The Study on Comprehensive Disaster Prevention around Mayon Volcano

SUPPORTING REPORT (1)

(Part I: Master Plan)

XIII : Environmental Assessment

SUPPORTING REPORT (1) - XIII ENVIRONMENTAL ASSESSMENT

Table of Contents

1.	OBJECTIVE AND SCOPE OF ENVIRONMENTAL STUDY	XIII - 1
1.1	Philippine Environmental Legislation	XIII - 1
1.2	Initial Environmental Examination (IEE) Procedures	XIII - 3
1.3	The Environmental Impact Statement (EIS) Process	XIII - 7
1.4	DENR Environmental Administration	XIII - 11
2.	PHYSICAL AND BIOLOGICAL ENVIRONMENT	XIII - 13
2.1	Air Quality	XIII - 13
2.2	Water Quality	XIII - 15
2.3	Freshwater Biology	XIII - 16
2.4	Soil	XIII - 18
3.	SOCIAL ENVIORNMENT	XIII - 25
3.1	Public Health	XIII - 25
3.2	Social Facilities	XIII - 26
3.4	Indigenous People	XIII - 29
3.5	Religion	XIII - 30
4.	RATIONALE FOR THE CONDUCT OF IEE FOR DISASTER	
	MITIGATION PROJECTS/PROGRAMS	XIII - 30
5.	PRELIMINARY ENVIORNMENTAL ASSESSMENT OF THE	
	CONCEIVABLE PROJECTS	XIII - 33

<u>List of Tables</u>

<u>Page</u>

Table XIII 5.1	Environmental Impact Matrix for IEE of the Structural Projects for Debris Flow Control	XIII - 34
Table XIII 5.2	Environmental Impact Matrix for IEE of the Structural Projects for Food Control	XIII - 35
Table XIII 5.3	Environmental Impact Matrix for IEE of the Non-Structural Measures for Disaster Prevention and Livelihood	XIII - 36

SUPPORTING REPORT (1) – XIII ENVIRONMENTAL ASSESSMENT

1. OBJECTIVE AND SCOPE OF ENVIRONMENTAL STUDY

In the Philippines, all proposed activities that are expected to significantly affect the environment are required to conduct an Environmental Impact Assessment (EIA) Study. EIA, as defined in Environmental Management Bureau (EMB) Training Module No. 10, is "a formal process of identifying and predicting the impacts of a proposed action environmental integrity and human welfare and communicating the information about such impacts to planners and decision-The principal objective is to identify the potential environmental makers". effects of all activities of the project and to determine the necessary mitigation and enhancement measures before its implementation. The process also ensures that the views of all persons who will most likely be affected by the project are heard and considered in the decision to allow or disallow the implementation of the project. The documents or reports of the EIA study including all Additional Information (AI) become the Environmental Impact Statement (EIS) of the project after review and acceptance of its contents by the DENR. The permit to be issued by the Department of Environment and Natural Resources (DENR) after complying with the EIS requirement is called Environmental Compliance Certificate (ECC).

1.1 Philippine Environmental Legislation

The first formal environmental legislation in the Philippines was the Presidential Decree (PD) No. 1151 issued in 1977. This decree, called the "Philippine Environmental Policy", requires all agencies and instrumentalities of the national government, including government-owned and controlled corporations, as well as private corporations, firms and entities to prepare an Environmental Impact Statement (EIS) for every action, project or undertaking which significantly affects the quality of the environment.

The Philippine EIS system was established in 1978 by virtue of PD No. 1586. This Decree identifies the National Environmental Protection Council (predecessor of Environmental Management Bureau) as the lead agency in implementing the EIS system and declares Environmentally Critical Projects (ECP) and projects within Environmentally Critical Areas (ECA) as projects requiring ECC. Presidential Proclamation 2146 identified ECPs and ECAs and Executive Order 192 tasked the Environmental Management Bureau (EMB) to recommend rules and regulations for the EIA and provide technical assistance for their implementation and monitoring. The DENR air quality standards are specified under DAO No.34 and 35. Republic Act (RA) 6969 defines the rules and regulations concerning use, handling, storage and transport of toxic and hazardous substances. These Department Orders provide the required standards set forth in the monitoring of environmental conditions of the project before, during, and after the implementation of same as well as the monitoring of compliance of the different projects with approved Environmental Compliance Certificates (ECCs).

In 1996, DAO 37 was issued to further streamline the EIS system superseding DAO 21. DAO 37 ensures that environmental considerations are incorporated at the earliest stage of project development; streamlines the EIARC process to improve its effectiveness as a planning, regulatory and management tool; and enhances public participation in the conduct of Environmental Impact Assessment + Review Committee (EIARC) to validate social acceptability of the project. DAO 37 introduces new features in the EIARC process such as the requirement of scoping as a first step in the EIARC process, the setting a maximum time limit for the EIARC review process, and the accreditation of EIARC preparers; (b) setting a maximum time limit for the EIARC review process; (c) accreditation of EIARC preparers; (d) requirement of accountability statements by project proponents and EIARC preparers; (e) requirement of environmental monitoring and guarantee fund; and (f) requirement for the project proponent to shoulder review costs.

Recently, in December 1998, the "Philippine Clean Air Act of 1998" was enacted by the Senate and House of Representative. This act provided for a comprehensive air pollution control policy "balancing development and environmental protection". Some of the provisions of this act are: (a) the authority of LGUs to formulate and implement local air quality standards which are more stringent than those set by the DENR; (b) the authority of the DENR to issue emission quotas and collect regular emission fees based on volume and toxicity of emitted pollutants; (c) the increase of fines for violations of DENR standards from P50,000 to P100,000 (with 10% increase every 3 years) for every day of violation; (d) prohibition of the use of old engines (more than 15 years old) in public transport; and the prohibition of the use of leaded gasoline, and diesel fuels with high sulfur content (e.g., 0.3% max sulfur content for industrial diesel fuel).

1.2 Initial Environmental Examination (IEE) Procedures

An IEE is a document required by the DENR for the issuance of Environmental Compliance Certificate (ECC) for projects or undertakings located in an Environmentally Critical Area (ECA). Presidential Proclamation 2146 categorizes ECAs as follows:

- a) All areas declared by law as national parks, watershed reserves, wildlife preserves and sanctuaries;
- b) Areas set aside as aesthetic potential tourist spots;
- c) Areas which constitute the habitat for any endangered or threatened species of indigenous Philippine wildlife (flora and fauna);
- d) Areas of unique historic, archaeological and scientific interest;
- e) Areas which are traditionally occupied by cultural communities or tribes (indigenous cultural communities);
- f) Areas frequently visited and/or hard-hit by natural calamities (geologic hazards, floods, typhoons, volcanic activity, etc.);
- g) Areas with critical slopes;
- h) Areas classified as prime agricultural lands;
- i) Recharge areas of aquifers;
- j) Water bodies which are tapped for domestic purposes or within controlled and/or protected areas, and those which support wildlife and fishery activities;
- k) Mangrove areas with primary pristine and dense young growth; those adjoining mouth of major river systems, those near or adjacent to traditionally productive fry or fishing grounds, those which act as natural buffers against shore erosion, strong winds and strong floods, and those on which people are dependent of their livelihood; and
- 1) Coral reefs with more than fifty percent (50%) live corraline cover, those, which are spawning and nursery grounds for fish, and those, which act as natural breakwater of coastlines.

The IEE replaces the Project Description (PD) required under DAO 21. The objectives of the IEE are:

- a) To identify the potential environmental impacts associated with the implementation of the projects;
- b) To identify and resolve Significant Environmental Issues (SEI) raised by stakeholders regarding the project; and
- c) To provide basis for the Regional Executive Director (RED) to determine the necessity to conduct additional studies and to decide whether it is necessary to prepare a full-blown EIA study or simply deny the issuance of ECC.

The minimum contents of an IEE are as follows:

- a) A brief discussion of environmental setting and receiving environment including the primary and secondary impact areas;
- b) A brief description of the project or undertaking and its process of operation;
- c) A brief description of the environmental impacts of the project or undertaking including its socio-economic impacts;
- d) A matrix of mitigation and enhancement measures;
- e) A documentation of the consultative process undertaken (when appropriate);
- f) A brief discussion of indigenous people's concerns and socioeconomic, political and cultural impacts on indigenous communities (for undertaking located in ancestral lands or domains);
- g) A brief discussion of gender issues (for undertakings with significant impact on women);
- h) A brief discussion on the relationship among population, development and environment (for undertakings with significant impact on population); and
- i) Accountability statements of the IEE preparers and the proponent.

The general format of the outline for an IEE according to DAO 37 Procedural Manual is given below:

- I. TABLE OF CONTENTS
- II. EXECUTIVE SUMMARY
- III. INTROUDCTION
 - A. Project Background
 - B. IEE Process Documentation
 - C. IEE Methodology
 - D. IEE Team
 - E. IEE Study Schedule
- IV. PROJECT DESCRIPTION
 - A. Project Rationale
 - B. Project Location
 - C. Project Information
 - D. Description of Project Phases
 - 1. Pre-construction Phase
 - 2. Construction Phase
 - 3. Operations Phase
 - 4. Abandonment Phase

V. DESCRIPTION OF ENVIRONMENTAL SETTING AND RECEIVING ENVIRONMENT

- A. Physical Environment
- B. Biological Environment
- C. Socio-cultural, Economic and Political Environment
- D. Future Environmental Conditions Without the Project

VI. IMPACT ASSESSEMENT

- A. Summary Matrix of Predicted Environmental Impacts and their level of Significance at Various Stages of Development
- B. Discussion of Significant Physico-Chemical and Biological Impacts
- C. Discussion of Significant Socio-Economic Impacts (including indigenous people, gender and population issues)

VII. ENVIORNMENTAL MANAGEMENT PLAN

- A. Summary Matrix of Proposed Mitigation and Enhancement Measures with Estimated Costs and Responsibilities
- B. Brief Discussion of Mitigation and Enhancement Measures
- C. Monitoring Plan
- D. Contingency Plan (if applicable)
- E. Institutional Responsibilities and Agreements

VIII. RECOMMENDATIONS

- A. List of Resolved Issues
- B. List of Partially Resolved Issues
- C. New Issues Arising from the IEE that have been resolved
- IX. REFERENCES
- X. ANNEXES
 - A. List of IEE Prepares with Specific Fields of Expertise
 - B. Original Sworn Accountability Statements of Key IEE Consultants
 - C. Process Documentation Report
 - D. Maps, Photos, Plates, Diagrams and Sketches

The difference between the contents of an IEE and those of the EIS are in the depth and detail of discussion and in the data requirement. IEEs are generally prepared using secondary data.

The procedure for the conduct of an IEE is as follows:

- a) Assemble a team consisting of accredited Environmental Professionals (EP) using annotated IEE outline to determine the number and expertise of IEE consultants;
- b) Obtain project description and all relevant information about the project from proponent;
- c) Prepare tentative scoping guidelines and conduct scoping session (optional) with EMPAS;
- d) Gather secondary data;
- e) Visit the project site and gather primary data (optional) for those aspects which has no available secondary data;
- f) Prepare brief discussion of potential environmental impacts and mitigation/ enhancement measures;
- g) Prepare brief description of Environmental Management Plan; and
- h) Integrate reports of individual preparers and prepare whole IEE report.

The review of the IEE document is done in the DENR-EMPAS regional office. The procedure is as follows:

- a) Submit one (1) copy of IEE report to EMPAS for procedural review (2 days maximum);
- b) Revise IEE Report if necessary until it passes procedural review;
- c) Prepare MOA on Review Work and Financial Plan, select fund manager, and establish review fund;
- d) Submit ten (10) copies of final IEE Report to EMPAS, pay processing fee, and provide one copy each to PENRO, CENRO and LGUs;
- e) RTD assigns reviewer or convenes Technical Committee (15 days maximum);
- f) EMPAS Reviewer or Technical Committee conducts substantial review of IEE Report (30 days maximum);
- g) EMPAS conducts site visit, validation meeting, or public hearing (optional to EMPAS);
- h) Submit Additional Information (AI) is required (only once);
- i) EMPAS prepares and submits its report to RED (15 days maximum); and
- j) RED makes decision on ECC application (15 days maximum). The possible results are:
 - If ECC is granted, EMPAS releases ECC to proponent within 15 days.
 - If ECC is denied, proponent may either revise the proposed project to conform to DENR requirements and conduct IEE again, or simply abandon the project.

• If, based on results of IEE, the RED decides to require EIS, the proponent should submit EIS following procedures for EIS process.

1.3 The Environmental Impact Statement (EIS) Process

All Environmentally Critical Projects (ECPs) are required to have an EIS. For non-ECPs located in ECAs, the RED may also require an EIS depending upon the results of the IEE. The EIS process consists of the following steps:

- a) Determination of the coverage or non-coverage of the proposed project by the EIS system;
- b) Scoping process to determine the minimum coverage of the EIA study;
- c) Conduct of the EIA study by preparers accredited by EMB;
- d) Review of the EIS by EMB EIA Review Committee (EIARC);
- e) Public hearing (optional); and
- f) Issuance or denial of ECC by DENR Secretary for EIS.

Under DAO 96-37, the main categories of ECPs are heavy industries, resource extractive industries, major infrastructure projects and golf courses. Projects belonging to these categories are automatically covered by the EIS system. For other projects which can not be classified in any of the above categories, the EMB decides on EIA coverage based on project size, location, expected emissions/ effluents, use of toxic and hazardous materials, social acceptability and the degree of its total potential impact to the environment.

The scoping process consists of meetings where the proponent, EIA preparers, EIARC, EMB, DENR Regional Office, PENRO, CENRO, LGUs, NGOs and stakeholders meet to identify, discuss, clarify the Significant Environmental Issues (SEIs) to be addressed in the EIA study and agree on the minimum scope of the EIS. This minimizes the additional information that may be required during EIS review. It is also during the scoping process where the need for an Environmental Risk Assessment (ERA) study is decided by the EIARC. The First Level Scoping is usually done in EMB office with the proponent, EIA preparers, EMB staff and EIARC members while Second Level Scoping (or Formal Scoping Session) is held at the proposed project site with the presence of stakeholders.

The minimum contents of an EIS are:

- a) Project description including project location, primary and secondary impact zones, project rationale, alternatives and descriptions of project phases;
- b) Scoping report;

- c) Baseline environmental conditions for land, water, air and people;
- d) Projections of future environmental conditions without the project;
- e) Impact assessment and mitigation/enhancement measures;
- f) Environmental risk assessment (if required during scoping)
- g) Environmental management plan;
- h) Proposal for environmental monitoring and guarantee fund (if required);
- i) Supporting documents (social acceptability, public participation, technical and socioeconomic data);
- j) Indigenous people's concerns 8when appropriate);
- k) Gender issues (when appropriate);
- Issues on population-development-environmental relationships (when appropriate).

The general format an EIA outline as specified by DAO 37 is as follows:

I. TABLE OF CONTENTS

II. EXECUTIVE SUMMARY

- A. Brief Introduction
- B. Brief Description of Methodology and Profile of EIA Team
- C. Scope and Limitation of EIA Study
- D. Brief Project Description
- E. Brief Description of Baseline Environmental Conditions
- F. Matrix of Issues and Impacts Raised During Scoping and Consultations
- G. Matrix of Major Impacts and Mitigation/Enhancement Measures with Summary Discussion
- H. Matrix of Environmental Management Plan with Summary Discussion
- I. Matrix of Environmental Monitoring Plan with Summary Discussion
- J. Proposal of Environmental Guarantee Fund and Monitoring fund Scheme (when applicable)
- K. Summary of Process Documentation Report
- L. Summary of Commitments and/or Agreements and Proof of Social Acceptability

III. INTRODUCTION

- A. Project Background
- B. EIA Approach and Methodology
- C. EIA Process Documentation
- D. IEE Team
- E. IEE Study Schedule

IV. PROJECT DESCRITPION

- A. Project Rationale
- B. Project Alternatives
- C. Project Location
- D. Project Information
- E. Description of Project Phases
 - 1. Pre-construction Phase
 - 2. Construction Phase
 - 3. Operations Phase
 - 4. Abandonment Phase

V. BASELINE ENVIORNMENTAL CONDITIONS

- A. Physical Environment
 - 1. Geology and Geomorphology
 - 2. Hydrology and Hydrogeology
 - 3. Pedology and Land Use
 - 4. Water Quality and Limnology
 - 5. Meteorology
 - 6. Air Quality and Noise
 - 7. Physical Oceanography
- B. Biological Environment
 - 1. Terrestrial Flora and Fauna
 - 2. Marine Biology
- C. Socio-cultural, Economic and Political Environment
- VI. FUTURE ENVIORNMENTAL CONDITIONS WITHOUT THE PROJECT

VII. IMPACT ASSESSEMENT

- A. Physical/Chemical Impacts
 - 1. Land
 - 2. Water
 - 3. Air
- B. Biological/Ecological Impacts
 - 1. Terrestrial Flora and Fauna
 - 2. Aquatic Flora and Fauna
- C. Aesthetics and Visual Impacts
- D. Socio-Cultural and Economic Impacts

- 1. Population
- 2. Labor and Employment
- 3. Housing and Social Services
- 4. Infrastructure and Public Utilities
- 5. Health and Education
- 6. Culture and Lifestyle
- 7. Livelihood and Income
- 8. Archaeological/Anthropological/Historical Sites
- E. Mitigation and Enhancement Measures
- F. Residual and Unavoidable Impacts
- VIII. ENVIORNMENTAL RISK ASSESSMENT
- IX. ENVIORNMENTAL MANAGEMENT PLAN
 - A. Construction/Contractor's Environmental Program
 - B. Social Development Program
 - C. Contingency/Emergency Response Plan
 - D. Risk Management Program
 - E. Abandonment Plan (when applicable)
 - F. Environmental Monitoring Plan
- X. ENVIRONMENTAL GUARANTEE AND MONITORING PLAN PROPOSAL
- XI COMMITMMENTS AND AGREEMENTS
- XII. REFERENCES

Attachments/Annexes

- List of EIS Preparers with Specified Field of Expertise
- Original Sworn Accountability Statement of Key EIS Consultants
- Original Sworn Accountability Statement of Proponent
- Photos of Proposed Project Site, Impact Areas and Affected Communities
- Process Documentation Report
- Format Scoping Report
- Summary of Proof of Social Acceptability
- Maps/Photos/Plates/Diagrams/Sketches

The EIS review process consists of procedural and substantial reviews. In the procedural review, the proponent submits one (1) copy of the EIS and a copy of a duly accomplished Procedural Screening Form to the EMB Screening Officer.

Then, the Screening Officer evaluates the completeness of the document within three (3) working days from submission. If the EIS document has passed the procedural review, the proponent shall submit ten (10) copies of the document (20 copies for golf course projects) to the EMB. Then, the EMB Director shall convene the EIARC (usually 5 members) consisting of qualified experts from the academe, EIA practitioners and national government agencies to undertake the substantive review of the EIS within 60 days. The criteria for substantive review are: (a) accuracy and precision of baseline data and predictions of impacts; (b) completeness of information; (c) clarity of presentation; (d) conformity to technical standards and mechanisms of implementation; (e) consistency in all analyses, findings and recommendations; and (f) responsiveness to valid issues and concerns raised by stakeholders and other interest groups. During the first EIARC meeting, Additional Information (AI) may be required to provide elaboration on some aspects within the agreed-upon scope of the EIA study. After the first meeting, the EIARC may conduct ocular inspection of the proposed project site and may recommend the conduct of a public hearing. In the second EIARC meeting, the AI will be evaluated together with other additional inputs a decision may be made on recommendation to issue or deny the ECC. Within 15 days from the completion of the review process, the EIARC report will be submitted to the EMB Director who, in turn, submits his report to the office of the DENR Secretary. Within 15 days from the receipt of the EMB Director's report, the DENR Secretary shall decide on issuance or denial of ECC. If ECC is granted, then the Office of the DENR Secretary shall transmit the ECC to the EMB Director within 15 days from its issuance.

1.4 DENR Environmental Administration

Executive Order No. 192 designates the Department of Environment and Natural Resources (DENR) as the "primary government agency responsible for the conservation, management, development and proper use of the country's environment and natural resources". The department has restated this mandate as being the "primary agency responsible for the sustainable development of the country's environment and natural resources" as well as the licensing and regulation of all natural resources as may be provided by law in order to ensure equitable sharing of the benefits derived therefrom for the welfare of the present and future generations of the Filipinos.

The DENR has three main branches, namely: the Natural Resources Management Office (NRMO), the Field Operations Office (FOO) and the Environment and Research Office (ERO). Under the NRMO are the Forest Management Bureau

(FMB), the Land Management Bureau (LMB) and Mines and Geo-Sciences Bureau (MGB). Under the ERO are the Environmental Management Bureau (EMB), the Protected Areas and Wildlife Bureau (PAWB) and Ecosystems Research and Development Bureau (ERDB). The FOO controls the DENR Regional Offices (ROs), Provincial Environment and Natural Resources Offices (PENROs) and the Community Environment and Natural Resources Offices (CENROs).

The DENR ROs have offices for Land Management, Forest Management, Mines and Geo-Sciences, Environmental Management and Protected Areas Services (EMPAS), and Ecosystem Research Services.

The environmental administration in the country involves mainly the DENR Secretary, the Undersecretary for Environment and Programs Development, the EMB Director, the Regional Executive Director (RED) and the EMPAS Regional Technical Director (RTD). It also involves the staff of the EIA Division (EIAD) and the Environmental Quality Division (EQD) of both the EMB and regional EMPAS offices. The EIAD processes ECC applications and the EQD conducts source and ambient air/water quality monitoring to check compliance with DENR environmental standards. The Pollution Adjudication Board (PAB) is involved as a special court, which decides on case of violations of DENR regulations and which issues Cease and Desist Order (CDOs) to violators. The Local Government Units (LGUs) also participate in the environmental administration through their Environment and Natural Resources Offices (ENROs). Most ENROs are concentrating on anti-smoke belching campaigns.

The Protected Areas and Wildlife Bureau (PAWB) has the responsibility of protecting wildlife sanctuaries and endangered flora and fauna. The Protected Area Management Board (PAMB) does the management of national parks and other protected areas. Other specialized bodies are also created to manage protected areas and administer specific DENR environmental protection programs. The Laguna Lake Development Authority (LLDA), which had been attached recently to the DENR, has regulatory powers over industries located within the watershed of Laguna de Bay in matters concerning pollution. The Subic Bay Metropolitan Authority (SBMA) also has an Ecology Center which environmental regulatory powers over the Subic Freeport Zone.

2. PHYSICAL AND BIOLOGICAL ENVIRONMENT

2.1 Air Quality

There are few secondary air quality data within the Mayon Volcano area and in the surrounding municipalities and barangays. Some air quality measurements have been done in Legazpi City, Camalig and Guinobatan.

The air quality data in Legazpi City consist twenty-one (21) one-hour measurements of Total Suspended Particulate (TSP), also called Suspended Particulate Matter (SPM), from 1991 to 1997 conducted by Environment Quality Division (EQD) of the DENR Region V. The measurement station is located near BPI bank in the rotunda beside LCC supermarket. These data are shown below. It may be noted that the DENR ambient standard of 230 micrograms per standard cubic meter (μ g/scm) was exceeded in about 50% of the data. Alert level (351 μ g/scm to 599 μ g/scm) has been reached 25% of the time. These exceedances from standards are reportedly due to road construction/repair activities and the presence of potholes in city roads, which serve as sources of fine silt which resuspend upon passage of vehicles.

Sample Date	Suspended Particulate Matter	DENR Ambient Standard
Sample Date	(µg/scm)	(µg/scm)
01 Feb 91	447.6	230
22 May 91	431.6	230
20 June 91	240.1	230
19 July 91	205.9	230
04 September 91	297.4	230
14 October 91	255.8	230
19 March 92	509.1	230
22 April 92	567.4	230
20 June 94	76.2	230
08 September 94	137.9	230
22 November 94	96.5	230
06 February 95	175.3	230
09 March 95	85.3	230
11 April 95	140.9	230
26 July 95	101.8	230
14 August 95	95.2	230
28 September 95	136.0	230
26 August 96	233.5	230
20 September 96	102.5	230
17 October 96	500.6	230
18 November 96	198.0	230
13 February 97	167.9	230
15 May 97	280.3	230
15 July 97	177.3	230

Air Quality Data for Legazpi City from 1991 to 1997

Source: DENR-EMPAS, 1997

There are no available data on common gaseous air pollutants (SO₂ and NO₂) in Legazpi. However, it may be noted that there are no major stationary sources of air emissions in the city except for a few oil mills and paper factories. These sources are the Legazpi Oil Mill, Co Say Oil Mill, Asia Perlite Company, Induplex, Inc., Isarog Paper and Pulp Company and the Albay Agro-Industrial Development Corporation. The mobile sources are few and traffic flow is not as congested as in Metro Manila or other big cities in the country. Furthermore, city government had passed and strictly implemented an ordinance (City Ordinance No. 96-09) prohibiting smoke belching in the city. Also, the residence time of pollutants in the city's atmosphere is expectedly short because of strong winds (3m/s mean speed) and large number of rainy days (14 to 23 days per month). Therefore, ambient gaseous pollutant concentrations in the city are not expected to exceed DENR ambient standards.

In rural areas around Mayon, the air quality may not be very different from those observed in some barangays of Camalig and Guinobatan during the EIA study of a proposed cement plant in Camalig. These are shown in the next page. The data consist of one-hour measurements of Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), TSP and noise levels. The maximum observed pollutant concentrations were 26.0 μ g/Ncm for SO₂, 62.2 μ g/Ncm for NO₂, and 104.8 μ g/Ncm for TSP. These are all within the DENR ambient standards of 340 μ g/Ncm for SO₂, 260 μ g/Ncm for NO₂, and 300 μ g/Ncm for TSP. Noise levels are within DENR standard of 60dB (A) for residential areas during daytime.

Station	Time	Ambient Conce	Range of Noise		
		SO_2	NO ₂	TSP	(A)
Bgy. Palanog Camalig, Albay	0955-1055 hrs.	14.0	44.6	13.2	40-42
Sitio Jerusalem Guinobatan, Albay	1305-1405 hrs.	14.2	25.4	20.2	38-40
Palanog Elem School, Palanog Camalig, Albay	1125-1225 hrs.	26.0	62.2	75.5	40-48
Sitio Quisaray, Camalig, Albay	1445-1545 hrs.	10.7	9.6	104.8	40-45

Observed Air Quality in Camalig and Guinobatan (June 30, 1996)

Source: Gaia South, 1996

There are no significant sources of air emissions in the rural areas except for vehicular emissions from light traffic. The emissions of Mayon volcano is estimated at 200tons/day of SO_2 during quiet times (Phivolcs, 1998). On March

14, 1996 just before eruption, SO_2 emissions of up to 6,000tons/day was observed by Phivolcs using a correlation spectrometer (COSPEC).

On March 26, 1993 (about 1 month after the 1993 eruption), EMPAS made measurements of TSP, H_2S and SO_2 in Bigaa, Legazpi and Cabangan, Camalig. The observed concentrations in Bigaa were 1,400µg/scm for TSP, 0.1548ppm for H_2S and 0.6112ppm for SO₂. All these values exceed the DENR standards. In Cabangan, the observed values were 209.7µg/scm for TSP, 0.3097ppm for H_2S and 1.8336ppm for SO₂. These values also exceed the standards except for TSP. The DENR ambient standards are 0.02ppm for H_2S , 0.30ppm for SO₂ and 250µg/scm for TSP.

2.2 Water Quality

The EQD of DENR-EMPAS Region V has been monitoring the water quality of three major rivers around Mayon Volcano, Tagas River in Tabaco, San Francisco River in Guinobatan and Yawa River in Legazpi. The water quality data of these rivers are shown below.

		Mean Concentration/Value	e			
Parameter	Tagas River May/Aug 1997	San Francisco River May-Sep 1997	Yawa River Mar/May 1997			
Temperature (°C)	-	28.59	28.30			
BOD5 (mg/l)	2.41	-	-			
Color	5.00	-	-			
DO (mg/l)	5.76	7.34	7.45			
pН	7.07	7.61	7.60			
TDS (mg/l)	585.96	308.15	650.72			
TSS (mg/l)	611.61	105.96	104.00			
Turbidity	7.55	17.36	26.93			
Oil & Grease (mg/l)	-	-	49.61			

DENR Surface Water Quality Monitoring Data

Source: EMPAS, 1997

Other water quality data available are those gathered in Camalig and Guinobatan during the EIA study of a proposed cement plat in Camalig. These data are presented below.

Demonster	11				Stat	tion				DENR
Parameter	Unit	1	2	3	4	5	6	7	8	Std "D"
Temperature	°C	32	29	31	29	33	29	27	28	
pН		7.5	7.0	6.5	7.0	6.0	7.0	5.5	5.9	6-9
DO	ppm	10.6	6.9	7.1	8.7	7.9	10.0	9.0		3
Turbidity	FTU	78	5	78	60	75	38	24	0	
TSS	mg/l	125	130	180	275	10	22	120	90	200
TDS	mg/l	86	255	295	125	380	170	250	150	1,000
Chloride	ppm	24	24	34	26	34	30	84	58	350
Ammonia	mg/l	ND	ND	0.02	0.01	0.17	ND	0.25	ND	2
Nitrite	mg/l	0.01	0.01	0.07	0.01	0.08	ND	0.08	0.01	
Nitrate	mg/l	0.39	0.40	0.42	0.42	0.53	ND	0.48	0.51	10
Phosphate	mg/l	0.23	0.76	1.57	1.21	1.35	0.76	0.81	0.86	0.4
Total Hardness	mg/l	176	264	150	249	200	204	144	84	200
Sulfate	mg/l	12.5	8.0	31.3	13.8	84.4	94.4	27.9	0	150
BOD	ppm	0.5		0.9	0.5	0.5	0.6	0.5		15

Available Water Quality Data in Camalig and Guinobatan

Source: GAIA South, 1996

Stations: 1) Purok 2, Bgy. Palanog (Water hole supplied by underground spring)

2) Bgy, Bariw (Concrete reservoir supplied by underground spring)

- 3) Bgy, Libod (Agiad River)
- 4) Bgy, Bariw (Creek under the Bariw bridge)
- 5) Bgy. Tagaytay (Tagaytay river with dikes)
- 6) Bgy. Mauraro (Creek under Magcasili bridge)
- 7) Guinobatan (Tagaytay river)
- 8) Bgy. Palanog (Shallow well)

Water quality in these streams satisfy DENR ambient standards for class D waters except for pH, Total Hardness and Phosphates which exceed the standards in most stations. The present sources of nitrates and phosphates are organic wastes from houses and piggeries, fertilizer from ricefields and detergents due to washing of clothes in rivers. Total hardness and chloride come from natural sources as water passes through soils and rocks. Turbidities increase due to suspended sediment loads, microorganisms and organic debris. Fertilizers also affect the pH of river water.

2.3 Freshwater Biology

(1) Plankton

Only a few species of plankton (following table) are found in the rivers surveyed. This is due to the swift unidirectional flow of river water, which does not favor plankton growth. The river water qualities such as pH, salinity, DO and suspended solids also affect the distribution and growth of plankton.

Station	Organism	Density
1. Bgy. Palanog	Anacystis sp.	Many per 0.1ml
(A partly dried-up creek)	Coccoid chlorophyte	Many per 0.1ml
2. Bgy. Libod (Agiad river)	Coccoid chlorophyte	Rare per 0.1ml
3. Bgy. Bariw	Coccoid cyanophyte	Rare per 0.1ml
(Creek under Bariw bridge)	Rotifers	3 per 0.1ml
4. Bgy. Tagaytay	Insect larvae	Few per 0.1ml
(Basud river)	Insect larvae	1 per 10ml
5 Boy Mauraro	Hymenopteran	1 per 10ml
(Creek under Magcasili	Parasitic ova	2 per 0.1ml
bridge)	Botrycocuus sp.	Rare per 0.1ml

Plankton Organisms Found in Some Rivers Near Mayon Volcano (June 1996)

Source: Gaia South, 1996

(2) Benthic Flora and Fauna

The species of benthic organisms found during the survey rare listed in the following table. Among these species, the chronomids and oligochaetes may be considered are indicators of water quality. Chironomid midge was found in most stations indicating that river water is polluted.

From interview of residents, economically important fish species found in the rivers are tilapia, dalag, hito, carpa, balanak and puyo. Golden kuhol and tabagwang (pilipit) were also observed. During the survey, the fish species caught in Tagaytay and Agiad rivers were tilapia, hito, casile, carpa, puyo, gourami, gobies, balanak and dalag. Freshwater crabs and shrimps called "buyod" were also caught.

	Relative Density (%)					
Organism	Station 1	Station 2	Station 3	Station 4	Station 5	Station 6
Mayfly nymph			7.70			4.54
Stonefly nymph			7.69			
Arthropod larvae			3.85			
Lepidopteran	6.45					
Beetle larvae	9.68		11.55			
Ostracod	25.81	18.75	7.69		25	
Chironomid midge	32.26	62.5	34.63		75	54.55
Oligochaetes	12.90					
Gastropod (unidentified)	12.90	12.5		58.83		31.82
Terebra sp. (gastropod)		6.25	11.51	29.41		
Tona sp.			7.69			9.09
Pelecypod (bivalve)			7.69	11.76		

Relative Densities of Benthic Flora and Fauna Found in Some Rivers Near Mayon Volcano

(June 1996)

Source: Gaia South, 1996

Station: 1) Bgy. Palanog (A party dried-up creek)

- 2) Bgy. Libod (Agiad river)
- 3) Bgy. Bariw (Creek under Bariw bridge)
- 4) Bgy. Tagaytay (Basud river)
- 5) Bgy. Bariw (Creek under Bariw bridge)
- 6) Guinobatan (Tagaytay river)

2.4 Soil

(1) Flora

The types of vegetative cover within the 8-km radius from the summit of Mayon Volcano are forestlands, grasslands and some patches of agricultural areas.

The agricultural area is predominantly planted with coconut on the eastern and southern quadrants. Abaca plantations and rice fields are also found in these quadrants but they cover only a small portion of the area. Some small clearings within the coconut plantations are planted to root crops and vegetables. In some areas root crops are interplanted in coconut and abaca plantations.

Forest lands predominantly cover the northern and eastern quadrants. The forest cover may be classified into mossy forests and mixed hardwood forests.

These mossy forests are found in the upper slopes of the volcano from the elevation of 600m up to 1300m above mean sea level or from 4km to 2km radius from the summit. This type of forest consists of relatively dense growth of non-

commercial and stunted trees, which are usually adapted to high elevation and humid areas. A listing of dominant species (PHIVOLCS, 1984) is presented below:

Scientific Name	Common Name
Astronica biolana	Bikol Dungao
A. Cumingiano	Badling
A. Wiliammsii	Dungao
Astronia spp.	
Beccarianthus ickisii var puberulus	Tungao - buhukan
B. ickisii var situsus	Tungao - Dako
Becarianthus spp.	Rattan
Calamus spp.	
Cleistanthus venusus	Saramisim
Cleistanthus spp.	
Cyathea spp.	
Everetti pulcherrima	Malintungao
Homalanthus spp.	
Jossinua Tulanan	Tulanan
Laportea Triplinervia	Manapli
Laportea spp.	
Lithocarpus spp.	
Litsea spp.	
Macaranga spp.	
Memecylon spp.	
Miscanthus spp.	
Pandanus spp.	
Pinanga spp.	
Saurania ogligophlebia	Salamisim
Saurania spp.	
Syzygium spp.	
Vaccinium spp.	

List of Dominant Species and Some Associated Species in Mossy Forest of Mayon Volcano

Source: (EMPAS, 1997)

The most common species in the mossy forests are astronia spp., Litsea spp., Lithocarpus spp., and Sarauia spp. Associated with these types of vegetation are various species of ephiphytes and underbrush, which include orchids, ferns, palms, herbs and vines. The widest extent of mossy forest is located on the northern, western and northeastern slopes owing to lesser disturbances from the mudflows and lava flows. Mossy forests serve as sanctuary for wildlife in the area. They also act as stabilizers of slopes and regulators of soil runoff and soil erosion aside from being the first line of defense against initial flow of volcanic debris to the low lands. The mixed hardwood forests are found in the area from the foot of the Mayon Volcano to about 600-m elevation. This type of vegetation is composed of sparsely distributed trees found in logged-over areas and in abandoned kaingins. The dominant species are Trema spp., Ficus spp., Artocarpus spp., Alstonia spp., Erythrina Subumbrans (Rarang), Bischofia javanica (Tuai), Pterocymbium diversifolium (Taluto), and Macaranga bicolor (Binunga). A listing of dominant species (PHIVOLCS, 1984) in the mixed hardwood forests is shown below.

List of Domi	inant Tree	s and As	sociated	Species
in th	e Mixed H	ardwood	l Forests	5

Scientific Name	Common Name
Agalaia sp.	
Ailanthus luzonicus	Balitagtag
Alstonia macrophylla	Batino
A. paucinervia	Kuyauyau
A. scholaris	Dita
Artocarpus blancoi	Antipolo
A. Ovatus	Anubing
A. sercicarpus	Gumihan
Biscofia tavanica	Tuai
Calophyllum obliquenernium	Dangkalan
Canarium asperum	Pagsahingin
Canthium elmeri	Bogas
Casuarina equisetifolia	Agoho
Chisocheton cumingianus	Balukang
Cleisthanthus sp.	
Cordia dichotoma	Anonag
Dillenia sp.	Igyo
Dysoxylum decandrum	
Eryhtrina subumbrans	Rarang
Ficus balete	Balete
F. minahassae	Hagimit
F. pseudopalma	Niogniogan
F. septica	Hauili
F. variegata	Tangisang bayawak
Garcinia binucau	Binukao
Grewia inflexa	Banglad

Scientific Name	Common Name
Homalanthus populneus	Balanti
Laportea meyeniana	Lipang kalabaw
Leeia spp.	
Litesea glutinosa	Sablat
L. leytensis	Batikuling
L. Micrantha	Yau-yau
Macaranga bicolor	Hamindang
Madhuca philippinesis	Manilig
Mallotus floribundus	Tula-tula
Neonauclea ategii	Mahambalud
Pipturus arborescens	Dalunot
Planchonia spectabilis	Lamog
Ptenocarpus indicus	Narra
Pterocymbium diversifolium	Taluto
Sernecarpus spp.	
Spondias pinnata	Libas
Sterculia glabrifolia	Uos
Trema Cannabina	Anagdung
T. Orientalis	Anabiong
Vitex turczaninowii	Lingo-lingo
Voacanga globosa	Bayag-usa

Source: EMPAS (1997)

The dominant species that are found in lower areas vary according to the type of soil. Limited patches and almost pure growth of Casuarina equisetifolia (Agoho) occur along sandy to rocky mudflow gullies. Trema spp. and Neonauclea sp. occur on relatively young mudflow deposits (about 16 years old) and Cordia dichomata (Anonang) are found on sandy plains bordering cultivated vegetation.

Most of the mixed hardwood forests have poor structure and floristic composition because of frequent disruption of vegetation succession. Mudflows occur in these areas during and after eruption. Some disturbances are aggravated by anthropogenic activities. These include kaingin making and cutting of trees for firewood and for house construction. The species usually cut for firewood are Agoho, Anagdung, Anonang and Binunga. Trees mainly cut for house construction are Narra, Lamog and Dangkalan. Trees mainly cut for house construction are Narra, Lamong and Dangkalan. These species are sparsely distributed in the project site.

Grasslands occur in patches from the base up to about 1,800-m elevation. These areas are dominated by Miscanthus spp., Saccharum spontaneum (Talahib) and

Imperata cylindrica (Cogon). Most of the extensive clearings within the mossy forests are covered by Miscanthus formation. The other two species dominate grass formations along borders of cultivated areas and stream embankment in the lowlands at the lower slopes or base of the volcano.

Two species of pitcher plant, which are considered are threatened species and protected by forestry law (EMPAS, 1996), are found abundant Mayon National Park specifically in Lidong and Sto. Domingo.

(2) Fauna

There were 57 species of birds recorded in Mayon Volcano National Park (EMPAS, 1996). A total of 37 species were observed to be Philippine endemics, 10 of which are Luzon endemics. A listing of these species is presented below.

Scientific Name	Common Name
Ixobrychus cinnamomens	Common least bittern
Gallus gallus philippinensis	Red jungle fowl
Turnix sp.	Quail
Rallus philippinensis	Banded rail
Rallus sp.	Rail
Phapitreron amethystina amethystina	Amethyst brown fruit dove
Phapitreron leucotis leucotis	White-eared brown fruit dove
Ptilinopus merrilli merrilli	Merril's fruit dove
Ducula aenea aenea	Gray imperial pigeon
Macropygia phasianella teuirostris	Slender-billed cuckoo dove
Chalcophaps indica indica	Common emerald dove
Geopelia striate striate	Zebra Dove
Bolbopsittacus lunulatus lunulatus	Guaiabero
Loriculus philippinensis philippinensis	Philippine hanging parakeet
Phaenicophaeus cumingi	Scale-feathered malkoha
Centropus bengalensis philippinesis	Lesser coucal
Centropus sinensis sinensis	Common coucal
Otus megalotis megalotis	Philippine scope owl
Bubo philippinensis philippinensis	Philippine horned owl
Caprimulgus macrorus salvadorii	Long-tailed nightjar
Eurostopodus macrotis macrotis	Great-eared nightjar
Collocalia esculenta marginata	Glossy swiflet
Alcedo cyanopectus cyanopectus	Indigo-banded kingfisher
Halcyon chloris collaris	White-collared kingfisher
Merops philippinus superciliosus	Blue-tailed bee eater
Megalaima haemacephala haemacephala	Crimson-breasted barbet

List of Avifaunal Species in Mayon Volcano National Park

Scientific Name	Common Name
Dendrocops maculatus validirostris	Philippine pygmy woodepecker
Dicrurus balicassius balicassius	Balicassiao
Lagae nigra chilensis	Pied triller
Orioulus chinensis chinensis	Black-naped oriole
Sitta frontalis isarog	Sulphur-billed nuthatch
Rhabdormis mysticalis mysticalis	Stripe-head creeper
Parus elegans elegans	Elgant titmouse
Sachryris whiteheadi sorosgensis	Chestnut-faced tree babbler
Pycnonotus goiavier goiavier	Yellow-vented bulbul
Ixos philippinus philippinus	Philippine bulbul
Turdus poliocephalus mayonesis	Island Thrush
Megalurus palustris forbesi	Striated grassbird
Megalurus Timorensis mayonesis	Tawny grassbird
Orthotomus derbianus derbianus	Gray-backed tailorbid
Orthotomus castaniceps chloronotus	Philippine tailorbird
Rhipidura cyaniceps cyaniceps	Blue-headed fantail
Rhipidura javanica nigritorquis	Pied fantail
Cyornis rufigaster simplex	Mangrove blue flycatcher
Hypothumis azurea azurea	Black-naped monarch
Pachycephala philippinensis philippinesis	Yellow-bellied whistler
Motacilla cinerea robusta	Gray wagtail
Motacilla flava simillima	Yellow wagtail
Artamus leurorhynchus leucorhynchus	White-breasted wood swallow
Lanius cristatus lucionensis	Brown shrike
Lanius validirostris validirostris	Mountain shrike
Nectarinia jugularis jugularis	Olive-backed sunbird
Nectarinia seperata sperata	Purple-throated sunbird
Zosterops nigrorun luzonica	Golden yellow white-eye
Paser montanus saturatus	Eurasian tree sparrow
Lonchura malacca jagori	Chestnut mannikin
Lonchura punctulata cabanisi	Nutmeg manniki

Source: EMPAS, 1997

There were 34 herpetofaunal (reptiles and amphibians) species that were recorded in Mayon Volcano National Park. A listing of these species (EMPAS, 1996) is presented below.

Scientific Name	Common Name
Bufo Marinus	Giant Marine Toad
Kaloula conjuncta conjuncta	
Kaloula picta	
Occidozyga laevis laevis	Common small-headed frog
Platymantis corrugatus	Corrugated forest frog
Platymantis dorsalis	Common forest ground frog
Rana cancrivora	Common swamp frog
Rana magna macrocephala	Philippine woolland frog
Rana signata similis	Northern variable-backed frog
Polypedates leucomystax	Common tree frog
Draco spilopterus	Common flying lizard
Hemidactylus frenatus	Common house geckoe
Cosymbotus platyrus	Flat-bodied house geckoe
Gehyra mutilata	Tender-skinned house geckoe
Gekko gecko	Tokay geckoe
Brachymeles boulengeri	
Lamprolepis smaragdina philippinica	Spotted green skink
Lepinia pulchella pulchella	Yellow-striped slender skink
Mabuya multicarinata borealis	Black-striped mabouya
Mabuya multifaciata kuhl	Common mabouya
Sphenomorphus jagori	
Varanus salvator marmoratus	Water monitor lizard
Naja naja philippinesis	Philippine cobra
Ahaetulla prasina preocularis	Elongated-heated tree snake
Cerberus rynchops	Dog-faced water snake
Chrysopelea paradisi	
Cyclocerus lineatus	
Lycodon aulicus capucinus	Common wolf snake
Olygodon aucorus	
Olygodon modestun	
Rhabdophis spilogaster	Water snake
Typhlops sp.	Blind-snake
Python reticulatus	Reticulated python
Trimeresurus wagleri flavomaculatus	Philippine pit viper

List of Herpetofaunal Species Recorded in Mt. Mayon Volcano National Park

Source: EMPAS, 1996

There were 13 mammalian species recorded as existing within Mt. Mayon Volcano National Park. A listing of these species is presented below.

Scientific Name	Common Name
Suncus murinus luzonensis	Luzon white-toothed shrew
Rattus everetti	Philippine forest rat
Rattus tanezumi	Asian black rat
Mus musculus castaneus	Asian house mouse
Phleomys cumingi	South luzon slender-tailed cloud rat
Macroglossus minimus	Dagger-toothed flower bat
Ptenochirus jagori	Philippine musky fruit bat
Cynoopterus brachyotis luzonensis	Common dog-faced fruit bat
Scotophilus kubilii	Common brown rat
Macaca fascicularis	Long-tailed macaque
Paradoxurus hermaproditus	Massked palm civet
Viverra tangalunga	Oriental civet cat
Sus celebensis philippinesis	Philippine pig

List of Mammalian Species Recorded in Mt. Mayon Volcano National Park

Source: EMPAS, 1996

Most of the mammalian species are found in reforestation areas near kaingin lots. This show that most of the mammals are highly dependent on farm products since the food sources in the forests are scarce.

3. SOCIAL ENVIORNMENT

3.1 Public Health

The leading causes of morbidity and mortality are presented in the following tables. The leading causes of morbidity are Acute Respiratory Infection (ARI), diarrhea, pneumonia, influenza, bronchitis and tuberculosis. For ARI, the morbidity rate is very high at 7,370 per 100,000 population. For mortality, the leading causes are Pneumonia, Hypertension, Coronary Artery Disease and Tuberculosis. The mortality rate for Pneumonia is about 115 per 100,000 population.

Leading Causes of Morbidity in Albay

Causes of Morbidity	Number of Cases	Morbidity Rate (per 100,000 population)
Acute Respiratory Infection	62,507	7,370.60
Diarrhea	15,075	1,777.58
Pneumonia	9,798	1,153.34
Influenza	7,076	834.37
Bronchitis	6,579	775.77
Tuberculosis	2,421	285.47
Heart Disease	759	89.50
Dog Bites	692	81.60
Chicken Fox	687	81.01
Measles	253	41.62

Source: Department of Health, 1996

Leading Causes of Mortality in Albay

Causes of Morbidity	Number of Cases	Morbidity Rate (per 100,000 population)
Pneumonia	975	114.97
Hypertension	760	89.62
Coronary Artery Disease	492	58.01
Tuberculosis	421	49.64
Accident	208	24.53
Cancer	202	23.47
CRA	196	23.11
COPD (Pulmonary)	159	18.75
Still Birth	147	17.33
Septicemia	139	16.39

Source: Department of Health, 1996

3.2 Social Facilities

(1) Transport Facilities

In 1996, the total number of land motor vehicles registered in Albay is 20,603. Of this total, 14,066 are for private use, 5,622 are for hire and 911 are government vehicles. Tricyles constitute 69% of the public utility vehicles while motorcycles compose about 41% of the vehicles for private use. The classification of motor vehicles registered in Albay is shown in the following table.

	Number of Registered Motor Vehicles			
Vehicle Type	For Private Use	For Hire	Government Use	Diplomatic Use
Light vehicle	1,854	40	7	1
Medium vehicle	270	6	1	-
Heavy vehicle	13	-	4	-
Utility vehicle	4,817	487	1,423	-
Bus	40	5	230	-
Truck	1,258	94	81	-
Motorcycle	5,806	277	-	-
Trailer	48	2	3	1
Tricycle	-	-	3,873	-
OEV	_		-	4
Total	14,066	911	5,622	4

Classification of Motor Vehicles in Albay

Source: Land Transportation Office, 1996

With regards to water transport, the total number of motorized water vehicles is 237. A large percentage of these (51%) are used as fishing vessels. Thirty-four percent are cargo ships while 10% are passenger ships, which also carry cargoes. The main seaports are located in Legazpi City and Tabaco. The classification of motorized water vehicles registered in Albay is shown below.

Type of Service of	Number of
Water Vehicle	Water Vehicles Registered
Fishing Vessels	122
Cargo Ships	81
Passenger Boats	6
Passenger with Cargo	24
Tramping	2
Company Service	1
Roll-on/Roll-off	1
Total	237

Classification of Motorized Water Vehicles in Albay

Source: Maritime Industry Authority, 1996

The air transport into and out of Albay is serviced by two airlines, namely: the Philippine Airlines and the Air Philippines. The Philippine Airlines has three types of aircraft - the Boeing 737, Fokker 50 and YS 11. The airport is located in Legazpi City.

(2) Electricity

As of 1977, the Albay electric Cooperative has energized 420 out of 720 barangays in the province. Sto. Domingo has the highest percentage of barangays energized (100%) while Rapu-rapu is least energized with only 9% of the barangays with electricity. For each of the municipalities included in this study, the number of barangays energized are given below.

Maniainalita	Date First	Total Number of	Barangay	Energized
Municipality	Energized	Barangays	Number	Percentage
Tabaco	March 1973	47	36	77
Maillot	January 1974	18	15	83
Sto. Domingo	January 1974	23	23	100
Bacacay	February 1974	56	35	63
Malinao	March 1974	29	24	83
Guinobatan	May 1975	44	32	73
Camalig	November 1975	50	34	68
Ligao	November 1975	55	41	75
Daraga	November 1977	54	41	76
Albay District	November 1977	32	30	94
Legazpi Port	November 1977	38	37	97

Number of Barangays Energized

Source: ALECO, 1997

(3) Health Facilities

There are 31 hospitals in the 10 municipalities/city around Mayon Volcano. The biggest private hospitals are Albay General Hospital (150 beds), AGO General Hospital (100 beds) and Tanchuling Hospital (50 beds), all in Legazpi City. The government hospitals are Cagraray District Hospital (25 beds) in Bacacay, Pio Duran Municipal Hospital (25 beds) in Ligao and Ziga Memorial District Hospital (50 beds) in Tabaco. The following table summarizes the number of hospitals in the municipalities within the Study area and their total bed capacities.

City/Municipality	Population	Number of Hospitals	Total Bed capacity
1. Bacacay	56,295	2	35
2. Camalig	53,129	2	16
3. Daraga	91,829	2	49
4. Guinobatan	65,512	3	40
5. Legazpi City	141,657	7	412
6. Ligao	80,861	4	79
7. Malilipot	26,834	0	0
8. Malinao	33,872	1	25
9. Sto. Domingo	25,586	1	14
10.Tabaco	96,993	9	172

Number of Hospitals in Municipalities/City within Study Area

Source: Department of Health, 1996

(4) Educational Facilities

There are 509 public elementary schools in Albay with a total of 4,955 elementary school teachers. In the school year 1997-1998, the total enrollment was 153,663 pupils. In the secondary level, the total number of high schools (general and vocational) is 71 with 1408 high school teachers. The total enrollment for the school year 1997-1998 was 50,905 students.

(5) Tourism and Recreational Facilities

There are 41 tourist spots in Albay excluding the 77 potential tourist spots that are not yet developed. These spots consist of natural springs, waterfalls, beautiful beaches, historical ruins and underground rivers. Some of the most attractive tourist spots are the Cagsawa Ruins in Daraga, Hoyop-hoyopan cave in Camalig, Mayon Spring Resort, Naglaus Underground River in Jovellar and the old churches of Daraga and Camalig.

3.4 Indigenous People

There are three ethnic groups in Albay. These are the Agta, Agta-Cimaron and Agta-Tabangnon tribes. However, none of these groups settle within the Study area. Most of them are found in the barangays of Rapu-rapu and Tiwi. The following table shows the distribution of ethnic groups in Albay.

Distribution of Indigenous	People	in Albay
-----------------------------------	--------	----------

Barangays with Ethnic People	Population	Number of Households
In Rapu-ran:		
1. Sitio Tanglad, Hamorawon	155	31
2. Nagcalsot	140	35
3. San Ramon, Mapisay	276	67
4. Sitio Ogob, Bilbao	87	15
In Tiwi:		
1. Joroan	328	52
2. Misibis	247	48
3. Sitio Tabgon	100	25
4. Mayong	183	33

Source: OSCC-Iriga City, 1996

3.5 Religion

In 1990, out of 902,588 persons surveyed in Albay, the dominant religious affiliations are Roman Catholics (878,438), Iglesia ni Cristo (7,320), United Church of Christ in the Philippines (2,909), Jehovah's Witnesses (2,349), Seventh Day Adventists (2,143) and Church of Christ of the Latter Day Saints (1,152). The number of persons having Islam religion identified in the survey was 218. The survey also showed 2,882 "born again" Christians.

4. RATIONALE FOR THE CONDUCT OF IEE FOR DISASTER MITIGATION PROJECTS/PROGRAMS

Disaster mitigation projects/programs are intended to improve living conditions in areas prone to natural hazards. As such, it is expected that the benefits derived from these projects should far outweigh whatever negative impacts that may result from the activities associated with their implementation. However, in some cases, due to lack of careful planning and study of potential environmental impacts, disaster mitigation projects cause more serious problems than the ones they are trying to solve. Therefore, even if it already seems apparent that positive impacts outweigh the negative ones, it is necessary to prepare at least an IEE to ensure that negative impacts are identified and mitigated and positive impacts are enhanced. In addition, the conduct of an IEE will help promote social acceptability. Some disaster mitigation projects in the Philippines have been suspended because of strong opposition from stakeholders and due to lack of IEE or EIA study.

In the study on Comprehensive Disaster Prevention (CDP) around Mayon Volcano, the conduct of an IEE is necessary to address the potential impacts of possible structural and non-structural measures especially to the socio-economic environment. The most critical social issue seems to be the relocation of residents within 6-km radius from the crater of Mayon Volcano which has been declared as Permanent Danger Zone (PDZ).

At the present stage, the following are identified as conceivable projects and programs:

- a. Spur Dikes these are dikes with V-shaped alignment designed to protect barangay centers around Mayon volcano which are vulnerable to debris flow. Around 18 of these structures will be built.
- b. Sand Pockets these are channels, with or without consolidation dams, between two converging dikes designed to direct and concentrate the debris flow to a specific area or drainage way. The dike will have 1 to 2m width at the top and 7 to 10m width at the base. The height is about 2 meters.
- c. Diversion Channel this is a new floodway proposed to be constructed to direct the main debris flow channel towards Legazpi Bay. It has a width of about 60 meters and a total length of about 3km.
- d. Consolidation Dams these are series of spillway structures across debris flow channel that will trap debris in a terrace-like manner.
- e. Levees these are dikes along portions of rivers with gentle slopes to prevent overflowing of banks during flood events. These are proposed to be constructed along the downstream reaches of Yawa and Quinali B rivers.
- f. Sabo Dams these are discontinuous dikes which protect populated areas and farms from debris flow. Many of these structures are already existing although some need repair, desilting and extension. New sabo dams may be proposed.
- g. Reclamation this involves dumping of volcanic debris into shallow coastal waters for commercial, industrial and other land uses. A proposed reclamation is located at Legazpi Bay near the mouth of the proposed diversion channel.
- h. River Improvement Works this involves river dredging, widening or raising of existing dikes along river channels to increase their carrying capacities.
- i. New Pawa-Burabod Floodway this involves construction of a new drainage channel parallel to Yawa river to provide additional drainage capacity during flood events.
- j. Urban Drainage Rehabilitation and Upgrading this involves repair and improvement of drainage systems of flood prone urban centers such as Legazpi City and Tabaco.

- k. Bridge construction and armouring this involves construction of new bridges designed to remain passable during debris flow events (e.g., elevated bridges rather than spillways) and to provide protective armor to abutments of existing bridges in order to withstand impact of debris flows.
- Relocation of residents within PDZ this involves planning and implementation of transfer of residents within the 6-km PDZ to resettlement areas. This also involves provision of opportunities for livelihood and monitoring of living conditions of relocated residents. The PDZ will also be monitored to ensure that relocated residents or new settlers will not occupy the evacuated areas again.
- m. Resettlement area development this involves acquisition of resettlement areas, development of infrastructures, construction of houses and provision of facilities.
- n. Establishment of Multipurpose Evacuation Centers these are intended for households residing outside PDZ but are affected by debris flows. These will avoid disruption of classes after disaster events due to continued occupation of evacuees of school buildings, which usually serve as temporary evacuation centers. These centers will also serve other purposes after disaster events.
- Establishment of Industrial Zones near Resettlement Areas These are intended to provide employment and livelihood opportunities to relocated households. These will involve development of industrial zones by providing infrastructures, facilities and incentives to prospective locator industries.
- p. Mineral Water Development this involves tapping of springs within the Study Area for mineral water bottling industry. This will provide employment and contribute to the economic development of municipalities. This will involve construction of spring reservoir, pipeline system and bottling plant.
- q. Pili Nut Plantation and Reforestation within PDZ This will replace the shortterm crops (e.g., vegetables) planted within PDZ in order to discourage return of relocated residents. This involves establishment of nurseries, tree planting and monitoring to ensure high survival rate.
- r. Construction/Improvement of Evacuation Roads This involves construction of short roads, which are free from hazard of flooding or debris flow. In some barangays (e.g., Sua, Tumpa, Masarawag and Muladbucad), where roads are frequently cut off during flood events, safe evacuation routes were already identified but were not constructed yet due to lack of funds.

The above projects need to be assessed with regards to their potential impacts to the environment. The environmental elements that may be considered are:

- a. Natural and Biological Environment surface water, groundwater, soil, geology, climate, wildlife habitat, ecology of fisheries and natural vegetation
- b. Environmental Hazards solid wastes and hazardous substances
- c. Resource Conservation and Use water resources, agricultural production, timber production, mining and energy resources
- d. Air Quality and Noise Environment air quality and noise
- e. Community facilities/Services and Structures community facilities and services, infrastructure, transportation, community population, resettlement, income, ethnic distribution and lifestyle
- f. Open Space and Recreation accessibility and activities
- g. Historic Resources historical sites and structures, and archaeological sites
- h. Visual Resources natural landscape and cultural landscape
- i. Economic environment dislocation of industries, employment and local economy

5. PRELIMINARY ENVIORNMENTAL ASSESSMENT OF THE CONCEIVABLE PROJECTS

The environmental assessment was tentatively carried out using the "Environmental Impact Matrix for IEE". Their preliminary results are shown in Table XIII 5.1 to 5.3.

Employment		•	•		0	0		0	0		•	3		0	•		0	•		Θ	•					
Dislocation of industries																					3	ĺ	nact	act	pact	
Cultural Landscape																						ĺ	ive in	e imp	ve im	
Satural landscape		0	0		0	Û					8	6		0	Û		0	0		0	Û	ĺ	neoati	egativ	negati	
Archaeological sites																							์ เกลท์	rate n	gible 1	Cal
Historical Sites and Structures																							Sionif	Mode	Neglig	
Activities																							G	0	• =	כ
Accessibility																						Í				
Lifestyle																						Í	-			
Ethnic Distribution																							mnac	pact	npact	
Jncome		Θ	•		Θ	•		Θ	0		Θ	0		Θ	•		Θ	•		Θ	•	1000	itive i	ve im	tive ir	
Resettlement											0	6		0	Û							40 Im	nt nos	positi	e posi	
Community Population		0			0			0			0			0			0			•		upur -	nifica	lerate	ligible	
Transportation			Θ			Ð						Ð			Θ			Θ				- Line	3) Sig	2 M 00	DNeg	
Infrastructure																							-		0	esed
Community facilities and services		0	Θ		0	Ð		0			0			0	Θ		0	Θ		0		Í	U	2	iment	one D
əsioN		0	0		0	0		0			0	0		0	C		0	0		0		ĺ	Ollree	urces	nviroı	herat
Air quality		0	0		0	0		0			0	0		0	C		0	0		0		ĺ	ir Res	Reso	mic E	O.dO
Mining and energy resources																						Í	Tistor	Visual	Scono	
Timber Production																						ĺ			IXI	
Agricultural Production		0	•		0	•					0	0		0	•		0	•				ĺ				
Water Resources																						ĺ		ures		9
sətes Wastes		0			0			0			0			0			0			•	0	ĺ	+	Struct		n Dha
Hazardous Substances																						ĺ	nmen	s and		nictio
Natural Vegetation		0	0		0	0					0	8		0	C		0	0				ĺ	hviro	ervice	tion	Conet
Ecology of Fisheries											8	8								9	8	ĺ	oise F	ties/Se	tecrea	ġ
Wildlife Habitat		0	0		Û	Ð					8	6		0	Ð		0	0					N brie	facilit	and F	
Climate																				0	Û	Í	uality	nunity	Space	
Geology/Geological Hazards			6			3			0			3			•			6				ĺ	∆irO	Comm	Dpen	٩
lio2																						Í	2		ΛI	Dhac
Groundwater																						ĺ	ţ	111		notion
Surface Water		0			Û			0			0	Ð		0			Û			0	6	Í	omne		Use	onetr
ě		l																				İ	Envii	ls	n and	· Dro-C
Phas	\mathbf{PP}	CP	OP	\mathbf{PP}	СР	OP	\mathbf{PP}	CP	OP	\mathbf{PP}	CP	OP	\mathbf{PP}	СР	OP	\mathbf{PP}	CP	OP	PP	СР	OP	v ante	orical	Jazard	rvatio	рр
_					ets			IIOI												n		1 El ar	4 Biol	antal F.	Conse	
tural		JIKe			Pock		1:dot	Inual		.,	nois Ion			s			lams			matic		ante	ral and	ronme) annce	Phace
truct		pur 1			and I		0040	ULISC	cilla		hour	IIaIII		evee			abo (eclai		- in the second s	Natin	[Envi	l Resc	Dient
P S	0	2		1	Ś		C	ם כ	1		10)		Ļ			Ś			Ч		ů j	a –		Η	p,

Class IX

Class VIII

Class VII

Class VI

Class V

Class IV

Class III

Class II

Class

Environmental Element

Госаї Есопоту

Employment

• 0

• 0 Θ 0

0

0

Θ 0

•

•

Θ 0

0

•

Θ 0

•

•

Θ 0

0 0 Θ ල

Θ

3

OP: Operations Phase

CP: Construction Phase

PP: Pre-construction Phase

Project Phases:

Environmen	Structural Projects Ph	River Pi	Dredging C			Kaising		River P.	Channel C.	Widening 0	New Pawa- P	Burabod C.	Floodway O	I-1 F-1 PI	Urban Estero		Drainage P	Rehabilitation C	Upgrading 0	Bridge P	Construction/ C	Armoring	Environmental Elemen I Natural and Biologic II Environmental Haza II Resource Conservat
tal	ase	Ь	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ь	Ρ	<u>ts:</u> 2al Envii urds ion and
	Surface Water		0	0	F	0			0			0	0	L	8	•		0	•		8		ronmer Use
	Groundwater			\vdash	┢		-	-	-	-			-	\vdash	-								It
	lioS		$\left \right $	F	╞			-	-					╞	$\left \right $				_			Ĕ	VI OJ
Clas: I	Geology/Geological Hazards			(7)	-		(3)	-	-	(3)			(3)	-	╞	5			(7)			(7)	ir Qua ommu pen Sp
s		$\left \right $	$\left \right $	-	╞		-		-	9		•	¥	-	-							$\left \right $	lity an nity fa
			S.	S)	╞				8			3	3	╞							9		ld Noi: cilitie: rd Rec
	Looingy of Parentien		•	•	\vdash			_	8	Q		8	8	_							0	0	se Env s/Servi reatio
	Hornand Sciention			╞	╞				•	•		•	•	╞									/ironn ices a n
Class II	soomsone soomsan		0			0			0			•	٩		0	0		•			0		tent nd Str
	Water Resources		-	0	\vdash	0	_	_		_		0	_		_						0		ucture
0	Agricultural Production			0		-	0		•	0		Q	0								_		N
Jass III	Timber Production						_	<u> </u>		_	<u> </u>												
	Mining and energy resources																						l Histe II Vist K Ecor
	Air quality		•			0	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>	0	<u> </u>		•			•			0		oric R ual Re nomic
Class IV	ernar		0			•			0			•			0			•			0		esourc ssource Envir
	Community facilities and services		•			•			0			0	•			0			•			0	ces es onmei
	Infrastructure																					0	nt
	Transportation						_			_					0			0			0	6	Envi SSi DNe
G	Community Population		0			0			0			0			0			0			0		ronm gnifica oderat sgligib
lass V	Resettlement																						ental I ant po te posi de pos
	Jncome		Θ	0		Θ	0		Θ	0		Θ			Θ	3		Θ	0		Θ	0	mpact sitive itive in sitive i
	Ethnic Distribution																						Score impact mpact mpact
	Lifestyle	ĺ	ĺ	l	l									l			-					ĺ	1
Cla: VJ	Accessibility																					•	
SS	Activities																						\$ \$ \$ \$ \$
Clas	Historical Sites and Structures																						Signif Moder Neglig Uncle
ss I	Archaeological sites																						ficant rate n gible 1
Cla	Natural landscape								0	0		0	0										negati egativ negati
ss II	Cultural Landscape																						ive im e imp ve imj
0	Dislocation of industries																						pact act act
lass IX	Employment		<u></u>	0		0			<u></u>			<u></u>	0		(9)	-		<u></u>	0		(9)		
	vmono27 leso.1		Θ	•		Θ	◙		Θ	◙		Θ	\odot		Θ	\odot		Θ	\odot		Θ	\odot	

Т 1 T 1 1 1

OP: Operations Phase

CP: Construction Phase

PP: Pre-construction Phase

Project Phases:

Υ Τ Т T T Т T

Dislocation of industries																
Cultural Landscape																
Natural landscape					٩	٩		0				0	0			
Archaeological sites																
Historical Sites and Structures																
Activities																
Accessibility																
Lifestyle			Ð									•				
Ethnic Distribution																
Jncome			0		Θ			Θ			Θ	•		Θ	•	
Resettlement											Û					
Community Population			Ð						0		Ð	8				
Transportation												0				
Infrastructure						ର						•				
Community facilities and services			6		0	0		Û	0		Û					
əsioN					0	0		Û			0	8		0		
Air quality					٩	0		0			8	0				
Mining and energy resources																
Timber Production																
Agricultural Production			0								0	0				
Water Resources			0			0			0		0				0	
Solid Wastes			Û		0	0		Ð	0		Û					
Hazardous Substances																
Natural Vegetation					9						6				0	
Ecology of Fisheries																
Wildlife Habitat					0	0		Û			Û	0		0		
Climate					0	0										
Geology/Geological Hazards			3			0			•			0				
lioS			0		0			0			0	0				
Groundwater																
Surface Water Quality					0	0		0	0		0	0		0		
ee																
Pha	ΡP	CP	OP	ЪР	CP	OP	ЪР	CP	OP	ЪР	CP	OP	ЪР	CP	OP	ЪР
ture	of	Я		ant		ent	lent	ion		on	ion				ent	
itruc	ation	froi	PDZ	leme		opme	ishm	icuat	S	ructio	lcuat	S	al		opme	lut
on-S	elocé	sople	-km]	esett	rea	evel	stabl	fEva	enter	onstr	fEva	outes	liner	⁷ ater	evelo	ili N
z Z	Ř	ğ	6	Ř	A	Ď	Щ	ot	Ũ	Ű	ot	Ř	Σ	≯	Ω	Ч

Local Economy

Employment

6

0

6 0

0

Θ

Θ

Θ

0 0

0 • 0 0

• • 0 0

• •

0

0

0

0

0

0 ල

0 \odot

0 ල

0 0

0 0

CP

Plantation in

0

0

OP

Mayon slopes

ΡP

0 0

• •

•

Z
2
Ĕ
Ξ
é
.4
L
-
ž
3
5
t:
. e
5
Ē.
P
1
e
5
Sa
Ë
\square
5
9
-
ĕ
H
SU
ä
تە
Σ
a
5
Ξ
ວ
ņ
t
T)
· ·
-
0 n -f
Non-
f Non-
of Non-S
E of Non-S
EE of Non-
IEE of Non-9
r IEE of Non-9
or IEE of Non-
for IEE of Non-
ix for IEE of Non-9
rix for IEE of Non-9
atrix for IEE of Non-9
Aatrix for IEE of Non-
Matrix for IEE of Non-
st Matrix for IEE of Non-9
act Matrix for IEE of Non-9
pact Matrix for IEE of Non-9
npact Matrix for IEE of Non-S
Impact Matrix for IEE of Non-S
l Impact Matrix for IEE of Non-9
tal Impact Matrix for IEE of Non-9
ntal Impact Matrix for IEE of Non-9
ental Impact Matrix for IEE of Non-9
mental Impact Matrix for IEE of Non-9
nmental Impact Matrix for IEE of Non-9
onmental Impact Matrix for IEE of Non-9
ironmental Impact Matrix for IEE of Non-(
vironmental Impact Matrix for IEE of Non-
Invironmental Impact Matrix for IEE of Non-
Environmental Impact Matrix for IEE of Non-
Environmental Impact Matrix for IEE of Non-
3 Environmental Impact Matrix for IEE of Non-
5.3 Environmental Impact Matrix for IEE of Non-(
I 5.3 Environmental Impact Matrix for IEE of Non-(
III 5.3 Environmental Impact Matrix for IEE of Non-(
XIII 5.3 Environmental Impact Matrix for IEE of Non-(
e XIII 5.3 Environmental Impact Matrix for IEE of Non-(
ole XIII 5.3 Environmental Impact Matrix for IEE of Non-(
able XIII 5.3 Environmental Impact Matrix for IEE of Non-(
Table XIII 5.3 Environmental Impact Matrix for IEE of Non-(

Class IX

Class

Class ΠΛ

Class VI

Class V

Class IV

Class

Class II

Class

Environmental

Element

OP: Operations Phase

IX Economic Environment

VII Historic Resources VIII Visual Resources

IV Air Quality and Noise Environment V Community facilities/Services & Structures

I Natural and Biological Environment

Environmental Elements:

III Resource Conservation and Use

II Environmental Hazards

VI Open Space and Recreation

Significant negative impact
Moderate negative impact
Negligible negative impact
U Unclear

Environmental Impact Score:

0

0

ල

ල

0

ල

0

0

0 0

0 0

CP OP

Reforestation

A+ Significant positive impact B+ Moderate positive impact C+ Negligible positive impact

CP: Construction Phase

Project Phases:

PP: Pre-construction Phase