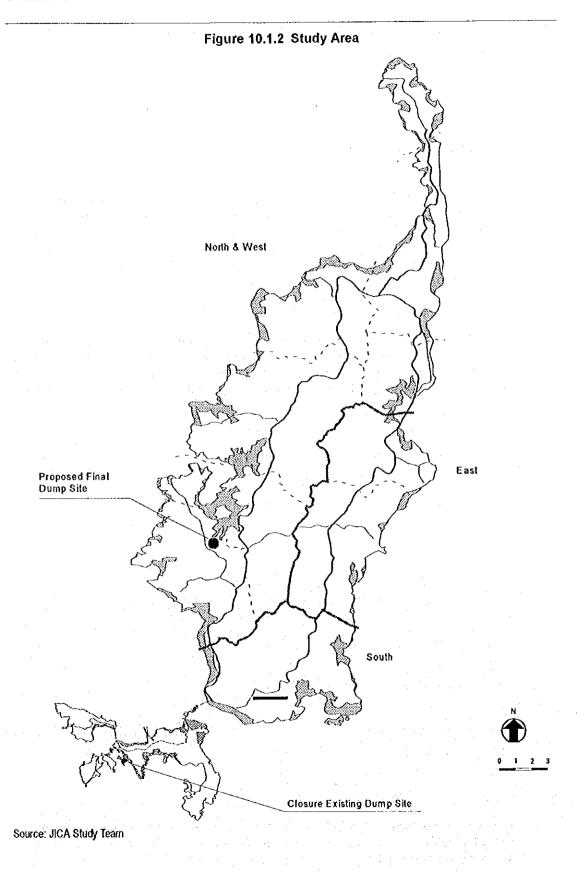
10. PRE-FEASIBILITY STUDY ON THE SOLID WASTE MANAGEMENT PROGRAM FOR KOROR AND BABELDAOB

- 10.1 Project
- 10.1.1 Project Description
- (1) Objective

The economic growth supported by the Compact funds as well as the growth of tourism has been accompanied by the rapid increase of solid waste in Koror. The relocation of the capital to Melekeok State will require the establishment of a new solid waste management system in Babeldaob. The Solid Waste Management Program for Koror and Babeldaob (K-B SWMP) includes the program for the collection and haulage system in Koror State and Babeldaob Island and the development of a new final disposal site in Aimeliik State. The GOP has selected one site in Aimeliik State for a future final disposal site among many candidates through the former study.

The study on the K-B SWMP is limited to the examination of the preliminary feasibility of the Solid Waste Management Program in Koror State and Babeldaob Island from the viewpoints of technical, environmental and economic aspects. It is noted that the topographic and soil survey has not been carried out at the designated disposal site in the study.


The objectives of the KB SWMP are as follows:

- To prepare a pre-feasibility study of a new final disposal site in the Aimeliik State including a closure plan of the existing disposal site near the M-Dock in Koror State; and
- To prepare a program for a new collection and haulage system in Koror State and Babeldaob Island after the utilization of a new disposal site from 2004/05 to 2019/20 and examine the pre-feasibility of the program

Figure 10.1.1 shows the implementation schedule of the K-B SWMP.

(2) Project area

The study area of the K-B SWMP is Koror State and Babeldaob Island including ten (10) States (Aimeliik, Airai, Melekeok, Ngaraard, Ngarchelong, Ngardmau, Ngaremlengui, Ngatpang, Ngchesar and Ngiwal) as shown in Figure 10.1.2.

10.1.2 Planning Issues and Framework

(1) Planning issues

Waste generation rate per person is estimated at 1.0 kg per day at present including business waste except the waste from hotels in Koror, which shows higher level of generation compared with the rate in the countries with the same income level. Furthermore, the current dumping site in Koror is almost full and needs to be closed in a few years. Under these conditions it is an urgent requirement for the GOP to formulate a new solid waste management system including collection and haulage systems and management of the new final disposal site. It is proposed that a new final disposal site be operated through sanitary landfill method in order to minimize the impact on the environment.

Institutional arrangements, such as coordination between central government and state government, and community participation are indispensable for the sound SWM. Above all, the most serious issue may be the recovery of the cost.

(2) Planning framework

The amount of future waste is estimated on the municipal waste and industrial waste based on the projections of population and number of hotel rooms in Koror State and Babeldaob Island until year 2020 as shown in Table 10.1.1.

Table 10.1.1 Population Projection of Koror State and Babeldaob Island

Sta	ites	2000	2005	2010	2015	2020	Remarks
Koror	Population	14,734	15,799	14,183	13,687	13,956	Center of commercial
NOO	Hotel Room	860	860	850	830	800	and business activities
Airai	Population	1,587	1,506	1,610	1,691	1,764	Î
Aimeliik	Population	365	354	361	413	426	
Maataana	Population	213	219	224	244	253	Tourism development
Ngatpang	Hotel room	0	- 0	20	25	30	10003311 Gevelopilletik
Ngeremlemgui	Population	240	230	235	271	279	
Ngchesar	Population	185	171	174	207	213	
Melekeok	Population	180	1,264	1,746	1,795	1,799	Now conital
WEIGREOK	Hotel room	0	0	30	30	30	New capital
Ngardmau	Population	145	143	146	164	170	
Ngiwal	Population	141	129	132	157	162	
Ngaraard	Population	408	359	363	437	445	
Ngarchelong	Population	194	245	323	439	520	Tourism development
nyarchelong	Hotel room	0	30	60	90	120	Tourism development
Total	Population	18,392	20,419	19,497	19,505	19,987	
	Hotel room	860	890	960	975	890	

Source: JICA Study Team

(3) Waste generation rate

Future waste generation rate of municipal waste is set based on the Integrated Solid Waste Management Plan conducted by the Bureau of Public Works, the Republic of Palau, in June 1999.

In the states of Koror and Airai, the rate of municipal waste generation is estimated at 1.0 kg/person/day during the project period, including 40% of industrial waste, which is generated from restaurants, markets, factories, offices etc.

In Melekeok State, where a new capital construction project is now underway, the waste generation rate is currently as small as that in other states in Babeldaob Island (0.5 kg/person/day). However, after the relocation of the capital, waste generation rate will become twice (1.0 kg/person/day) showing the same level as that in Koror and Airai because of a rapid growth of population and industries.

In other eight states in Babeldaob Island, the waste generation rate per household is estimated to remain at the same level as present (0.5 kg/person/day).

Regarding the waste generation of hotel, it is estimated at 2.6 kg/room/day on average.

Table 10.1.2 Future Waste Generation Rate

	States	Rate	Remark		
	Koror & Airai	1.0kg/persorvoay	Including 40% of waste generaled by other industries		
Waste	Melekeok	0.5-1.0kg/person/day	Including 40% of waste generated by other industries		
	Aimeliik, Ngatpang, Ngaremlengui Ngchesar, Ngardmau, Ngiwal Ngaraard, Ngarchelong	0.5kg/person/day			
Hotel		2.6kg/room/day	• .		

Source: JICA Study team

10.2 Project Component

The K-B SWMP consists of the following components:

- · Collection and haulage program in Koror and Babeldaob; and
- Development of a new disposal site including the closure plan of existing disposal site.

10.2.1 Collection and Haulage

(1) Waste generation amount

The combined volume of waste generated daily in Koror State and the 10 states in Babeldaob Island in 2005 is estimated at 21.81ton/day (43.63 m³/day), as shown in Table 10.2.1.

Koror will still generate a huge amount of waste at 18.04 tons/day (36.06 m³/day) in 2005. Out of this amount, 15.80 tons/day (31.60 m³/day) will be generated by households and industrial and commercial enterprises such as restaurants, markets, shops, offices and factories. On the other hand, hotels will generate 2.24 tons/day (4.48 m³/day).

In Babeldaob Island, the 10states will generate an estimated 3.77 tons/day (7.54 m³/day) of waste.

Table 10.2.1 Daily Generation Amount of Waste in 2005

		Am	ount	
State	Category	ton/day	Equivalent m³/day	Remarks
	Municipal Waste	15.80	31.60	Including 40% of Business waste
Koror	Industrial Waste (Hotel)	2.24	4.48	
	Koror Total	18.04	36.08	
Airai	Municipal Waste	1.51	3.02	Including 40% of Business waste
Aimeliik	Municipal Waste	0.18	0.36	
Ngalpan	Municipal Waste	0.11	0.22	
Ngeremlemgui	Municipal Waste	0.12	0.24	
Ngchesar	Municipal Waste	0.09	0.18	
Melekeok	Municipal Waste	1.26	2.52	Including 40% of Business waste
Ngiwal	Municipal Waste	0.06	0.12	
Ngardmau	Municipal Waste	0.07	0.14	
Ngaraad	Municipal Waste	0.18	0.36	
Ngarchelong	Municipal Waste	0.12	0.24	
ryarchelong	Industrial Waste (Hotel)	0.08	0.16	
Babeldaob Total		3.77	7.54	
Total		21.81	43.62	

Source: Note:

JICA Study Team

* Volume of waste=weight of waste/0.5ton/m³

(2)Waste service area

The proposed service area after 2005 is divided into the following four areas:

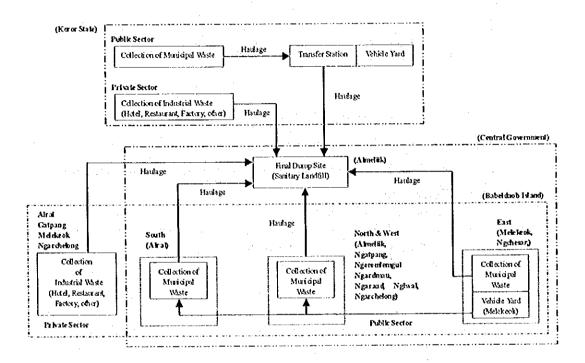
- Koror State
- South Babeldaob: Airai
- North and West Babeldaob: Aimeliik, Ngatpang, Ngeremlemrui, Ngiwal, Ngardmau, Ngaraad and Ngarchlong
- East Babeldaob: Ngchesar and Melekeok

Koror State should be one service area. On the other hand, in order to collect effectively and to minimize the number of vehicles and employees, the service area in Babeldaob Island should be divided into three areas, taking into consideration the location of the ten states and the volume of their wastes.

Volume of waste collected and hauled by the public sector (3)

Waste is categorized into two types such as municipal waste and industrial waste, which are based on waste generators. The collection and haulage of municipal waste is a responsibility of state government as one of the municipal services. On the other hand, industrial waste is the responsibility (collection and haulage management) of the generator or polluter.

However, waste generated by residents in the urban area, such as those in the states of Koror, Airai and Melekeok, consists of 60% of residential waste from households and 40% of business waste from industrial and commercial establishments. In the K-B SWMP, it is estimated that 50% of business waste is collected and hauled by the public sector and the remaining 50% of business waste is categorized as industrial waste and collected by the private sector in Koror State. On the other hand, business waste in Airai and Melekeok should be collected together with residential waste by the public sector considering the efficiency of collection. Figure 10.2.1 shows the collection and haulage system of waste in Koror and Babeldaob by sector.


Residential waste generation will amount to 19.0 m³/day in Koror State in 2005. However, 20% of this waste (3.8m³/day) will remain uncollected because of the difficulties of access to the location of households due to the narrow width of road.

Therefore, total waste of 21.5 m³/day will be managed by the public sector including 15.2 m³ of residential waste and 6.3 m³ of business waste. Figure 10.2.2 shows daily waste flow from generation to final dumping in the Koror State in 2005.

Total volume of waste managed by the public sector in Babeldaob will be 7.57 m³/day in 2005. Out of that, 3.01m³, 1.68m³ and 2.88 m³ per day will be managed in the three areas of South, North & west and East, respectively.

Table 10.2.2 shows daily collection and haulage volume by both public and private sectors for the four service areas.

Figure 10.2.1 Collection and Haulage System of Waste in Koror and Babeldaob

Self Disposal 3 8m3 (12%) Final Discosal Municipal Residential Public Transfer collection Waste Station in Waste 15 2m3 31.6m3 19.0m3 Koror **♣**32.3m3 (48%) 21.5m3 (60%) (100%) (68%) Business Public Waste collection Waste: Generation 12.6m3 63п3 36 Orn3 (40%) (20%) Private collection 63m3 (20%) (Private collection) industrial Waste (Hotel) : Public collection 4 4m3 : Private collection

Figure 10.2.2 Daily Waste Flow in Koror State in 2000

Source: JICA Study Team

Table 10.2.2 Daily Collection and Haulage Volume by Public and Private Sector (Unit m³/day)

	1/2 1 . 6	-1-	C	Collection	& haulage	Remarks
Area	Kind of wa	Generation	Public	Private		
		Residential	18.96	15.17		Collection coverage: 80%
	Municipal waste	Business	12.64	6.32	6.32	
Koror State	,	Sub-total	31.60	21.49	6.32	
	Industrial (Hotel)		4.48		4.48	
	Total		36.08	21.49	10.80	
Babeldaob		<u> </u>				
South			3.01	3.01	[Airai
						Aimeliik 0.36 m ³ Ngatpang 0.22 m ³
North & West	Municipal waste		1,68	1.68		Ngeremlemgui 0.24 m³ Ngwa 0.12 m³
. :	Municipal Nosto		. 1. 1.			Ngardmau 0.14 m ³ Ngaraad 0.36 m ³ Ngarchlong 0.24 m ³
East			2.88	2.88		Ngchesar 0.18 m ³ Melekeok 2.70 m ³
		Sub-total	7.57	7.57		
	Industrial (Hotel)		0.16		0.16	
	Total		7.73	7.57	0.16	

Source: JICA Study Team

Note: The apparent specific gravity of the incoming waste is 0.5 ton/m³.

(4) Number of customers served by public SWM service

In 2005, there are going to be 3,160 households in Koror State, of which 2,530 or 80% of total households will be provided public SWM service. On the other hand, a half number of industrial and commercial establishments, roughly about 300 establishments, will receive public SWM service and private collectors will serve others. In Koror, therefore, the public sector will render collection services to 2,830 households and business establishments in 2005.

Table 10.2.3 Coverage of Solid Waste Collection by the Public Sector in 2005 (Koror State)

Area	Category	Population	No. of Households	No. of Business Establishments	Collection Coverage (%)	No. of Customers Served
Voroz	Residents	15,799	3,160*		80	2,530
Koror	Business			600**	50***	300
Total						2,830

Source:

JICA Study Team

Note:

* Five persons per household

** Number of establishments is assumed from the number of businesses registered with the Tax and Revenue Office and information by the Public Works Office of Koror State.

*** 50% will be collected by private collectors.

Public sector will collect waste generated by households and business establishments in three areas in Babeldaob. Number of customers at the South, North & West, and East area is estimated at 332, 346, and 317, respectively.

Table 10.2.4 Coverage of Solid Waste Collection by the Public Sector in 2005 (Babeldaob)

Area	Category	Population	No. of households*	No. of business establishments	Collection coverage (%)	No. of customers served
Cauth	Residents	1,506	302		100	302
South Busines	Business			30	100	30
North & West	Residents	1,679	336		100	336
Business	Business			10		10
East	Residents	1,435	287		100	287
Ì	Business			30	100	30

Source: JICA Study Team

Note: * five persons in one household

(5) Number of collection vehicles needed

Number of collection vehicles needed is calculated under the following assumptions:

- Service day: 6 days in one week;
- Working hours: 8 hours per day (7:30am to 11:30am, and 12:30pm to 16:30pm);
- Number of households covered by collection service in one day: 120 households per vehicle;
- Collection frequency is twice a week;
- Collection area in Koror: Koror service area is divided into three (3) collection areas; and
- Capacity of collection vehicle: 4 m³ (2ton) per vehicle.

As shown in Table 10.2.5, number of vehicles needed for waste collection in Koror and Babeldaob is 8 and 3 respectively.

Table 10.2.5 Number of Collection Vehicles

Service area	No. of Customers Served		Collection Frequency	Unit****	No. of Vehicles	Remarks	
94		943	Twice a week*	120	8 (7.86)	8x4 m3=32 m3>21.49 m3	
Koror	2,680	943	Twice a week**	120	8 (7.86)	8x4 m3=32 m3>21.49 m3	
		944	Twice a week***	120	8 (7.87)	8x4 m3=32 m3>21.49 m3	
Babeldaob							
South		332	Twice a week*	120	3 (2.77)	3x4 m3=12 m3>9.03 m3	
North & West		346	Twice a week**	120	3 (2.88)	3x4 m3=12 m3>5.04 m3	
East		317	Twice a week***	120	3 (2.64)	3x4 m3=12 m3>8.10 m3	

Source:

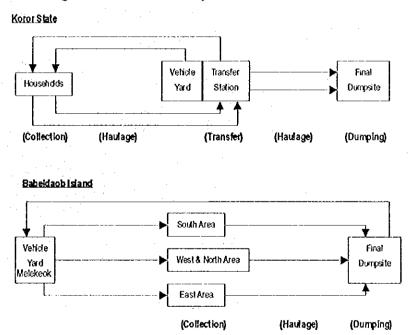
JICA Study Team

Note:

* Monday and Thursday

** Tuesday and Friday

***Wednesday and Saturday


**** Number of households/vehicle/day

(6) Transfer station

Transfer station is a place where solid wastes are brought by smaller refuse collection vehicles and transferred to larger trucks to be hauled to a final disposal site. A new disposal site is located 20km away from the center of Koror State. It is effective and economically efficient to develop a transfer station at a logistically appropriate place in Koror State in order to transfer waste from collection vehicles to container trucks.

As shown in Table 10.2.2, a volume of 21.49m³ of waste will be collected and brought daily to a transfer station in 2005. It is assumed that collection vehicles will bring and transfer the waste to a container truck twice a day. Therefore, a container with a capacity of 15m³ will be required.

Figure 10.2.3 Transfer System in Koror and Babeldaob

Source: JICA Study Team

In addition, part of the Public Works Office of Koror State in Malakal should be moved to the transfer station. Figure 10.2.4 shows a facility layout plan of transfer station and transfer system proposed in Koror State.

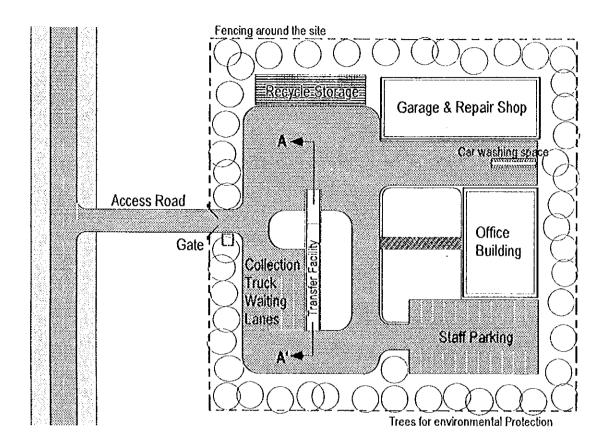
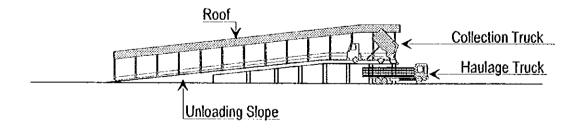



Figure 10.2.4 Layout Plan of Transfer Station In Koror

Facility Layout Plan of Transfer Station

Cross Section of Transfer Facility (Section A - A')

(7) Types and number of vehicles needed for collection/haulage

Types and number of vehicles needed by the public sector for collection and haulage by area are shown in Table 10.2.6.

Table 10.2.6 Types and Number of Vehicles Needed for Collection/Haulage

	Vehicle Type	Number	Use method
Babeldaob Island	Compactor (4 m³)	4	Collection and Haulage (Include 1 standby)
	Truck (4 m³)	1	Street Sweeping & other
	Compactor (4 m³)	9	Collection (Include 1 standby)
Koror State	Truck (8 m³)	2	Street Sweeping & other
	Container (15 m ³)	2	Haulage (Include 1 standby)

Source: JICA Study Team

10.2.2 Final Disposal site

(1) Main facilities

The new final disposal site should have enough capacity to handle incoming waste from Koror and Babeldaob for a long period. Furthermore, it should be properly maintained in order to keep the surrounding area environmentally sound.

The final disposal site should be constructed with the following main facilities:

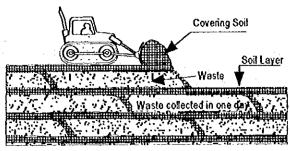
- · Access road from existing road the site;
- Main dike:
- Surface water drainage system;
- · Groundwater discharge system;
- Leachate collection system and leachate treatment facility;
- · Weighbridge;
- · Management and maintenance building; and
- Fence (Perimeter of a site).

A weighbridge is provided for the following reasons:

- To record the amount of waste, to estimate the future waste demand based on the records and to prepare a proper plan for the operation and maintenance of the disposal site; and
- To impose tipping fees based on the weight of waste measured.

(2) Operation and maintenance of the new final disposal site

Basic volume


Daily incoming and disposal waste volume to the final site is 39.82m³/day and 24.89 m³/day in 2005, respectively. Necessary volume of daily covering soil is 3.73 m³/day.

Basic volume of operation and maintenance works for sanitary landfill in 2005 is shown in Table 10.2.7 and daily operation and maintenance work is illustrated in Figure 10.2.5.

Table 10.2.7 Basic Daily Volume of Operation and Maintenance Works in 2005

ltem .	Unit	Volume	Remark
Daily Incoming Solid Waste amount *	Ton	19.91	1
Daily Incoming Solid Waste Volume	m³	39.82	0.5ton/ m ³ of *
Daily Disposal Solid Waste Volume**	m³	24.89	0.8ton/ m3 of *
Daily Covering Soil	m³	3.73	15% of **
Soil excavated per day	m³	3.73	

Figure 10.2.5 Daily Operation and Maintenance Work for Sanitary Landfill

Source: JICA Study Team

Number and type of vehicles needed

To spread, crush and compact waste discharged is very important to operate a disposal site for a long period. Daily soil covering is necessary to prevent breeding of vermin, and the scattering of waste and odor.

Number and type of vehicles needed for daily work at the final disposal site are shown in Table 10.2.8.

Table 10.2.8 Number and Type of Vehicles Needed for Daily Work at Final Disposal Site

Oito		
Work item	Type of Vehicle	Number
1. Managèment Work		
- Management	4 x 4 Service Pick-Up	1
2. Landfill Work		1.
- Spread	Crawler Tractor with dozer blade (15 t class)	.1
- Crush/Compaction	Steel Wheel Compactor (15 t dass)	1.
- Water Spread	Water Tank Truck (3m³ class)	1
3. Soil Cover Work		
- Excavation	Power Shovel (0.2 m³ bucket)	1
- Haulage	Dump Truck (4t, 2 m³)	1
- Spread/Compaction	Crawler Tractor with dozer blade (15 t class)	1
4. Maintenance Work		
- Haulage	Truck (1ton class)	. 1
- Maintenance	Power Shovel (0.2m³ bucket)	. 1

Source: JICA Study Team

(3) Construction of new final disposal site

Estimated total amount of waste disposed and capacity of disposal site required

Total amount of waste that will be disposed to the final disposal site for 16 years (from 2005 to 2020), is estimated at 147,000 m³. The required capacity of the final disposal site is 169,000 m³, including disposed waste and covering soil as shown in Table 10.2.9.

Table 10.2.9 Estimated Total Volume of Waste (2005-2020)

Item	Unit	Volume	Remark
Total Waste generated *1	ton	117,600	Total of 16 years
Total Waste incoming	m³	235,200	Waste 1m3=0.5ton (*/0.5)
Total Waste disposed *2	m³	147,000	Disposed or compacted waste 1m3=0.8ton (*/0.8)
Total covering soil required *3	m³	22,000	15% of **
Total Capacity of Disposal site	m ³	169,000	48+ 513

Source: JICA Study Team

Capacity of final disposal site

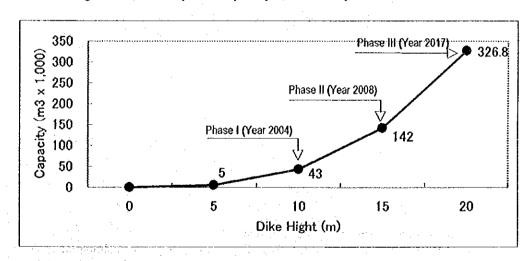
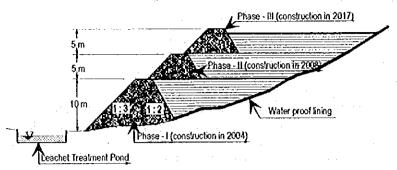
Capacity of the final disposal site at Aimeliik State is shown in Table 10.2.10. A dike is constructed by three phases to secure enough capacity. As the third dike (Phase III) is completed in 2017, the final disposal site will have a capacity of about 327,000 m³, and will have the life span to be operated for about 30 years. The phased development of the disposal site is illustrated in Figures 10.2.6, 10.2.7 and 10.2.8.

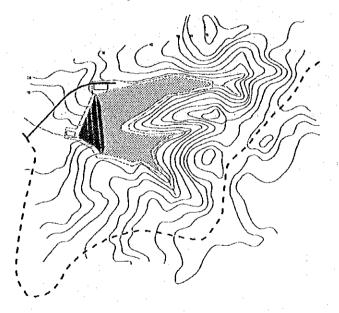
Table 10.2.10 Capacity of Final Disposal Site (2005-2034)

llem	Unit	Phase I (H	Phase I (H=10m)			=5m)	Phase III (H=5m)	
Above sea level	m	5	10	-15	15	20	20	25
Height	m	0	- 5	10	0	5	0	5
Area	m ₃	0	2,000	13,200	10,600	29,000	24,800	49,100
Volume	m³		5,000	38,000		99,000		184,750
Accumulated Volume	m³		5,000	43,000		142,000		326,750
Year of Construction		1	Year 2004		Year	2008	Year	2017

Source: JICA Study Team

Figure 10.2.6 Graph of Capacity of Final Disposal Site


Figure 10.2.7 Phased Development of Dike (Cross Section)

Phased development of Dike at Final Dumpsite

Source: JICA Study Team ...

Figure 10.2.8 Phased Development of Final Disposal site (Layout)

Source: JICA Study Team

Construction volume of final disposal site

Construction volume of the new final disposal site by phase is shown in Table 10.2.11.

Table 10.2.11 Estimated Construction Volume of Final Disposal site

Work item	Unit		Phase		Domeska
TIOK RISH	Onit	ı	ll l	III	Remarks
Earth Works			"		
Clearing & Grubbing	ha	7.0	2,0	3.0	
Excavation	m³	5,000	9,000	13,000	
Embankment	m³	5,000	9,000	13,000	Dike (H=10m and 5m)
Earth Lining	₩ ₅	14,000	20,000	20,000	
Slope Protection	ш ₃	3,000	3,000	3,500	Slope of dike (grass)
Access Road	m	300			Asphalt payement, W=5.5m (18feet)
Rainwater Drainage System	m	700	1,200	1,400	Open ditch
Groundwater Discharge System	m	500	300	100	Pipe (average diameter 20cm)
Leachale Treatment Plant	sum	1			Pond
Leachate Collection System	m	500	300	300	Pipe (average diameter 15cm)
Gas Extraction System	sum	1	í	1	
Building	m²	500			Administration building, Storage and Workshop, Scale house Gatehouse
Utilities	sum	1			Water Supply, Sewerage, Electricity
Weighbridge	item	1			
Truck Wash	item	1			
Fencing	m	2,000			Surrounding

Source: JiCA Study Team

10.2.3 Closure of the Existing Disposal site in Koror

The closure plan and design of the existing disposal site has been prepared by a foreign consulting firm and approved by the Government of Palau (GOP). The closure work of the existing disposal site must be implemented very carefully so as not to affect the environment of the surrounding area.

The new final disposal site in Aimeliik State is expected to start operation in 2005 after the completion of the Compact Road. Therefore, the closure work of the existing disposal site should be started in 2005, the year when the new disposal site will be utilized.

The study proposed the development of a marine center on the location of the closed disposal site. However, from an environmental standpoint, it will take about five years for landfill gases and land subsidence to settle and for the quality of leachate to reach the standard level, and only after this is accomplished could the land be converted to a tourism development area. Precise consideration is described in the "IEE," which is found in Section 10.7.

10.3 Waste Reduction

10.3.1 Pollution Risks

From the pollution control aspect, the present solid waste management in Palau is not appropriate and insufficient. The present disposal site is almost full and it is improperly managed. For example, it is reported that used lead and alkaline batteries are scattered along the near shore of the site. As mentioned before, the present waste generation rate is estimated at 1.0 kg per person per day in Koror, which is a rate higher than that in countries of the same income level. Also, inorganic wastes, such as plastic bottles and bags, have been increasing in recent years in Palau. Most of the dumping sites in rural states are located near swamp or mangrove areas, where garbage remains unmanaged. Furthermore, there is illegal dumping of waste, which may include toxic materials, observed on land as well as in sea.

None of the toxic substances near the existing disposal site in Koror exceeds the environmental standards in Palau, according to a risk assessment in 1997. However, it is not enough to confirm the environmental conditions related to wastes. Considering the present situations of waste management, high pollution risks, such as water contamination as well as soil contamination, should be urgently mitigated through appropriate waste management program especially for reduction of wastes.

10.3.2 Waste Reduction Possibilities in Palau

Table 10.3.1 shows waste composition by weight of the existing disposal site in Koror. Comparing with the waste composition of other countries in the South Pacific Region, Koror and Fiji in Suva have very high ratios of paper and cardboard, which reflects consumer patterns similar to those in western developed countries...

Table 10.3.1 Waste Composition by Weight of the Existing Disposal site in Koror

Category	Ratio of Waste	Daily Weight	Annual Weight
<u></u>	Stream (%)	(ton)	(ton)
Paper & Cardboard	29.9	4.72	1,724
Food/Kitchen Waste	7.8	1.23	449
Garden	17.4	2.75	1,004
Other Organic	11.1	1.75	639
Glass	5.0	0.79	288
Aluminum	4.2	0,66	241
Recyclable Plastic	7.1	1.12	409
Other Plastic	8.9	1.41	515
Ferrous Substance	7.1	1.12	409
Other	1.5	0.24	87
Total	100.0	15.79	5,765

Source: Golder Associates Pty. Ltd., 1999

In general, waste reduction could be achieved through the 3 R's: reduce, reuse, and recycle. In the case of recycling in Palau, recyclable materials must be shipped off the island for recycling, because all of the above recyclable materials are too small in quantity for creating a domestic market. Table 10.3.2 shows the possibility of materials for reuse or recycling in Palau based on the present economic viability, mainly due to marketability and shipping cost.

Table 10.3.2 Possibility of Reusing or Recycling Materials in Palau

Materials	Reuse	Recycle
Aluminum cans	Few viable	Most viable
Plastic bottle	Few viable	Not viable
Glass bottle	Few viable	Not viable
Scrap metals	Few viable	Not viable
High grade paper	Few viable	Viable
Cardboard	Viable	Viable
Auto batteries	Not viable	Not viable
Old tires	Viable for another use	Not viable

Source: JICA Study Team

The reuse of materials holds very dim prospects in Palau. There is no actual mechanism to undertake this type of activity. However, as there is scarcity of cardboard in Palau, it seems to be the only material with the possibility for reuse at present.

A couple of the most difficult barriers to recycling are market prices and volumes for recyclable materials. Prices are impossible to control. In Palau, the volumes of the recyclable materials are very small and the materials need to be stored for a long time. The shipping cost from Palau is approximately \$750-\$900 per container, according to a recycling company. As the shipping costs are based on volume, higher density materials such as compressed cans, metals and paper have lower shipping costs per ton.

Aluminum cans are the most economically viable for recycling in Palau. However, it should be kept in mind that Palau has very limited reused and recyclable materials, while the materials are increasing in Palau.

Table 10.3.3 shows expected waste reduction of possible recyclable and reuse materials.

Table 10.3.3 Expected Waste Reduction of Possible Recyclable and Reuse Materials

Materials	Expected Reduction Ratio for Daily Total Waste Generation (%)	Expected Weight Reduction (ton/day)
Aluminum	2	0.44
Cardboard	5	1.09
Total	-	1.53

Source: JICA Study Team

The above estimations are based on a daily total generation amount of waste in 2005 (21.81 ton/day), which was described in Section 10.2.1. In terms of the expected reduction ratio, the ratio is estimated based on the data of Table 10.3.1 and interviews to a recycling company and a cardboard collector.

Assuming that a reduction of 1.53 tons/day of waste is obtained, total volume reduction, which consists of waste volume and cover soil volume, will be approximately 2.19 m³. It is estimated that the reduction of annual average landfill volume will be approximately 10,450 m³, which consists of 9,650 m³ (waste volume) and 800 m³ (cover soil volume).

It is concluded that the new final disposal site should have a capacity of approximately 169,000 m³ for a 16-year (2005 to 2020) life span. The reduction of waste explained earlier will give the disposal site an extension of approximately 1.3 years. Considering this scenario, the total life of the final disposal site will be approximately 17.3 years.

10.3.3 Waste Reduction through Cooperation and Participation of Residents

The implementation of a solid waste management program relies strongly on the cooperation and the participation of residents. The generators of the wastes are the residents themselves and the volumes and the types of wastes generated depend on the people. Considering the serious budget deficits of the RÖP, the waste reduction must be implemented at first through voluntary participation in order to reduce the burden to the GOP. Although Palau will need to introduce a user charge system as an effective policy

for waste reduction, the system will cause strong opposition from the residents or users.

It is recommended that the residents should participate in the following actions in order to contribute to the waste reduction with little assistance from the Government. These activities depend fully on voluntary participation, but they could be facilitated through development of the people's awareness to the importance of waste reduction.

(1) Recommended actions and measures

Participation with waste segregation

Households could carry out waste segregation of recyclable materials for recycling. This would make the collection of recyclable materials, such as cans, more effective, and more importantly, eliminate segregation costs to Koror State. The segregated wastes could be collected on a designated day, say, once a week.

Waste segregation should become a regular part of the residents' daily activities. According to the residents themselves, they understood the need for such concrete action, which would allow them to contribute to the reduction of waste. However, GOP has not initiated any concrete action, even though EQPB and other agencies have disseminated the importance of waste reduction through posters, signboards and other forms of media.

Recycling by individual participation

At present, some individuals in Palau carry out recycling activities on their own. They bring aluminum cans to a scrap metal company in Malakal and are paid a small amount for their effort. Although the present participants are limited, this mechanism could be utilized and expanded in Palau.

To serve as The government should not change the basic mechanism of recycling activities and recycling business in Palau. They should promote this activity by just providing a space within the transfer station to serve as temporary storage for recyclable materials.

10.3.4 Present Government Actions and Recommended Policies for Waste Reduction

At present, EQPB conduct the following environmental education campaign related to waste management.

- Signs and posters with simple environmental awareness messages
- Community education meeting in rural areas
- Aluminum collection in cooperation with school students (4 times/year)
- Experimental compost plant pilot program funded by SPREP
- Clean-up campaign of car batteries and aluminum cans (2 times /year)

EQPB should focus these above-mentioned campaign activities on the following objectives in order to support practical actions by the people. These campaigns should be continued with involvement of community leaders as well as several agencies and NGOs.

- Promote voluntary waste segregation and recycling;
- · Facilitate anti-littering and anti-illegal dumping; and
- Enlighten the people's awareness of waste reduction for a healthy environment and the promotion of nature-based tourism development.

On the other hand, it is imperative to introduce the Polluter-Pays-Principle (PPP), such as garbage fee, in Palau in order to promote effective waste reduction as well as to reduce the burden to the ROP.

The introduction of PPP should be linked with the above campaign. If the people will realize the importance and practical actions for waste reduction through the campaign, gaining public acceptance for the introduction of PPP will be enhanced. The residents

could save money, if they could achieve the waste reduction by themselves.

Based on this recognition, the following should be introduced by strong government leadership based on the acceptance of the people.

(1) Recommended policies

- Introduction of garbage fee on residential waste
- Modification of existing garbage fee on industrial and commercial waste aiming full cost recovery

These garbage fees are main policies and may be effective for waste reduction. On the other hand, introduction of garbage fee sometimes causes the illegal dumping of wastes on roadside, on public spaces, such as park, or in the sea. Introduction of fine for illegal dumping should be considered.

Introduction of deposit-refund scheme

Although there are many economically unviable recyclable materials in Palau, plastic bottle is the most difficult to recycle mainly due to higher shipping costs. Plastic bottles are also drastically increasing in Palau. Deposit-refund schemes will work reasonably well for the reduction of the use in case of beverage containers including aluminum cans and plastic bottles.

Introduction of environmental cleanup tax

The ROP proposes and legislates an environmental cleanup tax in order to generate special governmental revenue for environmental improvement through taxation for any non-biodegradable beverage containers (Appendix 1 shows the details of the environmental cleanup tax).

It proposed legislation would require the assessment of \$0.05 tax per any non-biodegradable container imported into Palau. The tax is to be collected at gateway of Palau, such as commercial port, before releasing the merchandise to the importer. The collected revenue is to be placed in a special account, which shall be called the "Environmental Cleanup Fund Account."

It is estimated that approximately \$400,000 per year could be collected by the tax, if the legislation enacted and the collection process are implemented without any interference.

10.3.5 Waste Reduction through Commercial Sector Participation

The commercial sector, such as hotels, is also main waste generators in Palau. The waste generation rate is estimated at 2.6kg per room per day. Although each waste generator of commercial sector should cover the costs from their activities, there is still a need to promote waste reduction effort with little governmental assistance. Therefore, it is recommended that the GOP develop an award or certification program for enterprises that achieved waste reduction.

Considering the tendency of Palauans, many enterprises, such as hotels and restaurants, will promote waste reduction in order to get an award or certification from EQPB. Many certifications and awards are observed in restaurants and hotels in Palau. These are believed to enhance the marketability of their products and services.

10.4 Implementing Organization

10.4.1 Organization

At present, Koror State is responsible for the collection and haulage of municipal waste to the disposal site, while the Bureau of Public Works in the GOP is the one that operates and maintains the disposal site in Koror State. Ten states in Babeldaob collect and haul waste to their own disposal sites, which they themselves operate and maintain. However, operation at each of the disposal site is poor. Two big projects are now implemented in Babeldaob Island. Construction of Compact Road has already started and its completion is expected by the end of 2003. Construction of the New Capital in Melekeok State has also started. These projects are expected to contribute to the future regional development of the area. It will also cause a relocation of inhabitants and industries from Koror.

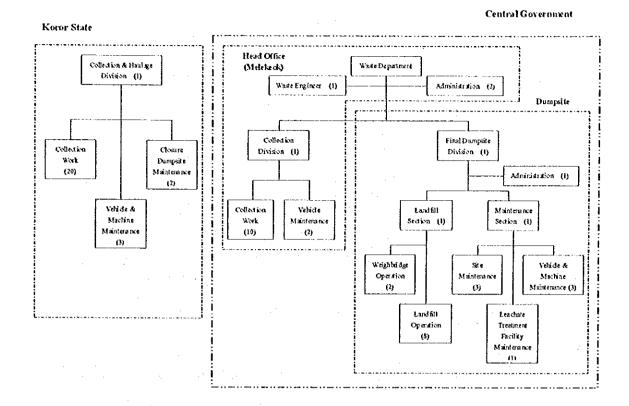

The GOP is planning to construct a new final disposal site in the Aimeliik State. This new facility should accept waste not only from Koror State but also from the ten states in Babeldaob Island. In order to operate and maintain a new final disposal site in environmentally sound condition as well as to collect and haul waste effectively, reorganization for a new waste management is required.

Figure 10.4.1 shows a new organization recommended for the management of the K-B SWMP. Amount of waste generated in each state in Babeldaob Island will remain small even in the future. It is wasteful and uneconomical to provide vehicles, employees and a disposal site in each state. The central government should, therefore, be responsible for collection and haulage of municipal waste generated in the ten states of Babeldaob. It is proposed that a new organization be established to operate and maintain a new final disposal site and that this organization should also be responsible for the management of collection and haulage in Babeldaob.

On the other hand, Koror State, which will remain a big waste generator even in the future, should be a responsible for the collection and haulage of municipal waste generated within the State.

Business establishments and industries should be responsible for the collection and haulage of waste generated by them.

Figure 10.4.1 Recommended New Organization for Waste Management

Source: JICA Study Team

10.4.2 Employees and Workers

(1) Central Government

To properly manage the disposal site, the Central Government would have to assign to the new organization a total of 38 employees and workers to handle daily collection and haulage services in Babeldaob.

Table 10.4.1 Number of Employees and Workers (Central Government)

Items	Employee/Worker	Head	Remarks
	Department Manager	í	
Used Office	Waste Engineer	1	
Head Office	Secretary/Administrator	2	Administration
	Sub-total	4	
· · · · · · · · · · · · · · · · · · ·	Division Manager	1	
	Driver	4	3 Compactors and 1 Truck
Collection & Haulage	Waste Collector	6	3 Compactors x 2 Collectors
	Maintenance Worker	2	Vehicle & Machine
	Sub-total	13	
	Division Manager	1	
	Administrator	1	
	Landfill Manager	1	
	Weighbridge Operator	2	
İ	Foreman	1	
Final Disposal site	Driver (Landfill Work)	5	Special Vehicle
rinai Disposai Sile	Driver (Truck)	2	Water Spread and Soil Haulage
	Maintenance Manager	1	Engineer
	Maintenance Worker	3	Vehicle & Machine
	Maintenance Worker	1	Leachale Treatment Facility
	General Worker	3	Site Maintenance
	Sub-total	21	
Total		38	

Source: JICA Study Team

(2) Koror State

Koror State will need 32 employees and workers for collection and haulage of waste as shown in Table 10.4.2.

Table 10.4.2 Number of Employees and Workers (Koror State)

Item	Employee/Worker	Head	Remark
	Division Manager	1	
	Driver	10	8 Compactors, 1 Container and 1 Truck
Collection & Haulage	Waste Collector	16	8 Containers x 2 Collectors
-	Maintenance Worker	3	Vehicle & Machine
	General Worker	2	
Total		32	

Source: JICA Study Team

10.5 Development Costs

Development cost of the K-B SWMP is estimated under the following assumptions:

- Cost is estimated using the prices as of June 2000 and inflation is not taken into account.
- Land cost is not included in the estimates.
- The following exchange rate as of June 30, 2000 is used: \$1.00=Japanese Yen 105.00,
- Physical contingency is estimated at 5-15% of the total cost based on the kind of project components.
- Average life span of the facilities is assumed as follows: Final disposal site 30 years, Transfer station 25 years, Vehicle 8 years

10.5.1 Initial Investment Cost

(1) Construction cost of new final disposal site

Construction cost for the final disposal site is shown in Table 10.5.1 (Phase I), 10.5.2 (Phase II) and 10.5.3 (Phase III).

Table 10.5.1 Cost Estimate for Final Disposal Site (Phase I)

Work Item	Unit	Quantity	Unit cost (\$)	Cost (\$ thosand)	Remarks
Design & Survey				- Xi	i
Design	sum	1		500	1
Topographic Survey	sum	1		100	
Soil Survey	sum	1		150	1
Total*				750	
Construction					
Mobilization and Site Preparation	sum	1	10,000	10	
Earth Works				1,765	
Clearing & Grubbing	ha	7	20,000	140	
Excavation -	m³	5,000	25	125	
Embankment	W ₃	5,000	20	100	
Earth Lining	W ₃	14,000	100	1400	
Slope Protection	m²	3,000	10	30	
Access Road	m	300	2,000	600	W=8m
Rainwater Drainage System	m	700	50	35	
Groundwater Discharge System	m	500	250	125	
Leachale Treatment Plant	sum	1	500,000	500	
Leachate Collection System	m	500	150	75	
Gas Extraction System	sum	1	30,000	30	
Building	m²	500	500	250	
Utilities	sum	1	30,000	30	
Weighbridge	sum	1	200,000	200	Ī
Truck Wash	sum	1	10,000	10	1
Fencing	m	2,000	50	100	
Sub-total**				3,760	
Engineering Service (5% of sub-total**)		•		188	
Contingency (15% of sub-total 1)]	564	
Sub-total***				752	
Total**** (Sub total** + Sub-total***)				4,512	
Environmental Impact Assessment					
Environmental Impact Appraisal (Totat****)	sum	1	8,000		EQP8
Grand total (Total* + Total**** + Total****)				5,270	

Table 10.5.2 Cost Estimate for Final Disposal Site (Phase II)

Work Item	Unit	Quantity	Unit Cost (\$)	Cost (1,000\$)
Construction				
Earth Works				2,045
Clearing & Grubbing	ha	2	20,000	40
Excavation	m³	9,000	25	225
Embankment	m³	9,000	20	180
Earth Lining	m ₂	20,000	80	1600
Slope Protection	m ²	3,000	10	30
Rainwater Drainage System	m	1,200	50	60
Groundwater Discharge System	m	300	250	75
Leachate Collection System	m	300	150	45
Gas Extraction System	sum	1	30,000	30
Sub-total				2,285
Contingency (10% of sub-total)				229
Grand total				2,514

Source: JICA Study Team

Table 10.5.3 Cost Estimate for Final Disposal Site (Phase III)

Work item	Unit	Quantity	Unit Cost (\$)	Cost (\$ thousand)
Construction				
Earth Works				2,245
Clearing & Grubbing	ha	3	20,000	60
Excavation	m ³	13,000	25	325
Embankment	m ₃	13,000	20	260
Earth Lining	m ₅	20,000	80	1600
Slope Protection	m²	3,500	10	35
Rainwater Drainage System	m	1,400	50	70
Groundwater Discharge System	m	100	250	25
Leachate Collection System	m	300	150	45
Gas Extraction System	sum	1	30,000	30
Sub-total				2,450
Contingency (10% of Sub-total)				245
Grand total				2,695

Source: JiCA Study Team

(2) Construction of transfer station

Construction cost for the transfer station is estimated and shown in Table 10.5.4.

Table 10.5.4 Cost Estimate for a Transfer Station

Work Item	Unit	Quantity	Unit Cost (\$)	Cost (\$ thousand
Design & Survey	·			132
Design	sum	1	200	200
Topographic Survey	sum	1	50	50
Soil Survey	sum	1	50	50
Total*				300
Construction				
Mobilization and Site Preparation	sum	1	10,000	10
Earth Works				470
Clearing & Grubbing	ha	1	20,000	20
Excavation	m³	10,000	25	250
Piling	m³	10,000	20	200
Access Road	m	200	2,000	400
Rainwater Drainage System	m	1,000	50	50
Building	m²	500	500	250
Transfer Facility	sum	1	100,000	100
Utilities	sum	1	30,000	30
Truck Wash	sum	1	10,000	10
Vegetation	m²	2,000	50	100
Fencing	m	400	50	20
Sub-total**				1,430
Engineering Service (5% of Sub-total**)				72
Contingency (10% of Sub-total**)				143
Sub-total***				215
Total**** (Total of Construction Cost)		100		1,645
Environmental Impact Assessment		L		
Environmental Impact Appraisal (Total*****)	sum	1	3,000	3
Grand total (Total* + Total**** +Total****) Source: JICA Study Team				1,948

(3) Closure of existing disposal site in Koror

Cost for closure of the existing disposal site in Koror State is shown in Table 10.5.5.

Table 10.5.5 Cost Estimate for Closure of Existing Disposal site in Koror

table 10.5.5 Cost Estimate for Cic		_			
Work Items	Units	Quantity	Unit Cost (\$)	(\$ thousand)	Remarks
Construction					
Mobilization and Site Preparation	sum	1	10,000	10	
Clear and Grub	sum	1	5,000	5	
Clean-up	sum	1	1,000	· 1	
Submittals	sum	1	1,000	i	
xcavate and Move Waste from Strip	m³	9,100	8.9	- 81	
Place, Grade, and Compact Waste	rn³	9,100	2.9	26	
Supply and Haul Select Fill	m₃	31,350	11.0	345	
Place, Compact and Grade Select Fill	W ₃	31,350	9.6	301	
Waste Oil Pit Remediation	m³	550	13.7	8	
Relocation Scrap Metal on Site	m ³	730	7.4	5	
Supply and Haul Coral	m³	5,470	23.3	127	
Place, Compact and Grade Foundation Layer	m³	5,470	6.9	38	
nstall Gas Venting System (4" PVC Piping)	m	1,440	16.7	24	
Supply and Haul Gas Venting Layer (Sand)	m₃	7,290	27.4	200	
Place and Grade Gas Venting Layer	m³	7,290	4.1	30	
Supply Geomembrane	m²	441,450	0.3	115	
nstali Geomembrane	m²	441,450	0.1	53	
Supply and Haul Vegetative Layer (Topsoil)	m³	18,950	11.0	208	
Place, Compact and Grade Vegetative Layer	m³	18,950	4.1	78	
Revegetation and Erosion Control	m ²	32,370	0.3	8	
Cut and Grade Surface Water Ditches	m	810	2.2	2	
Supply and Haul Rock Armoring for Ditches	₩3	220	38.4	8	
Place Rock Armoring	m³	220	6.9	2	
nstall Filter Fences	m	3,330	5.6	19	
Supply and Haul Riprap for Shoreline	m³	180	44.0	8	
nstall Riprap Along Shoreline	LU ₃	180	25.2	5	
Sub-total 1				1,707	
Contingency (5% of Sub-total)				85	
Construction Management (2.7% of sub-total)				46	
Sub-total 2				131	
Total 1 (Sub-total 1 + Sub-total 2)				1,838	
Environmental Impact Assessment				l	
Environmental Impact Appraisal (Total 2)	sum	11_	3,000	3	EQP8
Grand Total (Total 1 + Total 2)			l	1,841	

Source: Final Closure and Post-closure Maintenance Plan

(4) Cost for purchasing vehicles

Cost for purchasing vehicles needed for collection and haulage of waste and for operation of the final disposal site is shown in Table 10.5.6 (Central Government) and 10.5.7 (Koror State).

Table 10.5.6 Cost for Purchasing Vehicles (Central Government)

Work Item	Type of Vehicle	Quantity	Unit Price (\$)	Price (\$1,000)	Remark
	Compactor (4m³)	4	33,000	132	All the vehicles are
Collection & Haulage	Truck (4 m³)	1	15,000	15	used of 4 to 5 years.
	Sub-total*		I	147	·
	Service Pick-up	1	10,000	10	
	Crawler Tractor (15t)	2	150,000	300	
	Steel Wheel Compactor (15t)	1	150,000	150	
Final Disposal site	Power Shovel	2	50,000	100	
rinai Disposai Site	Water Tank Truck (3m³)	1	25,000	25	
	Dump Truck (4t, 2m3)	1	30,000	30	
	Truck (1t)	1	10,000	10	
	Sub-total**			625	ĺ
Total (Sub-total* + Sut	o-total**)			772	
Spear Parts (total* x 1	5%)			116	
Total				888	

Source: JICA Study Team

Table 10.5.7 Cost for Purchasing Vehicles (Koror State)

	10 101011 00011011 u	romasmig	ecuiones fix	OIOI GIGIC	,
Work Item	Type of Vehicle	Quantity	Unit Price (\$)	Price (\$ thousand)	Remarks
	Compactor (4m³)	9	33,000	297	All the vehicles are
Collection & Haulage	Truck (8 m³)	2	20,000	40	used of 4 to 5 years.
	Container Truck (15 m ³)	2	35,000	70	used of 4 to 5 years.
Sub-total			1	407	
Spear Parts (Sub-total x	15%)		1	61	
Total				468	

Source: JICA Study Team

10.5.2 Annual Operation and Maintenance Cost

Annual operation and maintenance cost for collection and haulage of waste, landfill at the final disposal site, and closure of the existing disposal site in the Koror State is shown in Tables 10.5.8, 10.5.9, 10.5.10 and 10.5.11, respectively.

Table 10.5.8 Annual Operation and Maintenance Cost of Collection and Haulage (Central Government)

Work Items	Employee	Head	Unit Cost (\$)	Cost (\$)	Remarks
	Department Manager	1	22,000	22,000	
Head Office	Waste Engineer	1	25,000	25,000	
	Secretary/Administrator	2	9,000	18,000	
	Division Manager	1	15,000	15,000	
Collection &	Driver	4	9,000	36,000	
Haulage	Waste Collector	6	5,000	30,000	
	Maintenance Worker	2	11,000	22,000	Vehicle & Machine
Sub-total		17		168,000	
Miscellaneous				67,200	40% of sub-total
Fuel				70,000	
Grand Total				305,200	

Table 10.5.9 Annual Operation and Maintenance Cost of Collection and Haulage (Koror State)

Items	Employee	Head	Unit Cost (\$)	Cost (\$)	Remarks
	Division Manager	1	15,000	15,000	
O-Bastian O Hautana	Driver	10	9,000	90,000	
Collection & Haulage	Waste Collector	16	5,000	80,000	
•	Maintenance Worker	3	11,000	33,000	Vehicle & Machine
Sub-total		24		218,000	
Miscellaneous			1	87,200	40% of sub-total
Fuel				30,000	
Grand Total				335,200	

Source: JICA Study Team

Table 10.5.10 Annual Operation and Maintenance Cost of Land Fill at New Final Disposal Site

	Disposai oito				
items	Employee	Head	Unit Cost (\$)	Cost (\$)	Remarks
	Division Manager	1	15,000	15,000	
	Administrator	1	9,000	9,000	
	Landfill Manager	1	15,000	15,000	
1.	Weighbridge Operator	2	9,000	18,000	
	Foreman	1	13,000	13,000	
Final Disposal site	Driver (Landfill Work)	5	11,000	55,000	
•	Driver (Truck)	2	9,000	18,000	
4. The second second	Maintenance Manager	1	15,000	15,000	Engineer
	Maintenance Worker	3	11,000	33,000	Vehicle & Machine
	Maintenance Worker	1	8,000	8,000	Leachate
	General Worker	3	5,000	15,000	Site Maintenance
Sub-total		21		214,000	
Miscellaneous				85,600	40% of sub-total
Fuel				70,000	
Grand Total				369,600	

Source: JICA Study Team

Table 10.5.11 Annual Operation and Maintenance Cost of the Closure of Existing Disposal Site

Items	Employee	Head	Unit Cost (\$)	Cost (\$)	Remarks
Maintenance	General Worker	2	5,000	10,000	N
Contingency				2,000	20% of sub-total
Grand Total				12,000	

10,5.3 Development Schedule

Figure 10.5.1 shows the development schedule of the K-B SWMP for the mid-term period.

Figure 10.5.1 Development Schedule of K-B SWMP

Project	Items	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05	2005/08	2006/07	2007/08	2008/09
Integrated Solid Waste Master Plan	SWM master plan including preliminary design of a new disposal site and transfer station										
Preparation of New Organization											
	Topographic survey, Soil test, Detail design				3						
Construction of New Final Disposal Site	Environmental impact assessment										
	Construction	-									
	Topographic survey, Soil test, Detail design										
Construction of Transfer Station	Environmental impact assessment				i i						
	Construction				:						
Purchase of Vehicle											
	Topographic survey, Soil test Detail design		(Alrea	idy prep	oared)						
Closure of Existing Disposal site in Koror	Environmental impact assessment								1		
	Construction										
Dolated Designt	Construction of Compact Road										
Related Project	Construction of New Capital										

Source: JICA Study Team

Based on the development schedule and the cost estimates, the investment schedule is prepared in Figure 10.5.2 and summarized in Table 10.5.12 at constant 2000 prices. The total capital investment cost is estimated at \$17.5 million for the project period from 2000/01 to 2019/20, of which \$13.4 million is the cost allocated for the mid-term period from 2000/01 to 2008/09. From 2009/10 to 2019/20, an additional capital investment amounting to \$4.1 million is required for the costs of Phase III development of the disposal site and replacement of vehicles. Total O/M cost aggregates \$ 16.5 million up to 2019/20.

Table 10.5.12 Total Initial Investment Cost of K-B SWMP

Jnit: \$ million

		Long-term Period (2009/10-19/20)	Total
Investment cost	13.4	4.1	17.5
O/M cost	5.2	11.3	16.5
Total cost	18.6	15.4	34.0

Figure 10.5.2 Investment Schedule of K-B SWMP

					•																	
Project	tem	1999	2000	289	2002	2003	2004	2005 2	2006 2	2002/	2008 20	2009 2010	2010 2011	11 2012 12 /2013	2 2013 3 72014	2014	2015	2016	2917 72918	2018 2019 /2019 /2020	2020	Total
			3	7007		3	3		: -		1	-	-		. 1	ļ						
Master Plan	Study	J										-				ļ					-	ç
	Sillay Cast	1	3				-		-		-	- -	.]	_			ļ				T	
	Survey & Design				П		!			!	}										1	
	Design Cast			8	220									-	-						1	3
	EIA			*****																		
	EIA Cost				œ																	8
Construction of a New Coal Dumbera	Construction		ļ			$\ $			IJ.	П												
Discharge College	Construction Cost					4,512	<u></u>		2	2,514								~				9,72
	O/M Cost(Dumpsite)						370	370	370	370								•		,	370	5,920
	O/M Cost(Collection)						Ś	ဗ္တ	335	ဋ္ဌ	300	క్ట	ဇ္တ	305 305	305: 305	5; 305	305	305	ဗ္တ	88	င္တ	4,880
	Monitoring Cost						19	19	<u>6</u>	19	:										ზ	304
	Survey & Design				Π	/							!									
	Survey & Design Cost				8																_	e e
Construction of a	ΑïΒ				U	n	****			. .		、 -									_	
Transfer Station &	EIA Cost				1	2	ļ															3
MO	Construction					0				ļ												
-	8		7			1645	<u> </u>														_	1,645
	O/M Cost						335	335	335	93	335	335	335	335 3	335 335	5; 335	5 335	335	332	335	335	5,360
	Purchase (Dumpsite)					\prod							Ц	П							-	
Purchase of Vehicles						719	••••							719								£.
(Central government)	Purchase (Collection)	7				П							Ц	П								
	Purchase Cost					169								8								88
Purchase of Vehicles	Purchase (Collection)													П							-	
(Koror State)	Purchase Cost			7		468								468				_			1	88
	Survey & Design		(Alread		prepared)]			
	EIA																				•	
Closure of a Existing	EIA Cost					က																63
Dumpsite in Koror	Construction	41	****		:		Π															
	Construction Cost						1,838															,838 838
	O/M Cost						4	12	12	12	12	12										64
Capital Investment Cost	34	0	200	909		7,518	7,518 1,838 0 0 2,514 0	Ö	0	2.514:	o	o	1 0	1,356	0	0		0 2,695 0	0	0	0	17,480
14	Accumulated Cost		200		1 559	9,077	10,915	0,915	0,915 1	3,429: 1:	3,429; 13	429: 13	13,429 13,429 14,785	785: 14,785		14,785: 14,785	1	5: 17 480	17,480	17,480	17,480	
O/M Cost		0	0	٥	0	O	1,033	1,041	1,041				1,029: 1	8	1,029 1,029	1 029	9, 1,029	102	1,029	1,029	88	16.528
	Accumulated Cost		Ö		0	O			3,115	4 156	5.197	6,238 7	7,267 8,	g	9,325 10,354 11,383 12	138	3 12,412	5 2	1 14,470 15		16,528	
Total Development Cost	٠	0	÷005	900		559: 7,518	2,871	1,041 1,041	1041	3,555	1,041	1,041 1,029	1,029 2,	2,385: 1,0	2,385 1,029 1,029 1,029	9 1,029	620,1		3,724 1,029	1,023	1,029	34,008
	**************************************	-		÷	:																	

10.6 Financial and Economic Evaluation

10.6.1 Public Investment Requirement

Total cost of the K-B SWMP amounts to \$34.0 million at constant prices in 2000. Based on the proposed implementing organization, \$28.5 million is allocated to the central government. Out of that amount, \$20.6 million is for the development of the final disposal site including the closure cost of the existing disposal site, and \$5.2 million is for the collection and haulage services in Babeldaob Island. Remaining \$8.2 million is allocated to Koror State for the collection haulage services within the state.

Table 10.6.1 Total Cost of K-B SWMP by Implementing Body (at 2000 Price)

					(Unit:	\$ thousand)
					plementing bo	dy
•	Mid-term period	Long-term period	Total cost	Central go	vernment	State
Cost ilems	(2000/01-08/09)	(2009/10-19/20)	(2000/01-19/20)	Final disposal site	Collection & haulage in Babeldaob*	governmen (Koror State
Master plan study	500	0	500	500	*	
Closure of existing disposal site	1,906	15	1,921	1,921		
Capital cost						
New final disposal site	7,784	2,695	10,479	10,479		
Purchase of vehicles (Disposal site)	719	719	1,438	1,438		
Transfer station in Koror	1,948	- 0	1,948			1,948
Purchase of vehicles (Koror)	468	468	936	-		936
Purchase of vehicles (Babeldaob)	169	169	338		338	
Sub-total of capital cost	11,088	4,051	15,139	11,917	338	2,884
O/M cost (2004/05 - 2019/20)**						
New final disposal site	1,945	4,279	6,224	6,224		
Collection & haulage in Koror	1,675	3,685	5,360			5,360
Collection & haulage in Babeldaob	1,525	3,355	4,880		4,880	
Sub-total of O/M cost	5,145	11,319	16,464	6,224	4,880	5,360
Grand total	18,626	15,382	34,008	20,546 60%	5,218 15%	8,244 25%

Source: Note: JICA Study Team

* Collection & haulage service in Babeldaob is provided by Central government.

10.6.2 Unit Cost

(1) Amount of waste

Amount of waste, which is collected and disposed of at the final disposal site through public and private collections, aggregates 117,600 tons over the period from 2005 to 2020.

Table 10.6.2 Total Amount of Waste Collected and Disposed (2005-2020)

(Unit: ton) Koror State Babeldaob Total Municipal waste collected by public collection 60,700 25,700 86,400 Industrial waste collected by private collector 29,400 1,800 31,200 Total waste disposed at final disposal site 90,100 27,500 117,600 Source: JICA Study Team

(2) Cost for the project period

The life span of the project components of the K-B SWMP is assumed as follows:

- New final disposal site is designed to manage the waste demand of 30 years;
- Life span of transfer station in Koror is assumed to be 25 years with proper maintenance; and

^{**} O/M cost includes the cost of new disposal site and collection and haulage cost after the operation of new disposal site in 2005, while collection and haulage cost from 2001 to 2004 is not included.

As the life span of vehicle is assumed to be 8 years, replacement cost is allocated in 2012.

Based on the above, the residual value of capital is estimated for each facility. Total residual value is calculated to be \$5.6 million in 2020. Assuming the residual value as an inverse cost in 2020, the corresponding cost of the K-B SWMP for the project period is estimated at \$28.4 million as shown in Table 10.6.3 at 2000 prices.

(3) Unit cost of K-B SWMP

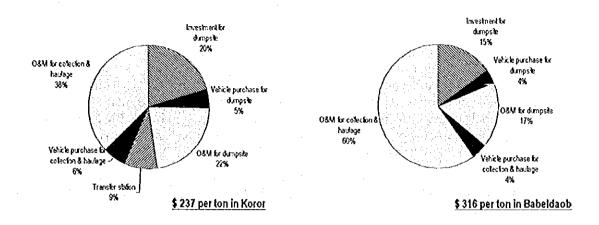
The average cost of final disposal is calculated to be \$113 per ton at constant 2000 prices, of which \$48, \$12 and \$53 are expenditure for infrastructure development, purchase of vehicle and O/M cost, respectively. It is noted that opportunity cost of capital is not taken into account in the calculation.

As shown in Table 10.6.3 and Figure 10.6.1, \$237 per ton is required for the SWM in Koror. Out of that, \$113 and \$124 are expenditure for final disposal and collection and haulage, respectively. On the other hand, \$316 per ton is required in Babeldaob, which is higher by 33% compared with the cost in Koror. The collection and haulage is very costly in Babeldaob, because the households are scattered over the Island except in Airai State, and the collection works is sometimes inefficient.

It also reveals that the SWM is recurrent cost-intensive. Out of \$237, for example in Koror, 60% is allocated to O/M costs for final disposal site and collection and haulage. In Babeldaob, 77% of total cost is used for O/M for collection and haulage and disposal site. Thus, there is a continuous need for financing sources to meet the substantial costs for operation and maintenance of the disposal site.

Table 10.6.3 Unit SWM Cost (at 2000 Price)

	Development cost (\$ thousand)	Residual value of capital in 2020 (\$ thousand)	Cost for the waste management 2005-2020 (\$ thousand)		Cost per ton for the waste 2005-2020 (S per ton)
Final Disposal site				117,600	
Infrastructure development	10,479	4,890	5,589		48
Purchase of vehicles	1,438	. 0	1,438		12
O/M cost	6,224	0	6,224		53
Sub-total	18,141	4,890	13,251		113
Collection and haulage by public					
Koror				60,700	
Transfer station	1,948	701	1,247		21
Purchase of vehicles	936	0	936		15
O/M cost	5,360	0	5,360		88
Sub-total	8,244	701	7,543		124
Babeldaob				25,700	
Purchase of Vehicles	338	0	338		13
O/M cost	4,880	0	4,880		190
Sub-total	5,218	0	5,218		203
Total (Koror and Babeldaob)	13,462	701	12,761	86,400	148
Others					
Master plan study	500	0	500		1
Closure of existing disposal site	1,905	0	1,905		100
Sub-total	2,405	0	2,405		
Grand total	34,008	5,591	28,417		


Source:

JICA Study Team

Note:

Waste demand of final dump includes the waste collected and dumped by private haulers.

Figure 10.6.1 Unit Waste Management Cost In Koror and in Babeldaob

Source: JICA Study Team

10.6.3 Cost Recovery

(1) Polluter-pays-principle

It is widely recognized that the introduction of the Polluter-Pays-Principle (PPP) is an urgent requirement to reduce the budget deficits of the ROP. However, there is a great deal of difficult to implement it due to public opposition. Full cost recovery of the SWM by user charge is hardly realized even in the industrial countries.

Affordability and willingness of household to pay

To implement the PPP, there is a serious argument over affordability and the willingness of households to pay the charges. In Chapter 3, the affordable level of payment for the SWM is computed at \$10 per month and \$20 per month for households with income of minimum wage rate and median income level in urban areas in Palau, respectively.

In spite of the results of calculation, however, even average income households hardly showed willingness to pay additional charges, because they considered that those costs should be borne by the government. The imposition of charges needs public acceptance. Strong political leadership is required to initiate special and careful provisions in order to gain acceptance. The households' willingness-to-pay will be increased by their growing awareness of the importance of environmental protection as well as the improvement of service level of SWM.

Industrial and commercial waste

On the other hand, regarding the industrial and commercial waste, it is rational that polluters are charged the full cost of SWM generated from their economic activities. Afterwards, the beneficiaries of their economic activity will have to shoulder part of the cost through a market mechanism.

(2) User charge collection

Garbage fee

An average SWM cost per household per month including final disposal and collection/haulage is calculated under the following assumptions:

- Average garbage generation of residential waste per person is 0.6 kg per day in urban area and 0.3 kg per day in rural area;
- Average number of members in a household is five (5) persons both in urban and rural areas; and

 Garbage amount per household per month therefore is estimated at 0.09 tons in urban area (0.6kg per person per day x 5 persons x 30 days), and 0.045 tons in rural area (0.3kg per person per day x 5 persons x 30 days)

Accordingly, in urban area an average SWM cost is estimated at \$21.3 and \$28.5 per household per month in Koror and Babeldaob, respectively, based on the unit SWM cost as shown in Table 10.6.4. If Koror State could impose the garbage fee at a rate of \$21.3 per household per month, the full cost recovery can be achieved, excluding the cost for closure of existing disposal site and the opportunity cost of capital. However, an affordable level of monthly fee rate of residential waste could probably be estimated at \$10 per household paid with minimum wage rate in the urban area such as in Koror, Airai and Melekcok State as examined in Chapter 3.

In the rural area in Babeldaob, however, the rate will be reduced to \$5 per month, because the income level of those states is less than half as that in urban area and waste amount generated per household is also just half.

Thus, the cost of K-B SWMP for residential waste cannot be fully recovered by user charges. Furthermore, even the cost for collection and haulage cannot be recovered.

Table 10.6.4 SWM Cost per Ton and per Household per Month

	Cost per ton	It not tonly	Cost per	household per	month (\$)
	Cost per ton	(a bei rou)	Urbai	n area	Rural area
	Koror	Babeldaob	Koror	Babeldaob	Ruiararea
Final Disposal Site					
Capital investment cost	60	60	5.4	5.4	2.7
O/M cost	53	53	4.8	4.8	2.4
Sub-total	113	113	10.2	10.2	5.1
Collection and haulage				:	
Capital investment cost	36	13	3.2	1.2	0.6
O/M cost	88	190	7.9	17.1	8.6
Sub-total	124	203	11.1	18.3	9.1
Total cost				 	
	237	316	21.3	28.5	14.2

Source: Study Team

Note: * Refer to Table 10.6.3

Industrial and commercial waste is currently collected both by private collection and by public collection in Koror. Koror State imposes \$10 per month on the wastes from hotels, motels and restaurants. However, only about 40 firms use the services currently, while others carry and dump their garbage in the final disposal site by themselves or throw it in with residential waste collected by the state.

From the viewpoint of full cost recovery of industrial and commercial waste, Koror State should impose a garbage fee at the rate of \$237 per ton on every industrial and commercial waste. The charge for industrial and commercial enterprises should be principally collected based on actual quantity and type of waste collected and frequency of collection. However, it is not effective, because of the difficulty and large cost to measure the amount of waste. It is realistic to collect the fee on the basis of area, number of employees, gross revenue of enterprises and/or volume of water consumption.

The administration cost of billing and collecting fees is costly. Moreover, separate collection of garbage fee is difficult to do. It will be more effective to add SWM fees to the existing bills, such as water service bills and electricity bills, business license fees or the Gross Revenue Tax.

Tipping fee at Disposal Site

The cost of final disposal service can be recovered through tipping fees. At the gate of the

disposal site, weight of waste can be measured by the weighbridge. The rate of tipping fee should be determined so as to recover the full cost of the proposed final disposal. It is recommended that the Central government collect tipping fees from Koror State as well as from private haulers. The tipping fee rates should be the same for both public and private haulers, for the efficient management of weighing at the disposal. Rate is estimated at \$113 per ton to recover the cost of disposal service. It is expected that the imposition of tipping fee will also encourage the State government to seriously consider a waste reduction program.

Burden of SWM cost in Koror

Figure 10.6.2 illustrates SWM services and proposed service fees on waste generated in Koror State. Table 10.6.5 summarizes payers, receivers of the fees and the proposed level of fee rates.

Figure 10.6.2 SWM Services and Service Fees Proposed to be Imposed in Koror

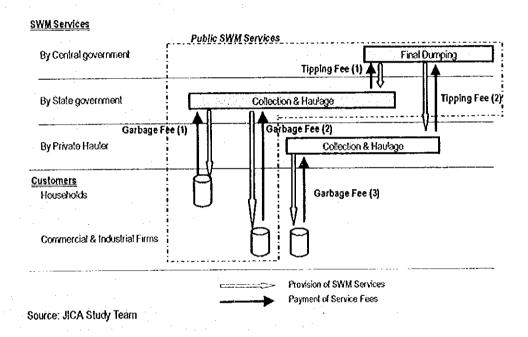


Table 10.6.5 Payers, Receivers and Level of Garbage Fee Rate in Koror

Fees*	Payer of Fees	Receiver of Fees	Proposed Fee Rale Levels
Garbage Fee (1)	Households	Koror State	Within estimated affordability by households and recovery of O/M cost of collection & haulage costs, at least
Garbage Fee (2)	Commercial & industrial firms	Koror State	To recover full cost of collection & haulage and final disposal costs
Garbage Fee (3)	Commercial & industrial firms	Private haulers	Determined through market mechanism
Tipping Fee (1)	Koror State	Central government	To recover full cost of final disposal costs
Tipping Fee (2)	Private haulers		

Source: JICA Study Team
Note: * Refer to Figure 10.6.2.

10.6.4 Financial Evaluation

(1) Assumptions

Financing plan of the K-B SWMP is examined under the following assumptions:

 Project period is up to 2019/20. Tipping fee and garbage fee are regarded as the revenue of the K-B SWMP from 2004/05, when the new disposal site will be utilized.

- The cost of the K-B SWMP is primarily allocated to the implementing bodies as shown in Table 10.6.1.
- Annual inflation rate is assumed at 4% for the cost and revenue over the project period. The rates of fees, such as garbage fee and tipping fee, will correspondingly increase with the inflation rate.
- Residual value of the capital is estimated as an inverse cost in 2020 based on the life span of each facility as follows: New final disposal site 30 years, Transfer station in Koror 25 years, Vehicle 8 years.
- Residential monthly garbage fee is collected based on the following rates at constant 2000 prices: \$10 per household in the urban area, \$5 per household in the rural area.
- For the public collection and haulage of industrial and commercial garbage, a fee
 is imposed at the rate of \$237 per ton at constant 2000 prices both in Koror and
 Babeldaob, based on the estimated unit SWM cost for the waste generated in
 Koror.
- Central government will impose tipping fee at the new disposal site. Tipping fee
 is \$113 per ton at constant 2000 prices, which will recover the full cost of
 disposal.

In the following section, individual cash flows of implementing bodies are firstly examined and then a whole cash flow of the K-B SWMP is demonstrated and evaluated considering the above assumptions.

(2) Financial evaluation by implementing body

Koror State

As presented in Table 10.6.1, the total amount of the K-B SWMP cost for Koror State is estimated at \$8.3 million for the project period at constant prices of 2000. On the other hand, the state will have revenue through garbage fees from households and commercial and industrial firms.

Table 10.6.6 shows a cash flow of the Koror State for the K-B SWMP, in terms of constant and current prices. At constant 2000 prices, the total cash outflow including the capital cost, O/M cost and payment of tipping fees to the central government for final disposal is estimated at \$15.1 million. On the other hand, the total revenue from garbage fees will amount to \$8.8 million during the project period under the proposed garbage fee schedule. Therefore, accumulated balance of the cash flow will be a deficit of \$6.3 million.

In order to cover the deficit, there will be three kinds of potential financial sources for Koror State as follows:

- General budget revenues collected by the State;
- Additional garbage service fees from residential and commercial and industrial customers; and
- Special subsidies or grants from the central government.

Table 10.6.6 Cash Flow of Koror State of
--

	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total
		(\$ million at	2000 price)	·		(\$ million at o	current price)	
Cash Outflow							1	
Capital Investment Cost								
Transfer Station and Purchase of Vehicle	2.4		0.5	2.9	2.8	· ····	0.7	3.5
O/M Cost		1.7	3.7	5.4		2.2	6.7	8.9
Tipping Fee Payment for Final Disposal		2.2	4.6	6.8		2.9	8.5	11.4
Total Cash Outflow	2.4	3.9	8.8	15.1	2.8	5.1	15.9	23.8
Cash Inflow								
Garbage Fee Revenue Revenue	-							
Residential (Koror)		1.5	3.3	4.8	ļ ————	2.0	6.0	8.0
Commercial and Industrial		1.3	2.7	4.0		1.7	4.8	6.5
Total Fee Revenue		2.8	6.0	8.8		3.7	10.8	14.5
Balance	-2.4	-1.1	-2.8	-6.3	-2.8	-1.4	-5.1	-9.3
Subsidies								
Capital Investment Budget	1.9			1,9	2.3			2.3
Refund of Tipping Fee		1.1	2.4	3.5		1.4	4.2	5.6
Total Subsidies	1.9	1.1	2.4	5.4	2.3	1.4	4.2	7.9
Total Cash Inflow	1.9	3.9	8.4	14.2	2.3	5.1	15.0	22.4
Net Cash Flow after Refund	-0.5		-0.4	-0.9	-0.5		-0.9	-1.4
Residual Value of Capital			0.7	0.7			0.8	0.8
Deficit				-0.2				

Source: JICA Study Team

The budget revenue of Koror State was about \$2 million in 1998/99 including fees, fine, etc. However, it is hardly an option of source for the cost of K-B SWMP, because it will be overburdened by the other recurrent costs of the State and the deficit of the project is a significant amount compared with the size of the budget of Koror State.

Under the current tax system in the ROP, where tax can be imposed only by the central government, the budgetary autonomy of Koror State is very limited. Even with the garbage fee collections, it is simply impossible for Koror State to increase its budget on SWM. On the other hand, the proposed level of garbage fee rate would be the maximum rate for households with minimum income level considering affordability as well as the willingness-to-pay of households, though it can be increased in the long-term period. Regarding the fee rate for industrial and commercial waste, no additional charges could be required from the firms, as it has been already assumed so as to recover the full cost.

Under the circumstances, it is required that the central government provide Koror State with the following subsidies to compensate for the state's shortage of fund:

- The capital investment costs for transfer station will be subsidized from the central government.
- The central government and Koror State will share the burden of the cost for final disposal of municipal waste generated in Koror. Therefore, the central government should subsidize the SWM cost of Koror State by refunding 50% of what the latter paid as tipping fees.

Consequently, provided Koror receive the subsidy mentioned above, the accumulated deficit of Koror State will be reduced to almost \$0.9 million from \$6.3 million in 2019/20 and it is almost offset, taking into account the residual value of the transfer stations.

Central Government

In the K-B SWMP the central government has the responsibility to implement the following:

- Development and O/M of the final disposal site for Koror and Babeldaob; and
- Collection and haulage services in Babeldaob.

Moreover, the central government should provide subsidies to Koror State to compensate for the state's deficiency of budget for collection and haulage services. Table 10.6.7 shows a cash flow of the central government.

Table 10.6.7 Cash Flow of Central Government of K-B SWMP

lante 10.0	.r Qasii	1 (01) 01	Central C	OVCITING	CITE OF IC	D OTTIME	·	<u> </u>
	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total
		(\$ million at	2000 price)			(\$ million at	current price)	
Cash Outlow		-				•		
Capital Investment Cost								
Final Disposal site	6.5	4.4	3.4	14.3	7.5	5.7	6.4	19.6
Collection and Haulage in Babeldaob	0.2		0.2	0.4	0.2		0.3	0.5
Sub-total	6.7	4.4	3.6	14.7	7.7	5.7	6,7	20.1
O/M Cost								
Final Disposal site	<u> </u>	1.9	4.3	6.2		2.6	7.8	10,4
Collection and Haulage in Babeldaob		1.5	3.4	4.9		2.0	6.1	8.1
Sub-total		3.4	7.7	11.1		4.6	13.9	18.5
Subsidies to Koror State								
Investment cost of Transfer Station	1.9			1.9	2.3			2.3
Refund of Tipping Fee (50%)		1.1	2.4	3.5		1.4	4.2	5.6
Sub-total	1.9	1.1	2.4	5.4	2.3	1.4	4.2	7.9
Total Cash Outflow	8,6	8.9	13.7	31.2	. 10.0	11.7	24.8	46.5
Cash Inflow						I		
Garbage Fee Revenue							: .	
Residential (Babeldaob)		0.5	1.2	1.7		0.6	2.2	2.8
Commercial and Industrial (Babeldaob)		0.5	1.3	1.8		0.7	2.4	3.1
Tipping Fee (Private Haulers)		1.1	2.4	3.5		1.5	4.4	5.9
Tipping Fee (Koror State)		2.2	4.6	6.8		2.9	8.5	11.4
Total Cash Inflow		4.3	9.5	13.8		5.7	17.5	23.2
Net Cash Flow	-8.6	-4.6	-4.2	-17.4	-10.0	-6.0	7.3	23.3
Residual Value			4.9	4.9			6.9	6.9
Deficit				-12.5				

Source: JICA Study Team

An aggregate cash outflow of the central government is estimated at \$31.2 million over the project period at constant prices. Out of \$31.2 million, \$14.7 million, \$11.1 million and \$5.4 million are allocated to the development of final disposal site, collection and haulage services in Babeldaob and the subsidies for Koror State, respectively.

Regarding revenues, the central government will receive a total amount of \$13.8 million over the project period through tipping fees at the disposal site and garbage collection fees in Babeldaob.

Consequently in 2019/20, an aggregate deficit is estimated at \$12.5 million at constant 2000 prices taking account of residual value of capital.

Cash flow of K-B SWMP

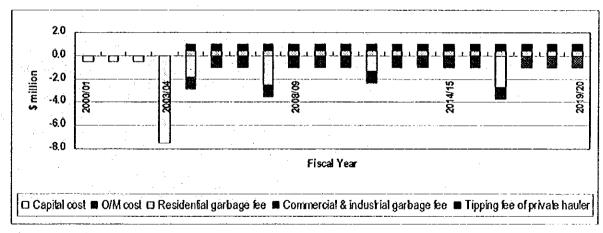
Table 10.6.8 shows a combined cash flow of the K-B SWMP, in terms of constant 2000 prices and current prices. An annual cash flow is prepared in Table 10.6.10 and Figure 10.6.3.

During the project period up to 2020, total cash outflow of the K-B SWMP is estimated at

\$ 34.0 million at constant 2000 prices. Cash inflow from garbage fees of municipal waste and tipping fees of private haulers is estimated at \$ 15.8 million at constant prices, although the tipping fees from municipal waste is excluded from the cash inflow because they are internal transfers between the central government and the state government.

In 2019/20, there will be an accumulated deficit of \$ 18.2 million. Taking account of the residual value of the capital, calculated to be 5.6 million in 2019/20, the deficit will reduce to \$ 12.6 million. Consequently, 63% of the cost of the K-B SWMP will be recovered by tipping fees and garbage collection fees over the project period. However, the opportunity cost of capital is not taken into account in the calculation.

Table 10.6.8 Cash Flow of K-B SWMP



	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total	2000/01-03/04	2004/05-08/09	2009/10-19/20	Total
		(\$ million at	2000 price)		ļ ₍	(\$ million at c	urrent prices)	
Cash Outflow*		,					[-	
Capital Investment Cost	9.1	4.4	4.0	17.5	10.5	5.7	7.4	23.6
O/M Cost		5.1	11.3	16.4		6.8	20.6	27.4
Total Cash Outflow	9.1	9.6	15.3	34.0	10.5	12.5	28.0	51.0
Cash Inflow								
Residential Garbage Fee		2.0	4.5	6.5		2.6	8.2	10.8
Commercial and Industrial Garbage Fee		1.8	4.0	5.8		2.4	7.2	9.6
Tipping Fee (Private Hauters) **		1.1	2.4	3.5		1.5	4.4	5.9
Total Cash Inflow		4.9	10.9	15.8		6,5	19.8	26.3
Net Cash Flow	-9.1	-4.7	-4.4	-18.2	-10.5	-6.0	-8.2	-24.7
Residual Value			5.6	5.6			6.9	6.9
Deficit				-12.6				

Source:

JICA Study Team

Note:

Figure 10.6.3 Cash Flow of K-B SWMP (at constant prices in 2000)

Source: JICA Study Team

As examined above, the K-B SWMP will yield an aggregate deficit at \$12.6 million over the project period. From the viewpoint of cash flow of K-B SWMP, a shortage of cash flow is prominent in the initial investment stage as shown in Figure 10.6.3. Except the capital investment cost, however, annual revenue is estimated to be almost equal to annual cost.

^{*} Details are referred to Figure 10.5.2

^{**} Tipping fee of municipal waste is not included in the revenue, because it is internal transaction between the central government and the state government.

The government may have potential financial sources or combination of the sources to finance the deficits of the K-B SWMP as follows:

- · Allocation of capital investment budget in the general budget;
- Allotment of the "Compact Trust Fund 211 (f)";
- Imposition of new tax on property, such as property tax and land tax;
- Increase of the fee rate of residential waste; and
- External assistance

Under the assumptions of financial arrangement from some of the sources mentioned above, the Net Present Values (NPV) of the K-B SWMP are estimated as shown in Table 10.6.9.

General budget allocation for the capital investment:

If the capital investment cost is allocated from the general budget, the NPV of the K-B SWMP will be \$ 1.0 million with a discount rate at 8%.

Increase of garbage fee in the long-term period;

Even if the government could increase the garbage fee to such a level as the full cost recovery in the long-term period from 2009/10 as the following rates, the aggregated cash flow will reduce to \$5.3 million from \$12.6 million in "base case" over the project period:

- Residential garbage fee in urban area: to \$25 from \$10 per month per household
- Residential garbage fee in rural area: to \$15 from \$5 per month per household;
 and
- Commercial and industrial garbage fee: from \$237 to \$250 per household.

Table 10.6.9 NPV of K-B SWMP with Additional Financial Arrangement

		th a discou (\$ million)	nt rate
	0%	4%	8%
(1) Base case:	-12.6	-11.8	-10.6
(2) Capital investment cost is allocated from the general budget	4.9	2.2	1.0
(3) Increase of residential garbage fee in the long-term period	5.3	-7.5	-8.1
(4) Combination of (2) and (3)	12.2	6.4	3.5
Source: JICA Study Team			V.U

For the implementation of the K-B SWMP, the GOP needs to settle the budget for the initial investment or need to seek the financing sources for the initial investment.

Table 10.6.10 Annual Cash Flow of K-B SWMP at 2000 Price

73		7,769 7,769 17,951 7,769 1,809	3							 -	
Tota											
2019	1	- 0	7,480	13,986 3,563 3,563	19,987	2,791 713 494	3,998	90% 100%	0.12 0.00 0.00 0.00	237.0 519.3	113.0 247.6
8102	7. 2. 4. 6. 1. 0 7. 8 0 4 4 4	20.4 27.4 1,015 1,015 1,229 1,818 1,818	7,448	13.902 2.546 3.546	100 100 100 100 100 100 100 100 100 100	2,780 709 488	3,977	90% 100%	0.01 6.03 6.04 6.04	237.0	113.0 238.1
2017	7.24.8.4.0 8.80.6.44	20.3 2,730 1,011 1,782 1,219 516 516	7,416	13,848 3,531	19,791	2,770 706 82	3,958	90% 100%	203 5.0 5.0 10.1	237.0 480.1	113.0 228.9
2016	7.24.0.4.0 8.80.0.4.4	20.2 2.7.2 1,007 1,784 1,209 1,209 1,513	7,384	13,794 3,516	19,695	2,759 703 477	3,939	90% 100%	0.00 0.00 0.00 0.00	237.0	113.0
2015	4.22.42 4.23.33 4.40.44	20.7 1.003 1.786 1.199 1.199 1.199	7,352	13,740	965.61	2,748 700 774	3,920	90% 100%	<u>ဂို ဆို လ</u> စ ၁.၄.၀ န	237.0	113.0 211.6
2014	7,24.0. 4,7,9.0.4.0	20. 29. 20.1 1.788 509 509 509 509 509	7,320	13,687	19,504	2,737 697 466	3,900	90% 100%	5 5 6 9 5 5 5 5	237.0 426.8	113.0 203.5
2013	7.22.5.0 4.8.9.5.4.0	20, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7,328	13,785 3,460 2,260	19,495	2,757 692 450	3,859	90% 100%	6.57 6.60 7.90 7.90	237.0	113.0
2012	2,5 2,5 3,1 3,1 5,5 6,3	20.7 1.014 1.809 1.150 1.150 1.24	7,335	13.883 14.24 17.	19 490	2,77 788 235	3,899	90% 100%	0.07 0.88 0.88 0.88	237.0 394.6	113.0
2011	7.6 2.8 3.1 1.4 0.3	20,1 1,021 1,021 1,130 1,130 1,130	7,343	13,982 2,408	19,489	2,796 682 420	3,898	90% %001	0.000 0.000	237.0 379.4	113.0
2010	t .	2	7,350	14,082 3,382 507	19,491	2,816 676 405	3,897	90% 100%	0.01 4.81 7.7	237.0 364.9	174.0
2009	i ·	4	7,358	14,183 3,356 8,000	19,497	2,837 671 352	3,900	90% 100%	0.07 8.47 6.00 4.7	237.0 350.8	113.0 167.3
2002	7.7 2.9 5.1 2.9 1.3	20.7 1.059 1.868 1.062 473	7,346	4,493 3,230 86	19,659	2,899 646 387	3,932	88% 100%	642 642 643 643 643 643 643 643 643 643 643 643	237.0	113.0 160.8
2007	7.8824 7.8824 7.8824	20.1 2.7.93 1.883 1.033 1.033 7.6	7,333	14,809 2,108 4,108	19,831	2,962 622 383	3,967	86% 100%	00 7.57 0.8 8.8 8.8	237.0 324,4	113.0 154.6
2005	3.0 3.0 5.3 7.2 7.2 7.2 7.3	20.0 2,787 1,106 1,919 1,003 4,38 5,8	7,313	15,132 2,991	20,015	3,026 598 378	4,002	84% 100%	555 a.e. 646 a.	237.0 311.9	113.0
2005	3.7 2.7 2.7 2.7 1.2 1.2	20.0 27.7 24.6 27.6 27.6 27.6 27.6 27.6 27.6	7,293	15,462 2,878	20.211	3,092 576 374	4,042	82% 100%	0.0 0.8 6.3 8.0	237.0	113.0 143.0
2004	2.6.6.2.1.0 8.2.6.0.1.1.0	25 27.1. 27.	7,270	15,739 2,770 1,850	20,418	3.160 3.76 3.70	4,084	80% 100%	0.52 0.52 0.50 0.50 0.50 0.50 0.50 0.50	237.0	113.0 137.5
2003				15,580 2,532	19 970	3,116 506 372	3,994				
2002				15,364 2,314	19.54 14.00	50.5 50.5 50.5 50.5	3,909 809,5				.
2007	ste)	sto)		15,151 2,115 1,874	19 140	85. 87. 87.	3,828		(sp _I c		.
2000	day) al weste) 3) nercial wa	er year) el waste) el waste) nercial wa		14.94. 1.933 1.933	18,756	2,988 387 376	3.751		r househo		
1999	t (ton per de waste) commerci commerci mital waste	ant (ton print) waste) commerci nitial waste		47.73 197.198	18,391	2,947 353 378	3,578		s)) 	per ton)
	Garbage Amount (1) Debity Wasse Generation Amount (ton per day) Koror (Public colecton/Residentiacid waste) Koror (Public colecton/Residentiacid waste) Koror (Public colecton/Industria & commoral waste) Koror (private colecton) Baseddoo (Public colecton/Industria & commercial waste) Baseddoo (Public colecton/Industrial & commercial waste) Baseddoo (Private colecton/Industrial & commercial waste)	Total Your (Public collector/Residentation Amount (fron per year) Koror (Public collector/Industria & commercial weste) Koror (private collection) Koror (private collection) Koror (private collection) Repedidopo (Public collection/Residential waste) Babedapo (Public collection/Industria & commercial waste) Babedapo (Public collection/Industrial & commercial waste)		_			ءِ ا	}	Fee Rate. (1) Residential Garbage Fee (\$ per month per households) Urban Area (at constant 2000 prices) Urban Area (at current prices) Rural Area (at constant 2000 prices)	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(4) Lipping ree at Frial Jumpsite (\$ per ton). At constant 2000 prices At current prices
	thage Amount Daily Wasts Generation Ar Kora (Public collection/Resid Kora (Public collection/India Kora (privale collection/India Rora (privale collection/India Babediaco (Public collection/India Babediaco (Public collection/India	fortal Annual Waste Generation, Corr (Public collection/Rosal Corer (private collection/Industry Corer (private collection) Babdadao (Public collection/Babdadao (Public collection/Babdadao (Public collection/Babdadao (Public collection/Babdadao (Penicio collection/Babdadao (Penicio collection/Babdadao (Penicio collection/Babdadao (Penicio collection/Babdadao (Penicio)		usehold Population Korg Melekeok and Atrai	(peldaob)	Koror Melekeok and Airai Other states in Babeldaob	Total (Koror+Babeldaob)	2 2 2 2 2	* Rate Residential Garbage Fee (\$ Urban Area (at constant 2000 Urban Area (at constant 2000 Urban Area (at constant 2000 Rura Area (at constant 2000 Rura Area (at constant 2000) Industrial and constant industrial in	0 prices	o puces
	Garbage Amount (1) Daily Waste G Koror (Public co Koror (Prubic co Koror (prubic co Koror (prubic co Babeldaco (Pub Babeldaco (Pub Babeldaco (Pub	Yotal Annual Waste General Koror (Public collectorif Coror (Public collectorif) Corer (private collector) Sebeddaco (Public collector) Sebeddaco (Public collectorif		usehold Population Koror Melekeok and Aira Other ciptes in Bah	Total (Koror-Babeldacb)	Koror Melekeok and Airai Other states in Bab	ota (Koror+Babeldaob)	gop	Area (at Area (at Area (at Area (at CArea (at	At constant 2000 prices At current prices	Lipping ree at rinal D At constant 2000 prices At current prices
	Garbaga (1) Daily Koror Koror Babek Babek Babek	Total Koror (Koror (Koror (Babed Babed Babed	oto.	2. Household (1) Population Koror Melekeok ar Other states	E C	Koror Melekeok Other stat	Total (Koror Babeldaob	3. Fee Rate (1) Reside Urban A Urban A Rural A Rural A	At con	At con
L	l-i			ci					က်		

Table 10.6.10 Annual Cash Flow of K-B SWMP at 2000 Price

For Construction of a constant 2000 process And Dompster Structured at constant 2000 process And Structured at constan		72000 72001	2007	2002	7,007	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 2014	2014	2015	2016	2017	2018 2	2019	Total
0 500 286 5.201 889 0.89 0.89 0.89 0.89 0.89 0.89 0.89	Cost of K-B SWMP (\$ thousand at (1) Final Dumpsite	constant 2000 pm	(\$8)								ł	ł				1				ŀ		
0 500 256 5/201 389 389 389 289 1 300 380 489 100 100 100 100 100 100 100 100 100 10	Capital investment cost Maintenance cost	00				389	386	389	2,514 389	0 gg	ဝစ္တ	988	288 889	0 8	ဝစ္ထ	0 0	980	2,695	0 8	0 8	0 0	11,917
10 10 10 10 10 10 10 10	Sub-total (2) Collection and haulage			828	5,231	389	389	389	2,903	686 686	988	389	1,108	98 88	388 388	389	88 88	3,084	388	388	88	18,141
0 0 0 0 0 1 2/15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Koror					•	•		•	•••••												
0 0 0 0 10 10 0 0 0 10 0 0 0 0 0 0 0 0	- Capital investment - Maintenance cost	00			2,13	332	335 p	335 0	33.0	335.0	339	335	සී දි සි	9 8	9 6	9	9	0 8	0 y	o y	0 %	2,884
0 0 0 0 169 0 0 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sub-total	0	0	301	2,115	335	335	335	335	335	335	335	803 3	336 336	335	335	336	335	335	388	38	824
Columbration Colu	Babeldaob				8	c	٠	•	•		•	•	Ş	•	•	٠	,	•	•			
0 0 0 0 169 305 305 305 305 305 305 305 305 305 305	Mantenance cost	90			g C	305	302	305	98	90	300	305	9 S	9 9 9	300	<u>ي</u> و	0 y	၀ မွ	o v	o y	0 4	888
Stop C C C C C C C C C		0		0	.69	305	305	305	305	305	305	305	474	8	8	305	38	38	388	305) S S	5218
300 500 659 7,516 2,871 1,041 3,555 1,041 1,		603		c	<	c	ć	•	•		•	•	•		4	•	•	•	•			į
300	Closure of existing dumparte	30			> 69	.82	5	5	5 5		→ 54	, 0	90	90	30	00	90	> 0	00	00	ÖC	နို့ နိ
State Revenue (State Revenue) Fee Revenue (State Revenue) Tal Government's Revenue) State State (1041 1,041 1,041 1,041 1,041 1,042 1,044 1,042 1,042 1,044 1,042 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,042 1,044 1,0	Sub-total	500		0	8	1,842	12	12	12	12	12	0	0	0	0		0	6	0	٥	6	2.485
State Revenue) State State Revenue) State State State Revenue) State Stat	Total Cost	909		999	7,518	2,871	1,041	1,041	3,555	1,041	1,041	1,029	2,385	1,029	1,029	1,029	1,029	3,724	1,029	1,029	620,	88,
Signature (State Revenue)	Revenue of K-B SWMP (5 thousand (1) Residential Garbage Fee Reven	1 at constant 2000 ue (State Revenue) prices) e)							,												
Fee Revenue (State Revenue) Fee Revenue (State Revenue) See 26 27 26 27 27 28 28 2 8 2 8 2 8 2 8 2 8 2 8 2 8	Koror					303	88	88	98	98	38	304	302	8	88	286	297	298	299	300	8	4,826
Fee Revenue (State Revenue) Fee Revenue (State Revenu	Meerook and Arai Other states in Babeldaob				••••	88	8 8	2.2	ខន	e 83	5 %	5 %	23 X	3 8	3 6	3 %	\$ %	3 &	£ &	% &	& &	120
Fee Revenue (State Revenue) 273	Total (Koror+Babeldaob)				-	392	386	339	403	407	410	410	409	408	408	407	409	411	413	415	417	6.514
Authoritiest Auth	(2) Industrial and Commercial Garb Koror (Public collection/Industrial & Babeldaob (Public collection/Industrial	kage Fee Revenue commercial waste) nal & commercial w.	(State Re	(enue)	•••••	273 96	268 100	262	257 108	251	245 116	244	242	240 119	239	237	238	239	240	241	242	3,956
443 442 443	Total (Koror+Babeldaob)					369	368	366	365	363	36	361	360	359	356	357	359	98	362	363	3	5,797
#Wester) ### 500 500 559 7,518 1,838 0 0 0 2,514 50 50 50 50 50 50 50 50 50 50 50 50 50	(3) Tipping Fee at Final Dumpsite (C Municipal Waste in Koror Municipal Waste Babeldaob	Central Governme	ent's Revei	(en		443 152	24 85 58	440 163	88	84 E	453 179	85 18	427 184	424	421 189	418 192	45 193	421 195	£ 25	424	199	6,864 2,906
1,583 1,582 1,592 1,596 1,600 1,601 1,609 1,596 1,596 1,596 1,596 1,597 1,599 1,596 1,599 1,596 1,599 1,596 1,599 1,596 1,599 1,596 1,599 1,59	Private Haulers Total tipping Fees at constant prices					83 83 158	225	828	2 88 28	2288	ន្តន	23 15 15 15 15 15 15 15 15 15 15 15 15 15	830 830 830	218 828 828	218 828	218	218	219	213	220	230	3,526
#Westell	(4) Total Revenue					583	1,588	1,592	1,596	1,600	1,603	1,601	1,599	1,596	1,594	1,592	1,599	909,	1,613	1,620	627	25.607
-500 -500 -559 -7,518 -1,884 -53 -52 -2,565 -50 -49 -39 -1,397 -43 -45 -47 -43 -2,734 -35 -31 5 -50 -500 -500 -500 -559 -7,518 -1,884 -53 -52 -2,565 -50 -49 -39 -1,397 -43 -45 -47 -43 -2,734 -35 -31 5 -500 -500 -559 -7,518 -1,834 -0 0 2,514 0 0 0 1,356 0 0 0 0 2,595 0 0 0 0 0 0 0 2,595 0 0 0 0 0 0 0 0 0 2,595 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Revenue	ncipa Waste)			1	88 87 88	88	588 880	86	991	-612 992	15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	988	988	984	-610 982	88 88	950 950	98 4	996	\$ 55	15,837
-500 -500 -559 -7,518 -1,884 -53 -52 -2,565 -50 -49 -39 -1,397 -43 -45 -47 -43 -2,734 -35 -31 5 (4) 500 500 559 7,518 1,838 0 0 2,514 0 0 0 1,356 0 0 0 0 0 2,895 0 0 0 0 0 0 0 0 -46 -53 -52 -51 -50 -49 -39 -41 -43 -45 -47 -43 -39 -35 -31 5	Salance of K-B SWMP (\$ thousand:	at constant 2000p	orices)	659	7.518	1,884	53		2,565	Ş	64	1	1,397	4	4	F	i i	2,734	8	2		18,171
nt. 500 500 558 7,518 1,838 0 0 2,514 0 0 0 1,356 0 0 0 0 2,895 0 0 0 0 0 0 0 0 6,895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A) Kesidusi Value of Capital 3) Balance	-500		559	-7,518	-1,884	ģ		-2,565	ş	\$		1,397	65	45	4	•	2.734	35		26.53	5.591
0 0 0 0 0 -46 -53 -52 -51 -50 -49 -39 -41 -43 -45 -47 -43 -35 -31	Sudget Allocation of Central Govern			228	7,518	828	0	o	2,514	~~~	0	0	1,356	0	0	0		2,695	0	0		17,480
	Net Cash Flow after Budget Allocati FIRR		0	•	6	76	53	-52	5	Ş	40	ģ	Ŧ	ā	54	4	ą.	ş	×	_	298,	4,900

10.6.5 Economic Evaluation

The K-B SWMP will provide significant impacts on the promotion of national economy. The important impacts would be:

- To improve health condition,
- To improve natural condition, in general, and water pollution, in particular
- To improve living conditions in Koror and Babeldaob,
- To improve urban environment as one of the resources for tourism development;
 and
- To convert the existing disposal site to tourism development area

However, it is very complicated to define and measure these benefits. Accordingly, the calculation of the Economic Internal Rate of Return (EIRR) is difficult. To estimate the increase of willingness to pay of the household and commercial and business firms may be one of the practical and effective measures to quantify the benefits for the calculation of the EIRR. Employing the increase of willingness to pay as the benefits of the K-B SWMP, the EIRR of the project is estimated under the following assumptions:

- The benefits of the project are the increase of willingness to pay of the household and commercial and business firms in Koror and Babeldaob;
- Increase of willingness to pay of households is usually estimated based on the results of a household survey. However such kind of survey has not been carried out in Palau, including in this study. Accordingly, the level of affordability to pay for SWM is assumed at 2% of disposable income of household (Refer to Chapter 3);
- Commercial and business firms are willing to pay garbage fee proposed in the financial analysis which is \$237 per ton, which is a level that can recover the full cost of the project;
- The cost of the K-B SWMP is converted into economic cost using a conversion factor of 0.9 in order to eliminate the cost of internal transfer items in the country's economy, such as tax, import duty and subsidies.

Consequently, the EIRR of the project is estimated at 3.8% as shown in Table 10.6.11. The low EIRR is due to the higher waste generation rate per person compared with their income level as well as the higher SWM cost per ton in Palau. However, there will be other benefits, which are difficult to measure. Among them, land development impacts on tourism due to the closure of the existing disposal site will be significant.

Table 10.6.11 Economic Cost and Benefits of K-B SWMP

	7000	72001	2007	2002	2003	2005	2005	7007	72003	2008 2	2009	2010 2	2011 2	2012 2	2013 2	2014 2	2015 2	2015 2	2017 2	2018 20	2019 7020	Total
1. Household (1) Population (2) Population Meelkeok and Alfra Other states in Babedcacb Total (Korrow-Babedcacb)	14,734 1,767 1,890 18,391	14,941 1,933 1,882 18,756	15,151 1 2,115 1,874 19,140 1	15.364 2.314 1.866 9.544	2,580 2,532 1,858 9,970	15,799 1 2,770 1,850 20,419 2	15,462 1 2,878 1,871 20,211 2	15,132 14 2,991 3 1,892 1 20,015 15	3,108 3,108 3	3,230 14 1,936 15 9,659 15	14,183 14 3,356 1,958 2,497	3,382 2,027 19,491	13,982 13 2,408 3 2,099 2	3.883 3.434 2.173 9.490	3,785 11 2,250 9,495 11	13,687 1 2,486 2,331	13,740 1,501 2,358 19,599	13,794 1 3,516 2,385 19,695	3,848 1 3,531 2,412 9,791 1	13,902 3,546 2,440 19,888	13,956 2,563 2,468	
(2) Number of Household Xonor Melekook and Airas Other states in Babeldaob Tota (Koror-Babeldaob)	2,947 363 378 3,678	2,988 387 376 3,751	3,030 423 375 3,828		4.8						e de la Colonia			Į.	- 1	1					2,791 713 494 3,996	·
(3) Collection coverage ratio Koror Babeldaob				· · · · ·	······································	•	•	•-			- 11 T	7		•	•		•••	•	%06 %06	•	%06 %00	
2, Cost of K-B SWMP (\$ thousand at constant 2000 prices) (1) Total Fhancial Cost (2) Total Economic Cost (\$CF=0.9) 450	onstant 20	300 prices 500 450	. 500 450	503	7,518 6,766	2,871	937	1,041 3 937 3	3,555 1	937	1,041	926	2,385 1	926	1,029	926 938	926	3,724	926	1,029 1 926	926	34,008
3. Benefits of K-B SWMP (1) Willingness to Pay of Households 1) Average Household Income (\$ per household per year) "1) - Urban area (at constant 2000 pz. 20,350 20,126 19, - Rural area (at constant 2000 pr. 13,729 13,578 13)	usehol 3,729	d per year) "1) 20,126 19,904 13,578 13,429	7) 19,904 13,429	9,686	19469 1 13,135 1	19,625	19,782 19 13,346 11	19,940 20 13,453 13	20,099 20 13,561 13	20,260 20 13,669 13	20,524 20 13,847 14	20,790 21 14,027 14	21,061 21 14,209 14	21,335 21 14,394 14	21,612 21 14,581 14	21,893 Z 14,771 14	22,199 Z 14,977 #	22,510 22 15,187 11	22,825 15,400	23,145 23 15,615 15	23,489 15,834	
2) Wingness to Pay of Households (5 thousand at constant 2000 prices Koror Koror 2% of disposal household income Melekeek and Airai 2% of disposal household income Other States inBabeldar 2% of disposal household income Total (Koror-Babeldaec)	disposal h disposal h disposal h disposal h	cs (\$ thousand at constant 2000 pn 2% of disposal household income 2% of disposal household income 2% of disposal household income	2000 price income income ncome	S		893 88 88 771,1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	912 215 92 118	25 25 25 2 25 25 2 2 2 2 2 2 2 2 2 2 2 2	230 256 261	28 8 83 289 1	8 8 8 5 8 2 5 2 5 4 8	954 107 120 1	8 2 5 8 5 2 5 8 1	965 118 353	97. 124 369	988 280 127 395	285 130 130	2 8 5 3	1,042 295 137 1475	.503 2 2 2 2 2	4,084 1,730 21,307
(2) Willingness to Pay of Commercial and Industrial Firms 1) Public Colection of Commercial and Industria Waste - Koror (Public collection/Industrial & commercial waste) - Endersidate (Public collection/Industrial & commercial waste) 701st (Koror-Pateridan).	f and Indi Industrial I commercinial & com	ustrial Firr Naste ial waste) mercial we	ns rste)			£ 8 §	8 5 5 8 5 8	25 25 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	25 25	251 112 383	245 116	24 117 8	24.1 118 8	240 119 35	239 120 239	52 52 54 52 54	238 121 25	239 122 185	8 <u>1</u> 2	25 25 25 26 27 27 28	242	3,956
2) Private Collection Private Haulers (3) Total						8 25	388	~	22.2	22.23	8 22 8 27 8	8 23	219 399	914 1	929	§ 22 §	,,	2,000	233	7 28 8 28 8		30,630
4. Balance of Benofits and Costs (5 thousand at constant 2000price (1) Net Benefits —450 —450 (2) Residual Yalue of Capital	usand at	constant -450	2000price -450	-503	6,766	812	353	871 -1	1,372	808	: 88	858	-248	988	.003	810,	1,046	1,351	.103	1,132 1	1,162	នុខ
(3) Total		450	85	203	6,766	812	853	871 -1	.372	8	933	858	-248	988	89	1,018	1,046	1,351	1.183	1,132 6	3 2	5,056

Source, JUCA Study I sam Note: Average household income is estimated based on the results of K-B Household Survey in 1997 and the future economic framework propared by the Study.

10.7 Initial Environmental Examination (IEE)

(1) Objectives and methods

The first objective of the initial environmental examination (IEE) is to identify the significant possible environmental items/elements (screening) and to consider the magnitude of the each possible impact (scoping) caused by the Project implementation. The second objective is to decide the necessity of an environmental impact assessment (EIA), which is a detailed impact study and will be conducted at a later stage. If there is a need for an EIA, the important environmental elements are to be identified.

(2) Results and conclusion

Table 10.7.1 shows the results of the screening and scoping sessions. This Project will obviously cause significant favorable impacts especially for the wastes issues. On the other hand, it has a potential to cause significant or slight environmental adverse impacts on several environmental elements.

Based on the results of the screening and scoping sessions, it is concluded that the Project will need an EIA at a later stage, which should be focused on the following environmental elements:

- Threat to Public Health Condition
- Soil Erosion
- Groundwater
- Air Pollution
- Water Pollution
- Soil Contamination
- Land Subsidence
- Offensive Odor

In terms of the proposed final disposal site, threat to public health condition, soil crosion, groundwater contamination, air pollution, water pollution, soil contamination, and offensive odor are considered as possible significant adverse impacts.

For example, the proposed final disposal site, even though a sanitary landfill development has a potential to cause water quality change in terms of turbidity, pH, dissolved oxygen and other parameters. Also, it is reported that most of the soil types have low to moderate permeability and poorly drained. There is a need to conduct a boring survey at a later phase.

With respect to the closure plan of the existing disposal site in Koror, threat to public health condition, soil erosion, air pollution, soil contamination, land subsidence, and offensive odor are considered as possible significant adverse impacts.

For example, soil crosion controls should be carried out at the construction phase of the closure plan. Until the existing disposal site is completely revegetated, rainfall will cause some amount of crosion and surface water runoff will carry sediment. Surface crosion on the closed landfill should be controlled by maintaining non-crodible ground cover.

Table 10.7.1 Results of the Screening and Scoping Sessions

Environmental Element	Evaluation	Main potential Impacts and Reasons	
Social Environment			
Resettlement	-	Nobody will resettle by The Project's implementation will not require resettlement of people.	
Economic Activity	_	Direct impacts on economic activity will not be caused by the Project	
Traffic/Public Facilities	∆(c) ∆(o)	Construction and haulage vehicles may cause limited access problems only near the residential areas of the Project site.	
Community Severance	-	There is no village near the Project site.	
Cultural Property	-	Important cultural properties are not found within the Project site.	
Right of Common	-	Specific rights for water and fishing are not reported in the Project site.	
Public Health Condition	▲ (C) ▲ (O)	Public health problems may occur, if the proposed final disposal site or the closure plan were not implemented with pollution control measures. There is a need to assess the health impacts to the workers and residents.	
Waste	● (O)	The waste issues will be improved by the Project.	
Hazards (Risk)	-	Natural hazard risks will not be increased by the Project.	
Natural Environment			
Topography and Geology	•	As the proposed new facilities are not so huge, change of topography and geology will not occur as a result of the Project	
Soil Erosion	▲ (C)	The proposed final disposal site and the closure plan include revegetation on steep area. However, as the soils around the proposed are highly or moderately erodible, there is a need to assess the risk of erosion.	
Groundwater	▲ (C) ▲ (O)	The proposed final disposal site includes mitigation measures for groundwater. However, as the groundwater table is shallow in some parts of the site, there is a need to assess the groundwater table/volume for the residents.	
Hydrological Situation	∆(C) ∆(O)	The proposed final disposal site includes a river. Change of water quality of the small river may occur upon the Project's implementation, because of discharges from the site.	
Coastal Zone	∆(C) ∆(O)	Sedimentation and pollution problems may occur in the coastal zone of the closure site, if the closure plan does not consider conservation measures, such as erosion control.	
Fauna and Flora	Δ(C) Δ(O)	The proposed final disposal site is heavily forested. Although no protected species were reported within the site, present vegetation will be changed.	
Meteorology	-	Change of meteorological conditions will not occur as a result of the Project.	
Landscape	Δ(C) Δ(O)	The proposed final disposal site lies just outside the established Ngeremeduu conservation area. As the site is visible from some locations within the conservation area, it is recommended that there be an assessment of visual impacts.	
Pollution			
Air Pollution	▲ (C) ▲ (O)	The proposed final disposal site is considered mitigation measures such as daily soil cover. However, there is a need to assess the air quality impacts such as dust, in the case of inappropriate management.	
Water Pollution	▲ (C) ▲ (O)	The proposed final disposal site includes a leachate treatment plant. However, is a need to assess the water quality, in the case of inappropriate management	
Soil Contamination	▲ (0)	Although leakage of polluted substances in the soil is considered for the disposal site and the closure plan, there is a need to monito toxic substances.	
Noise and Vibration	Δ(C)	It is recommended to assess the noise only near the residential areas.	
Land Subsidence	A (0)	Although the closure plan includes soil stabilization measures, there is a need to assess the compacted land situations in the site taking into account the post closure land use plan.	
Offensive Odor	A (0)	There is a need to assess the odor only in the residential areas near the post closure site and the final disposal site due to the mixed garbage dumping.	

Note: Evaluation Categories ●: Potential significant favorable impact is expected. O: Potential significant adverse impact is expected. Δ: Potential significant adverse impact is expected. (C) = Construction Phase, (O) = Operation Phase

(3) Recommendations

Based on the results of the IEE and EIS regulations in Palau, an Environmental Impact Statement (EIS), which is identified by EQPB, would be required prior to the implementation of the Project due to the significance of the possible impacts and the scale of the Project.

According to the EIS regulations in Palau, an EIS should pay close attention to alternatives to the Proposed Action. In the case of this Project, the location of the proposed final disposal site may need to be reconsidered, if the candidate site for the final disposal site, which is identified by Aiméliik government, will cause more significant adverse impacts than the alternative one.

Furthermore, although many mitigation measures for the possible adverse impacts are included by the Project, an environmental monitoring at construction and O/M phase of the proposed final disposal site as well as the closure of the existing disposal site is recommended. The reason is that the proposed final site is located very close to the established Ngeremeduu conservation areas, which is one of the most important conservation areas in Palau. Also, the candidate post closure land use plan for the existing disposal site in Koror is marine center development, an amenity which the people will enjoy. There is a need to monitor the adverse environmental impacts such as leachate and landfill gases from long-term perspectives.

Table 10.7.2 shows the monitoring items, the number of sampling points, and the frequency, which are recommended to be undertaken at the Project implementation phase.

Table 10.7.2 Recommended Environmental Monitoring for the KBSWMP

anie iv.i.k	Mecolliniended Phan	ommental monitoring to	i nic ivocitiin
Monitoring Items	Sampling Items	The number of Sampling Points	Sampling Frequency
Proposed Final Dispo	osal site		
Water Quality	PH, BOD, COD, TSS, Total Coliform Bacteria, Hg, Cd, Cr, As, Pb, Oil	ia noinis ior each samhlinn llein -	12 times/year for each sampling item
Soil	Pb, Hg, Cd, Cu, Zn	IZ NAMBA IAT ESCA SAMAMA HERIT	4 times/year for each sampling item
Air Quality and Odor	TSP, H₂S, Methane	IV name for each samainn item -	4 times/year for each sampling item
Closure of the Existing	ng Disposal site		
	PH, BOD, COD, TSS, Total Coliform Bacteria, Hg, Cd, Cr, As, Pb, Oil	i Croinie for each eambilna lieni	4 times/year for each sampling item
Air Quality and Odor	TSP, H₂S, Methane	2 points for each sampling item	4 times/year for each sampling item

Source: JICA Study Team

It is estimated that the total monitoring cost of the above for the proposed final disposal site is approximately \$300 thousand, from year 2004/2005 to 2019/2020. In terms of closure of existing disposal site, the monitoring cost includes the O & M cost (refer to Figure 10.5.2).

10.8 Conclusions and recommendations

The K-B SWMP will yield an aggregate deficit at \$12.6 million over the project period. The GOP needs to settle the budget for the initial investment. The government may have potential financial sources or combination of sources to finance the deficits of the K-B SWMP as follows:

- Allocation of capital investment budget in the general budget;
- Allotment of the "Compact Trust Fund 211 (f)";
- · Imposition of new tax on property, such as property tax and land tax;
- · Increase of the rate of residential waste; and
- External assistance.

For Koror State, it is a crucial to impose and collect garbage fee both for residential and business wastes. Garbage fee rate of households should be increased correspondingly with the growth of per capita income. At the same time, the collection and haulage services need to be improved so as to satisfy the demands of the people. People's willingness-to-pay will increase based on the service level of SWM as well as the income level of household.

In order to understand the reality of public acceptance for the proposed K-B SWMP, especially for garbage fee collection and voluntary participation with the waste reduction, it is recommended that interview and questionnaire surveys be conducted at least at four sites. The reason for this is that the willingness-to-pay for the proposed K-B SWMP is strongly dependent on the local reality, such as characteristics of wastes, the people's awareness on environment, income level and social customs for resource uses. Also, as a further study, it is recommended that a pilot study on deposit of bottle and/or can be carried out to assess its viability and contribution for waste reduction.

A program on waste reduction is crucial for efficient SWM. Assuming that the reduction of waste will be realized in conjunction with the proposed recycling program of this Study, the volume of waste demand for final disposal will reduce by 8.5%. It means that the life span of the proposed final disposal site could be extended 2.5 years more than the current expected life span of 30 years.

It is also noted that an accounting system of the SWM should be established, as it will provide more explicit figures to seek financial improvement. An accurate data analysis on the cost-efficiency in SWM is important.

For the feasibility from the viewpoint of technical aspect, further study on the solid waste management is necessary to get more accurate data and secure the requirements of projects before their implementation.

Items required for further studies are as follows:

Existing and/or current condition and/or situation

 Population (Census 2000), Economic, Environment (Natural and Social), On-going and Future Development Plan/Project, Solid Waste Treatment (Organization, Regulation and Law, Discharge, Collection, Haulage, Intermediate Treatment, Final Disposal Amount, Quantity and Quality of Waste Generated Waste Stream)

Forecast of future condition and/or situation

- Population, Economy, Quantity and Quality of Waste generated in the future
- · Solid Waste Management Plan and Feasibility Study
- System, Facilities and Organization (Collection and Haulage, Transfer Station, Final Treatment, Recycling and Reuse, Closure), Development Schedule

- Topographic Survey and Soil Survey
- Interview and Questionnaire Survey (Residents in Koror and two states in Babeldaob, Hotel and shops in Koror)
- · Pilot Study on Deposit of Bottles and/or Cans

11. CONCLUSION AND RECOMMENDATION

The Government of Palau (GOP) should aim at the development goals of (1) self-reliant economy, (2) coordinated economic development with conservation of natural environment, and (3) sustainable regional development, before termination of the Compact Direct Payment from the United States in the year 2009. The recommended development strategies and directions are established and implementation programs are formulated in this Study and future socioeconomic and environmental conditions to be achieved in the year 2009 are illustrated in this Report.

Promotion of economic development is the most significant base for the national development to improve the budgetary imbalance of the government by expansion of the revenue sources. In accordance with the resource availability and socioeconomic conditions, the leading economic sector will be service and trade, especially tourism-related industries.

The reduction of the size of public sector, elimination of the inherent budget deficit, reduction of the dependency on external ODA resources, and establishment of self-sufficient budget structure should be realized. The Structural Adjustment Program for Palau, which is recommended in this Study, is indispensable to achieve the development goals set by the Government.

Projects and programs for social and economic infrastructure development together with environmental management to meet with the long-term development strategies are selected and compiled as proposed projects and programs in the mid-term. JICA Study Team pays attention to minimizing cost burdens on the government budget when priority projects and programs are selected. The development expenditure for the proposed projects and programs, which is required to maintain the target economic development, is estimated at \$187 million at current prices. For operation and maintenance of those projects and programs about \$70 million at current prices is additionally necessary during the same period.

Implementation of the selected development projects and programs, together with the structure adjustment, will provide the concrete base for the sustainable and self-reliant economic development after the year 2010.

Following development plan is recommended.

The diversification of tourism products in terms of location and type of tourism is recommended to accommodate increased number of tourists in the future. It is also important to develop tourism in Peleliu and Ngarchelong in order to formulate new tourist bases in Palau. Another recommendation is the promotion of village tourism in Babeldaob Island. Encouragement of community members, technical and institutional support is required to promote the village tourism. Participation of community members and strong will to implement the project by the community members are key for village tourism development.

The problem on Balance of Payment is also one of the key issues in Palau. In order to gain service trade surplus, service revenues from tourism should be promoted as described above. At the same time, import substitution should be promoted. Food and beverage is one of the major import items followed by transport equipment and machinery. The promotion of vegetable and fruit gardens at each household in Palau especially in the rural area is recommended. Another measure to be taken is the efficient use of food materials. Small-scale fish product processing factory is also recommended.

Although the private sector will be a main player of the economic development, especially the foreign direct investment (FDI), there will exist many legal and institutional constraints for not only FDI but also investment by local people. Provision

of preferable investment environment is indispensable. Institutional reform as well as legislative modification is required.

Conservation of natural environment and enhancement of natural resource management are significant for the sustainable development. Clear and integrated enforcement and management in conjunction with state government initiative and strengthening of EQPB, integrated management for critical watersheds with effective implementation of preservation and conservation system should be established. Integrated Ngaremedum Watershed Management, decentralization of diving bases in conjunction with tourism development, comprehensive solid waste management and establishment of natural resources management inventory are recommended as the projects and programs to be implemented in the mid-term development plan.

The estimated population and labor force until 2020 are 23.5 thousand and 14.1 thousand respectively. Palauan labor force will increase from the present 4.5 thousand to 8.0 thousand in 2020. Generation of employment other than government sector is an urgent matter in order to absorb not only the newly generated labor force but also the labor force shifting from government service to the private sector. Proper training and education system to match labor demand is indispensable. The study recommends Government-Private-School cooperation in the vocational training to rationalize education and vocational training.


It is proposed that the GOP I challenge the reduction of the budget size to about 40% of the nominal GDP in 2009/10, which accounted for 60% of the nominal GDP in 1998/99. To reduce the recurrent cost, it is proposed that the number of government workers be decreased to 1,900 workers in 2008/09 from the current 3,200 workers at a reduction rate of 40% during an eight-year period.

To increase the government revenue, in addition to the currently proceeding Tax Reform Program, vehicle-operation-related taxes such as fuel levy, vehicle registration tax, auto tax are recommended. Other than vehicle-related taxes, property tax and utilities charge, following the introduction of the Polluter Pays Principle, are also proposed.

As a result of the structure adjustment program with development programs formulated in this study, the governmental budget will turn into a surplus of \$6.5 million in the year 2009. Thereafter, the GOP would be able to balance the overall budget in the long-term perspective.

During the mid-term period, the annual budgetary balance of the GOP will remain in deficit at around \$20 million on average. Therefore, external assistance will continue to be needed. Aid coordination and management in conjunction with implementation of structure adjustment program is recommended.

Pre-feasibility study on Peleliu tourism development plan and solid waste management program for Koror and Babeldaob were carried out. Implementation procedure to promote FDI is the key for the Peleliu tourism development plan. How to make the development sustainable by applying the appropriate user charges to the beneficiaries is the key for the implementation of the Solid waste management program. Institutional and legal reforms are proposed in both studies.

