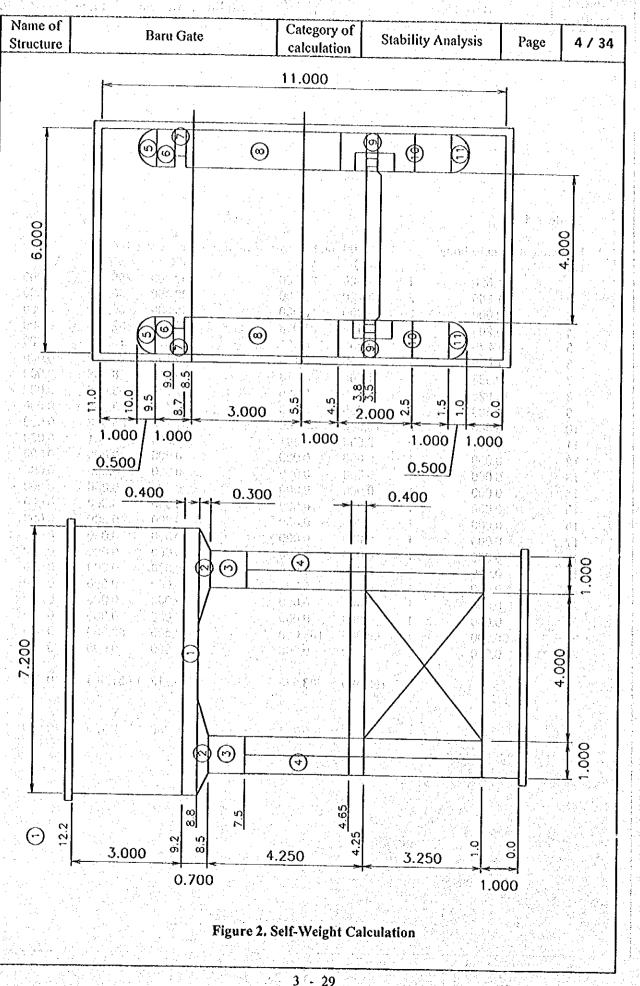

3.1 Baru Pumping Station3.1.2 Stability Analysis of Gate

Name of Structure	Baru Gate	tan tan	Category of calculation	Stability Analysis	Page	1/34
Dimension	of Gate Body				•	
- Given con	ditions		1000			
Hi	ghest tide level:	-	•	El 0.45 m		
Su	rplus height from high	iest tide	level:	0.4 m		
	sign river bed elevatio	m of Bar	u river:	El –2.40 m 4.0 m	• . •	
	te width: rplus height for hoistin	nø.		4.0 m 1.0 m		
	ntrol room height:		· · · ·	3.0 m		
- Thickness	of footing (h)					• • •
	ickness of footing is as	ssumed t	o be 1 m	1		i i i i i i i i i i i i i i i i i i i
	limension of gate body	· ·				
· · · · ·		ior stab	mity analysis	10		
	dth of pier: dth of OM bridge:			1.0 m 3.0 m		
	ngth of upper pier:		· · · · · · · · · · · · · · · · · · ·	2.0 m		
Le	ngth of control room:	· · ·		4.0 m		
Le	ngth o lower pier:		of OM buidges?	9.0 m	n	
	ngth of control room:4 Ftop & tail of pier:1m =		1 of OM bridge.5	m+space for stop log:11	11	e Berlin tele
	sumed dimension of ga		is shown in atta	ached figure-1		•
no	sumed dimension of Be	ne oouj			÷	
	of Load for Stability A				:	
mentioned 1) Self weig	in the figure-1			d earthquake condition in attached table-1 and ,3		
	hit weight of reinforced	l concret				
We	eight of gate body:	-	383.975	t		
(x,	y, z) = (5.080, 2.739, 0	.000)				
					_	
2) Mud sed	iment weight (calculat	ion deta		attached table-2 and fi	gure 3)	
	diment area:		10.215			
	nit weight of sediment: ickness of sediment:		0.6 t/n 1.0 m	1	asi Ngalara	
i	自己生产的 计算序控制语言		6.129			
이 가지 않는 것이 같이 같이 같이 같이 많이 했다.	eight of sediment:		0.129			
1	y, z) = (10.096, 1.5, 0)					
(A)						
					. i	
	eight (calculation deta	ils are sl	nown in attached	d table-2 and figure-3)		
3) Water w	eight (calculation deta ea:	ils are sł	10.215	m²		
3) Water w Ar Ui	ea: nit weight of sediment:		10.215 1.0 t/n	m ² , a ³		
3) Water w Ar Ui W	ea: iit weight of sediment: iter depth:		10.215 1.0 t/n 2.85 n	m ² 0 ³		
3) Water w Ar Ui W	ea: nit weight of sediment:		10.215 1.0 t/n	m ² 0 ³		

()

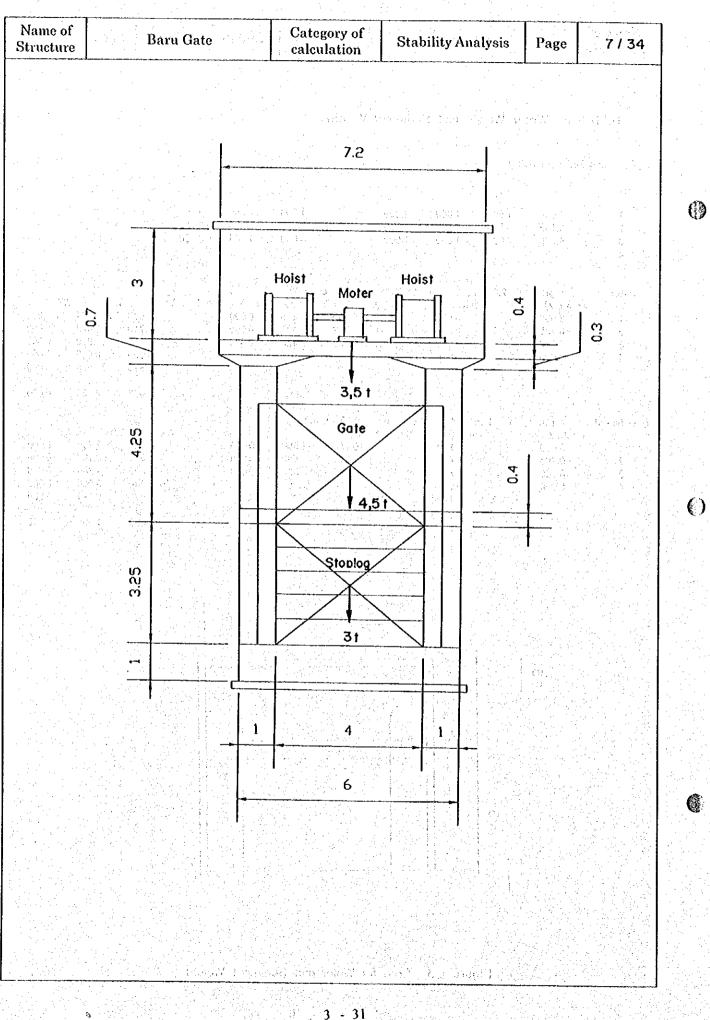
0


.

(

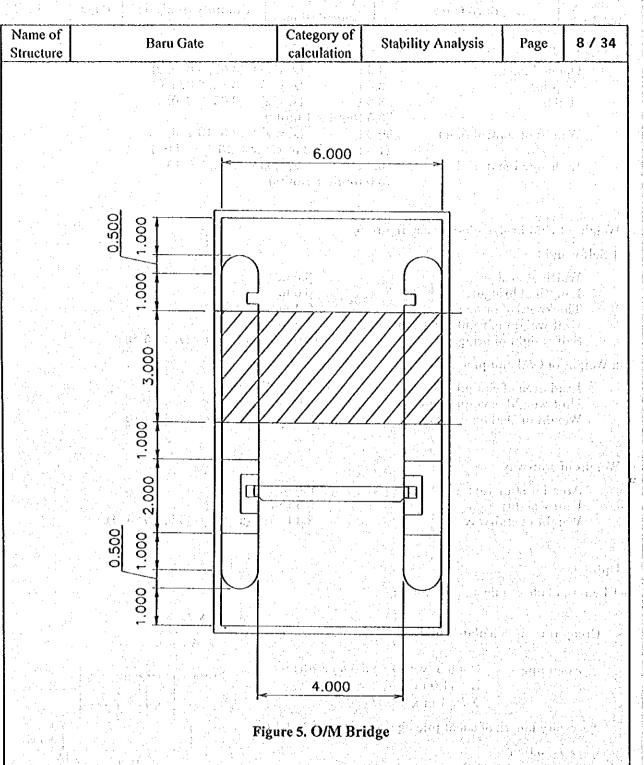
e

Name of Structure	Baru Gate		ategory of Iculation	Stability Analysis	Page	3/3
						•
				a an		• • • •
						•
		. · ·	· · ·		-	
· .						
+		en de la la Angla angla d	an a			
Table - 1						
	t of gate body			ainforced concrete VX	(t/m3) VY	VZ
No. 1	11.520	V(m3) 1 11.520	W(t) 28.800		259.200	0.000
2	1.860	2 3.720	9.300	32.550	80.445	0.000
3		2 4.000 2 12.415	10.000 31.038	35.000 108.631 1	80.000 82.345	0.000
4 5		2 12.415 2 2.553	6,381	61.977	16.751	0.000
. 6	1.625	2 3.250	8.125	75.156	21.328	0.000
7		2 1.365 2 31.850	3.413 79.625	29.518 497.656 2	8.958 209.016	0.000
8		2 31.850 2 1.365	3.413	12.456	8,958	0.000
10	6.500	2 13.000	32.500	81.250	85.313	0.000
11		2 2.553	6.381 0.000	8.218 0.000	16.751 0.000	0.000
12 13	0.000 0.000	1 0.000 1 0.000	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000
15	0.000	1 0.000	0.000	0.000 0.000	0.000	0.000
16 17	0.000 0.000	1 0.000 1 0.000	0.000 0.000	0.000	0.000	0.000
18	0.000	1 0.000	0.000	0.000	0.000	0.000
19	0.000	1 0.000	0.000	0.000 0.000	0.000	0.000
20 21	0.000 0.000	1 0.000 1 0.000	0.000 0.000	0.000	0.000	0.000
22	0.000	1 🧳 0.000	0.000	0.000	0.000	0.000
23	66.000	1 66.000	165.000	907.500 0.000	82.500	0.000
24	0.000	1 0.000	0.000	0.000	0.000	0.000
		153.590	383.975	1,950.713 1,0)51.564	0.000
				X 5 000	Y 2.739	Z 0.000
				5.080	2.139	0.000
			ang pang ang pang bang pang pang pang pang pang pang pang p			



3 - 29

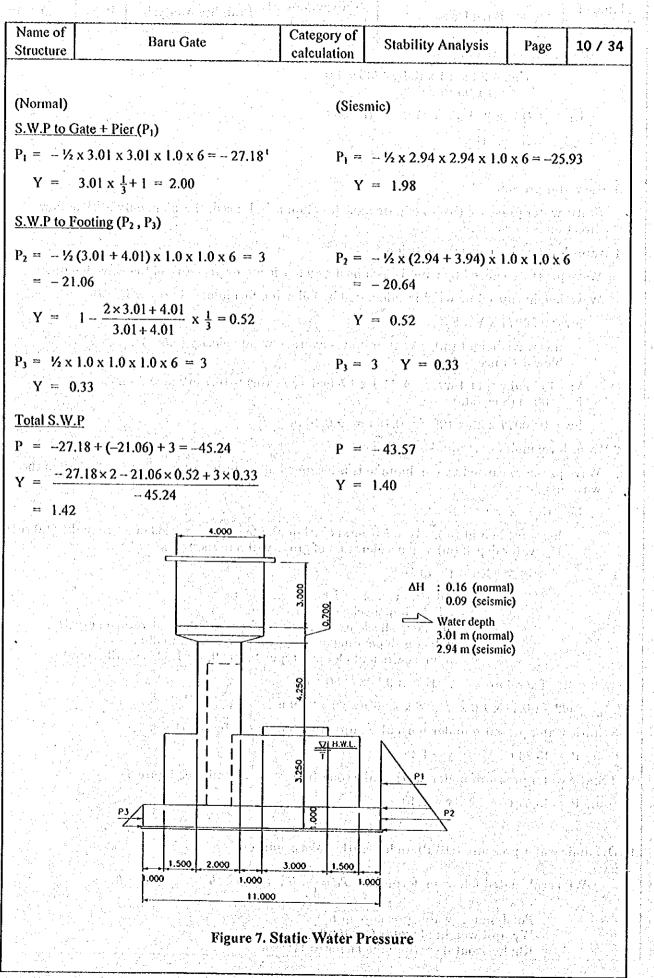
()


	Name o Structur		Barı	ı Gate		Category calculatio		Stabili	ty Analysis	Page	5/3
•			······································			·	· · ·				
	Tabl	e-2 Wa	ter Wei	ght and	Sedimer	nt Weight	·		. .		
	Water and	d Sediment w	eitht			n a Maria		· · · ·			
	area						,	· · ·		•	
	1 2	1.000 3.142	1.500 0.500	1.000 0.500	1.000		1.500 0.393	2.000 -2.000	3.000 -0.785		
	3 4	4.000	2.000	1.000	1.000		8.000	1.000	8.000 10.215		
	water	depth area(m2)	2.85	m Weigit(t)	unit wiegh	it/m X Y			urz	ШЛV	1117
	1 2 3	3.000 -0.785 8.000		8.550 -2.238 22.800		10.250 9.712	2.425 2.425 2.425 2.425	0.000 0.000 0.000	WX 87.63 -21.74 228.00	10 -5.428	0.000
	4	0.000	Σ	0.000 29.112					0.00 293.89	0.000	0.000
									10.09	6 2.425	0.000
	sediment 1	depth area(m2) 3.000	1	m Weigit(t) 1.800	unit wiegh	0.6 t/m3 X Y 10.250	z 1.500	0.000	WX 18.45		WZ 0.000
	2 3 4	-0.785 8.000 0.000		-0.471 4.800 0.000		9.712	1.500 1.500	0.000	-4.57 48.00 0.00	17 -0.707 10 7.200	0.000
			Σ	6.129					61.87	3 9.193	0.000
									10.09	6 1.500	0.000
						6			1		
				1							
		0. 2		11					<u> </u>		
		Ū	1	10 9.5				-			
				9.5		1999-1999 - The Andrew State State State 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
] 			
			m								
					├── ┃─				-}}		
			A 7 1 1 7 7 4								

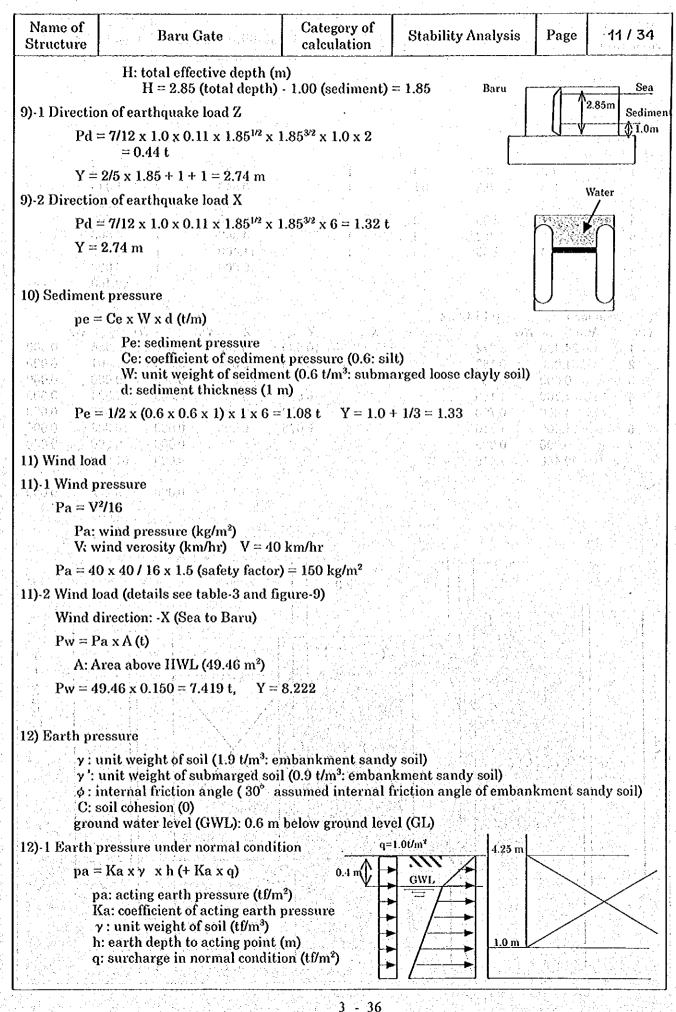
30 ÷

3 - 31

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	6
4) Weight of	gate, hoist, stop·log etc. (deta	ils see figure-4)		:	instantise. Ny ta
			= (3.65, 5.875, 0)	1 	
Stop Hois	•) = (8.65, 2.625, 0)) = (3.65, 9.2, 0)		
	(3.6	5 t/unit x 1 units)			
Wei	ght of control room: 50.0 (1.5		m = (3.5, 10.7, 0) $m = 43.2 \rightarrow 50 t$		
Emł	bedded material: 3.0) = (3.65, 3.6, 0)		•
	(3.0) t/unit x 1units)		antes Alter de la composition	
5) Woight of	O/M bridge (details see figure				
5)•1 Self-wei					
유민이는 소리가 가운	th of bridge:	3.0 m			
Len	gth of bridge:	6.0 m			
	kness of bridge: t weight of reinforced concrete	0.4 m 2.5 t/m ³			
	-weight of bridge:	18.0 t	(x, y, z) = (7, 4.45, 0)		
5)-2 Weight o	of O/M equipment				
	l area of equipment:	L=4 m x W 1.0 t/m ²	/=3 m		
	t weight of equipment: ght of O/M equipment	1.0 0 m 12.0 t	(x, y, z) = (7, 4.65, 0)		
6) Weight of	stairway				
Uni	a for stairway: t weight: ght of stairway	6.0 m ² 0.4 t/m ² 2.4 t	(x, y, z) = (3.5, 6.725	4)	
7) Uplift					
7)-1 Length (of sheet pile against piping			a se internet. A se internet	
			$: C \leq \frac{\frac{1}{3}\Sigma L + \Sigma I}{1}$		
Creep 1	ratio is calculated by Lane's fe	ormula as follows	$C \leq \frac{7}{\Delta H}$		
assu	aming C = 8.5 (very fine	sand or silt)	Baru 🔽		Sea
	L = 11.0 m $\Sigma I = 1 \text{ m x } 2 + 4I$			*	
Necco	ity length of sheet pile agains	는 동생이에 바이지 않는 것이다		√ 2.85m	י אר
	= 5.0 m	it hihugu= 1.01 u			
7)-2 Calculat			11	m	
	at the point of x calculated by	following formula	a:		1=51
	이 같은 것은 것은 것을 가지 않는 것을 가 없다.	•			 ¥ ₂₀
Upx	$= (h_1 + \Delta h \cdot \mu \cdot \frac{\sum l - lx}{\sum l} + d_1) \cdot W_{\bullet}$		Up2		Up1
), $\Delta h=2.85 \text{ m}$, $\mu =1.00$, $d_2=1.0 \text{ x} 2+5 \text{ x} 4+11=33 \text{ m}$	1.5, W ₀ =1.00	Pigu	are-6	
• Sea s	ide (Up 1)				
	$Up1 = 2.85 \times 1 \times (33.11) / = 2.90 \text{ t/m}^2$	33 + 1			

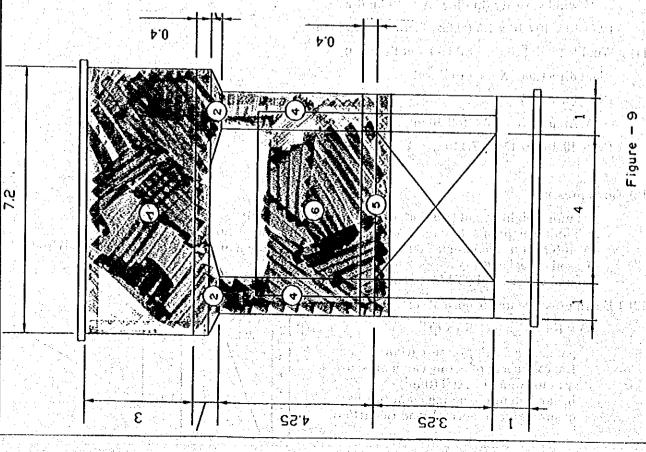


()


- Self-weight of O/M Bridge W : 3 m x L : 6 m x t: 0.4 m x 2.5 $^{1}/m^{3} = 18^{1}$ (x, y, z) = (7, 4.45, 0) - Weight of O/M Equipment W : 3 m x L : 4 m x 1.0 $^{1}/m^{2} = 12^{1}$ (x, y, z) = (7, 4.65, 0)

• •

 Baru river side (Up2) Up2 = 2.85 × 1 × (33.22)/33 + 1.0 = 1.95 t/m² Up = (1/2) × (2.9+1.95) × 11 × 6 = 160.05 t X = 5.14 8) Static water pressure Static water pressure (SWP) of gate axis direction is balanced, therefore only SWP of flow direction is considered. 8) 1 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 × V × F¹² hv: wave height (m). V: 10 minutes average wind velocity (m/sec) blow distance (m). V: 40 km/hr = 11.1 m/sec → 11.1 × 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 × 20 × 100¹² = 0.154 m → 0.16 m 8) 2 Water level under carthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he = (K τ x √ (g H₀)/π he: wave height (m). K: horizontal earthquake factor, r: period of carthquake (1.0 H₀: water depth (m). g: acceleration of gravity (9.8 m/sec²) K: K=ad /g Ad = n (ac x z)^m = 109.508 cm/sec² act design shock acceleration (cm/sec²) act basic shock acceleration (cm/sec²) act basic shock acceleration (cm/sec²) act design shock acceleration (cm/sec²) act basic shock acceleration	Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	97
 = 1.95 t/m² Up = (1/2) × (2.9+1.95) × 11 × 6 = 160.05 t X= 5.14 8) Static water pressure Static water pressure (SWP) of gate axis direction is balanced, therefore only SWP of flow direction is considered. 8) I water level under normal condition Wave pressure caused by wind is calculated by following formula. hw = 0.00077 × V × F⁰² hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 × 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 × 20 × 100¹⁰² = 0.154 m → 0.16 m 8) 2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he = (K τ × √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ: period of earthquake (1.0 H₀; water depth (m), g: acceleration of gravity (9.8 m/sec⁸) K: K=ad /g Ad = n (ac × z)^{a=} = 109.508 cm/sec⁸ ad: design shock acceleration (cm/sec⁹) ac: basic shock acceleration (cm/sec⁹) ac: basic shock acceleration (cm/sec⁹) ac: basic shock acceleration (doms⁴: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 × 1.0 × f (9.8 × 2.60))/π)/2 = 0.09 m 8) -3 Static water pressure under normal condition (details see figure-7) P = .45.24 t y = 1.42 8) -4 Shatic water pressure under earthquake condition 9 Dynamic water pressure (DWP) under earthquake condition 	• Baru	river side (Up2)			I	
 X= 5.14 8) Static water pressure Static water pressure (SWP) of gate axis direction is balanced, therefore only SWP of flow direction is considered. 8)-1 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{0/2} hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100¹² = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he: wave height (m), K: horizontal earthquake factor, τ: period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad /g Ad = n (ac x 2)^m = 109.508 cm/sec² ac: basic shock acceleration (160 cm/s²: 100-year return period) x: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/ n)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure 7) P = .45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition 9 Dynamic water pressure (DWP) under earthquake condition 		$Up2 = 2.85 \times 1 \times (33-22) = 1.95 \text{ t/m}^2$)/33 + 1.0			
 8) Static water pressure Static water pressure (SWP) of gate axis direction is balanced, therefore only SWP of flow direction is considered. 8)-11 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{1/2} hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he: wave height (m), K: horizontal earthquake factor, r: period of earthquake (1.0, H₀: water depth (m), g: acceleration of gravity (9.8 m/sec⁸) K: K=ad/g Ad = n (ac x x)ⁿ = 109.508 cm/sec⁸ ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n. m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (0.8 x 2.86))/ π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = .45.24 t y = 1.42 8) -4 Static water pressure under earthquake condition 9 Dynamic water pressure (DWP) under earthquake condition 	Up :	= (1/2) x (2.9+1.95) x 11 x 6 =	= 160.05 t		÷.	
Static water pressure (SWP) of gate axis direction is balanced, therefore only SWP of flow direction is considered. 8)-1 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x $F^{1/2}$ hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec \rightarrow 11.1 x 1.5 (safety factor) = 16.7 m/sec \rightarrow 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100 ^{1/2} = 0.154 m \rightarrow 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he = (K x x $\int (g H_0) / \pi$ he: wave height (m), K: horizontal earthquake factor, r: period of carthquake (1.0 H ₀ ; water depth (m), g: acceleration of gravity (9.8 m/sec ⁵) K: K=ad / g Ad = n (ac x z) ^a = 109.508 cm/sec ² ad: design shock acceleration (cn/sec ⁵) ac: basic shock acceleration (cn/sec ⁵) ac: basic shock acceleration (cn/sec ⁵) ac: basic shock acceleration (cli0 cm/sec ⁵) n. m: coefficients for soil types (n=0.29, m=1.32; soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x $\sqrt{(9.8 x 2.86)} / \pi) / 2 = 0.09 m$ 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition 9) Dynamic water pressure (DWP) under earthquake condition		and the second		- 1995年) 		• • • •
 direction is considered. 8)-1 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{1/2} hw: wave height (m), V: 10 minutes average wind velocity (m/scc) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of carthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore Fineform K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8) 4 Static water pressure under acthquake condition (details see figure-7) P = -43.57 t y = 1.40	8) Static wat	er pressure				N. J. F.
 direction is considered. 8)-1 Water level under normal condition Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{1/2} hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K τ x √ (g H₀)/π hc: wave height (m), K: horizontal earthquake factor, r : period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure 7) P = -45.24 t y = 1.42 9) Dynamic water pressure (DWP) under earthquake condition	Static	water pressure (SWP) of gate	e axis direction is	balanced, therefore only	y SWP of fl	ow
 Wave pressure caused by wind is assumed as a static water pressure of the wave height. Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{1/2} hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ: period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x 2)^m = 109.508 cm/sec² ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition 9) Dynamic water pressure (DWP) under earthquake condition 						
 Wave height caused by wind is calculated by following formula. hw = 0.00077 x V x F^{1/2} hv: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ: period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec³) K: K=ad / g Ad = n (ac x 2)^m = 109.508 cm/sec² ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition P = .45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition P = .43.57 t y = 1.40 						
 hw = 0.00077 x V x F^{1/2} hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.164 m → 0.16 m 8) 2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K r x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, r: period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec³) K: K=ad / g Ad = n (ac x 2)ⁿ = 109.508 cm/sec² ac: design shock acceleration (cm/sec³) ac: basic shock acceleration (160 cm/s²: 100-year return period) x: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure 7) P = .45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition P = .43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 		그는 아이는 아이는 것이 같이 가지 않는 것이 다 한 것을 수 있다.			vave heigh	t.
 hw: wave height (m), V: 10 minutes average wind velocity (m/sec) blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of carthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 		물건 그 제 그는 것 같아. 제 한 물 그 그 에 가지 않는 것	ulated by followin	g formula.		
 blow distance (m) V: 40 km/hr = 11.1 m/sec → 11.1 x 1.5 (safety factor) = 16.7 m/sec → 20 m/sec F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8) 3 Static water pressure under normal condition (details see figure 7) P = -45.24 t y = 1.42 8) 4 Static water pressure under earthquake condition 9) Dynamic water pressure (DWP) under earthquake condition 						
 F: 100 m (Sea side) hw = 0.00077 x 20 x 100^{1/2} = 0.154 m → 0.16 m 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of carthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec⁸) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (cm/sc²) ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 			minutes average v	vind velocity (m/sec)		· . ·
 8)-2 Water level under earthquake condition Wave pressure caused by earthquake is is assumed as a static water pressure of a half of th wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec⁹) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (cm/sec³) ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure -7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 			1 x 1.5 (safety fact	tor) = 16.7 m/sec → 20 r	n/sec	
Wave pressure caused by earthquake is is assumed as a static water pressure of a half of the wave height. $he = (K \tau \times \sqrt{(g H_0)})/\pi$ $he: wave height (m), K: horizontal earthquake factor, \tau : period of earthquake (1.0 H_0: water depth (m), g: acceleration of gravity (9.8 m/sec2) K: K=ad / g Ad = n (ac x z)m = 109.508 cm/sec2 ad: design shock acceleration (cm/sec2) ac: basic shock acceleration (160 cm/s2: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x \sqrt{(9.8 x 2.86)})/\pi)/2 = 0.09 m8)-3 Static water pressure under normal condition (details see figure-7)P = -45.24 t y = 1.428)-4 Static water pressure under earthquake conditionP = -43.57 t y = 1.409) Dynamic water pressure (DWP) under earthquake condition$	hw =	$= 0.00077 \ge 20 \ge 100^{1/2} = 0.15$	64 m → 0.16 m			
 wave height. he = (K τ x √ (g H₀))/π he: wave height (m), K: horizontal earthquake factor, τ : period of carthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Åd = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (cm/sec²) ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8) 3 Static water pressure under normal condition (details see figure 7) P = -45.24 t y = 1.42 8) 4 Static water pressure under earthquake condition 9) Dynamic water pressure (DWP) under earthquake condition 	8)-2 Water le	vel under earthquake condit	ion			
 he: wave height (m), K: horizontal earthquake factor, τ: period of earthquake (1.0 H₀: water depth (m), g: acceleration of gravity (9.8 m/sec²) K: K=ad / g Ad = n (ac x z)^m = 109.508 cm/sec² ad: design shock acceleration (cm/sec²) ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure 7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition 9) Dynamic water pressure (DWP) under earthquake condition 			ke is is assumed as	s a static water pressur	e of a half d	of the
H ₀ : water depth (m), g: acceleration of gravity (9.8 m/sec ³) K: K=ad / g Ad = n (ac x z) ^m = 109.508 cm/sec ² ad: design shock acceleration (cm/sec ³) ac: basic shock acceleration (160 cm/s ² : 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x $\sqrt{(9.8 x 2.86)})/\pi)/2 = 0.09$ m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition	he =	(K $\tau \propto \sqrt{(g H_0)} / \pi$				
Ad = n (ac x z) ^m = 109.508 cm/sec ² ad: design shock acceleration (cm/sec ²) ac: basic shock acceleration (160 cm/s ² : 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x $\sqrt{(9.8 x 2.86)})/\pi)/2 = 0.09$ m 8)-3 Static water pressure under normal condition (details see figure-7) P = .45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = .43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition					rthquake (1.0 s
 ad: design shock acceleration (cm/sec²) ac: basic shock acceleration (160 cm/s²: 100-year return period) z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 		K: K=ad / g				•
z: factor depending on geographic condition (0.56) n, m: coefficients for soil types (n=0.29, m=1.32: soft alluvium) Therefore , K = 109.508 / 980 = 0.11 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition						· · ·
 he/2 = ((0.11 x 1.0 x √ (9.8 x 2.86))/π)/2 = 0.09 m 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 		z: factor dep	ending on geograp	hic condition (0.56)		
 8)-3 Static water pressure under normal condition (details see figure-7) P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 		Therefore , $K = 109.5$	08 / 980 = 0.11			
 P = -45.24 t y = 1.42 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 	he/2	= ((0.11 x 1.0 x $\sqrt{(9.8 x 2.86)}$	$(0))/\pi)/2 = 0.09 \text{ m}$			
 8)-4 Static water pressure under earthquake condition (details see figure-7) P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition 	8)-3 Static wa	iter pressure under normal c	condition (detail	s see figure-7)		
P = -43.57 t y = 1.40 9) Dynamic water pressure (DWP) under earthquake condition	P = •	45.24 t y = 1.42				
9) Dynamic water pressure (DWP) under earthquake condition	8)-4 Static wa	iter pressure under earthqua	ake condition	(details see figure-7)		
"算法""就是你的"算法",这些你们是我们就是我们是我们的,还是我们的问题,我们也能能能是我们的。"	P =•	43.57 t y = 1.40				
DWP is calculated following formula: $Pd = \frac{7}{12} \cdot W \cdot Kh \cdot H^{K} \cdot h^{K}$ $y = \frac{2}{5} \cdot h$						
		ater pressure (DWP) under	earthquake condit	lou		· · ·


()

6)

()

Name of Structure		Baru Gate		ory of lation	Stability An	alysis	Page	12 / 34
Table -	3	- 	n (1997) - Andreada 1997) - Andreada	te the ender				
wind load							lda 11 ka	
Area								
No.							A(m2)	
1	7.2	3.4	1 1	i i i	24.480	1	24.480	
2	3.6	0.3	0.5 1		0.540	2	1.080	and the second
3	1				0.000	1 1	0.000	
4	- 1 E	3.85	1 1		3.850	2	7.700	•
5	6	0.8	1		4.800	1	4.800	
6	4	2.85	1 1	l i i i i i i i i i i i i i i i i i i i	11.400	1	11.400	
7					0.000	1	0.000	
							49.460	
and the second second								e da astra
Wind		0.15 t/m2					N 14 3	
No. A	(m2) W	· · · · ·	X	Y	Z W		WY	WZ
1	24.480	3.672		10.500	0.000	0.000	38.556	and the second
2	1.080	0.162	and the second secon	8.650	0.000	0.000	1.401	0.000
3	0.000	0.000			0.000	0.000	0.000	
4	7.700	1.155		6.575	0.000	0.000	7.594	0.000
5	4.800	0.720		4.250	0.000	0.000	3.060	
6	11.400	1.710		6.075	0.000	0.000	10.388	0.000
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.000	0.000				0.000	0.000	0.000
Σ	49.460	7.419				0.000	61.000	0.000
have -							er et lange tu. Ne fertig lange	
		· - · · · · · · · ·				0.000	8.222	0.000
						$\gamma > q + q$	an an a'	

Name of
StructureBaru GateCategory of
calculationStability AnalysisPage13 / 34
$$Ka = \frac{\cos^2(\partial - \theta)}{\cos^2(\partial - \cos(\theta + \delta) \cdot \sin(d - \alpha))}$$
 $(1 + \sqrt{\sin(d + \delta) \cdot \sin(d - \alpha)})^2$ $(1 + \sqrt{\sin(d - \delta) \cdot \cos(\theta - \alpha)})^2$ $(1 + \sqrt{\sin(d - \alpha)})^2$ $\theta = 0^*, \phi = 30^*, \pi = 0, \delta = \phi / 3 = 10^\circ$ $(1 + \sqrt{\sin(d - \delta) \cdot \cos(\theta - \alpha)})^2 = 0.308$ $(1 + \sqrt{\sin(d - \delta) \cdot \cos(\theta - \alpha)})^2$ $B = 0^*, \phi = 30^\circ, \pi = 0, \delta = \phi / 3 = 10^\circ$ $(1 + \sqrt{\sin(d - \delta) \cdot \cos(\theta - \alpha)})^2 = 0.308$ $(1 + \sqrt{\sin(d - \delta) \cdot \cos(\theta - \alpha)})^2$ $B = 0^*, \phi = 30^\circ, x = 3, 0^*, x = 30^\circ, x =$

C

()

.

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	14/34
-Ea	rth pressure at GWL (pae1)			•	
	pae1 = 0.404 x 1.9 x 0.4 = Pae1= 1/2 x 0.31 x 0.4 x 8		Y = 3.98		
-Ea	rth pressure at bottom (pae2)				
	pae2 = $0.500 \times 0.9 \times (4.25)$ Pae2= $1/2 \times (0.31+2.04) \times 10^{-10}$	•0.4) + 0.31 = 2.04 3.85 x 8 = 36.19 t	tf f Y = 1.45		
-To	al earth pressure Pa				
	Pae = Pae1 + Pae2 = 36.6 Y = 1.48	9 tf X=5.5			
	*Horizontal force: Pae _H = Pae *Vertical force: Pae _V = Pae x s	$x \cos \delta = 36.69 x$ $\sin \delta = 36.69 x \sin \theta$	cos0 = 36.69 tf 0 = 0 tf		
<u>fotal Calcul</u>	ated Load and Moment (details see table-4) (* 1917) * 1917 *		
l) Normal co	ondition				
Tota	al vertical load and moment: al horizontal load and momen ing point of compsition of forc	t: $\Sigma H = 63.53 \text{ tf.}$	$\Sigma Mz = 49.40 \text{ tm}$		
?)Earthqual	ce condition				
2)-1 Earthqu	ake condition: Z				
Tota	al vertical load and moment: al horizontal load and momen ing point of compsition of force	t: $\Sigma H = 100.81 t$	$f_{1} \Sigma Mz = 263.01 tm$		
	ake condition: X				
Tota	al vertical load and moment: al horizontal load and momen ing point of compsition of force	t: $\Sigma H = 101.98 t$	$f_{\rm L} \Sigma Mz = 32.95 \ \rm tm$		
Stability aga	unst Overturning (detail	s see table•4)			
l) Normal co	ondition				
Act	ing point of compsition of force	es: (x,z) = (5.12, 0	.14)		
Dis	tance between center of footin	g and acting poin	t (r):		n da se Recenteration
	$r = \sqrt{(ex^2+ez^2)} = \sqrt{((5.12))}$ ex, ez: deviation from foot			3	
Stal	bility against overturning:	$r_{\mu n} = \frac{1}{6} \cdot \frac{L^2 \cdot \sin^2}{L \cdot \sin^2}$	$\frac{\theta + B^{\prime} \cdot \cos^{\prime} \theta}{\theta + B \cdot \cos \theta} > r$		
	L: 11 m, B: 6 m, tan θ =e	x/ez, $\theta = 1.23$			
		ほうち やすらもう れいとう			法自然法 医白色的 医

0

3 - 39

.

 $\leq i$

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page 15 / 3
	<u>ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ</u> ૢૢૢૢૢૢૢૢૢૢૢ	238.800 238.800 21.91 21.91	1.70	
	(Gate axis directon) Y (m) H2#Y 0.00 0.		23	
	si (Ê	2152		
	al (Got			
· · ·	Hz (t)	23.57 10.31	33.88	
	<pre></pre>	0000448000 00004480000	2.3668	
	(100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,222		
	χ (m) Υ (m)	·····································		
	Holizontal	-45.24 -1.08 -7.42	-653.7 4	
	88888888888888888888888888888888888888	0.00 9.55 0.00 0.00 0.00 0.00 0.00 0.00	8.34 0.022 0.14	
		000000000 1	0.14	
	1,950,59 1,950,59 1,6,49 1,15,	84.00 84.00 8.40 0.00 0.00 0.00 0.00 0.0	1,976.12 5.47 5.12 5.12	
				- 0
	N N	-3.00 -3.00 -3.00	Mz 49.40	552 0 0.11 1.09
	ر (ش) X 2,74 2,63 3,833 3,60 10,700	6.73 6.73 2.13 2.13	20 42	8 8 8
		0.0.7	N .	5 00
	tion. Maintena Vertical force X (m) 3 10,100 3 55 0 3,65 0 3,65 0 3,65 0 3,65 0 3,65 0 3,65 0 3,65 0 3,65 0 0 3,65 0 0 10,100 0 10,100	ດ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ	ΣH 663.53 6.0.14	sin2 0 0.39 1.50
	condition. V (t) 333.388 6.13 2.9.11 2.9.11 2.9.11 3.00 3.00 3.00 1.00 1.00	12.00 2.40 60.05 1.82 1.82	361.55 / 261.55 0.38 ez ez 2.82	51
	mal cond V (t) 3333 50.(50.(31.(19.(12:00 2:40 	ε ε % ε %	sin θ max
	Construction completed. Normal condition, Maintenace light of gate body. V (t) V rerical force in weight. 0.13 10.10 eight of gate. 29.11 10.10 oist and Misc. 3.30 8.65 Closed gate. 3.00 8.65 Hoist weight. 5.00 8.65 Control room 5.000 3.55 Embedded material 3.00 3.65 dige. 18.00 7.00	Juout		
	Construction complet light of gate body, in weight leight oist and Misc. Opened gate Closed gate Stop log Fhoist weight Control noom Embedded material Embedded material	Weight of O/M equipment by water pressure na pressure ad ressure jearth pressure pressure pressure by surcharge		
<u> </u>	uction gate b f gate b f gate f room ded ma	of O/h essure ressure		
4 2	Construction comp eight of gate body meight weight Voist and Misc. Obened gate Stop log Stop log Stop log Stop log Stop log Stop log Steveright Control room Control room Stop log Stif-weight of brid Stif-weight of brid Stif-weight of brid Stif-weight of brid	Weight ty Nator pr nomal nt prose earth p pressure	Total	
	Construction con Self-weight of gate body Sediment weight Water weight Gete, Hoist and Mise. Opened gate Closed gate Closed gate Closed gate Closed gate Closed gate Stop Jog Stop Jog Confor con Control room Control room Control room Stop Jog			
Table	କରର ିବ ାରି ବ	623 639		

ame of ructure		, , , , , , , , , , , , , , , , , , ,	B	arı	1 C	la	te	•		·					-		y o ior			S	ta	bili	ty A	Ina	lysi	\$	Р	age	27 9	,	16	134	}	
											·														•		•		•	•		· ·		
		reciton)	115,69	1.01	000	3.0	000	0.87	3.54	58.85	0 - 0	2 5 5 0	0 9 9	000	0.0	8.0	8		80	0.0	53.20	253.41	2.80		-11. (). - 19,	·'		• . •	•			•		
		axis di		1.50	, , , ,		000	2.63	9.20	10.70	8 8 8 8 8	2.44	4 65	2				*/ *7		 	1,45										• .	•		а.
	•	ontal (Gate	2.24	0.67	000	222	0.00	0.33	0.39	5.50	0.33	000	3.6		· .						20.02	90.38						· .				•		
	 	Holizontal			·····													-			ň	8						• :						
		tion)	0.00	0.00	800	300	0000	0.00	0.00	0.00		30	0000	0.00	000	000	0000	-1.44	0.00	0.00	000	-62.43	1.40											
		v directio														•	1.40	33				T				- 1 - A - 1 - A - 2								
		Holizontal (flow direction)								-			-				ł			-										-				
		Holize															-43.57	-1.08				-44.65	-											
			8	8	8.8	29		8	8	0				10	2	2			0	0	2	0	8		4									
		~~~			0.00																	9.60	00	2	0.74									
		~~~	1,950.59	61.88	293.91	0000	2000	25.95	12.78	175.00	0000	126.00	84.00	8.40	-822.66	80		0000	00.0	000	3	1,943.23	5.47		5.29									
	ismic Z	(2)	•	0.0	0000	000		0.00	0.0	000	00.0	000	00.0	4.00	0.0									47X	263.01					0.83	0.84			
	seis Seis	V(m) ~	74	1.50	2.43	5 881	222	2.63	9.20	10.70	2.00	4.45	4.65	6.73	0.0					0000	222			ΣMz	1.830.79	77	23	15.88	cos2	0.80	· · ·			
	Mainten		8	0.10	0.10	3.65		8.65			5.00V	2.00	8	3.50	5.14			-			8			ZMX ZMX		r 074		_	cos		15			
	ondition.	Vertical force	6 60			1				1								-						<u>_</u> W	100.81	27		6 0.28	sin2	/00	1.61			
	hquake C	(+) /	383.98	6.13	67	4.50		3.00	3.50	20.0	22.0	18.00	12.00	2.40	-160.00					000		355.57		۶	355.57	ex 0 21	3	ex/ez 0.28	sin 0	17.0	rmax			
	ted, Eart					1							ment					-								•		• 12 12	v		C			
	on comple	•	body		ç				4	ε	naterials	of bridge	/M equip			ç.	sure						4		et 15 10									
4 (7) (7)	Construction completed, Earthquake Condition, Maintenace		it of gate	weight	gat it and Mis	Opened rate	Closed gate	Stop log	Hoist weight	Control room	Emocogoo matenais	Self-weight of bridge	Weight of O/M equipment			er pressu	seismic C water pres	Dressure		sure		Total												
1 N 1			Self-weight of gate body	Sediment weight	water weight Gete Hoist and Mise	Ŏ	δÖ	ซี	Ĭ	ŎĹ	0/M hridee	Š	Ň	Stairwaty	Cpitt	Static water pressure	seismic Dvnamic water pressur	Sediment pressure	Wind load	Earth pressure		£												
Toble			·		94 24		· · · ·		- -		5		<u>-</u>		2.0 2,0		<u>р</u> 6			12 2 2):			-										

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page 17/3
· · · ·		J		
	<u>ૢૢૢૢૢૢૢૢૢૢૢ</u>	<u> </u>	<u>) 0 0</u>	
	Hei 000000000000000000000000000000000000		1.52.83	an ang parta séri. Ang pangang pangang pangang pangang pangang pangang pangang pangang pangang pang p
	axis di	33		
	(Gate			
	Holizontal (Gate axis direciton) Hz (t) (m) (Gate axis direciton) 0.00 0.00 0.00 0.00 0.00	53.57	5357	
	8 - 9 9 - 9 5 4	9 0 0 - 4 0 0 0 0 4 0 0 0		
	HXXX 11155 100000000000000000000000000000	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-265.05 2.67 2.65 2.65	
	ow direc (m) 5.88 9.263			
	Holizontal (flow direction) Hx (t) Y (m) Hx#Y -42.24 Y (m) Hx#Y -2.24 -1156 -115 -0.50 5.88 -2.0 0.0 -0.33 2.63 -0.0 0.0 -0.33 2.63 -0.3			
	10 20 * (t) -0.55 -0.33 -0.33		6	
	000000 000 000000 000 N00000 000		88 5 86	
	N00000 00 *	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		- 推动的复数使服务 禁
	V*X 950591 6188 6188 6188 293,911 293,911 16,43	1000 128.00 84.00 84.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	11.966.11 5.47 2.2 2	and a second second Second second second Second second
			이 바람 말랐다. 김 동안 동안 동안 동안	
	Seismic X Z (m) 0.00 0.00 0.00 0.00	-3.00	Z = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	100 - 4- - 69 - 100 - 10
	Seis 20 20 20 20 20 20 20 20 20 20 20 20 20	600 445 000 000 000 000 000 000 000 000 0	06 X M	Cos2
		NG 4400	ΣMX 1.701.0 2.7	θ 300 010
	Condition, Mainte Vertical force X (m) 3 10,10 1 10,10 1 3,65 00 3,65 3,65 00 3,65	3.65 7.00 3.50 5.14 5.50		66 6
	adition, M ertical fo 5,0 10,1 10,1 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6		359.73 × 259.73 359.73 0.77 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 1 • 6	sin2 0
	Jake Co. (t) V V 8.13 8.13 8.13 2.9.11 2.9.11 3.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00	12.00 -15.00 -160.05 416	359.73 359.73 359.73 62 -8.47	6. 0
			ια « « « « « « « « « « « « «	sin d
`	Construction completed. Earthquake Condition, Maintenace ight of zate body 2383,98 5.08 7(m) rt. weight. 2313 10.10 2 at weight. 29.11 10.10 2 of at and Mise. 4.50 3.65 5 Closed gate 3.50 2.65 9 Motor veight 5.00 3.65 9 Houst veight 5.00 3.65 9 Houst veight 5.00 3.65 9	ment		
4 		Embedded matcrials idge Self-weight of bridge Weight of O/M equipment W seignic seignic seignic seignic ressure de essure		
12 - 12 1 1	Construction con Self-weight of gate body Sediment weight Water weight Gete, Hoist and Mise. Opened gate Closed gate Stop log	O/M bridge O/M bridge Self-weight of bridge Stalrwaty Uplift Static water pressure Static water pressure Bynamic water pressure Seismic pressure Mind load Earth pressure		
Table	Construction of Self-weight of gate by Self-weight weight. Sediment weight dette Hoist weight Gete. Hoist weight Noist weight Phoist weight Cosed gate	O/M bridge Seff-weight of O/I Stationaty Uplift Static water pressure Sedimont pressure Wind load Earth pressure mormal		
F -		O/M bridge O/M bridge Stairwaty Upliff Static water pri Static water pri Static water Static mater Dramic water Barth pressure normal		
	ତି କିର୍ର୍ଚ୍ଚ କିର୍ଚ୍ଚନ	12) 12) 12) 12) 12) 12) 12) 12)		
na senara da An Agente Vigitadas Agente Vigitadas				
			というない。 動物の見得ない。 の動物の見得ない。 などの	

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	18 / 34
2) Earthqua	ake condition		A <u>1999 - Andreas Andre</u>		
2)-2 Earthq	uake direciton• Flow (Z)				
	ting point of compsition of for stance between center of footi r = 0.77	ng and acting poir	nt (r):		
Sta	bility against overturning:	$r_{\rm res} = \frac{1}{3} \cdot \frac{L^2 \cdot \sin^2}{L \cdot \sin^2}$	$\frac{\theta + B' \cdot \cos^2 \theta}{\theta + B \cdot \cos \theta} > r$		
•	L: 11 m, B: 6 m, $\tan \theta =$	$ex/ez, \ \theta = 0.28$			
анана 1997 - Сарана 1997 - Сарана (1997) - Сарана	$r_{max} = 1.61 > 0.77 \rightarrow 0$	K			
2)-2 Earthqu	uake direciton- Gate Axis (X)				
Act Dis	ing point of compsition of for- tance between center of footing $r = 0.78$	ces: (x, z) = (4.73, (ng and acting poir	0.09) it (r):		
	L: 11 m, B: 6 m, $\tan \theta =$	ex/ez, 0 = 0.78			
	$r_{max} = 3.43 > 0.78 \rightarrow 0.78$	ОК			
<u>Pile Founda</u>	그는 것이 없는 것이 같이 많은 것이 없다.				El.0 m
1) N-value f	or design of pile foundation		El3.		<u>Milkuun</u>
Geolog	gical condition at the site is a	ssumed as shown	in figure-11.		
N-v ave	value at pile tip (Nt): 50 erage N-value 3.75D above th 3.75 D = 3.75 x 0.5 = 1.87 N2 = (0.875 x 10 + 1.0 x f	'5	na shina a finanzina shina Ababiya. A shina shina shina shi		N=5 El.15 m
N-v	value for pile design (N): N = (→ 40	.0 m ()	N=10 El. 25 m N=50
2) Estimatio	on of internal friction angle				
	$15 + \sqrt{(15 \times N)} = 15 + \sqrt{(15 \times N)}$	$(40) = 39.5 \rightarrow 40$			
			200		
3) Allowable	compressive bearing capacit	y (Ra)			
and the second second	= { qd x A + u Σ (li x fi)}/SF		01S		
	qd: ultimate bearing capa A: Area of pile tip (= πR^2	/4 = 0.196 m²)	L,		
	li: stratum depth ($l_1=11$, u: circumferential length fi: maximum skin firictio ($f_1=2.5$ tf/m ² , $f_2=3$ tf/m ² , SF: safety factor (normal	of pile (= 1.571 n n of stratum f ₃ = 3 tf/m ²)	Value of Bearing Capacity		
- ul	timate bearing capacity (qd)		Š∰ ,		
	qd = 1.3 x c x Nc + 0.3 x	R x y , x N + y - y	t Df x Na	ko 23	
		- 1		ternol Fric	tion Angle

Internal Friction Angle $\emptyset(-\circ)$

C

(1)

c: cohesion (= 0) Nc, N_y, Nq: bearing capacity foctors Nc = 92, N_y = 110, Nq = 85 γ_1 : unit weight of soil below pile tip (= 0.8 tf/m³)

		· · · · · · · · · · · · · · · · · · ·		······································	r
Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	19
· •	γ_2 : unit weight of so R: diameter of pile (Df: Pile rength (= 22	= 0.5 m)	= 0.8 tf/m³)		•
	$qd = 0.3 \times 0.5 \times 0.8 \times 110^{-10}$	•	= 1516 tf/m ²		
Ra	= {1550 x 0.196 + 1.571 x (11.)	이 나는 것이 같은 것 같은 것이다.			•
Ivu	•Noramal condition:	Ra = 133.7 tf		2 - 1 - 1	
 	-Earthquake condition:	Ra = 200.6 tf	n an an Artigor an Artigor An Artigor Artigor An Artigor Artigor		+ ± 1
	N				. *
	pull-out capacity (Pa)		Net and the second s		
Pa =	= Pu / SF + w				
· · · ·	Pu: ultimate axial pull-ou Pu = U X	ıt capacity of pile ((li x fi) = 97.4	determined by ground c	ondition	s (tf
an a	w: effective weight of pile		5 m = 36.16 tf)		
	SF: safety factor (normal:				ur unt Ka ⁿ ji
an a	-Noramal condition: -Earthquake condition:	Pa = 52.39 tf Pa = 68.63 tf	an an an Arthread an Anna an Anna Anna. Anna an Anna Anna Anna an Anna Anna Ann		
				u traditi. Kita kita	
5) Allowable	lateral bearing capacity (Ha)				
	= (k x D / β) x δ a				
11a -	k: coefficient of lateral rea	action of foundatic	m ground (kaflom)		an Ar Star Ar
	D: pile diameter(= 0.5 m)) - 1 - 1 - 1 - 1 - 1	m Broana (VEncill)		
	eta : charactaristic value of	ì pile (cm ⁻¹)			÷
	$\beta = \sqrt{\frac{k \cdot D}{k \cdot D}}$				
	γ4·<i>B</i>·<i>l</i>				
			(= 400,000 kgf/cm²) pile body (= 260,604.6 i	m ⁴)	•
	δ a: allowable displaceme				ile Terre
5)-1 Estimati	ion of coefficient of lateral rea				
	< ₀ (B _H /30) ^{-3/4}				
	$k_0 = 1/30 \times \alpha \times E_0,$				
	E0 = 28N = 140), $\alpha = 1$ (normal),	α=2 (earthquake)		
	$B_{\rm H} = \sqrt{(D / \beta)}$ $D = 0.5 \rm{m}$				
1 -=-	1.70 (normal condition)				
	3.40 (earthquake condition)	(details see tabl	le-5)		
	e lateral bearing capacity (H				
e en l'Après de c	= (k x D / β) x δ a				
	K: 1.70 kgf/cm ³ (normal),	3.40 kgf/cm ³ (eart	hquake)		
	D: pile diameter(= 50 cm) β : 0.0035 cm ⁻¹ , 1/ β = 26 : allowable displacement of) 54.5 cm		n)	
Ha =	= 22.5 t (normal),				
	= 45.0 t (earthquake)			ana 1917 - Janas 1917 - Jacabar	
	이 가지 않는 것이 가지 않는 것이 가지 않는 것이다. 같은 것이 같은 것이 같은 것이 같은 것이 같이				
	그는 그는 그는 것을 가지 않는 것 같은 것이 없다.				

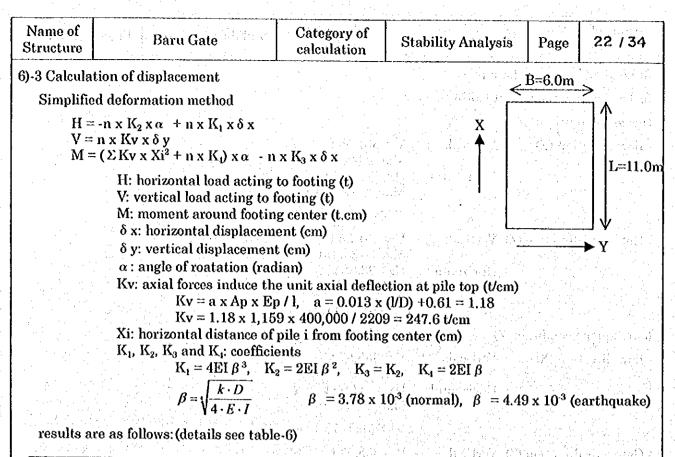
Jame of tructure	Baru Gate	Category of calculation	Stability Analysis Page 20 / 34
	e antiere e State en service State en service		
	1,722665 4,666667 1155,0668 1 140 50 50 50 50	264.8159 1.702665 261673 261673 1.702665	
	⊻ 중≞ 8월 8 , 8	17. 17.目文出代 中外的	
		204.8109 1.792685 400000 261675 261675	• •
	자 중필 호흡 <i>호크 · 호</i>		
		204401 400000 201675 201675 201675 201675 201675	 A statistical statisticae statisticae statisticae statisticae sta
	× 25 88 8- a	이는 동안에 있다. 이 동안에서 관계 같이 있다.	 Barranda periode en la compositione en la composit en la compositione en la
			 A second s
	x X 2 4 8 8 8 8 8		
	그는 사람에 가는 것 같아요? 승규는 아이	2040229 1.702331 400000 201675 7 7 8 201675 7 7	 Z A A
	02131 - K 15,096 BH 15,096 BH 1140 E0 50 ¢ 50 d 4 200774 B		2
	115,008 115,00	400000	
	× 8		
	1,699102 4,666637 115,33907 115,33907 115,33907 1140 1140 500 500 500 500 500 500 500 500 500 5	1.005043	약 가고 있는 것이 가지가 가지 않는 것이다. 가지 않는 것이다. 이 가지 말한 것이다. 것같은 것이 같은 것은 것이다. 것이다. 이 같은 것이 같은 것 같은 것이다. 것이 같은 것이다. 것이다.
	자 중말 요집 요 요 <i>해</i> ;		
5.	1.005043 4.6000657 1.18.5486 1.140 50 50 50 50	40000 261675 261675 1.341591	
foundation of foundation	x 25 88 +		
Table – 5 estimate of lational rea			
μ.	* 35 88 89 43	a - 2a ×	

ene sue site

.

Name of Structure Ba	aru Gate	Category of calculation	Stability Analysis	Page	21 / 34
6) Load and moment for	r a pile		na an an an an Angal	an an taon an t	nian kalada
6)-1 Load and moment a	at footing center	•		a La dejate de	
(normal condition)			an a		
- flow direction (X)	Horizontal:	V = 361.55 t Mxv = 323.05 x (5.4 Hx = -53.74 t Mxh = -126.7 tm	7-5.5) = -9.7 tm		
			=-136.4 tm	u M U N	·
- Gete axis direction (Z)	Horizontal:	V = 361.55 t	ligen al seu de aussi sectores des gaatses op die taket sea datses forsaarde die terste aante gedage de konstantige de		
	「時間の時時間 「同時編集」の現象	ΣMz= 49.4 tm	人名英格兰人姓氏格兰人名 法国际法律语言语		
(earthquake condition: 2	0	이 사이가 있는 것이 가 있었다. 이 사용 사용 사용 해외 사용			
- flow direction (X)	Horizontal:	V = 355.57 t Mxv = -10.7 tm Hx = -44.65 t Mxh = -62.4 tm			
		$\Sigma Mx = 73.1 tm$			
- Gete axis direction (Z)	Horizontal:	V = 355.57 t Mzv = 9.6 tm Hz= 90.38 t Mzh = 253.4 tm			
		$\Sigma Mz = 263.0 \text{ tm}$			
(earthquake condition: X	δ				en en de la face. Set al la face plan
- flow direction (X)	Horizontal:	V = 359.73 t Mxv = -10.8 tm Hx = -99.22 t Mxh = -265.1 tm			
(1) "我们的""你们,我们们的"。 你们还要是你的你们,你们们们们		$\Sigma Mx = -275.9 \text{ tm}$			
- Gete axis direction (Z)	Horizontal: 1	V = 359.73 t Mzv = -2.9 tm Hx = 23.57 t Mzh = 35.8 tm			
		ΣMz = 32.9 tm			
	flow dire	ction: X ga	te axis direction: Z	ta de la com	t effekter 1911 - Station

	flow	direction:	X	gate a			
	v	H	Μ	v	н	М	ΣΗ
Normal	361.55	-53.74	-136.4	361.55	33.88	49.4	63.53
earthquake Z	355.57	-44.65	73.1	355.57	86.15	263.0	100.81
earthquake X	359.73	-99.22	-275.9	359.73	23.57	32.9	101.98


6)-2 Layout of pile

)

1

φ 500 PHC pile X x Z = 5 x 3 n=15 @X = 2.125 m @Z = 1.75 m

 $\{1,j\}_{j \in \mathbb{N}}$

			δ H (cm)		α H (x 10 ⁵ radian)			
	δy	δx	δz	δH	αx	αz	αΗ	
Normal	0.097	-0.163	0.115	0.199	-3.95	11.52	15.47	
earthquake: Z	0.096	-0.078	0.200	0.215	0.440	43.30	43.74	
Earthquake: X	0.096	-0.183	0.049	0.189	-7.33	7.14	14.47	

Allowable: normal condition; $\delta y = \delta H = 1.0 \text{ cm}$, $\alpha = 1/1000 = 1 \times 10^3$ earthquacke condition; $\delta y = 1.0 \text{ cm}$, $\delta H = 1.5 \text{ cm}$, $\alpha = 1/1000 = 1 \times 10^3$

6)-3 Load for pile

 $P_{vi} = Kv x (Xi \alpha + \delta y)$

 $P_{H}i = H / n$

 P_{V} i: vertical load acting on pile i (t) P_{H} i: horizontal load acting on pile i (t) results are shown below; (detail

(details see table-7)

	$\mathbf{P_v}$	(t)	A Riceland
	P _{Vmax}	P _{Vnin}	P _H (t)
Normal	28.2	19.9	4.24
earthquake: Z	24.3	23.4	6.72
Earthquake: X	31.5	16.1	6.8

7) Stress for a pile

7)-1 Load and moment for calculation of pile stress

Name of Structure	Baru Gate Market	Category of calculation	Stability Anal	ysis Page	23/34
-		·	· · · · · · · ·		· .
•		•			
. •				 	
				· · · · ·	•
· · ·					
		-			
		-53.74 361.55 -13640	-2411152.84 -4626613.752 -7037766.592 -3.94536E-05 -25346.20145	-13640 -0.163652882 0.097347873	
			-2411 46266 70377 3.9453 25346		
			Î ÎÎ		
	의 일본 분이는 통령이 되었다. 이 전환은 것이 아이지 않는 것이 있는 것이 있는 같이 같이 같이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있는 것이 없는 것				
Ω T	378 378 378		11 IF AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS A ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS	H H - H -	normari X
	в 0.00378 0.00378 0.00378	× × ov ov	× × v v	××× vvv	
() 1 () ()		339.2 44867		44867 ,	
	0 0 N	∞ ¹ / ₂	15218644 15218644	4	
u (2) (2). 2 2	400000 400000 400000 400000				
	m 44 4	+ I		I.	
	400				
c (4 4 00 9 00 9 >	88 88	2	
		14867.00484 α 3714 δγ 531829578 α	2013048123 1.80394E+11 1.78381E+11	2.614	
		44867.00484 3714 531829578	2013048123 1.80394E+11 1.78381E+11	-20982.6147	
alculation 361.55 -53.74	22.6 2,991.1 2,991.1 2,991.1 2,991.1 2,991.1 2,991.1 247.6 247.6 247.6 247.6 247.6 247.6				
: calcu 36 15	22.6 2,991.1 2,991.1 2,991.1 791,305.2 291.1,305.2 2100000 519960000				
C e e	ана на селото на село Селото на селото на с				
displac T + <	≅ ∑&& × × ×	₽ 5 ₽			
Table 6 displacement calculation V 361.55 H -53.74 M					
Tab					

. •

Name of Structure Baru Gate Cartegory of calculation Stapility Analysis Page 54/34 331.55 Standould Structure R Cartegory of calculation Stapility Aualysis Lago 54/34 331.55 Standould Standould Stapility Aualysis R Cartegory of calculation Stapility Aualysis Lago 54/34 238155 Stapility Constraints R Stapility Constraints Stapility Constraints <td< th=""><th></th><th></th><th>1</th><th></th><th></th><th></th></td<>			1			
n 5 15 e 1,75 1,75 1,75 1,55 0,00378 e 4 400000 261675 0,00378 2 15218644 & 2 2 20333333 2 15218644 & 2 2 10105,34816 - 44867 & 7 2 10000 - 44867 & 7 2 100	Name of Structure	Baru Gate	Category of calculation	Stability Analy	sis Page	24/34
n 5 1.75 1.75 1.75 \odot 1.75 1.75 1.75 \odot 1.75 1.75 0.00378 2 400000 261675 0.00378 2 15218644 & 2 2 10105.34816 - 44867 & 5 2 10105 - 44867 & 5 2 10000 - 44867 & 5 2 100000 - 5 2 10000 - 5 2 10000 - 5 2 10000 - 5						
n 5 15 175 175 175 15 a $E = 1.75$ 175 175 0.00378 2 400000 261675 0.00378 2 15218644 & 2 2 10105.34816 - 44867 & 7 2 10000 - 44867 & 7 2 100000 - 44867 &						
n $\frac{5}{2}$ $\frac{3}{1.75}$ $\frac{15}{1.75}$ $\frac{15}{0.00378}$ $\frac{2}{2}$ $\frac{1}{4}$ $\frac{2}{400000}$ $\frac{261675}{261675}$ $\frac{0.00378}{0.00378}$ $\frac{4}{2}$ $\frac{400000}{20000}$ $\frac{261675}{261675}$ $\frac{0.00378}{0.00378}$ $\frac{44867.00484}{2}$ $\frac{4}{2}$ $\frac{44867}{2}$ $\frac{5}{2}$ $\frac{3714}{2}$ $\frac{5}{2}$ $\frac{15218644}{52}$ $\frac{5}{2}$ $\frac{5746371486}{2}$ $\frac{15218644}{5}$ $\frac{5}{2}$ $\frac{5746371486}{5}$ $\frac{15218644}{5}$ $\frac{5}{2}$ $\frac{57433323363}{2}$ $\frac{15218644}{5}$ $\frac{5}{2}$ $\frac{5743313323363}{2}$ $\frac{10105.34816}{5}$ $ \frac{44867}{5}$ $\frac{5}{2}$			33.88 361.55 4940	1520094.124 1675621.11 3195715.234 0.00011523 8678.283682	4940 0.115125763	
n $\frac{2}{1.75}$ 175 $@$ 1.75 175 $@$ 1.75 175 2 400000 261675 2 400000 261675 2 400000 261675 2 400000 261675 2 400000 261675 2 400000 261675 2 $3714 & 6y$ + $3714 & 6y$ - 44367 $3714 & 6y$ - - $2013048123 & a$ 15218644 $2013048123 & a$ 15218644 $27733323363 & a$ 15218644 $27733323363 & a$ - $27733323363 & a$ - 10105.34816 -	19	6				normal Z
 a a a a a a b a a	5 2	175 261675 261675 261675 261675				
44867.00484 3714 87697078 2013048123 29746371486 27733323363 20105.34816		See U			
nt calculation 361,55 4940 2,991.1 791,305.2 791,305.2 791,305.2 75827500 75827500	c	٩		2013048123 α :9746371486 α :7733323363 α α	10105.34816	
- 우리 가지 않는 것은 것 같은 것은 것을 하는 것 같은 것 같은 것 같은 것 같은 것을 하는 것을 통하는 것 같은 것을 하는 것 같은 것 같	displacement calculation V 361.55 H	76 75		0 0 1		
displace A A A A A A A A A A A A A A A A A A A	displace H < d	.≥ 2222 3M	7 2 7 7			

Name of Structure	Baru Gat	e ,	Category of calculation	Stab	ility Anal	ysis	Page	25/34
				· · · ·	-			
			-44.65 355.57 7310	-2826556.195 4155563.036	1329006.841 4.43605E-06 225425.8653	7310 -0.078049276	0.095737749	
							11	
ស	449 449 449		¹ II II II (a) A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	* 11 11	H 11	11 11	11	
	212.5 <i>B</i> 261675 0.00449 261675 0.00449 261675 0.00449		568.5 S x 63304.73001 S x	35987249.8		63304.73001 & x & x	S S	seismic-Z X
8	2:125 E 1 1 400000 2 400000 2 400000		· · · · · · · · · · · · · · · · · · ·					
٤	(S)		63304.73001 α 534059049 α	4007488842 α 3.036E+11 α	2.99593Ε+11 α α	2369.111674		
t calculation 355.57 ⊸44.65	7310 37.9 4,220.3 939,936.6	247.6 2100000 519960000						
displacement calculation 355	┎ᡓ ⊵ऽऽऽ≵	× × × × × × ×	ᅷᅷᄥᆇ					

(

(`)

)

Nomo of			•	Category of				•
Name of Structure		Baru Gate		calculation	Stabi	lity Analysis	Page	26/34
				86.15 355.57 26300	5453702.49 14950931.31	20404633.8 0.000433094 2308.967623	26300 0199774138	
1 2	175 A	261675 0.00449 261675 0.00449 261675 0.00449		568.5 <i>S</i> Z = = = = = = = = = = = = = = = = = =	35987250 & Z = 35987250 & Z =		63304.73 & Z & Z =	seismic-2 Z
25	L.	4 4 <t< td=""><td></td><td>+ 1</td><td></td><td></td><td></td><td></td></t<>		+ 1				
2	(3)			63304.73001 α 3714 δγ 89926549 α	4007488842 α 51121127628 α	47113638787 α α	38946.64789	
displacement calculation V 355.57 H	26300	37.9 4,220.3 4,220.3 939,936.6	247.6 306250 75827500					
displace H <	×	2822 2822	K K K K K	₽у₽				

()

0

Ø

	Name of	Baru	Gate	Category of calculation	Stab	ility Analy	ysis	Page	27/34
	Structure		Claic	calculation				<u>_</u>	
				-99.22 359.73 -27590	-6281095.312 -15684265.96	-21965361.27 -7.33175E-05 -13639.31662	-27590 -0.182701213	0.096857835	
		00		на станция и на	H 11	1 1 1 1 11 1	н Л	н Н	
		212.5 <i>B</i> 261675 0.00449 261675 0.00449	261675 0.00449	568.5 & x 63304.73001 & x	35987249.8 & x 35987249.8 & x		63304.73001 δ × δ ×	δy	seismicX X
•	8 2	2.125 E 1 2 400000 2 400000	2 400000						37 - 1 37 - 1
	c	(3)		63304.73001 α 3714 δγ 534059049 α	4007488842 α 3.036E+11 α	2.99593E+11 α α	-39155.851		
	displacement calculation V H	-27590 37.9 4,220.3	939.936.6 247.6 2100000 519960000						
	displacemen L <	-≥ ∑∑%	5.7 ∑ × × × ×	╨╜╩					

3 - 52

.

Name of Structure	Baru Gate	Category of calculation	Stal	bility Anal	ysis	Page	28/	34		
	andra Alexandra Alexandra Alexandra							- - -		
									- - - -	
			23.57 321.73 3290	1492092.486 1870287.604	3362380.091 7.13674E-05 14011.99077	3290 0.049409075				
ល្អ	β 0.00449 0.00449 0.00449		δ.Ζ δ.Ζ 	8 Z 8 Z 8 Z		8 1 8 1 8 1 8 1 8 1			seismic-X Z	
5 2 175 175	2616 2616 2616		568.5 & Z 63304.73 & Z	35987250 35987250		63304.73				(
	40 0 Ш		+ I			1				- - - - - - -
c ©)		63304.73001 α 3714 δγ 89926549 α	4007488842 α 51121127628 α	47113638787 α α	6417.828165				
аррассири сасаады 4 Н 23.57 М	37.9 37.9 4,220.3 939,936.6	247.8 306250 75827500	Ĩ	ດ 	4	¥				
	≅ <u>∼</u> &&\$?	ZZ ZZ ZZ ZZ	₽₿							

. •

Name of Structure	Kovn Coto			gory of Ilation	rsis Page	29/34	
Results a	re shown t	elow;		(detail	s see table-8)		
		Pv	(t)	· :			-
: 		P _{Vmax}	P _{Vmin}	$P_{II}(t)$	M ₀ (tm)	M _m (tm)	-
Normal		28.2	19.9	4.24	5.61	1.17	
earthqu	nake: Z	24.3	23.4	6.72	7.48	1.56	· · ·
Earthq	uake: X	31.5	16.1	6.8	7.57	1.57	

7)-2 Effective pre-stress

6.0

 \bigcirc

- basic condition

ø 500 PHC pile Type A

 $r_0 = 25.0 \text{ cm}, r_1 = 16.0 \text{ cm}, r_0 = 21.0 \text{ cm}$

PC wire $\phi 9 \text{mm} \ge 9$

cross sectional area (A0): A0 = $\pi (r_0^2 - r_1^2) = 1159.2 \text{ cm}^2$

- Area of PC cable (Ap): $Ap = 0.64 \times 9 = 5.8 \text{ cm}^2$

- Area of concrete (Ac): $Ac = 1159 - 5.8 = 1153.4 \text{ cm}^2$

- Effective cross sectional area (Ae): Ae = Ac + n x Ap = $1153.4 + 5 x 5.8 = 1182.4 \text{ cm}^2$ n = Ep / Ec = 5

- Moment of inertia (Ie): Ie = ($\pi/4$) x ($r_0^4 - r_1^4$) + 1/2 x (n-1) x Ap x r_p^2 = 260604.6 cm⁴

- Coefficient of effective cross seciton (Ze): Ze = Ie / r_0 = 260604.6 / 25 = 10416.2

- Tensile strength of PC wire (σ pi): σ pi = 0.7 x 14500 = 10150 kg/cm²

- Tensile stress after elastic deflection): σ pt = σ pi / (1 + n' x (Ap / Ac)) = 9819.2 kg/cm² n' = Ep / Ec = 6.7

- Initial prestress (σ cpt): σ cpt = σ pt x Ap / Ac = 9819.2 x 5.8 / 1153.4 = 49.4 kg/cm² - Reduce of tensile strength

 $\Delta \sigma_{po} = 979.4$

 $\Delta \sigma_{r} = r x \sigma pt = 0.07 x 9819.2 = 687.3$

- Effective tensile stress of pile (σ pe); σ pe = σ pt - ($\Delta \sigma_{p\sigma} + \Delta \sigma_{r}$) = 8152.5 kg/cm²

- Effective prestress (σ ce): σ ce = σ pe x Ap / Ac = 41.0 kg/cm²

7)-3 Analysis on pile stress

- Allowable stress of concrete (σ ca, σ ta)

 $\begin{array}{l} \sigma \ ca \ = \ 500 \ kg/cm^2 / \ 3 \ = \ 166 \ kg/cm^2 & normal \\ \sigma \ ca' \ = \ 1.5 \ x \ \sigma \ ca \ = \ 250 \ kg/cm^2 & earthquake \\ \sigma \ ta \ = \ not \ allowed & normal \\ \sigma \ ta' \ = \ 30 \ kg/cm^2 & 40 \ < \ \sigma \ ce \ < \ 70 \ kg/cm^2 & earthquake \\ \end{array}$

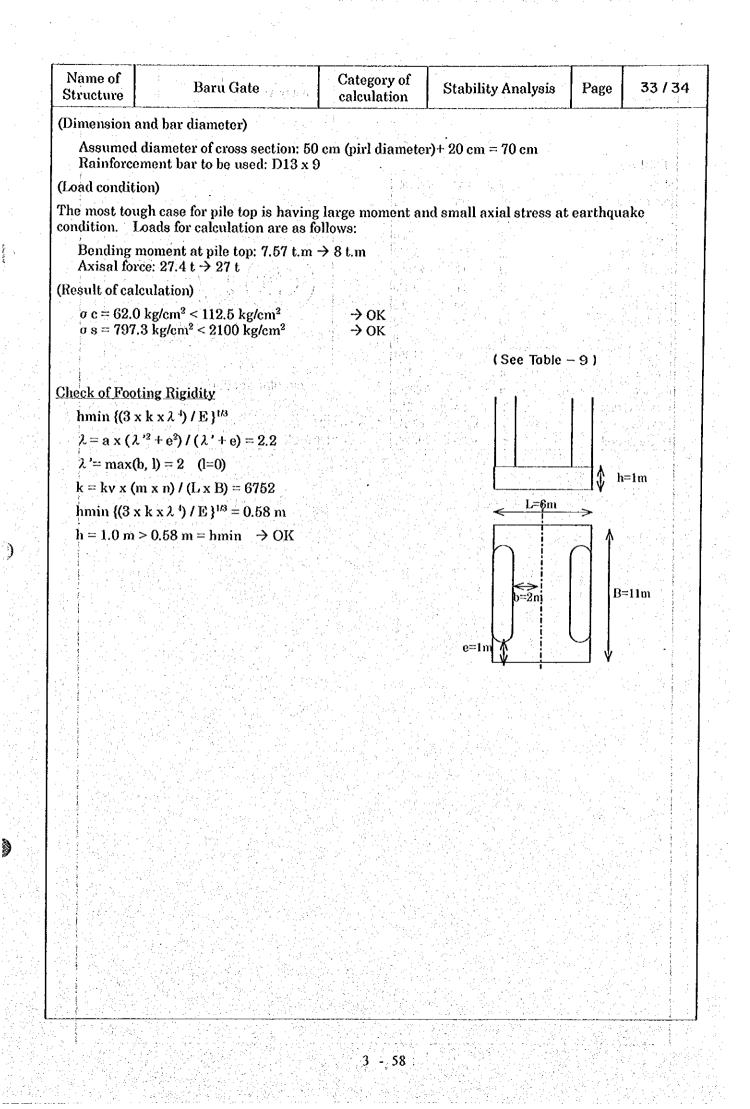
 σ pa = 0.60 x 14500 = 8700 kg/cm²

• .					
Name of ' Structure		Baru Gate	Category of calculation	Stability Analysis	Page 30/34
	H Ph 63.53 4.24		100.81 6.72	101.98 6.80	
	٤	19.889 21.967 24.046 24.046 26.124 28.202 28.202	24.340 24.340 23.877 23.877 23.877 23.877 23.645	23.414 16.074 19.931 23.787	27.644 31.501
	δy	760.0 760.0 760.0 760.0 760.0 760.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00	99000
		0.02016 0.02016 0.02016 -0.02016	0.075775 0.075775 0 0.07578 0 -0.07578	-0.07578 0.012495 0.012495 0.0012495	-0.0125 -0.0125
	11.52	0.0001152 0.0001152 0.0001152 0.0001152 0.0001152		0.000433 7.14 0.0000714 0.0000714 0.0000714	
4	4	175 175 0 175 175	175 175 0 0	-175 175 0 0	-175
2		-0.01679 -0.00839 0 0.008394 0.016788	0.00187 0.000335 0 0 0 0 0	-0.00187 -0.03115 -0.01558 0	0.015576
Table 7 calc of load for a pile X	-3.95	0000395 0000395 0000395 0000395	0.44 0000044 00000044 00000044 00000044 000000	.0000044 -7.33 -7.33 -0000733 0000733 0000733	
Table 7 calc of loa X	λ normal α	212.5 212.5 0 -212.5 -425	earthquake Z 425 0. 212.5 0. 0 -212.5 0.	-425 0 earthquake X 425 -0 21255 -0 0 -0	

ł

3 - 55

Name of Structure	Baru Gate	Category of calculation	Stability Analysis	Page	31/34
- Stress of pile)				· · · · ·
α c, =	σ ce + (M / Ie) x r ₀ + (V / Ae) σ ce - (M / Ie) x r ₀ + (V / Ae) σ pe + n x (M / Ie) x r _p - n x (=σ ce - (M / Ze)		• • • • •	
	σ c: compressive stress of σ c': tensile stress of concr σ p: tensile stress of PC ca	ete (kg/cm²)		·	بر جاری ا
Results are	e shown below;	(detai	ls see table-8)	· ·	
(norn	nal condition)				
σ c' =	118.7 kg/cm ² < 166 kg/cm ² 4.0 kg/cm ² > 0 → OK 8294.4 kg/cm ² < 8700 kg/cm		an Angeler Harry Angeler (Angeler		
(eartl	hquake condition)			en (d. 1	
σcz	$= 133.4 \text{ kg/cm}^2 < 250 \text{ kg/cm}^2$ = -11.0 kg/cm ² > -30 kg/cm ² = 8354.9 kg/cm ² < 8700 kg/cn	→ OK			
σc'x	= 140.3 kg/cm ² < 250 kg/cm ² = -18.1kg/cm ² > -30 kg/cm ² = 8389.4 kg/cm ² < 8700 kg/cm	→ OK			
Analysis on Jo	int between Pile and Footin	1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1998 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
1) Compressiv	e de la reage de de la construcción de				
(normal)	V = 4.09 t, $H = 4.24 tr_0 = 25 cm, r_1 = 16 cm$				
	$\sigma v = V / {\pi x (r_0^2 - r_1^2)} = 3$ $\sigma_H = H / Dl = 9.4 \text{ kg/cm}^2 < D = 45 \text{ cm}, l = 3$	75 kg/cm ²		ОК	
(earthquak	(e) $V = 44.9 t$, $H = 6.80 t$				
	$\sigma v = 38.7 \text{ kg/cm}^2 < 112.5 \text{ k}$ $\sigma_H = 15.1 \text{ kg/cm}^2 < 112.5 \text{ k}$			OK	
2) Shear stress	S				
(normal)	$\tau = V/(\pi x D x l') = 3.21 k$		n^2 \rightarrow pile top and footing top	OK	
(earthquak	te) $\tau = 3.53 \text{ kg/cm}^2 < 7.5 \text{ kg/cr}^2$			OK	
	•				


Reinforcement of Pile Head

Rinforcement of pile head is done by embedding the reinforcing bar basket into the inside of PC Pile with filling of concrete. In this case, the pile head is assumed as a RC with circle shape corss section. Conditions of calculation is as follows:

lame of ructure	Baru Gate	Category of calculation			
·			的"我们的"的话,这些话题。 第二百一百一百一百一百百百百百百百百百百百百百百百百百百百百百百百百百百百百百		
		n an			
Table 8					
Pile stress					
		en e		la je se se se se Rođen se	
normal					10.7
с с'	41 + 5.61 x 10000 41 - 5.61 x 10000		28.2 x 1000 / 1182. 19.9 x 1000 / 1182.	and the second	18.7 4.0
p	8152.5 + 589.1 x 10000		99.5 x 1000 / 1182.		94.4
earthquak	e 7				
0	41 + 7.48 x 10000		24.3 x 1000 / 1182.	[7] J. K. S. K. L. K. L.	33.4
c' p	41 - 7.48 x 10000 8152.5 + 785.4 x 10000		23,4 x 1000 / 1182. 117 x 1000 / 1182.	· · · · ·	-11.0 854.9
e P ara ang kanalan Kanalan ang kanalan	0102.0 · 700.1 × 10000				
earthquak	e X				
C	41 + 7.57 x 10000			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	140.3
с' р	41 - 7.57 x 10000 8152.5 + 794.9 x 10000		16.1 x 1000 / 1182. 80.5 x 1000 / 1182.	(1) (1) (2) (2) (3) (3)	-18.1 389.4
•					
			(1) 化消化器系数 小脑管 (1) 11 (1) - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
			的考虑的时候,这些问题,是1933 1943年1月11日,1933年1月11日,1933年1月11日,1933年1月11日,1933年1月11日,1933年1月11日,1933年1月11日,1933年1月11日,1933年		
an coasta A taga a g			병사 김 홍수는 구성이 성공에서는 것 사람이 있는		
					s e l'été. Automotion
				and a second second	

.

ير يكن بين الارام م

Name of AS Structure	SIN GATE	- 		egory ulation	Stability Analysis	Page	34/34
Table-9			1.				
item	symbol	unit	amount				
concrete radius	R	cm	35.0				
radius to the bar	Rs	cm	11.0		an an ga tegar e sa tar. Gale	ting a start	4 al 11 an 11
cover	: d	cm	24.0	a sur la	lister data≨ i jijake≯e		
bending moment	M	tf*m	8.000	t to f		<u></u> σς	Sec. 11
axial force	N	tf	27.000			/ com	pression
shearing force	Q	tf	0.000				
eccentricity	e	¢m	29.6	1.14	R		
bar diameter	D	mm	13	•		 σs/n	
no of bars	h		9			tension	
bar area	As	cm ²	11.401				
elasticity ratio	n		15.0		L		J
bar ratio	p P	-	0.00296	1	circular section	on	
location of nutral axis	x	cm	24.8				
compression stress of concrete	σC	kgf/cm ²	62.012	≦ σc=1	12.5 OK		
tensile stress of bar	σs	kgf/cm ²	797.287				

٢

e i e