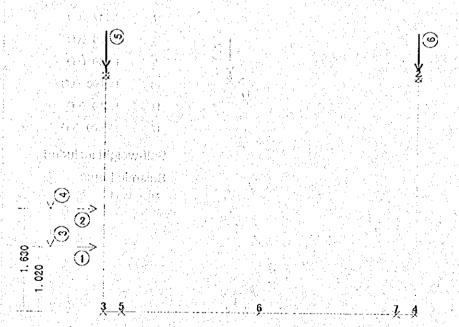
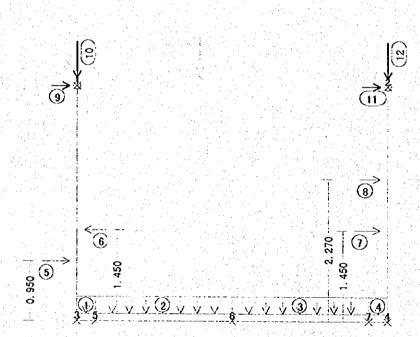
baru-pier+footing

į.


()

Case 2 : Normal-dry

		Load	
①		7. 071	(tf)


- (2) 3.092 (tf)
- ③ 1.248 (tf)
- (4) 0.547 (tf)
- (5) 18.000 (tf)
- 6 18.000 (tf)

Self-weight included

baru-pier+footing

Case 3 : Seismic-water

Load 1 6.840 (tf/m) 6.840 (tf/m) ② 6.840 (tf/m) 6.840 (tf/m) (3) 6.840 (tf/m) 6.840 (tf/m) 4 6.840 (tf/m) 6.840 (tf/m) (5) 11.007 (tf) **(6)** -9.747 (tf) (7)9.747 (tf) (8) 0.528 (tf) (9) 1.650 (tf) (10) 15.000 (tf) (II) 1.650 (tf) (12) 15.000 (tf) Self-weight included Seismic Force KH = 0.11

Case 4 : Seismic-dry

Load

- (1) 11.007 (tf)
- 2 1.650 (tf)
- 3 18.000 (tf)
- (4) 1.650 (tf)
- (5) 18.000 (tf)

Self-weight included Seismic Force KH = 0.11

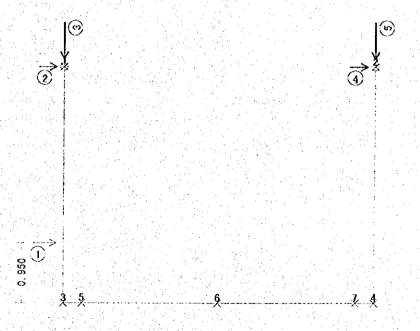


Figure - 23

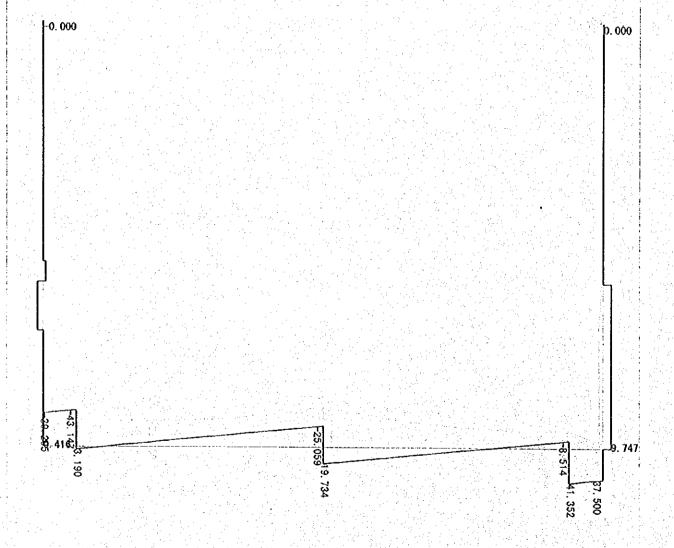
Case 1: Normal-water

three projects, v. by

Deformation Scale - : 0.331cm max. : 0.208 cm

Figure - 24(1)

Case 1: Normal-water


Bending Moment Scale : 38.81tf·m max.: -38.30 tf·m

Case 1: Normal-water

Shear Stress

Scale : 44.10tf max. : -43.15 tf

Case 1: Normal-water

Axial Stress

Scale :----: 42.29tf

max. : 39.29 tf

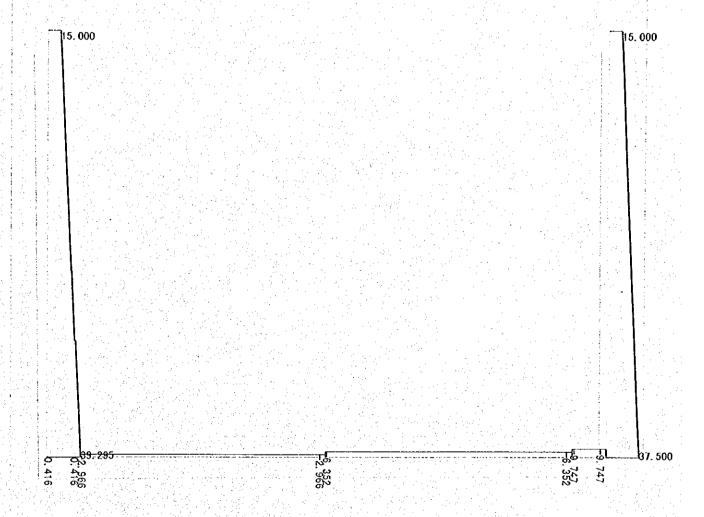
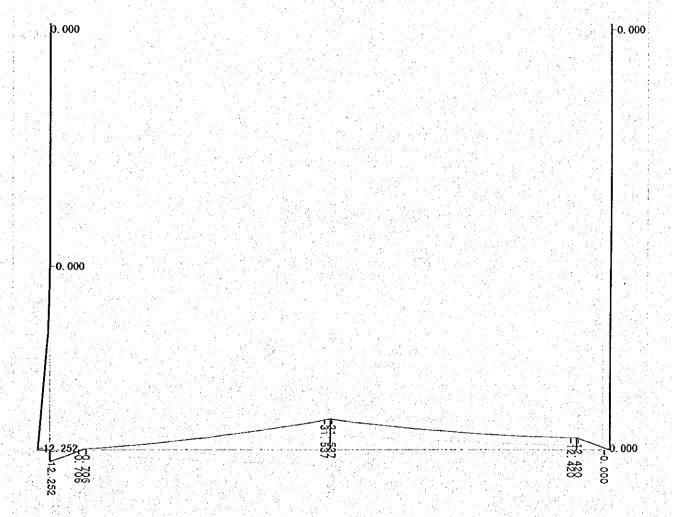
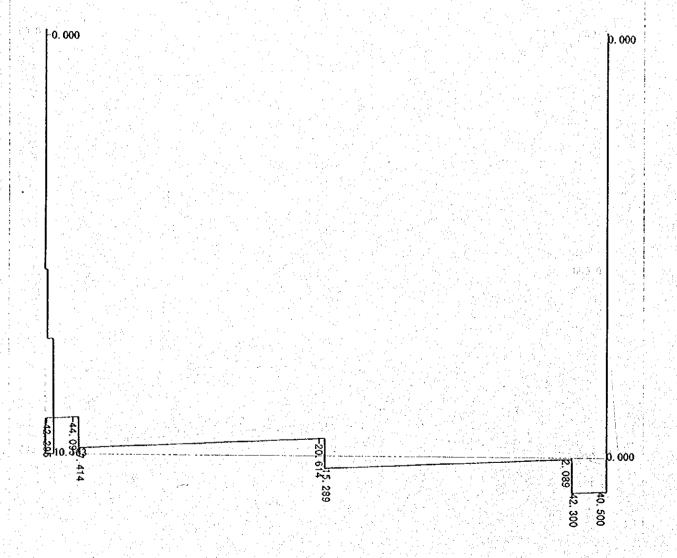



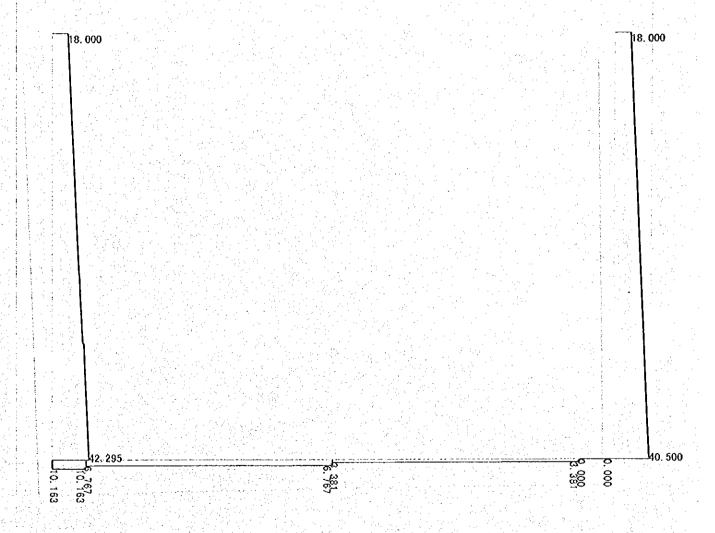
Figure - 24(4)


Case 2: Normal-dry

Bending Moment Scale : 38.81tf·m max.: -31.54 tf·m

Scale : 44.10tf max. : -44.10 tf

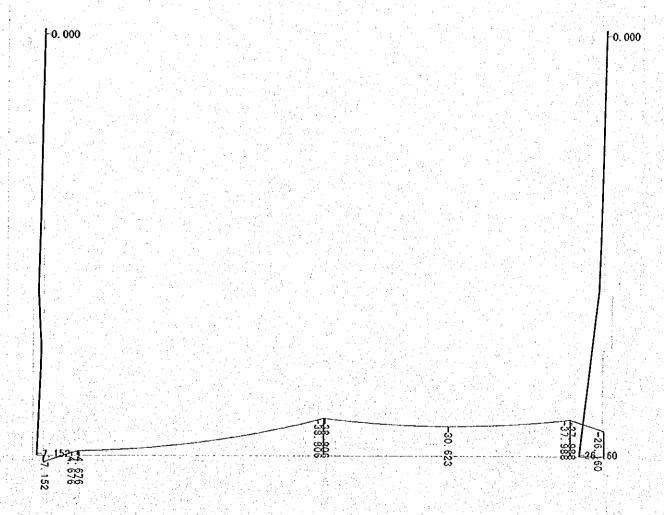
Shear Stress



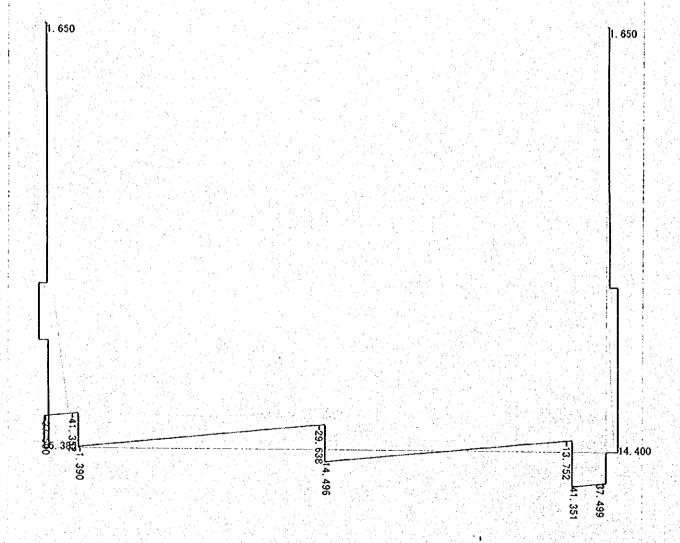
Case 2: Normal-dry

Axial Stress

Scale :---:: 42.29tf

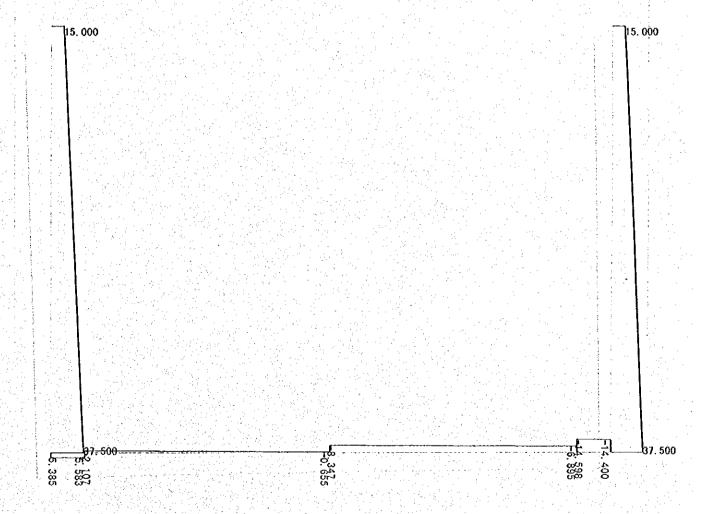

max.: 42.29 tf

						58/77
baru−ı	oier+footing					
	SO 3: Seismic-wate	r			and the second second	
		•				· · · · · · · · · · · · · · · · · · ·
Deform	nation Sca	ale : : 0.3	31cm max ,	: 0.331 cm	1949 S	
	•					
· ·						
•						
	1					


Case 3: Seismic-water

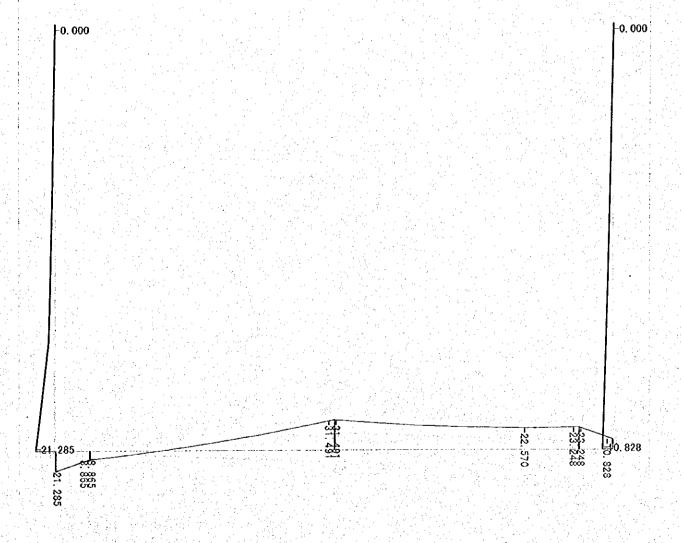
Bending Moment Scale: 38.81tf·m max.: -38.81 tf·m

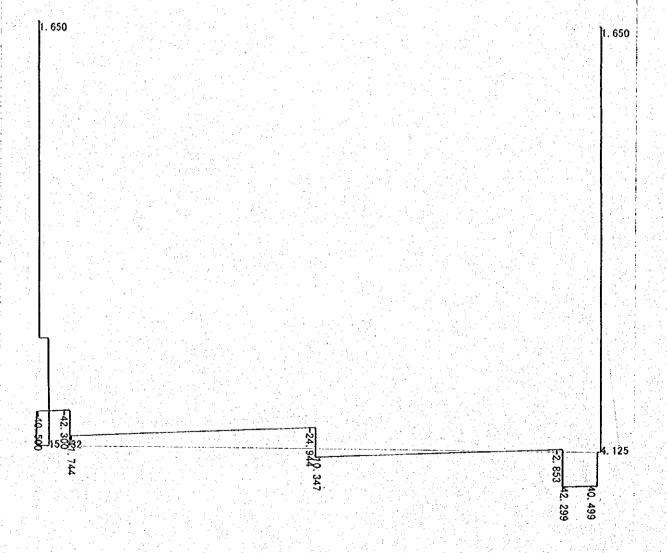
Case 3: Seismic-water


Shear Stress Scale ----: 44.10tf max.: -41.35 tf

Case 3: Seismic-water

Axial Stress


Scale : 42.29tf max. : 37.50 tf


baru-pier+footing Case 4: Seismic-dry Scale ---:: 0.331cm max.: 0.299 cm Deformation

Case 4: Seismic-dry

Bending Moment Scale : 38.81tf·m max.: -31.49 tf·m

Shear Stress Scale : --- : 44.10tf max. : -42.30 tf

		1 .			
Name of .	Daws Cata	Category of			A 12 11 Sec. 1
Structure	Baru Gate	calculation	Stress Analysis	Page	66/77 :
		outculation			

1) Assumed dimensions

Assumed dimensions for analysis are shown in Figure-28.

2) Cross sectional area and moment of inertia

cross sectional area (A): 1.2 m² moment of inertia (I): 0.016 m⁴

3) Load condition

Case-1: Normal condition

Case 2: Seismic condition

Loads to be considered are as follows:

(details see figure)

· self-weight

- equipment weight (1.0 t/m²)

- earthquake force

Load conditions are shown in Figure-29 to Figure-30.

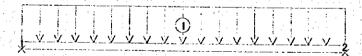
4) Results of stress analysis

Summary of results are as follows:

(details see attached Figures-31 and 32)

	1 (Normal)	2 (Seismic)
Bending Moment	18.750	18.750
Shear Stress	15.000	15.000
Axial Stress	0.000	1.650
Displacement	0.1246	0.1246

Name of Category of calculation Page 67/77 Baru Gate Stress Analysis Structure O/M Bridge 梯尺 1/ 33 骨枪势 5.000 Figure - 28 Dimension for Analysis


Case 1 : Normal

Load

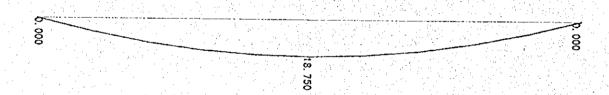
3.000 (tf/m)

3.000 (tf/m)

Self-weight included

Case 2 : seismic

Load


- 3.000 (tf/m) 3.000 (tf/m)
- 0.330 (tf/m) 0.330 (tf/m)

Self-weight included Seismic Force KH = 0.11

Case 1: Normal

Bending Moment Scale : 18.75 tf·m max. : 18.75 tf·m

Case 1: Normal

Deformation


Scale :---:: 0.125cm ... max.: 0.125 cm

Figure - 34 (4)

Case 1: Normal

Shear Stress

Scale : 15.00tf : max. : 15.00 tf

73/77

0.000

O/M Bridge

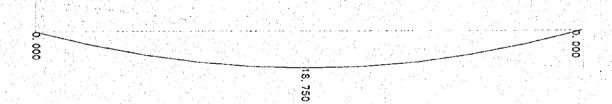
Case 1: Normal

自然是公司的

Axial Stress Scale : 1.65tf max. : 0.00 tf

Figure -31 (4)

Case 2: seismic


Deformation

Scale --- : 0.125cm max. : 0.125 cm

Figure - 32 (1)

Case 2: seismic

Bending Moment Scale: 18.75tf·m max.: 18.75 tf·m

Case 2: seismic

Shear Stress Scale ----:: 15.00tf max. : 15.00 tf



Figure -32 (3)

Case 2: seismic

Axial Stress

()

Scale ----: 1.65tf

max. : -1.65 tf

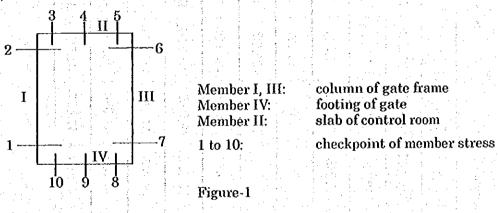
- 3.1 Baru Pumping Station
- 3.1.4 Reinforcing Bar Arrangement Calculation of Gate

Name of Structure	Baru Gate	Category of calculation	Reinforcing bar arrangement	Page	1/9
Colculation	Part				

1) Gate frame

2) Pier and Footing

3) O/M bridge


General condition of calculation

	Normal Seismic
Allowable compressive stress of concre	te: 75 kg/cm ² 112.5 kg/cm ²
Allowable shear stress of concrete:	7.5 kg/cm^2 11.25 kg/cm ²
Allowable tensile stress of reinforcing	bar: 1400 kg/cm ² 2100 kg/cm ²

Minimum coverage of concrete: 15 cm at footing bottom, 10 cm at other part Minimum ratio of reinforcing bar: 0.2% in principle

1) Gate frame

Calculated parts of main reinforcing bar arrangement are classified into three members, such as column of gate (I, III), footing of gate (IV) and slab of control room (II) as shown in following Fig.-1. Stress checkpoints of members for calculation of reinforcing bar arrangement are also shown in Fig-1.

Stresses at each checkpoint are shown in Table-1.

Load for calculation and cross section of each member are shown in Table-2 and Fig-2.

Main reinforcing bar arrangement (calculation results are shown in Table-3)

column of gate frame Member I, III:

> (1) and (2) D19@125 mm D13@125 mm

Member IV: footing of gate

> D22@125 mm D19@125 mm

slab of control room Member II:

(1) and (2) : D22@125 mm

()

Table-1 Stress at checkpoint (Gate Frame)

	·						4					. • •
esc	တ	6.380	1.704	26.449	0	40.051	5.611	15.392	76.261	41.130	49.386	
Seismic-Close	Ą	48.336	26.449	1.704		5.611	40.051	61.939	-15.508	-8.523	6.501	
Ø.	×	24.045	0.615	0.615	23.407	-34.622	-34.622	34.381	-53.120	-44.312	24.045	
φu	S	12.911	1.330	28.364	0	42.636	6.480	8.887	70.643	34.420	51.301	
Seismic-Open	Α	50.251	28.364	1.330		6.486	42.636	64.524	-8.887	-1.994	13.027	
Ø.	M	31.566	1.311	-1.311	23.729	-36.993	-36.993	28.316	-47.831	-45.140	31.566	
Se	S	0.475	2.045	33.059	0	33.441	2.045	8.945	57.151	41.634	57.497	
Normal-Close	A	56.447	33.059	2.045	—	L	33.441	55.328	-8.945	-6.109	-3.288	
Z	M	690.0	17.242	-17.242	21.532	-18.195	-18,195	9.191	-25.947	-44.485	0.069	
en	S	5.844	2.626	35.309	0	35,691	2.626		58.600	34.866	59.747	
Normal-Open	Ą	58.697	35.309	2.267		1	35.691	57.578	-2.626	3.015	5.843	
Z	M	6.618	18.730	-18.730	21.730	-19.684	-19.684	2.641	-20.072	-45.493	6.618	
		ľ	2	က	4	ഗ	9	2	œ	თ	1.0	

M: Moment A: Axial Stress S: Shear Stress

Table-2 and Figure-2

Table-2 (1)
Member I and III

	7	Normal		Seismic					
	0	2	3	①	2	3			
Moment	20	10	44	37	35	58			
Axial Stress	36	56	51	43	62	51			
Shear Stress	3	9	26	7	16	28			

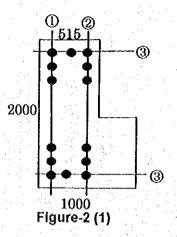


Table-2 (2)
<u>Member IV</u> (Footing of gate)

	Nor	mal	Seismic				
	0	2 2	0	2			
Moment	44.5	7	54	32			
Axial Stress	-6.5	6	-16	14			
Shear Stress	42	60	77	52			

Table-2 (3)
Member II (Slab of control room)

	Nor	mal	Seismic					
	(1)	2	<u> </u>	②				
Moment	20	22	37	24				
Axial Stress	3	3	7	1				
Shear Stress	35	0	43	0				

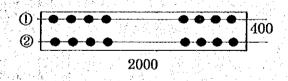
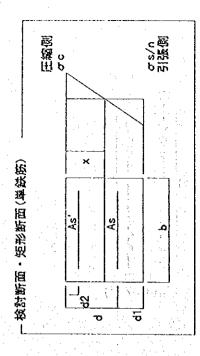



Figure-2 (3)

-		, <u>.</u>															Ť,
		子	О Қ	0 7	0 자	0 X	O 오	О Ж	0 X	0 자	0 7	О 7	0 7	0 저	О Х	О Х	
		12分子-14 野校 3 教 で c (kgf/cm ²)	0.398	0.787	0.942	2.126	1.658	2. 551	3.922	6.010	7.187	5.237	4. 423	000.0	5. 434	0.000 O	
		知	О 7	О 7.	О 7.	o X	ひ ス	О Қ	O ス	О Х	0 조	о Я	0 X	О 7	О 7	0 자	
	Results	記版 v 5	791.4	97.3	1710.9 0 K	1395.2 O	658.4 O K	1764.7	1393.4	237.8	1755.2	1242.1	792.0	1351.7	1453.5	1494.7	
	Re	型	0 X	0 자	о Х	0 7	0 X	0 Y	0 Y	0 자	O 오	0 7	о Х	0 7	о Х	0 K	
	計算結果	コングリート田 総列 七 瀬 タ c (xgf/cm²)	40.2	19. 4	74.2	70.4	28. 4	44.7 O K	42. 4 O K	8.7	50.9	39.8 O K	31.2 O K	67.5	57.7	73.5	
		甘ん幣力 (tf)	3.000	9.000	7. 000	16.000	26.000	28,000	42,000	60.000	77.000	52:000	35: 000	0000	43.000	000 0	
\$ %			36.000	56,000	43.000	62.000	51.000	21.000	-6.500	6.000	-16.000	14.000	3.000	3,000	7.000	1.000	
		曲 (デモーメン 報力 ト M (tf-m) (tf	20.000	10, 000	37.000	35, 000	44, 000	58,000	44, 500	7. 000	54,000	32,000	20,000	22. 000	37, 000	24. 000	
	4 4 4	東	0, 000 0, 0055	0. 000 0. 0055	0.000 0.0055	0.000 0.0055	000 0: 0002	000 0 0002	0.000 0.0052	000 0.0042	0.000 0.0052	000 0.0042	000 0.0069	000 0.0103	000 0.0069	0.0103	
		圧縮鉄筋 鉄筋庫 As. (cm?)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	000	0.000 0.	-
		3.張鉄筋 鉄筋量 A s (cm²)	45.843	45, 843	45,843	45, 843	5.219	5, 219	61.932	45, 843	61.932	45.843	61.932	61,932	61.932	61.932	
		計算幅 b (cm)	200.0	200.0	200.0	200.0	51.5	51.5	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	
	n of Cale	王なる。 (May (mo) (mo)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0	0.0	0 0	0.0	
	Condition of Cale	31張鉄筋 かぶり d 1 (cm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	15.0	10.0	15.0	10.0	10.0	10.0	10.0	
	断面形状	有効离さ 3 d (cm)	41.5	41.5	41.5	41.5	190.0	190.0	0.09	55.0	0.09	55.0	45.0	30.0	45.0	30.0	
		断照位面掩置		~	က	4	3	9	7	8	ō	2	=	12	13	14	1

ren of sinforna Bar

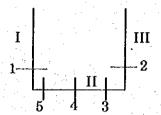

Moment Axial Shear. Stress Stress

Table - 3

Name of Structure Baru Gate	Category of calculation	Reinforcing bar arrangement	Page	5/9
--------------------------------	-------------------------	--------------------------------	------	-----

2) Pier and Footing

Calculated parts of main reinforcing bar arrangement are classified into two members, such as pier (I, III), footing (II) as shown in Fig.-3. Stress checkpoints of members for calculation of reinforcing bar arrangement are also shown in Fig-3.

Member I, III: pier
Member II: footing
1 to 5: checkpo

tooting checkpoint of member stress

Figure-3

Stresses at each checkpoint are shown in Table-4.

Load for calculation and cross section of each member are shown in Table-5 and Fig-4.

Main reinforcing bar arrangement (calculation results are shown in Table-b)

Member I, III: Pier

① (outside) : D19@125

② (inside) : D16@125

Member II: footing

① and ② : D19@125

3) O/M bridge

Moment and stress, and dimension of calculated cross section are shown in following table and figure.

		Normal	Seismic
Bending Mom	ent	20	20
Axial Stress	+	0	5 -5
Shear Stress		15	15

3000

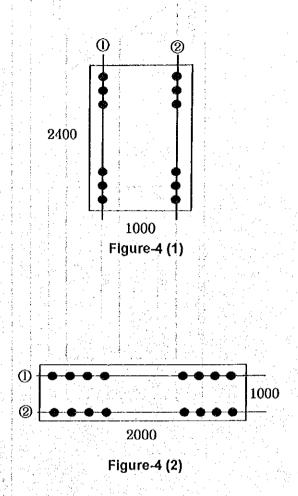
Required reinforcing bar arrangement is D19@125 mm.

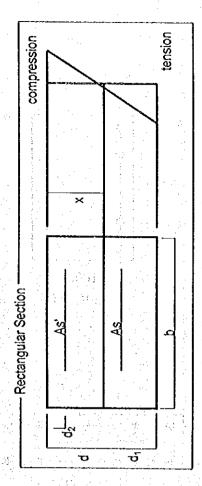
(see Table-7, calculation Sheet)

Table-4 Stress at checkpoint (Pier and Footing)

	r -					
esı	w	15.132	4.125	45.152	9.254 35.291	42.300
Seismic-Close	Ą	-21.285 40.500	10.828 40.500	-4.323 45.152	9.254	15.330 42.300
Š	M	-21.285	10.828	-23.248	-31.491	21.285
ue.	S	5.385	14.400	55.103	44.134	41.352
Seismic-Open	M	37.500	-26.160 37.500 14.400	-14.598	-38.806 -8.347 44.134	44.091 7.152 5.583
Š		-7.152	-26.160	-37.988	-38.806	7.152
9 6	Ø	-12.252 42.295 10.163 -7.152 37.500	0	3.381 42.300 -37.988 -14.598 55.103	35.903	44.091
Normal-Close	A	42.295	0 40.500	3.381	6.767	10.163
Z	M	-12.252	0	-12.420	-31.537	12.252
en .	S	0.416	9.747	49.866	44.793	46.347
Normal-Open	A	1.881 39.295 0.416	-14.133 37.500 9.747	-25.961 -9.747 49.866	-38.303 -6.352 44.793	-14.247 0.416 46.347
Z	M	1.881	-14.133	-25.961	-38.303	-14.247
		=	2	က	4	5

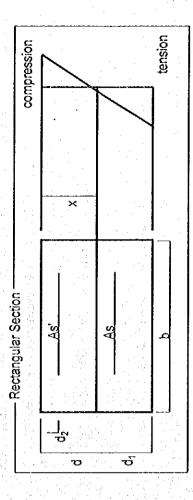
M : Moment A : Axial Stress S : Shear Stress


Table-5 and Figure-4


Table-5 (1) Member I and III

81	Nox	mal	Seis	mic
	①	2	0	2
Moment	15	13	22	27
Axial Stress	38	43	41	38
Shear Stress	10	11	16	15

Table-5 (2)
Member IV (Footing of gate)


	Nor	mal	Seis	mic
	0	2	①	2
Moment	39	13	38	22
Axial Stress	-7	11	-15	16
Shear Stress	45	45	55	42

					Condition of	ondition of Calculation						Result	
section number	effective height	cover	cover	calculation width	bar area tensile	bar area compression	barratio	bending moment	axial force	shearing force	concrete compression stress	bar tensile stress	concrete shearing stress
	d (cm)		d1 (cm) d2 (cm)	b (cm)	As (cm²)	As' (cm²)		M (tf.m)	N(f)	σ(#) σ	σc (kqf/cm²)	σs (kgf/cm²)	τ c (kgf/cm²)
1	0.06	10.0	0.0		55.012	00000	0.0025	15.000	38.000	10.000			0.335
2	90.0	10.0	0.0	240.0	38.123	0.000	0.0018	1.	43.000	11.000	5.7	32.3	0.197
က	0.06	10.0	0.0		7				41,000	16.000			0.687
4	90.0	10.0	0.0		38.123			1	38.000	15.000			0.695
5	90.0	10.0	0.0						-7.000	45.000		t :	2.264
ပ္	85.0	15.0	0.0	# + ·	55.012	i di		91.5	11.000	45.000		! !	2.363
7	90.0	10.0	0.0			0.000		38.000	-15,000	55.000			2.762
8	85.0	15.0	0.0	240.0	55.012		0.0027	22.000	16.000	42.000			2.217

Table - 6

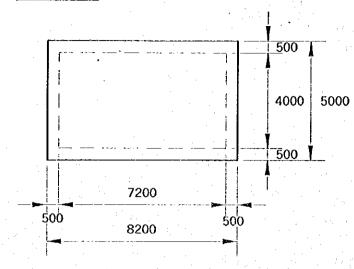

	Toda (miles er a de majo spri), steppe paper des				Condition of	Condition of Calculation						Result	
section	effective height		cover	calculation width	bar area tensile	bar area compression	bar ratio	bending moment	axial force	shearing force	concrete compression stress	bar tensile stress	concrete shearing stress
	d (cm)	d1 (cm)	d2 (cm)	b (cm)	As (cm²)	As' (M (tf.m)	M (ff.m) N (ff)	Q(#)	σc (kgf/cm²)	as (kaf/cm²)	t c (kaf/cm²)
****	30.0	10.0	0.0	300.0	68.765		0.0076		٠.	15.000			1.907
2	30.0	10.0	0.0	300.0	68.765		0.0076	20.000	5.000	15.000	45.0	1068.3	1.906
က	30.0	10.0	0.0	300.0	68.765)				15.000	44.7		1.906

Table - 7

- 3.1 Baru Pumping Station
- 3.1.5 Structural Calculation of Gate House

Name of BARU GATE Category Roof of Gate Page 1/10
Structure STRUCTURE Calculation House

Plan of Roof

Tebal Plat = 14 cm Selimut = 5 cm h = cm

LOAD

Uniform Load

Water q = $0.05 \times 1 \times 1 \times 1 = 0.050 \text{ t/m}^2$ Live load q = $0.25 \times 1 \times 1 = 0.250 \text{ t/m}^2$ Concrete q = $0.19 \times 1 \times 1 \times 25 = 0.475 \text{ t/m}^2$ q = 0.775 t/m^2

$$M_A = q^{\ell} \frac{1}{2} \ell$$

= $\frac{1}{2} q \ell^2$
= $\frac{1}{2} (0.775)(0.5)^2$
= 0.097 t.m

$$M_{max} = \frac{1}{12} \frac{1}{12}$$

$$M_T = 1.55 - 0.097$$

= 1.453 t.m

Concrete

$$K_{225} - \overline{\sigma}_b = 75kg/cm^2$$

$$(V_{24} - \overline{\sigma}_a = 1400kg/cm^2)$$

$$\phi_o = \frac{\bar{\sigma}_o}{n\bar{\sigma}_b} = \frac{1400}{15 \cdot (75)} = 1.244$$

$$h = 18-5 = 13 \text{ cm}$$

Name of Structure	BARU GATE STRUCTURE	Category Calculation	Roof of Gaté House	Page	2/10
			· ·		

$$Ca = \frac{h}{\sqrt{\frac{n \times m}{b \times \overline{\sigma}a}}} = \frac{13}{\sqrt{\frac{15 \times (1.453)}{1 \times 1.400}}} = \frac{13}{3.295} = 3,295$$

Ca =
$$3.295$$
 $\delta = 1$

$$\Rightarrow \phi = 2.175 \ \phi' = 3.186 \ \phi_o = 1.244$$

$$100n\omega = 10.56$$

$$A = \frac{b \cdot h \cdot n\omega}{n}$$

$$= \frac{100 \cdot 13 \cdot 0.1056}{15} = 9.15cm^{2}$$

$$A = A'$$

$$D13-125 = 11.97 \text{ cm}^2$$

Shear strengh

$$\sigma_b' = \frac{\sigma_o}{n\phi} = \frac{1400}{15(2.175)} = 42.91 \frac{Kg}{cm^2}$$

$$\sigma_a' = \frac{\sigma_a}{\phi'} = \frac{1400}{3.186} = 439.42 \frac{kg}{cm^2}$$

Tebal plat di A = 13 cm

$$M_A = 0.097 t.m$$

$$h = 13-5 = 8 cm$$

$$Ca = \frac{h}{\sqrt{\frac{n \times m}{b \times \overline{\sigma}a}}} = \frac{8}{\sqrt{\frac{15 \times (0.095)}{1 \times 1.400}}} = \frac{13}{1.008} = 7.9$$

Ca =
$$7.9$$
 $S = 1$

$$A = \frac{b \cdot h \cdot n\omega}{n}$$

$$= \frac{100 \cdot 8 \cdot 0.01768}{\cdot 15} = 0.942cm^{2}$$

$$A = A' \rightarrow D_{13} - 125 = 11.97 \text{ cm}^{2}$$

Shear strength

$$\sigma_b^{\ \ i} = \frac{\sigma_a}{n\phi} = \frac{1400}{15(5.061)} = 18 \frac{Kg}{cm^2} < \overline{\sigma}_b$$

$$\sigma_{u} = \frac{\sigma_{u}}{\phi'} = \frac{1400}{12.85} = 108.9 \frac{kg}{cm^{2}} < \overline{\sigma}_{u}$$

Weight per slab

Max weight of slab = $1.50 \times 5 \times 0.19 \times 2.5 = 3.562$ ton

Diameter of steel = $\frac{3.562}{1400} = 2.54cm^2$

del della

O19mm = 2.84 cm² > 2.54 cm

entri si sanna a na a

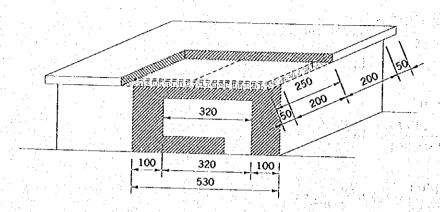
銀鐵 医多种子囊膜

医自身的线面引起差别数因

alsa ekî i

ja 10.00 han sest

Name of Structure

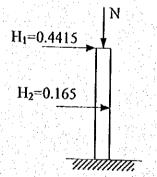

BARU GATE STRUCTURE

Category Calculation

Roof of Gate House

Page

4/10


Load:

$$q_1 = 2.5 \times \left(1 + \frac{3.2}{2}\right) \times 0.19 \times 2.5 = 3.090 \text{ ton}$$
 (concrete)

$$q_2 = 2.5 \times \left(1 + \frac{3.2}{2}\right) \times 0.05 \times 1 = 0.325 \text{ ton}$$
 (water)

$$q_3 = 0.75 \times 0.20 \left(\frac{3.2}{2}\right) \times 2.5 = 0.600 \text{ ton} \text{ (balk)}$$
Total = 4.015 ton

Wall =
$$3 \times 0.2 \times 1 \times 2.5$$
 = 1.5 ton

$$K_{225}$$
 - $\sigma_b = 75 \text{ kg/cm}^2$
 U_{24} - $\sigma_a = 1400 \text{ kg/cm}^2$

Assume n = 15

$$\emptyset_0 = \frac{\sigma_o}{n\sigma_b} = \frac{1400}{15 \times 75} = 1.244$$

o1 =
$$\frac{M}{N} = \frac{1.695}{5.515} = 0.307$$

o2 =
$$\frac{1}{30}ht = \frac{1}{30} \cdot 0.2 = 0.007$$

o = o1 + o2 = 0.327

$$_{0}$$
 = $_{01} + _{02} = 0.327$

$$H_1 = 0.11 \times 4.015 = 0.4415$$

$$H_2 = 0.11 \times 1.5 = 0.1650$$

$$N = 4.015 + 1.5 = 5.515 t$$

$$M = 0.4415 \times 390.165 \times 1.5$$

$$= 1.324 + 0.247$$

$$= 1.571 \text{ t.m}$$

Name of Structure	BARU GATE STRUCTURE	Category Calculation	Roof of Gate	Page	5/10

$$\frac{\ell_0}{ht} = \frac{0.327}{0.2} = 1.635 > 1 \rightarrow c = 7$$

$$1 = c \left(\frac{\ell_k}{100ht}\right)^2 \times ht = 7 \left(\frac{3}{100(0.2)}\right)^2 \cdot 0.2 = 0.031$$

$$2 = 0.15 ht = 0.15 \times 0.2 = 0.03$$

$$= 0 + 1 + 2 = 0.327 + 0.031 + 0.03 = 0.388$$

$$= +\frac{1}{2} ht - 0.05 = 0.388 + 0.10 - 0.05 = 0.438$$

$$N_{ea} = 5.515 \times 0.438 = 2.415 \text{ t.m}$$

$$Ca = \frac{h}{\sqrt{\frac{n \times m}{b \times \tau a}}} = \frac{14}{\sqrt{\frac{15 \times (2.415)}{1 \times 1400}}} = \frac{14}{5.086} = 2.752$$

Symmetrical Bar

$$\delta = 1 - \frac{1}{8} \frac{\ell}{\ell_{o}}$$

$$= 1 - \frac{1}{8} \frac{0.14}{0.43}$$

$$\delta = 0.8$$

$$\phi = 1.778$$

$$= 0.715$$

$$\phi' = 2.462$$

$$\zeta = 0.886$$

$$W_{o}n\omega = 15$$

$$\sigma_{a} = \overline{\sigma}_{a} = 1400^{\frac{1}{8}} \frac{1}{con^{1}}$$

$$\overline{\sigma}_{b}' = \frac{\sigma_{a}}{n\phi} = \frac{1400}{15 \cdot (1.778)} = \frac{400}{26.67} = 52.493 < 75^{\frac{1}{8}} \frac{1}{con^{1}}$$

$$\sigma' = \frac{\sigma_{a}}{\phi} = \frac{1400}{2.462} = 568.643$$

$$\frac{\ell_{a}}{n} = \frac{0.43}{0.14} = 3.071$$

$$\zeta = 0.886$$

$$i = 1.34$$

$$iA = wbh = \frac{15}{15(100)}(100(14) = 14cm^2)$$

Name of	BARU GATE	Category	Roof of Gate		
Structure	STRUCTURE	Calculation	House	Page	6/10
1 2					* :

$$A = \frac{iA}{i} = \frac{14}{1.34} = 10.447cm^{2}$$

$$A' = \delta iA = 0.8(14) = 11.2$$

$$D_{16} - 12.5 = 16cm^{2} > 11.2$$

Name of Structure	BARU GATE STRUCTURE	Category Calculation	Roof of Gate	Page	7.
I. Load	d: For 1 m width of F	loor			:
q_1	$= 2.5 \times 1 \times 0.19 \times 2.5$		(concrete roof)		
$\mathbf{q_2}$	$= 1 \times 1 \times 0.05 \times 2.5$		(water)	- 0	٠.
q3 Q4	$= 0.1 \times 2.5$ = 3 \times 0.2 \times 2.5	= 0.250 t = 1.500 t	(live load of ro (wall)	•	
Q1 Q _{total}	<u> </u>	= 3.062 t	(P)		
Titital		5.002 ((4)		
\mathbf{q}_{5}	$= 0.25 \times 1 \times 1$	$= 0.250 \text{ t/m}^2$	(live load of flo	or)	
q_6	$= 0.4 \times 1 \times 1 \times 2.5$	$= 1.000 \text{ t/m}^2$	(concrete floor)		
		$= 1.250 \text{ t/m}^2$	(q)		
	q =	1.25			
		8/12			1.2
					43
/ <u>/////</u>					
	1.00 m				
M_1	= P(1) = 3.06	$2 \times 1 = 3.062$			
M ₂	$= q\ell \cdot \frac{1}{n}\ell \underline{\hspace{0.2cm}} = 1.25$	$(1)(\frac{1}{2}) = 0.625$			100
		=3.687 t.m			

h =
$$40 \text{ cm}$$

b = 100 cm
= $40-5-1.9-0.8=32 \text{ cm}$

Concrete :
$$K_{225}$$
 - $\overline{\sigma}_b = 75 \frac{kg}{cm^2}$
- $\tau_b = 7 \frac{kg}{cm^2}$
 U_{24} - $\overline{\sigma}_a = 1400 \frac{kg}{cm^2}$
- $n = 15$

$$\phi_o = \frac{\sigma_o}{n\sigma_b} = \frac{1400}{15(75)} = 1.244$$

h = 32 cm

$$Ca = \frac{h}{\sqrt{\frac{n \times m}{b \times \bar{\alpha} a}}} = \frac{32}{\sqrt{\frac{15 \times (3687)}{1 \times 1400}}} = \frac{32}{6.28} = 5.09$$

Name of	BARU GATE	Category	Roof of Gate		8/10
Structure	STRUCTURE	Calculation	House	Page	8/10

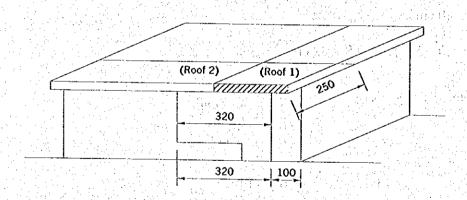
(1)

 $100n\omega = 4.383$

$$A = \frac{b \cdot h \cdot n\omega}{n}$$

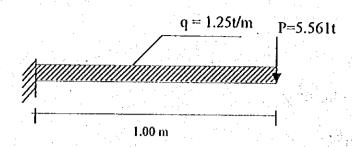
$$100n\omega = 4.383$$

$$100n \frac{A}{bh} = 4.383$$


$$A = \frac{4.383bh}{100(n)}$$

$$= \frac{4.383(100)(32)}{100(15)}$$

$$= 9.35cm^{2}$$


$$D_{13} - @125 = \frac{1000}{125} \times 1.33 = 10.64 \text{ cm}^{2} \rightarrow \text{OK}$$

II. Load

$$q_3 = \frac{3.2}{2} \times 1.562$$
 = 2.499 t + (Roof₂)
 $q_{coof} = \frac{4.061 \text{ t}}{q_{wall}} = \frac{4.061 \text{ t}}{1.5 \text{ t}} = \frac{4.061 \text{ t}}{1.5 \text{ t}}$

Name of Structure	BARU GATE STRUCTURE	Category Calculation	Roof of Gate House	Page	9/10

$$M_1 = 5.561 x 1 = 5.561 t$$

 $M_2 = 1.25 x 1 \frac{1}{2} = 0.625 t$
 $M_{total} = 6.186 t$

Concrete:
$$K_{225}$$
 - $\overline{\sigma}_b = 75 \frac{kg}{cm^2}$
- $\tau_b = 7 \frac{kg}{cm^2}$

$$U_{24}$$
 - $\overline{\sigma}_{o} = 1400 \frac{kg}{cm^{2}}$
- $n = 15$

$$\phi_o = \frac{\sigma_o}{n\sigma_b} = \frac{1400}{15(75)} = 1.244$$

h = 32 cm

$$Ca = \frac{h}{\sqrt{\frac{n \times m}{b \times \overline{\sigma}a}}} = \frac{32}{\sqrt{\frac{15 \times (6186)}{1 \times 1400}}} = \frac{32}{8.14} = 3.93$$

Ca = 3.93
= 1
$$\begin{cases} \phi = 2.571 \\ \phi'_1 = 4.000 \end{cases} \phi = 1.244$$

 $100n\omega = 7.259$

$$100n \frac{A}{bh} = 7.259$$

$$A = \frac{7.259(100)(32)}{(100)(15)}$$

$$A' = 15.48cm^{2}$$

$$D_{16} - @125 = \frac{1000}{125} \times 2.01 = 16.08 \text{ cm}^{2} > \text{A}$$

	The state of the s						
Name of Structure	BARU GATE STRUCTURE	Category Calculation	Roof of Gate House	Page	10/10		

Control:

$$\sigma_{a} = \overline{\sigma}_{a} = 1400 \frac{kg}{cm^{2}}$$

$$\sigma_{b}' = \frac{\sigma_{a}}{n\phi} = \frac{1400}{15(2.571)} = 36.30 \frac{kg}{cm^{2}}$$

$$\sigma_{a}' = \frac{\sigma_{a}}{\phi'} = \frac{1400}{4.00} = 350 \frac{kg}{cm^{2}}$$