

Name of Structure	BARU CONVEYANCE CHANNEL INLET	Category Calculation	REINFORCING BAR VOLUME	Page	5/17	
				·	<u> </u>	

()

3. Reinforcing Bar

a. Box Culvert Reinforcing Bar

· · · · · ·		<u> </u>	BAR W	EIGTH		· · ·	to see at se
TYPE	DIA	LENGTH	NUMBER	WEIGHT PER m (kgf/m)	WEIGHT PER BAR (kgf/m)	WEIGHT (kgf)	SHAPE
\$1	D 13	5380	39	1.040	5.595	218.213	
S 2	D 13	2520	- 77	1.040	2.621	201.812	
<u>\$3</u>	D 13	970	78	1.040	1.009	78.686	
<u>\$4</u>	D 13	2300	78	1.040	2.392	186.576	
<u>\$5</u>	D 13	8820	22	1.040	9.173	201.806	
<u>\$6</u>	D 13	870	54	1.040	0.905	48.859	
W1	D 13	2550	78	1.040	2.652	206.856	
· W 2	D 13	8820	22	1.040	9.173	201.802	<u>-</u>
W 3	D 13	400	108	1.040	0.416	44.928	
· F1	D 13	5430	39	1.040	5.647	220.241	
<u>F2</u>	D 13	2520	. 77	1.040	2.621	201.802	·
F 3	D 13	1010	78	1.040	1.050	81.931	
F 4	D 13	2240	78	1.040	2.330	181.709	
F5	D 13	8820	22	1.040	9.173	201.802	
F6	D 13	920	54	1.040	0.957	51.667	
L		· · · ·	ur un	an ware i	Tolal =	2,328.690	

b. Wing Wall Reinforcing Bar

	4 6 1	ан 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -		e et la elui			19 ^{19 1}
····		· · · · · · · · · · · · · · · · · · ·	BAR WE	IGTH			
TYPE	DIA	LENGTH	NUMBER	WEIGHT PER m (kgf/m)	WEIGHT PER BAR (kgl/m)	WEIGHT (kgf)	SHAPE
WW 1	D 13	2,040	21	1.040	2.122	44.562	<u> </u>
WW 2	D 13	2,040	21	1.040	2.122	44.562	L
WW 3	D 13	2,990	42	1.040	3.110	130.603	
WW 4	D 13	2,990	42	1.040	3.110	130.603	
WW 5	D 13	4,670	16	1.040	4.857	77.712	4
WW 5a	D 13	4,200	20	1.040	4.368	87.360	
WW 6	D 13	840	21	1.040	0.874	18.354	
WW 7	D 13	840	21	1.040	0.874	18.354]
WW 8	D 13	903	21	1.040	0.939	19.740	
WW 9	D 13	1,003	63	1.040	1.043	65 709	
WW 10	D 13	7,820	12	1.040	8.133	97.596	······································
WW 10a	D 13	500	4	1.040	0.520	2.080	19 <u></u> 11
WW 11	D 13	5,415	2	1.040	5.632	11.264	
					Total =	748.499	

Total Reinforcing Bar a + b =

2,328.69 + 748.499

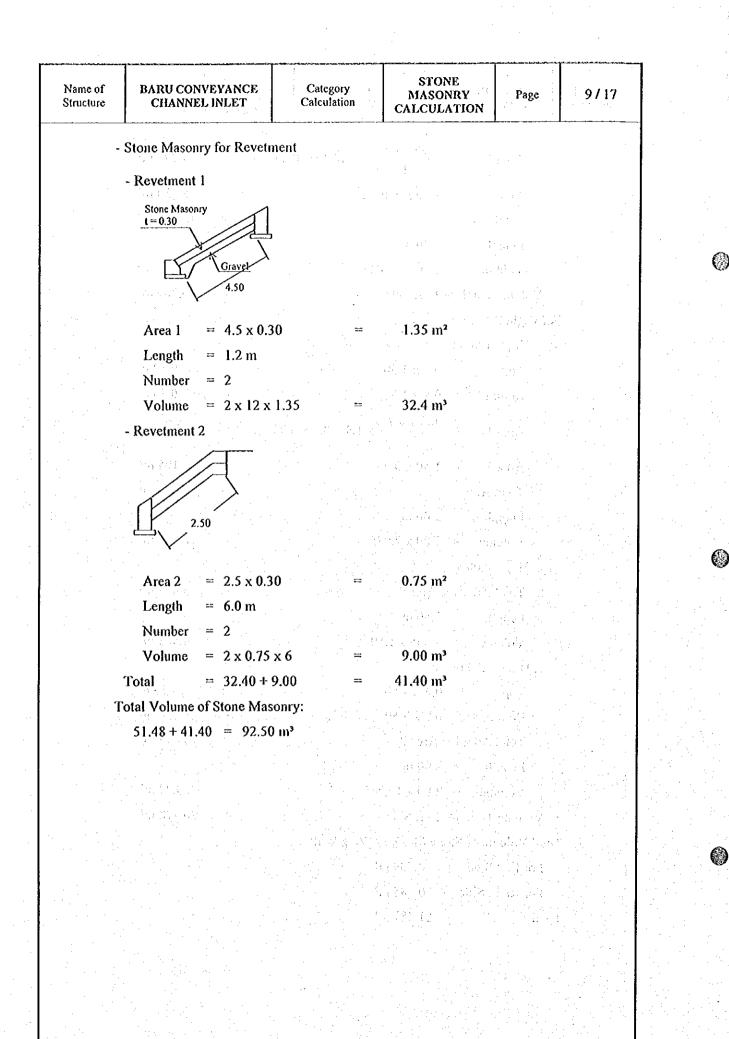
= 3,077.189 kg

Name of Structure		I CONVEY ANNEL IN			ategory lculation		NFORCING R VOLUME	Page	6/17
	oncrete I . Top Co		ment B	aru Reta	rding Ponc	1			
50 20	0 50		Туре	Dia (mm)	Length (m)	No.	Weight Per m	Weight Per Bar	Total (kg)
			1	13	7.5	6 x 2	1.040	7.80	187.2
695		.	2	10	1.56	26x2	0.617	0.963	50.05
		<u>6Ø13</u> 10-300		ا <u>ــــــــــــــــــــــــــــــــــــ</u>	· · · ·			Total	237.25
50 JC		<u> </u>							
100 A. A.	Base Cor	ncrete				· · · · · · · · · · · · · · · · · · ·			
200	300		Тур	e Dia	Lengt	n No	u la se se di		Total
50				(mm			Per m	Per Bar	(kg)
250	$\langle $	<u>6Ø13</u>		13	10	6 x 1		10.40	124.80
150		Ø 10-300	2	10	1.51	34x	2 0.617	0.932	63.35
sotter [•				· · · · ·		· · · · ·		Total	188.154
50	00 50 Partition	n Wall							
50		şe ta se	Туре	e Dia	Lengt	No.	Weight	Weight	Total
400		<u>Ø 13</u>		(mm) (m)		Per m	Per Bar	(kg)
		0-300	1	13	6.5	6 x 2	2 1.040	6.76	81.12
50			2	10	1.26	22x2	2 0.617	0.777	34.21
50 20	0 50							Total	115.33
Total	1+2+	3							
23	7.25 + 1	88.154 +	115.33			===	540.73 k	g	
Total Re	a service a								
3,	077.189	+ 540.73					3,617.92 k	g	
		1997 - 1917 1917 - 1917	1 - 1 - 1 - 1 - 1 - 1						

.

(

6


(

		7/17		Page	STONE MASONRY CALCULATION	Category Calculation	BARU CONVEYANCE CHANNEL INLET	Name of Structure
		· · ·		n de _{la} companya	neg daer vooren en ster af steren en s	n an	one Masonry	4. St
		:			.e. t		Wall	`
							0.311 Note:	
	÷					= 1.50 m	9.35 H ₁₌₁	
÷ .	•	14	11	· · ·		= 2.00 m	H_{2-2}	
(. •	· · · · · · · · · · · · · · · · · · ·	= 3.50 m	H ₃₋₃	
								n a saya 🖡 a sa
• •							1	H
							2	1.50
•								1.50 L
								· · · · · · ·
•	÷.,	. •					0.5H	
. 1							or Left Side	Fc
n de la composition Composition							a. $H_{1.1} = 1.50 \text{ m}$	
	· ·			0.50 m	=	.50	$Top = 0.3 \times 1$	
•	·	Alexandria Alexandria Alexandria		0.75 m		.50	Bottom = 0.5×1	
e e Le g				.875 m²		0.75 x (1.50 – 0.10)	Area 1 = $\frac{0.5+6}{0.5+6}$	an a Catalona An San An
•		e Nu den i		.073 114	U	x (1.50 - 0.10)	2	
				.035 m²	− 0	.35	0.1 x 0	
· · ·				.125 m²	= 1	0.75	Area 2 = 1.50 x	
•			· · · ·	.035 m ²	= 2		Total Area	
	2				· · · · · · · · · · · · · · · · · · ·		Length $= 2.00 \text{ m}$	
	+ 1 -			4.07 m³			Volume = 2.00 x	
• •							b. H ₂₋₂ = 2.00	
				0.60 m	=	.00	Top = 0.3×2	
				1.00 m			Bottom = 0.5×2	
				1.00 11			and the second	
	 			1.52 m²	, 	<u>.00</u> x 1.90	Area 1 = $\frac{0.6+1}{2}$	
			1910 - 1	0252		35	. –	
(5 A. A			.035 m ²			0.1×0	
			с. С	1.50 m ²	- ゴー・オート・キス	U.73	Area 2 = 1.50 x	
	ен. 1. с			.055 m²	= 3		Total Area	
	·. ·.			a frei Aliana Alfrei Aliana		and the second state of second	Length $= 1.50 \text{ m}$	
to transi Attention			1.1 . 1	.583 m³	= 4	1.50	Volume $=$ 3.055 x	
le e							c. $H_{3.3} = 3.50 \text{ m}$	
				.050 m	=	50	Top = 0.3×3	• • • •
				1.75 m	· · · · · · · · · · · · · · · · · · ·	50	Bottom = 0.5×3	

Name of Structure	BARU CONVEYANCE CHANNEL INLET	Category Calculation	STONE MASONRY CALCULATIO	Page	8/17
	Area 1 = $\frac{1.05 + 2}{2}$	1.75 x 3.40 + 0.1	0 x 0.35 =	4.795 m²	
	Area 2 = 1.50 x 3	3.50	=	5.250 m²	
	Total Area		=	10.045 m²	
	Length = 1.20 m				
	Volume = 1.20 x	10.045	=	12.054 m ³	
	Volume Total for Left Si	de	. =	20.709 m ³	
F	or Right Side				
	a. $H_{1-1} = 1.50 \text{ m}$	·			
	Top = 0.3 x 1.	.50		0.50 m	
	Bottom = 0.5×1 .	.50		0.75 m	
	Area 1 = $\frac{0.5+0}{2}$	<u>.75</u> x 1.4 + 0.1 x	0.35 =	0.91 m²	
	Area 2 = 1.50×6	0.75	=	1.125 m ²	
·	Total Area		=	2.035 m²	
	Length = 3.00 m				
• •	Volume = 3.00×2	2.035		6.105 m³	
	b. $H_{2-2} = 2.00$	· · · ·			
	Total Area 1 + Area 2		=	3.055 m²	
· · · ·	Length $= 1.50$ m	<u>.</u>			
	Volume = 3.055 x	1.50	=	4.583 m³	
	c. $H_{3-3} = 3.50 \text{ m}$				а. С
• •	Top = 0.3×3 .	50	to transformation and the second s	1.050 m	
· ·	Bottom = 0.5×3 .	50		1.75 m	
	Total Area 1 + Area 2			10.045 m²	
	Length = 2.00 m		· ·		
	Volume = 2.00×1	0.045	=	20.09 m³	
	Volume Total for Left Sid	de	=	30.778 m³	•
Т	otal Volume of Stone Masc	onry Wing Wall:			
	For Left Side $= 20.709$	and the second			
	For Right Side = 30.78	8 m³			
т	otal = 51.48				•

 \bigcirc

3

Name of Structure	BARU CONVEYANCE CHANNEL INLET	Category Calculation	GRAVEL BACK FILLING	Page	10/17
5. B	ack Filling Gravel			see g	
		(1) A = 0.30 x	x 4.50 = 1.3	5 m²	
$\frac{\text{Gravel Filling}}{t=0.30}$		(3) A =	$\frac{\times 0.60}{2} = 0.0$	3 m²	
	2.50	Total A	= 1.38	60 m²	
	4.50	Number $= 2$			· · ·
Y		Length $= 12 \text{ m}$			
		Volume = 1.380		2 m ³	·
	(2) A = 0.30×2.50)	= 0.75	60 m²	
	Number $= 2$				1000 - 1000 1000 - 1000
	Length = 6 m				· .
	Volume = $0.75 \times 2 \times 2$		= 9.(00 m³	
	Total Volume Gravel F	the second s		n dati 1 da il	· · ·
	= 33.12 + 9.0	00	42.1 •	3 m ³	
			an a		
		· · · · · · · · · · · · · · · · · · ·			

)

()

Name of Structure	BARU CONVEYANCE CHANNEL INLET	Category Calculation	EXCAVATION	Page	12/17
	Total A		= 12.7	5 m²	
	Vol. = 12.75 x 2		= 24.5	0 m³	-
	Total Excavation for Wi	ing Wall:			1
T	Vol. = 13.75 + 13. otal Volume Excavation:	50 + 48.60 + 24.50	= 100.35	0 m ³	:
	Vol. = 227.82 + 10	00.35	= 328.1	7 m³	-
7. Ba	ick Filling			a An an	-
-]	For Box Culvert		а Т		-
	= 227.82 - (2	.85 x 2.70 x 9)	= 158.56	5 m ³	
-]	For Wing Wall				-
	= 100.35 - (0	.9 x 5) - (1.6 x 3) -	(3.6 x 5.4)		-
	- (4.9 x 2)		= 61.8	1 m ³	
	stal Rock Filling	。 注意:1931年(1931年)。		, ha e f	
	= 158.565 + 6		= 220.37	5 m³	

Name of Structure	BARU CONVEYANCE CHANNEL INLET	Category Calculation	ROA PAVEMI LOG PI	ENT, 💈	Page	13 / 17
8. P	VC Weep Hole: Ø 50 mm	1			• • •	
	Number of Hole/ m len Length of Revetment	gth = 7 holes = 13 m		tin te		
	Total hole	$= 10 \times 2 \times 7$	=	1401	oles	
9. L	og Pile Ø 150, L = 3,000					· ·
	Length of Str.	$= 6.5 + 2.0 \times 2$	+ 5.0 =	15.5	50 m 💠 🚎	1
· ·	Log Pile	$= 15 \times 2 \times 3.0$	=	9	0 m²	
10. 0	Cobble Stone					
	Section $1 - 1 = (3)$	0 + 2.0) x 1.70 x 0.1	5 =	1.27	5 m³	
	Section $2-2 = (1.$	5 + 1.5) x 2.20 x 0.1	5 =	0.99	0 m³	
•	Section $3 - 3 = (3.$	0 + 2.2) x 3.20 x 0.1	5 da s ≞ d	2.49	6 m³	
· .	Section $4-4 = (1)$	0 + 1.0) x 3.70 x 0.1	5 =	1.10	0 m³	
	Total			5.87	1 m ³	· · · · ·
11.1	Pointing					
•	$=\sqrt{3.4^2+6}$	8^{2} x (8.5 + 11)	=	148.2	S m²	

Name of Structure	BARU CONVE CHANNEL IN	1	Category Calculation	FORM W	ORK	Page	14/17
FOR	RM WORK	n transt Barna	n an	*		· · · · · · · · · · · · · · · · · · ·	.
. Tig k Bo	1. Wall:	2.75 m x	2 x 8.6 m	. =	47.3	0 m²	
	•	1.70 m x	2 x 8.6 m	=:2	29.2	4 m ²	· ·
		0.45 m x	: 4 x 9.00 m	en. 200 🖛 e	16.2	0 m²	
· · · · ·		Sub Tota	at a fui	이 너 ㅋ :	92.7	4 m²	
· · · ·	2. Top Slab:	1.70 m x	9.00 m		15.3	0 m²	E
	3. Wing Wall:	4 - 2 - 2	×	e galerin et syn Sin de service			
i en		(5) 2.5	m x 4.10 m x 4	1. 	41.0	0 m²	en e
	•	(6) <u>2.5</u>	$\frac{m+1.5 m}{2} \ge 0.75 r$	n x 4 =	6.0	0 m²	
n 1997 - Den 1997 - Den		(7) 0.75	5 m x 2.00 m x 2	이 아이 같이요. 1993년 - 동네 문	3.0	0 m²	
		(8) 1.30) m x 2.00 m x 2		7.2	0 m²	an an Arta. An Arta Arta
		Sub Tota	1	=	57.2	0 m²	
1	Total	= 92.7	74 + 15.30 + 57.20	=	164.9	4 m²	
	4. Concrete for	1. S.					
i aletter Viteri	Top Cor	crete			12.57¥		
			+ 0.70 m) x 7.5 x 2	=	18.7	5 m²	
		- ·· .	2 x 7.5 m x 2	=	3.0	0 m²	· · ·
•	Base Co	ncrete					
ta san		(0.5 + 0.	55) x 10 x 2	=	21.0	0 m ²	· · · · · ·
· . ·	an a	0.1 m x 2	2 x 10 x 2	· =	4.0	0 m²	
	Partition						14 17
	· · · · ·	0.5 x 2 x	6.5 x 2	: =	13.1	0 m²	
		1	2 x 6.5 x 2	-	2.6	0 m²	
	Total				61.77	5 m²	
	Grand Total	= 164	.94 + 61.775	=	226	.675	
$\{ (1,2) \in \mathbb{N} \}$:

(

C

(

Name of Structure	SCAFOLDING AND FROM SUPPORT, FOR BANDAR HARJO DRAINAGE SYSTEM	Category of calculation	WORK VOLUME	Page	15/17

SUMMARY OF SCAFOLDING AND FORM SUPPORT VOLUME, FOR BANDARHARJO DRAINAGE SYSTEM

0

()

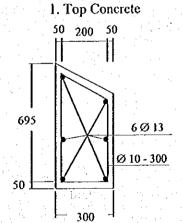
0

No.	VOLUME	SCAFOLDING (m²)	FORM SUPPORT (m³)
• 1	BARU PUMPING STATION	1,049	549
2	BARU PUMPING STATION GATE	350	120
3	BARU CONVEYANCE CHANNEL	6,574	2,768
4	BARU CONVEYANCE CHANNEL INLET STRUCTURE	150	35
5	BARU CONVEYANCE CHANNEL OUTLET STRUCTURE	106	20
6	BANDARHARJO EAST SECONDARY CHANNEL	1,166	491
7	BANDARHARIO EAST SECONDARY CHANNEL OUTLET STRUCTURE	90	31
8	BARU RETARDING POND INLET STRUCTURE No. 1		77
9	BARU RETARDING POND INLET STRUCTURE No. 2		42
10	FUEL TANK BOX FOR BARU PUMPING STATION	133	62
	TOTAL	9,618	4,195

1. 1. 1

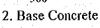
	Name of Structure	BARU CONVEYANCE CH. INLET STR.; FOR SCAFFOLDING AND FORM SUPPORT	Category of calculation	VOLUME CALCULATION	Page	16/17
9 1 1 1		DING AREA		an a		
	A. Box C {(2 x	2.75) + (2 x 2.0)} x 8.65	=	82.175 m ²		
	B. Wing	Wall		e Na Stationa		
C		.85 – 2 x 2.0) + (2 x 2.5 x 4	.85)	an an taon an	· • • •	- -
	+ (3.0	x 1.55) + (2 x 0.35 x 4.85)		67.06 m ²		-
	Total		=	149.235 m ²		
	2 FORM SU				1911 L	
	2. FORM SU 2.0 x 2.0 x		· . =	36.60 m ³		
(andar gʻoʻrata alagi Tari Alagi atalogi atalogi Alagi atalogi ata		
	and Alian Alian ang ang ang ang ang ang ang ang ang a					
						•
			*			
					•	
					· · .	
		3	- 227			

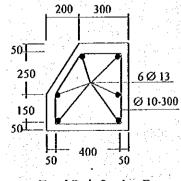
Name of Structure	OUTLET OF FUTURE SECONDARY CHANNEL	Category Calculation	CONCRETE VOLUME	Page	1/11 3 1/11 3 2 (4 g)	
	OUTLET WORK ()F FUTURE SEC(net.		
		<u>,</u>				
1. CO	NCRETE K 225		=]	15.07 m ³		
2. LE	VELING CONCRETE		an a	1.28 m ³	йн н М	
FO	RM WORK FOR LEVEL	ING CONCRETE		4.4 m ²		
3. RE	INFORCING BAR		=	837 Kg		
4. ST	ONE MASONRY		=	137 m ³	2	
5. BA	CK FILL GRAVEL			17.5 m ³		
6. ST	RUCTURE EXCAVATIO	N	=	378 m ³		
7. BA	CK FILLING		= 20	8.63 m ³	· · · · ·	
8. LO	G PILE Ø 15 cm, L=3.0 n	n	=	156 m'		
9. WE	EP HOLE PVC Ø 50 cm			42 nos.		
	RM WORK		≕ 9	5.91 m ²		
· · · · · · · · · · · · · · · · · · ·	BBLE STONE			5.57 m ³		


Structure	SECONDARY CHANNEL	Category Calculation	CONCI		Page	3/11
CONCRET	E K 225		· · ·		· · .	· · ·
Slab						
- Area	a of Slab = 2.6	50 x 9.0		23.40	m²	
- Thio	kness of Slab		=	0.40	m	
- Voli	ume of Slab = 23.	.40 x 0.40	=	9.40	m³	
Parapet	Wall					
- Area	a of Parapet = 0.8	x 2 x 2.60	=	4.16	m²	2
- Thic	kness of Parapet		. =	0.30	m	
- Volı	ume of Parapet = 0.3	x 4.16	·	1.25	m ³	
Concre	te K 225 for Revetme	nt			•	
- Тор	Concrete:			1. S.	· •.	
	$A = \frac{0.5}{2}$	$\frac{55+0.70}{2}$ × 0.30	=	0.188	n²	
	L = 6.5	0 x 2	=	13.00	m	
	Volume $= 13.$	00 x 0.188	·	2.44 1	11 ³	
- Base	Concrete:			1 A.		
	$A = \frac{0.5}{2}$	$\frac{50+0.30}{2} \times 0.30$	=	0.12 ı	n²	
	0.2	0 x 0.50	=	0.10 1	n²	
· .	Total A = 0.12	2 + 0.10	. ==	0.22 ו	n²	
	L = 4.5	0 x 2	. =	9.00	m	
	Volume = 9.00	0 x 0.22	= `	1.98 r	n ³	
Total	Volume = 2.44	4 + 1.98	_ =	4.42 r	n ³	
Total	Volume Concrete K 2	25		۰ ۲۰ ۰ - ۲۰		
	= 9.4	+ 1.25 + 4.42	=	15.07 r	n ³	
2. PLAIN CO	ONCRETE				al Salah di Maran	
		•	1911 - 1913 - 1914 1			
0.1 X 0	0.5 x 13 + 0.1 x 0.7 x 9	9		1.28 п	n'	
Form v	work for Leveling Co	ncrete				
· ·	= 0.1	x 2 x (13 + 9)	=	4.4 n	1 ²	
					riti. Linguna di	

C

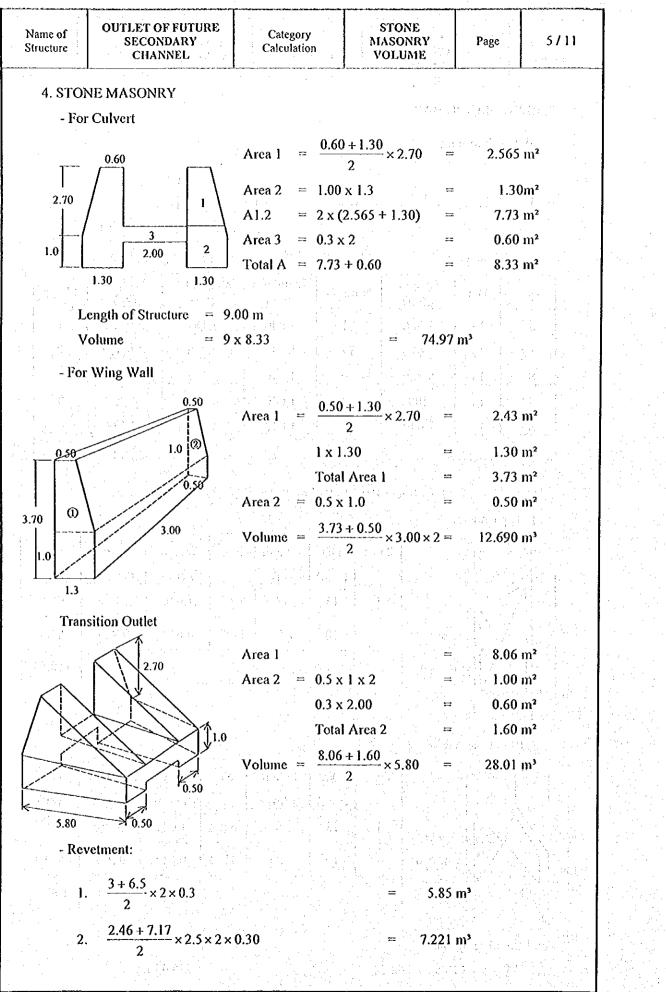
C


	me of acture	SEC	T OF FUTUR CONDARY HANNEL		tegory culation	REINFORCING BAR VOLUME	1 Page	4/1
• .	3. REINF	ORCIN	G BAR					
	Slab F	einforci	ng	1			1.2	
	1.2	I.1]	L1	1.2	1.2		I.1
	n n n N	Shape	1	Shape 2		LI Shape 3	1.3 Shape 4	
	Туре	Dia	Length (mm)	Number	Weight/m kg/m	Weight/bar (kg)	Weight (kg)	Shape
	S1	13	3,060	71	1.040	3.182	225.95	1
[S2	13	2,620	37	1.040	2.725	100.817	2
	S 3	13	8,820	20	1.040	9.173	183.46	2
. ·	S4	13	400	12	1.040	0.416	4.99	3
Ì	S5	13	2,040	20	1.040	2.121	42.432	4
			······					

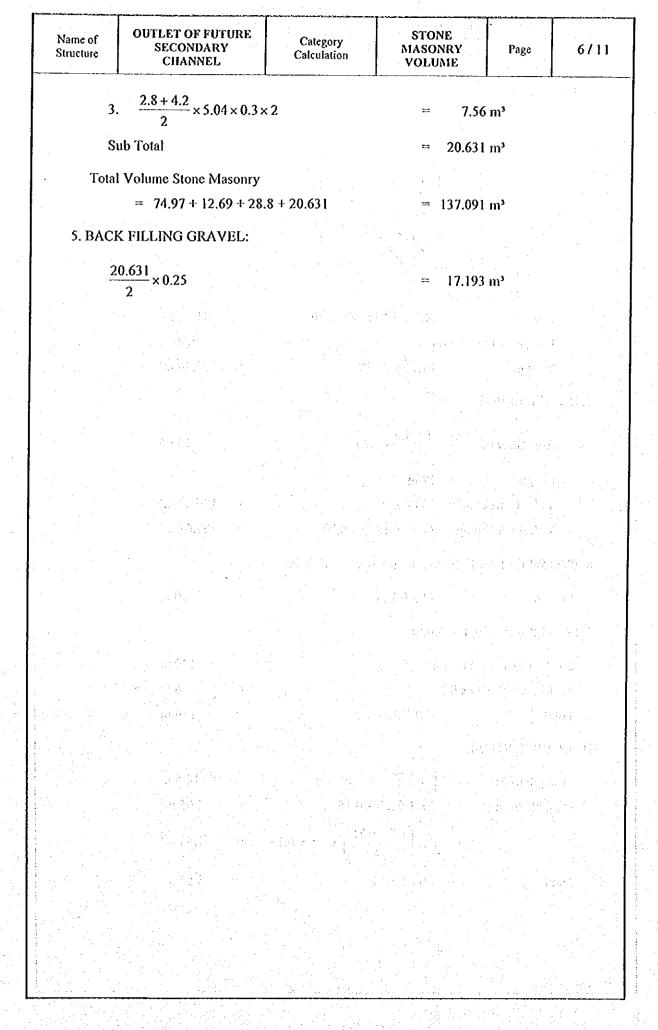

C. Concrete for Revetment Baru Retarding Pond

0

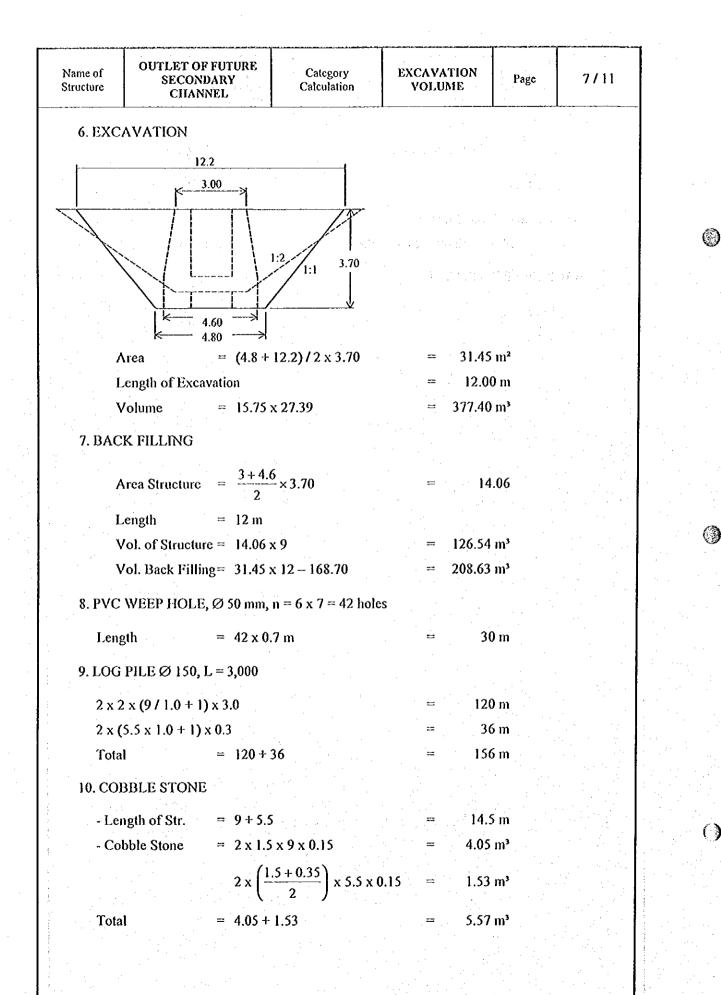
11.1	1					
Туре	Dia	Length	No.	Weight	Weight	Total
	(mm)	<u>(m)</u>		Per m	Per Bar	(kg)
1	13	13	6 x 2	1.040	13.52	27.04
2	10	1.56	44x2	0.617	0.963	83.5
• • •	1	• • • • •	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	Total =	110.54
· · · ·						L



Total Reinforcing Bar 557.65 + 110.54 + 168.24


Weight Total Турс Dia Length No. Weight Per Bar (m) Per m (kg) (mm) 9.36 1 6 x 2 1.040 112.32 9 13 2 0.932 55.92 31x2 0.617 10 1.56 Total ≕ 168.24

836.43 kg


()

٩

Ę

(

Name of Structure	OUTLET OF FUTURE SECONDARY CHANNEL	Category Calculation	FORM WORK VOLUME	Page	8/11	
11. Forn		n an				
· .	··· · ·					
a. Sla	ab Concrete			1	2	
2.	00 m x 9.00 m ==	18.00 m ²			÷	
1.	20 m x 2.60 x 2 =	6.24 m²		e a tradición.		
0.	30 m x 2.60 x 2 =	4.16 m²				
Sı	ub Total =	28.40 m ²			·	
b. Co	oncrete for Revetment					
- Tor) Concrete		en operations de la constant de la constant de la constant de la constant de la c			
	.695 + 0.95) x 13 x 2 =	32.37 m ²				
0.	$10 \times 2 \times 13 \times 2 =$	5.20 m²				
Sı	ıb Total =	37.57 m²				
- Bas	e Concrete					
(0	.55 + 0.5) x 13 x 2 ==	27.3 m²				
0.	$10 \ge 2 \ge 6.6 \ge 2$ =	2.64 m²				-
Sı	ıb Total 🗧	29.94 m²		1.		••
Total	Form Work					
28	3.40 + 37.57 + 29.94 =	95.91 m²				•
e da Alexane. Estat						•

¢

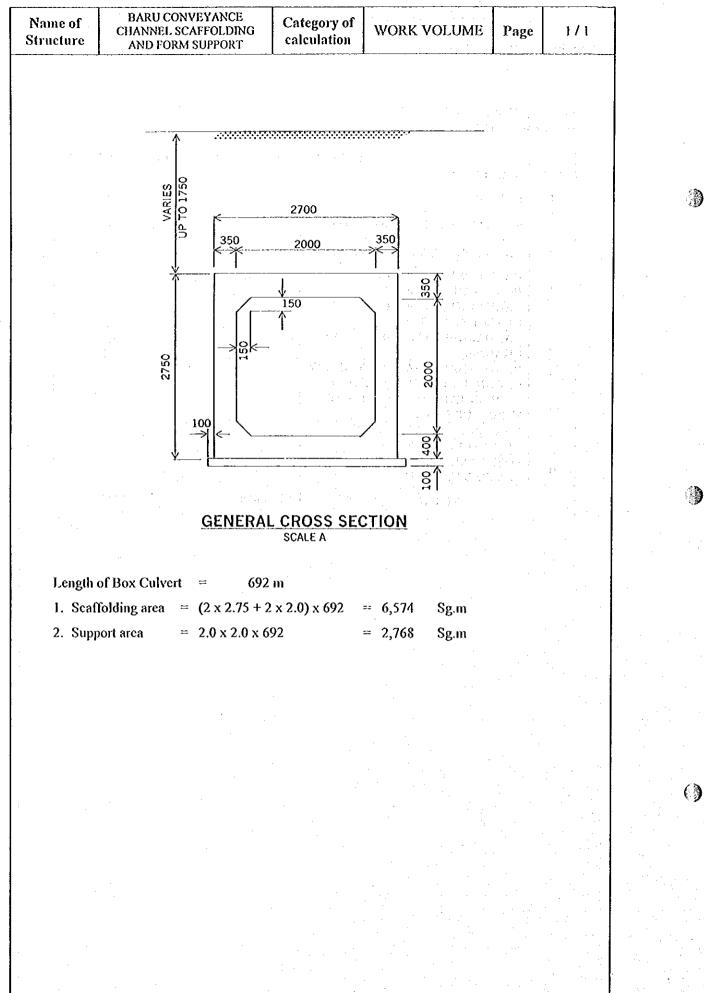
Name of Structure	SUPPORT FOR BANDAR	Category of calculation	WORK VOLU	JME Page	9/1
:	SUMMARY OF SCAFOLDIN FOR BANDARHAR	G AND FOR IJO DRAINA	M SUPPORT VO .GE SYSTEM	LUME,	•
No.	VOLU	ME SC	AFOLÐING (m²)	FORM SUP (m³)	PORT
1	BARU PUMPING STATION		1,049	549	
2	BARU PUMPING STATION GATE		350	120	
3	BARU CONVEYANCE CHANNEL		6,574	2,768	
4	BARU CONVEYANCE CHANNEL INLET STRUCTURE		150	35	
5	BARU CONVEYANCE CHANNEL OUTLET STRUCTURE		106 (1990) 104	20	
6	BANDARHARIO EAST SECONDA CHANNEL		1,166	491	
7	BANDARHARJO EAST SECONDA CHANNEL OUTLET STRUCTURE	RY	90	31	
8	BARU RETARDING POND INLET STRUCTURE No. 1			77	
9	BARU RETARDING POND INLET STRUCTURE No. 2			42	
10	FUEL TANK BOX FOR BARU PUMPING STATION		133	62	
	TOTAL		9,618	4,195	

C

	<u></u>	PADIODENADDINO		n den af an anna dhalan an air air an anna anna an an an an an an an an an		يري التحاك المالية المتكاف المتحاف المرارية
	Name of Structure	BARU RETARDING POND INLET STRUCTURE NO.2 FOR SCAFFOLDING AND	Category Calculation	WORK VOLUME	Page	10/11
1 		FORM SUPPORT			L	
:		FFOLDING AREA			. '	
÷	1.001		•		·	
:	2. FOR	M SUPPORT AREA			· · ·	
8					· · ·	
	. ··· 9	$0.0 \ge 2.0 \ge 2.30 = 41.4$	40 m ³			
	· · · · ·				1.	·. ·
			·	and a second parts		
	1			والمراجعين فكرار والأرا		
				an an an an Anna an An	na an an an Arainneach an A Arainneach an Arainneach an A	н. 1
					• ¹	
	· · · ·				•	
	5				n en sen de jarren. Ne sen en se Ne sen en sen	
				an a	an na 1999. I	
				· · · · · · · · · · · · · · · · · · ·		
				11月1日日本皇,11月1日 11月		6
			· ·			
V					• • • •	
						e egel
	·. ·				e en seg	er großen.
			. •			
			•	÷.	, i farfi a santa ang	:
	•••					
			· · · · ·		en en gr	
				· ·		
			e de la construcción de la construc		:	n an training An training training
					· . · ·	
					. 197	
			the second se	and the second	and the second	

Nam Struc		BARU CONVEYANCE CHANNEL (BOX CULVERT)	Category of calculation	SUMM	ARY	Page	1.	/1
					la - S S - S - S	:		
SUMM	IARY	Y OF CHANNEL WORK AND	D INSPECTION	ROAD VC	DLUME	CALCU	LATI	ION
			· .			 100 	ka si	
I.	<u>CII</u>	ANNEL WORKS						-
	1.	Dewatering		<u> </u>	LS			
	2.	Structure Excavation		í, i m i	14,030		m ³	
	3.	Structure Excavation with Sho	ring		8,544		m ³	
•	4.	Bock Fill with Sandy Soil		#	16,110)	m ³	
	5.	Concrete Structure (Type C1)			2981	.5	m³	
	6.	Leveling concrete (Type E)		≓	240	.63	m³	
	7.	Water Stop with Rubber Filler	· · ·	=	381	.50	m ʻ	
	8.	Form Work for Concrete Type	Cl	=	10,989	.43	m²	
	9.	Form work for Concrete Type	E	. =	166		m²	
1. A.							·	
Ш.	RE	NFORCING BAR					•	•
	1.	Box Culvert = 79650 + 54450)	. ==	134,100	ч. 1. т. т.	kg	
	2.	Man Hole Block Type A			25,710		kg	
	3.	Man Hole Block Type B			65,410	· · · · · · · · · · · · · · · · · · ·	kg	
	· · ·		·	=	225,220		kg	
				۰ ۲۰۰۰ ۲۰۰۰			•	
111.	INS	PECTION ROAD			÷.,			
	۱.	Embankment		=	1,944	· ·	m ³	
	2.	Sand Bedding	r.	. =	79	· .	m ³	
	3.	Concrete Conbloc		. =	1,315		m ²	
	4.	Cement Mortar	. '	• •	3		m ³	
	5.	Concrete Kerb		=	32		m³	
	6.	Aggregate Class A			225		m ³	

()


Name of	
Structure	

C

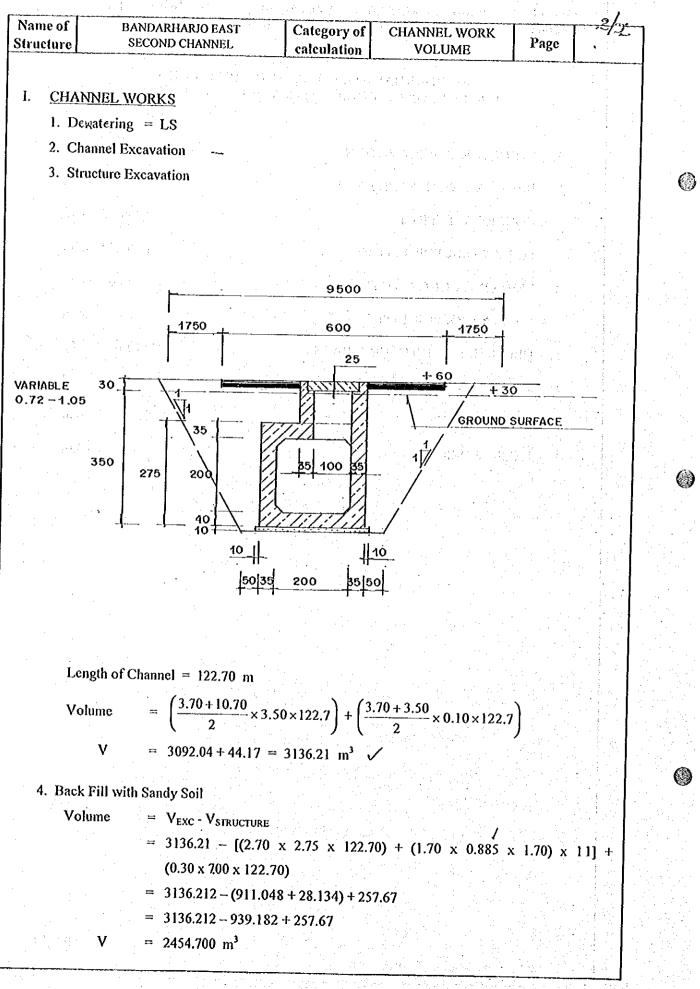
Page

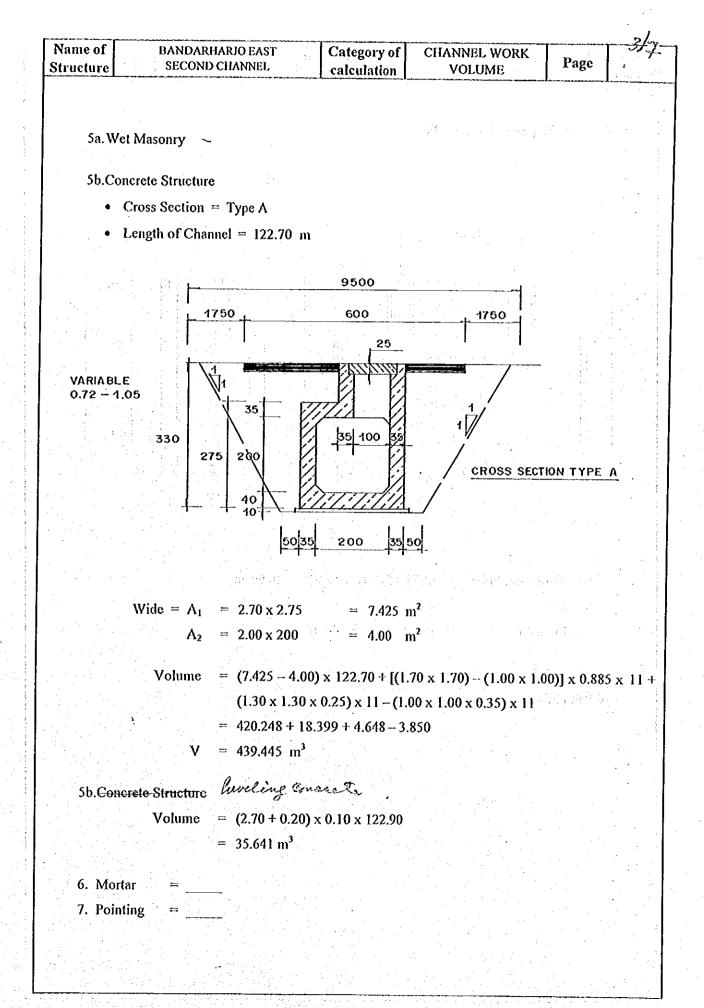
SUMMARY SCAFFOLDING AND FORM SUPPORT VOLUME, FOR BANDARHARJO DRAINAGE SYSTEM

No.	VOLUME	SCAFFOLDING (m²)	FORM SUPPORT (m ³)
1	BARU PUMPING STATION	1,049	549
2	BARU PUMPING STATION GATE	350	120
3	BARU CONVEYANCE CHANNEL	6,574	2,768
4	BARU CONVEYANCE CHANNEL INLET STRUCTURE	150	35
5	BARU CONVEYANCE CHANNEL OUTLET STRUCTURE	106	20
6	BANDARHARJO EAT SECONDARY CHANNEL	1,166	491
7	BANDARHARJO EAST SECONDARY CHANNEL OUTLET STRUCTURE	90	31
8	BARU RETARDING POND INLET STRUCTURE No. 1	-	77
9	BARU RETARDING POND INLET STRUCTURE No. 2		42
10	FUEL TANK BOX FOR BARU PUMPING STATION	133	62
	TOTAL	9,618	4,195

Package 3: I Bandarharjo East Secondary Channel

()

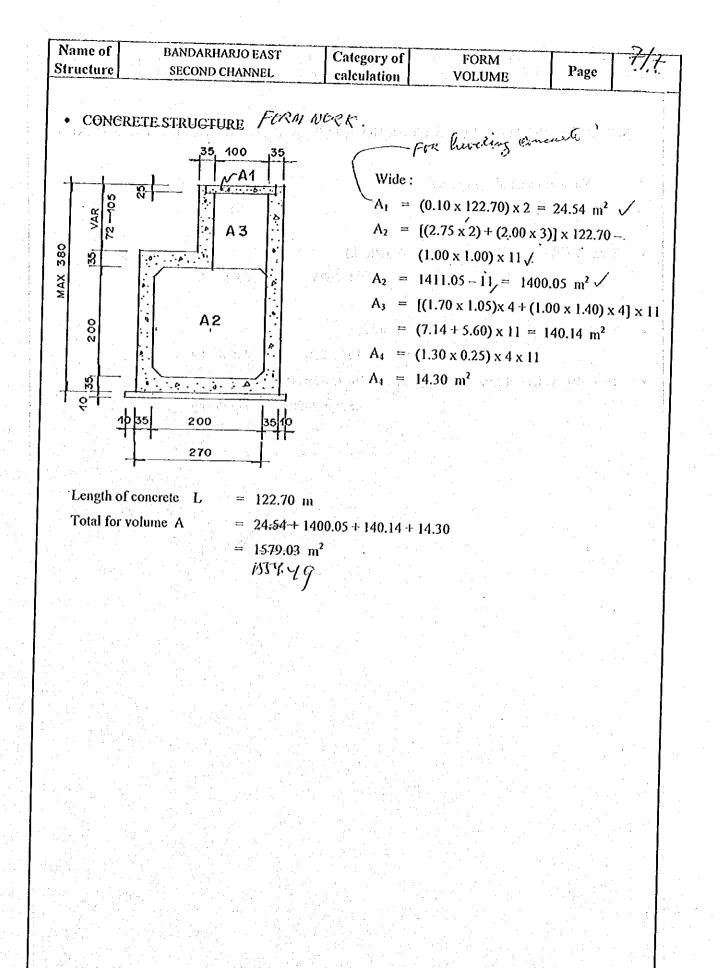

Name of Structure	BANDARHARJO EAST SECONDARY CHANNEL	Category of calculation	WORKS VOLUM		age	1/7
	<u>BANDARHARJO E.</u> SUMMARY OF CHANNEJ	AST SECONDA L WORK VOLI	<u>RY CHANN</u> JME CALCU	<u>EL</u> ILATION		
		· .		2 126 21		
	UCTURAL EXCAVATION X FILL WITH SANDY SOII	,		3,136.21 2,YJ47		€ V
3. CON	ICRETE TYPE C1		=	439.45	cu.m	1
FOR	M WORK FOR TYPE CI	· .	· = .	1,554.49	sq.m	
4. LEV	ELING CONCRETE TYPE I	3	=	35.64	cu.m	1
FOR	M WORK FOR TYPE E			24.54	sq.m	
5. DEF	ORMED REINFORCING BA	ARS	, i a i	32,875	Kg	1
6. WA	TER STOP, $W = 200$		=	65	m'	V
7. SCA	FFOLDING		=	1,166	sq.m	· · · · ·
8. FAI	.SE WORK			491	cu.m	
					· · ·	


C

()

3 - 241

I2/P3



)

3



.

್ರ

Name of Structure	BANDARHARJO EAST SECOND CHANNEL	Category of calculation	REINFORCING MAN HOLE VOLUME	Page 1 / 12
SHUCILIE				L
- 	•	- 		
<u>SUMMA</u>	RY REINFORCING BAR MAN	HOLE TYPE	A AND BOX CULVER	(STANDARD)
		. *		
- Nu	umber man hole (Type A)		= 11 pieces <	
-	angth of Box Culvert		= 104 m'	
- 10				
• Total B	ar Weight of Man Hole Type A	(Block) :		
10000		$= 11 \times 625$	= 6875 kg	
× .		- 11 X 025	- 0075 Kg	
	1993年末1月1日(1月1日)(1月1日)) 1993年末日(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1月1日)(1			
Total B	Bar Weight of Box Culvert (Stand	1. Sec. 1. Sec		
		= 104 x 250	= 26000 kg	
Total B	lar Weight of Man Hole Type A a	and Box Culvert	(Standard) :	
		= 6875 + 260	00 = 32875 kg	
				an dia kaominina dia 41 Manjara dia mandri kaominina
		an an an an Araba. An an Araba		

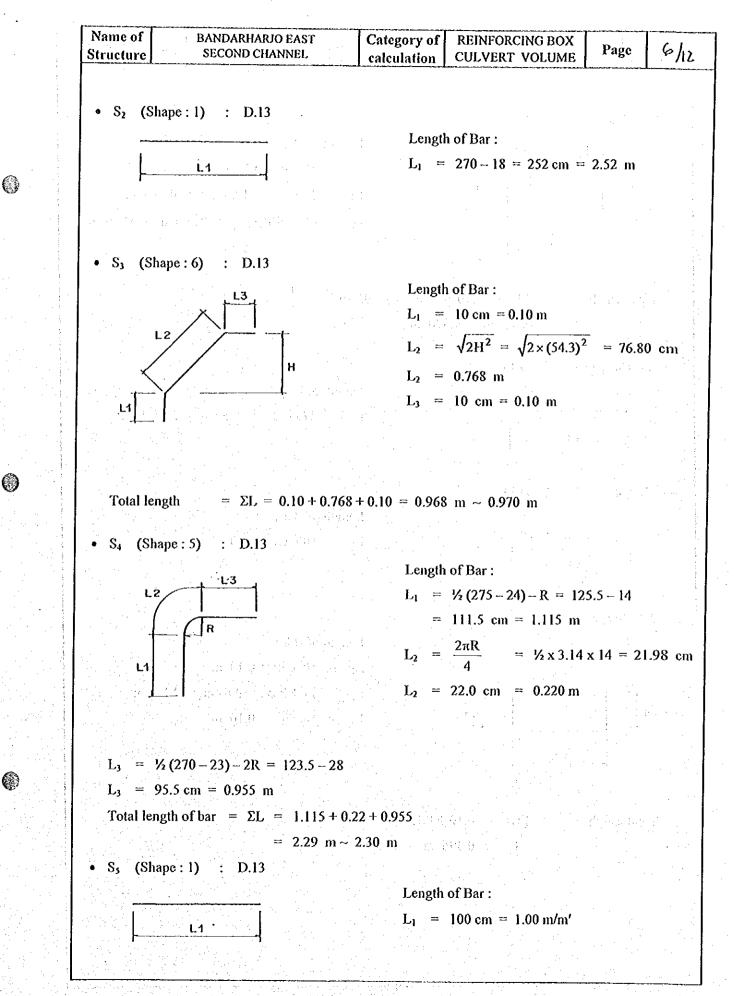
Name of Structure			RHARJO EA D CHANNE		Category of calculation		RCING BOX	Page	3 / 12
		· .	•	· · · · ·	· · · · · · ·				
		DA	DWEIOI						7
		DE	u weigr	TI FURS	l'ANDARD I	SOX CUL	<u>VERT / m'</u>		
			· · ·			•		•	-
TY	PE	SHAPE	DIA	NUMBE	R LENG (m)	тн Гу	UNIT VEIGHT (Kg/m)	TOTAL WEIGHT (Kg)	
S	1	5	13	4	21.5		1.04		-
	2	1	13	8	20.1		1.04	22	-
	3	6	13	8	7.7		1.04		-
	4	4	13	8	18.4	0	1.04	19	-
	5	<u> </u>	13	20	20.0	0	1.04	21	
117	6	3	13	6	5.2	2	1.04	6	-
W	1	1	13	8	20.4	0	1.04	21	-
	2		13	28	28.0	0	1.04	29	-
F	3	2	13	12	4.8		1.04	5	1.
<u>r</u>	$\frac{1}{2}$	5	13	4	21.72		1.04	23	
	2 3	1	13	8	20.10		1.04	21	
-	3	6	13	8	8.08		1.04	8	1
	5		13	8	18.00		1.04	19	1
	6	3	13	20	20.00		1.04	21] : :
	Ľ			6	5.52	?	1.04	6	
				TOTAL		a da seta. Na		250 kg	
				rt in Bandai	harjo East Se	condary ch	annel :		
-	Lengt	th of channe	1	=	<u>e Australia</u>	= 122	.70 m		
-]	Lengt	h of man ho	ole	=	11 x 1.70	- = 18.7	'0 m	· · · · · · · · · · · · · · · · · · ·	
··]	Lengt	h of standar	d box culv	ert		= 104.	00 m		Norman Norman Norman

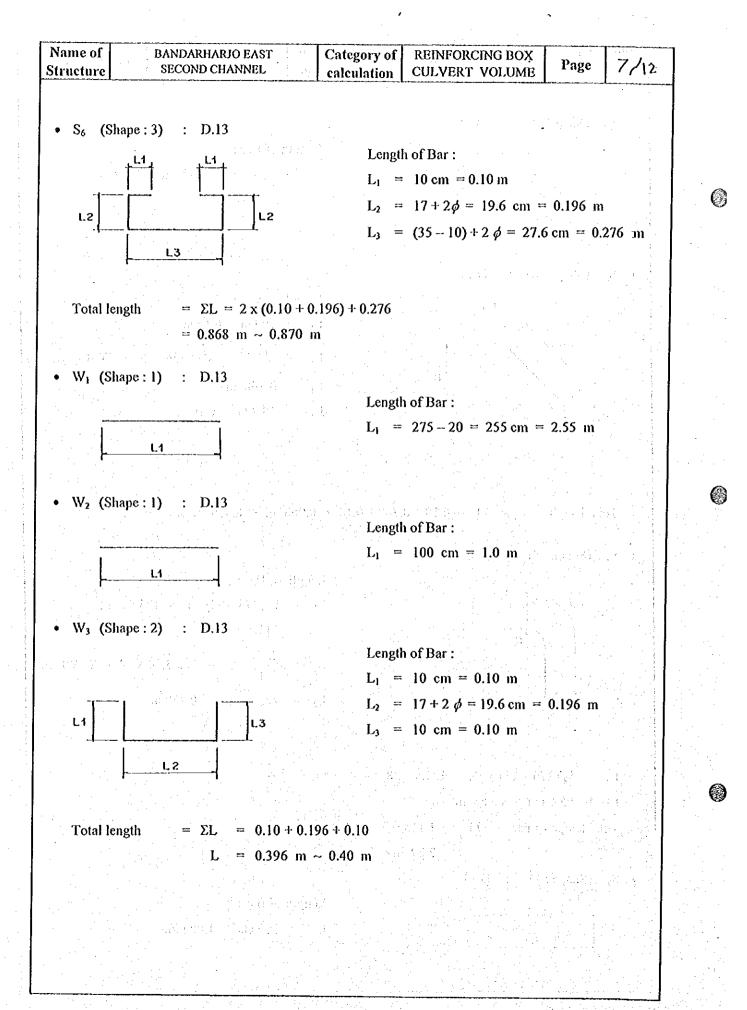
	I otal weight to	r box culvert		=	104 x 250
• •		Σ₩	;	=	26000 kg

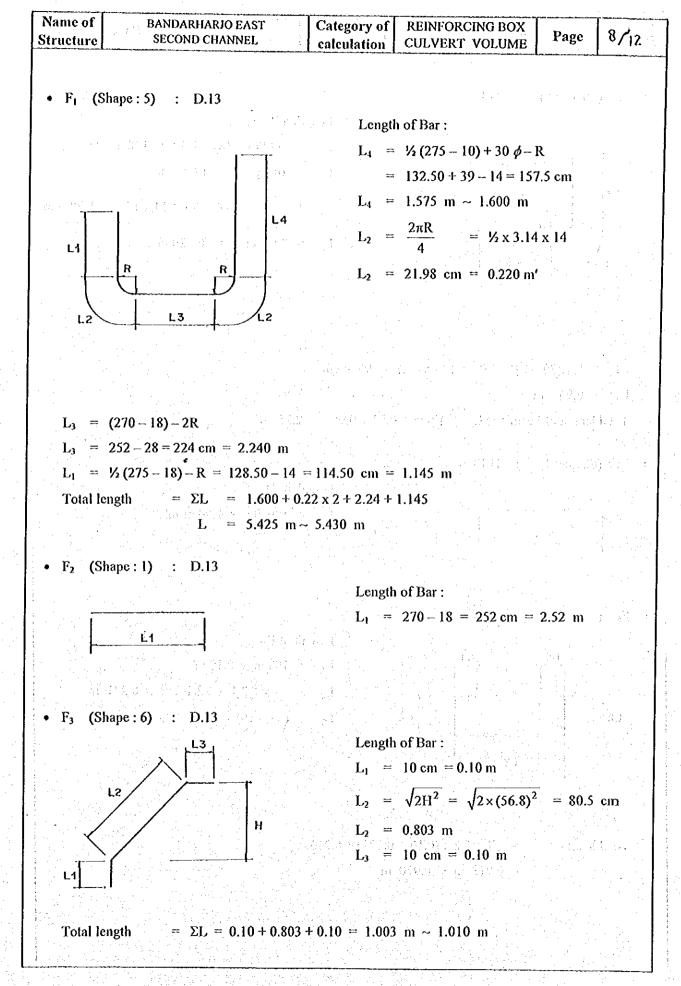
	ie of cture		HARJO EAS		Category of alculation		ORCING MA		Page	4/
		BAI	WEIGH	r for on	E BLOCK N	MAN H	OLE TYPE	<u>A</u> : :	Ar a	.1 .1
			.*				e Bellester			
	түре	SHAPE	DIA	NUMBEI	₹ TOTA LENG (m)	TH	UNIT WEIGHT (Kg/m)		TOTA WEIGI (Kg)	
ĺ	S 1	. 5	13	4	28.42	24	1.04		30	
ł	2	1	13	8	17.9	52	1.04		19	
ł	3	6	13	8	6.59	96	1.04		7	
ł	4	4	13	8	15.64	40	1.04		16	1.5
ľ	5	1	13	20	22.00	00	1.04		23	
ľ	6	3	13	6	3.6	54	1.04	·	- 4	
t	W 1 1	1	13	. 8	34.6	80	1.04		36	
Ī	2	1	13	28	47.60	00	1.04		50	
Ì	3	2	13	12	8.10	60	1.04		9	
Ì	F : 1	5	13	4	36.92	24	1.04		38	
·	2	1	13	8	34.2	72	1.04		36	
Ì	. 3	6	13	8	13.7	36	1.04		14	
	4	4	13	8	30.6		1.04		32	
. [5	1	13	20	34.0		1.04		35	
	6	3	13	6	9.3		1.04		10	
	M I	- 3 -	13	4	30.0		1.04		31	
•	2	3	13	3	16.2		1.04	<u>^</u>	17	· · · .
. [- 3	5	13	33	86.7		1.40		91	14 .
	4	4	13	15	22.7		1.04		24	
	- 5	. 7 :	13	13	25.0		1.04		26	
·	- 6	7	13	<u> </u>	21.7		1.04		23	
	7	<u>− 1 2 2</u>	<u>* 13 4</u>		3.5		1.04		4	
·	8	1	13	4	4.8		1.04		5	
	C 1	<u> </u>	19	7	12.4		2.23		28	
·	2	1	13	4	5.1		1.04		5	
ļ	3	1	13		3.0		1.04		3	
	. 4	2	13		5.5		1.04		6	
	. 5	6	19	2 TOTAI	1.5	40	2.23		<u> </u>	

Bar Shorted Consequent for One Man Hole

۲


(\$

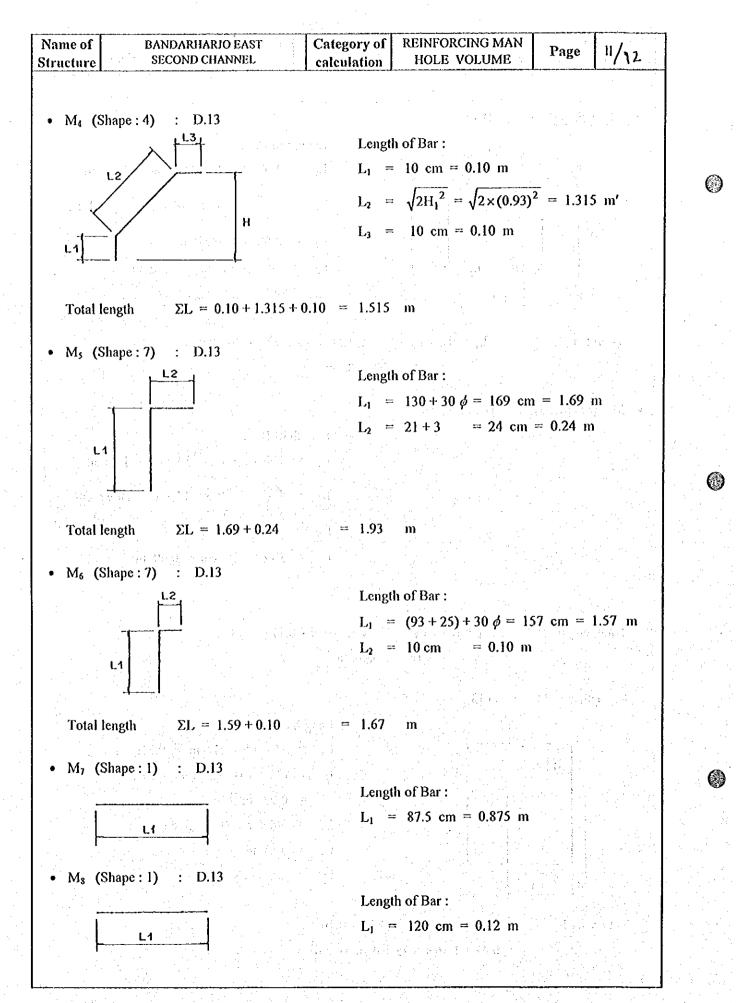

Ć


S ₁	==	(1.00 + 2 x 0.10) x 4	=	4.8	m
S ₂	=	1.20 x 8	=	9.60	m
S3	=	0.970 x 4	=	3.88	m
S ₄	=	2.30 x 4		9.20	m
Ss	=	(1.20 x 10)		12.00	m
S6	=	0.870 x 6	=	5.22	m
				1.1	

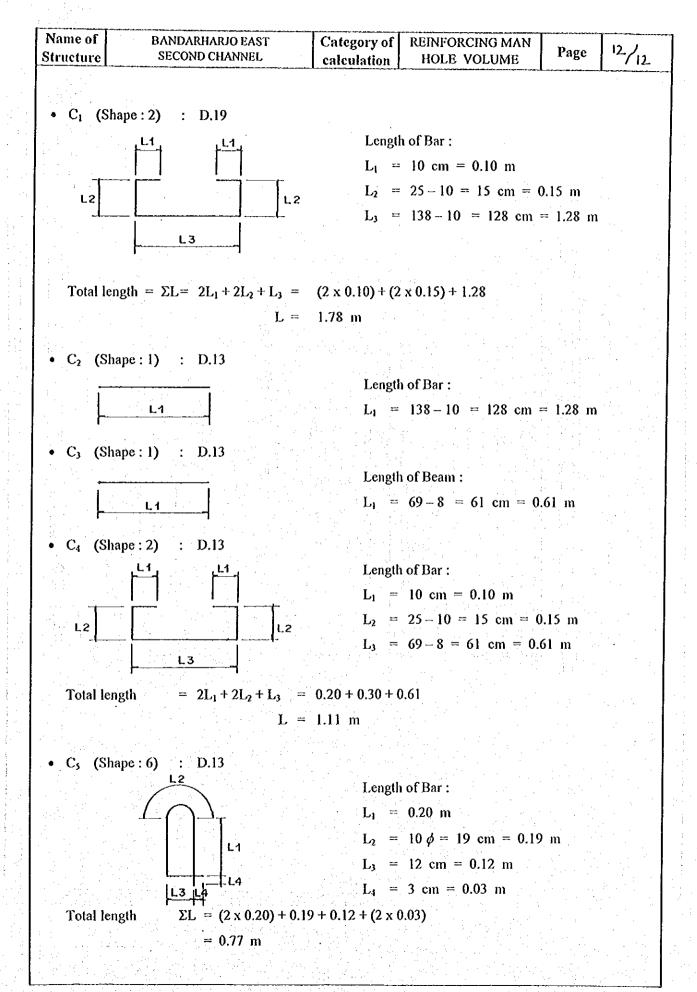
Structure		calculation	HOLE	VOLUME	Page	5/12
	t n. C. O Died Mais Hal	· · ·			· .	
	orcing Bar for One Block Man Hol					
·		5.72 x 1.70 =				
- S	The second se	$0.56 \ge 1.70 =$				•
- S	$b_3 = (0.970 \times 8) - 3.88 = 3.$	88 x 1.70 =		m		
- S	$b_4 = (2.30 \times 8) - 9.20 = 9.$	20 x 1.70 =	15.640	m		
- S	$s_s = (1.70 \times 20) - 12.00$		22.000	m		
- S	$B_6 = (0.870 \times 6) \times 1.70 - 5.22$		3.654	m		
·	$Y_1 = 2.55 \times 8 \times 1.70$		34.680	m		
· · · · · · · · · · · · · · · · · · ·	$V_2 = 1.00 \ge 28 \ge 1.70$		47.600	m		el el el
- N	$V_3 = 0.40 \times 12 \times 1.70$		8.160	m		
- F	$F_1 = 5.43 \times 4 \times 1.70$	na tenan yang sebagai yang sebag Sebagai yang sebagai	36.924	m		
- F	$F_2 = 2.52 \times 8 \times 1.70$	e e de la compañía d	34.272	m to the		
1 - F - F - F -	$F_3 = 1.01 \times 8 \times 1.70$	=	13.736	m		
	$E_4 = 2.25 \times 8 \times 1.70$		30.600	m		
1	$F_{5} = 1.70 \times 20$					
	$F_6 = 0.920 \times 6 \times 1.70$			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	6 - 0.720 X 0 X 1.70		7.501			
• S ₁ (S	hape:5) : D.13					
		Lengt	h of Bar :			
n de ser de la composition de la compos En la composition de la			1. S. 1. 1. #	- 10) + 30 <i>ø</i> -	R	
L2/			an tas an tara a	+ 39 – 14 = 15	and the second	
	$-\left(\begin{bmatrix} R & R \end{bmatrix} \right) - +$		= 1.575 n	are a constant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Le la constante de la constante	+ L ₁ =	الأربي جافل أرار	•		
L1		L ₂ =	$=\frac{2\pi R}{4}$	$= \frac{1}{2} \times 3.1$	4 x 14	
			- 21.09 -	0.000 -		
· 1		L2 =	= 21.98 C	m = 0.220 n	11	
L ₃ =	(270 – 18) – 2R					
L₃ ≒	252 - 28 = 224 cm = 2.240 m					
L ₄ =	$\frac{1}{2}(275-23) - R = 126 - 14 =$	112 cm = 1.12	!0 m			
Total I	$ength = \Sigma L = 1.575 + 0$).22 x 2 + 2.24 +	+ 1.12			
	L = 5.375 m	n el de su etter a la e				

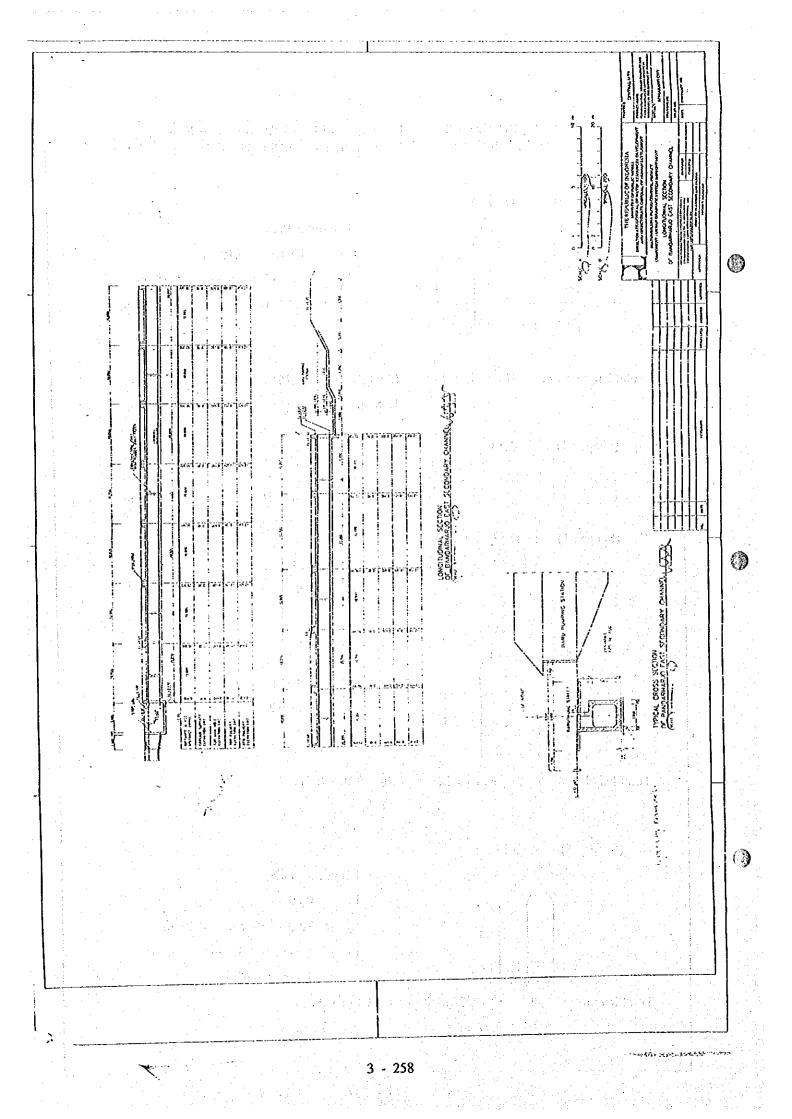
Ċ

Structure	BANDARHARJO EAST SECOND CHANNEL	Category of	REINFORCING BOX CULVERT VOLUMB	Page	9/12
aucure		calculation	COLVERT YOLUMB		-/14
• F4 (Sh	nape: 5) : D.13			an gan	
	• 1 ⁴ 1 4 1 4	Lengt	h of Bar :		
r	÷ ₁ , (nativitation)	L ₁ =	½ (275 – 18) – 1½R =	128.5 - 2	1
		$L_1 =$	107.5 cm = 1.075 m		
L1		La =	$\frac{2\pi R}{2\pi R} = \frac{1}{2} \times 3.14$		1.00
		$L_2 =$	$\frac{2\pi x}{4} = \frac{1}{2} \times 3.14$	$1 \times 14 = 2$	1.98 cm
		L ₂ =	22.0 cm = 0.220 m		
rs/	L3	ar an			
· · ·				,	
-				· · · ·	
L ₃ =	$\frac{1}{2}(270-23)-2R = 123.5-28$	= 95.5 cm			
· · · · ·	0.955 m				
	ngth of beam = $\Sigma L = 1.075 + 0$	$.22 \pm 0.955 = 2$	2.25 m		
	<u> </u>			na an an an Anna Anna Anna Anna Anna Ann	
• F5 (Sl	nape:1) : D.13				
	a a de la companya d A companya de la comp A companya de la comp		of Bar :		
	1		おもちがあり オート 見しり オート		
		$L_1 =$	100 cm = 1.00 m/m'		
	L1	L ₁ =	100 cm = 1.00 m/m'		
	<u>L1</u>		100 cm = 1.00 m/m'		
	L 1	1	100 cm = 1.00 m/m'		
• F& (St		La La La = 21 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	100 cm = 1.00 m/m'		
• F ₆ (St	L 1 nape: 3) : D.13				
• F ₆ (St		Lengt	ı of Bar :		
• F ₆ (Sł		Lengt L ₁ =	n of Bar : 10 cm = 0.10 m	= 0.221	
T	hape: 3) : D.13	Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. C.	
• F ₆ (Sł		Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m	198 - A. C.	
T	hape: 3) : D.13	Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
T	hape: 3) : D.13	Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
T	hape: 3) : D.13	Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
T	hape: 3) : D.13	Length $L_1 = L_2 = L_2$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
T	hape: 3) : D.13	$LengtlL_1 =L_2 =L_3 =$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
L2	hape: 3) : D.13	Lengtl $L_1 = L_2 = L_3 = L_3 = 0.221$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
L2	hape: 3) : D.13 L^{1} L^{2} L^{3} hgth = $\Sigma L = 2 \times (0.10 + 0.00)$	Lengtl $L_1 = L_2 = L_3 = L_3 = 0.221$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	
L2	hape: 3) : D.13 $ \begin{array}{c} L1 \\ L3 \\ L3 \\ L3 \\ L2 \\ L2$	Lengti $L_1 = L_2 = L_3 = L_3 = 0.221) + 0.276$	n of Bar : 10 cm = 0.10 m 19.5 + 2 ϕ = 22.1 cm	198 - A. A.	


Name of
Structure
 DANDARHARIO EAST
SECOND CHANNEL
 Category of
categold(on)
 REINFORCING MAN
HOLE VOLUME
 Page

$$10/12$$


 • M₁ (Shape : 3) : D.13
 L1
 L2
 L3
 L3
 L2
 L3
 L3
 L3
 L3
 L2
 L3
 L3
 L3
 L3
 L3
 L3
 L3
 L3
 L3

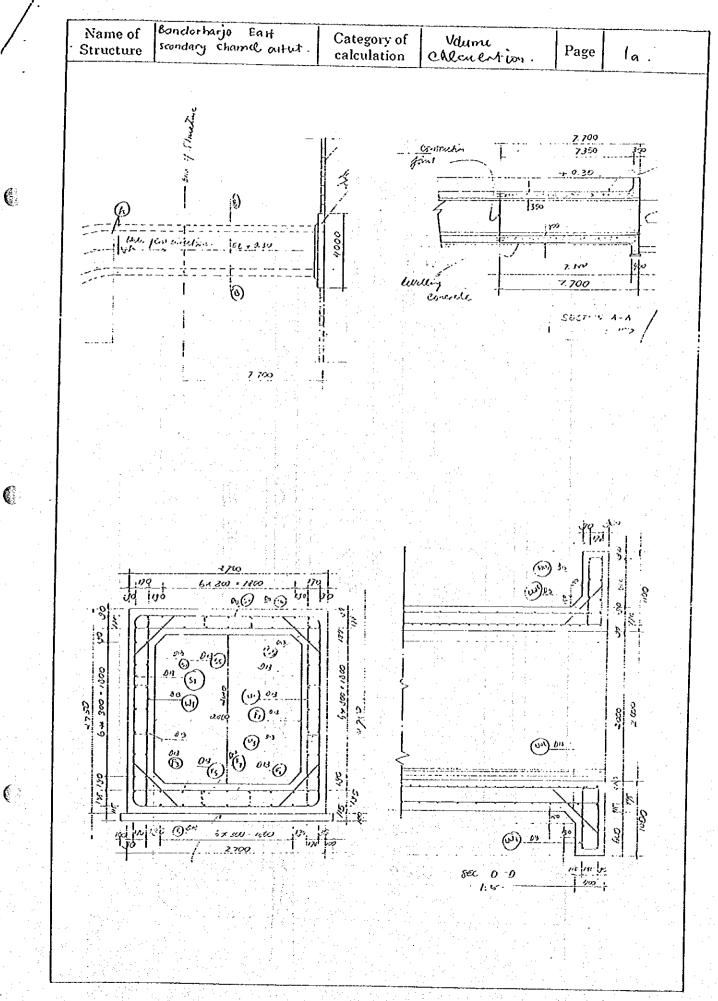

(

(

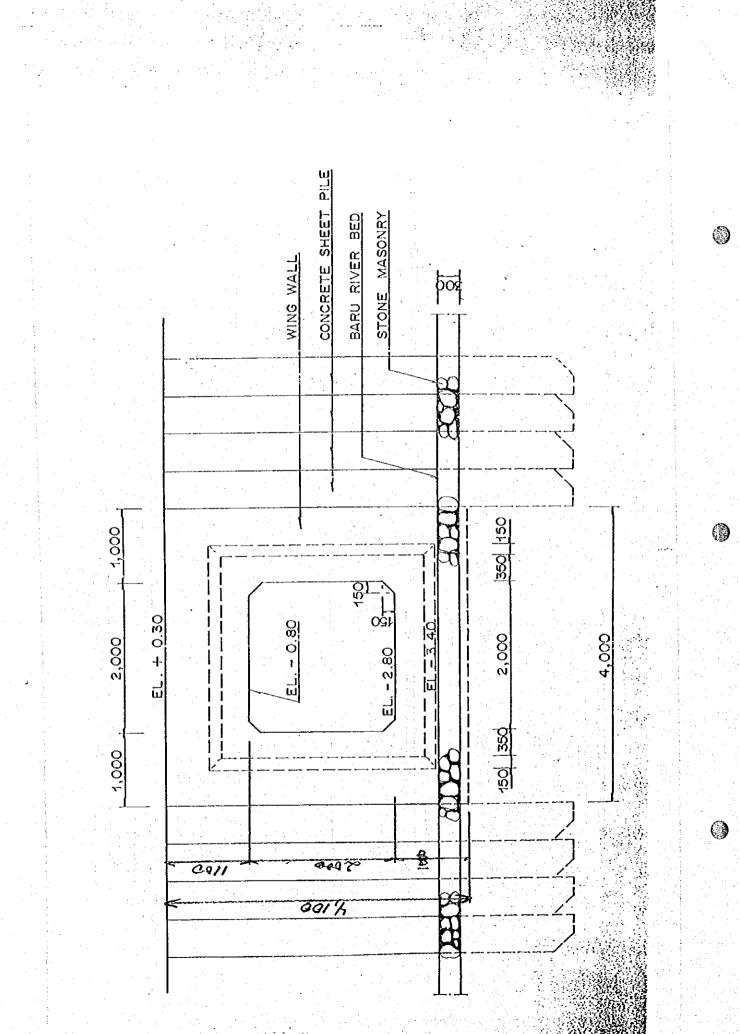
(

September 128, 1999

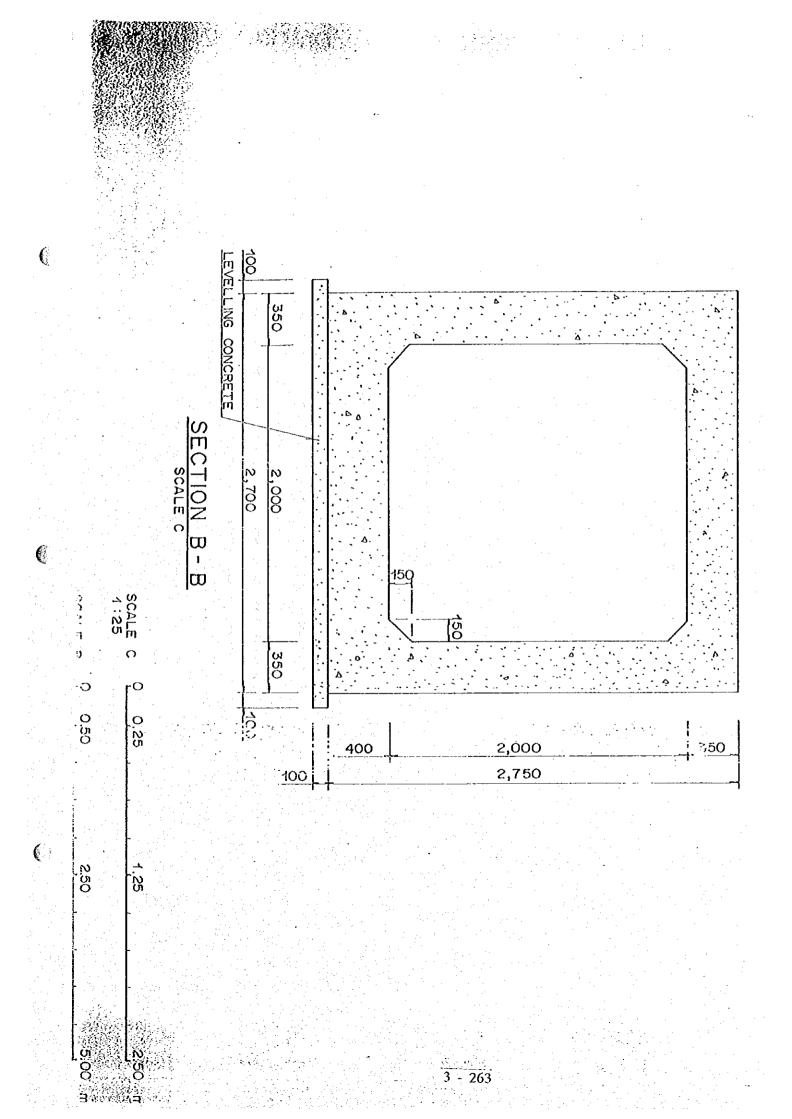
tructure		RJO DRAINAGE SYST Calculation		,,
		MARY OF SCAPOLDING AND FO	RM SUPPORT	NOLLIME
	COP COP	AANDAALMANT ARAMAO C SV	OTEAN	
		BANDARHARIO BRAINAGE SY	<i>S 7 2-11</i>	
	[VOLUME	SCAFOLDING	FORM
	N⁰	STRUCTURE	(14 ²)	SUPPORT (m)
	1	BARU PUMPING STATION	1049	549
	2	BARU PUMPING STA. GATE	350	120
	3	SARU CONVEYANCE CH.	6574	2768
	Y	BARU CONVEYANCE CH INLET STRUCTURE	150	35
	5	BARU CONVEYANCE CH OUTLET STRUCTURE	106	~20
· · · · ·	6	BANDAR HAR JO EAST SE CO- NDARY CHANNEL	1166	491
	7	BANDARHAR JO EAST SECONDA- RY CHANNEL DUTLET STRUCT.		3/
	8	BARU RETARDING POUD IN - LET STRUCTURE Nº 1		77
	\mathbf{V} .	BARU RETARDING FOND IN- LET STRUCTURE Nº 2		42.
		FUEL TANK 80% FOR BARU PUMPING STATION	/33	62
· · · · ·		TOTAL	9618	4195

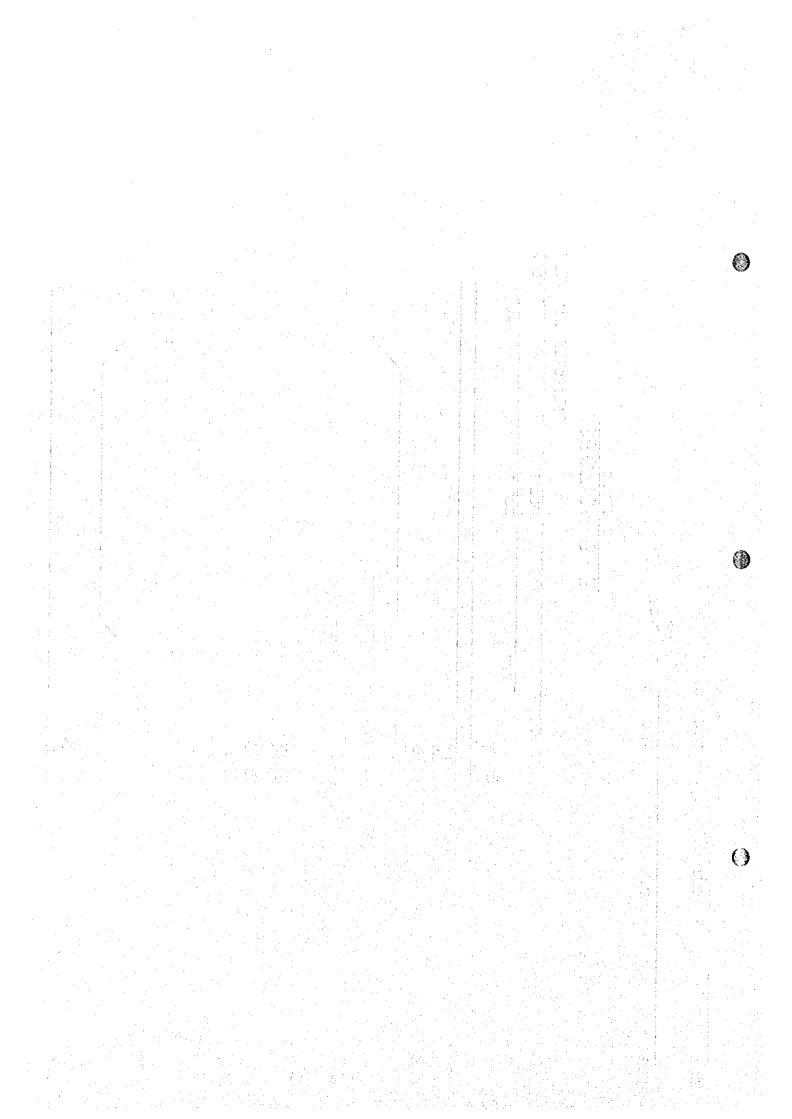

. .-

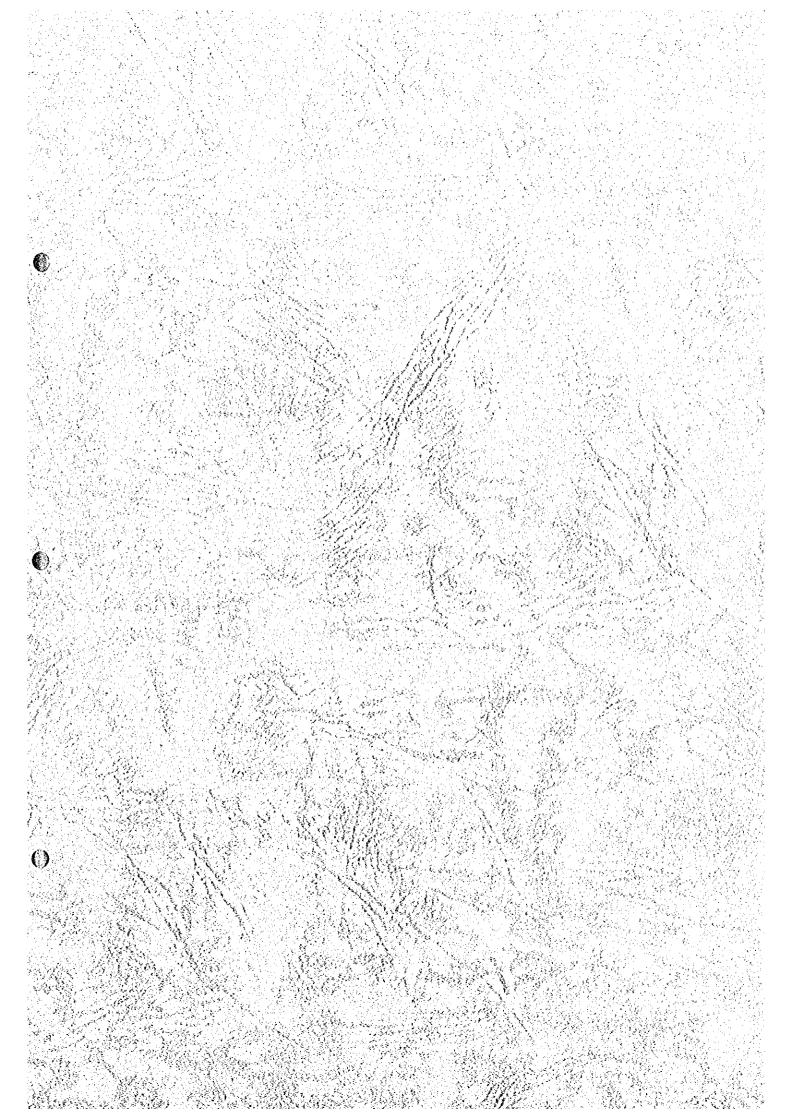
(____

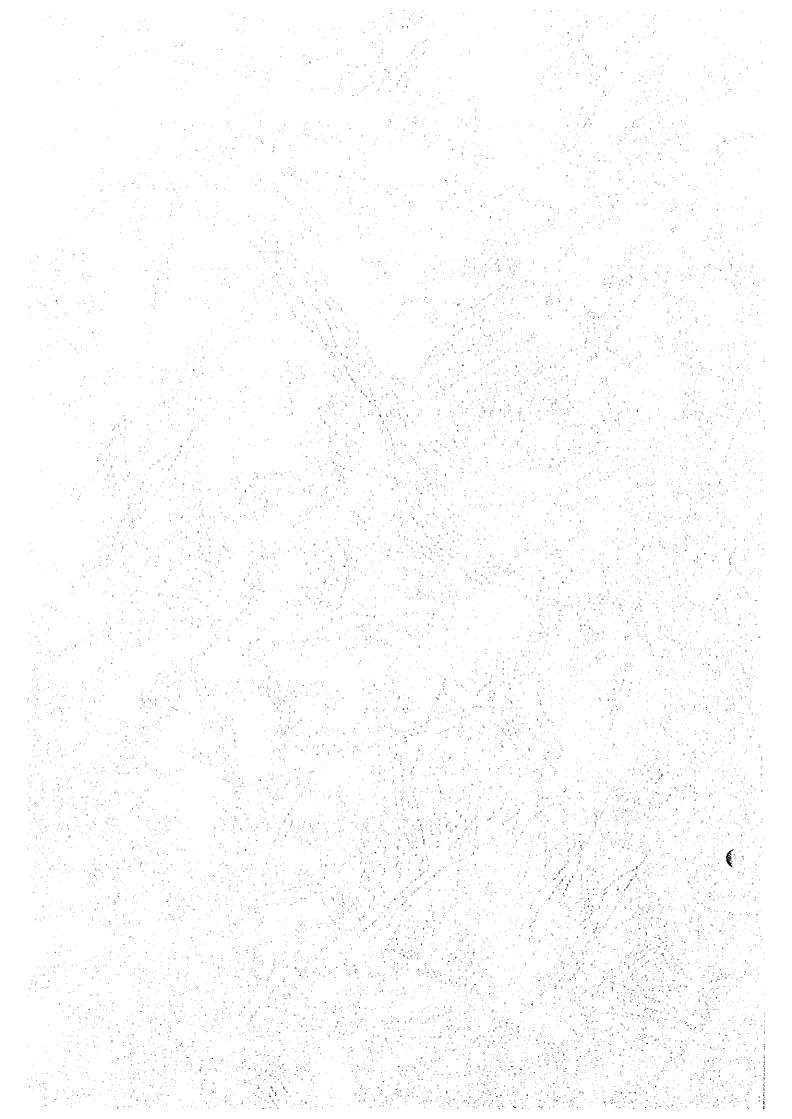

(

(

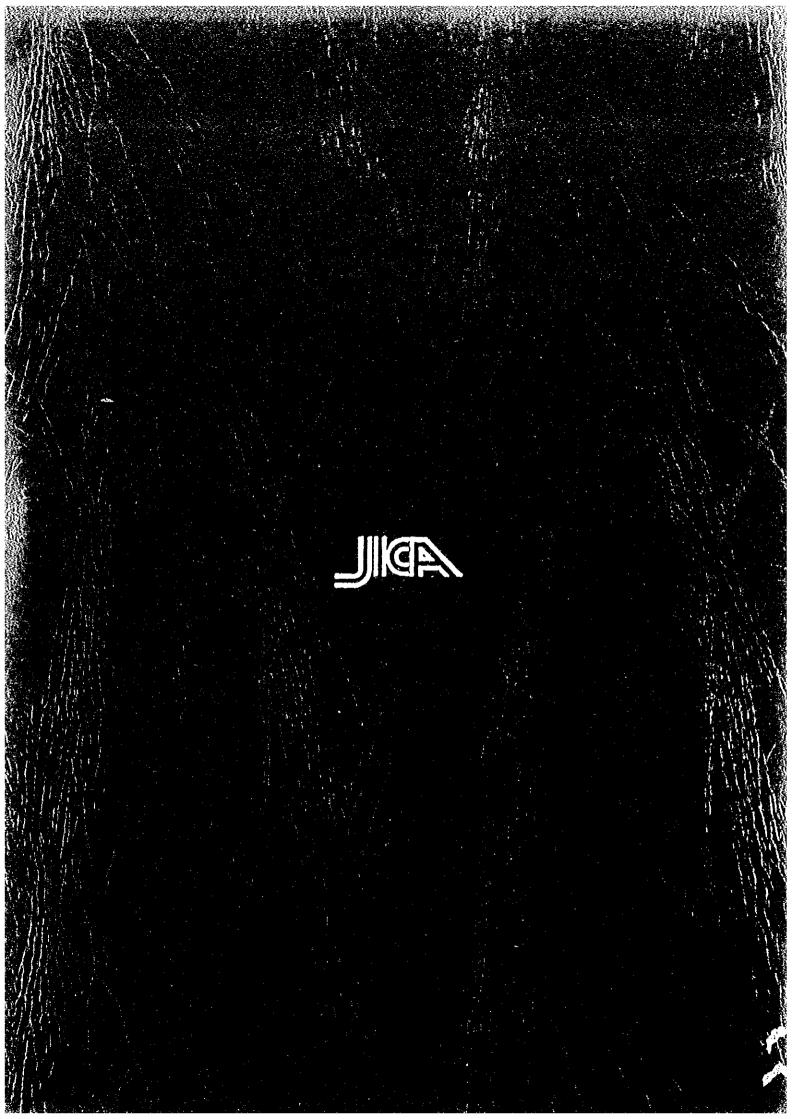

OUTLET BANMARHIIRIO EAST SC SCAPOLDVING AND Name of Category of WORK VOLUME 1 Page FORM SUPPORT Structure calculation 1. SCAFOLDING AREA (Walls of box entorier (1=7.7-0, Y=7.3 m/) (2×2,35+2×2,0)×2,3 = 69.35 Sq.m., Ding Wall (4.1×4.0-2.0×2.0/+(2×0.5×4.1)+(2×0.4×4.10)= 19.78 0 @+10 = 89.13 82 m, 2. FORM SUPPORT AREA 2.0x2.0x7.70 = 30.80 Sym () 3 - 260




Ć



. Sterney



· .

.

