generation sources are implemented first.

Measures for generation sources are roughly divided into two categories: non-point and point source countermeasures (see **Table 5-1**). Non-point source countermeasures will be given importance as 85% of the runoff load in the Mar de Dentro area originates from non-point sources. Recently, related studies have been systematically carried out in the USA, and the results led to the quantitative evaluation of the effects of various methodologies. **Table 5-2** shows the evaluation of the applicability of various countermeasures, including their impacts, in Mar de Dentro.

For the preservation of the water quality of Patos Lake, it is imperative that load reduction measures be applied first in areas close to the lake. In addition, to gain the cooperation of land users for the implementation of non-point source countermeasures, a demonstration should be carried out in the Mar de Dentro area to evaluate not only the load reduction effects, but the impacts that would improve land productivity.

5.4 Scale of Load Reduction Measures

In Mar de Dentro, 85% of the TP runoff load originates from non-point sources. Non-point source countermeasures are very necessary, therefore, to prevent eutrophication. The scale of the countermeasure, which basically stipulates the construction of suitable wastewater treatment facilities in point sources where load runoff is comparatively easy to control, and the reduction of the rest of the load at the non-point source, was calculated. Appropriate load reduction rates will be decided for every countermeasure based on available data.

The calculation results show that the implementation of countermeasures that would separately reduce runoff from urban areas, rice paddies, fields and pastures down to 50% is an indication that the target reduction load is almost within reach.

This trial calculation is carried out assuming no changes in present land use conditions. If the discharge load can be reduced by converting the use of the land (forestation, etc.), the scale of the countermeasures can be reduced. Although this trial calculation assumes measures for generation sources, this may also be used to verify any improvements in water quality when applied in the measures for the runoff process and measures within the lake.

 Table 5-1
 Load Reduction Measures and Their Application Conditions

.

Targots		Method	Principle	Points to consider				
Targets		wiethou	Тттере	(when applied in the Mar de Dentro Area)				
Generation Source (Point source)	Households	Improvement of sewage treatment rate (especially for urban areas)	Effective removal of pollutants (organic substances, bacteria, nutrient salts) from sewage from a densely populated area.	 Though there are many treatment methods, the method that involves a low cost but a high removal ratio of nutrient salts as well as organic substances, will be selected. A treatment method that uses the nutrient removal function of aquatic plants is considered suitable in view of the number of wetlands around Patos Lake. 				
	Factories/ Enterprises	Installation and adequate maintainance of wastewater treatment plant	Construction of a wastewater treatment plant that meets the wastewater standards, and the adequate operation and maintenance of the plant for the effective reduction of effluent load.	 To establish effluent standards, that include nitrogen and phosphorous, by type of industry Appointment of an effluent caretaker by each industry and the periodical submission of monitoring results. 				
		Adequate storage and disposal of sludge	To prevent the runoff of sludge from a wastewater treatment plant into rivers and canals.	 Notification of authorities of the depository, the company contracted for disposal, and the disposal site. Registration of company contracted for disposal and its approval by relevant authorities. 				
		Introduction of the "Cleaner Production" concept	To reduce wastewater and wastewater load from industries by improving the production process.	 To verify that improvements in the manufacturing process lower manufacturing cost and make managers of the respective industries to understand this. To give economic incentives to promote "cleaner production" 				
	Solid waste disposal site	Construction of sanitary landfill site	To reduce load from solid waste disposal site through the construction of leachate treatment facilities.	• Municipalities are legally required to construct a sanitary landfill site in urban areas.				
		Treatement of leachate from the existing disposal site	To reduce load from the existing solid waste disposal site without leachate treatment facilities, through improvement works	Actual leachate contamination conditions should be studied.				
Generation Source (Non-point source)	on Source Urban area Construction of retardation T pond a		To reduce waste and pollution load by directing initial rainwater runoff from urban areas to a retardation pond	 It is dfficult to secure lot for the retardation pond in an urban area. Periodical dredging is necessary. 				
		Improvement of solid waste collection rate	To reduce litter in the urban area in order to reduce pollution load resulting from waste.					

Generation Source (Point source)	Farmlands	Soil conservation Adequate use of fertilizer Adequate use of agricultural chemicals	To redufce runoff load of organic substances, nutrient salts and agro-chemicals through the prevention of soil erosion and soil runoff using mechanical and agronomical methods To reduce runoff amount of nutrient salts by controlling fertilizer input. To reduce runoff amount of agricultural chemicals by controlling their input	 There is a need to develop and popularize an environmental conservation oriented agriculture suitable to the Patos lake basin. To popularize an environmental conservation oriented agriculture, environmental education and economic incentives should be carried out for the farmers Soil conservation shall be introduced on the slope with a gradient of more than 5 degrees. 			
	Others	Adequate water management in paddy fields Protection and development of forests	To reduce dicharge load from paddy field by controlling excess water To reduce load from fields and pastures by converting these areas into a forest with low generation load.	 An arable land that inclines to more than 25 degrees shall be converted into a forest. The stabilization of water sources and prevention of flood are also realized. 			
Runoff Process	Rivers	Protection and development of riverine forests Prevention of riverbank erosion	To reduce runoff load by using the riverine forest as a buffer zone for soil runoff. To prevent soil runoff through forestation on a river bank	• Contributes not only to the reduction of runoff load but also to protect the habitat.			
	Wetlands	Conservation of wetlands Development of artificial wetlands	To conserve water quality using the purifying functions of the wetland To reduce load flowing into a lake by developing articicial wetlands that would also serve as a retarding pond	Contributes to the protection of habitat. Contributes to the protection of habitat			
within a Lake	Water body	Improvement of water circulation	To facilitate load outflow by improving water circulation in the area where pollutants retard.	Applicable in inlets or bays. Peduction in the dicharge of rivers which supplies dilution water			
	Bottom mud	Dredging	To reduce erosion load by removing polluted bottom sediments.	 To reduce inflow load by sewage treatment etc. is a precondition. The impacts of dredging does not continue for a long time in spite of its high cost. 			

5-7

Object	Method	Load Reduction Rate (%)			Evaluation Items						Comprehensive	
(wastewater)		BOD	TN	TP	TSS	Load	Cost	Quickness	Local	Technical	Impact	Evaluation
						reduction	effective	in effect	suitability	ease	on	
						effect	ness				Environment	
Domestic w.w.	Oxidation ditch+wetland	90	90	80	90	O	0	0	0	0	0	0
	Stabilization pond	90			90	0	O	0	0	O	0	O
	Activation sludge method	90			90	0	\triangle	0	0	0	0	0
	Combined type private	65			65	Δ ,		0	0		Ô	\bigtriangleup
	sewerage system					_					-	
Industrial w.w.	Wastewater treatment					O	Δ	0	0	0	0	0
	Plant											
	Adequate treatment of Sludge					0		0	0	0	0	0
	Cleaner production					0	0	0		0	0	0
Urban w.w.	Retardation pond	10-90	10-90	10-90	50-90	0	0	0	0	0	0	0
	Artificial wet pond	20-80	0-40	0-80	50-90	0	0	0	0	0	0	0
	Improvement of	20-28	3.6	1.7	25-40	0	0	\triangle	0	0	0	0
	solid waste collection rate											
Agricultural w.w.	Reduced Tillage system		55	45	75	0	0	0	0	0	0	0
(Field)	Diversion System		10	30	35	0	Δ	\triangle	0		0	0
	Terrace System		20	70	85	0	Δ	Δ	\triangle	0	0	0
	Tilter Strip		70	70	65	0	0	0	0	0	0	0
	Fertilization control		15	35	-	0	0	0	0	0	0	0
	Riparian buffer strip (Width:4.1m)		4.0	28.5	61	0	0	0	0	0	0	0
	Riparian buffer strip (Width:9.2m)		22.7	24.2	74.6	Ø	0	0	0	0	0	0
Agricultural w.w. (Paddy)	Controlled Drainage		45	47	25	0	0	0	0	0	Ø	0

Table 5-2 Comparative Evaluation among Load Reduction Measures

Note:©:Excellent,○:Fair,△:Good,**■**:Poor, U:Unknown, Source:

Load reduction rate was quated from the following materials

1) IDI-Japan(1993) : Technical guidelines for the treatment of urban wastewater and sewage in developing countries

2) EPA(19992) : Guideline specifying management measures for source of nonpoint pollution in coastal waters

3) North Carolina State University(1997) : Selected agricultural best management practive to control nitrogen in Nuese river basin

5-8