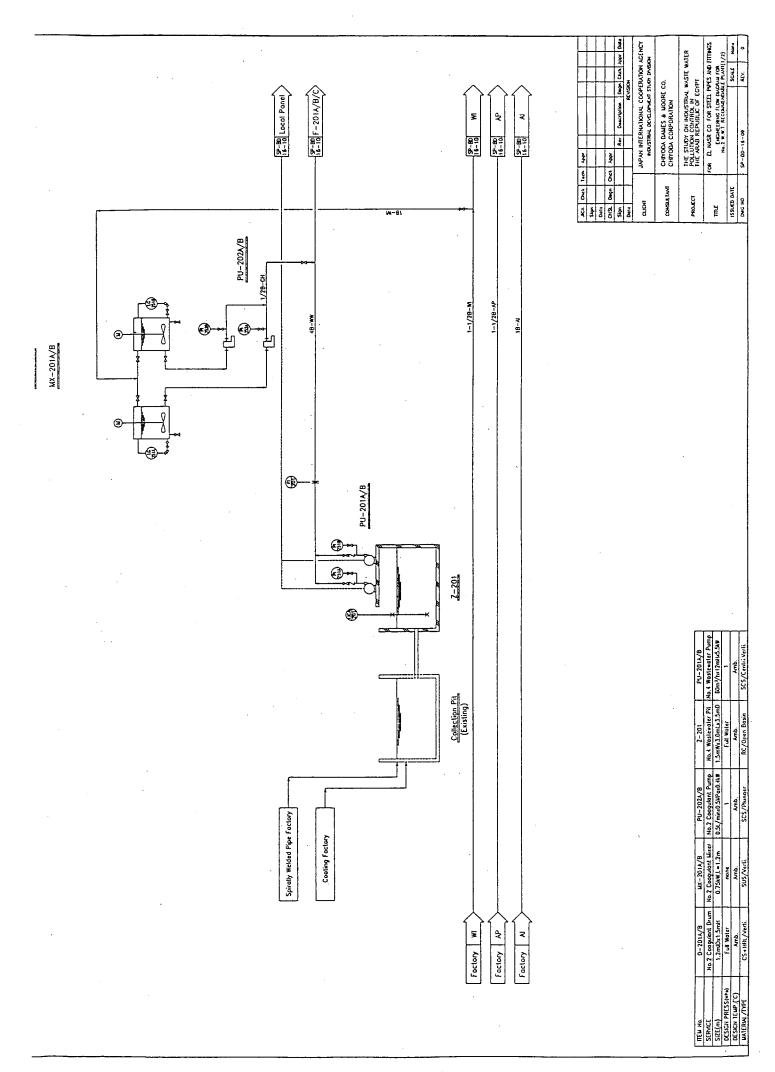


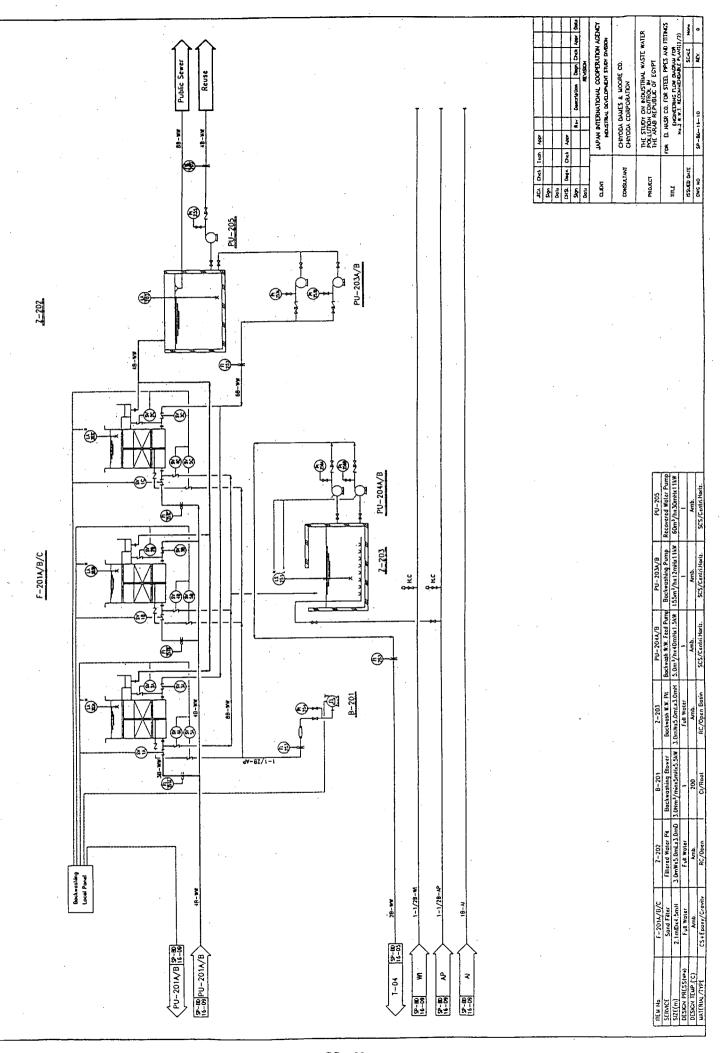


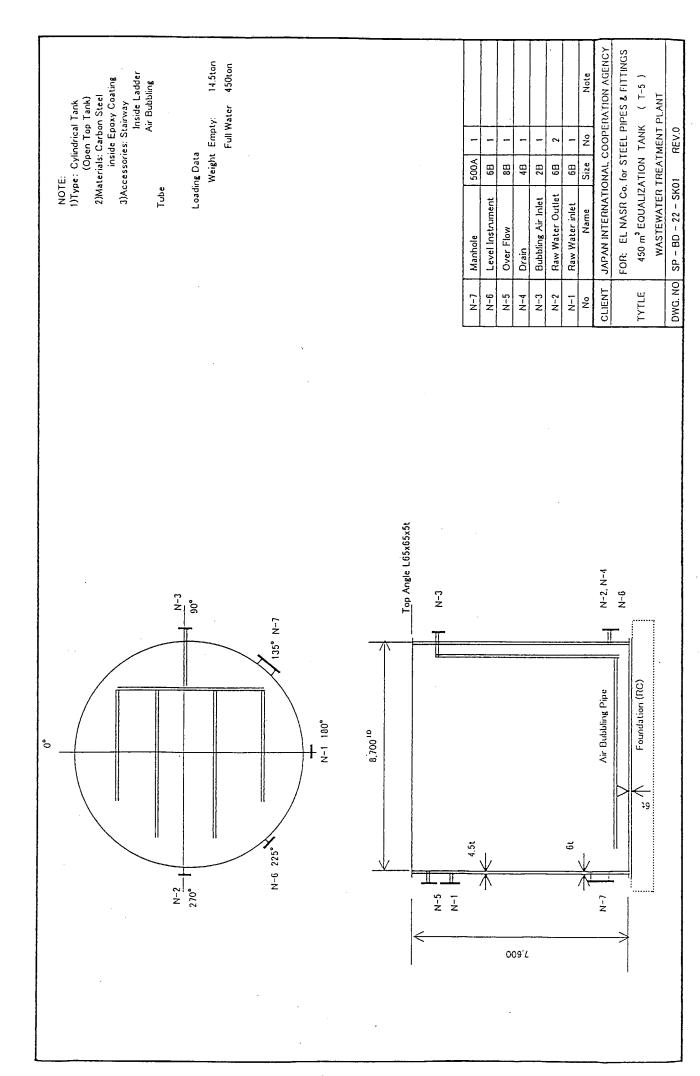


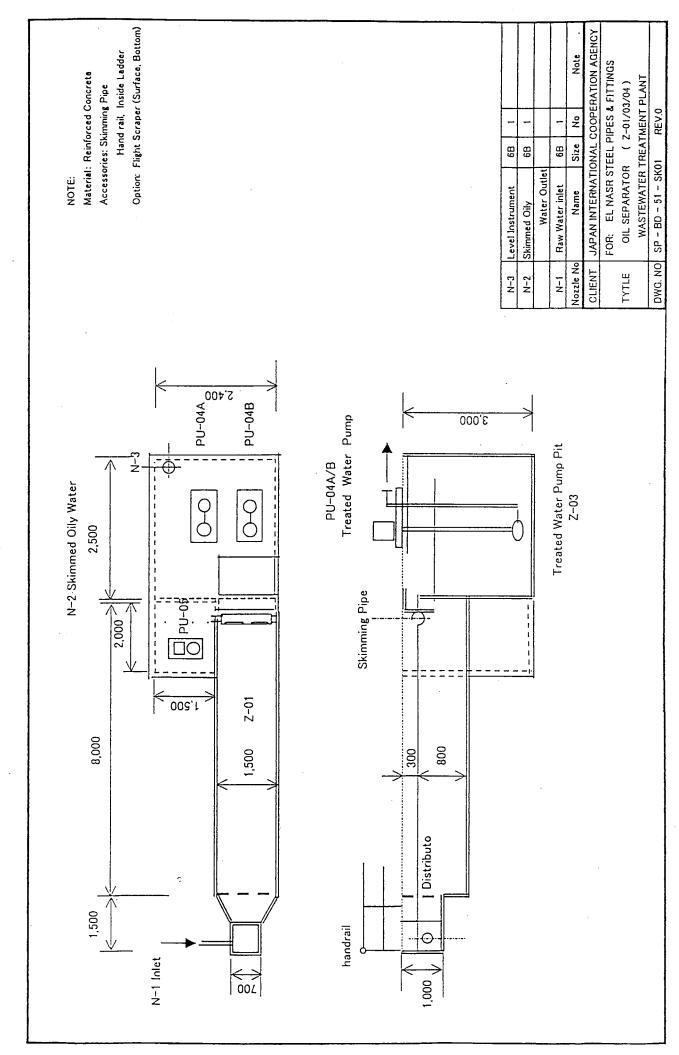


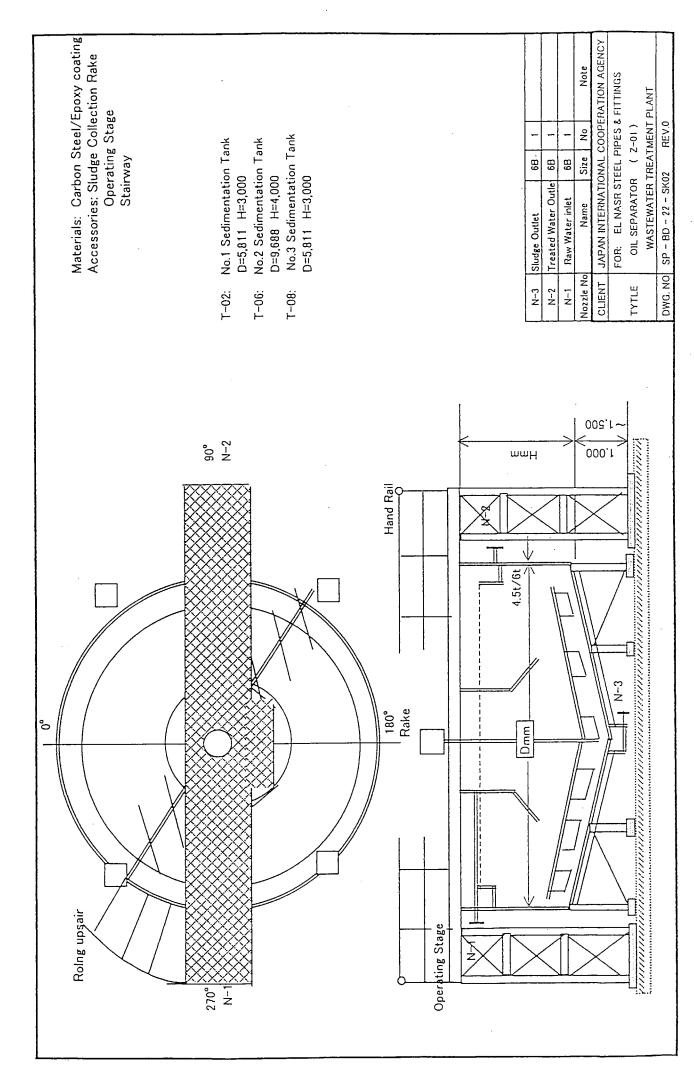


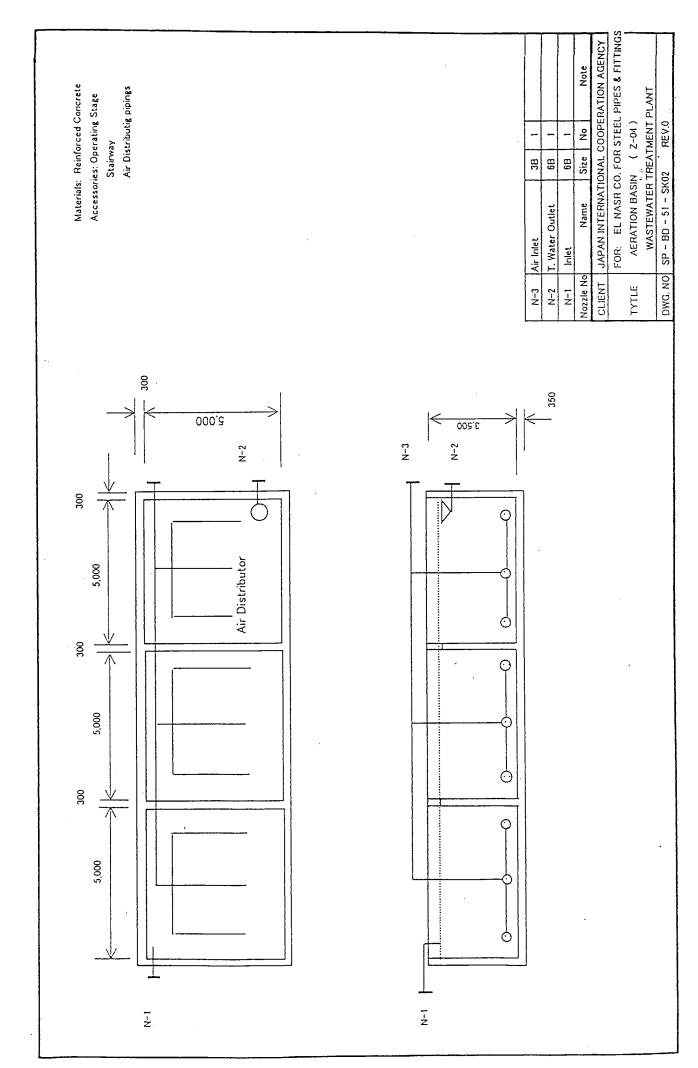


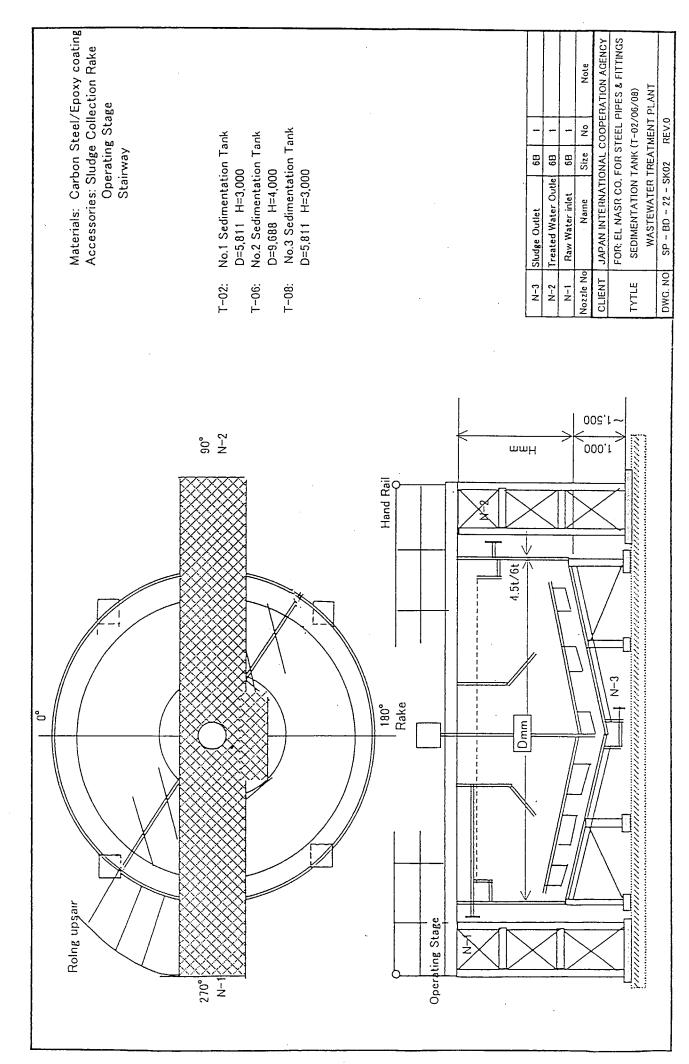


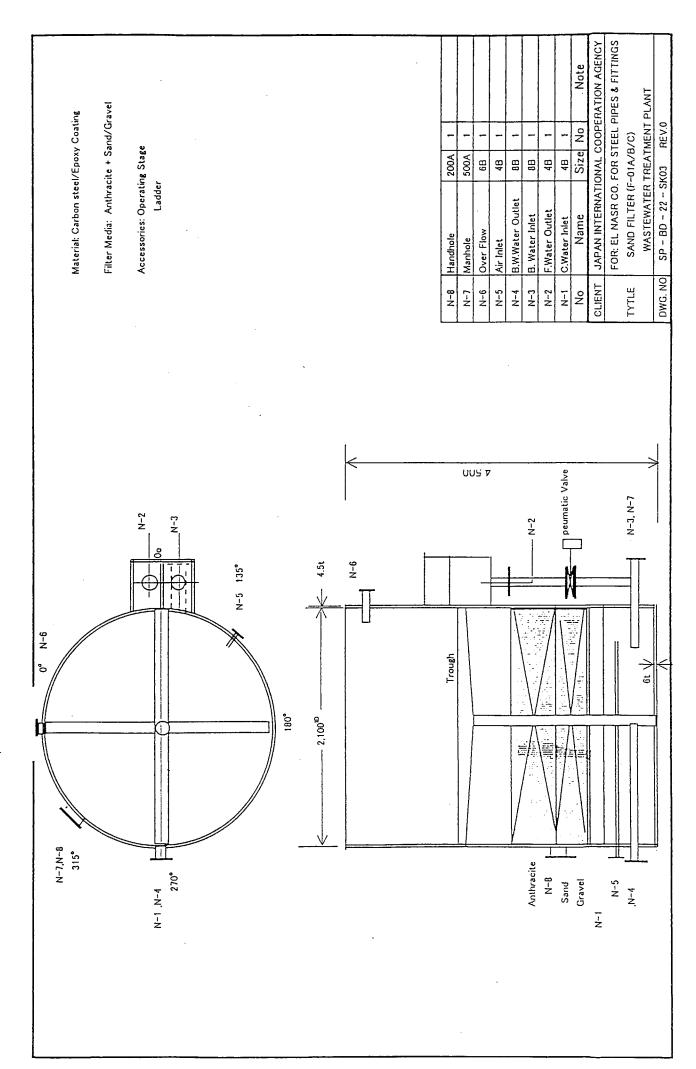


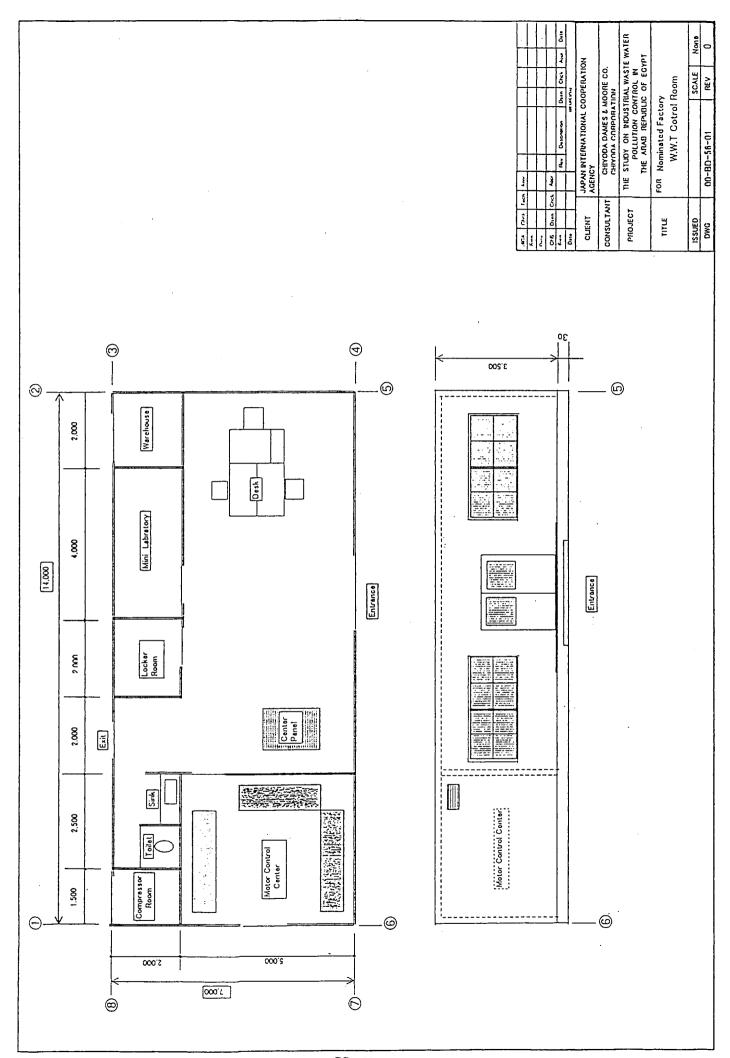


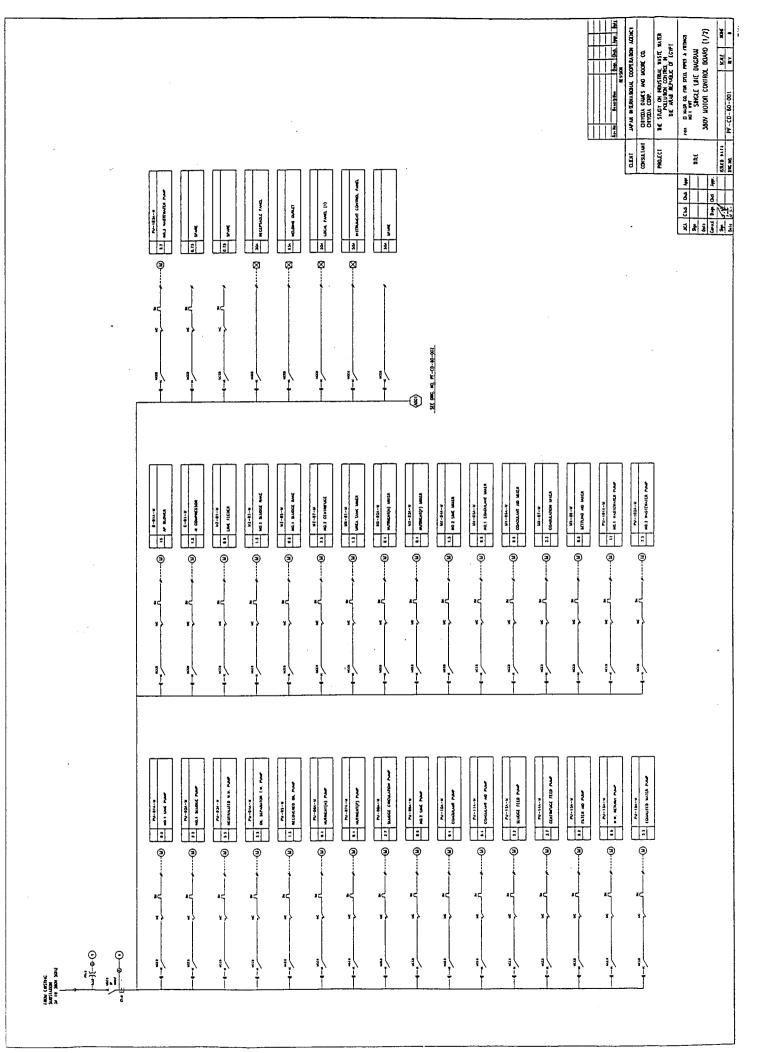


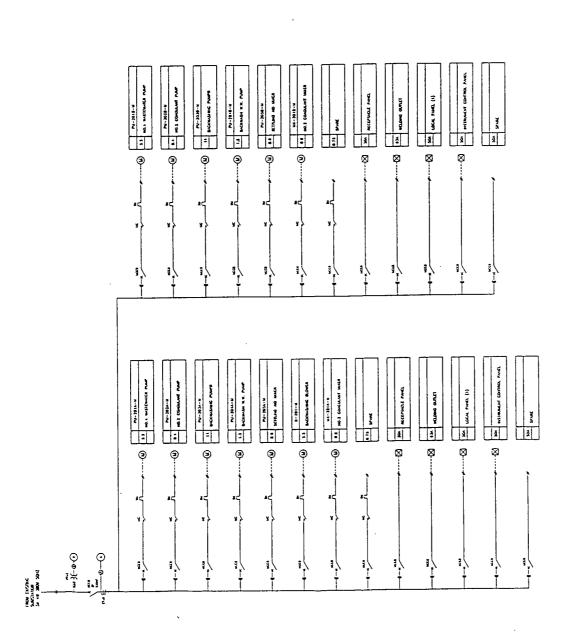


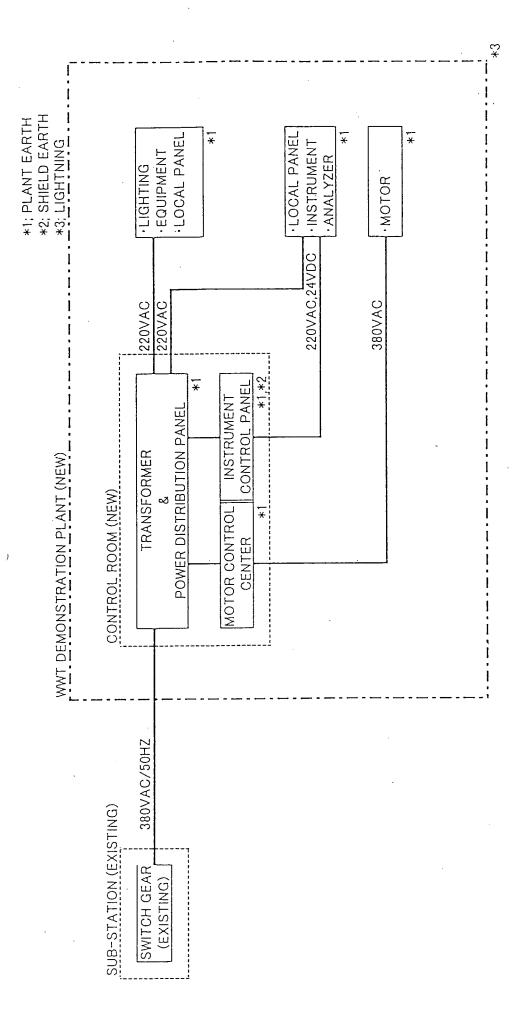












		Frida Saubita	3 00 #	
	A TOTAL TO A PORTER A TOTAL TOTAL TOTAL A T		IOTOM IMITEMO INTO	25 (te 0.0 1997 Sp
	1 No.188-10			
		2 d		
(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		* - * * * * * * * * * * * * * * * * * *		

Fr. In. Counties Des GAS Are Bett	LIPAK INTERUTURAL COOPERABOR ACENCY	CIETOSA DALES AND MODEL CO. CIETOSA CORP.	DE STADY OF HOUSTRAL WASTE WATER POLIUMON CONFRO. N DE JAMB REPUBLIC OF COPF	FOR DENIES OF TON STALL PPCS & INTRACS	SHOLE UNE DIAGRAL	MOV MOTOR CONTROL BOARD		SCAL NON	PF-CD-60-003 MEY 0	180
	QUENT	CONSULANT	PROLECT		Ĭ			SMB BATE	DWC NO.	
				ŧ			ŧ	Γ		
				8			8	Γ		
				3	Г		ş.	1	37	
				র্	ž	a de	Į.	ā	1	l

CONFIGURATION OF ELECTRICAL & INSTRUMENTATION SYSTEM FOR DEMONSTRATION PLANT

Doc. No.	SP-BD-L-01-(1/6)			T			
CLIENT	: Japan International Cooperation Agency	REV	1	2	3	MADE	
PROJECT	:The Study on Ind. W. W. Pollution Control	BY				CKD	
	:W. W. T. Recommendation Plant	APVE				APVE	
WASTE W.	:Industrial Wastewater/Sanitary W.	DATE				DATE	

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
T-01	Neutralization Tank	1	Rectangular	Carbon Steel/Resin
			2. 6mWx5. 2mLx3. 0mH	Lining
T-02	No. 1 Sedimentation Tank	1	Circular	Carbon Steel/Resin
			5.8mIDx3.0mH	Lining
T-03	Neutralized W.W. Tank	1	Rectangular	Carbon Steel/Resin
			2. 5m\x3. 2mLx3. 0mH	Lining
T-04	Skimmed Oil Tank	1	Cone Roof Tank	Carbon Steel
			3. 4mIDx6. 1mH	
T-05	Equalization Tank	1	Open Top Tank	Carbon Steel/Epoxy
			8.71mIDx7.6mH	Coating
T-06	No. 2 Sedimentation Tank	1	Circular	Carbon Steel/Epoxy
			9.67mIDx4.0mH	Coating
T-07	Coagulation/Flocculation	1	Rectangular	Carbon Steel/Epoxy
	Tank		1. 4mWx2. 8mLx6. 1mH	Coating
T-08	No. 3 Sedimentation Tank	1	Circular	Carbon Steel/Epoxy
			5.8mIDx4.5mH	Coating
T-09	Sludge Thickener	1	Circular	Carbon Steel/Epoxy
			3. 2mIDx3. 0mH	Coating
D-01	Lime Hopper	1	Cylindrical, Vrtical	Carbon Steel
			1.3mIDx1.5mH	
D-02	No. 1 Lime Drum	1	Cylindrical, Vertical	Carbon Steel
			1.5mIDx1.5mH	
D-03	Lime Receiver	1	Cylindrical, Horizontal	Carbon Steel
			1.4mIDx1.5mH	
D-04A/B	Nutrient(N) Drum	2	Cylindrical, Vertical	Carbon Steel
			0.7mIDx1.5mH	
D-05A/B	Nutrient(P) Drum	2	Cylindrical, Vertical	C.S + H.R. Lining
			0.7mIDx1.5mH	
D-06A/B	No.2 Lime Drum	2	Cylindrical, Vertical	Carbon Steel
			1.4mIDx1.8mH	
D-07A/B	No.1 Coagulant Drum	2	Cylindrical, Vertical	C. S. +H. R. Lining
			1. 2mIDx1. 8mH	

Doc. No.	SP-BD-L-01-(2/6)						
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	
PROJECT	:The Study on Ind. W. W. Pollution Control	BY		,		CKD	
PLANT	:W.W.T. Recommendation Plant	APVE				APVE	
WASTE W.	: Industrial Wastewater/Sanitary W.	DATE				DATE	

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
D-08A/B	Coagulant Aid Drum	2	Cylindrical, Vertical	Carbon Steel
2 0011, 2			1. 2mIDx1. 5mH	
D-09	Settling Aid Drum	1	Cylindrical, Vertical	Carbon Steel
			O. 7mIDx1. OmH	
D-10	Filtered Aid Drum	. 1	Cylindrical, Vertical	Carbon Steel
			1. 2mIDx1. 5mH	
D-201A/B	NO.2 Coagulant Drum	2	Cylindrical, Vertical	C. S. +H. R. Lining
			1.2mIDx1.5mH	
7 101	N. 1 11		D . ///)	
Z-101	No.1 Wastewater Pit	1	Open Basin/Underground	R.C. (out of Battery)
7 100	N 0 m · D ·		4. 0mWx5. 0mLx3. 5mH	
Z-102	No. 2 Wastewater Pit	1	Open Basin/Underground	R.C. (out of Battery)
7.100	N 0 # 5		3. 0m\x5. 0mLx3. 0mH	
Z-103	No.3 Wastewater Pit	1	Open Basin/Underground	R.C. (out of Battery)
			2. 0mWx3. 0mLx3. 5mH	
Z-01	Oil Separator	1	API Standard/underground	R. C.
			1.5m\x1.0mDx8.0mL	
Z-02	Oil Separator T.W. Pit	1	Open Basin/Underground	R. C.
			2. 4mWx2. 5mLx3. 0mD	
Z-03	Skimmed Oil Pit	11	Closed Basin/Underground	R. C.
			1. 5mWx2. 0mLx3. 0mD	
Z-04	Aeration Basin	1	Rectangular/Aboveground	R. C.
			5. OmWx15. OmLx3. 5mH	with Air Bubbling
Z-05	Sludge Pit	1	Rectagular/Underground	R. C.
·			2. OmWx3. OmLx3. OmD	
Z-06	Treated Water Pit	1	Rectangular/Aboveground	R. C.
			3. OmWx5. 2mLx2. 5mH	
Z-07	Wastewater Pit	1	Rectangular/Underground	R. C.
			3. Om\x6. OmLx3. OmH	
Z-201	No.4 Wastewater Pit	1	Open Basin/Underground	R. C.
			1.5m\x3.0mLx3.5mH	
Z-202	Filtered Water Pit	1	Rectangular/Aboveground	R. C.
			3. OmWx5. OmLx3. OmH	

Doc. No. SP-BD-L-01-(3/6) REV MADE CLIENT : Japan International Cooperation Agency 2 PROJECT : The Study on Ind. W. W. Pollution Control BY CKD : W. W. T. Recommendation Plant APVE APVE PLANT WASTE W. : Industrial Wasterwater/Sanitary W. DATE DATE

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
Z-203	Backwash W.W. Pit	1	Rectangular/Underground	R. C.
			3. OmWx5. OmLx3. OmH	
PU-101A/B	No.1 Wastewater Pump	2	Centri. Vertical ,L=3.5m	SCS
			48m³/hx30mHx11kW	Outside of Battery
PU-102A/B	NO.2 Wastewater Pump	2	Centri. Vertical ,L=3m	scs
			36m³/hx25mHx7.5kW	Outside of Battery
PU-103A/B	NO.4 Wastewater Pump	2	Centri. Vertical ,L=3m	scs
			12m³/hx25mHx2.2kW	Outside of Battery
PU-01A/B	No.1 Lime Pump	2	Centri. Horizontal	CI
		\ "	10L/minx0.5MPax0.75kW	
PU-02A/B	No.1 Sludge Pump	2	Centri. Horizontal	SCS
			4m³/hx30mHx2.2kW	
PU-03A/B	Neutralized W.W. Pump	2 ·	Centri. Horizontal	SCS
			48m³/hx18mHx5.5kW	
PU-04A/B	Oil Separator T.W. Pump	2	Centri. Vertical	scs
			36m³/hx18mHx5.5kW	
PU-05	Recovered Oil Pump	1	Centri. Vertical	CI
			15m ³ /hx15mHx2.2kW	
PU-06A/B	Nutrient(N) Pump	2	Recipro. Plunger	scs
			0.1L/minx0.5MPax0.4kW	
PU-07A/B	Nutrient(P) Pump	2	Recipro. Plunger	SCS
			0.1L/minx0.5MPax0.4kW	
PU-08A/B	Sludge Circulation Pump	2	Centri. Horizontal	scs
		·	36m ³ /hx12mHx3.7kW	
PU-09A/B	No.2 Lime Pump	2	Recipro. Diaphragm	Teflon/SCS
			0.6L/minx0.5MPax0.75kW	
PU-10A/B	Coagulant Pump	2	Recipro. Plunger	scs
			0.3L/minx0.5MPax0.4kW	
PU-11A/B	Coagulant Aid Pump	2	Recipro. Plunger	SCS
			0.3L/minx0.5MPax0.4kW	
PU-12A/B	Sludge Feed Pump	2	Centri. Vertical	SCS
			2m ³ /hx15mHx2.2kW	

NOTE:

SP-BD-L-01-(4/6) Doc. No. REV MADE : Japan International Cooperation Agency CLIENT PROJECT : The Study on Ind. W. W. Pollution Control BY CKD APVE : W. W. T. Recommendation Plant APVE PLANT DATE WASTE W. : Industrial Wastewater/Sanitary W. DATE

Equipment NO.	Service	No. Req'd	Type of Equipment	Remarks
PU-13_	Settling Aid Pump	1		SCS
			0.1L/minx0.5MPax0.4kW	
PU-14A/B	Centrifuge Feed Pump	2	Centri. Horizontal	scs
			1.5m ³ /hx15mHx3.7kW	
PU-15A/B	Filter Aid Pump	2	Recipro. Plunger	scs
			3L/minx0.5MPax0.75kW	
PU-16A/B	W. W. Return Pump	2	Centri. Vertical	SCS
			5m ³ /hx15mHx0.75kW	
PU-17	T.W. Reuse Pump	1	Centri. Horizontal	SCS
			60m ³ /hx30mHx15kW	
PU-18A/B	Equalized Water Pump	2	Centri.Horizontal	scs
			80m ³ /hx10mHx5.5kW	
PU-201A/B	No. 4 Wastewater Pump	2	Centri. Vertical ,L=3m	CI
			60m ³ /hx12mHx5.5kW	Coating Factory
PU-202A/B	No. 2 Coagulant Pump	2	Recipro.	SCS
			0.5L/min.x0.5MPax0.4kW	Coating Factory
PU-203A/B	Backwashing Pump	2	Centri. Horizontal	CI
			155m ³ /hx12mHx11kW	Coating Factory
PU-204A/B	Backwash W.W.Feed Pump	2	Centri. Horizontal	CI
			5m ³ /hx40mHx1.5kW	Coating Factory
PU-205	Recovered Water Pump	1	Centri. Horizonta, L=3m	CI
			60m ³ /hx30mHx11kW	Coating Factory
B-01A/B	AP Blower	2	Root	CI
			9.5Nm³/minx7mHx15kW	
B-201	Backwashing Blower	2	Root	CI
			3.0Nm ³ /minx5mHx5.5kW	
C-01	AI Compressor	2	Baby Compressor	CI, with Air Tank
			0.3m ³ /minx0.7MPax1.5kW	
MZ-101	Belt Oil Skimmer	1	Vertical	SUS
·			0.4k\x0.7MPax0.75k\	
MZ-01	Lime Feeder	1	Disc	CS
		1	30kg/hx0.75kW	

NOTE:

Doc. No. SP-BD-L-01-(5/6)CLIENT : Japan International Cooperation Agency REV MADE 2 3 PROJECT : The Study on Ind. W. W. Pollution Control BY CKD APVE **PLANT** : W. W. T. Recommendation Plant APVE WASTE W. : Industrial Wasterwater/Sanitary W. DATE DATE

Equipment		No.	T. C.D.	Б. 1
NO.	Service	Reg'd	Type of Equipment	Remarks
	No.1 Sludge Rake	1	Center Driven	CS+Epoxy Coating
			1. 5k₩	
MZ-03	No. 2 Sludge Rake	1	Center Driven	CS+Epoxy Coating
			1. 5k₩	
MZ-04	No.3 Sludge Rake	1	Center Driven	CS+Epoxy Coating
			1.5kW	·
MZ-05	No.4 Sludge Rake	1	Center Driven	CS+Epoxy Coating
			0. 75k\	
MZ-06	No.1 Centrifuge	1	Horizontal	scs
			3m ³ /hx15kWx3,000rpm	
MZ-07	No.2 Centrifuge	1	Horizontal	SCS
			1.5m ³ /hx7.5kWx3,000rpm	
MZ-08	Belt Conveyer	1	Horizontal	CS+Rubber
			20kg/minx0.75kW	
MX-01	No.1 Lime Mixer	1	Vertical	SUS
			1.5kW, L=1.2m	
MX-02A/B	Nutrient(N) Mixer	2	Vertical	SUS
			0.4k₩, L=1.0m	<u> </u>
MX-03A/B	Nutrient(P) Mixer	2	Vertical	SUS
			O. 4kW, L=1. Om	
MX-04A/B	No.2 Lime Mixer	2	Vertical	SUS
			1.5kW, L=1.2m	
MX-05A/B	No.1 Coagulant Mixer	2	Vertical	SUS
			0.75kW, L=1.2m	
MX-06A/B	Coagulant Aid Mixer	2	Vertical	SUS
	<u> </u>		0.75kW, L=1.0m	
MX-07	Coagulation Mixer	1	Vertical	SUS
			2.2kW, L=1.5m	
MX-08	Flocculation Mixer	1	Vertical	SUS
			2. 2kW, L=1.5m	
MX-09	Settling Aid Mixer	1	Vertical	SUS
			0.75kW, L=0.8m	

NOTE:

Doc. No.	SP-BD-L-01-(6/6)				,	, , ,	
CLIENT	:Japan International Cooperation Agency	REV	1	2	3	MADE	
	:The Study on Ind. W. W. Pollution Control	BY				CKD	
_	:W.W.T. Recommendation Plant	APVE				APVE	
	: Industrial Wastewater/Sanitary W.	DATE				DATE	

Equipment NO.	Service	No. Reg'd	Type of Equipment	Remarks
MX-10	Filter Aid Mixer	11	Vertical ·	SUS
			0.75kW, L=1.2m	
MX-201A/B	No.2 Coagulant Mixer	2	Vertical	SUS
W-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			0.75kW, L=1.2m	
F-201ABC	Sand Filter	3	Vertical, Cylindrical, Open	CS+Epoxy coating
			25m³/h, 2.1mIDx4.5mH	Anthracite + Sand
			~	
	· .			
······································				
	·			
			·	
	. <u></u>			
·				
			•	Ť.

INSTRUMENT LIST for EL. NASR Co. for STEEL PIPES and FITTINGS

Doc. No. SP-BD-L2-(1/4): Japan International Cooperation Agency REV 2 3 MADE CLIENT PROJECT : The Study on Industrial W. W. Pollution Contro CHKD BY APVE APVE : W. W. T. DEMONSTRATION PLANT WASTE W. Process Water & Sanitary/Domestic Water DATE DATE

Instrument	Service	No.	Type of Instrument	Remarks
NO.		Req'd		
AR-01	pH Analyzer	1	Electrode, inline	Inlet of T-01
		ļ	pH 1-10	C. P.
AR-02	pH Analyzer	1	Electrode	Surface T-01
			pH 1-10	C. P.
AR-03	pH Analyzer	1 .	Electrode	Outlet T-02
			pH 1-10	C. P.
AR-04	DO Analyzer	1	Electrode	Z-04
			$0-15$ mg/L as 0_2	C. P.
AR-05	pH Analyzer	1	Electrode	Outlet T-07
			pH 4-9	C. P.
FR-01	Flow Recorder	1	Orifice, 4B	Outlet of PU-04
			0-60m ³ /h, WW	C. P.
FR-02	Flow Recorder	1	Orifice, 3B	Outlet of PU-05
-			0-45m ³ /h, WW	C. P.
FR-03	Flow Recorder	1	Orifice, 1-1/2B	Outlet of PU-204
			0-5m ³ /h, WW	C. P.
FIC-04	Flow Conroller	1	Electro-magnetic, 6B	Outlet of PU-08
			0-60m ³ /h, WS	C. P.
FIC-05	Flow Conroller	1	Orifice, 3B	Inlet of Z-04
			O-10Nm³/min, AP	C. P.
FRC-06	Flow Recorder/Controller	1	Orifice, 6B	Inlet of T-07
			0-90m ³ /h, WW	C. P.
FRC-07	Flow Recorder/Controller	1	Electro-magnetic, 2B	Outlet of PU-12
			0-5m ³ /h, WS	C. P.
FRS-08	Flow Integrated Indicator	1	Orifice, 6B	Outlet of PU-17
		<u> </u>	0-90m ³ /h, WW	C. P.
 			0-1,000,000m ³ /c	

NOTE: C. P. =Centter Panel Mount

INSTRUMENT LIST for EL. NASR Co. for STEEL PIPES and FITTINGS

SP-BD-L2-(2/4)Doc. No. CLIENT : Japan International Cooperation Agency
PROJECT : The Study on Industrial W. W. Pollution Control REV MADE 3 CLIENT CHKD BY : W. W. T. DEMONSTRATION PLANT APVE APVE PLANT DATE WASTE W. Process Water & Sanitary/Domestic Water DATE

Instrument	Service	No.	Type of Instrument	Remarks
NO.		Req'd		
FI-09	Flow Indicator	1	Orifice, 4B	Inlet of MZ-061
			5m ³ /h, WS	Center Panel Mount
FI-10	Flow Indicator	1	Electro-magnetic, 2B	Inlet of MZ-07
			5m ³ /h, WS	C. P.
FIC-51	Flow Controller	11	Orifice, 1B	Inlet of D-02
			3m³/h, WI	
FRC-52	Flow Controller	1	Electro-magnetic, 2B	Inlet of T-01
			lm^3/h , 10% Lime	
FI-53	Flow Indicator	1	Orifice, 1-1/2B	Inlet of T-01
			5Nm³/min, AP	
FI-54	Flow Indicator	1	Orifice, 1-1/2B	Inlet of T-05
			10N/min, AP	
FS-55	Flow Integrator	1	Rotor Type for WD supply	Intake of WD
			2B,	
FI-56	Flow Indicator	1	Orifice, 4B	Outlet of B-01
			10N/min, AP	
FI-151	Flow Indicator	1	Orifice, 4B	Outlet of PU-101
			60m ³ /h, WW	
FI-152	Flow Indicator	1	Orifice, 3B	Outlet of PU-102
			45m ³ /h, WW	
FI-201	Flow Indicator	1	Orifice, 4B	Outlet of PU-201
			90m³/h, WW	L. P.
FIS-202	Flow Integrator	1	Orifice, WW	Outlet of PU-205
			90m ³ /h, WW	L. P.
FI-251A-C	Flow Inficator	3	Orifice, WW	Inlet of F-201ABC
			50m ³ /h, 3B	
FI-252	Flow Indicator	1	Orifice, WW	Outlet of PU-203
			180m ³ /h, 8B	
FI-253	Flow Indicator	1	Orifice, WW	Outlet of PU-204
			5m3/h, WS	

NOTE: C. P. =Center Panel Mount

L. P. =Local Panel Mount

INSTRUMENT LIST for EL. NASR Co. for STEEL PIPES and FITTINGS

Doc. No. SP-BD-L2-(3/4)

CLIENT : Japan International Cooperation Agency REV 1 2 3 MADE

PROJECT : The Study on Industrial W. W. Pollution Control BY CHKD

PLANT : W. W. T. DEMONSTRATION PLANT APVE APVE

WASTE W. Process Water & Sanitary/Domestic Water DATE DATE

Instrument	Service	No.	Type of Instrument	Remarks
NO.		Req'd		
LA-01	Level Alarm	1	Float	T-03
			H-L	C. P.
LA-02	Level Alarm	1	Float	Z-02
			H-L	C. P.
LIA-03	Level Indicator/Alarm	11	Displacer	T-04_
			H-Alarm	C. P.
LIA-04	Level Indicator/Alarm	1	Displacer	T-05
			H-Alarm	C. P.
LIA-05	Level Indicator/Alarm	1	Displacer	Z-05
			H-L Alarm	C. P.
LICA-201	Level Controller/Alarm	1	Float	Z-201
			H-L Alarm	L. P.
LA-202	Level Alarm	1	Float	Z-202
			L-Alarm	L. P.
LA-203ABC	Level Alarm	3	Electrode	F-201ABC
			H-Alarm	L. P.
LI-51	Level Indicator	1	Lime Pouder	D-01
LS-52	Level Switch	1	Lime 10% Milk	D-02
LS-53	Level Switch	1	Lime Pouder	D-03
LS-54	Level Switch	1	Float, WW, H-L	T-03
LS-55	Level Switch	11	Float, WW, H-L	2-02
LS-56	Level Switch	1	Float, WW, H-L	Z-03
LS-57	Level Switch	1	Float, WW, H-L	Z-05
LS-58	Level Switch	1	Float, WW, H-L	2-06
LS-59	Level Switch	1	Float, WW, H-L	Z-07
LS-151	Level Switch	1	Float, WW, H-L	Z-101
	Level Switch	1	Float, WW, H-L	Z-102
LS-251	Level Switch	1	Float, WW, H-L	Z-203

NOTE:

C. P. =Center Panel Mount

L.P. =Local Panel Mount

INSTRUMENT LIST for EL. NASR Co. for STEEL PIPES and FITTINGS

Doc. No. SP-BD-L2-(4/4) MADE CLIENT Japan International Cooperation Agency REV PROJECT : The Study on Industrial W. W. Pollution Control. BY CHKD :W.W.T. DEMONSTRATION PLANT APVE APVE PLANT WASTE W. Process Water & Sanitary/Domestic Water DATE DATE

Instrument	Service	No.	Type of Instrument	Remarks
NO.		Req'd		
LG-51	Level Gage	1	Tubular, L=1.5m	D-03
LG-52AB	Level Gage	2	Tubular, L=1.5m	D-04AB
LG-53AB	Level Gage	2	Tubular, L=1.5m	D-05AB
LG-54AB	Level Gage	2	Tubular, L=1.8m	D-06AB
LG-55AB	Level Gage	2	Tubular, L=1.8m	D-07AB
LG-56AB	Level Gage	2	Tubular, L=1.8m	D-08AB
LG-57	Level Gage	1	Tubular, L=1.0m	D-09
LG-58	Level Gage	1	Tubular, L=1.5m	D-10
LG-251AB	Level Gage	2	Tubular, L=1.5m	D-201AB
TQA-1	Torque Alarm	1	Limit Switch, kg-m	T-02
TQA-2	Torque Alarm	1	Limit Switch, kg-m	T-06
	Torque Alarm	1	Limit Switch, kg-m	T-08
TQA-4	Torque Alarm	1	Limit Switch, kg-m	T-09
	Torque Alarm	1	Limit Switch, kg-m	MZ-06
TQA-6	Torque Alarm	1	Limit Switch, kg-m	MZ-07
PI	For Lime milk and Sludge	ļ	Diaphragm Type	
	Pumps			
PI	Others		Buldon Tube Type	
		-		

NOTE: C.P. =Center Panel Mount

L. P. =Local Panel Mount

INDUCTION MOTOR LIST

: SP-BD-60-L1-(1/3) DOC. NO.

The Study on Industrial Waste Water Plant Japan International Cooperation Agency PROJECT CI.IENT

El Nusr Co, for Steel Pipes & Fittings WASTE W.

PI.ANT

Industrial W.W./Sanitary-Domestic W.W.

APVE DATE MADE: CKD ES. APVI: DATE ВY

lor Roma	- <u>1</u>		-	-	-	_												-											+	\dashv
	Finish							_	-			_	6	G	٥	۵	۵	٥	G	0	_	6	6	۵	۵	٥	<u>.</u>	D.		
. Location	-	8	8	90	g O	8	. O	90	00	00	8	8	8	8	8	90	00	90	8	8	2	8	8	8	8	8	8	00	-	8
ng Acc.	-				-							_						_		_		_	-	-	_	_			+	\dashv
e Bearing	-	_					_				_					_					-									\dashv
ing Drive	-		٥	٥	٥	٥	O	g	۵	G	0	ט	_	0	g	٥	٥	٥	0	В	8	G	٥	g	Ö	ט	٥	۵	-	В
Cable Mounting		프	Ξ	I	>	>	포	I	I	エ	=	I	>	Ξ	I	=	>	=	I	Ξ	В	_	>	>	>	>	I	エ	- :	픠
	_					0	0			0	_	0	0	0	0	- 0		0	0	0	0		0	0	0	0	0	0		5
Insula Enclose.	nc.	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC	TEFC		TEFC
Insul	tion																_	-											-	\dashv
Starting	nt Torque																				_					-			-	\downarrow
S	Currrent																												_	
Time	Rating	O	O	O	O	0	O	S		O	0	0		O	C	O	0	0	0	0	0	0	0	0	O	O	C	٥		0
V-Ф-Hz		380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50	380-3-50		380-3-50
Pola	r.p.m	4-1500	A 1500	1500	1500	4-1500	4-1500	4-1500	\$ 1500	4-1500	1500	4-1500	\$_T\$00	1500 A	1500	1500	1500	4 1500	1500	1500	1500	1500	4 1500	1500	1500	1500	2000	2000		1200
Revolu	tion	cw	κ	αM	CW	CW	CW	CW		CW	CW	CW	cw	CW	cw	κ	Λ	CW	CW	CW	CW	λ	CW	CW	νΩ	CW	СW	κ		Š
Speed	Chrst	O	U	ပ	ပ	ပ	ပ	ပ	ပ	O	υ	Ö	O	ပ	O	O	U	O	O	O	ပ	O	U	O	O	O	ပ	ပ		O
	Final																													
Output	Estimato	0.8	2.2	5.5	5.5	1.5	0.4	0.4	3.7	9.0	0.4	0.4	2.2	0.4	3.7	8.0	0.8	15	5.5	15	1.5	0.8	1.5	1.5	1.5	0.8	. 15	7.5		0.0
Type	Es	SC	sc	sc	sc	SC	sc	sc	၁၄	sc	sc	sc	sc	SC	SC	sc	sc	SC	sc	SC	sc	sc	sc	sc	sc	sc	sc	SC	-	SC
No.	Required	2	2	2	2	-	2	2	2	2	2	2	2	1	2	2	2	-	2	2	1	1	1	1	1		-	-	1	-
	<u>د</u>	-		,	du				du																					
Service		duin _c	Pump	W.W. Pump	or T.W. Pur	Oil Pump	Pump	Pump	ulation Pur	Jump	dwn _C	Aid Pump	d Pump	Pump	Food Pump	dwn	Pump r	n Pump	later Pump		190r	j,	Rako	Rake	3 Rake	3 Rako	ifugo	ifuge		yor
		No.1 Lime Pump	No.1 Sludgo Pump	Noutralized W.W. Pump	Oil Separator T.W. Pump	Recovered Oil Pump	Nutriont(N) Pump	Nutriont(P) Pump	Sludge Circulation Pump	No.2 Limo Pump	Coagulant Pump	Coagulant Aid Pump	Sludge Food Pump	Settling Aid Pump	Contriluge Food Pump	Filter Aid Pump	W.W. Return Pump	T.W. Return Pump	Equalized Water Pump	AP Blower	Al Compressor	Limo Foedor	No.1 Studge Rake	No.2 Studge Rake	No.3 Sludge Rake	No.4 Sludge Rake	No.1 Contrifuge	No.2 Centrifuge		Belt Conveyor
Motor No.		PU-01-A/B-M	PU-02A/B-M	PU-03A/B-M	PU-04A/B-M		3-M		\Box					PU-13-M	PU-14A/B-M	PU-15A/B-M		PU-17-M	PU-18A/B-M	B-01A/B-M	C-01-M	MZ-01-M	MZ-02-M	MZ-03-M	MZ-04-M	MZ-05-M	MZ-06-M	MZ-07-M		MZ-08-M

: SC = Squirrel Cage. W = Wound Rotor. 1. Type

; C = Constant. M = Multi. A = Adjustable. V = Varying. 2. Speed

CW = Clockwise, CCW = Counter-Clockwise, 3. Revolution Direction; Direction when viewed from coupling side.

4. Voltago : Rated Voltage

5. Tima Rating : C = Continuousa. ST = Short Time. P = Periodic.

: TEFC = Totally-Enclosed Fan-Cooled. 6. Enclosuro

7. Cable(or Wire) : T = Top. B = Bottom. S = Side. H = Hub for conduit tube or Nexible tube. DR = Drip-Proof.

: D = Direct, B = Belt, C = Chain, G = Gear, : H = Horizontal. V = Vertical B. Mounting

: 10 = Indoor. 00 = Outdoor. 10. Location

INDUCTION MOTOR LIST

The Study on Industrial Waste Water Plan :El Nasr Co. for Steel Pipes & Fittings Japan International Cooperation Agency :Industrial W. W. / Sanitary Domestic W. W. : SP-III)-60-(.1-(2/3) WASTE W. PROJECT DOC: NO. CI.11ENT PI.ANT

	Γ.	[1	
-	7	`.	7	MADI:	
				CKD	
APVE				APVE	
DATE				DATE	

90
0 0
EFC H
TEFC TEFC
0 0
4 1500 380-3-50 4 1500 380-3-50
wo o
0.4
2 SC 2 SC
Nutrient(R) Mixer 2 Nutrient(P) Pump 2

7. Cablof or Wire): T = Top. B = Bottom. S = Side. H = Hub for conduit tube or flexible tube.
8. Mounting : H = Horizontal. V = Vertical
9. Drive : D = Direct. B = Bott. C = Chain. G = Gear.
10. Location : ID = Indoor. OD = Outdoor.

: TEFC = Totally-Enclosed Fan-Cooled. DR = Drip-Proof.

6. Enclosuro

3. Revolution Direction : Direction when viewed from coupling side. $\mathsf{CW} = \mathsf{Clockwise}.$

4. Voltago : Rated Voltago 5.7 = Short Time. P = Pariodic. 5. Tima Rating : C = Continuouso. S.7 = Short Time. P = Pariodic.

: SC = Squirrol Cage. W = Wound Rotor. : C = Constant. M = Multi. A = Adjustable. V = Varying.

1. Type 2. Speed

INDUCTION MOTOR LIST

: Japan International Cooperation A The Study on Industrial Waste Wat El Nasr Co. for Steel Pipes & Fit (3/3): (3/3) PROJECT CI.1ENT PL.ANT

WASTE W.

: Jupan International Cooperation Agency	REV		3	MADE	
The Study on Industrial Waste Water Plant	λii			CKD	
:El Nasr Co. for Steel Pipes & Fittings	APVE			APVE	
Industrial W. W. /Sanitary Domestic W. W.	DATE	H	Н	DATE	

Output Spood Revolu Polo Estimato Final Chrst tion C.P.m.
0.8
5.5 C
O.0
: SC = Squirrel Cage. W = Wound Rotor. • C = Constant $M = M_{\rm off}$ is a Adjustable $V = Vaccing$
3. Revolution Direction: Direction when viewed from coupling side.
CW = Clockwise, CCW = Counter-Clockwise.

DR = Drip-Proof.

7. Cable(or Wire): T = Top. B = Bottom. S = Side. H = Hub for conduit tube or floxible tube.

8. Mounting : H = Horizontal. V = Vortical

9. Drive : D = Direct. B = Belt. C = Chain. G = Gear.

10. Location : ID = Indoor. OD = Outdoor.

4. Voltago : Rated Voltage 5. Time Rating : C = Continuouse . ST = Short Time. P = Periodic.

	2000	2001 2002
Major Activities for Implementation	10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6	7 8 9 10 11 12 1 2
Preparatory Activities before Bid for Supply and		
Construction of Demonstration Plant		
Saloction of Demonstration Factory	11/24'99 O	
1.2 Compilation of Detailed Design Package, including:		
- List of Matchias and Equipment - List of Construction works		
1.3 Short Listing of Suppliers who can supply the Plant as a		
1.4 Short Listing of Construction Contractors in Egypt to		
1.5 Agreement for Implementation of Phase 2 Study	<u> </u>	
1.6 Contract between JICA and Phase 2 Study Team		
S		
	<u> </u>	
2.4 Manufacturing and Preassembling as necessary		
2.5 Inspection and Test before Shipment	I	
Construction of the Plant		
3.1 Selection of Construction Contractor by Qualification	Î	
3.2 Site Preparation and Temporary Facilities Installation		
		I
3.4 Shop fabrication and installation of Locally procured		
3.5 Unloading, Customs Clearance, Inland Transportation of		
3.9 Electrical		
		1
3.13 Mechanical Completion		0
14 Commissioning		1
Ō		
4.1 Performance lest		

ESTIMATION COST FOR EL NASR CO. for STEEL PIPES FITTINGS

		Yen Portion	LE Portion	Total
	· · · · · · · · · · · · · · · · · · ·	[¥1000]	[LE]	
1 1	Direct Cost			
	1.1. Equipment & Materials			
	(1)Machinary	98,100		
	(2)Piping Materials	10,500		
	(3)Electrical Equipment & Materials	26,000		
	(4)Instrument & Materials	34,000		
	(5)Mini. Labo. Analizer & Others	4,700		
	1. 1 Sub-total	173,300	0	
	1,2, Field Work Cost			
	(1) Steel Tank & Drum		967,000	
((2) Equipment Installation		142,000	
	(3) Piping		842,000	
	(4) Civil Work (Foundation, Pit, Pave)		1,494,000	
	(5) Building, Shelter, Steel Structure		541,000	
	(6) Lining, Coating, Painting		537,000	
	(7) Electrical, Instrumentation		498,000	
	(8) Commissioning/ Test		50,000	
	1. 2 Sub-Toatal	0	5,071,000	
2 1	indirect Cost			
	(1) Export Packing, Ocean Transport	18,100		
	(2) Import Duty, Inland Transport*1		1,407,353	
	(3) Temporary Facilities*2		304,260	
	(4) Sub-contractor Expense*3		1,267,750	
	(5) Insurance, Social Tax*4		369,354	
	(6) Supervisor Expense	10,000		
	2. Sub-Total	28,100	3,348,717	
	2. 000 1000	20,100	0,040,717	
3	(1 + 2) Total	201,400	8,419,717	
	(1 + 2) Total [¥1000]	201,400	286,270	487,670
	[LE]	5,923,529	8,419,717	14,343,246

Note: Above cost includes outside battery except utilities supply.

^{*1: {(1.1}Sub-total) + 2(1)} x 25%

^{*2: (1.2)} x 6%

^{*3: (1.2)} x 25%

 $^{*4:[{1.1}+{1.2}]+{2(1)+2(2)+2(3)+2(4)}] \}times 2.7\%$

Unit Cost for Estimation of W.W.T. Demonstration Plant (Reference)

Factory Name: El Nasr Co. for Steel Pipes and Fittings.

Design Case: Basic Design

1. Major Equipment

Equipment Name	Unit Cost [x10 ³ Yen]	Note
(1) Acid water pumps	1,500	Material: SCS
(2) Filter	3,000	3 sets
(3) Sludge Rake	6,000	1 set
(4) Centrifuge	10,000	1 sets
(5) Motor Control Center	16,500	
(7) Center Control Panel	3,000	1 set

2. Field Work

Work Item	$\underline{\mathbf{unit}}$	unit Cost[LE]	<u>Note</u>
(1) Site Preparation	$[m^2]$	8	
(2) Civil (Earth Work)	$[m^3]$	34	
(3) RC Work	$[m^3]$	1,500	Foundation, Water Basin
(3) Storage Tank	[ton]	3,430	Equalization Tank, Chemical tank
			Neutralization Tanks
(4) Structural Steel	[ton]	2,000	Pipe rack, Operating Stage
(5) Equipment Install	ation [ton]	400	Pumps, Clarifier rakes, Dehydrator
(6) Piping	[ton]	3,970	Except valves
	[in-m]	30	Except valves
(7) Painting	$[m^2]$	50	
(8) Local Building	$[m^2]$	2,600	W.W.T Control Room
(9) Electrical	[cable-m]	3	

Running Cost-EL NASR CO. FOR STEEL PIPES & FITTINGS

Number of the Master of the street of the st			בי ב ב					* Unit cost is	* Unit cost is not fixed yet	
	Treating	Feeding	Consump.	Unit	Cost-1	Cost-2	Cost-3	Unit Cost	Remarks	
Items	Capacity	Ratio		Cost				ď		
	(m³/h)	(mg/L)	(kg/h)	(LE/kg)	(LE/h)	(LE/day)	LE/year)	(LE/m³)		
1 Chemical Cost		Č		(c c	ſ	ı			
1) Alum = $Al_2(SO_4)_2 \cdot 18H_2O(Clarifier)$	//	30	7	0.3	0.69	1/1	5,489		•	
* 2) Lime = $Ca(OH)_2$ (Neutralization)	30	1000	30	0.1	3.00	72	23,760			
3) Polymer-A (Clarifier)	11	0.3	0.02	27	0.62	15	4,940	- *		
4) Polymer-A (Thickener)	2.34	100	0.23	27	6.32	152	50,039			
5) Polymer-B (No.1 Centrifuge)	09		9.0	27	16.20	130	42,768			
Polymer-B (No.2 Centrifuge)	75			28	21.00	168	55,440	<u> </u>		
5) CO(NH ₂) ₂	11		8.47	9.0	5.08	122	40,249	····		
* 6) H ₃ PO ₄	77	30	2.31	9.0	1.39	33	10,977			
7) NaOCI	77	4	2.31	0.385	0.89	21	7,044			
Sub-Total	77	1	1	1	55.19	729	240,705	0.717		
2 Filter Media	Loading	Loss	Loss/h					_		
* 1) Anthracite (3 Sets)	10.5 m ³	20 %/year	2.1	7	2.10	20	16,632	0.027		
* 2) Sand (3 Sets)	4.2 m ³	10 %/year	0.5	0.3	0.15	4	1,188	0.005		
* 3) Activated Carbon (1 Set)	0m³	14 days	0.0	14.7	0.00	0	0	0		
Sub-Total		_	J	1	2.25	54	17,820	0.029		
			kWh/d	LE/kWh						
3 Power Consumption			2,120	0.12	10.60	254.40	83,952	0.138		
			m³/day	m³						
4 Industrial Water or Potable Water			50	0.7	1.46	35.00	11,550	0.019		
			Person/d	LE/P/year						
5 Operator	4 Person*3 Shift+1s	3 Shift+1s	16	10,000	20.20	484.85	160,000	0.262		
6 Maintenance Fee					44.56	1069.52	352,940	0.579		
(Plant Cost * 3 %/year)				-						
400,000,000*0.03/34=352,940 LE										
Total Operation Cost	1		1		134.27	2,627.17	866,967	1.74		
										ı

2120.2 kWh/d 2120.2 kWh/d	0.8	sumption	Actual Consumption
2.650.25 kWh/d	ļ	1	Total
18.00	24	0.75	MX-201
00.9	8	0.75	MX-10
1.50	2	0.75	MX-09
52.80	24	2.2	MX-08
52.80	24	2.2	MX-07
1.50	2	0.75	MX-06
1.50	2	0.75	MX-05
36.00	24	1.5	MX-04
0 80	2	0.4	MX-03
0.80	2	0.4	MX-02
36 00	24	1.5	MX-01
18.00	24	0.75	MZ-101
6.75	6	0.75	MZ-08

	Consump.	18.00	52.80	132.00	132.00	4.40	9.60	9.60	88.80	18.00	9.60	9.60	52.80	9.60	29.60	9.00	18.00	360.00	00.99	264.00	180.00	52.80	132.00	9.60	11.00	36.00	360.00	5.50	9.00	18.00	36.00	36.00	36.00	18.00	135.00
	Operation	24	24	24	24	2	24	24	24	24	24	24	24	24	8	8	24	24	12	24	24	24	24	24	1	24	24	1	12	24	24	24	24	24	6
onsumption	МΆ	0.75	2.2.	5.5	5.5	2.2	0.4	0.4	3.7	0.75	0.4	0.4	2.2	0.4	3.7	0.75	0.75	15	5.5	11	7.5	2.2	5.5	0.4	11	1.5	15	5.5	0.75	0.75	1.5	1.5	1.5	0.75	15
Power Consu	Tag No.		PU-02	PU-03		PU-05	PU-06	PU-07	PU-08	PU-09	7	7	PU-12	T	1-1	-1		1 1	PU-18	PU-101	111	-1-1	PU-201	PU-202	PU-203	PU-204	B-01	B-201	C-01	MZ-01	MZ-02	MZ-03	MZ-04	MZ-05	90-ZW

Client:

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Project Name:

THE STUDY ON INDUSTRIAL WASTE WATER POLLUTION CONTROL

IN THE ARAB REPUBLIC OF EGYPT

Factory Name:

EL NASR CO. FOR STEEL PIPES AND FITTINGS

BASIC DESIGN

Document Title:

CALCULATION SHEET

FOR

W.W.T. RECOMMENDABLE PLANT

Issued Date

September 2000

Consultant:

JICA STUDY TEAM

CHIYODA DAMES AND MOORE CO.

CHIYODA CORPORATION

1. Object

This design calculation sheet is applied to the study of W.W.T. Recommendation Plant planning for [El Nasr Co. for Steel Pipes and Fittings].

2. Wastewater to be treated

- (1) RW-1: Neutralization Unit Outlet J+ Sanitary/Domestic of Foundry J
- (2) RW-2: Skimmed Oily Water of C.W. Oil Separator
- (3) RW-3: Wastewater in the Collection Pit from Foundary Factory
- (4) RW-4: Wastewater in the Collection Pit from Spiral Pipe/Coating Factories

3. Design Conditions

- (1) The existing facilities of wastewater sources should be maintained, repaired, as original or revised design basis.
- (2) Waste management system in the Factory should be organized, and operated adequatly under the responsible managers.
- (3) Suitable routine works, periodical maintainances should be conducted in the whole company.
- (4) Quality and quantity of RW-3 are assumptivel data as same as RW-4, because there was no flow during water sampling.
- (5) Calcutation result figures may be changed in the layout planning stage.

4. Contents of Wastewater Treating Facility

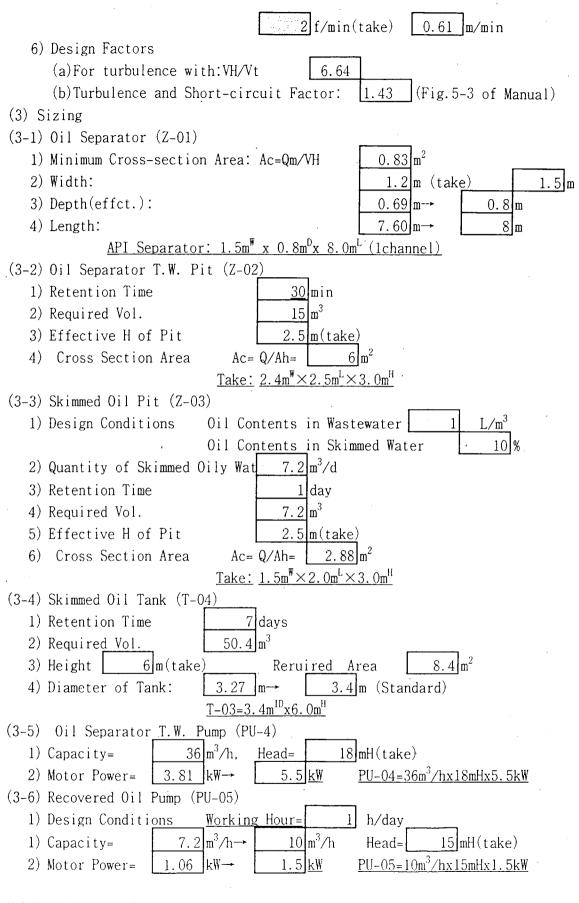
(1) Pre-treatment: Neutralization Unit, Oil Separator, Equalization Tank

(2) Primary Treatment: Chemical Clarifier, Sand Filter

(3) Secondary Treatment: Activated Sludge Treatment

5. Design Basis

- 5.1 Quality and Quantity of Influent Wastewater: Shown on Table-1.
- 5. 2 Quality and Quantity of Treated Water


The following regulations are applied to Basic Design.

- (1) Existing Plant: Law93/62 Discharge to Sewer System
- (2) Recommendation Plant: Law48/82 Non Potable Surface Water (Industrial)

	Table-	-1 Design	Basis of Waste	ewater Quality	and Quantity	
		Raw Water 1	Raw Water 2	Raw Water 4	Raw Water 3	Law48/82
Flow Rate Av.	$[m^3/h]$	40	30	50	5	
Flow Rate Max		50	40	150	10	
рН	[-]	2~7	7 ~8	6.5 ~8	6.5 ~8	6 ~9
S S	[mg/L]	250	200	30	30	60
BOD	[mg/L]	100	100	- 30	30	60
COD	[mg/L]	200	200	80	80	100
Oil&Grease	[mg/L]	5	1,000	5	5	10
TDS	[mg/L]	5,800	400	390	390	2,000
Water Temp.	[°C]	25 ~35	25 ~35	25 ~30	25 ~35	35

6. Unit Design
6.1. Wastewater Collection (Out of Battery)
6.1.1 No.1 Waste Water Pit
(1) Purpose
Raw water 1 is taken from the outlet of Sedimentation Pit and is stored to pump
up to the new Neutralization Unit.
(2) Design Conditions
1) Wastewater: Outlet of the Sedimentation Pit
2) Flow Rate(Q) $40 \text{m}^3/\text{h} = 0.67 \text{m}^3/\text{min}$
3) Retention Time: 30 min.
4) Shape, Materials, No.: Rectangular, RC(Semi-Underground), 1 set
(3) Sizing
(3-1) No.1 Wastwater Pit (Z-101)
1) Req'd Vol.
2) Effictive Height 1 m(take)
3) Cross Sectional Area Ac= Q/Ah= 20 m ²
Take: $4,000^{\text{W}} \times 5,000^{\text{L}} \times 1,500^{\text{H}} *$
* Actual height is based on the depth of buried pipe.
(3-2) No.1 Wastewater Pump (PU-101AB)
1) Capacity Allowance 20 % Design Flow Rate 48 m ³ /h
2) Required Total Head 15 m (take)
3) efficiency of pump 0.6
4) Motor Allowance 0.3
5) Motor Power $4.24 \text{ kW} \rightarrow 5.5 \text{ kW} \qquad \underline{PU-101AB=48m^3/hx0.15MPax5.5kW}$
6.1.2 No.2 Waste Water Pit
(1) Purpose
Raw water 2 is taken from the outlet of Oil Separator and is stored to pump
up to the new Oil Separator.
(2) Design Conditions
1) Wastewater: <u>: Outlet pipe of the</u> Oil Separator
2) Flow Rate(Q) $\frac{30 \text{m}^3/\text{h} = 0.5 \text{m}^3/\text{min}}{0.5 \text{m}^3/\text{min}}$
3) Retention Time: 30 min.
4) Shape, Materials, No.: Rectangular, RC(Semi-Underground), 1 set
(3) Sizing
(3-1) No. 2 Wastewater Pit (Z-102)
1) Required Vol. Av= 15 m ³
2) Effective H of Pit Ah= 1 m(take)
3) Cross Section Area Ac= Q/Ah= 15 m²
<u>Take: $3,000^{\text{W}} \times 5,000^{\text{L}} \times 1,500^{\text{H}} \times$</u>
* Actual height is based on the depth of buried pipe.
(3-2) No. 2 Wastewater Pump (PU-102AB)
1) Capacity Allowance 20 <u>%</u> <u>Design Flow Rate</u> 36 m³/h

(3-4) Lime Hopper (D-01)	
1) Required Lime	1 day
, .	720 kg/d
2) Density	0.5 kg/L
3) Allowance	30 %
4) Hopper Vol.	1872 L→ 2,000 L
5) Hopper Height	1.5 m (take)
Hopper Cross Section Area	1.33 m^2
Hopper Diameter	1.30 m \rightarrow 1.3 m $D-01=1.3m^{1.D.} \times 1.5m^{H}$
(3-5) No. 1 Lime Drum (D-02)	1.0 m <u>5 01 1.0 m M1.0 m</u>
1) Lime Conc.	$100\% \qquad 100 \mathrm{kg/m^3}$
2) Preparation Period	8 h
3) Required Lime	240 kg
4) Drum Vol.	$\frac{2.4 \mathrm{m}^3}{2.4 \mathrm{m}^3}$
	1.5 m
5) Drum Height (Take) Diameter	T.D. 11
(3-6) Neutralized W.W. Tank (T-03	
1) Retention Time	30 min 20 m ³
2) Required Vol.	
3) Effective H of Pit	2.5 m(take) = Q/Ah= 8 m ²
•	
	$\frac{2.5 \text{m}^{\text{W}} \times 3.2 \text{m}^{\text{L}} \times 3.0 \text{m}^{\text{H}}}{2.4 \text{R}}$
(3-7) Neutralized W. W. Pump (PU-0	
1) Capacity= 48 m ³ /h,	Head= 18 mH(take)
2) Motor Power= 5.09 kW→	5.5 kW $PU-03=48 \text{ m}^3/\text{hx} 18 \text{ mHx} 5.5 \text{ kW}$
6.2.2 Oil Separator	
(1) Object	
	m the skimmed oily water of existing Oil Separator
(2) Design Conditions	mu a a un
l) Wastewater: Wastewater fr	
	$= 0.5 \mathrm{m}^3/\mathrm{min}$
3) Design Base: API Standard	
4) Wastewater	1
(a)Water Temp. 30	
(b)Specific gravity of Wate	r: Sw 0.995
(c)Absolute viscosity: μ	[0.0076] poise
(e)Maximum allowable holizo	ntal velocity :VH=15Vt, not exceed 3f/min.
5) Oil globles in wastewater	
(a)Oil globules to be remov	re: $150 \mu = 0.015 \text{ cm}$
(b)Specific gravity of Oil:	So 0.9
(c)Rate of rise in wastewat	er: Vt 0.30 f/min= 0.09 m/min
(d)Maximum allowable VH:	4.52 f/min >3f/min

6.3 Equakization Tank

(1) Object

To equalize quality and quantity of 2 wastewaters.

(2) Design Conditions

1) Quantity and Quality of Wastewater: Shown on Table-2

2) Shape: Open Top Tank, Materials: CS /Epoxy Coating, Required No.: 1 set

3) Retention Time:

4) Others: Air bubbling device

		<u>Table-2</u>	2 Quantity	and Quality of	<u>Wastewater</u>	
		R₩ -1	RW −2	BackWash W.W.	R₩ -3	Equalized W.
Flow Rate	$[m^3/h]$	40	30	2	5	77
рН	[-]	$6 \sim 7.5$	7 ~8	6.5 ~8	6.5 ~8	6.5 ~8
SS	[mg/L]	250	200	550	30	224
BOD	[mg/L]	100	100	186	30	98
COD	[mg/L]	200	200	496	80	200
Oil&Grease	[mg/L]	5	30	83	5	17

(3) Sizing

A. Equalization Tank

1) Required Vol.:

 $385 \,\mathrm{m}^3$ 7.6 m (take)

2) Height:

3) Section Area:

Take: $8.71 \text{m}^{\text{ID}} \times 7.6 \text{m}^{\text{H}}$

A= 50.66 D= 8.03 8.71 m(Standard)

B. Air Bubbling Device

1) Required Air (design base):

 $3 \text{ Nm}^3/\text{m}^2/\text{h}$

2) Required Air Quantity:

 $|151.97| \text{Nm}^3/\text{h} =$ 3 Nm³/min(take)

6.4 Biological Treating Unit (Activated Sludge Treatment)

(1) Purpose

To remove Organic Substances (BOD, COD) by aerobic micro bacterias.

(2) Design Conditions

1) Wastewater:

Equalized Wastewater

2) Treating Method:

Activated Sludge Treatment

3) Capacity:

 $77 \, \mathrm{m}^3 / \mathrm{h}$

4) Water Quality:

			<u>Table-4 Wate</u>	r Quality	
		Inlet	Outlet	Law93/62	Law48/82
		<u></u>		Sewer System	Non Potable
рН	[-]	6.5~8	6.5~8	6 ~10	6~9
SS	[mg/L]	224	30	< 500	60
BOD	[mg/L]	98	30	< 400	60
COD	[mg/L]	200	50	< 700	100
Oil & Grease	[mg/L]	17	5	< 100	10
Water Temp.	[°C]	$20 \sim 35$	20~35	< 40	. 35

⁵⁾ Shape, Materials, Req'd No.

(a) Aeration Basin: Rectangular/Above ground, RC, 1 set

	(b) Sedimentation basin. Circular/Above ground, CS+Epoxy Coating, 1 sec
6)	Chemicals
	N and P are injected in case of lack of nutrient.
(3)	Sizing
(3-1)	Aeration Basin(Z-04)
	BOD Loading 0.5 kg-BOD/m³/day (take)
2)	Vol. of Basin Vas= 250.18 m ³
3)	Height of Basin Has= 3.5 m(take) Aas= 71.48 m ²
	L= <u>3</u> ₩ (take) W= <u>4.88</u> m→ <u>5</u> m
	L= 15 m
	$\underline{\text{Take:}}^{5.0\text{mW}} \times 15.0^{\text{L}} \times 3.5^{\text{H}}$
,	4) BOD Removal : R _{BOD} = 125.09 kg/day
	5) MLSS : $Ca = 2,000 \text{ mg/L}$
(3-2)	No. 2 Sedimentation Basin(T-06)
1)	Surface Loading Las= $1 \text{ m}^{3/}\text{m}^2/\text{h}$ (take)= $24 \text{ m}^{3/}\text{m}^2/\text{day}$
2)	Surface Area Ass= $\frac{77}{m^2}$ m ²
3)	Height of Basin Hss= 3 m (take)
4)	Vol. of Basin $Vss = 231 \text{ m}^3$ $Tss = 3 \text{ h}$
5)	Diameter of Basin: Dss= 9.90 m → 10 m
	Take: 10m ^{ID} ×4.0m ^H Act.Surf.Loading= 0.98 m ^{3/} m ² /N
(3-3)	Surplus Sludge
1)	BOD→SS Conversin Rate 0.4 (take)
2)	Sludge from Act. Sludge T. Wss= 2.08 kg/h from BOD
	Wss=14.94 kg/h from SS
	Total Wss= 17.02 kg/h
	SS content
	Air Requirement for Aeration
1)	Oxygen Demand: $W_{02} = a*R_{BOD} + b*Sa = 95.07 \text{ kg/day}$
	a = BOD Factor = 0.55 kg - 02/kg - 02
	b= MLVSS Factor= 0.07
	Sa = 0.75*MLSS*Vol.of Basin/1,000= 375.26
۵۱	$R_{BOD} = BOD Removal = 125.09 kg/day$
2)	Required Air : Qair= $(W_{02}*3.57m^3/kg-0_2*1.3)/(0.08*24*60)$
	$= 3.54 \text{ Nm}^3/\text{min} \rightarrow 3.6 \text{ Nm}^3/\text{min}$
۵)	: Misceranious Purpose1\Nm ³ /min
3)	Blower (B-01) $Qta = \underbrace{9.12 \text{ Nm}^3/\text{min}}_{\text{Total Constraints}}$
(n =)	Take: 9.5Nm ³ /minx7mHx15kW
	Sludge Circulation Pump(PU-08)
	Return Sludge Ratio $Rs = Ca/(Cr-Ca) = 33.33 \%$
	Pump Capacity 33.4 m ³ /h PU-08=36m ³ /hx12mHx3.7kW
	6) Nutrient as N CO(NH ₂) ₂ Injection Unit
1)	Dosage : BOD : $N = 100 : 5$
	: BOD : $CO(NH_2)_2 = 100$: 11.

2) Concentration

12.5 wt %

3) Specific gravity:

1.069

4) Injection rate

 $Q_{CO} = \frac{4.3 \text{ L/h}}{3.3 \text{ (PU-06)}}$

5) Storage Vol.

6) Dimension

(3-7) Nutrient as P

H₃PO₄ Injection Unit

1) Dosage

: BOD : P = 100 : 1

: BOD : $H_3PO_4 = 100$: 3

2) Conc.

: 12.5 wt %

3) Specific gravity:

1.189

4) Injection rate

: $Q_{ph} = 1.1 L/h$ (PU-07)

5) Storage Vol.

 $V_{ph} = 0.2 \text{ m}^3 \text{ (7days)}$

6) Dimension

Take: 0.9m^{ID}X1.2m^H (D-05

6.4 Chemical Clarifier

(1) Purpose

To remove Suspended Solids(SS), slice of oil and color. Clarifier is not necessary, because A.S.Treated Water meets to the Regulation.

- (2) Design Conditions
- 1) Wastewater: W.W. after equalized in T-04.
- 2) Capacity:

 $77 \,\mathrm{m}^3/\mathrm{h}$

- 3) Water Quality of Inlet and outlet of Clarifier: Shown on Table-3.
- 4) Chemicals:
- (a) Coagulant = $Al_2(SO4)_3$
- (b)pH Controller=Ca(OH)₂
- (c)Coagulant Aid=Polymer

Table-3 Water Quality

		Table 0 Hate.	i Quality		
		A.S T. Water	Out let	Law93/62	Law48/82
			of Clarifier	Sewer System	Non Potable
Flow Rate	$[m^3/h]$	77	77		_
рН	[-]	6.5~8	7 ~8	6~10	6~9
SS	[mg/L]	30	20 ⁻	< 500	60
BOD	[mg/L]	30	25	< 400	60
COD	[mg/L]	50	45	< 700	100
Oil&Grease	[mg/L]	3	2	< 100	10

(3) Sizing

(3-1) Treated Water Pit(Z-06)

1) Retention Time:

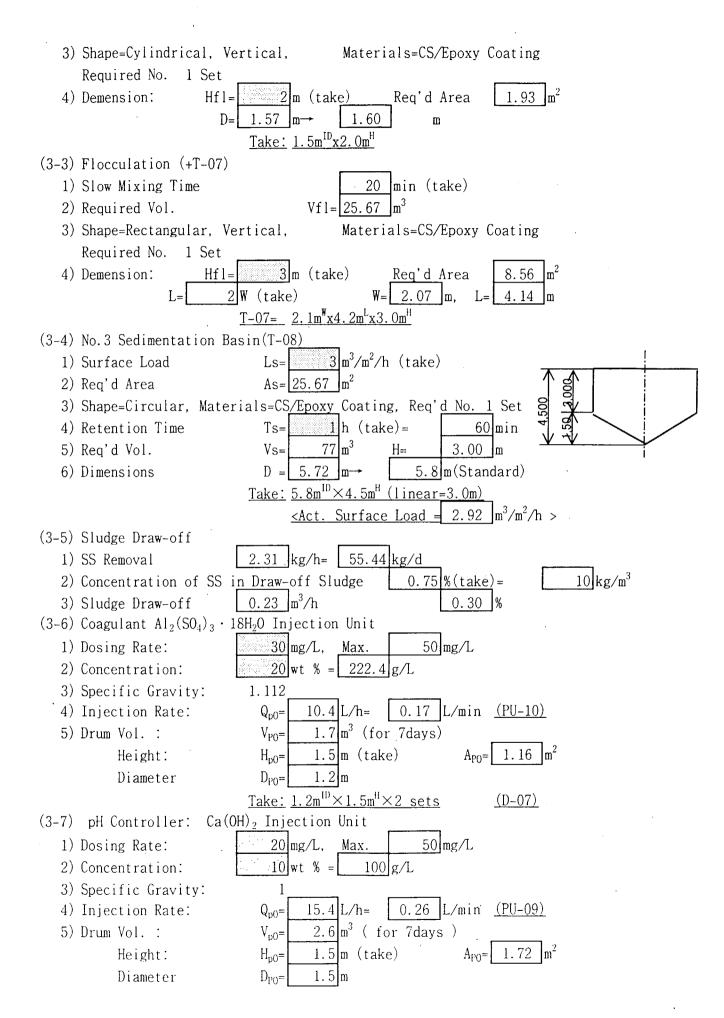
___30 min

2) Req'd Vol. of Pit

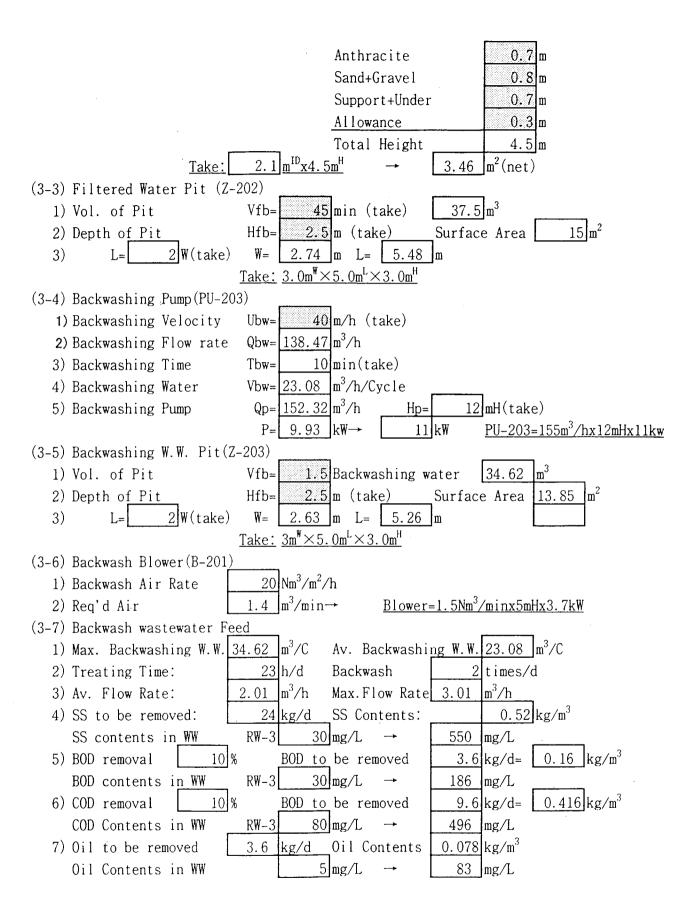
 $38.5 \,\mathrm{m}^3$

3) Dimension

 $H = \begin{bmatrix} 2.5 \text{ m} \\ 2.5 \text{ m} \\ 15.40 \text{ m}^2 \end{bmatrix}$ $W = \begin{bmatrix} 3 \text{ m} \\ 2 \text{ m} \\ 3 \text{ m} \end{bmatrix}$ $W = \begin{bmatrix} 5.13 \text{ m} \\ 2 \text{ m} \\ 2 \text{ m} \\ 2 \text{ m} \end{bmatrix}$


(3-2) Coagulation Part(T-07)

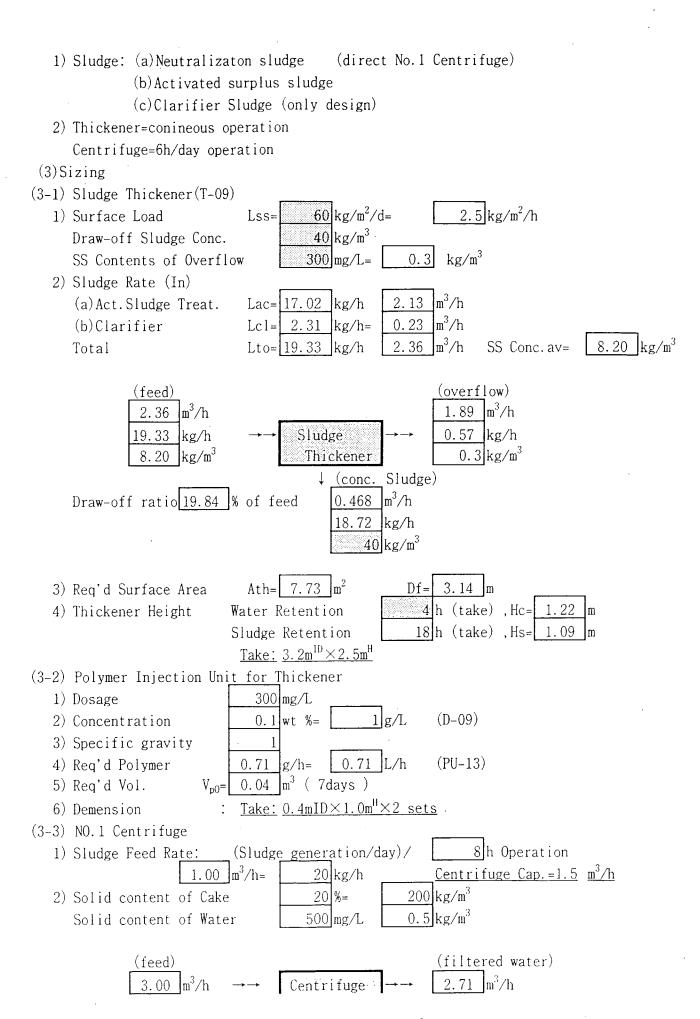
1) Rapid Mixing Time

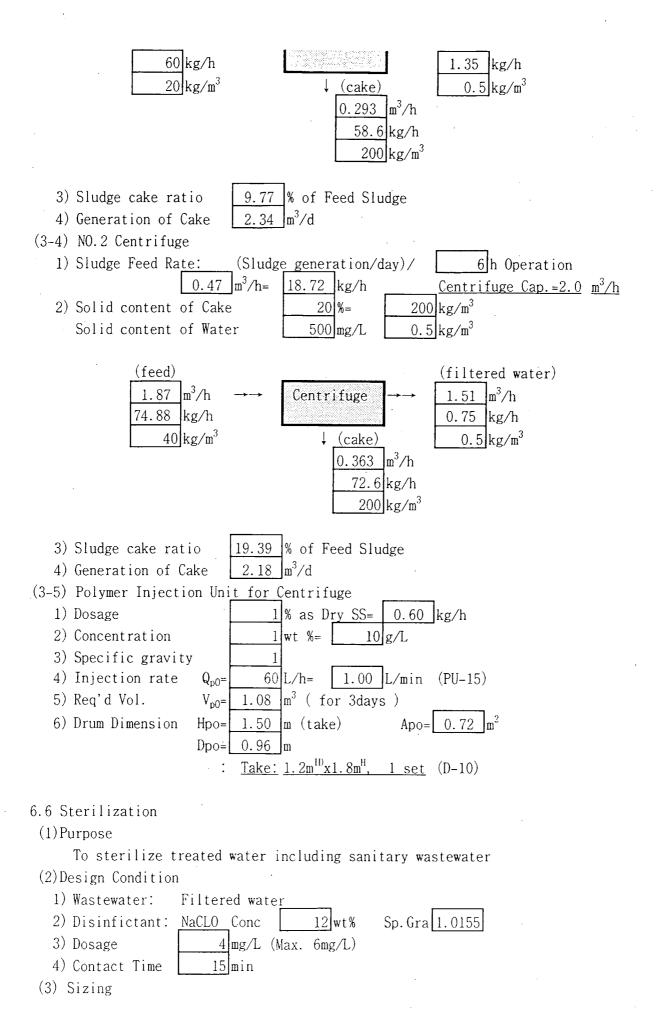

3 min (take)

2) Reruired Vol.

Vfl= 3.85 m

Take: $1.4 \text{m}^{\text{ID}} \times 1.5 \text{m}^{\text{H}} \times 2 \text{ sets}$ (D-06)(3-8) Coagulant Aid: Polymer Injection Unit $0.5 \, \text{mg/L}$ 1) Dosing Rate: $0.3 \, \text{mg/L}$ Max. 2) Concentration: 0.5 wt % = 3) Specific Gravity: 1 4) Injection Rate: 7.7 L/h= 0.13 L/min (PU-11) $Q_{nO}=$ $1.3 \,\mathrm{m}^3$ (for 7days) 5) Drum Vol. : $V_{p0}=$ Height: 1.2 m (take) $H_{n0}=$ 1.08 1.2 m Diameter $D_{PO}=$ $2m^{ID} \times 1.5m^{II} \times 2$ sets <u>Take: 1.</u> (D-08)6.5 Sand Filter Unit (1) Purpose To remove overflow floc(SS) from RW-3, and reuse for Cooling Water (2) Design Conditions 1) Wastewater: Wastewater in Collection Pit in Spiral Weldeing Factory. $25 \, \text{m}^3/\text{h} \times 3 \, \text{sets} \, (1 \, \text{stand-by})$ $50 \text{ m}^3/\text{h} =$ 2) Capacity 3) Water Quality Table-5 Water Quality Inlet Outlet Law93/62 Law48/82 рΗ $6.5 \sim 8$ 6.5 - 8 $6 \sim 10$ $6 \sim 9$ SS [mg/L] 30 10 < 500 60 BOD [mg/L]30 < 30 < 400 60 COD[mg/L]80 < 80 < 700 100 Oil & Grease [mg/L]5 2 < 100 10 $20 \sim 35$ Water Temp. $[\ \ \ \ \ \]$ $20 \sim 35$ < 40 35 4) Shape: Cylindrical/Vertical/Gravity Type, Materials: Carbon Steel + Epoxy coating, Req'd No.: 3 sets (1 stand-by) 5) Filter Media: Anthracite + Sand/Gravel 6) Backwashing: Air(Blower) + Water (Pump) (3) Sizing (3-1) No. 3 Wastewater Pit(Z-201) 1) Retention Time: 15 min(take). $45 \,\mathrm{m}^3$ 2) Existing Collection Pit: 3mx5mx3mD=12.5 m^3 69|min 3) Required Vol.: Net Retention Time= 4) Dimension: $4.17 \, \text{lm}^2$ 3 m(take) Depth= Area= 2 W 1.44 Z-103=1.5mx3.0mx3.5mD(3-2) Sand Filter (F-01ABC) 180|m/day= 1) Filter Velocity Vf =7.5 m/h (take) 2) Filter Area/Diameter Df = 2.06Af =3) Height: Hf= Upper of Trough <Linear part> Trough $0.3 \, \mathrm{m}$ Trough-Anthracite




6.5 Sludge Treating Unit

(1)Purpose

To reduce sludge volume by thickening and dewatering

(2) Design Conditions

BD - 76