CHAPTER IX

EFFECT ON ENVIRONMENT OF POWER LOSS REDUCTION

Chapter 9 Effect on Environment of Power Loss Reduction

Based on the result of the study on respective rehabilitation of distribution network and annual trend of power loss reduction in accordance with construction schedule of project, reduction in emission gases such as green house effect gas was evaluated.

9.1 Power Loss Reduction due to Improvement of Distribution System

Total reduction in distribution losses by respective countermeasures on target feeders in ten years can be estimated to be 411.7 GWh as shown in Table 8.4-2. The annual trend of power loss reduction of the first stage loss reduction project has been estimated in Table 8.4-5 and Table 8.4-6. Based on these values, reduction in both fuel consumption and emission of gasses with environmental impact were estimated as follows.

9.2 Estimation of Emission of Gasses per KWh (Intensity of Gas Emission)

Emission of gasses such as carbon dioxide $\left(\mathrm{CO}_{2}\right)$, sulfur oxide $\left(\mathrm{SO}_{\mathrm{x}}\right)$, and nitrogen oxide $\left(\mathrm{NO}_{\mathrm{x}}\right)$ per unit electricity energy was estimated based on the CEGCO's actual record of fuel consumption and intensity of emitted gases per fuel-ton in 1999.

The fuel consumption per kWh generated of CEGCO in 1999: : $250 \mathrm{~g} / \mathrm{kWh}$

The fundamental data for estimation of emission of gasses such as metric ton per fuel tons and intensity of gas emission are tabulated as shown in Table 9.1-2.

Table 9.2-1 Intensity of Gas Emission

	Emission Metric ton per Fuel ton	Intensity of Emission per kWh
CO_{2}	3.11668 ton/fuel-ton	$779.17 \mathrm{~g} / \mathrm{kWh}$
SO_{X}	0.080 ton/fuel-ton	$20.0 \mathrm{~g} / \mathrm{kWh}$
NO_{X}	0.0038 ton/fuel-ton	$0.95 \mathrm{~g} / \mathrm{kWh}$

9.3 Environmental Effect of Power Loss Reduction

Environmental effect of power loss reduction was evaluated in two aspects. One is to evaluate the total amount of reduction in emitted gases due to network reinforcement ignoring time frame and the other is to estimate the effect on environment in accordance with project procedure. Followings are the result of the study on both aspects.

9.3.1 Reduction of Gases of Target Feeders

Reduction in emission of gasses such as CO_{2} and SO_{X} are estimated by multiplying intensity of emission of gasses and annual amount of reduced power losses in Table 8.4-2. Results of the total and annual amount of reduced gasses are shown in Table 9.3-1 and Table 9.3-2, respectively. The total amount of reduced losses by reinforcement of target feeders is estimated assuming reinforcement of the distribution system be completed in the year 2000 in this study.

Table 9.3-1 Total Value of Reduction of Gasses (for ten years)

Gas	Reduction in Gasses (ton)			
	EDCO	JEPCO	IDECO	Total
CO_{2}	113,433	90,932	116,431	320,796
SO_{X}	2,912	2,334	2,988	8,234
NO_{X}	138	111	142	391

Table 9.3-2 Annual Value of Reduction of Gasses

Gas	Company	1st yr.	2nd yr.	3rd yr.	4th yr.	$5^{\text {th }} \mathrm{yr}$.	6th yr.	7th yr.	8th yr.	9th yr.	$\begin{aligned} & \text { 10th } \\ & \text { yr. } \\ & \hline \hline \end{aligned}$	Total
CO_{2}	EDCO	6,901	7,817	8,640	9,531	10,603	11,746	12,872	14,065	15,146	16,114	113,433
	IDECO	5,532	6,266	6,926	7,640	8,499	9,416	10,318	11,275	12,141	12,918	90,932
	JEPCO	7,083	8,023	8,869	9,783	10,883	12,056	13,212	14,436	15,546	16,540	116,431
	Total	19,515	22,106	24,435	26,954	29,985	33,218	36,402	39,776	42,834	45,572	320,796
SO_{X}	EDCO	177	201	222	245	272	302	330	361	389	414	2,912
	IDECO	142	161	178	196	218	242	265	289	312	332	2,334
	JEPCO	182	206	228	251	279	309	339	370	399	424	2,988
	Total	501	567	627	692	770	853	934	1,021	1,099	1,170	8,234
NO_{X}	EDCO	8	10	11	12	13	14	16	17	18	20	138
	IDECO	7	8	8	9	10	11	13	14	15	16	111
	JEPCO	9	10	11	12	13	15	16	18	19	20	142
	Total	24	27	30	33	37	40	44	48	52	56	391

9.3.2 Effect of the First Stage Power Loss Reduction Project on Environment

Based on Table 8.4-5 and Table 8.4-6, reduction in emitted gases was estimated multiplying intensity of .gas emission. Table 9.3-3 illustrates annual trend of emitted gas reduction including the effect of capacitors, while Table 9.3-4 tabulates the case deducting the effect of capacitors.

Table 9.3-3 Volume of Gasses to be Reduced due to Project (ton) (with Capacitor)

Year	Whole Project			EDCO			JEPCO			IDECO		
	CO 2	SOx	Nox									
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0
2003	4420	112	5	2,091	54	3	932	24	1	1,397	36	2
2004	13,635	350	17	7,224	185	9	2,516	65	3	3,895	100	5
2005	29,984	770	37	10,601	272	13	8,500	218	10	10,883	279	13
2006	33,217	853	40	11,745	301	14	9,416	242	11	12,056	309	15
2007	36,402	934	44	12,872	330	15	10,319	265	13	13,211	339	16
2008	39,776	1021	48	14,065	361	17	11,275	289	14	14,436	371	18
2009	42,834	1099	52	15,146	389	18	12,142	312	15	15,546	399	19
2010	45,572	1170	56	16,114	414	20	12,918	332	16	16,540	426	20
2011	48,297	1240	59	17,077	438	21	13,690	351	17	17,530	450	21
2012	51,100	1312	62	18,069	464	22	14,485	372	18	18,546	476	23
2013	53,418	1371	65	18,827	483	23	15,179	390	19	19,412	498	24
2014	55,368	1421	68	19,165	492	23	15,929	409	19	20,274	520	25

Table 9.3-4 Volume of Gasses to be Reduced due to Project (ton) (without Capacitor)

Year	Whole Project			EDCO			JEPCO			IDECO		
	CO 2	SOx	Nox									
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0
2003	2,806	72	3	1,315	34	2	610	16	1	880	23	1
2004	7,208	185	9	3,814	98	5	1,346	35	2	2,048	53	2
2005	16,380	420	20	5,856	150	7	5,142	132	6	5,382	138	7
2006	18,145	466	22	6,488	167	8	5,696	146	7	5,961	153	7
2007	19,885	510	24	7,110	183	9	6,242	160	8	6,533	168	8
2008	21,728	558	26	7,769	199	9	6,820	175	8	7,139	183	9
2009	23,399	601	29	8,367	215	10	7,344	189	9	7,688	197	9
2010	24,895	639	30	8,901	228	11	7,814	201	10	8,180	210	10
2011	26,383	677	32	9,433	242	12	8,281	213	10	8,669	223	11
2012	27,915	717	34	9,981	256	12	8,762	225	11	9,172	235	11
2013	29,136	748	36	10,382	266	13	9,176	236	11	9,578	246	12
2014	30,236	776	37	10,594	272	13	9,655	248	12	9,986	256	12

CHAPTER X

ECONOMIC AND FINANCIAL ANALYSIS

CHAPTER 10 ECONOMIC AND FINANCIAL ANALYSIS

10.1 Methodology of Economic Evaluation

10.1.1 Outline

In general, a project will be evaluated taken engineering, economic and financial aspects into consideration. The engineering aspects are studied on the technical feasibility of the project from the viewpoint of construction, operation and maintenance. And with regard to the financial aspects, the financial analysis is to be determined whether the enterprise is likely to be financially viable. The financial analysis focuses on the costs and revenues of the enterprise for the project, and is usually summarized in income and cash flow statements, loan repayment and balance sheet. However, the income statement and balance sheet are not included in the financial analysis on the project.

Economic analysis appraises a project under study in terms of a National Economy by comparing and measuring its economic costs and benefits. In other words, economic analysis evaluates a degree of economic impacts on a project under study that would bring about in the national economy.

Project inputs such as construction costs and operation and maintenance costs, including fuel cost in case of a project under study for electricity loss reduction are evaluated in terms of the national economy. These project inputs evaluated in terms of the national economy are called as "economic costs."

Decreased long term investment costs due to reduce the electricity loss such as reduced capacity cost and/or reduced energy cost in case of the said project under study are also evaluated in terms of the national economy. These reduced investment costs evaluated in terms of the national economy are called as "economic benefits." In this case, the benefits should be at least as great as those obtainable from other marginal investment opportunities.

Economic costs and benefits are estimated throughout the project life. The first year of the project life is the year when the construction is completed. The last year of the project life is the year when the facility constructed by the project is scrapped.

Economic costs and benefits throughout the project life and construction period are compared in terms of present values. If the total present value of economic costs equals that of economic benefits (when, $\mathrm{B} / \mathrm{C}=1$), the discount rate applied to calculate the present value is called as "economic internal rate of return (EIRR)."

10.1.2 Identification of Economic Benefits of Electricity Loss Reduction Project

(1) Economic Benefit Derived from Electricity Loss Reduction

If a countermeasure would not be executed, the electricity losses would remain as a high percentage against a total generation. This electricity loss without any counter-measure is called as "an electricity losses without the project".

If the countermeasure would be executed, the electricity losses will be reduced. These reduced electricity losses are called as "the electricity losses with the project". It is assumed that annual reduction of electricity losses increases in proportion to square of demand during 10 years after completion of the works of countermeasure. It is also assumed that the annual electricity losses will be kept the same level after the said $10^{\text {th }}$ year.

The economic benefit of a project under study can be estimated as a difference between the electricity loss "with the project" and that "without the project." In this case, the electricity losses are derived as power value or capacity value(kW -value) and energy value as mentioned below(kWh -value). The electricity losses counting as economic benefits should be considered in total of those values.

In order to evaluate the economic benefits, a power value or a capacity value described as " kW -value" and an energy value described as " kWh -value" are firstly calculated. KW-value represents the construction and fixed O / M costs of power plant for unit kW volume for a year, and is called as "power benefit." KWh-value represents fuel and variable O / M costs of the power plant for unit kWh volume, and is called as "energy benefit."

Unit values of costs per kW and per kWh are estimated based on these values according to "Long Run Marginal Cost Method (LRMC Method)". And the benefit (cost to be saved due to electricity loss reduction) is calculated using this unit value multiplying difference of electricity losses between designed with- and without-the Project (reduced volume of electricity losses).

(2) Economic Benefit Derived from External Cost Saving

In this Project, the external cost burdened by the people caused by air pollution due to emission of $\mathrm{CO}_{2}, \mathrm{SO}_{\mathrm{x}}$ and NO_{x} should also be considered. When the emitted volume of $\mathrm{CO}_{2}, \mathrm{SO}_{\mathrm{x}}$ and NO_{x} will be decreased in the case of the execution of the proposed countermeasures in the Project, the Project will get an additional economic benefit from an environmental viewpoint as an external cost saving.

10.1.3 Identification of Economic Cost

Economic cost of a project is identified as an opportunity cost of the Project. In this case, definition of the opportunity cost of the Project can be given as follows, i.e.: (1) if goods and services would be invested in the project under study, they could no longer be utilized for other projects, (2) this implies that the benefits of the other projects could have been created would be sacrificed, and (3) these sacrificed benefits of the other
projects are called opportunity cost of the project.

(1) Foreign currency portion

The foreign currency portion of the construction costs is estimated in Cost Insurance Freight (CIF) price. These international prices are assumed to reflect economic cost directly.

(2) Local currency portion

Because it is presumed that prices in local markets in developing countries are distorted by price controls and other regulations, prices in the domestic markets do not reflect economic scarcity of goods and services. This means that the prices can not be used to evaluate economic costs of local procurement and have to be converted into economic prices.

In economic analysis of a project, conversion factors are used to convert the costs in domestic markets into economic costs of a project.

Using export and import statistics, a standard conversion factor (SCF) is estimated. The SCF converts the domestic commodity prices into the economic prices that can be assumed to reflect the economic scarcity of the local costs.

However, the SCF is applied to only tradable goods. The economic costs of non-tradable goods and services have to be separately evaluated. Conversion factors of land, skilled and non-skilled labors, and transportation are respectively estimated.

Then, the weighted average of the conversion factors is calculated, and apply it to the financial cost to convert it into the economic cost.

10.1.4 Evaluation Criteria

The economic internal rate of return (EIRR) is calculated and used as a main index of economic feasibility of project with net present value ($\mathrm{NPV}=\mathrm{B}-\mathrm{C}$) and B / C ratio. This EIRR is defined by the following formula:

$$
\sum_{t=1}^{t=T} \frac{C_{e p}}{(1+R)^{t}}=\sum_{t=1}^{t=T} \frac{B_{a c}}{(1+R)^{t}}
$$

where, $\quad T=\quad$ the last year of the project life,
$C_{e p}=\quad$ an annual economic cost flow of the project under study in year t,
$B_{a c}=\quad$ an annual benefit (cost) flow derived from an alternative countermeasure in year t, and
$R=\quad$ the Economic Internal Rate of Return.

10.2 Methodology of Financial Evaluation

10.2.1 Outline

Financial analysis appraises the degree of financial return of a project under study that is expected to earn and is carried out in terms of the project owner's profitability.

Project inputs are evaluated in terms of market prices. The inputs thus evaluated are called as "financial costs." Project outputs are also evaluated in terms of market prices. The outputs thus evaluated are called as "financial benefit."

Financial costs and benefits throughout the project life are compared in terms of present values. If the total present value of financial costs equals that of financial benefits (when, $B / C=1$), the discount rate used to calculated the present value is called as "financial internal rate of return (FIRR)."

10.2.2 Financial Cost and Benefit

Financial costs include direct construction cost, taxes, compensation, physical contingency, administration, and engineering expenses. However, price escalation is excluded from the costs.

Financial benefit is increased sales revenue of electricity. In the Project, in other words, the financial benefit is an incremental margin of electricity sales derived from saving of operating expenses due to execution of countermeasures in the Project.

10.2.3 Evaluation Criteria

The financial internal rate of return is calculated and used as a main index of financial feasibility of the project with NPV and B/C ratio. This FIRR is defined by the following formula:

$$
\sum_{t=1}^{t=T} \frac{C_{f t}}{\left(1+R_{f}\right)^{t}}=\sum_{t=1}^{t=T} \frac{B_{f t}}{\left(1+R_{f}\right)^{t}}
$$

where, $\quad T=\quad$ the last year of the project life,
$C_{f t}=\quad$ an annual financial cost flow of the project under study in year t,
$B_{f t}=\quad$ an annual benefit (cost) flow derived from an alternative countermeasure in year t, and
$R_{f}=\quad$ the Financial Internal Rate of Return.

10.3 Results of Economic and Financial Evaluation

The aim of the project is to reduce power losses by reinforcement of the distribution system such with installation of distribution lines, so the benefit derived from installation of capacitors should be excluded from economic and financial evaluation. Installation of capacitors is studied in order to minimize the
reinforcement of distribution system itself by improving transfer of capability of distribution system. The Master Plan Study has also recommended that the capacitors should be installed by Jordanian side due to its small amount of investment .

The economic and financial costs and benefits including the installation of capacitors has also been identified as a reference as well as repayability analyses in the case of with-capacitor.

10.3.1 Economic and Financial Cost of Project

(1) Construction Schedule

Respective the LV line works and installation of capacitors require a period of less than one year for their completion, and the MV line works require a period of two years for their completion. Before commencement of the said works, a period of one year is needed for designing for the LV line works, capacitors and re-conductoring of the MV line works. And a period of two years is needed for new line construction works and re-routing (removing of existing lines and construction of the new line of MV).

The Project is proposed to complete in 2004. Following Table shows the annual cost allocation for the net construction works:

Table 10.3-1 Annual Cost Allocation for Net Construction Works

By Distribution companies	System	Works	2001	2002	2003	2004	Total
EDCO's Works	LV system	Capacitors	0	6.691	6.691	6.691	20,072
		LV line works	0	81.527	81.527	81.527	244,582
		MV line works	0	261,631	261,631	261,631	784,894
	MV system	Capacitors	0	16,500	16,500	0	33,000
		MV line works	0	103,598	103,598	0	207,196
JEPCO's Works	LV system	Capacitors	0	5,071	5,071	5,071	15,212
		LV line works	0	58,918	58,918	58,918	176,754
		MV line works	0	107,598	107,598	107,598	322,793
	MV system	Capacitors	0	9,000	18,000	9,000	36,000
		MV line works	0	0	184,300	184,300	368,600
IDECO's Works	LV system	Capacitors	0	6,411	6,411	6,411	19,232
		LV line works	0	73,210	73,210	73,210	219,630
		MV line works	0	218,685	218,685	218,685	656,056
	MV system	Capacitors	0	11,500	21,500	10,000	43,000
		MV line works	0	12,143	219,843	207,700	439,685
Total							3,586,706

(2) Identification of Construction Cost for Economic and Financial Analysis

Using above net construction cost, financial and economic costs of the Project are estimated. In this case, the costs include 3 cost items as (1) construction cost, (2) engineering (consulting) cost for supervision of the works with a rate of 5% and (3) administration cost of the distribution companies with a rate of 3.0% both to the construction cost.

For estimating the economic and financial costs of the Project, following conditions are considered based on the results of discussion with NEPCO and other 3 distribution companies:

- Share rates of cost for materials and labor to the cost of each work item are assumed at 0.750 and 0.250 for installation of capacitors, 0.800 and 0.200 for construction works of low voltage system, and 0.700 and 0.300 for construction works of medium voltage.
- Among the materials to be procured for the construction works, 25% of materials are to be procured domestically. Therefore, 25% of costs for materials is allocated in local currency portion.
- A standard conversion factor (SCF) is estimated at 0.94254 based the data on external trading statistics as shown in Appendix 10.1.
- A cost for labors is allocated in the local currency portion with a rate of 5.0% of their income tax according to the Low of Income Tax of the nation.
- A net profit with a rate of 10% is applied for contractors and consultation firms for supervision for the construction works.
- A physical contingency with a rate of 2.5% is applied for the cost consisting of construction cost, and costs for engineering services and administration.
- Price contingencies with rates of 3.0% for foreign currency portion and 5.0% for local currency portion are applied for estimation of actual necessary construction cost based on statistical data shown in Appendix 10.2 and the note-8 in Appendix 10.3.

Based on the assumption mentioned above for estimation of cost for the Project, the cost by each distribution company including the cost for installation of capacitors are estimated as:

For the whole Project:

- Financial cost: JDs.4,483,000.- (incl. price contingency for execution of the Project)
- Financial cost: JDs.3,976,000.- (excl. price contingency for financial evaluation)
- Economic cost: JDs.3,709,000.- (excl. price contingency for economic evaluation)

For the EDCO's Works:

- Financial cost: JDs.1,602,000.- (incl. price contingency for execution of the Project)
- Financial cost: JDs.1,430,000.- (excl. price contingency for financial evaluation)
- Economic cost: JDs.1,334,000.- (excl. price contingency for economic evaluation)

For the JEPCO's Works:

- Financial cost: JDs.1,154,000.- (incl. price contingency for execution of the Project)
- Financial cost: JDs.1,019,000.- (excl. price contingency for financial evaluation)
- Economic cost: JDs. 951,000.- (excl. price contingency for economic evaluation)

For the IDECO's Works:

- Financial cost: JDs.1,726,000.- (incl. price contingency for execution of the Project)
- Financial cost: JDs.1,527,000.- (excl. price contingency for financial evaluation)
- Economic cost: JDs.1,424,000.- (excl. price contingency for economic evaluation)

Appendix 10.3-1 shows the detail of the annual allocations of the said costs with capacitors and are briefly summarized as follows :

Table 10.3-2 Annual Cost Allocation with Capacitors

By Distribution companies		2001	2002	2003	2004	Total
Whole Project	Financial cost ${ }^{1 /}$	49,700	1,161,579	1,696,069	1,575,698	4,483,046
	Financial cost^{2}	47,333	1,074,032	1,507,946	1,346,689	3,976,000
	Economic cost ${ }^{3}$	42,735	1,002,712	1,407,419	1,256,853	3,709,718
EDCO's Works	Financial cost ${ }^{1 /}$	17,872	554,949	577,178	452,109	1,602,108
	Financial cost^{2}	17,021	513,167	513,167	386,374	1,429,728
	Economic cost ${ }^{3}$	15,367	479,015	479,015	360,696	1,334,093
JEPCO's Works	Financial cost ${ }^{1)}$	12,739	219,320	457,587	464,868	1,154,514
	Financial cost^{2}	12,133	202,787	406,864	397,362	1,019,146
	Economic cost ${ }^{3}$	10,954	189,449	379,790	370,881	951,074
IDECO's Works	Financial cost ${ }^{1)}$	19,089	387,311	661,303	658,720	1,726,423
	Financial cost^{2}	18,180	358,078	587,914	562,953	1,527,126
	Economic cost ${ }^{3}$	16,414	334,248	548,614	525,276	1,424,552

(Note) 1) Incl. price contingency for execution of the Project
2) Excl. price contingency for financial evaluation
3) Excl. price contingency for economic evaluation

Appendix 10.3-2 shows also the detail of the cost allocation in case of excluding the installation of capacitors, and summarized as follows:

Table 10.3-3 Annual Cost Allocation without Capacitors

| By Distribution companies | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | 2001 $\quad 2002 \quad 2003 \quad$ (JDs.)

(Note) 1) Incl. price contingency for execution of the Project
2) Excl. price contingency for financial evaluation
3) Excl. price contingency for economic evaluation

10.3.2 Economic Benefit

(1) Economic Benefit Derived from Electricity Loss Reduction

In the case of without-project, electricity enterprises should pay additional capacity cost and energy cost for construction of facilities to cover electricity losses so that the customers may be supplied necessary electricity without any trouble. In other words, distribution companies have invested additionally these costs corresponding to the electricity losses. If the Project is executed, these additional costs will be saved. These saved costs are given as economic benefits in the case of this kind of project.

Using the long run marginal cost (LRMC) of NEPCO, a unit marginal capacity cost(kw-cost) and a unit marginal energy cost $(\mathrm{kWh}-\mathrm{cost})$ are estimated for low voltage facilities and medium voltage facilities. The results are as follows:

Table 10.3-4 LRMC for Capacity and Energy

System	Capacity cost (JDs./kW/Year)	Energy cost (JDs./kWh)
Low voltage facilities	82.24	0.0278
Medium voltage facilities	58.71	0.0257

The amount of the electricity loss reduction is estimated from these capacity and energy loss reduction volumes multiplying the said unit marginal capacity and energy costs. And, the effect of the countermeasures is assumed to derive just after completion of the works and, increase during 10 years after completion of the whole works corresponding to demand increase as mentioned in previous sub-clause. And the works will need 4 years from their commencement including design stage, so that the electricity loss reduction volumes will be increased up to the year 2014 when the works are started from 2001. Estimation processes are shown in Appendix 10.4-1 and 10.4-2.

Following tables show the summarized results of estimation of electricity loss to be annually reduced due to completion of the Project.

Table 10.3-5 Annual Electricity Loss Reduction Due to Completion of Project with Capacitor

Year	Whole project				EDCO's Works				JEPCO's Works				IDECO's Works			
	Low voltage system		Medium voltagt\qquad system		Low voltage system		Medium voltagt\qquad		Low voltage system		Medium voltagt\qquad system		Low voltage system		Medium voltag\qquad system	
	Power (kW)	$\begin{aligned} & \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	$\begin{aligned} & \text { Enegy } \\ & \text { (MWh) } \\ & \hline \end{aligned}$	Power (kW)	Enegy (MWh)	Power (kW)	$\begin{aligned} & \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	Enegy (MWh)	Power (kW)	$\begin{aligned} & \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	Enegy (MWh)	Power (kW)	Enegy (MWh)
2001	0	0	0	-	O	O	0	0	0	0	0	-	0	0	0	-
2002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2003	1,186	5,673	0	0	561	2,683	0	0	250	1,197	0	O	375	1,793	0	0
2004	2,616	12,519	1,041	4,980	1,237	5,921	700	3,351	552	2,641	123	588	827	3,957	217	1,041
2005	4,365	20,889	3,676	17,593	2,065	9,879	779	3,727	921	4,407	1,359	6,502	1,380	6,603	1,539	7,364
2006	4,836	23,141	4,073	19,490	2,287	10,944	863	4,130	1,020	4,882	1,505	7,202	1,529	7,315	1,705	8,158
2007	5,299	25,360	4,463	21,359	2,506	11,994	946	4,526	1,118	5,350	1,649	7,893	1,675	8,016	1,868	8,940
2008	5,790	27,711	4,877	23,338	2,739	13,106	1,033	4,945	1,222	5,846	1,802	8,625	1,830	8,759	2,041	9,768
2009	6,236	29,842	5,252	25,132	2,949	14,114	1,113	5,325	1,316	6,295	1,941	9,288	1,971	9,433	2,198	10,519
2010	6,634	31,749	5,587	26,739	3,138	15,015	1,184	5,666	1,400	6,698	2,065	9,881	2,097	10,036	2,339	11,192
2011	7,031	33,647	5,922	28,338	3,325	15,913	1,255	6,004	1,483	7,098	2,188	10,472	2,222	10,636	2,479	11,862
2012	7,439	35,600	6,265	29,982	3,518	16,837	1,328	6,353	1,569	7,510	2,315	11,080	2,352	11,253	2,622	12,549
2013	7,714	36,914	6,612	31,643	3,648	17,458	1,401	6,705	1,627	7,788	2,444	11,693	2,438	11,668	2,768	13,245
2014	7,905	37,830	6,944	33,230	3,739	17,892	1,401	6,705	1,668	7,980	2,605	12,463	2,499	11,958	2,938	14,062

Table 10.3-6 Annual Electricity Loss Reduction Due to Completion of Project without Capacitor

Year	Whole project				EDCO's Works				JEPCO's Works				IDECO's Works			
	Low voltage system		Medium voltagt system		Low voltage system		Medium voltag system		Low voltage system		Medium voltag system		Low voltage system		Medium voltag system	
	Power (kW)	$\begin{aligned} & \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	$\begin{aligned} & \hline \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	Enegy	Power (kW)	$\begin{aligned} & \hline \text { Enegy } \\ & \text { (MWh) } \end{aligned}$	Power (kW)	Enegy (MWh)	Power (kW)	Enegy (MWh)	Power (kW)	Enegy (MWh)	Power (kW)	Enegy (MWh)
2001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2003	753	3,601	0	0	353	1,688	0	0	164	783	0	0	236	1,130	0	0
2004	1,660	7,946	273	1,305	778	3,725	245	1,170	361	1,728	0	0	521	2,493	28	135
2005	2,771	13,260	1,622	7,762	1,299	6,215	272	1,301	603	2,884	776	3,715	870	4,161	574	2,746
2006	3,070	14,689	1,797	8,599	1,439	6,885	301	1,442	668	3,195	860	4,115	963	4,609	636	3,042
2007	3,364	16,097	1,969	9,424	1,577	7,545	330	1,580	732	3,501	942	4,510	1,056	5,051	697	3,334
2008	3,675	17,589	2,152	10,297	1,723	8,245	361	1,726	799	3,825	1,030	4,928	1,153	5,519	761	3,643
2009	3,958	18,942	2,317	11,089	1,855	8,879	389	1,859	861	4,119	1,109	5,307	1,242	5,944	820	3,923
2010	4,211	20,153	2,465	11,798	1,974	9,446	413	1,978	916	4,383	1,180	5,646	1,321	6,324	872	4,174
2011	4,463	21,358	2,613	12,503	2,092	10,011	438	2,096	971	4,645	1,250	5,983	1,400	6,702	924	4,424
2012	4,722	22,597	2,764	13,229	2,213	10,592	464	2,218	1,027	4,914	1,323	6,331	1,482	7,091	978	4,680
2013	4,896	23,431	2,917	13,962	2,295	10,983	489	2,341	1,065	5,096	1,396	6,681	1,536	7,352	1,032	4,940
2014	5,018	24,013	3,091	14,792	2,352	11,256	489	2,341	1,091	5,222	1,498	7,170	1,575	7,535	1,104	5,281

The results of estimation of loss reduction in monetary terms are summarized as follows:
Table 10.3-7 Amount of Electricity Loss Reduction by Year with Capacitor

Year	Whole Project	EDCO's Works	JEPCO's Works	IDECO's Works
2001	0	0	0	0
2002	0	0	0	0
2003	255	121	54	81
2004	752	393	141	217
2005	1,607	586	445	576
2006	1,780	649	493	638
2007	1,951	711	540	700
2008	2,132	777	590	765
2009	2,296	837	635	823
2010	2,442	890	676	876
2011	2,588	943	717	928
2012	2,739	998	758	982
2013	2,861	1,040	794	1,027
2014	2,962	1,059	832	1,071

Table 10.3-8 Amount of Electricity Loss Reduction by Year without Capacitor

Year				Whole Project
EDCO's Works	JEPCO's Works	IDECO's Works		
2001	0	0	0	0
2002	0	0	0	0
2003	162	76	35	51
2004	407	212	78	117
2005	891	329	271	291
2006	987	364	300	323
2007	1,081	399	329	354
2008	1,182	436	359	386
2009	1,273	470	387	416
2010	1,354	500	411	443
2011	1,435	530	436	469
2012	1,518	561	461	496
2013	1,584	583	483	518
2014	1,641	595	507	539

(2) Economic Benefit Derived from External Cost Saving

As mentioned in previous Clause, the external cost burdened by the people due to air pollution due to emission of $\mathrm{CO}_{2}, \mathrm{SO}_{\mathrm{x}}$ and NO_{x} should also be considered in this Project. When the emitted volume of CO_{2}, SO_{x} and NO_{x} will be decreased in the case of the execution of the proposed countermeasures in the Project, the Project will get an additional economic benefit from an environmental viewpoint as an external cost saving.

As mentioned in previous Chapter, the electricity loss reduction will make decrease the fuel consumption. Therefore, those gasses to be emitted will also be controlled as follows:

Table 10.3-9 Intensity of Gasses to be Emitted

Kind of gas	Intensity of gases to be emitted (ton/GWh)
CO_{2}	779.17
SO_{x}	20.00
NO_{x}	0.95

Based on the information reported in "Incorporating Environmental Concerns into Power Sector Decision-making" issued by the World Bank (WB) as a World Bank Environment Paper No.6, unit costs of $\mathrm{CO}_{2}, \mathrm{SO}_{\mathrm{x}}$ and NO_{x} are estimated as follows:

Table 10.3-10 Unit Costs of Gasses to be Emitted

Kind of gas	Unit costs of gases as a basis reported by WB (USS $\$ /$ ton as of 1990)	Unit costs of gases to be controlled by Project* (US $\$ /$ ton as of 2000)
CO_{2}	15.0	20.3
SO_{x}	180.4	244.6
NO_{x}	446.6	605.5

(Note) *: Estimated based on CPI in general item in Jordan.
Volume of emitted gases to be controlled for estimation of the external cost saving can be calculated by applying the said intensity of gasses to be emitted multiplying the volume of the electricity loss reduction (GWh) as shown in the following table:

Table 10.3-11 Volume of Gasses to be Controlled Due to Project without Capacitor

Year	Whole Project			EDCO's Works			JEPCO's Works			IDECO's Works		
	CO_{2}	SO_{x}	NO_{x}									
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0
2003	2,806	72	3	1,315	34	2	610	16	1	880	23	1
2004	7,208	185	9	3,814	98	5	1,346	35	2	2,048	53	2
2005	16,380	420	20	5,856	150	7	5,142	132	6	5,382	138	7
2006	18,145	466	22	6,488	167	8	5,696	146	7	5,961	153	7
2007	19,885	510	24	7,110	183	9	6,242	160	8	6,533	168	8
2008	21,728	558	26	7,769	199	9	6,820	175	8	7,139	183	9
2009	23,399	601	29	8,367	215	10	7,344	189	9	7,688	197	9
2010	24,895	639	30	8,901	228	11	7,814	201	10	8,180	210	10
2011	26,383	677	32	9,433	242	12	8,281	213	10	8,669	223	11
2012	27,915	717	34	9,981	256	12	8,762	225	11	9,172	235	11
2013	29,136	748	36	10,382	266	13	9,176	236	11	9,578	246	12
2014	30,236	776	37	10,594	272	13	9,655	248	12	9,986	256	12

Amounts of the external cost savings are resulted as follows:
Table 10.3-12 Amount of External Cost Saving by Year without Capacitor

Year	Whole Project			EDCO's Works			JEPCO's Works			IDECO's Works		
	CO_{2}	SO_{x}	NO_{x}									
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0
2003	40	31	1	19	14	0	9	7	0	13	10	0
2004	104	79	2	55	42	1	19	15	0	30	23	0
2005	236	180	3	84	65	1	74	57	1	78	59	1
2006	262	200	4	94	71	1	82	63	1	86	66	1
2007	287	219	4	103	78	2	90	69	1	94	72	1
2008	313	239	5	112	86	2	98	75	1	103	79	2
2009	337	258	5	121	92	2	106	81	2	111	85	2
2010	359	274	5	128	98	2	113	86	2	118	90	2
2011	380	291	6	136	104	2	119	91	2	125	96	2
2012	402	308	6	144	110	2	126	97	2	132	101	2
2013	420	321	6	150	114	2	132	101	2	138	106	2
2014	436	333	6	153	117	2	139	106	2	144	110	2

10.3.3 Economic Evaluation of Project

The economic evaluation of the Project is made by using cash flows of the said economic costs and benefits taking sunk cost into account. The results are shown in Appendix 10.5-1 through 10.5-4 and summarized below. In this case, B/C rates are comparison of benefit and cost in present value of them, and NPV(=B-C) means net cash balance between benefits and costs also expressed by their present value. For calculation of present value, a discount rate of 10% is applied as same as in similar projects.

Table 10.3-13 Result of Economic Evaluation

By works	Economic evaluation		
	NPV(JDs.10 $\left.{ }^{3}\right)$	EIRR(\%)	B/C
Whole Project	7,161	32.99	3.42
EDCO's works	2,076	29.19	2.91
JEPCO's works	2,615	40.92	4.52
IDECO's works	2,470	31.18	3.18

Resulted EIRR in all cases seem to be too much high comparing with those in the other projects in electricity sector. But from the viewpoint of design criteria, only the most economical countermeasures in terms of cost performance are adopted for the Project. So, the said results are quite reasonable and the Project is sound economically.

For EDCO's Works, the EIRR seem to be rather small (but, it is enough sound economically) comparing with others. It is caused by the sunk cost.

Generally, the economic analysis evaluates a degree of economic impacts on a project that would bring about in the national economy by using economic cost and economic benefit in monetary terms by EIRR. From this viewpoint, in the economic operation of a project, the benefit (the economic benefit) means an amount of economic impact due to execution of the project converted into monetary terms, so it does not mean an actual money. On the other hand, in the commercial operation of the project, the benefit (the financial benefit or
revenue) means the actual amount of revenue (incremental margin to be increased in the case of this Project) which may be gained from the commercial operation of the project.

The sunk cost means that the cost for facilities witch is already constructed, and to be needed to use for this Project without any cost. In the works of re-conductoring, one third $(1 / 3)$ of its cost is counted in the Project. Therefore, remaining two third (2/3) of its cost are the cost witch is already invested. In EDCO's case, around 20% of it's total cost is for re-conductoring works while the others include 5% of the cost for re-conductoring. Therefore, around 40% of the economic benefit in EDCO's case and 10% in others' cases are derived from the works which are already invested. If these benefits are included in this Project, the benefit is thus doubly counted from the viewpoint of national economy.

The resulted EIRR in EDCO's works is caused by deduction of the said benefit derived from the existing facilities from the total economic benefit. The EIRR for the other 2 distribution companies are also taking these sunk cost into account, but those are not so much high comparing with EDCO's case..

10.3.4 Financial Benefit

If the Project is executed, the operating expenses will be decreased corresponding to the electricity loss reduction. In this case, the operating expenses mean all the cost for electricity sales. Therefore, a margin between the operating expenses and sales amount of electricity will be increased. This incremental increased margin to be called as probable revenue is a financial benefit for financial evaluation of the Project.

For estimation of the said probable revenue, a unit operating expenses was estimated from the past 9 years financial data presented by EDCO (separated from NEPCO since 1998), JEPCO and IDECO as summarized below:

Table 10.3-14 Unit Operating Expenses by Distribution Companies

Year	EDCO	JEPCO	IDECO
1991	30.06	28.31	30.19
1992	30.15	27.33	29.52
1993	32.87	30.21	32.48
1994	34.91	32.41	33.75
1995	34.50	32.33	33.59
1996	37.69	35.75	36.61
1997	38.49	37.51	37.69
1998	38.98	37.63	37.44
1999	37.51	37.96	43.73

Sources: Financial reports of EDCO (NEPCO), JEPCO, and IDECO.
Based on the extrapolation method, envisaged unit operating expenses are estimated using the above mentioned data as shown below:

Table 10.3-15 Unit Operating Expenses by Distribution Companies

Distribution company	Unit operating expenses (Fils/kWh as of 2000)
EDCO's works	40.19
JEPCO's works	40.58
IDECO's works	42.46

Using these unit operating expenses and the energy loss reduction volume, the probable revenue is estimated as shown in the following Tables.

Table 10.3-16 Amount of Probable Revenue by Year (with Capacitor)
(JDs.1,000)

Year	Whole Project	EDCO's Works	JEPCO's Works	IDECO's Works
2001	0	0	0	0
2002	0	0	0	0
2003	233	108	49	76
2004	716	373	131	212
2005	1,583	547	443	593
2006	1,753	606	490	657
2007	1,921	664	537	720
2008	2,099	725	587	787
2009	2,261	781	632	847
2010	2,405	831	673	901
2011	2,549	881	713	955
2012	2,697	932	754	1,011
2013	2,819	971	791	1,058
2014	2,923	989	830	1,105

Table 10.3-17 Amount of Probable Revenue by Year (without Capacitor)

Year	Whole Project	EDCO's Works	JEPCO's Works	IDECO's Works
2001	0	0	0	0
2002	0	0	0	0
2003	148	68	32	48
2004	378	197	70	112
2005	863	302	268	293
2006	956	335	297	325
2007	1,048	367	325	356
2008	1,145	401	355	389
2009	1,233	432	383	419
2010	1,312	459	407	446
2011	1,390	487	431	472
2012	1,471	515	456	500
2013	1,535	535	478	522
2014	1,593	546	503	544

Appendix 10.4-1 and 10.4-2 show their calculation process in detail.

10.3.5 Financial Evaluation of Project

The financial evaluation of the Project is made by using cash flows of the said financial costs and benefits. The results are shown in Appendix 10.6-1 through 10.6-4 and summarized below. In this case, B/C rates are comparison of benefit and cost in present value of them, and NPV $(=B-C)$ means net cash balance between benefits and costs also expressed by their present value in the same manner of the said economic evaluation. For calculation of present value, a discount rate of 10% is applied as same as in similar projects.

Table 10.3-18 Result of Financial Evaluation

By works	Financial evaluation		
	NPV(JDs.10	FIRR(\%)	B/C
Whole Project	4,604	24.83	2.45
EDCO's works	1,584	24.27	2.36
JEPCO's works	1,596	29.18	3.00
IDECO's works	1,423	22.34	2.17

Resulted FIRR in all cases also seem to be too much high comparing with those in the other projects in electricity sector. But from the viewpoint of design criteria as already mentioned above, only the most economical countermeasures in terms of cost performance are adopted for the Project. So, the said results are quite reasonable and the Project is sound financially too.

10.4 Sensitivity Analyses

10.4.1 Fluctuation in Cost and Benefit

(1) Fluctuation of Prices in Cost

There is constant fluctuation in prices of construction materials for these kind of projects as a reflection of economy in the state.

(2) Fluctuation in Benefit

From the viewpoint of fluctuation of prices, it also gives an impact to the economic benefit because that the economic benefit has estimated on the basis of LRMC consisting of kW -value and kWh -value. Main component of the kW -value is construction cost of the power plant, and that of kWh -value consists mainly fuel cost.

The financial benefit consists of operating expenses for electricity sales. All 3 distribution companies purchase their electricity to be sold from a power company, CEGCO through NEPCO. The purchase prices are also subject to the generation price, so the financial benefits are also influenced by the said prices. Furthermore, demand also may be fluctuated in the future. NEPCO has forecasted that the peak demand in Jordan will be increased at an annual average gross rate of 4.6% per annum for 10 years from 2000 . Here, if the said annual growth rate in the peak demand will be decreased by 3.7% for 10 years, the economic and the financial benefit will also be decreased by 10% corresponding to the decrease in the peak demand. Furthermore, if the said annual growth rate in the peak demand will be decreased by 2.6% for 10 years, the economic and the financial benefit will also be decreased by 20% also corresponding to the decrease in the peak demand.

10.4.2 Economic Sensitivity Test

Considering these situation, a sensitivity analysis is made for 8 combined cases in addition to the base case under the conditions that the benefit will be decreased by -10% and -20%, and the cost will be increased by +10 and $+20 \%$. The result of this sensitivity analysis is illustrated and summarized as below:

Fig.10.4-1 Sensitivity of EIRR for the Project

As shown in the above Figures, even the most pessimistic cases under the conditions of the costs increased by 20% and the benefits decreased by 20% show also still enough high EIRR as $23.29 \%, 20.31 \%, 29.35 \%$ and 21.91 \% for whole Project, EDCO's works, JEPCO's works and IDECO's works respectively. It means that the Project under study is economically sound in all cases.

10.4.3 Financial Sensitivity Test

Also considering the situation mentioned above, a sensitivity analysis is made in financial evaluation of the Project for 8 combined cases in addition to the base case under the conditions that the benefit will be decreased by -10% and -20%, and the cost will be increased by +10 and $+20 \%$. The result of this sensitivity analysis is illustrated and summarized as below:

Fig.10.4-2 Sensitivity of FIRR for the Project

As shown in the above Figures, even the most pessimistic cases under the conditions of the costs increased by 20% and the benefits decreased by 20% show also still enough high FIRR as $17.14 \%, 16.60 \%, 20.59 \%$ and 15.22% for whole Project, EDCO's works, JEPCO's works and IDECO's works respectively. It means that the Project under study is also financially sound in all cases.

10.5 Overview of Project Evaluation

From the viewpoint of both the economic and financial aspects, the Project has a viability to execute according to the resulted EIRRs and FIRRs for whole Project and in all cases by 3 distribution companies as EDCO's works, JEPCO's works and IDECO's works as mentioned above.

Especially, resulted EIRRs for whole Project, EDCO's works, JEPCO's works and IDECO's works as $32.99 \%, 29.19 \%, 40.92 \%$ and 31.18% respectively are quite high rates reflecting the external cost savings derived from decreasing of emission of gases of $\mathrm{CO}_{2}, \mathrm{SO}_{x}$ and NO_{x} as one of the economic benefits. It may say that the Project is that for preventing the environmental degradation as air pollution.

10.6 Repayability Analysis

10.6.1 Financing Resources

For execution of the Project, electricity enterprises as EDCO, JEPCO and IDECO should use loan from some financing institutions. There are several Arabic and international financing institutions. Their financing conditions are shown below.

Table 10.6-1 Several Arabic and International Financing Institutions

Name of institution	Grace period	Repayment period	Annual interest	Repayment method	Remarks
Arab Fund for Economic and Social Development (AF)	6 years	10-20 years (excl. grace period)	$\begin{gathered} \hline \hline 4.5 \% \text { to } \\ 6.0 \% \end{gathered}$	- Annual equal installment consisting of principal and interest. - The interest should be paid during the grace period.	100% of the cost can be financed.
International Bank for Rehabilitation and development (IBRD)	5 years	15-20 years (excl. grace period)	6.7 \%	- Annual equal installment consisting of principal and interest. - The interest should be paid during the grace period.	Handling charge of 0.25% will be levied on the remaining balance.
European Investment Bank (EIB)	5 years	10 years (excl. grace period)	$\begin{gathered} 1.45 \% \text { to } \\ 2.0 \% \end{gathered}$	- ditto -	100% of the cost can be financed.
Islamic Development Bank (IDB)	2 years	$\begin{gathered} \hline 5-8 \text { years } \\ \text { (incl. grace } \\ \text { period) } \end{gathered}$	$\begin{aligned} & 9 \% \text { to } \\ & 10 \% \end{aligned}$	- Bi-annual equal installment consisting of Principal and interest. - The interest should be paid during the grace period.	It has also a Cost-Plus Financing Method*.
International Development Association (IDA)	$\begin{gathered} 10 \\ \text { years } \end{gathered}$	40 years (incl. Grace period)	$\begin{gathered} \text { No } \\ \text { interest. } \end{gathered}$	- Annual equal installment for principal.	No interest, but handling charge of 0.75% will be levied on the remaining balance.

Financing Institution

Here, some brief explanations for such financing institutions mentioned in the said Table are given hereunder.

(1) Arab Fund

The Arab Fund for Economic and Social Development (AF, hereinafter referred to as "Arab Fund") makes up a banking group, so it is called as the Arab Bank Group too. The loan from the Arab Fund is classified as a soft loan type. It may finance for any kind of development projects, environmental improvement oriented-projects, and so on.

(2) International Bank for Rehabilitation and Development

The International Bank for Rehabilitation and Development (IBRD) is an entity of the World Bank group. It may finance to member countries, which are in low GDP level between US\$1,465 and US\$5,296 per capita with levying handling charge on the remaining balance of loan amount.

(3) European Investment Bank

The European Investment Bank (EIB) may finance for environmental improvement oriented-projects only, and the loan from it is classified as a soft loan type.

(4) Islamic Development Bank

The Islamic Development Bank (IDB) has a unit investment fund (the Fund) by using a cost-plus financing locally called as "Murabaha" as a most popular way to finance. The IDB explains about this way as "a sales contracts between the IDB's unit investment fund (the Fund) and the client in which the later wishes to purchase equipment or goods, requests the Fund to purchase these items for the client. After the Fund obtains the ownership of the items, the Fund then sells these equipment or goods to the client at cost-plus a reasonable profit. Capital and profit are payable on items agreed between the parties." In this case, the payment will be commenced after withdrawal without any grace period. The said profit can be looked as an interest from the viewpoint of the client.

(5) International Development Aid

The International Development Aid (IDA) is an entity of the World Bank group. It may finance to member countries, which are in low GDP level being less than US\$1,465 per capita with no interest but levies handling charge on the remaining balance of loan amount.

Grant Aid Institution

Other than those financing institutions mentioned above, there is an independent entity for giving the grant named as Global Environment Facility. Its brief explanation is given hereunder.

(6) Global Environment Facility

The Global Environment Facility (GEF) gives a grant for environmental improvement oriented-projects, and its implementing agencies are the United Nation Development Programme (UNDP), the United Nation Environment Programme (UNEP) and the World Bank. It finances to medium size projects within US\$ 10 million (average financing amount was US\$ 5.5 million per project in the past), and it requests co-financing from the other financial institutions.

For Domestic Financing

(7) There are several local financing banks having conditions as annual interest rate ranging from 9% to 11% with grace period of 2 or 3 years and repayment period of 5 to 10 years excluding the grace period using bi-annual equal installment payment.

Other Availability as Financing Resources

(8) Jordan has several bi-lateral co-operations with developed countries. So there is a possibility to use such co-operations to finance the project.

10.6.2 Financing Resources to be Applied for Repayability Analysis

Taking into consideration of the above financing institutions and characteristics of the Project, repayability analyses are made in 3 cases as conservative cases such as:
(1) Financing by the Arab Fund by using 5.5% of interest rate with 20 years of repayment period in addition to 6 years of grace period,
(2) International commercial loan of public financing institution such as the IBRD with the interest rate of 7.0% consisting of interest rate and handling charge and repayment period of 20 years in addition to 5 years of grace period, and
(3) International commercial loan by private banks. Assumed loan conditions are 8.5% of interest rate with repayment period of 10 years including 2 years of grace period.

In these cases, 15% of the total cost are assumed to prepare by each distribution company its-self as their burdening capability as already agreed by them.

10.6.3 Repayability of Loan Amount in Case of Arab Fund

It has been presumed that the interest for both the foreign and local loans will be paid by enterprises' own fund within the amount of probable revenue. In this case, it is assumed that the 15% of the total construction cost should prepare by electricity enterprises themselves as mentioned above. Namely, it is assumed that the amount to be burdened by the enterprises is financed by local loan. The contingency for price escalation should be included in the Project cost in this case so that the Project is executed safely. All cases excluded the cost for installation of capacitors.

Appendices 10.7-1 to 10.7-4 show cash flows as results of loan repayability analysis and illustrated as shown hereunder:

Fig.10.6-1 Repayability of Loan in Case of Arab Fund

JEPCO's Works

10.6.4 Repayability of Loan Amount in Case of International Commercial Loan of Public Financing Institution

In case of international commercial loan of public financing institution such as IBRD, cash flows as the result of repayability analysis is shown in Appendix 10.8-1 to 10.8-4, and illustrated hereunder:

Fig.10.6-2 Repayability of Loan in Case of International Commercial Loan of Public Financing Institution

EDCO's Works

10.6.5 Repayability of Loan Amount in Case of International Private Commercial Loan

In case of international private commercial loan, cash flows as the result of repayability analysis is shown in Appendix 10.9-1 to 10.9-4, and illustrated hereunder:

Fig.10.6-3 Repayability of Loan in Case of International Private Commercial Loan

JEPCO's Works

IDECO's Works

10.6.6 Overview of Repayability Analyses of Loan Amount

As shown in Appendixes 10.7-1 through 10.7-4, 10.8-1 through 10.8-4 and 10.9-1 through 10.9-4, there will register deficits as shown in Table below:

Table 10.6-2 Deficits Appearing in Cash Flows of the Project without Capacitor

Financing resource	Deficit- ridden year	Whole Project	EDCO's works	JEPCO's works	IDECO's works
In case of Arab Fund	2002	$-2,998$	$-1,084$	-761	$-1,153$
In case of international commercial loan of public financing institution such as IBRD	2002	$-3,602$	$-1,302$	-914	$-1,385$
In case of international private commercial loan	2002	$-4,206$	$-1,521$	$-1,068$	$-1,618$

These deficits come from interests of loan amount during the construction period in 2002 in case of Arab Fund and international commercial loan of public financing institution. In case of international private commercial loan, the outflow exceeds the inflow in 2004 and 2006 both for 2 years after first disbursement for net construction works and final disbursement of loan. This exceeding of outflow causes the deficits in 2004 and in 2006 as shown in the above Table. The amounts of these deficits are negligible small comparing with surpluses thereafter. From the viewpoint of each work, it turns an active balance in 2005 for the whole Project, in 2003 for EDCO's works, in 2005 for JEPCO's works and, in 2007 for 2007 for IDECO's works.

As a result, nevertheless there will register some deficits in their cash flows, all distribution companies have capabilities to execute their works with financing by any financing institution. However, from the viewpoint of deficit to be a minimum amount, the case using the Arab Fund is the best case for electricity enterprises.

For reference, repayability analyses with capacitors are also made as shown in Appendixes 10.10-1 through $10.10-4,10.11-1$ through 10.11-4 and 10.12-1 through 10.12-4. In these cases, the said deficits becomes as follows:

Table 10.6-3 Deficits Appearing in Cash Flows of the Project with Capacitor

Financing resource	Deficit- ridden year	Whole Project	EDCO's works	JEPCO's works	IDECO's works
In case of Arab Fund	2002	$-3,144$	$-1,130$	-806	$-1,207$
In case of international commercial loan of public financing institution such as IBRD	2002	$-3,777$	$-1,358$	-968	$-1,451$
In case of international private commercial loan	2002	$-4,411$	$-1,586$	$-1,131$	$-1,694$

The deficits are registering in 2002 only, and they return to the active balance in 2003 in any cases. Those deficits come from the interests during the construction period. From the viewpoint of a ratio to the amount of surpluses thereafter, its extent is smaller by far than that in case without capacitors mentioned above. Because that the cost is not so much increased for installation of capacitors by comparison with probable
revenue (saving amount of operating expenses for electricity sales) to be increased as mentioned in previous sub-clause, it is the matter-of-course. Therefore, all distribution companies have capabilities to execute their works with financing by any financing institution in this case too. However, from the viewpoint of deficit to be a minimum amount, the case using the Arab Fund is the best case for electricity enterprises.

Appendix 10.1 Estimation of Standard Conversion Factor

(Note)
Equaition for calculation of standard conversion factor (SCF):

SC(Impōrt amount + Import customs) + (Export amount - Export tax + Subsidy)

| Year | Import
 amount
 (million JD.) | Export
 amount
 (million JD.; | Import
 customes
 (million JD.) | Export
 taxes | (million JD.) |
| :--- | ---: | ---: | ---: | ---: | ---: |\quad| Subsidy |
| :--- |
| (million JD.) |

Statistical Yearbook 1999, Ddepartment of Statistics (Draft)

Appendix 10.2 Whole Sales Price Index and Salaries and Wages

A. Goods (Base:100\% as of 1992)									
Items	1992	1993	1994	1995	1996	1997	1998	1999	Annual average growth(\%)
Transport vehicles	100.0	109.6	111.4	\#\#\#\#\#	115.2	116.4	\#\#\#\#\#	100.8	2.19
Spare parts and fuels	100.0	106.4	106.4	\#\#\#\#\#	106.8	107.3	\#\#\#\#\#	109.4	1.10
Food items	100.0	97.6	124.0	\#\#\#\#\#	104.8	107.5	\#\#\#\#\#	101.2	2.01
Vegitables and fruirts	100.0	94.9	133.3	\#\#\#\#\#	98.0	98.7	\#\#\#\#\#	88.5	1.87
Dairy products and eggs	100.0	104.2	110.8	\#\#\#\#\#	149.2	154.3	\#\#\#\#\#	133.7	5.79
Meat and fishes	100.0	96.1	96.2	98.6	102.9	104.1	\#\#\#\#\#	112.3	0.81
Cigarettes and drinks	100.0	106.5	113.6	\#\#\#\#\#	113.8	114.4	\#\#\#\#\#	114.4	2.01
Other food items	100.0	104.8	115.7	\#\#\#\#\#	120.4	136.0	\#\#\#\#\#	136.6	4.81
Cloths, textiles and footwears	100.0	102.0	99.1	95.3	97.1	96.5	96.1	96.3	-0.55
Households instruments	100.0	100.0	100.0	\#\#\#\#\#	104.7	104.9	\#\#\#\#\#	103.6	0.76
Medicaments	100.0	86.3	86.3	87.8	87.9	87.9	\#\#\#\#\#	100.2	0.37
Fuels oil and gas	100.0	110.5	118.0	\#\#\#\#\#	118.0	118.0	\#\#\#\#\#	119.1	2.60
Wood	100.0	90.4	91.4	\#\#\#\#\#	93.2	94.0	93.2	81.9	-0.74
Construction materials	100.0	106.4	107.3	\#\#\#\#\#	117.1	121.1	\#\#\#\#\#	115.4	3.05
Fertilizers and insecticides	100.0	105.3	105.3	\#\#\#\#\#	106.9	106.6	\#\#\#\#\#	106.4	0.95
Machinery and equipment	100.0	106.3	106.5	\#\#\#\#\#	103.6	103.6	\#\#\#\#\#	103.6	0.54
Brokaerage margins	100.0	100.0	100.0	\#\#\#\#\#	100.0	100.0	\#\#\#\#\#	100.0	0.00
Cereals and oil seeds	100.0	92.9	95.4	90.3	100.8	103.1	\#\#\#\#\#	101.8	0.44
Trading live animals	100.0	99.8	97.1	98.3	109.1	114.5	\#\#\#\#\#	99.6	1.70
Other goods	100.0	103.3	102.3	\#\#\#\#\#	117.9	120.0	\#\#\#\#\#	120.8	2.36
General	100.0	103.4	108.4	\#\#\#\#\#	107.9	109.6	\#\#\#\#\#	105.7	1.45

B. Salaries and wages

Salaries and wages(1,000JD)	24,899	\#\#\#\#\#	\#\#\#\#\#	-	$\# \# \# \# \#$	46,989	-	\#\#\#\#\#	$(1992-1997)$
Number of employees	14,960	\#\#\#\#\#	\#\#\#\#\#	-	$\# \# \# \# \# ~ 20,799$	-	$\# \# \# \# \#$		
Per capita salaries and wages(JD)	1,664	1,821	2,162	-	2,189	2,259	-	2,467	5.79

[^0]
Appendix 10.3-1 Annual Disbursement of Construction Cost with Capacitor

A. Whole Project

Cost item	Distribution														
	2001			2002			2003			2004			Total		
	FC	LC Sub-total		$\begin{gathered} \hline \text { FC } \\ \hline 528,647 \end{gathered}$	LC	Sub-total	$\begin{gathered} \hline \text { FC } \\ \hline 745,134 \end{gathered}$	$\frac{\text { LC }}{638,349}$	$\begin{gathered} \text { Sub-total } \\ \hline 1,383,483 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FC } \\ \hline 663,558 \end{array}$	LC	Sub-total	$\begin{gathered} \hline \text { FC } \\ \hline 1,937,339 \end{gathered}$	LC	Total
Construction works for countermeasure	0	0	0		443,836	972,483						1,230,742		1,649,369	3,586,708
Installation of capacitors	0	0	0	31,035	24,138	55,173	41,722	32,451	74,173	20,910	16,263	37,173	93,667	72,852	166,519
Construction of LV facilities	0	0	0	128,193	85,462	213,655	128,193	85,462	213,655	128,193	85,462	213,655	384,579	256,386	640,965
Construction of MV facilities	0	0	0	369,419	334,236	703,655	575,219	520,436	1,095,655	514,455	465,459	979,914	1,459,093	1,320,131	2,779,224
Engineering cost for supervision	0	44,834	44,834	0	44,834	44,834	0	44,834	44,834	0	44,834	44,834	0	179,335	179,335
Sub-total	0	44,834	44,834	528,647	488,670	1,017,317	745,134	683,183	1,428,317	663,558	612,018	1,275,576	1,937,339	1,828,705	3,766,043
Administration	0	1,345	1,345	0	30,520	30,520	0	42,850	42,850	0	38,267	38,267	0	112,981	112,981
Sub-total	0	46,179	46,179	528,647	519,190	1,047,836	745,134	726,032	1,471,166	663,558	650,285	1,313,843	1,937,339	1,941,686	3,879,025
Phisical contingency	0	1,154	1,154	13,216	12,980	26,196	18,628	18,151	36,779	16,589	16,257	32,846	48,433	48,542	96,976
Sub-total	0	47,333	47,333	541,863	532,169	1,074,032	763,763	744,183	1,507,946	680,147	666,543	1,346,689	1,985,772	1,990,228	3,976,000
Price contingency	0	2,367	2,367	32,999	54,547	87,547	70,821	117,302	188,123	85,364	143,644	229,008	189,185	317,860	507,045
Total	0	49,700	49,700	574,862	586,717	1,161,579	834,584	861,485	1,696,069	765,511	810,187	1,575,698	2,174,957	2,308,088	4,483,046
Financi:(Total-Price conti.)	0	47,333	47,333	541,863	532,169	1,074,032	763,763	744,183	1,507,946	680,147	666,543	1,346,689	1,985,772	1,990,228	3,976,000
Economic cost	0	42,735	42,735	541,863	460,849	1,002,712	763,763	643,656	1,407,419	680,147	576,707	1,256,853	1,985,772	1,723,946	3,709,718
B. EDECO Services Area															(JDs.)
								Distributio							
Cost item		2001			2002			2003			2004			Total	
	FC	LC	Sub-total	FC	LC	Total									
Construction works for countermeasure	0	0	0	253,706	216,241	469,947	253,706	216,241	469,947	190,036	159,813	349,849	697,449	592,294	1,289,743
Installation of capacitors	0	0	0	13,045	10,146	23,191	13,045	10,146	23,191	3,764	2,927	6,691	29,854	23,219	53,073
Construction of LV facilities	0	0	0	48,916	32,611	81,527	48,916	32,611	81,527	48,916	32,611	81,527	146,749	97,832	244,581
Construction of MV facilities	0	0	0	191,745	173,484	365,229	191,745	173,484	365,229	137,356	124,275	261,631	520,847	471,242	992,089
Engineering cost for supervision	0	16,122	16,122	0	16,122	16,122	0	16,122	16,122	0	16,122	16,122	0	64,487	64,487
Sub-total	0	16,122	16,122	253,706	232,362	486,069	253,706	232,362	486,069	190,036	175,935	365,971	697,449	656,781	1,354,230
Administration	0	484	484	0	14,582	14,582	0	14,582	14,582	0	10,979	10,979	0	40,627	40,627
Sub-total	0	16,605	16,605	253,706	246,944	500,651	253,706	246,944	500,651	190,036	186,914	376,950	697,449	697,408	1,394,857
Phisical contingency	0	415	415	6,343	6,174	12,516	6,343	6,174	12,516	4,751	4,673	9,424	17,436	17,435	34,871
Sub-total	0	17,021	17,021	260,049	253,118	513,167	260,049	253,118	513,167	194,787	191,587	386,374	714,885	714,843	1,429,728
Price contingency	0	851	851	15,837	25,945	41,782	24,114	39,898	64,011	24,447	41,288	65,736	64,398	107,981	172,380
Total	0	17,872	17,872	275,886	279,063	554,949	284,163	293,016	577,178	219,235	232,875	452,109	779,283	822,825	1,602,108
Financi:(Total-Price conti.)	0	17,021	17,021	260,049	253,118	513,167	260,049	253,118	513,167	194,787	191,587	386,374	714,885	714,843	1,429,728
Economic cost	0	15,367	15,367	260,049	218,966	479,015	260,049	218,966	479,015	194,787	165,909	360,696	714,885	619,208	1,334,093

C. JEPCO Services Area

Appendix 10.3-2 Annual Disbursement of Construction Cost without Capacitor
A. Whole Project

Cost item	Distribution														
	2001			2002			2003			2004			Total		
	FC	LC	Sub-total	$\begin{gathered} \hline \mathrm{FC} \\ \hline 497,612 \end{gathered}$	$\frac{\mathrm{LC}}{419,698}$	Sub-total	FC	$\frac{\text { LC }}{605,898}$	Sub-total	$\frac{\mathrm{FC}}{642,648}$	$\frac{\mathrm{LC}}{5550,921}$	Sub-total	$\begin{gathered} \hline \text { FC } \\ \hline 1,843,672 \end{gathered}$	LC	Total
Construction works for countermeasure	0		0			917,310	703,412		1,309,310			1,193,569		1,576,517	3,420,189
Installation of capacitors	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction of LV facilities	0	0	0	128,193	85,462	213,655	128,193	85,462	213,655	128,193	85,462	213,655	384,579	256,386	640,965
Construction of MV facilities	0	0	0	369,419	334,236	703,655	575,219	520,436	1,095,655	514,455	465,459	979,914	1,459,093	1,320,131	2,779,224
Engineering cost for supervision	0	42,752	42,752	0	42,752	42,752	0	42,752	42,752	0	42,752	42,752	0	171,009	171,009
Sub-total	0	42,752	42,752	497,612	462,450	960,062	703,412	648,650	1,352,062	642,648	593,674	1,236,321	1,843,672	1,747,527	3,591,198
Administration	0	1,283	1,283	0	28,802	28,802	0	40,562	40,562	0	37,090	37,090	0	107,736	107,736
Sub-total	0	44,035	44,035	497,612	491,252	988,864	703,412	689,212	1,392,624	642,648	630,763	1,273,411	1,843,672	1,855,263	3,698,934
Phisical contingency	0	1,101	1,101	12,440	12,281	24,722	17,585	17,230	34,816	16,066	15,769	31,835	46,092	46,382	92,473
Sub-total	0	45,136	45,136	510,052	503,534	1,013,586	720,997	706,443	1,427,440	658,714	646,532	1,305,246	1,889,763	1,901,644	3,791,408
Price contingency	0	2,257	2,257	31,062	51,612	82,674	66,856	111,353	178,209	82,674	139,332	222,006	180,592	304,554	485,146
Total	0	47,393	47,393	541,114	555,146	1,096,260	787,853	817,796	1,605,649	741,388	785,864	1,527,252	2,070,356	2,206,198	4,276,554
Financi:(Total-Price conti.)	0	45,136	45,136	510,052	503,534	1,013,586	720,997	706,443	1,427,440	658,714	646,532	1,305,246	1,889,763	1,901,644	3,791,408
Economic cost	0	40,750	40,750	510,052	436,060	946,113	720,997	611,015	1,332,012	658,714	559,358	1,218,072	1,889,763	1,647,184	3,536,948
B. EDCO Services Area															(JDs.)
Cost item	Distribution														
	2001			2002			2003			2004			Total		
	FC	LC Sub-total		FC	LC	Sub-total	$\begin{gathered} \hline \text { FC } \\ \hline 240,661 \end{gathered}$	LC	Sub-total	$\begin{gathered} \hline \text { FC } \\ \hline 186,272 \end{gathered}$	LC	Sub-total	FC	LC	Total
Construction works for countermeasure	00			240,661	206,095	446,756		206,095	446,756			343,158	667,595	569,075	1,236,670
Installation of capacitors		$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$		0	0	0		0	0	0	0	0	0	0	0
Construction of LV facilities	0	0	0	48,916	32,611	81,527	48,916	32,611	81,527	48,916	32,611	81,527	146,749	97,832	244,581
Construction of MV facilities	0	0	0	191,745	173,484	365,229	191,745	173,484	365,229	137,356	124,275	261,631	520,847	471,242	992,089
Engineering cost for supervision	0	15,458	15,458	0	15,458	15,458	0	15,458	15,458	0	15,458	15,458	0	61,834	61,834
Sub-total	0	15,458	15,458	240,661	221,553	462,214	240,661	221,553	462,214	186,272	172,344	358,616	667,595	630,908	1,298,504
Administration	0	464	464	0	13,866	13,866	0	13,866	13,866	0	10,758	10,758	0	38,955	38,955
Sub-total	0	15,922	15,922	240,661	235,419	476,081	240,661	235,419	476,081	186,272	183,102	369,375	667,595	669,863	1,337,459
Phisical contingency	0	398	398	6,017	5,885	11,902	6,017	5,885	11,902	4,657	4,578	9,234	16,690	16,747	33,436
Sub-total	0	16,320	16,320	246,678	241,305	487,983	246,678	241,305	487,983	190,929	187,680	378,609	684,285	686,610	1,370,895
Price contingency	0	816	816	15,023	24,734	39,756	22,874	38,036	60,909	23,963	40,446	64,410	61,860	104,032	165,891
Total	0	17,136	17,136	261,701	266,039	527,739	269,552	279,341	548,892	214,893	228,126	443,019	746,145	790,642	1,536,786
Financi:(Total-Price conti.)	0	16,320	16,320	246,678	241,305	487,983	246,678	241,305	487,983	190,929	187,680	378,609	684,285	686,610	1,370,895
Economic cost	0	14,735	14,735	246,678	208,748	455,426	246,678	208,748	455,426	190,929	162,511	353,440	684,285	594,742	1,279,027

C. JEPCO Services Area

(JDs.)

Cost item	Distribution														
	2001			2002			2003			2004			Total		
	FC	LC	Sub-total	FC	LC	Total									
Construction works for countermeasure	0	0	0	91,840	74,676	166,516	188,597	162,219	350,816	188,597	162,219	350,816	469,034	399,114	868,148
Installation of capacitors	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction of LV facilities	0	0	0	35,351	23,567	58,918	35,351	23,567	58,918	35,351	23,567	58,918	106,052	70,702	176,754
Construction of MV facilities	0	0	0	56,489	51,109	107,598	153,246	138,652	291,898	153,246	138,652	291,898	362,982	328,412	691,394
Engineering cost for supervision	0	10,852	10,852	0	10,852	10,852	0	10,852	10,852	0	10,852	10,852	0	43,407	43,407
Sub-total	0	10,852	10,852	91,840	85,528	177,368	188,597	173,071	361,668	188,597	173,071	361,668	469,034	442,521	911,555
Administration	0	326	326	0	5,321	5,321	0	10,850	10,850	0	10,850	10,850	0	27,347	27,347
Sub-total	0	11,177	11,177	91,840	90,849	182,689	188,597	183,921	372,518	188,597	183,921	372,518	469,034	469,868	938,902
Phisical contingency	0	279	279	2,296	2,271	4,567	4,715	4,598	9,313	4,715	4,598	9,313	11,726	11,747	23,473
Sub-total	0	11,457	11,457	94,136	93,120	187,256	193,312	188,519	381,831	193,312	188,519	381,831	480,760	481,615	962,375
Price contingency	0	573	573	5,733	9,545	15,278	17,925	29,715	47,641	24,262	40,627	64,889	47,921	80,460	128,380
Total	0	12,030	12,030	99,869	102,665	202,534	211,237	218,234	429,471	217,575	229,146	446,720	528,681	562,074	1,090,755
Financi:(Total-Price conti.)	0	11,457	11,457	94,136	93,120	187,256	193,312	188,519	381,831	193,312	188,519	381,831	480,760	481,615	962,375
Economic cost	0	10,344	10,344	94,136	80,774	174,910	193,312	163,030	356,342	193,312	163,030	356,342	480,760	417,178	897,938

Appendix 10.4-1 Calculation of Electricity Loss To Be Reduced with Capacitor

A. Whole Project

Year it Year order		Low voltage system (LV)								Medium voltage system (MV)								Total Total electricity Amount reductionof operating		
		Power				Energy				Power				Energy						
		Capacitor		Line lo		oss reduced		cost saved												
		(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JD. 10^{3})	(JD. 10^{3})	(MWh)	(JDs. 10^{3})
1	2001	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
2	2002	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
3	2003	433.1	36	752.7	62	2,072	58	3,601	100	0.0	0	0.0	0	0	0	0	0	255	5,673	233
4	2004	955.5	79	1,660.4	137	4,573	127	7,946	221	767.9	45	272.7	16	3,675	94	1,305	33	752	17,499	716
5	2005	1,594.4	131	2,770.8	228	7,629	212	13,260	368	2,054.2	121	1,622.1	95	9,831	252	7,762	199	1,607	38,482	1,583
6	2006	1,766.3	145	3,069.5	252	8,452	235	14,689	408	2,275.7	134	1,797.0	106	10,891	280	8,599	221	1,780	42,631	1,753
7	2007	1,935.6	159	3,363.7	277	9,263	257	16,097	447	2,493.8	146	1,969.2	116	11,935	306	9,424	242	1,951	46,719	1,921
8	2008	2,114.9	174	3,675.4	302	10,122	281	17,589	489	2,725.1	160	2,151.8	126	13,041	335	10,297	264	2,132	51,049	2,099
9	2009	2,277.6	187	3,958.0	326	10,900	303	18,942	526	2,934.6	172	2,317.2	136	14,043	360	11,089	285	2,296	54,974	2,261
10	2010	2,423.2	199	4,211.2	346	11,596	322	20,153	560	3,122.1	183	2,465.2	145	14,941	384	11,798	303	2,442	58,488	2,405
11	2011	2,567.9	211	4,462.9	367	12,289	342	21,358	594	3,308.9	194	2,612.6	153	15,835	406	12,503	321	2,588	61,985	2,549
12	2012	2,717.1	223	4,721.9	388	13,003	361	22,597	628	3,500.9	206	2,764.3	162	16,753	430	13,229	340	2,739	65,582	2,697
13	2013	2,817.4	232	4,896.3	403	13,483	375	23,431	651	3,694.9	217	2,917.4	171	17,681	454	13,962	358	2,861	68,557	2,819
14	2014	2,887.4	237	5,018.0	413	13,817	384	24,013	667	3,852.9	226	3,091.1	181	18,438	473	14,792	380	2,962	71,060	2,923

Year it Year order	Low voltage system (LV)								Medium voltage system (MV)								Total Total Amount electricity reductionof operating		
	Power				Energy				Power				Energy						
	Сара	acitor	Lin		Сара	acitor	Lin		Сарас	citor	Lin		Сара	acitor	Lin	ne	s reduced		cost saved
	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})
12001	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
22002	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
32003	208.0	17	352.8	29	995	28	1,688	47	0.0	0	0.0	0	0	0	0	0	121	2,683	108
42004	458.9	38	778.3	64	2,196	61	3,725	104	455.8	27	244.5	14	2,181	56	1,170	30	393	9,272	373
52005	765.7	63	1,298.8	107	3,664	102	6,215	173	507.0	30	272.0	16	2,426	62	1,301	33	586	13,606	547
62006	848.3	70	1,438.8	118	4,059	113	6,885	191	561.7	33	301.3	18	2,688	69	1,442	37	649	15,074	606
72007	929.6	76	1,576.7	130	4,449	124	7,545	210	615.5	36	330.2	19	2,946	76	1,580	41	711	16,520	664
82008	1,015.7	84	1,722.8	142	4,861	135	8,245	229	672.6	39	360.8	21	3,219	83	1,726	44	777	18,051	725
92009	1,093.8	90	1,855.2	153	5,235	145	8,879	247	724.3	43	388.5	23	3,466	89	1,859	48	837	19,439	781
102010	1,163.8	96	1,973.9	162	5,569	155	9,446	263	770.6	45	413.3	24	3,688	95	1,978	51	890	20,681	831
112011	1,233.3	101	2,091.9	172	5,902	164	10,011	278	816.7	48	438.0	26	3,908	100	2,096	54	943	21,917	881
122012	1,304.9	107	2,213.3	182	6,245	174	10,592	294	864.1	51	463.5	27	4,135	106	2,218	57	998	23,190	932
132013	1,353.1	111	2,295.0	189	6,475	180	10,983	305	912.0	54	489.1	29	4,364	112	2,341	60	1,040	24,163	971
142014	1,386.7	114	2,352.1	193	6,636	184	11,256	313	912.0	54	489.1	29	4,364	112	2,341	60	1,059	24,597	989

C. JEPCO Service Area

Year it Year order	Low voltage system (LV)								Medium voltage system (MV)								Total electricity r	Total reductio	Amount nof operating
	Power				Energy				Power				Energy						
	Capa	acitor	Li		Capa	acitor	Li	ine	Сарас	acitor	Lin	ne	Сара	acitor	Lin	ne $\quad 10$	oss reduced		cost saved
	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})
12001	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
22002	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
32003	86.5	7	163.7	13	414	12	783	22	0.0	0	0.0	0	0	0	0	0	54	1,197	49
42004	190.7	16	361.1	30	913	25	1,728	48	122.9	7	0.0	0	588	15	0	0	141	3,229	131
52005	318.3	26	602.5	50	1,523	42	2,884	80	582.3	34	776.2	46	2,787	72	3,715	95	445	10,909	443
62006	352.6	29	667.5	55	1,687	47	3,195	89	645.1	38	859.9	50	3,087	79	4,115	106	493	12,084	490
72007	386.4	32	731.5	60	1,849	51	3,501	97	706.9	42	942.3	55	3,383	87	4,510	116	540	13,243	537
82008	422.2	35	799.3	66	2,021	56	3,825	106	772.5	45	1,029.7	60	3,697	95	4,928	127	590	14,471	587
92009	454.7	37	860.8	71	2,176	60	4,119	114	831.9	49	1,108.9	65	3,981	102	5,307	136	635	15,583	632
102010	483.7	40	915.9	75	2,315	64	4,383	122	885.0	52	1,179.7	69	4,235	109	5,646	145	676	16,579	673
112011	512.6	42	970.6	80	2,453	68	4,645	129	938.0	55	1,250.3	73	4,489	115	5,983	154	717	17,570	713
$12 \quad 2012$	542.4	45	1,026.9	84	2,596	72	4,914	137	992.4	58	1,322.8	78	4,749	122	6,331	163	758	18,590	754
$13 \quad 2013$	562.4	46	1,064.9	88	2,692	75	5,096	142	1,047.4	61	1,396.1	82	5,012	129	6,681	172	794	19,481	791
$14 \quad 2014$	576.4	47	1,091.3	90	2,758	77	5,222	145	1,106.1	65	1,498.4	88	5,293	136	7,170	184	832	20,443	830

D. IDECO Service Area

Appendix 10.4-2 Calculation of Electricity Loss To Be Reduced without Capacitor
A. Whole Project

Year ir Year order		Low voltage system (LV)								Medium voltage system (MV)								Total Total Amount electricity reductionof operating		
		Power				Energy				Power				Energy						
		Capacitor		Line		oss reduced		cost saved												
		(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})
1	2001	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
2	2002	0.0	0	0.0	0	0	0	0	0	0.0	0	0.0	0	0	0	0	0	0	0	0
3	2003	0.0	0	752.6	62	0	0	3,601	100	0.0	0	0.0	0	0	0	0	0	162	3,601	148
4	2004	0.0	0	1,660.4	137	0	0	7,946	221	0.0	0	272.7	16	0	0	1,305	33	407	9,251	378
5	2005	0.0	0	2,770.8	228	0	0	13,260	368	0.0	0	1,622.1	95	0	0	7,762	199	891	21,022	863
6	2006	0.0	0	3,069.5	252	0	0	14,689	408	0.0	0	1,797.0	106	0	0	8,599	221	987	23,288	956
7	2007	0.0	0	3,363.7	277	0	0	16,097	447	0.0	0	1,969.2	116	0	0	9,424	242	1,081	25,521	1,048
8	2008	0.0	0	3,675.4	302	0	0	17,589	489	0.0	0	2,151.8	126	0	0	10,297	264	1,182	27,886	1,145
9	2009	0.0	0	3,958.0	326	0	0	18,942	526	0.0	0	2,317.2	136	0	0	11,089	285	1,273	30,031	1,233
10	2010	0.0	0	4,211.1	346	0	0	20,153	560	0.0	0	2,465.2	145	0	0	11,798	303	1,354	31,951	1,312
11	2011	0.0	0	4,462.9	367	0	0	21,358	594	0.0	0	2,612.6	153	0	0	12,503	321	1,435	33,861	1,390
12	2012	0.0	0	4,721.9	388	0	0	22,597	628	0.0	0	2,764.3	162	0	0	13,229	340	1,518	35,826	1,471
13	2013	0.0	0	4,896.3	403	0		23,431	651	0.0	0	2,917.4	171	0		13,962	358	1,584	37,393	1,535
14	2014	0.0	0	5,018.0	413	0	0	24,013	667	0.0	0	3,091.1	181	0	0	14,792	380	1,641	38,805	1,593

B. EDCO Service Area

Year ir Year order	Low voltage system (LV)								Medium voltage system (MV)								Total Total Amount electricity reductionof operating		
	Power				Energy				Power				Energy						
	Capacitor		Line		oss reduced		cost saved												
	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(IDs. 10^{3})	(MWh)	(ID. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. $\left.10^{3}\right)^{3}$	(MWh)	(IDs. 10^{3})	(MWh)	(IDs. 10^{3})	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})
2001	0.0	0	0.0	0	0.0	0	0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
22002	0.0	0	0.0	0	0.0	0	- 0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
32003	0.0	0	352.8	29	0.0	0	1,688	47	0.0	0	0.0	0	0.0	0	0	0	76	1,688	68
42004	0.0	0	778.3	64	0.0	0	3,725	104	0.0	0	244.5	14	0.0	0	1,170	30	212	4,895	197
52005	0.0	0	1,298.8	107	0.0	0	6,215	173	0.0	0	272.0	16	0.0	0	1,301	33	329	7,516	302
62006	0.0	0	1,438.8	118	0.0	0	6,885	191	0.0	0	301.3	18	0.0	0	1,442	37	364	8,327	335
2007	0.0	0	1,576.7	130	0.0	0	7,545	210	0.0	0	330.2	19	0.0	0	1,580	41	399	9,125	367
82008	0.0	0	1,722.8	142	0.0	0	8,245	229	0.0	0	360.8	21	0.0	0	1,726	44	436	9,971	401
$9 \quad 2009$	0.0	0	1,855.2	153	0.0	0	8,879	247	0.0	0	388.5	23	0.0	0	1,859	48	470	10,738	432
102010	0.0	0	1,973.9	162	0.0	0	9,446	263	0.0	0	413.3	24	0.0	0	1,978	51	500	11,424	459
112011	0.0	0	2,091.9	172	0.0	0	10,011	278	0.0	0	438.0	26	0.0	0	2,096	54	530	12,107	487
122012	0.0	0	2,213.3	182	0.0	0	10,592	294	0.0	0	463.5	27	0.0	0	2,218	57	561	12,810	515
132013	0.0	0	2,295.0	189	0.0	0	10,983	305	0.0	0	489.1	29	0.0	0	2,341	60	583	13,324	535
142014	0.0	0	2,352.1	193	0.0	0	11,256	313	0.0	0	489.1	29	0.0	0	2,341	60	595	13,597	546

C. JEPCO Service Area

Year ir Year order	Low voltage system (LV)								Medium voltage system (MV)								$\begin{gathered} \text { Total } \\ \text { electricity } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { reductior } \end{gathered}$	Amountof operating
	Power				Energy				Power				Energy						
	Сара	citor	Lin		Сара	citor	Lin		Capac	citor	Lin	ne	Capa	citor	Lin		ss reduce		cost saved
	(kW)	(JDs. 10^{3})	(kW)	(IDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	Ds. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(JDs. 10^{3})	(MWh)	(IDs. 10^{3})
2001	0.0	0	0.0	0	0.0	0	0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
2002	0.0	0	0.0	0	0.0	0	0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
32003	0.0	0	163.7	13	0.0	0	783	22	0.0	0	0.0	0	0.0	0	0	0	35	783	32
42004	0.0	0	361.1	30	0.0	0	1,728	48	0.0	0	0.0	0	0.0	0	0	0	78	1,728	70
52005	0.0	0	602.5	50	0.0	0	2,884	80	0.0	0	776.2	46	0.0	0	3,715	95	271	6,599	268
62006	0.0	0	667.5	55	0.0	0	3,195	89	0.0	0	859.9	50	0.0	0	4,115	106	300	7,310	297
72007	0.0	0	731.5	60	0.0	0	3,501	97	0.0	0	942.3	55	0.0	0	4,510	116	329	8,011	325
82008	0.0	0	799.3	66	0.0	0	3,825	106	0.0	0	1,029.7	60	0.0	0	4,928	127	359	8,753	355
92009	0.0	0	860.8	71	0.0	0	4,119	114	0.0	0	1,108.9	65	0.0	0	5,307	136	387	9,426	383
102010	0.0	0	915.9	75	0.0	0	4,383	122	0.0	0	1,179.7	69	0.0	0	5,646	145	411	10,029	407
112011	0.0	0	970.6	80	0.0	0	4,645	129	0.0	0	1,250.3	73	0.0	0	5,983	154	436	10,628	431
122012	0.0	0	1,026.9	84	0.0	0	4,914	137	0.0	0	1,322.8	78	0.0	0	6,331	163	461	11,245	456
132013	0.0	0	1,064.9	88	0.0	0	5,096	142	0.0	0	1,396.1	82	0.0	0	6,681	172	483	11,777	478
142014	0.0	0	1,091.3	90	0.0	0	5,222	145	0.0	0	1,498.4	88	0.0	0	7,170	184	507	12,392	503

D. IDECO Service Area

Year ir Year order	Low voltage system (LV)								Medium voltage system (MV)								Total Total Amount electricity reductionof operating		
	Power				Energy				Power				Energy						
	Capacitor		Line		oss reduced		cost saved												
	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(kW)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})	(JDs. 10^{3})	(MWh)	(JDs. 10^{3})
2001	0.0	0	0.0	0	0.0	0	0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
22002	0.0	0	0.0	0	0.0	0	0	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0
2003	0.0	0	236.1	19	0.0	0	1,130	31	0.0	0	0.0	0	0.0	0	0	0	51	1,130	48
42004	0.0	0	521.0	43	0.0	0	2,493	69	0.0	0	28.2	2	0.0	0	135	3	117	2,628	112
52005	0.0	0	869.5	72	0.0	0	4,161	116	0.0	0	573.9	34	0.0	0	2,746	70	291	6,907	293
62006	0.0	0	963.2	79	0.0	0	4,609	128	0.0	0	635.8	37	0.0	0	3,042	78	323	7,651	325
2007	0.0	0	1,055.5	87	0.0	0	5,051	140	0.0	0	696.7	41	0.0	0	3,334	86	354	8,385	356
82008	0.0	0	1,153.3	95	0.0	0	5,519	153	0.0	0	761.3	45	0.0	0	3,643	94	386	9,162	389
2009	0.0	0	1,242.0	102	0.0	0	5,944	165	0.0	0	819.8	48	0.0	0	3,923	101	416	9,867	419
102010	0.0	0	1,321.3	109	0.0	0	6,324	176	0.0	0	872.2	51	0.0	0	4,174	107	443	10,498	446
112011	0.0	0	1,400.4	115	0.0	0	6,702	186	0.0	0	924.3	54	0.0	0	4,424	114	469	11,126	472
122012	0.0	0	1,481.7	122	0.0	0	7,091	197	0.0	0	978.0	57	0.0	0	4,680	120	496	11,771	500
132013	0.0	0	1,536.4	126	0.0	0	7,352	204	0.0	0	1,032.2	61	0.0	0	4,940	127	518	12,292	522
142014	0.0	0	1,574.6	129	0.0	0	7,535	209	0.0	0	1,103.6	65	0.0	0	5,281	136	539	12,816	544

[^1]$\begin{array}{llll}\text { Marginal energy cost: } & 0.02779 \text { (JDs. } / \mathrm{kWh} \text {) } & \text { Marginal energy cost: } & 0.02567\end{array}$

Appendix 10.5-1 Calculation of Economic Internal Rate of Return for Whole Project

OM Cost: 2.50%

$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Cost (JDs.1,000)				Benefit (JDs.1,000)						$\begin{array}{r} \text { Cash } \\ \text { balance } \end{array}$
		$\begin{gathered} \hline \text { Construction } \\ \text { cost } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{O} / \mathrm{M} \\ \text { cost } \end{gathered}$	Total cost	Benefit due to loss reduction	Negative benefit (sunk C) 20.00\%	Exter Due to CO_{2} reduction	nal cost Due to SO_{x} eduction	$\begin{aligned} & \frac{\text { aving }}{\text { Due to }} \\ & \mathrm{NO}_{\mathrm{x}} \\ & \text { reduction } \end{aligned}$	Total benefit	
1	2000	0	0	0	0	0	0	0	0	0	0	0
2	2001	0	41	0	41	0	0	0	0	0	0	-41
3	2002	510	436	1	947	0	0	0	0	0	0	-947
4	2003	721	611	25	1,357	162	39	40	31	1	195	-1,162
5	2004	659	559	58	1,276	407	104	104	79	2	487	-789
6	2005			88	88	891	188	236	180	3	1,123	1,035
7	2006			88	88	987	208	262	200	4	1,244	1,156
8	2007			88	88	1,081	228	287	219	4	1,364	1,275
9	2008			88	88	1,182	249	313	239	5	1,490	1,402
10	2009			88	88	1,273	268	337	258	5	1,605	1,516
11	2010			88	88	1,354	285	359	274	5	1,707	1,619
12	2011			88	88	1,435	302	380	291	6	1,809	1,721
13	2012			88	88	1,518	320	402	308	6	1,914	1,826
14	2013			88	88	1,584	333	420	321	6	1,998	1,909
15	2014			88	88	1,641	343	436	333	6	2,074	1,986
16	2015			88	88	1,641	343	436	333	6	2,074	1,986
17	2016			88	88	1,641	343	436	333	6	2,074	1,986
18	2017			88	88	1,641	343	436	333	6	2,074	1,986
19	2018			88	88	1,641	343	436	333	6	2,074	1,986
20	2019			88	88	1,641	343	436	333	6	2,074	1,986
21	2020			88	88	1,641	343	436	333	6	2,074	1,986
22	2021			88	88	1,641	343	436	333	6	2,074	1,986
23	2022			88	88	1,641	343	436	333	6	2,074	1,986
24	2023			88	88	1,641	343	436	333	6	2,074	1,986
25	2024			88	88	1,641	343	436	333	6	2,074	1,986
26	2025			88	88	1,641	343	436	333	6	2,074	1,986
27	2026			88	88	1,641	343	436	333	6	2,074	1,986
28	2027			88	88	1,641	343	436	333	6	2,074	1,986
29	2028			88	88	1,641	343	436	333	6	2,074	1,986
30	2029			88	88	1,641	343	436	333	6	2,074	1,986
	tal	1,890	1,647	2,294	5,831	38,132	8,007	10,116	7,731	148	48,121	42,289

In the condition of discount rate at 10% :
Present value: $\quad 2,963$
10,123 7,161
Internal rate of return (EIRR): 32.99%
B/C 3.42
(Note)

$\begin{aligned} & \text { By } \\ & \text { gas } \end{aligned}$	Unit price as of 1990*	Unit price as of 2000**	Unit voleme to be controled by gas (by CEGCO)
	US\$/ton		ton/GWh
CO_{2}	15.0	20.3	779.17
SO_{x}	446.6	605.5	20.00
NO_{x}	180.4	244.6	0.95

* Excerpt from "Incorporating Environmental Concerns into Power

Sector Decision-Making" studied and edited by the World Bank, a series of "Environment Paper" No.6, 1991.
** Estimated on the basis of CPI in General Item according to the
Statistical Yearbook of Jordan indicated hereunder.

Annual price increasing ratio based on Consumer Price Index (CPI) in General Item: 3.09\%
Exchange rate:
(JDs/US\$, mid-rate as of June 16, 2000) 0.709

Appendix 10.5-2 Calculation of Economic Internal Rate of Return for EDCO's Service Area

OM Cost: 2.50%

$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Cost (JDs.1,000)				Benefit (JDs.1,000)						Cash balance
		$\begin{gathered} \hline \text { Construction } \\ \text { cost } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{O} / \mathrm{M} \\ \text { cost } \end{gathered}$	Total cost	Benefit due to loss reduction	Negative benefit (sunk C) 40.00%	Exter Due to CO_{2} reduction	nal cost s Due to SO_{x} reduction	ving Due to NO_{x} reduction	Total benefit	
1	2000	0	0	0	0	0	0	0	0	0	0	0
2	2001	0	15	0	15	0	0	0	0	0	0	-15
3	2002	247	209	0	456	0	0	0	0	0	0	-456
4	2003	247	209	12	467	76	30	19	14	0	79	-388
5	2004	191	163	23	377	212	85	55	42	1	225	-152
6	2005			32	32	329	132	84	65	1	348	316
7	2006			32	32	364	146	94	71	1	385	353
8	2007			32	32	399	160	103	78	2	422	390
9	2008			32	32	436	175	112	86	2	461	429
10	2009			32	32	470	188	121	92	2	496	465
11	2010			32	32	500	200	128	98	2	528	496
12	2011			32	32	530	212	136	104	2	560	528
13	2012			32	32	561	224	144	110	2	592	560
14	2013			32	32	583	233	150	114	2	616	584
15	2014			32	32	595	238	153	117	2	629	597
16	2015			32	32	595	238	153	117	2	629	597
17	2016			32	32	595	238	153	117	2	629	597
18	2017			32	32	595	238	153	117	2	629	597
19	2018			32	32	595	238	153	117	2	629	597
20	2019			32	32	595	238	153	117	2	629	597
21	2020			32	32	595	238	153	117	2	629	597
22	2021			32	32	595	238	153	117	2	629	597
23	2022			32	32	595	238	153	117	2	629	597
24	2023			32	32	595	238	153	117	2	629	597
25	2024			32	32	595	238	153	117	2	629	597
26	2025			32	32	595	238	153	117	2	629	597
27	2026			32	32	595	238	153	117	2	629	597
28	2027			32	32	595	238	153	117	2	629	597
29	2028			32	32	595	238	153	117	2	629	597
30	2029			32	32	595	238	153	117	2	629	597
	tal	684	595	835	2,114	13,980	5,592	3,589	2,743	53	14,773	12,659

In the condition of discount rate at 10% :

Present value:	1,088	3,164
Internal rate of return (EIRR):		29.076
B/C	2.91	

(Note)

	Unit By gas	Unit price as of 1990^{*}	Unit voleme to be as of $2000^{* *}$
US\$/ton			
controled by gas			
(by CEGCO)			
CO_{2}	15.0	20.3	779.17
SO_{x}	446.6	605.5	20.00
NO_{x}	180.4	244.6	0.95

* Excerpt from "Incorporating Environmental Concerns into Power
Sector Decision-Making" studied and edited by the World Bank, a series of "Environment Paper" No.6, 1991.
** Estimated on the basis of CPI in General Item according to the
Statistical Yearbook of Jordan indicated hereunder.

Annual price increasing ratio based on Consumer Price Index (CPI) in General Item: 3.09\%
Exchange rate:
(JDs/US\$, mid-rate as of June 16, 2000) 0.709

Appendix 10.5-3 Calculation of Economic Internal Rate of Return for JEPCO's Service Area

OM Cost: 2.50%

$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Cost (JDs.1,000)				Benefit (JDs.1,000)						$\begin{array}{r} \text { Cash } \\ \text { balance } \end{array}$
		$\begin{gathered} \hline \text { Construction } \\ \text { cost } \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \end{array}$	Total cost	Benefit due to loss re- duction	Negative benefit (sunk C) 10.00%	Exter Due to CO_{2} reduction	$\begin{aligned} & \text { nal cost s } \\ & \hline \text { Due to } \\ & \mathrm{SO}_{\mathrm{x}} \\ & \text { reduction } \end{aligned}$	$\begin{aligned} & \frac{\text { aving }}{\text { Due to }} \\ & \mathrm{NO}_{\mathrm{x}} \\ & \text { reduction } \end{aligned}$	Total benefit	
1	2000	0	0	0	0	0	0	0	0	0	0	0
2	2001	0	10	0	10	0	0	0	0	0	0	-10
3	2002	94	81	0	175	0	0	0	0	0	0	-175
4	2003	193	163	5	361	35	4	9	7	0	47	-314
5	2004	193	163	14	370	78	8	19	15	0	104	-265
6	2005			22	22	271	27	74	57	1	375	353
7	2006			22	22	300	30	82	63	1	416	393
8	2007			22	22	329	33	90	69	1	456	433
9	2008			22	22	359	36	98	75	1	498	476
10	2009			22	22	387	39	106	81	2	536	514
11	2010			22	22	411	41	113	86	2	571	548
12	2011			22	22	436	44	119	91	2	605	582
13	2012			22	22	461	46	126	97	2	640	617
14	2013			22	22	483	48	132	101	2	670	647
15	2014			22	22	507	51	139	106	2	704	681
16	2015			22	22	507	51	139	106	2	704	681
17	2016			22	22	507	51	139	106	2	704	681
18	2017			22	22	507	51	139	106	2	704	681
19	2018			22	22	507	51	139	106	2	704	681
20	2019			22	22	507	51	139	106	2	704	681
21	2020			22	22	507	51	139	106	2	704	681
22	2021			22	22	507	51	139	106	2	704	681
23	2022			22	22	507	51	139	106	2	704	681
24	2023			22	22	507	51	139	106	2	704	681
25	2024			22	22	507	51	139	106	2	704	681
26	2025			22	22	507	51	139	106	2	704	681
27	2026			22	22	507	51	139	106	2	704	681
28	2027			22	22	507	51	139	106	2	704	681
29	2028			22	22	507	51	139	106	2	704	681
30	2029			22	22	507	51	139	106	2	704	681
	tal	481	417	580	1,478	11,659	1,166	3,197	2,443	47	16,180	14,702

In the condition of discount rate at 10% :

Present value:	743	3,358
Internal rate of return (EIRR):		40.615
B/C	4.52	

(Note)

				Remarks:
$\begin{aligned} & \text { By } \\ & \text { gas } \end{aligned}$	$\begin{gathered} \hline \text { Unit } \\ \text { price } \\ \text { as of } \\ 1990^{*} \end{gathered}$	Unit price as of $2000^{* *}$	Unit voleme to be controled by gas (by CEGCO)	* Excerpt from "Incorporating Environmental Concerns into Power Sector Decision-Making" studied and edited by the World Bank, a series of "Environment Paper" No.6, 1991. ** Estimated on the basis of CPI in General Item according to the
	US\$/ton		ton/GWh	Statistical Yearbook of Jordan indicated hereunder.
CO_{2}	15.0	20.3	779.17	
SO_{x}	446.6	605.5	20.00	
NO_{x}	180.4	244.6	0.95	

[^2]Exchange rate:
(JDs/US\$, mid-rate as of June 16, 2000) 0.709

Appendix 10.5-4 Calculation of Economic Internal Rate of Return for IDECO's Service Area

OM Cost: 2.50%

$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Cost (JDs.1,000)				Benefit (JDs.1,000)						Cash balance
		$\begin{gathered} \hline \text { Construction } \\ \text { cost } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{O} / \mathrm{M} \\ \text { cost } \end{gathered}$	Total cost	Benefit due to loss re- duction	Negative benefit (sunk C) 10.00%	Exter Due to CO_{2} reduction	nal cost Due to SO_{x} eduction	ving Due to NO_{x} reduction	Total benefit	
1	2000	0	0	0	0	0	0	0	0	0	0	0
2	2001	0	16	0	16	0	0	0	0	0	0	-16
3	2002	169	147	0	316	0	0	0	0	0	0	-316
4	2003	281	239	8	529	51	5	13	10	0	68	-460
5	2004	274	234	21	530	117	12	30	23	0	158	-372
6	2005			34	34	291	29	78	59	1	400	366
7	2006			34	34	323	32	86	66	1	443	409
8	2007			34	34	354	35	94	72	1	486	452
9	2008			34	34	386	39	103	79	2	531	497
10	2009			34	34	416	42	111	85	2	572	538
11	2010			34	34	443	44	118	90	2	608	574
12	2011			34	34	469	47	125	96	2	645	611
13	2012			34	34	496	50	132	101	2	682	648
14	2013			34	34	518	52	138	106	2	712	678
15	2014			34	34	539	54	144	110	2	741	707
16	2015			34	34	539	54	144	110	2	741	707
17	2016			34	34	539	54	144	110	2	741	707
18	2017			34	34	539	54	144	110	2	741	707
19	2018			34	34	539	54	144	110	2	741	707
20	2019			34	34	539	54	144	110	2	741	707
21	2020			34	34	539	54	144	110	2	741	707
22	2021			34	34	539	54	144	110	2	741	707
23	2022			34	34	539	54	144	110	2	741	707
24	2023			34	34	539	54	144	110	2	741	707
25	2024			34	34	539	54	144	110	2	741	707
26	2025			34	34	539	54	144	110	2	741	707
27	2026			34	34	539	54	144	110	2	741	707
28	2027			34	34	539	54	144	110	2	741	707
29	2028			34	34	539	54	144	110	2	741	707
30	2029			34	34	539	54	144	110	2	741	707
	tal	725	635	880	2,240	12,493	1,249	3,331	2,545	49	17,168	14,928

In the condition of discount rate at 10% :

Present value:	1,132	3,602
Internal rate of return (EIRR):		3,470
B/C	3.18%	

(Note)

By	Unit price	Unit price	Unit voleme to be controled by gas
as of	as of	(by CEGCO)	
	1990^{*}	$2000^{* *}$	
US\$/ton			
CO_{2}	15.0	20.3	779.17
SO_{x}	446.6	605.5	20.00
NO_{x}	180.4	244.6	0.95

* Excerpt from "Incorporating Environmental Concerns into Power
Sector Decision-Making" studied and edited by the World Bank, a series of "Environment Paper" No.6, 1991.
** Estimated on the basis of CPI in General Item according to the
Statistical Yearbook of Jordan indicated hereunder.

Annual price increasing ratio based on Consumer Price Index (CPI) in General Item: 3.09\%
Exchange rate:
(JDs/US\$, mid-rate as of June 16, 2000) 0.709

Appendix 10.6-1 Calculation of Financial Internal Rate of Return for Whole Project

A. Whole Project						(Unit: JDs.1,000)	
						OM Cost:	2.50\%
Cost						Financial benefit Cash by saving balance operation expense	
$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	$\underset{\text { Year }}{\mathrm{Cor}}$	cost		$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \end{array}$	Total cost		
		FC	LC				
1	2000	0	0	0	0	0	0
2	2001	0	45	0	45	0	-45
3	2002	510	504	1	1,015	0	-1,015
4	2003	721	706	26	1,454	148	-1,306
5	2004	659	647	62	1,367	378	-989
6	2005			95	95	863	768
7	2006			95	95	956	861
8	2007			95	95	1,048	953
9	2008			95	95	1,145	1,050
10	2009			95	95	1,233	1,138
11	2010			95	95	1,312	1,217
12	2011			95	95	1,390	1,295
13	2012			95	95	1,471	1,376
14	2013			95	95	1,535	1,441
15	2014			95	95	1,593	1,499
16	2015			95	95	1,593	1,499
17	2016			95	95	1,593	1,499
18	2017			95	95	1,593	1,499
19	2018			95	95	1,593	1,499
20	2019			95	95	1,593	1,499
21	2020			95	95	1,593	1,499
22	2021			95	95	1,593	1,499
23	2022			95	95	1,593	1,499
24	2023			95	95	1,593	1,499
25	2024			95	95	1,593	1,499
26	2025			95	95	1,593	1,499
27	2026			95	95	1,593	1,499
28	2027			95	95	1,593	1,499
29	2028			95	95	1,593	1,499
30	2029			95	95	1,593	1,499
To	tal	1,890	1,902	2,459	6,251	36,976	30,725
In the condition of discount rate at 10% :							
Present value:					3,176	7,780	4,604
Internal rate of return (FIRR):							24.83\%
B/C							2.45

Appendix 10.6-2 Calculation of Financial Internal Rate of Return for EDCO's Service Area

Appendix 10.6-3 Calculation of Financial Internal Rate of Return for JEPCO's Service Area

Appendix 10.6-4 Calculation of Financial Internal Rate of Return for IDECO's Service Area

						(Unit: JDs.1,000)	
						OM Cost:	2.50\%
			Co			Financial	
$\begin{aligned} & \text { Year } \\ & \text { in } \end{aligned}$	Year	Constr co	tion	O/M	Total	benefit by saving	Cash balance
order		FC	LC	cost	cost	operation expense	
1	2000	0	0	0	0	0	0
2	2001	0	17	0	17	0	-17
3	2002	169	169	0	339	0	-339
4	2003	281	277	9	567	48	-519
5	2004	274	270	23	568	112	-456
6	2005			36	36	293	257
7	2006			36	36	325	288
8	2007			36	36	356	320
9	2008			36	36	389	353
10	2009			36	36	419	382
11	2010			36	36	446	409
12	2011			36	36	472	436
13	2012			36	36	500	463
14	2013			36	36	522	485
15	2014			36	36	544	508
16	2015			36	36	544	508
17	2016			36	36	544	508
18	2017			36	36	544	508
19	2018			36	36	544	508
20	2019			36	36	544	508
21	2020			36	36	544	508
22	2021			36	36	544	508
23	2022			36	36	544	508
24	2023			36	36	544	508
25	2024			36	36	544	508
26	2025			36	36	544	508
27	2026			36	36	544	508
28	2027			36	36	544	508
29	2028			36	36	544	508
30	2029			36	36	544	508
To	tal	725	733	943	2,402	12,588	10,187
In the condition of discount rate at 10% :							
Present value:					1,214	2,637	1,423
Internal rate of return (FIRR):							22.34\%
B/C							2.17

Appendix 10.7-1 Fund Repayability Analysis for the Whole Project without Capacitors in Case of Using the Arab Fund Loan

Ds.)															
$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Outflow									In flow				Cashbalance
		Repayment for foreign borrow				Local borrow			$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \\ 2.50 \% \\ \hline \end{array}$	Total out flow	Foreign borrow	Revenue		Total in flow	
		Const- ruction cost	Interest	Principal	Total	Interest P	Principal	Total				Local borrow	(operating expense to be saved)		
1	2001	47,393	0	0	0	0	0	0	0	47,393	40,284	7,109	0	47,393	0
2	2002	1,096,260	2,216	0	2,216	782	0	782	0	1,099,258	931,821	164,439	0	1,096,260	-2,998
3	2003	1,605,649	53,466	0	53,466	18,870	599	19,470	28,591	1,707,176	1,364,801	240,847	147,595	1,753,243	46,068
4	2004	1,527,252	128,530	0	128,530	45,298	14,531	59,829	68,733	1,784,343	1,298,165	229,088	378,437	1,905,690	121,346
5	2005	0	199,929	0	199,929	68,899	36,438	105,337	106,914	412,179	0	0	863,127	863,127	450,947
6	2006		199,929	0	199,929	64,891	59,763	124,654	106,914	431,496			956,163	956,163	524,667
7	2007		199,929	104,251	304,180	58,317	66,337	124,654	106,914	535,748			1,047,847	1,047,847	512,099
8	2008		194,195	109,985	304,180	51,020	73,634	124,654	106,914	535,748			1,144,950	1,144,950	609,202
9	2009		188,146	116,034	304,180	42,920	81,734	124,654	106,914	535,748			1,233,020	1,233,020	697,272
10	2010		181,764	122,416	304,180	33,929	90,725	124,654	106,914	535,748			1,311,852	1,311,852	776,105
11	2011		175,031	129,149	304,180	23,949	99,323	123,272	106,914	534,366			1,390,275	1,390,275	855,908
12	2012		167,928	136,252	304,180	13,024	78,294	91,318	106,914	502,412			1,470,953	1,470,953	968,540
13	2013		160,434	143,746	304,180	4,412	40,105	44,517	106,914	455,611			1,535,321	1,535,321	1,079,710
14	2014		152,528	151,652	304,180	0	0	0	106,914	411,094			1,593,498	1,593,498	1,182,404
15	2015		144,187	159,993	304,180	0	0	0	106,914	411,094			1,593,498	1,593,498	1,182,404
16	2016		135,387	168,793	304,180	0	0	0	106,914	411,094			1,593,498	1,593,498	1,182,404
17	2017		126,104	178,076	304,180	0	0	0	106,914	411,094			1,593,498	1,593,498	1,182,404
18	2018		116,310	187,871	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
19	2019		105,977	198,204	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
20	2020		95,076	209,105	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
21	2021		83,575	220,605	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
22	2022		71,442	232,739	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
23	2023		58,641	245,539	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
24	2024		45,136	259,044	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
25	2025		30,889	273,292	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
26	2026		15,858	288,323	304,180				106,914	411,094			1,593,498	1,593,498	1,182,404
27	2027								106,914	106,914			1,593,498	1,593,498	1,486,584
28	2028								106,914	106,914			1,593,498	1,593,498	1,486,584
29	2029								106,914	106,914			1,593,498	1,593,498	1,486,584
30	2030								106,914	106,914			1,593,498	1,593,498	1,486,584
31	2031								106,914	106,914			1,593,498	1,593,498	1,486,584
32	2032								106,914	106,914			1,593,498	1,593,498	1,486,584
33	2033								106,914	106,914			1,593,498	1,593,498	1,486,584
34	2034								106,914	106,914			1,593,498	1,593,498	1,486,584
35	2035								106,914	106,914			1,593,498	1,593,498	1,486,584
36	2036								106,914	106,914			1,593,498	1,593,498	1,486,584
Total		4,276,554 3,032,604 3,635,071				426,309 641,483					3,635,071 641,483				
(Note)								Foreign borrow			Local borrow				
	Interes	trate of fore	eign loan:						5.50\%		11.00\%				
	Equal annual repay Repayment period: Grace period:		yment amou	nt of capital	for foreig	oan:			304,180	For 1st year	1,381				
				20		ars				For 2nd year	31,954				
				6		ars (exclud	ded in the	repayment	period)	For 3rd year	46,802				
										For 4th year	44,517				

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.7-2 Fund Repayability Analysis for EDCO's Works without Capacitors in Case of Using the Arab Fund Loan

[^3]
Appendix 10.7-3 Fund Repayability Analysis for JEPCO's Works without Capacitors in Case of Using the Arab Fund Loan

[^4]
Appendix 10.7-4 Fund Repayability Analysis for IDECO's Works without Capacitors in Case of Using the Arab Fund Loan

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.8-1 Fund Repayability Analysis for the Whole Project without Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

[^5]
Appendix 10.8-2 Fund Repayability Analysis for EDCO's Works without Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

															(JDs.)
$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Outflow									In flow				$\begin{array}{r} \text { Cash } \\ \text { balance } \end{array}$
		Repayment for foreign borrow				Local borrow			$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \\ 2.50 \% \end{array}$	Total out flow	Foreign borrow	Revenue		$\begin{aligned} & \text { Total } \\ & \text { in flow } \end{aligned}$	
		Construction cost	Interest Interest for	Principal internationa	Total al loan to	Interest be paid	Principal	Total				Local borrow to			
1	2001	17,136	0	0	0	0	0	0	0	17,136	14,566	2,570	0	17,136	0
2	2002	527,739	1,020	0	1,020	283	0	283	0	529,042	448,578	79,161	0	527,739	-1,302
3	2003	548,892	32,420	0	32,420	8,990	217	9,207	13,622	604,141	466,558	82,334	67,841	616,733	12,592
4	2004	443,019	65,079	0	65,079	18,023	6,916	24,939	27,344	560,381	376,566	66,453	196,730	639,749	79,368
5	2005	0	91,439	0	91,439	24,572	14,619	39,191	38,420	169,050	0	0	302,068	302,068	133,018
6	2006		91,439	31,864	123,303	22,964	21,830	44,794	38,420	206,517			334,662	334,662	128,145
7	2007		89,208	34,094	123,303	20,563	24,231	44,794	38,420	206,517			366,734	366,734	160,217
8	2008		86,822	36,481	123,303	17,898	26,897	44,794	38,420	206,517			400,734	400,734	194,218
9	2009		84,268	39,034	123,303	14,939	29,856	44,794	38,420	206,517			431,560	431,560	225,044
10	2010		81,536	41,767	123,303	11,655	33,140	44,794	38,420	206,517			459,131	459,131	252,614
11	2011		78,612	44,691	123,303	8,009	36,286	44,295	38,420	206,017			486,580	486,580	280,563
12	2012		75,484	47,819	123,303	4,018	24,894	28,912	38,420	190,635			514,834	514,834	324,199
13	2013		72,136	51,166	123,303	1,280	11,633	12,913	38,420	174,635			535,492	535,492	360,856
14	2014		68,555	54,748	123,303	0	0	0	38,420	161,722			546,463	546,463	384,741
15	2015		64,722	58,580	123,303	0	0	0	38,420	161,722			546,463	546,463	384,741
16	2016		60,622	62,681	123,303	0	0	0	38,420	161,722			546,463	546,463	384,741
17	2017		56,234	67,068	123,303	0	0	0	38,420	161,722			546,463	546,463	384,741
18	2018		51,539	71,763	123,303				38,420	161,722			546,463	546,463	384,741
19	2019		46,516	76,787	123,303				38,420	161,722			546,463	546,463	384,741
20	2020		41,141	82,162	123,303				38,420	161,722			546,463	546,463	384,741
21	2021		35,390	87,913	123,303				38,420	161,722			546,463	546,463	384,741
22	2022		29,236	94,067	123,303				38,420	161,722			546,463	546,463	384,741
23	2023		22,651	100,652	123,303				38,420	161,722			546,463	546,463	384,741
24	2024		15,605	107,697	123,303				38,420	161,722			546,463	546,463	384,741
25	2025		8,067	115,236	123,303				38,420	161,722			546,463	546,463	384,741
26	2026								38,420	38,420			546,463	546,463	508,044
27	2027								38,420	38,420			546,463	546,463	508,044
28	2028								38,420	38,420			546,463	546,463	508,044
29	2029								38,420	38,420			546,463	546,463	508,044
30	2030								38,420	38,420			546,463	546,463	508,044
31	2031								38,420	38,420			546,463	546,463	508,044
32	2032								38,420	38,420			546,463	546,463	508,044
33	2033								38,420	38,420			546,463	546,463	508,044
34	2034								38,420	38,420			546,463	546,463	508,044
35	2035								38,420	38,420			546,463	546,463	508,044
36	2036								38,420	38,420			546,463	546,463	508,044
Total		1,536,786	1,349,739	1,306,268		153,195	230,518				1,306,268	230,518			
(Note)								Foreign borrow			cal borrow				
	Interes	trate of fore	ign loan:						7.00\%		11.00\%				
	Equal annual repay Repayment period: Grace period:		ment amou	nt of capita	for forei	gn loan:			123,303	For 1st year	499				
				25		years				For 2nd year	15,383				
				5		years (exclu	ded in the	repaymen	period)	For 3rd year	15,999				
										For 4th year	12,913				

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.8-3 Fund Repayability Analysis for JEPCO's Works without Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

															(JDs.)
$\begin{aligned} & \text { Year } \\ & \text { in } \\ & \text { order } \end{aligned}$	Year	Outflow									In flow				$\begin{array}{r} \text { Cash } \\ \text { balance } \end{array}$
			Repayment for foreign borrow			Local borrow			$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \\ 2.50 \% \\ \hline \end{array}$	Total out flow	Foreign borrow	Revenue		Total in flow	
		Construction cost	Interest	Principal	Total	Interest	Principal	Total				Local borrow			
1	2001	12,030	0	0	0	0	0	0	0	12,030	10,225	1,804	0	12,030	0
2	2002	202,534	716	0	716	198	0	198	0	203,448	172,154	30,380	0	202,534	-914
3	2003	429,471	12,767	0	12,767	3,540	152	3,692	5,364	451,294	365,051	64,421	31,774	461,245	9,951
4	2004	446,720	38,320	0	38,320	10,610	2,731	13,340	16,101	514,482	379,712	67,008	70,122	516,842	2,361
5	2005	0	64,900	0	64,900	17,680	8,463	26,143	27,269	118,312	0	0	267,787	267,787	149,475
6	2006		64,900	22,616	87,516	16,749	15,044	31,793	38,420	157,729			296,640	296,640	138,911
7	2007		63,317	24,199	87,516	15,095	16,699	31,793	38,420	157,729			325,086	325,086	167,358
8	2008		61,623	25,893	87,516	13,258	18,536	31,793	38,420	157,729			355,197	355,197	197,468
9	2009		59,810	27,705	87,516	11,219	20,575	31,793	38,420	157,729			382,507	382,507	224,778
10	2010		57,871	29,645	87,516	8,956	22,838	31,793	38,420	157,729			406,977	406,977	249,248
11	2011		55,796	31,720	87,516	6,443	24,999	31,443	38,420	157,378			431,284	431,284	273,906
12	2012		53,576	33,940	87,516	3,693	21,846	25,539	38,420	151,475			456,322	456,322	304,847
13	2013		51,200	36,316	87,516	1,290	11,731	13,021	38,420	138,956			477,911	477,911	338,954
14	2014		48,658	38,858	87,516	0	0	0	38,420	125,935			502,867	502,867	376,932
15	2015		45,938	41,578	87,516	0	0	0	38,420	125,935			502,867	502,867	376,932
16	2016		43,027	44,489	87,516	0	0	0	38,420	125,935			502,867	502,867	376,932
17	2017		39,913	47,603	87,516	0	0	0	38,420	125,935			502,867	502,867	376,932
18	2018		36,581	50,935	87,516				38,420	125,935			502,867	502,867	376,932
19	2019		33,015	54,500	87,516				38,420	125,935			502,867	502,867	376,932
20	2020		29,200	58,315	87,516				38,420	125,935			502,867	502,867	376,932
21	2021		25,118	62,397	87,516				38,420	125,935			502,867	502,867	376,932
22	2022		20,750	66,765	87,516				38,420	125,935			502,867	502,867	376,932
23	2023		16,077	71,439	87,516				38,420	125,935			502,867	502,867	376,932
24	2024		11,076	76,440	87,516				38,420	125,935			502,867	502,867	376,932
25	2025		5,725	81,790	87,516				38,420	125,935			502,867	502,867	376,932
26	2026								38,420	38,420			502,867	502,867	464,448
27	2027								38,420	38,420			502,867	502,867	464,448
28	2028								38,420	38,420			502,867	502,867	464,448
29	2029								38,420	38,420			502,867	502,867	464,448
30	2030								38,420	38,420			502,867	502,867	464,448
31	2031								38,420	38,420			502,867	502,867	464,448
32	2032								38,420	38,420			502,867	502,867	464,448
33	2033								38,420	38,420			502,867	502,867	464,448
34	2034								38,420	38,420			502,867	502,867	464,448
35	2035								38,420	38,420			502,867	502,867	464,448
36	2036								38,420	38,420			502,867	502,867	464,448
Total		1,090,755	939,873	927,142		108,732	163,613				927,142	163,613			
(Note)								Foreign borrow			Local borrow				
(1) Interest rate of foreign loan:									7.00\%		11.00\%				
(2) Equa		annual repay	ment amou	nt of capital	for forei	gn loan:			87,516	For 1st year	351				
Repayment period:				25		years				For 2nd year	5,903				
Grace period:				5		years (excluded in the repayment period)				For 3rd year	12,518				
										For 4th year	13,021				

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.8-4 Fund Repayability Analysis for IDECO's Works without Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.9-1 Fund Repayability Analysis for the Whole Project without Capacitors in Case of Using the International Private Commercial Loan

[^6]
Appendix 10.9-2 Fund Repayability Analysis for EDCO's Works without Capacitors in Case of Using the International Private Commercial Loan

[^7]
Appendix 10.9-3 Fund Repayability Analysis for JEPCO's Works without Capacitors in Case of Using the International Private Commercial Loan

(3) Coverage ratio of loan amount to the total Project cost:

Appendix 10.9-4 Fund Repayability Analysis for IDECO's Works without Capacitors in Case of Using the International Private Commercial Loan

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.10-1 Fund Repayability Analysis for the Whole Project with Capacitors in Case of Using the Arab Fund Loan

[^8]
Appendix 10.10-2 Fund Repayability Analysis for EDCO's Works with Capacitors in Case of Using the Arab Fund Loan

[^9]
Appendix 10.10-3 Fund Repayability Analysis for JEPCO's Works with Capacitors in Case of Using the Arab Fund Loan

[^10]
Appendix 10.10-4 Fund Repayability Analysis for IDECO's Works with Capacitors in Case of Using the Arab Fund Loan

[^11]
Appendix 10.11-1 Fund Repayability Analysis for the Whole Project with Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

)															
$\begin{gathered} \text { Year } \\ \text { in } \\ \text { order } \end{gathered}$	Year	Outflow									In flow				$\begin{array}{r} \text { Cash } \\ \text { balance } \end{array}$
		Repayment for foreign borrow				Local borrow			$\begin{array}{r} \mathrm{O} / \mathrm{M} \\ \text { cost } \\ 2.50 \% \end{array}$	Total out flow	Foreign borrow	Revenue			
		Construction cost	Interest	Principal	Total	Interest	Principal	Total				Local borrow	(operating expense o be saved)	Total in flow	
1	2001	49,700	0	0	0	0	0	0	0	49,700	42,245	7,455	0	49,700	0
2	2002	1,161,579	2,957	0	2,957	820	0	820	0	1,165,356	987,342	174,237	0	1,161,579	-3,777
3	2003	1,696,069	72,071	0	72,071	19,986	629	20,615	30,282	1,819,037	1,441,658	254,410	232,535	1,928,604	109,567
4	2004	1,575,698	172,987	0	172,987	47,902	15,390	63,292	72,684	1,884,660	1,339,343	236,355	715,890	2,291,587	406,927
5	2005	0	266,741	0	266,741	72,208	38,535	110,743	112,076	489,560	0	0	1,582,551	1,582,551	1,092,991
6	2006		266,741	92,951	359,693	67,969	62,703	130,673	112,076	602,441			1,753,176	1,753,176	1,150,735
7	2007		260,235	99,458	359,693	61,072	69,600	130,673	112,076	602,441			1,921,292	1,921,292	1,318,850
8	2008		253,273	106,420	359,693	53,416	77,256	130,673	112,076	602,441			2,099,359	2,099,359	1,496,918
9	2009		245,823	113,869	359,693	44,918	85,755	130,673	112,076	602,441			2,260,773	2,260,773	1,658,332
10	2010		237,852	121,840	359,693	35,485	95,188	130,673	112,076	602,441			2,405,286	2,405,286	1,802,845
11	2011		229,323	130,369	359,693	25,014	104,210	129,224	112,076	600,993			2,549,100	2,549,100	1,948,107
12	2012		220,198	139,495	359,693	13,551	81,815	95,366	112,076	567,135			2,697,021	2,697,021	2,129,886
13	2013		210,433	149,260	359,693	4,551	41,377	45,929	112,076	517,697			2,819,456	2,819,456	2,301,758
14	2014		199,985	159,708	359,693	0	0	0	112,076	471,769			2,922,940	2,922,940	2,451,171
15	2015		188,805	170,887	359,693	0	0	0	112,076	471,769			2,922,940	2,922,940	2,451,171
16	2016		176,843	182,849	359,693	0	0	0	112,076	471,769			2,922,940	2,922,940	2,451,171
17	2017		164,044	195,649	359,693	0	0	0	112,076	471,769			2,922,940	2,922,940	2,451,171
18	2018		150,348	209,344	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
19	2019		135,694	223,998	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
20	2020		120,014	239,678	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
21	2021		103,237	256,456	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
22	2022		85,285	274,408	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
23	2023		66,076	293,616	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
24	2024		45,523	314,169	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
25	2025		23,531	336,161	359,693				112,076	471,769			2,922,940	2,922,940	2,451,171
26	2026								112,076	112,076			2,922,940	2,922,940	2,810,863
27	2027								112,076	112,076			2,922,940	2,922,940	2,810,863
28	2028								112,076	112,076			2,922,940	2,922,940	2,810,863
29	2029								112,076	112,076			2,922,940	2,922,940	2,810,863
30	2030								112,076	112,076			2,922,940	2,922,940	2,810,863
31	2031								112,076	112,076			2,922,940	2,922,940	2,810,863
32	2032								112,076	112,076			2,922,940	2,922,940	2,810,863
33	2033								112,076	112,076			2,922,940	2,922,940	2,810,863
34	2034								112,076	112,076			2,922,940	2,922,940	2,810,863
35	2035								112,076	112,076			2,922,940	2,922,940	2,810,863
36	2036								112,076	112,076			2,922,940	2,922,940	2,810,863
Total		4,483,046	3,898,020	3,810,589		446,894	672,457				3,810,589	672,457			
(Note)								Foreign borrow			Local borrow				
(1) Interest rate of foreign loan:								7.00\%			11.00\%				
(2) Equa		annual repay	yment amou	nt of capital	1 for forei	gn loan:		359,693		For 1st year	1,449				
Repayment period:				25		years				For 2nd year	33,858				
Grace period:				5		years (excluded in the repayment period)				For 3rd year	49,437				
										For 4th year	45,929				

[^12]
Appendix 10.11-2 Fund Repayability Analysis for EDCO's Works with Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

[^13]
Appendix 10.11-3 Fund Repayability Analysis for JEPCO's Works with Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.11-4 Fund Repayability Analysis for IDECO's Works with Capacitors in Case of Using the International Commercial Loan of Public Financing Institution

(3) Coverage ratio of loan amount to the total Project cost: 85.00%

Appendix 10.12-1 Fund Repayability Analysis for the Whole Project with Capacitors in Case of Using the International Private Commercial Loan

[^14]
Appendix 10.12-2 Fund Repayability Analysis for EDCO's Works with Capacitors in Case of Using the International Private Commercial Loan

(3) Coverage ratio of loan amount to the total Project cost:
85.00\%
(4) Operation and maintenance cost:
1,232

Appendix 10.12-3 Fund Repayability Analysis for JEPCO's Works with Capacitors in Case of Using the International Private Commercial Loan

(3) Coverage ratio of loan amount to the total Project cost:
85.00\%
(4) Operation and maintenance cost:

Appendix 10.12-4 Fund Repayability Analysis for IDECO's Works with Capacitors in Case of Using the International Private Commercial Loan

(3) Coverage ratio of loan amount to the total Project cost:
85.00\%
(4) Operation and maintenance cost:
1,232

CHAPTER XI

RECOMMENDATION

Chapter 11 Recommendation

The result of the study and recommendation for distribution loss reduction are summarized in this chapter. The result of the study briefly summarized including features of target feeders studied, policy of the selection of respective alternatives, effect on environment in terms of emission of gases such as CO_{2} and economic and financial analysis.

11.1 Summary of the Study

Target LV feeders have been selected based on the load current of more than 100 amps and total length. of the feeder. MV target feeders have been chosen based on the request of Jordanian counterparts. Features and situation of respective MV and LV target feeders are summarized in the table 11.1-1 and 11.1-2 as shown below.

Table 11.1-1 Currents, Lengths and Power factors of LV target feeders (1999yr)

	The Number of LV Target Feeders in Peak Current										Current		Line Length		Ave. p.f
	$\begin{aligned} & \sim 75 \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & \sim 100 \\ & (\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \sim 125 \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150 \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & \sim 175 \\ & (\mathrm{~A}) \end{aligned}$	$\begin{array}{\|l\|} \sim 200 \\ (A) \end{array}$	$\begin{aligned} & \begin{array}{l} \sim 225 \\ (\mathrm{~A}) \\ \hline \end{array}{ }^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \sim 250 \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Over } \\ 250(A) \end{array}$	Total	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { (kA) } \end{array}$	Ave. A)	Total (km)	Ave. (km)	
EDCO	1	5	31	39	32	13	5	11	11	148	24.2	163	262.4	1.77	0.817
JEPCO	3	10	9	18	15	12	9	4	20	100	18.5	185	105.6	1.06	0.820
IDECO	11	16	22	21	37	13	9	13	8	150	23.2	155	313.7	2.09	0.820
Total	15	31	62	78	84	38	23	28	39	398	65.9	166	681.7	1.71	0.819

Table 11.1-2 MV Target Feeder (1999yr)

Distribution Company	Name of Line	Main Substation	Total Line Length (km)	Capacity $($ MVA $[\mathrm{A}]$	Load (A)	Power Factor
	Wadi Musa	Ma'an	156	$15.5(271)$	157	0.84
	Tafila	Rashada	28	$15.5(271)$	92	0.82
	JV2	Subeih	125	$15.9(278)$	194	0.80
JEPCO	Duleel	Zarka	48	$19.4(340)$	167	0.80
	Madaba	QAIA	156	$19.4(340)$	283	0.88
IDECO	Jarash	Rihab	155	$15.5(271)$	246	0.83
	Emrawa	Irbid	163	$20.0(350)$	250	0.82
	Samma	Irbid	182	$20.0(350)$	367	0.84

Installation of capacitors for power factor correction was not included in the items of the study for distribution power loss reduction. Taking into effectiveness of power factor correction to reduce investment in reinforcement of distribution system itself and by strong request from Jordanian side, power factor correction has been studied as a base case, and reinforcement or improvement on distribution system such as new line installation and higher voltage introduction have been examined in combination with capacitors.

Recommendation

The objective of the study is to obtain maximum benefit from power loss reduction though; maintaining operating voltage within permissible level is also important quality of distribution service. The selection of improvement measures for respective feeders has been carried out based on the criteria: The most net-beneficial measure among alternatives should be selected that can maintain system voltage within 10% in the initial year of the commissioning of the remedy. As the investment in MV system for loss reduction is relatively larger, remedy has been selected based on the recovery period of investment by comparison of I.E factor in case the difference of the amount of net-benefit is less than several percent, seeking the efficiency of the project.

Studies have been conducted based on the above conditions, result of the study and remedies for distribution power loss reduction is tabulated in the table 11.1-3 and table 11.1-4.

Table 11.1-3 : Summary of Study Result on LV Target Feeders

		EDCO	JEPCO	IDECO	Total
Countermeasure	Capacitor Inst. \& MV Introduction	43	14	37	94
	Capacitor Inst. \& LV Reinforcement	96	78	92	266
	Capacitor Installation	9	8	21	38
	Total	148	100	150	398
Initial Investment ($\times 1,000 \mathrm{JD}$)	On Capacitor Installation	20	15	19	55
	On Network Reinforcement	1,029	500	876	2,405
	Total	1,049	515	895	2,460
Energy Loss Reduction (MWh/10yr.)	From Capacitor Installation	39,204	16,296	26,130	81,630
	From Network Reinforcement	66,494	30,851	44,514	141,859
	Total	105,698	47,147	70,644	223,489
$\begin{gathered} \text { Net Benefit } \\ (\times 1,000 \mathrm{JD} / 10 \mathrm{yr} .) \end{gathered}$	From Capacitor Installation	1,099	451	728	2,278
	From Network Reinforcement	1,071	480	568	2,120
	Total	2,170	931	1,297	4,398
I.E. Factor	Capacitor Installation	54.7	29.7	37.8	41.8
	Network Reinforcement	1.04	0.96	0.65	0.88
	Total	2.07	1.81	1.45	1.79

Based on the result of the distribution power loss reduction due to remedies, annual reduction of power losses and emission of CO2, SOX and NOX have been estimated. The result is tabulated in table 11.1-5 and table 11.1-6 as shown below. Total amount of reduction in emitted gases until 2014 are approximately two hundred fifty thousand tons of CO2, six thousand forty hundred tons of SOx and three hundred tons of Nox, respectively.

Table11.1-4 Summary of the Study on MV Target Feeders (JD)

Co.	Target Feeder		Capacitors	Re-con- ductoring	New Line	Rerouting	Total
EDCO	Wadi Musa		12,000	101,790	-	-	113,790
	Tafila		7,000	-	-	-	7,000
	JV2	A	7,000	63,037	-	-	70,037
		B	7,000	42,369	-	-	49,369
	Sub total		33,000	207,196	-	-	240,196
JEPCO	Duleel		18,000	-	-	-	18,000
	Madaba		18,000	-	368,600	-	386,600
	Sub total		36,000	-	368,600	-	404,600
IDECO	Jerash		20,000	-	-	415,400	435,400
	Emrawa Samma	A	10,000	24,285	-	-	34,285
		B	10,000	-	-	-	10,000
		C	3,000	-	-	-	3,000
	Sub total		43,000	24,285	-	415,400	482,685
Total			$\begin{gathered} 112,000 \\ (10 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 231,481 \\ (20 \%) \\ \hline \end{gathered}$	$\begin{gathered} 368,600 \\ (33 \%) \\ \hline \end{gathered}$	$\begin{gathered} 415,400 \\ (37 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,127,481 \\ (100 \%) \end{gathered}$

Table 11.1-5 Annual Reduction of Power Losses due to Remedies

Year	Whole Project			EDCO's Work			JEPCO's Work			IDECO's Work		
	CO_{2}	SO_{x}	No_{x}									
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0	0
2003	2,806	72	3	1,315	34	2	610	16	1	880	23	1
2004	7,208	185	9	3,814	98	5	1,346	35	2	2,048	53	2
2005	16,380	420	20	5,856	150	7	5,142	132	6	5,382	138	7
2006	18,145	466	22	6,488	167	8	5,696	146	7	5,961	153	7
2007	19,885	510	24	7,110	183	9	6,242	160	8	6,533	168	8
2008	21,728	558	26	7,769	199	9	6,820	175	8	7,139	183	9
2009	23,399	601	29	8,367	215	10	7,344	189	9	7,688	197	9
2010	24,895	639	30	8,901	228	11	7,814	201	10	8,180	210	10
2011	26,383	677	32	9,433	242	12	8,281	213	10	8,669	223	11
2012	27,915	717	34	9,981	256	12	8,762	225	11	9,172	235	11
2013	29,136	748	36	10,382	266	13	9,176	236	11	9,578	246	12
2014	30,236	776	37	10,594	272	13	9,655	248	12	9,986	256	12
Total	248,116	6,369	302	90,010	2,310	111	76,888	1,976	95	81,216	2,085	99

Economic and financial analysis have been conducted based on the identification of the cost, economic and financial benefit due to implementation of the remedy such as installation of new feeders and re-conductoring and higher voltage introduction. Effect of capacitor is excluded in the base case of the economic, financial

Recommendation

and repayablity analysis. Annual project cost allocation and loss reduction in monetary terms are summarized in Table 11.1-6 and Table 11.1-7, respectively. Amount of probable revenue and the results of economic and financial evaluation are summarized in Table 11.1-8 and Table 11.1-9, respectively. EIRR and FIRR show good performance of the project compared with other electricity projects. The result of the repayability analysis also shows the same feature.

Table 11.1-6 Annual Cost Allocation without Capacitors

[^15]Table 11.1-7 Amount of Electricity Loss Reduction by Year without Capacitor
(JDs.1,000)

Year	Whole Project	EDCO's Works	JEPCO's Works	IDECO's Works
2001	0	0	0	0
2002	0	0	0	0
2003	162	76	35	51
2004	407	212	78	117
2005	891	329	271	291
2006	987	364	300	323
2007	1,081	399	329	354
2008	1,182	436	359	386
2009	1,273	470	387	416
2010	1,354	500	411	443
2011	1,435	530	436	469
2012	1,518	561	461	496
2013	1,584	583	483	518
2014	1,641	595	507	539

Table 11.1-8 Amount of Probable Revenue by Year without Capacitor
(JDs.1,000)

Year	Whole Project	EDCO's Works	JEPCO's Works	IDECO's Works
2001	0	0	0	0
2002	0	0	0	0
2003	148	68	32	48
2004	378	197	70	112
2005	863	302	268	293
2006	956	335	297	325
2007	1,048	367	325	356
2008	1,145	401	355	389
2009	1,233	432	383	419
2010	1,312	459	407	446
2011	1,390	487	431	472
2012	1,471	515	456	500
2013	1,535	535	478	522
2014	1,593	546	503	544

Table 11.1-9 Result of Economic and Financial Evaluation of the Project

Whole Project/ by companies	Economic evaluation			Financial evaluation		
	NPV(JDs. 10^{3})	EIRR(\%)	B/C	$\begin{gathered} \text { NPV(JDs. } 10^{3} \\ \text {) } \end{gathered}$	FIRR(\%)	B/C
Whole Project	7,161	32.99	3.42	4,604	24.83	2.45
EDCO's works	2,076	29.19	2.91	1,584	24.27	2.36
JEPCO's works	2,615	40.92	4.52	1,596	29.18	3.00
IDECO's works	2,470	31.18	3.18	1,423	22.34	2.17

11.2 Recommendation

In this study, power factor correction with capacitor has been requested strongly by the Jordanian side and taken into account as the base means for distribution power loss reduction. As it is recommend in the Master Plan that power factor correction with capacitor should be propelled, installation of capacitors on LV and MV target distribution feeders should be conducted as the inexpensive and cost-effective measures.

It is also recommended that alternatives with shorter payback period of investment (with larger IE factor) have the priority of implementation. As the result of the study shows, the remedy with larger IE factor results in swift recovery of investment and larger benefit. The remedies for power loss reduction in distribution system should be implemented in accordance with the value of IE factor of the respective remedies.

Studies on respective remedies for LV feeders have been conducted by using the soft were PLOPT in order to seek optimal solutions for respective target feeders within the restricted of time, remedies for respective LV feeders may have some room for improvement by farther study or investigation such on actual distribution or location of existing facilities. Prior to implementation of respective measures, brush-up of remedies with human intelligence is recommended.

Recommendation

The FS manual for the study on power loss reduction has been compiled based on lectures or explanations in the site investigation period in Jordan as one of the important objectives for technology transfer. For the succeeding study of the second project of the power loss reduction by more Jordanian engineers, utilization of this manual is highly recommend as the instruction manual.

As results of economic and financial evaluation, both the resulted EIRR and FIRR in all cases seem to be too much high comparing with those in the other projects in electricity sector. But from the viewpoint of design criteria, only the most economical countermeasures in terms of cost performance are adopted for the Project. So, the said results are quite logical and the Project is sound economically and financially.

And according to the results of repayability analyses, all companies have capabilities to execute their works by using any financing resources as (1) the Arab Fund, (2) international commercial loan of public financing institution as the World Bank, and (3) some international private commercial loan. However, there will register some deficits in all cases at an early stage after commencement of the works. These deficits are negligible small comparing with their probable revenue (saving amount of electricity sales). Nevertheless, from the viewpoint of deficit to be a minimum amount, the case using the Arab Fund is the best case for electricity enterprises

The JICA Team would like to recommend starting procedures for commencement of the Project as soon as possible.

It is not originated from the result of this FS study but is on the issue of the electricity tariff system that discount rate of capacitor portion of electricity tariff should be taken into account. Recommendation of capacitor installation to relatively large customers can be taken into account to swiftly improve power factor of distribution system for power loss reduction as Japanese electric power companies have encouraged and propelled for many years. The study in the light of electricity tariff system should be suggested.

[^0]: Source : Statistical Year Book 1993, 1994, 1995, 1997, 1998 and 1999 (Draft).

[^1]: (Note), LV Facilities: MV Facilities:
 Marginal capacity cost: $\quad 82.24$ (JDs/kW/Year) Marginal capacity cost: $\quad 58.71$

[^2]: Annual price increasing ratio based on Consumer Price Index (CPI) in General Item: 3.09\%

[^3]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^4]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^5]: (3) Coverage ratio of loan amount to the total Project cost:
 85.00\%

[^6]: (3) Coverage ratio of loan amount to the total Project cost: 85.00\%

[^7]: (3) Coverage ratio of loan amount to the total Project cost:

[^8]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^9]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^10]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^11]: (3) Coverage ratio of loan amount to the total Project cost: 85.00%

[^12]: (3) Coverage ratio of loan amount to the total Project cost:
 85.00\%

[^13]: (3) Coverage ratio of loan amount to the total Project cost: 85.00\%

[^14]: (3) Coverage ratio of loan amount to the total Project cost:
 85.00\%
 (4) Operation and maintenance cost:

 1,232

[^15]: (Note) 1) Incl. Price contingency for execution of the Project
 2) Excl. price contingency for financial evaluation
 3) Excl. price contingency for economic evaluation

