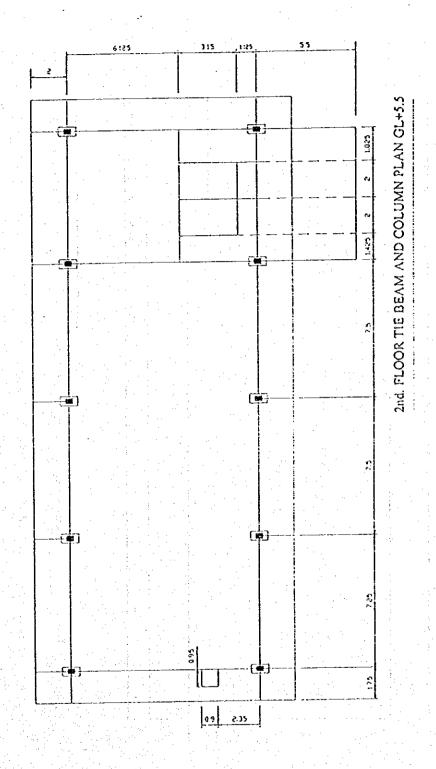
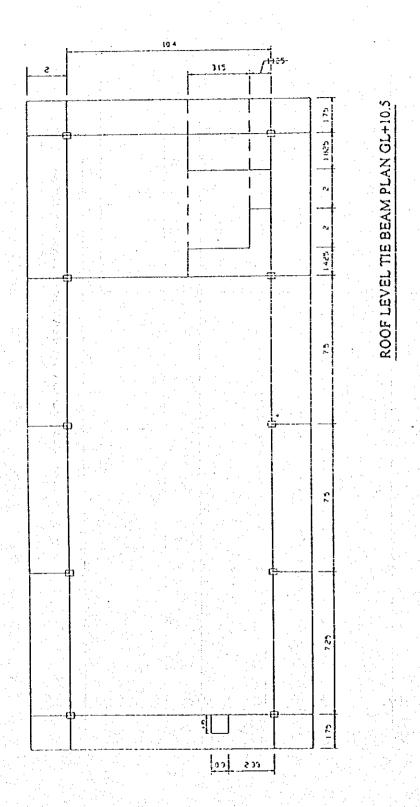
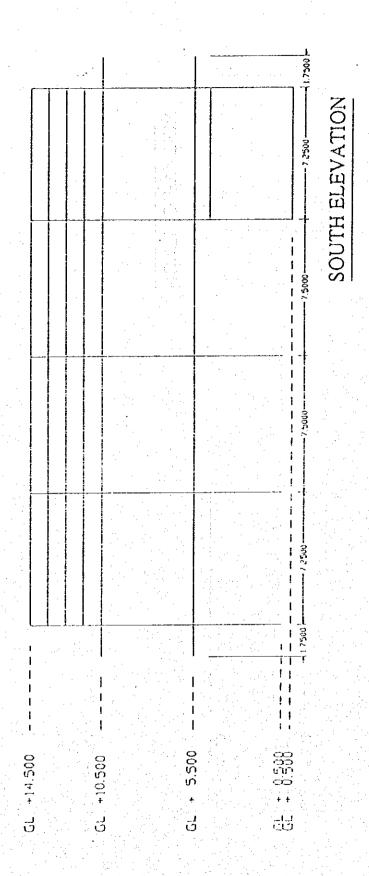

5.2 Design of Upper Structure of Hydropower Station


# JATIBARANG HYDROPOWER STATION UPPER STRUCTURE CALCULATION

| <u>C</u> | <u>ONTENT:</u>                                                        | Page                     |
|----------|-----------------------------------------------------------------------|--------------------------|
|          | CONTENT LIST                                                          | i                        |
| 1.       | GENERAL CONSTRUCTION                                                  | 1 - 42                   |
| 2.       | DESIGN OF ROOF STEEL TRUSS                                            | 9 - 42                   |
|          | a. Structure of Roof Steel Truss                                      | 9 - 42                   |
|          | b. Design Condition                                                   | 10 - 42                  |
|          | c. Loading Condition                                                  | 10 - 42                  |
|          | d. Design of Purlin                                                   | 12 - 42                  |
|          | e. Design of Truss                                                    | 16 - 42                  |
|          | f. Prototype of Element                                               | 19 - 42                  |
|          | g. Recapitulation of Truss Element Force and Bolted Connection Design | 19 - 42                  |
|          | h. Checking of Members Strength                                       | 20 - 42                  |
| 3.       | DESIGN OF REINFORCEMENT CONCRETE FRAME                                | 22 - 42                  |
|          | a. Structure of Reinforcement Concrete Frame                          | 22 - 42                  |
|          | b. Dimensions                                                         | 25 - 42                  |
|          | c. Design Condition                                                   | 25 - 42                  |
|          | d. Loading Condition                                                  | 25 - 42                  |
|          | e. Design of Frame                                                    | 26 - 42                  |
|          | f. Prototype of Element and Recapitulation of Frame Element Force     | 27 - 42                  |
|          | 1) Column                                                             | 27 - 42                  |
|          | 2) Beam                                                               | 28 - 42                  |
|          | 3) Slab                                                               | 40 - 42                  |
| 4.       | DESIGN OF ELEMENT PROFIL OF CRANE                                     | 42 - 42                  |
|          |                                                                       | The second second second |

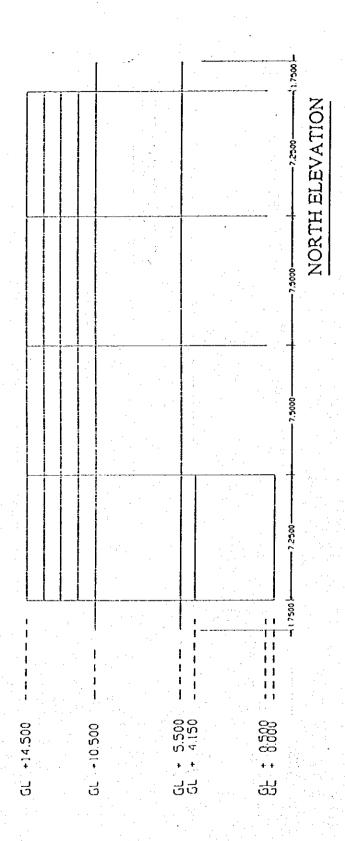
### 1. General Construction

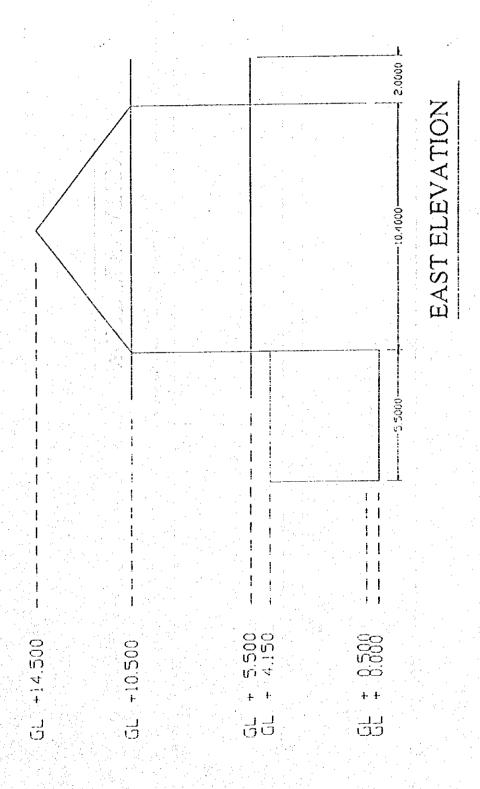


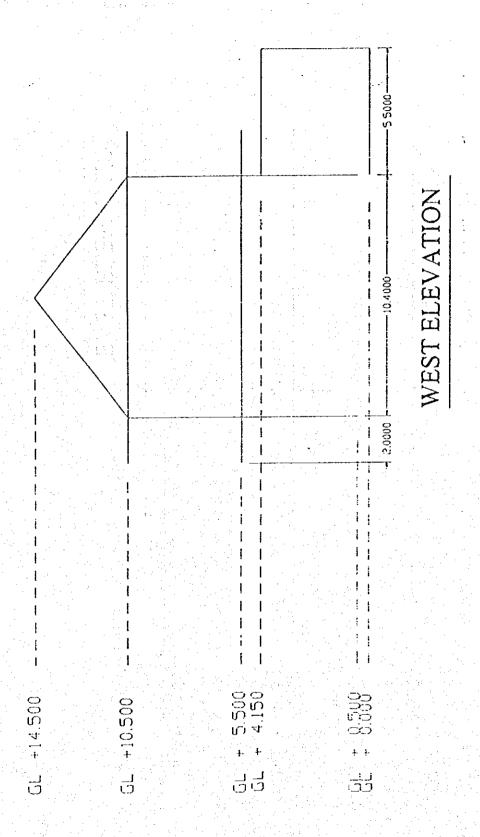






爱


()

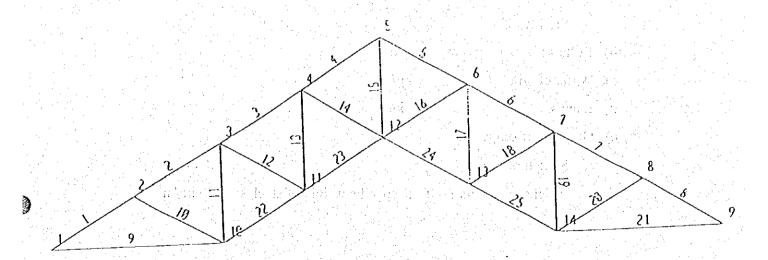



()

()








# 2. Design Of Roof Steel Truss

# a. Structure of Roof Steel Truss





#### b. Design Condition

- 1) Roof truss members

double angle steel

tensile strength (Fy)

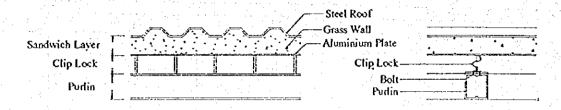
: 2400 kg/cm<sup>2</sup>

2) Structural model

: plane (xy axis) truss, linear elastic

3) Analysis method

: static


#### c. Loading Condition

#### 1) Dead load:

a) Sandwich Layer:

= 20 kg/m²

Contents:



- Grass Wall
- Aluminum Plate
- Steel Roof
- b) Bolts

= 2 kg/m²

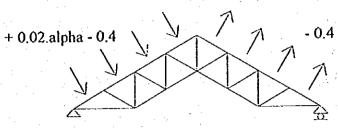
c) Water of rain

 $= 2 \text{ kg/m}^2$ 

d) Lamps

= 20 kg

e) On point of support


- Stretch of length

 $= 7.5 \, \mathrm{m}$ 

Weight of structure self : specific weight of steel = 7850 kg/m³

#### 2) Wind load:

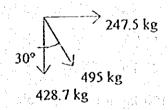
$$P = V^2 / 16 \dots kg/m^2$$
  
Where  $V = 20 \text{ kg/m}^2$ 



 $Pmin = 25 \text{ kg/m}^2$ 

Alpha =  $\alpha$  = angle of roof

 $+0.02*\alpha - 0.4 = 0.02*30^{\circ} - 0.4$ 


= 0.2

 $P_P = 25 \text{ kg/m}^2 + 0.2*25 \text{ kg/m}^2$ 

 $= 30 \text{ kg/m}^2$ 

where: Pp = pressure load

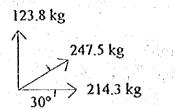
 $F_P = P_P * A_P = 30 \text{ kg/m}^2 * 7.5 \text{ m} * 6.6 \text{ m}$ 



= 1485 kg

 $i_{EP} = F_P / 3 = 495 \text{ kg}$ 

$$P_S = 25 \text{ kg/m}^2 - 0.4*25 \text{ kg/m}^2$$
  
= 15 kg/m<sup>2</sup>


where : 
$$P_s = stuck load$$

$$F_S = P_S * A_S = 15 kg/m^2 * 7.5 m * 6.6 m$$

$$= 742.5 \text{ kg}$$

$$i_{FS} = F_s / 3$$

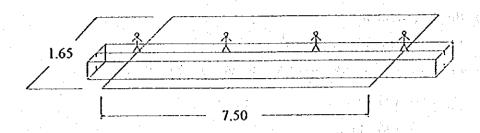
$$= 247.5 \text{ kg}$$



## 3) Live load:

$$= 75 \text{ kg}$$

= 100 kg for each people


## d. Design of Purlin

#### Technique data:

$$= 1.65 \, \mathrm{m}$$

$$= 7.5 \text{ m} / 2$$

$$= 3.5 \, \text{m}$$



### 1) Dead load:

- Sandwich layer = 12 kg

– Bolt

= 2 kg

- Water of rain

= 2 kg

2) Wind load

= 30 kg +

Total Load

= 46 kg

Purlin load with purlin span 1.65 m

 $= 46 \times 1.65$ 

= 75.9 kg/m

≈ 76 kg/m

Purlin weight

= 15 kg/m

Q = 76 + 15

 $= 91^{\circ} \text{ kg/m}$ 

 $Q_1 = Q_2 = Q \cos 30^{\circ}$ 

91 \* 0.866

= 78.086 kg/m

≈ 78 kg/m

3) Live load: weight of workers as point load = 100 kg

 $P_X = P_Y = P \cos \alpha$ 

 $= 100 \cos 30^{\circ}$ 

$$= 86.6$$

$$\approx 87 \text{ kg}$$

4) Bending Moment.

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_x \times L$$
 $Mx = 1/8 \times 78 \times 3.5^2 + 1/4 \times 87 \times 3.5$ 

= 195.56

 $\approx 196 \text{ kgm}$ 
 $Mx = My = 196 \text{ kgm} = 19600 \text{ kgcm}$ 

Tried type of Purlin Lip Channel in front to front arrangement 150x130x20x32

#### Checking:

Stresses:

$$\sigma = \sigma x + \sigma y$$

= Mx/Wx + My/Wy

= 19600/143 + 19600/111

= 137.06 + 176.58

= 313.64

 $\approx$  314 <  $\sigma_{all} = 1400 \text{ kg/cm}^2$  (OK)

# Deflection: 14 (Mt); halfight the presentation

 $f_X = 5/384 \times Q_1 \times L^4/EI_x + 1/48 \times P_xL^3/EI_x$ 

 $= 5/384 \times 0.78 \times 350^4/2.1 \times 10^6 \times 1432$ 

 $+ 1/48 \times 87 \times 350^3 / 2.1 \times 10^6 \times 1432$ 

= 0.05 (+ 0.03) (+ 0.03)

fy =  $5/384 \times Q_1 \times L^4/EI_y + 1/48 \times P_yL^3/EI_y$ 

=  $5/384 \times 0.78 \times 350^4/2.1 \times 10^6 \times 834 + 1/48 \times 87 \times 350^3/2.1 \times 10^6 \times 834$ 

= 0.09 + 0.04

= 0.13 cm

$$f = (fx^2 + fy^2)^{1/2}$$

$$= (0.08^2 + 0.13^2)^{1/2}$$

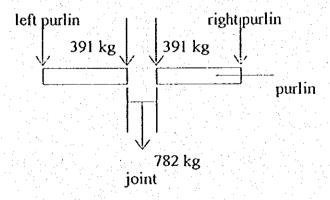
$$= 0.15 \text{ cm} < f_{411} = 1/500 \text{ L} = 1/500 \text{ x} 750 = 1.50 \text{ cm} \text{ (OK)}$$

Shear Stress :

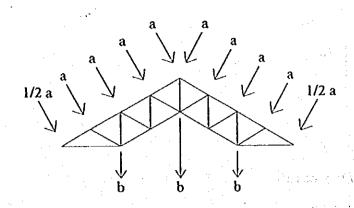
$$\sigma = \sqrt{(\sigma^2 + 3\tau^2)}$$
where  $\tau = 0.58 \times 1400$ 

$$= 812 \text{ kg/cm}^2$$

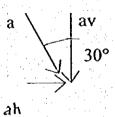
$$\sigma = \sqrt{(314^2 + 3\times812^2)}$$


$$= 1441 \text{ kg/cm}^2 < 1.3 \sigma_{\text{all}} = 1820 \text{ kg/cm}^2 \text{ (OK)}$$

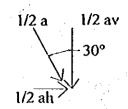
#### e. Design of Truss


1) Point of support reaction on roof

Point of support reaction = load of roof + live load + purlin load  
= 
$$(46x1.65x7.5) + .100 + (15.6x7.5)$$
  
=  $781.75$   
 $\approx 782 \text{ kg}$ 


AND ALEXANDER SERVICE

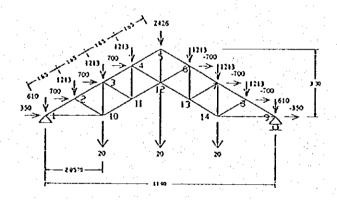



## 2) Truss calculation



- a = Point of support reaction caused load from roof + live load + purlin
  - = 782 kg
- b = load from hung lamp
  - = 20 kg




- $av = a \times cos 30^{\circ}$ 
  - $= 782 \times \cos 30^{\circ}$
  - = 677.23
  - ≈ 678 kg
- $ah = a \times sin 30^{\circ}$ 
  - $= 782 \times \sin 30^{\circ}$
  - = 391 kg



 $1/2av = 1/2a \times \cos 30^{\circ}$ = 391 x cos 30° = 338.6 \approx 339 kg

 $1/2ah = 1/2a \times \sin 30^{\circ}$ = 391 x sin 30° = 195.5 kg \approx 196 kg

egeny to a signal black as a collaboration as



# f. Prototype of Element

|   | and the state of t |                 |                       |                       |               |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------|---------------|
| ſ | Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plate Thickness | Ey                    | <u>Fu</u>             | Diameter Bolt |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mm)            | (kg/cm <sup>2</sup> ) | (kg/cm <sup>2</sup> ) | (mm)          |
| - | 2 L - 70x70x7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8               | 3700                  | 2400                  | 17            |
|   | and the state of t |                 | l                     | L                     |               |

# g. Recapitulation of Truss Element Force and Bolted Connection Design Maximum reactions and applied forces from three combinations.

| <u>Joint</u> | Forces-X (Fx)   | Forces-Y (Fy)<br>(kg) | Moments (M)<br>(kg.cm)                  |
|--------------|-----------------|-----------------------|-----------------------------------------|
|              | (kg)<br>1847.20 | 5572.76               | 0                                       |
| 2            | 947.50          | -1641.70              | 0 4                                     |
| 3            | 947.50          | -1641.70              | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 4            | 947.50          | -1641.70              | 0                                       |
| 5            | 461.80          | -2730.90              | 40 0                                    |
| 6            | 947.50          | -1641.70              | 0                                       |
| 7            | 947.50          | -1641.70              | 7 A A B O A SE                          |
| 8            | 947.50          | -1641.70              | 8 1 <b>0</b> 4 4 4                      |
| 9            | 0 47            | 5573.00               | 0 1                                     |
| 10           | 0 1 2 2 2       | -20.00                | 0                                       |
| 11           | 0 12 24 24      | 0                     | 2 <b>0</b> 1 45                         |
| 12           | 32.42 0 4.2.    | -20.00                | 0                                       |
| 13           | 0.74.674        | 0                     | 0                                       |
| 14           | 0 3 4 6 2       | -20.00                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |

#### Maximum from three combinations.

|           | Mambasa        | Axial Force | Bolts | Stress                | Status                           |
|-----------|----------------|-------------|-------|-----------------------|----------------------------------|
| <u>No</u> | <u>Members</u> | (kg)        | DOILS | (kg/cm <sup>2</sup> ) | Stress ≤ 1400 kg/cm <sup>2</sup> |
|           |                | -11145.40   | 3     | 1048,82               | OK!                              |
| 2         | 2              | -10050.80   | 3     | 945.81                | OK!                              |
| 3         | 3              | -13386.60   | 3     | 1259.72               | OK!                              |
|           | 4              | -14533.70   | 4     | 1367.67               | OK!                              |
| 4         | 5              | -15067.20   | 4     | 1166.92               | OK!                              |
| 5         | 6              | -13224.80   | 3     | 1244.44               | OK!                              |
| 6         | 7              | -10050.90   | 3     | 945.78                | OK!                              |
| 7         |                | -11145.30   | 3     | 1048.76               | OK!                              |
| 8         | 8 9            | 11499.12    | 3     | 718.71                | OK!                              |
| 9         |                | -2188.71    | 2     | 205.96                | OK!                              |
| 10        | 10             |             | 2     | 416.92                | OK!                              |
| 11        | 11             | -4430.49    | 2     | 140.10                | OK!                              |
| 12        | 12             | 2241.64     | 2     | 210.95                | OK!                              |
| 13        | 13             | -2241.67    |       | 13,45                 | OK!                              |
| 14        | 14             | 215.15      | 2     |                       | OK!                              |
| 15        | 15             | 12070.09    | 3     | 754.38                | OK!                              |
| 16        | 16             | -1013.73    | 2     | 95.39                 |                                  |
| 17        | 17             | -2651.14    | 2     | 249.48                | OK!                              |
| 18        | 18             | 2650.92     | 2     | 165.68                | OK!                              |
| 19        | 19             | -4021.13    | 2     | 378.40                | OK!                              |
| 20        | ÷ 20 -         | -2188.55    | 2     | 205.92                | OK!                              |
| 21        | 21             | 9651.94     | 3     | 603.25                | OK!                              |
| 22        | 22             | 11089.82    | 3     | 693.11                | OK!                              |
| 23        | 23             | 13331.47    | 4     | 833.22                | OK!                              |
| 24        | 24             | 12103.10    | 4     | 756.44                | OK!                              |
| 25        | 25             | 9452.07     | 3     | 590.75                | OK!                              |

# h. Checking of Members Strength

## 1) Due to tensile force

Maximum force on member 23.

Force (F) = 13331.47 kg

Length = 165 cm

Tried : 2 L - 70x70x7

Cross section area  $A = 2 \times 9.40 = 18.80 \text{ cm}^2$ 

$$\sigma_{sil} = 0.6 \text{ x Fy}$$

$$= 0.6 \text{ x 2400}$$

$$= 1440 \text{ kg/cm}^2$$

Stress

$$\sigma = F/A$$
= 13331.47/18.80
= 709.12 kg/cm<sup>2</sup> <  $\sigma_{411}$  (OK!)

2) Due to compression force

Maximum force on member 5.

Force 
$$(F) = 15067.20 \text{ kg}$$

Tried : 
$$2L - 70x70x7$$

Cross section area  $A = 2 \times 9.40 = 18.80 \text{ cm}^2$ 

$$ix = 2.28 cm$$

$$Ix = 2 \times 42.4 = 84.80 \text{ cm}^4$$

$$\lambda = L/ix$$

$$= 165/2.28$$

$$= 72.37$$

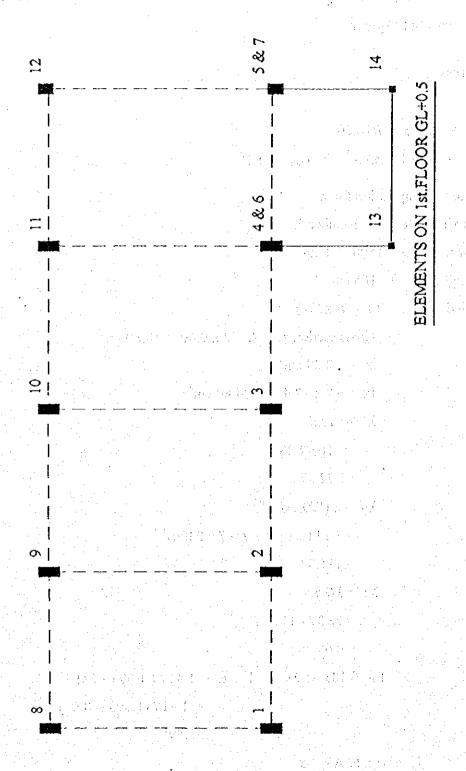
$$\lambda g = \pi (E/0.7x\sigma_1)^{1/2}$$

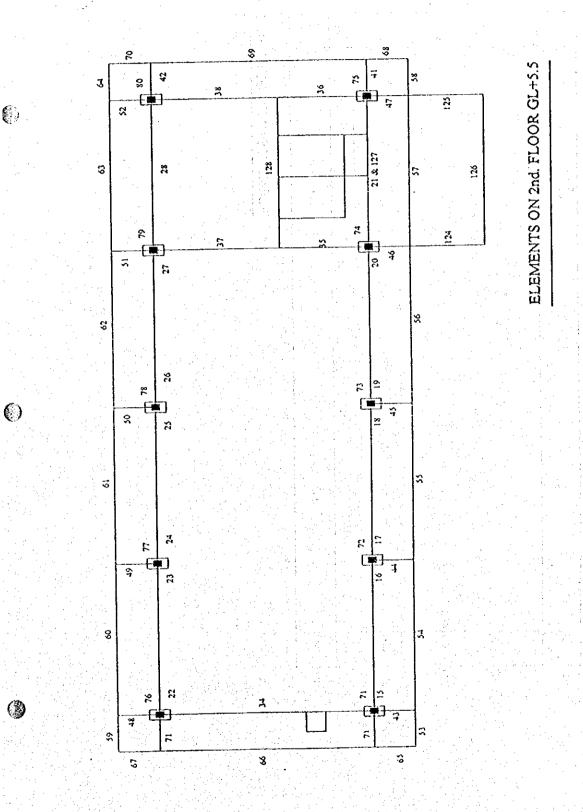
$$= 3.14 (2.1 \times 10^6 / 0.7 \times 2400)^{1/2}$$

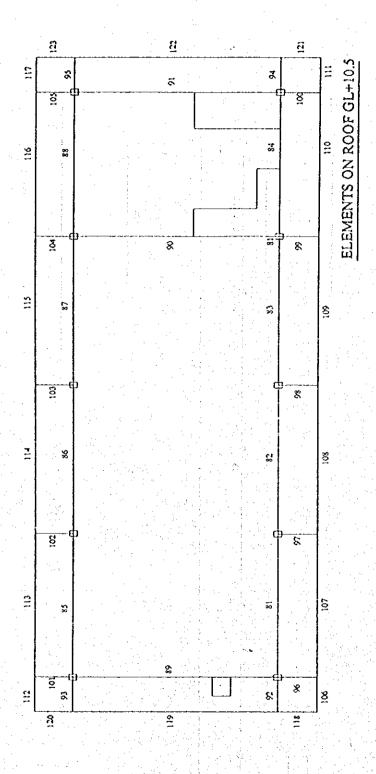
$$= 111.07$$

$$\lambda s = \lambda / \lambda g$$

$$= 0.65$$


for 0.183 < 
$$\lambda$$
s < 1 :  $\omega = 1.41/(1.593 - \lambda s)$   
= 1.41/(1.593 - 0.65)  
= 1.495


$$\omega \times F/A < \sigma$$


$$1.495 \times 15067.20/18.80 = 1202.17 < \sigma = 1400 \text{ kg/cm}^2 \text{ (OK!)}$$

#### 3. Design of Reinforcement Concrete Frame

## a. Structure of Reinforcement Concrete Frame







#### b. Dimensions

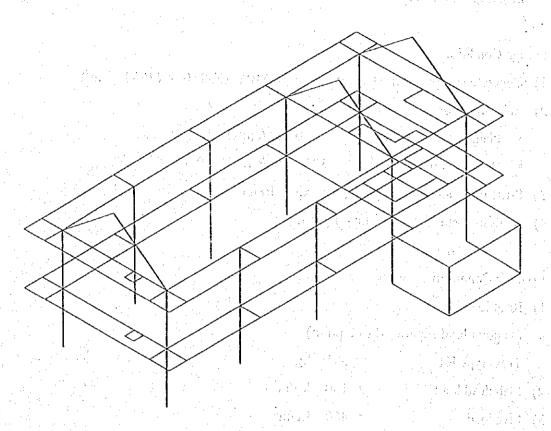
- length c-c column = 29.50 m
- width c c column = 10.40 m
- height ground to 2<sup>rd</sup> floor : 5.5 m
- height ground to roof truss: 10.5 m

#### c. Design Condition

)

- 1) Concrete compression strength fc' = 30 MPa (K-250 = (250 kg/cm²)
- 2) Reinforcing bar:
  - Plain bar fy = 2400 kg/cm<sup>2</sup> (BJTP 24)
    - Deformed bar fy =  $3700 \text{ kg/cm}^2(\text{BJTP }32)$
- 3) Structural model : space (xyz axis) frame
- 4) Analysis method : static rigid floor

#### d. Loading Condition


1) Roof load:

(as point load separated to 2 point)

Truss type K1 = 391 kg

- 2) Slab dead load =  $150 \text{ kg/m}^2$
- 3) Live load =  $400 \text{ kg/m}^2$
- 4) Concrete self weight = 2400 kg/m<sup>3</sup>
- 5) Brick wall 15 cm thick = 250 kg/m<sup>2</sup>

# e. Design of Frame



# f. Prototype of Element and Recapitulation of Frame Element Force

### 1) Column

### a) Column type 1

Prototype of Element

( )

|   | LIDIO | ype or | Licitor |           |        |          |          |          | ì |
|---|-------|--------|---------|-----------|--------|----------|----------|----------|---|
| ſ | b     | h      | COVET   | dia, main | dia.   | fc .     | i i fy   | IV       | l |
| ١ | (cm)  | (cm)   | (mm)    | bar (mm)  | surrup | (kg/cm²) | (kg/cm²) | (kg/cm²) | l |
| ١ |       |        |         | (deform)  | (mm)   |          | :        |          | ļ |
| ١ | 50    | 100    | 10      | 25        | 12     | 300      | 3700     | 2400     | l |
| 1 |       |        |         |           |        | <u></u>  | <u> </u> | L        | • |

|         | Frame         | Element       | Force             |                  | Design           |                |            |            |  |
|---------|---------------|---------------|-------------------|------------------|------------------|----------------|------------|------------|--|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(keen) | Moment<br>(kgcm) | Main bar<br>(mm) | Stinup<br>(mm) | Pu<br>(kg) | Mu<br>(kg) |  |
|         | 271730        | 7060          | 0                 | 3886000          | 16D25            | φ12-@150       | 639209     | 13659711   |  |
|         | 281350        | 2000          | 0                 | 1101000          | 16D25            | φ12-@150       | 639209     | 13659711   |  |
| - 2     | 269250        | 1430          | 0                 | 789000           | 16D25            | \$12-@150      | 639209     | 13659711   |  |
| 4       | 398940        | 7890          | 0                 | 3155000          | 16D25            | φ12-@150       | 639209     | 13659711   |  |
| 6       | 352880        | 20190         | 0                 | 62640000         | 16D25            | \$12-@150      | 639209     | 13659711   |  |
| 8       | 271690        | 7030          | 0                 | 3867000          | 16D25            | \$12-@150      | 639209     | 13659711   |  |
| 9       | 281690        | 1990          | 0                 | 1096000          | 16D25            | ბ12-@150       | 639209     | 13659711   |  |
|         | 267560        | 1280          | 0                 | 708000           | 16D25            | \$12-@150      | 639209     | 13659711   |  |
| 10      | 367690        | 10790         | 0                 | 5932000          | 16D25            | φ12-@150       | 639209     | 13659711   |  |

# b) Column type 2

Prototyne of Element

| b<br>(cm) | h<br>(cm) |    | dia. main<br>bar (mm)<br>(deform) | dia.<br>stirrup<br>(rum) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|-----------|-----------|----|-----------------------------------|--------------------------|-----------------|----------------|----------------|
| 50        | 70        | 10 | 25                                | 12                       | 300             | 3700           | 2400           |

|   | <u></u> |               |               |                   |                  |                  |                   | 1. (1.)    |            |
|---|---------|---------------|---------------|-------------------|------------------|------------------|-------------------|------------|------------|
| ſ |         | Frame         | Element       | Force             |                  |                  | Desi              | gn         |            |
| l | Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) | Main bar<br>(mm) | Stirrup<br>(mm)   | Pu<br>(kg) | Mu<br>(kg) |
| ŀ | 5       | 317430        | 11490         | 0                 | 4594000          | 16D25            | φ12-@150          | 639209     | 13659711   |
| ŀ | 7       | 271340        | 20970         | Ò                 | 8352000          | 16D25            | φ12 <i>-@</i> 150 | 639209     | 13659711   |
| ł | 12      | 283340        | 14660         | 0                 | 8065000          | 16D25            | φ12-@150          | 639209     | 13659711   |

# c) Column type 3

Prototype of Element

| Č | Protot    | fe        | fv. |                                   |                         |          |          |          |
|---|-----------|-----------|-----|-----------------------------------|-------------------------|----------|----------|----------|
|   | b<br>(cm) | h<br>(cm) |     | dia, main<br>bar (mm)<br>(deform) | dia.<br>stirrup<br>(mm) | (kg/cm²) | (kg/cm²) | (kg/cm²) |
| ł | 30        | 40        | 10  | 25 .                              | 12                      | 300      | 3700     | 2400     |

|         | Frame          | Elemen       | t Force     |                   | Design           |                 |                |            |  |
|---------|----------------|--------------|-------------|-------------------|------------------|-----------------|----------------|------------|--|
| Members | Axial          | Shear        | Torsion     | Moment            | Main bar<br>(mm) | Stirrup<br>(mm) | Pu<br>(kg)     | Mu<br>(kg) |  |
| 71      | (kg)<br>861300 | (kg)<br>7950 | (kgcm)<br>0 | (kgcm)<br>2175000 | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 72      | 63820          | 1850         | 0           | 1648000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 73      | 61210          | 900          | 0           | 1653000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 74      | 87980          | 6530         | . 0         | 1813000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 75      | 84960          | 3270         | 0           | 2846000           | 8D25             | φ12-@150        | n <b>73559</b> | 2558345    |  |
| 76      | 86150          | 7940         | 0           | 2173000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 77      | 63980          | 1800         | 0           | 1648000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |
| 78      | 64210          | 900          | 0           | 1652000           | 8D25             | ф12-@150        | 73559          | 2558345    |  |
| 79      | 88140          | 6530         | 0           | 1824000           | 8D25             | ф12-@150        | 73559          | 2558345    |  |
| 80      | 84620          | 11200        | 0           | 2861000           | 8D25             | φ12-@150        | 73559          | 2558345    |  |

# d) Column type 4

Prototype of Element

| b (cm) | h<br>(cm) | cover | dia, main<br>bar (mm)<br>(deform) | dia.<br>stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fy<br>(kg/cm²) |
|--------|-----------|-------|-----------------------------------|-------------------------|-----------------|----------------|----------------|
| 30     | 30        | 10    | 25                                | 12                      | 300             | 3700           | 2400           |

|         | Frame         | Element       | Force          |                  | Design           |                   |            |            |  |
|---------|---------------|---------------|----------------|------------------|------------------|-------------------|------------|------------|--|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion (kgcm) | Moment<br>(kgcm) | Main bar<br>(mm) | Stirrup<br>(mm)   | Pu<br>(kg) | Mu<br>(kg) |  |
| 13      | 69548         | 7500          | 0              | 2245897          | 8D25             | φ12-@200          | 73559      | 2558345    |  |
| 14      | 64287         | 7590          | 0              | 2145679          | 8D25             | φ12 <i>-@2</i> 00 | 73559      | 2558345    |  |

# 2) Beam

# a) Beam type a

Prototype of Element

|   | PIOLO | type of c | ениен     |               |              |          | rate and the second |          |
|---|-------|-----------|-----------|---------------|--------------|----------|---------------------|----------|
|   | ь     | b H cover |           | dia. Main bar | dia. stirrup | fc'      | ſy                  | fv       |
| i | (cm)  | (cm)      | (mm)      | (mm)          | (mm)         | (kg/cm²) | (kg/cm²)            | (kg/cm²) |
|   |       | 1. 1. 1.  | - 1 Miles | (deform)      |              | 2.0      | <u> </u>            |          |
|   | 60    | 100       | 10        | 25            | 16           | 300      | 3700                | 2400     |

| <u>, ,</u>      |               | Frame Element | Force             |                  |
|-----------------|---------------|---------------|-------------------|------------------|
| Members         | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) |
| 15              | 2350          | 49780         | 2115000           | 7222000          |
| 16              | 2350          | 90360         | 2115000           | 10597000         |
| 17              | 1690          | 82450         | 171000            | 10430000         |
| 18              | 1690          | 80130         | 171000            | 9293000          |
| 19              | 1960          | 79720         | 2602000           | 9439000          |
| 20              | 1960          | 82860         | 2602000           | 9629000          |
| 22              | 2310          | 72230         | 2107000           | 10581000         |
| 23              | 2310          | 90520         | 2107000           | 10581000         |
| 24              | 1610          | 82810         | 188000            | 11090000         |
| 25              | 1640          | 79770         | 188000            | 9954000          |
| 26              | 1610          | 65920         | 2688000           | 9992000          |
| $\frac{20}{27}$ | 1340          | 83880         | 2688000           | 11940000         |

 $(\cdot)$ 

|         |               | Design             |           |
|---------|---------------|--------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (mm)   | Mu (kgcm) |
| 15      | D25           | \$16@-250          | 12593676  |
| 16      | D25           | \$16-@250          | 12593676  |
| 17      | D25           | δ16-@250           | 12593676  |
| 18      | D25           | \$16-@250          | 12593676  |
| 19      | D25           | \$16-@250          | 12593676  |
| 20      | D25           | \$16-@250          | 12593676  |
| 22      | D25           | \$16 <i>-@</i> 250 | 12593676  |
| 23      | D25           | \$16-@250          | 12593676  |
| 24      | D25           | <b>♦16-@250</b>    | 12593676  |
| 25      | D25           | \$16-@250          | 12593676  |
| 26      | D25           | φ16-@250           | 12593676  |
| 27      | D25           | \$16-@250          | 12593676  |

|         |      |          |                                         | Desi | gn           |        |      | 11.00 7.      |        |
|---------|------|----------|-----------------------------------------|------|--------------|--------|------|---------------|--------|
| Members |      | Left Bar | g-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |      | Middle Bar   |        |      | Right Ba      | r      |
|         | Тор  | Mid      | Bottom                                  | Top  | Mid          | Bottom | Тор  | Mid           | Bottom |
| 15      | 9D25 | 4510     | 4D25                                    | 4D25 | 4\$10        | 9D25   | 9D25 | 4610          | 4D25   |
| 16      | 9D25 | 4ֆ10     | 4D25                                    | 4D25 | 4610         | 9D25   | 9D25 | 4 <b></b> 410 | 4D25   |
| 17      | 9D25 | 4610     | 4D25                                    | 4D25 | 4 <b>þ10</b> | 9D25   | 9D25 | 4 <b>þ10</b>  | 4D25   |
| 18      | 9D25 | 4\$10    | 4D25                                    | 4D25 | 4610         | 9D25   | 9D25 | 4 <b></b> 410 | 4D25   |
| 19      | 9D25 | 4410     | 4D25                                    | 4D25 | 4510         | 9D25   | 9D25 | 4 <b>þ1</b> 0 | 4D25   |
| 20      | 9D25 | 4510     | 4D25                                    | 4D25 | 4610         | 9D25   | 9D25 | 4 <b>¢10</b>  | 4D25   |
| 22      | 9D25 | 4510     | 4D25                                    | 4D25 | 4510         | 9D25   | 9D25 | 4010          | 4D25   |
| 23      | 9D25 | 4410     | 4D25                                    | 4D25 | 4610         | 9D25   | 9D25 | 4510          | 4D25   |
| 24      | 9D25 | 4410     | 4D25                                    | 4D25 | 4510         | 9D25   | 9D25 | 4610          | 4D25   |
| 25      | 9D25 | 4510     | 4D25                                    | 4D25 | 4410         | 9D25   | 9D25 | 4510          | 4D25   |
| 26      | 9D25 | 4410     | 4D25                                    | 4D25 | 4610         | 9D25   | 9D25 | 4610          | 4D25   |
| 27      | 9D25 | 4\$10    | 4D25                                    | 4D25 | 4510         | 9D25   | 9D25 | 4510          | 4D25   |

#### b) Beam type b

Prototype of Element

| b (cm) | h<br>(cm) | cover<br>(mm) | dia, Main bar<br>(tum)<br>(defortu) | dia. stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|--------|-----------|---------------|-------------------------------------|----------------------|-----------------|----------------|----------------|
| 40     | 100       | 10            | 25                                  | ` 12                 | 300             | 3700           | 2400           |

|         |               | Frame Element | Force             |          |                  |
|---------|---------------|---------------|-------------------|----------|------------------|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) |          | Moment<br>(kgcm) |
| 34      | 2100          | 53570         | 96000             |          | 8737000          |
| 35      | 3120          | 68780         | 1344000           |          | 12196000         |
| 36      | 3900          | 77270         | 1084000           |          | 13062000         |
| 37      | 3120          | 68420         | 1385000           |          | 11963000         |
| 38      | 3890          | 76790         | 1014000           | 1 14 1 2 | 12791000         |

|         |               | Design             |           |
|---------|---------------|--------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (nun)  | Mu (kgcm) |
| 34      | D25           | \$12 <i>-@</i> 250 | 13139677  |
| 35      | D25           | \$12 <i>-@</i> 250 | 13139677  |
| 36      | D25           | <b>∮12-@250</b>    | 13139677  |
| 37      | D25           | \$12 <i>-@</i> 250 | 13139677  |
| 38      | D25           | φ12-@250           | 13139677  |

|             | 10 mg | 1 11 1   |        | Des  | ign        |        |       |               |        |  |  |
|-------------|-------|----------|--------|------|------------|--------|-------|---------------|--------|--|--|
| Members     | 11.00 | Left Bar | 14.5   |      | Middle Bar |        | 4.7%  | Right Bar     |        |  |  |
| in a second | Тор   | Mid      | Bottom | Тор  | Mid        | Bottom | Top   | Mid           | Bottom |  |  |
| 34          | 15D25 | 4610     | 6D25   | 6D25 | 4\$10      | 15D25  | 15D25 | 4 <b></b> 010 | 6D25   |  |  |
| 35          | 15D25 | 4610     | 6D25   | 6D25 | 4610       | 15D25  | 15D25 | 4610          | 6D25   |  |  |
| 36          | 15D25 | 4510     | 6D25   | 6D25 | 4610       | 15D25  | 15D25 | 4ф10          | 6D25   |  |  |
| 37          | 15D25 | 4010     | 6D25   | 6D25 | 4\$10      | 15D25  | 15D25 | 4610          | 6D25   |  |  |
| 38          | 15D25 | .4010    | 6D25   | 6D25 | 4\$10      | 15D25  | 15D25 | 4610          | 6D25   |  |  |

c) Beam type c

Prototype of Element

| PIOIO       | type or E | emein | r Bergere e e <u>e e e e e e</u> |                 |          |          |                       |
|-------------|-----------|-------|----------------------------------|-----------------|----------|----------|-----------------------|
| b           | ħ         | cover | dia. Main bar                    | dia. stirrup    | fc'      | fy 2     | fv 2                  |
| (cm)        | (cm)      | (mm)  | (mm)                             | (mm)            | (kg/cm') | (kg/cm²) | (kg/cm <sup>-</sup> ) |
| 1 P         |           | 1.00  | (deform)                         |                 |          |          |                       |
| 35          | 100       | 10    | 25                               | [A:10 : i -     | 300      | 3700     | 2400                  |
| 1 1 7 7 1 1 | 1         |       |                                  | F 1 2 2 2 3 3 4 | 1        |          |                       |

| ·        | ************************************** | Frame Element          | Force                        |                              |
|----------|----------------------------------------|------------------------|------------------------------|------------------------------|
| Members  | Axial<br>(kg)                          | Shear<br>(kg)<br>53540 | Torsion<br>(kgcm)<br>1244000 | Moment<br>(kgcm)<br>10685882 |
| 21<br>28 | 2156<br>2250                           | 55470                  | 1124000                      | 13546854                     |

| n Bar (mm) | Design<br>Stirrup Bar (mm) | Mu (kgcm)    |
|------------|----------------------------|--------------|
| D25        | \$10 <i>-@</i> 40          | 11736664     |
| D25        | \$10-@40                   | 11736664     |
|            | n Bar (mm)<br>D25<br>D25   | D25 \$10-@40 |

|   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 17 a + 1,1 |          |          |      | •          |        |       |           |        |  |
|---|---------------------------------------|------------|----------|----------|------|------------|--------|-------|-----------|--------|--|
| - | Bad I                                 | 1 18 2 2   | sza kar  | <u> </u> |      | Design     |        |       | Right Bar |        |  |
| Ì | Members                               |            | Left Bar |          |      | Middle Bar |        |       |           |        |  |
| 1 |                                       | Top        | Mid      | Bottom   | Тор  | Mid        | Bottom | Тор   | Mid       | Bottom |  |
| ١ |                                       | ļ          | 4610     | 6D25     | 6D25 | 4410       | 13D25  | 13D25 | 4610      | 6D25   |  |
| ļ |                                       | 13D25      |          |          | 6D25 | 4610       | 13D25  | 13D25 | 4610      | 6D25   |  |
|   | 28                                    | 13D25      | 4410     | 6D25     | 0023 | 1 4010     | 1      | L     | I         | L      |  |

# d) Beam type d

9

| 11.5 | Proto | type of E | lement |                                   |                      | 60'      | 6                     | fe       |
|------|-------|-----------|--------|-----------------------------------|----------------------|----------|-----------------------|----------|
|      | (cm)  | h<br>(cm) | (mm)   | dia. Main bar<br>(mm)<br>(deform) | dia. stirrup<br>(mm) | (kg/cm²) | (kg/cm <sup>-</sup> ) | (kg/cm²) |
|      | 30    | 75        | 8      | 25                                | 12                   | 300      | 3700                  | 2400     |

| Jan 1947 Vill |               | Frame Element | Force             |                       |
|---------------|---------------|---------------|-------------------|-----------------------|
| Members       | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm)      |
| 81            | 5050          | 14780         | 297000            | 2048000               |
|               | 5660          | 14810         | 0                 | 1989000               |
| 82            | 3820          | 14990         | 259000            | 44 91944 # 11 2103000 |
| 83            | 2340          | 14850         | 42000             | 2078000               |
| 81            | 5110          | 14790         | 297000            | 2042000               |
| 85            | 5740          | 14660         | 0                 | 1989000               |
| 86            | 3810          | 15000         | 259000            | 2101000               |
| 87<br>88      | 2720          | 14840         | 41000             | 2080000               |

| 88      | 2720          | 74010              |           |
|---------|---------------|--------------------|-----------|
|         |               |                    |           |
|         |               | Design             |           |
| Members | Main Bar (mm) | Stirrup Bar (mm)   | Mu (kgcm) |
| 81      | D25           | \$12 <i>-@</i> 50  | 2884256   |
| 82      | D25           | \$12-@50           | 2884256   |
| 83      | D25           | \$12 <i>-@</i> 50  | 2884256   |
| 81      | D25           | φ12-@50            | 2884256   |
|         | D25           | \$12 <i>-@</i> .50 | 2884256   |
| 85      | D25           | \$12-@50           | 2884256   |
| 86      | D25           | φ12-@50            | 2884256   |
| 87      | D25           | \$12-@50           | 2884256   |
| 88      | 1 1023        | 1 7.2 (32          |           |

|         | 11 2     |              |        | Design     |                |        |           |               |        |  |
|---------|----------|--------------|--------|------------|----------------|--------|-----------|---------------|--------|--|
| Members | Left Bar |              |        | Middle Bar |                |        | Right Bar |               |        |  |
|         | Тор      | Mid          | Bottom | Тор        | Mid            | Bottom | Тор       | Mid           | Bottom |  |
| . 81    | 3D25     | 4410         | 2D25   | 2D25       | 4 <b>¢10</b>   | 3D25   | 3D25      | 4610          | 2D25   |  |
| 82      | 3D25     | 4010         | 2D25   | 2D25       | 4410           | 3D25   | 3D25      | 4610          | 2D25   |  |
| 83      | 3D25     | 4610         | 2D25   | 2D25       | 4 <b>\$10</b>  | 3D25   | 3D25      | 4610          | 2D25   |  |
| 84      | 3D25     | 4610         | 2D25   | 2D25       | 4410           | 3D25   | 3D25      | 4 <b>\$10</b> | 2D25   |  |
| 85      | 3D25     | 4010         | 2D25   | 2D25       | 4 <b>\$10</b>  | 3D25   | 3D25      | 4610          | 2D25   |  |
| 86      | 3D25     | 4 <b>¢10</b> | 2D25   | 2D25       | 4 <b>¢10</b> - | 3D25   | 3D25      | 4410          | 2D25   |  |
| 87      | 3D25     | 4410         | 2D25   | 2D25       | 4 <b>φ10</b>   | 3D25   | 3D25      | 4 <b>¢10</b>  | 2D25   |  |
| 88      | 3D25     | 4410         | 2D25   | 2D25       | 4 <b></b> 410  | 3D25   | 3D25      | 4\$10         | 2D25   |  |

#### e) Beam type e

Prototype of Element

| (cm) | b h cover<br>(cm) (cm) (mm) |   | dia. Main bar dia. stirr<br>(nun) (mm)<br>(deform) |    | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |  |
|------|-----------------------------|---|----------------------------------------------------|----|-----------------|----------------|----------------|--|
| 30   | 75                          | 8 | 25                                                 | 12 | 19 300          | 3700           | 2400           |  |

|         | The second of th | Frame Element | Force             |                        |          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|------------------------|----------|
| Members | Axial<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm)       |          |
| 89      | 5380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21980         | 0                 |                        | 3927000  |
| 90      | 5430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21980         | 0                 | to the property of the | 4094000  |
| 91      | 10510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21980         | 0                 |                        | 39090(X) |

|         |                | Design and the state of the sta |           |  |  |  |  |  |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Members | Main Bar (nun) | Stirrup Bar (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mu (kgcm) |  |  |  |  |  |
| 89      | D25            | \$12 <i>-6</i> 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4611165   |  |  |  |  |  |
| 90      | D25            | <b>\$12-@50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4611165   |  |  |  |  |  |
| 91      | D25            | <b>∮12-@50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4611165   |  |  |  |  |  |

|         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |        | Des       | ign        | 14 14 (1.1.) |      |           |        |  |
|---------|---------------------------------------|-------|--------|-----------|------------|--------------|------|-----------|--------|--|
| Members | Left Bar                              |       |        | 14 74 £ i | Middle Bar |              |      | Right Bar |        |  |
|         | Тор                                   | Mid   | Bottom | Тор       | Mid        | Bottom       | Тор  | Mid       | Bottom |  |
| 89      | 5D25                                  | 4\$10 | 2D25   | 2D25      | 4610       | 5D25         | 5D25 | 4\$10     | 2D25   |  |
| 90      | 5D25                                  | 4610  | 2D25   | 2D25      | 4410       | 5D25         | 5D25 | 4410      | 2D25   |  |
| 91      | 5D25                                  | 4610  | 2D25   | 2D25      | 4610       | 5D25         | 5D25 | 4610      | 2D25   |  |

## f) Beam type f

Prototype of Element

|   | LIOIO | type or E | iculciii |               |              |                       |          |          |
|---|-------|-----------|----------|---------------|--------------|-----------------------|----------|----------|
|   | b     | h         | cover    | dia. Main bar | dia. stirrup | fc'                   | fy       | fy .     |
| . | (cm)  | (cm)      | (mm)     | (mm)          | (mm)         | (kg/cm <sup>-</sup> ) | (kg/cm²) | (kg/cm²) |
|   |       |           |          | (deform)      |              |                       |          |          |
|   | 35    | 70        | 8        | 25            | 12           | 300                   | 3700     | 2400     |
| 1 |       |           |          |               |              |                       |          |          |

|         |               | Frame Element | Force             |                  |         |
|---------|---------------|---------------|-------------------|------------------|---------|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) |         |
| 128     | 190           | 29030         | 0                 |                  | 2902000 |

| . [ |         |               | Design           |           |
|-----|---------|---------------|------------------|-----------|
|     | Members | Main Bar (mm) | Stirrup Bar (mm) | Mu (kgcm) |
|     | 128     | D25           | <b>ķ12-@50</b>   | 4261033   |

|         | 100    |          |        | Desi | ign        |        |      | * * * * * * * * * * * * * * * * * * * |        |
|---------|--------|----------|--------|------|------------|--------|------|---------------------------------------|--------|
| Members | Fig. 1 | Left Bar | 3 - 1  | 1    | Middle Bar |        |      | Right Ba                              | r      |
|         | Тор    | Mid      | Bottom | Тор  | Mid        | Bottom | Тор  | Mid                                   | Bottom |
| 128     | 5D25   | 4∳10     | 2D25   | 2D25 | 4610       | 5D25   | 5D25 | 4 <b>¢10</b>                          | 2D25   |

## g) Beam type g

Prototype of Element

|   | 1100 | Cype Or Es | CHICH |               |              | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |
|---|------|------------|-------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| 1 | В    | b          | cover | dia. Main bar | dia. stirrup | ſĊ _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fy       | (v       |
| 1 | (cm) | (cm)       | (mm)  | (mm)          | (mm)         | (kg/cm²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (kg/cm²) | (kg/cm²) |
|   |      |            | * .   | (deform)      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |
|   | 30   | 60         | 8     | 25            | 12           | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3700     | 2400     |
|   |      |            |       |               |              | and the second s |          |          |

| ĺ |         |               |               |                   |                  |
|---|---------|---------------|---------------|-------------------|------------------|
|   | Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) |
| ı | 124     | 3110          | 12970         | 55000             | 1470000          |
| Ì | 125     | 3100          | 13130         | 48000             | 1562000          |
| 1 | 126     | 3480          | 14580         | 5000              | 1458000          |
| 1 | 127     | 19240         | 14640         | 6000              | 1768000          |

|         |               | Design            |           |
|---------|---------------|-------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (nım) | Mu (kgcm) |
| 124     | D25           | φ12-@50           | 2127644   |
| 125     | D25           | <b>♦12-</b> @50   | 2127644   |
| 126     | D25           | \$12-@50          | 2127644   |
| 127     | D25           | φ12-@50           | 2127644   |

|          | <del></del> |          |        | Des     | ien        |        | 1    |              |        |
|----------|-------------|----------|--------|---------|------------|--------|------|--------------|--------|
| ) (a b a |             | Left Bar |        |         | Middle Bar |        |      | Right Ba     | r      |
| Members  | Тор         | Mid      | Bottom | Top     | Mid        | Bottom | Тор  | Mid          | Bottom |
| 124      | 3D25        | 4410     | 2D25   | 2D25    | 4610       | 3D25   | 3D25 | 4\$10        | 2D25   |
| 124      |             | 4510     | 2D25   | 2D25    | 4610       | 3D25   | 3D25 | 4 <b>ộ10</b> | 2D25   |
| 125      | 3D25        |          | 2D25   | 2D25    | 4610       | 3D25   | 3D25 | 4410         | 2D25   |
| 126      | 3D25        | 4910     | 2D25   | 2D25    | 4610       | 3D25   | 3D25 | 4510         | 2D25   |
| 127      | 3D25        | 4610     | 2023   | 2,172,5 | <u> </u>   | 1      | L    |              |        |

()

# h) Beam type h

| T      |         |            |
|--------|---------|------------|
| UCATAT | VIDE AL | ribiliciii |
| FIUIUI | TUV VI  | Element    |

| b<br>(cm) | h<br>(cm) | cover | dia. Main bar<br>(mm)<br>(plain) | dia, stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |  |
|-----------|-----------|-------|----------------------------------|----------------------|-----------------|----------------|----------------|--|
| 10        | 110       | 4     | 10                               | 8                    | 300             | 3700           | 2400           |  |

|         |               | Frame Element | Force     | The second second |
|---------|---------------|---------------|-----------|-------------------|
| Members | Axial         | Shear         | Torsion   | Moment            |
|         | (kg)          | (kg)          | (kgcm)    | (kgcm)            |
| 53      | 10            | 1950          | 0         | 195000            |
| 54      | 270           | 5930          | 0         | 766000            |
| 55      | 600           | 5230          | . 0       | 706000            |
| 56      | 600           | 5230          | 0         | 706000            |
| 57      | 270           | 5930          | 0         | 766000            |
| 58      | 10            | 1950          | 0         | 195000            |
| 59      | 10            | 1940          | 0_        | 194000            |
| 60      | 10            | 1950          | 0_        | 195000            |
| 61      | 620           | 5250          | 0         | 707000            |
| 62      | 620           | 5250          | 0         | 707000            |
| 63      | 70            | 5990          | 0         | 772000            |
| 64      | 10            | 1950          | 8 F 10 O  | 195000            |
| 65      | 0             | 3970          | 0         | 472000            |
| 66      | 30            | 7400          | 0         | 1436000           |
| 67      | 0             | 3960          | 0         | 470000            |
| 68      | 0             | 3970          | 0         | 472000            |
| 69      | 30            | 7400          | 88 0      | 1436000           |
| 70      | 0             | 3960          | 0         | 470 <b>000</b>    |
| 106     | 10            | : 1950        | 0         | 195000            |
| 107     | 270           | 5930          | 0         | 766000            |
| 108     | 600           | 5230          | 0         | 706000            |
| 109     | 600           | 5230          | 0         | 706000            |
| 110     | 270           | 5930          | 0         | 766000            |
| 111     |               | 1950          | 0         | 195000            |
| 112     | 10            | 1940          | 0         | 194000            |
| 113     | 10            | 1950          | 0         | 195000            |
| 114     | 620           | 5250          | 0         | 707000            |
|         | 620           | 5250          | 0         | 707000            |
| 116     | 70            | 5990          | 0         | 772000            |
| 117     | 10            | 1950          | 0         | 195000            |
| 118     | 0             | 3970          | 0         | 472000            |
| 119     | 30            | 7400          | 2 2 2 2 0 | 1436000           |
| 120     | 0             | 3960          | 0         | 470000            |
| 121     | 0             | 3970          | 0         | 472000            |
| 122     | 30            | 7400          | : 1 O     | 1436000           |
| 123     | Walled A to 0 | 3960          | 0         | 470000            |

|         | area di       | Design                   |           |
|---------|---------------|--------------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (mm)         | Mu (kgcm) |
| 53      | φ10           | ¢8 <i>-@</i> 150         | 1767837   |
| . 54    | φ10           | ¢8-@150                  | 1767837   |
| 55      | φ10           | <b>ķ8-@150</b>           | 1767837   |
| 56      | φ10           | <b>ċ</b> 8 <i>-@</i> 150 | 1767837   |
| 57      | φ10           | <b>48-@150</b>           | 1767837   |
| 58      | φ10           | <b>∳</b> 8-@150          | 1767837   |
| 59      | φ10           | <b>ф8-@150</b>           | 1767837   |
| 60      | φ10           | <b>ф8-@150</b>           | 1767837   |
| 61      | φ10           | <b>φ8-@150</b>           | 1767837   |
| 62      | φ10           | <b>ċ8-@150</b>           | 1767837   |
| 63      | φ10           | <b>¢8-@150</b>           | 1767837   |
| 64      | φ10           | <b>\$8-@150</b>          | 1767837   |
| - 65    | φ10           | <b>ф8-@150</b>           | 1767837   |
| 66      | <b>φ10</b>    | ¢8 <i>-</i> @150         | 1767837   |
| 67      | φ <b>1</b> 0  | ¢8-@150                  | 1767837   |
| 68      | φ10           | <b>\$8-@150</b>          | 1767837   |
| 69      | φ10           | <b>ბ</b> %-@150          | 1767837   |
| 70      | φ10           | <b>♦8-</b> @150          | 1767837   |
| 106     | φ10           | \$8-@150                 | 1767837   |
| 107     | <b>φ10</b>    | <b>\$8-@150</b>          | 1767837   |
| 108     | φ10           | <b>\$8-@150</b>          | 1767837   |
| 109     | <b>φ10</b>    | <b></b>                  | 1767837   |
| 110     | φ10           | <b>φ8-@150</b>           | 1767837   |
| * 111   | <b>φ10</b>    | <b>\$3-@150</b>          | 1767837   |
| 112     | φ10           | ¢8-@150                  | 1767837   |
| 113     | <b>φ10</b>    | <b>\$8-@150</b>          | 1767837   |
| 114     | <b>φ10</b>    | ф8-@150                  | 1767837   |
| 115     | φ10           | \$8-@150                 | 1767837   |
| 116     | φ10           | <b>♦8-@150</b>           | 1767837   |
| 117     | φI0           | <b>¢8-@150</b>           | 1767837   |
| 118     | φ <u>10</u>   | <b>♦8-@150</b>           | 1767837   |
| 119     | φ10           | <b>₹8-@150</b>           | 1767837   |
| 120     | φ10           | <b>♦8-@150</b>           | 1767837   |
| 121     | φ10           | <b>\$</b> \$-@150        | 1767837   |
| 122     | φ10           | <b>\$8-@150</b>          | 1767837   |
| 123     | \$10          | <b>\$8-@150</b>          | 1767837   |

|         |               |          | -      | Desi           | gn         |              |               |           |               |
|---------|---------------|----------|--------|----------------|------------|--------------|---------------|-----------|---------------|
| Members |               | Left Bar |        | N              | Middle Bar |              |               | Right Bar |               |
|         | Тор           | Mid      | Bottom | Тор            | Mid        | Bottom       | Тор           | Mid       | Botton        |
| 53      | 2φ10          | 12010    | 2φ10   | 2∳10           | 12410      | 2¢10         | 2 <b></b> 0 0 | 12410     | 2¢10          |
| 54      | 2φ10          | 12610    | 2φ10   | 2010           | 12410      | 2¢10         | 2610          | 12010     | 2¢10          |
| 55      | 2ტ10          | 12010    | 2\$10  | . 2ბ10         | 12410      | 2φ10         | 2610          | 12410     | 2510          |
| 56      | 2¢10          | 12610    | 2ბ10   | 2ტ10           | 12010      | 2¢10         | 2ბ10          | 12\$10    | 2610          |
| 57      | 2ბ10          | 12010    | 2φ10   | 2ბ10           | 12010      | 2φ10         | 2¢10          | 12φ10     | 2 <b>¢1</b> 0 |
| 58      | 2¢10          | 12φ10    | 2610   | 2¢10           | 12010      | 2610         | 2ტ10          | 12φ10     | 2¢10          |
| 59      | 2010          | 12410    | 2φ10   | 2փ10           | 12510      | 2ტ10         | 2610          | 12410     | 2010          |
| 60      | 2010          | 12410    | 2410   | 2¢10           | 12010      | 2∳10         | 2¢10          | 12410     | 2∳10          |
| 61      | 2φ10          | 12410    | 2\$10  | 2փ10           | 12410      | 2610         | 2610          | 12410     | 2610          |
| 62      | 2գ10          | 12φ10    | 2φ10   | 2ბ10           | 12փ10      | 2ф10         | 2փ10          | 12\$10    | 2∳10          |
| 63      | 2¢10          | 12\$10   | 2փ10   | 2 <b></b> \$10 | 12\$10     | 2φ10         | 2¢10          | 12φ10     | 2410          |
| 64      | 2610          | 12φ10    | 2610   | 2փ10           | 12610      | 2ф10         | 2수10          | 12\$10    | 2\$10         |
| 65      | 2ბ10          | 12010    | 2φ10   | 2¢10           | 12510      | 2∳10         | 2010          | 12010     | 2410          |
| 66      | 2φ10          | 12φ10    | 2φ10   | 2¢10           | 12410      | 2010         | 2410          | 12010     | 2∳10          |
| 67      | 2 <b>\$10</b> | 12410    | 2φ10   | 2610           | 12010      | 2ტ10         | 2∳10          | 12ბ10     | <u>2610</u>   |
| 68      | 2¢10          | 12φ10    | 2φ10   | 2610           | 12φ10      | 2ტ10         | 2¢10          | 12410     | 2∳10          |
| 69      | 2\$10         | 12010    | 2փ10   | 2ბ10           | 12010      | 2փ10         | 2∳10          | 12010     | 2ტ10          |
| 70      | 2610          | 12410    | 2φ10   | 2ტ10           | 12¢10      | 2¢10         | 2510          | 12610     | 2610          |
| 106     | 2010          | 12010    | 2ф10   | 2φ10           | 12510      | 2φ10         | 2010          | 12010     | 2\$10         |
| 107     | 2010          | 12010    | 2φ10   | 2φ10           | 12010      | 2610         | 2010          | 12010     | 2¢10          |
| 108     | 2ტ10          | 12010    | 2010   | 2410           | 12510      | 2410         | 2910          | 12\$10    | 2 <b></b> 0   |
| 109     | 2010          | 12010    | 2φ10   | 2φ10           | 12610      | 2010         | 2¢10          | 12410     | 2 <b></b> 410 |
| 110     | 2610          | 12010    | 2φ10   | 2010           | 12610      | 2010         | 2610          | 12010     | 2610          |
| 111     | 2010          | 12510    | 2φ10   | 2φ10           | 12610      | 2수10         | 2610          | 12610     | 2&10          |
| 112     | 2փ10          | 12\$10   | 2410   | 2φ10           | 12610      | 2ტ10         | 2410          | 12410     | 2ఫ10          |
| 113     | 2010          | 12\$10   | 2ბ10   | 2010           | 12610      | 2փ10         | 2010          | 12410     | 2\$10         |
| 114     | 2∳10          | 12610    | 2φ10   | 2ф10           | 12610      | 2φ10         | 2010          | 12410     | 2410          |
| 115     | 2010          | 12510    | 2010   | 2510           | 12010      | 2∳10         | 2§!0          | 12410     | 2910          |
| 116     | 2010          | 12010    | 2010   | 2010           | 12410      | 2φ10         | 2∳10          | 12\$10    | 2¢10          |
| 117     | 2010          | 12010    | 2φ10   | 2010           | 12010      | 2610         | 2010          | 12010     | 2ტ10          |
| 118     | 2¢10          | 12\$10   | 2\$10  | 2610           | 12\$10     | 2 <b>∳10</b> | 2610          | 12610     | 2610          |
| 119     | 2¢10          | 12010    | 2φ10   | 2610           | 12510      | 2610         | 2610          | 12010     | 2∳10          |
| 120     | 2¢10          | 12010    | 2\$10  | 2∳10           | 12010      | 2փ10         | 2∳10          | 12410     | 2ֆ10          |
| 121     | 2φ10          | 12010    | 2\$10  | 2910           | 12010      | 2610         | 2\$10         | 12610     | 2 <b></b> §10 |
| 122     | 2010          | 12410    | 2610   | 2∳10           | 12010      | 2610         | 2410          | 12510     | 2610          |
| 123     | 2φ10<br>2φ10  | 12010    |        | 2610           | 12010      | 2φ10         | 2010          | 12610     | 2∳10          |

### i) Beam type i

Prototype of Element

|       | Proto!    | type of E | lement        |                       |                      | ſo'      | fv       | fy       | Ì  |
|-------|-----------|-----------|---------------|-----------------------|----------------------|----------|----------|----------|----|
|       | b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia. Main bar<br>(mm) | dia. stirrup<br>(mm) | (kg/cm²) | (kg/cm²) | (kg/cm²) |    |
| 41.50 | (0.1.)    |           | 7327 6        | (deform)              | 10                   | 300      | 3700     | 2400     | 1  |
|       | 20        | 50        | 4             | ]25                   | L                    | 1        |          |          | Ē. |

|   |                  | and the second of the second o |                    |                       | 1 |
|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---|
| 1 | 100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Design             | 46 <u>74 [14] 4 -</u> |   |
| : | California Bar   | Tangka Sasa i S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Left, Mid and Righ | it Bar                |   |
|   | Stirrup Bar      | Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mid                | Botton                | 1 |
|   | (mm)<br>810-@150 | 6D25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2810               | 3D25                  |   |
|   | เ ธเบสตมวง       | 0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |   |

# j) Beam type j

| 6 (cm) (cm) (mm) (mm) (kg/cm²) (kg/cm²) | IV.      | l fe     | fo'      |                       |          | emem | type of El | - Proto |
|-----------------------------------------|----------|----------|----------|-----------------------|----------|------|------------|---------|
|                                         | (kg/cm²) | (kg/cm²) | (kg/cm²) | dia. stirrup<br>(nun) | (mm)     |      | h<br>(cm)  | b (cm)  |
| (deform) 10 300 3700                    | 2400     | 3700     | 300      | 10                    | (deform) |      |            |         |

|             |      | esign                   | Par      |
|-------------|------|-------------------------|----------|
| Stirrup Bar |      | N, Mid and Right<br>Mid | Bottom   |
| (mm)        | Тор  | 2610                    | 2D25     |
| \$10-@150   | 3D25 | 2010                    | <u> </u> |

### k) Beam type k

|                                      |                                          | IV I     | IV I     |
|--------------------------------------|------------------------------------------|----------|----------|
| b h cover dia. Main bar dia. stirrup | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | (kg/cm²) | (kg/cm²) |
| (cm) (cm) (mm) (mm) (k               | kg/cm')                                  | (vBcm)   | ("5"     |
| (deform)                             |                                          | 2700     | 2400     |
| 25 25 10                             | 300 <u> </u>                             | 3700     | 2400     |

|             |      | <u>na an an itan</u><br>Januari Barata |        | De     | sign     | . 14 144 | 14 4 4 |         |        |
|-------------|------|----------------------------------------|--------|--------|----------|----------|--------|---------|--------|
|             | r    | Left Bar                               |        |        | Middle B | ar       | stat ₹ | Right B | ar     |
| Stirrup Bar | 70   | Mid                                    | Bottom | Top    | Mid      | Bottom   | Тор    | Mid     | Bottom |
| (mm)        | Top  | iviiu                                  | 2D25   | 2D25   |          | 2D25     | 2D25   | - >     | 2D25   |
| \$10-@150   | 2D25 | !                                      | 2025   | 1 ==== |          | 111      |        |         |        |

| Proto     | type of El | ement |                       |                     | <u> </u> | ſv       | fs       |
|-----------|------------|-------|-----------------------|---------------------|----------|----------|----------|
| b<br>(cm) | H<br>(cm)  | cover | dia. Main bar<br>(mm) | dia. stirmp<br>(mm) | (kg/cm²) | (kg/cm²) | (kg/cm²) |
|           |            |       | (deform)              | 10                  | 300      | 3700     | 2400     |
| 20        | 30         | 4     | 1 2)                  | 10                  | 1        | L        |          |

|             | nder gestellt der g | Design |        |
|-------------|----------------------------------------------------------------------------------------------------------------|--------|--------|
| Stirrup Bar | Bar                                                                                                            |        |        |
| (mm)        | Тор                                                                                                            | Mid    | Bottom |
| \$10-@150   | 3D25                                                                                                           | 2410   | , 3D25 |

### m) Beam type m

**(** )

|   | Proto     | type of E | iement        |                                  |                      |                 |                |                |
|---|-----------|-----------|---------------|----------------------------------|----------------------|-----------------|----------------|----------------|
|   | b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia, Main bar<br>(mm)<br>(plain) | dia. stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
| 1 | 10        | 75        | 4             | 10                               | 8                    | 300             | 3700           | 2400           |

|                 | en en en en en en | Design |        |
|-----------------|-------------------|--------|--------|
| Stirrup Bar     |                   | Bar    |        |
| (mm)            | Тор               | Mid    | Bottom |
| <b>\$8-@150</b> | 2410              | 10\$10 | 2∳10   |

### n) Beam type n

| b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia. Main bar<br>(mm)<br>(deform) | dia. stirrup<br>(mm) | fc<br>(kg/cm²) | fy<br>(kg/cm²) | (kg/cm²) |
|-----------|-----------|---------------|-----------------------------------|----------------------|----------------|----------------|----------|
| 25        | 45        | 4             | 25                                | 10                   | 300            | 3700           | 2400     |

|             |          | . ya     | 1.00       | Des  | ign      |          | 147 1  | 2.7     |              |
|-------------|----------|----------|------------|------|----------|----------|--------|---------|--------------|
| Stirrup Bar | 1,476,47 | Left Bar | - 15 11 11 |      | Middle B | ar i 🚈 🗀 | 30.075 | Right B | <del>r</del> |
| (mm)        | Тор      | Mid      | Bottom     | Top  | Mid      | Bottom   | Top    | Mid     | Bottom       |
| \$10-@150   | 3D25     | 2610     | 2D25       | 2D25 | 2ф10     | 3D25     | 3D25   | 2610    | 2D25         |

### o) Beam type o

|   | FIOLO  | type of L                                | Cittone |               |              |                       | I        |          |
|---|--------|------------------------------------------|---------|---------------|--------------|-----------------------|----------|----------|
| - | b      | h                                        | cover   | dia. Main bar | dia. stirrup | lc .                  | l ly     | lv ,     |
|   | (cm)   | (cm)                                     | (mm)    | (mm)          | (nun)        | (kg/cm <sup>+</sup> ) | (kg/cm²) | (kg/cm²) |
| 1 | 777.74 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |         | (plain)       |              |                       |          |          |
|   | 15     | 15                                       | 4       | 12            | 18/010 16/2  | 300                   | 3700     | 2400     |
|   |        |                                          |         |               |              |                       |          | 5.77     |

|             |      |               | J. 5.4 Proces | Des  | ign      |        | 51,75 (A) <u>1</u> |         | ************************************** |
|-------------|------|---------------|---------------|------|----------|--------|--------------------|---------|----------------------------------------|
| Stirrup Bar |      | Left Bar      |               |      | Middle F | Bar    | 4 4 4 1            | Right B | ar                                     |
| (mm)        | Top  | Mid           | Bottom        | Тор  | Mid      | Bottom | Тор                | Mid     | Bottom                                 |
| φ10@-150    | 2D12 | 9 <u>1</u> 15 | 2D12          | 2D12 | -        | 2D12   | 2D12               |         | 2D12                                   |

### p) Beam type p

Prototype of Element

|   | LIOLO | COPO OF E | CHICH |               |              |          |          |          |   |
|---|-------|-----------|-------|---------------|--------------|----------|----------|----------|---|
| ļ | b     | h         | cover | dia. Main bar | dia, stirrup | fc'      | er fy (  | fv       | İ |
|   | (¢m)  | (cm)      | (mm)  | (mm)          | (aun)        | (kg/cm²) | (kg/cm²) | (kg/cm²) |   |
|   |       |           |       | (deform)      |              |          |          | 181      |   |
|   | 15    | 20        | 4     | - 16          | 8            | 300      | 3700     | 2400     |   |

| Design         |      |          |        |      |          |        |           |         |        |
|----------------|------|----------|--------|------|----------|--------|-----------|---------|--------|
| Stirrup Bar    |      | Left Bar |        |      | Middle B | ar     | 1 11 11 1 | Right B | ar     |
| (mm)           | Top  | Mid      | Bóttóm | Top  | Mid      | Bottom | Тор       | Mid     | Bottom |
| <b>♦8-@200</b> | 2D16 | -        | 2D16   | 2D16 | -        | 2D16   | 2D16      |         | 2D16   |

## q) Beam type q

Prototype of Element

|     | 11000 | .) P = 0. ~ | Citionic |               |              |           |            |          |
|-----|-------|-------------|----------|---------------|--------------|-----------|------------|----------|
|     | b     | h           | cover    | dia. Main bar | dia. stirrup | fc'       | fy i       | fv       |
|     | (cm)  | (cm)        | (mm)     | (mm)          | (mm)         | (kg/cm²)  | (kg/cm²)   | (kg/cm²) |
| . 1 | :     |             |          | (plain)       |              | matika ba | the second |          |
|     | 10    | 22          | 4        | 12            | 8            | 300       | 3700       | 2400     |

|                |      | Ocsign           |        |
|----------------|------|------------------|--------|
| Stirrup Bar    | L    | cft, Mid and Rig | ht Bar |
| (nım)          | Тор  | Mid              | Bottom |
| <b>♦8-@200</b> | 2¢12 |                  | 2¢12   |

### 3) Slab

# a) Slab of control office in the 2<sup>nd</sup> floor

| t    | 1    | W     | cover | dia. Main bar | ſc'      | fy       | fv.      |
|------|------|-------|-------|---------------|----------|----------|----------|
| (cm) | max  | max   | (mm)  | (mm)          | (kg/cm²) | (kg/cm²) | (kg/cm²) |
|      | (cm) | (cm)  |       | (plain)       |          |          |          |
| 15   | 750  | 622.5 | 4     | 12            | 300      | 3700     | 2400     |

| ſ |            | <br>Moment |            |             |
|---|------------|------------|------------|-------------|
| Г | Mix (kgcm) | Mly (kgcm) | Mux (kgcm) | Mtiy (kgcm) |
| Г | 72000      | 22000      | - 110000   | 12000       |

| Design (x and y dir  | ection)   |
|----------------------|-----------|
| Point of support Bar | Yield Bar |
| φ12-@100             | φ12-@150  |

b) Slab with lx = 1000 mm on canopy above windows and entrance ly = 1000 mm

|           |      |           | _ *  |                                  |          |                |                |  |
|-----------|------|-----------|------|----------------------------------|----------|----------------|----------------|--|
| t<br>(cm) | (cm) | w<br>(cm) | (mm) | dia, Main bar<br>(mm)<br>(plain) | (kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |  |
| 15        | 100  | 100       | 4    | 10                               | 300      | 3700           | 2400           |  |

| Design (x and y di   | rection)  |
|----------------------|-----------|
| Point of support Bar | Yield Bar |
| \$10-@150            | φ10-@150  |

c) Slab with 1x = 1000 mm between each console 1y = 1000 mm

| t<br>(cm) | (cm) | w<br>(cm) | cover<br>(mm) | dia. Main bar<br>(num)<br>(olain) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|-----------|------|-----------|---------------|-----------------------------------|-----------------|----------------|----------------|
| 12        | 100  | 100       | 4             | 12                                | 300             | 3700           | 2400           |

| Design (x and y di   | rection)  |
|----------------------|-----------|
| Point of support Bar | Yield Bar |
| \$12-@100            | φ12-@100  |

d) Slab with 1x = 1000 mm on stairs

ly = 1000 mm

|   | (cm) | (cm) | w<br>(cm) | (mm) | dia. Main bar<br>(mm)<br>(plain) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|---|------|------|-----------|------|----------------------------------|-----------------|----------------|----------------|
|   | 15   | 100  | 100       | 4    | 12                               | 300             | 3700           | 2400           |
| Ī |      |      |           |      | 10                               | <u> </u>        | 1 + 1          |                |

| Design (y direction | ) | D16-@150 |
|---------------------|---|----------|
| Design (x direction |   | ф12-@150 |

e) Slab of entrance roof

| <br>32 to 30 to 30 to |          | 5 12 1 1 1 | i e           | and the second s |                 |                |                |
|-----------------------|----------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|
| (cm)                  | l<br>max | w<br>max   | cover<br>(mm) | dia. Main bar<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
| (cm)                  |          | 1          | (11111)       | (plain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \ <b>,</b>      | ,              | , ,            |
|                       | (cm)     | (cm)_      |               | (piaiti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                |                |
| 15                    | 750      | 150        | 4             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300             | 3700           | 2100           |
|                       |          | 1          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | L              |                |

| Design (x and y dir  | ection)             |
|----------------------|---------------------|
| Point of support Bar | Yield Bar           |
| \$12 <i>-@</i> 100   | \$12 <i>-@</i> ,100 |

()

### 4. Design of Element Profile of Crane Andrews

Load crane = 25000 kg

Maximum moment = 1/4 PL

= 1/4 \* 25000 \* 750

= 4687500 kg.cm

Use IWF- 494 x 302 x 13 x 21

 $I_X = 83800 \text{ cm}^4$ 

 $Iy = 9660 \text{ cm}^4$ 

 $Wx = 3390 \text{ cm}^3$ 

 $Wy = 640 \text{ cm}^3$ 

#### Checking:

Stresses:

 $\sigma = M_{max}/Wx$ 

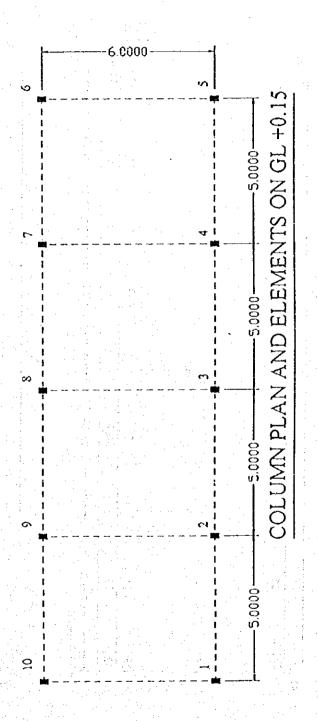
= 4687500/3390

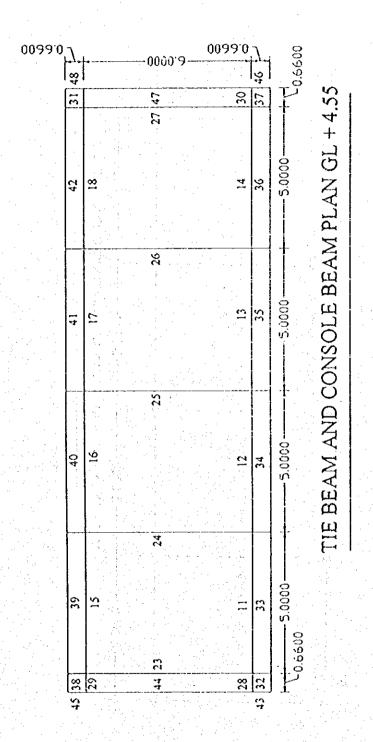
=  $1382.74 < \sigma_{\text{all}} = 1400 \text{ kg/cm}^2$  (OK)

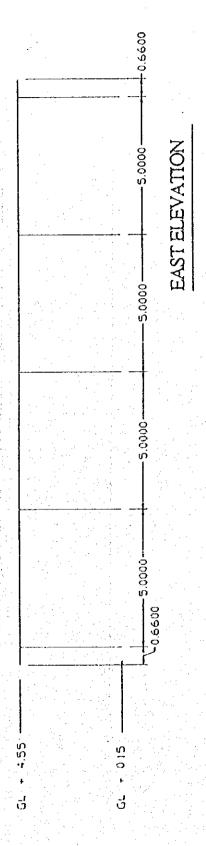
### Deflection :

$$f = 1/48 \times PL^3/EI_x$$

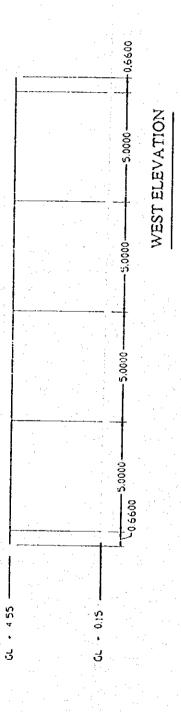
 $= 1/48 \times 25000 \times 750^3 / 2.1 \times 10^6 \times 83800$ 

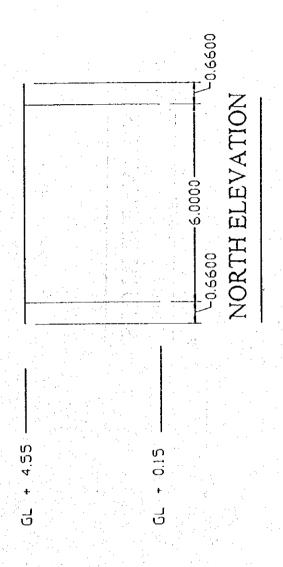

= 1.24 cm  $< f_{sll} = 1/500 L = 1/500 x 750 = 1.50 cm (OK)$ 

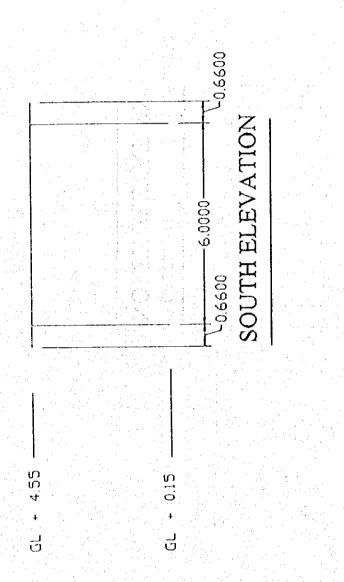

5.3 Design of Garage


# JATIBARANG GARAGE STRUCTURE CALCULATION

| <u>CONTENT</u> :            |                     |             |          | Page:   |
|-----------------------------|---------------------|-------------|----------|---------|
| CONTENT LIST                |                     |             |          | i       |
| 1. GENERAL CONSTRUCTION     | ON                  |             |          | 1 - 13  |
| 2. DESIGN OF REINFORCEN     | MENT CONCRET        | E FRAME     |          | 7 - 13  |
| a. Structure of Reinforceme | ent Concrete Frame  | e           |          | 7 - 13  |
| b. Dimensions               |                     |             |          | 8 - 13  |
| c. Design Condition         |                     |             |          | 8 - 13  |
| d. Loading Condition        |                     |             |          | 8 - 13  |
| e. Prototype of Element and | d Recapitulation of | Frame Eleme | nt Force | 8 - 13  |
| 1). Column                  |                     |             |          | 8 - 13  |
| 2). Beam                    |                     |             |          | 9 - 13  |
| 3). Slab                    |                     |             |          | 13 - 13 |
|                             |                     |             |          |         |


### 1. General Construction

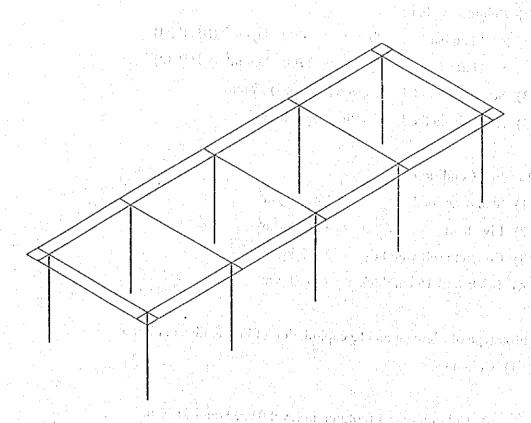





D








2. Design Of Reinforcement Concrete Frame

(

a. Structure of Reinforcement Concrete Frame



#### b. Dimensions

- length c c column = 20.00 m
- width  $c c \cot m = 6.00 \text{ m}$
- height ground to roof = 4.11 m

### c. Design Condition

- 1) Concrete compression strength fc'= 30 MPa (K-250 = 250 kg/cm²)
- 2) Reinforcing bar:
  - Plain bar fy =  $2400 \text{ kg/cm}^2 \text{ (BJTP 24)}$
  - Deformed bar fy =  $3700 \text{ kg/cm}^2$  (BJTP 32)
- 3) Structural model : space (xyz axis) frame
- 4) Analysis method : static rigid floor

#### d. Loading Condition

- 1) Slab dead load = 150 kg/m<sup>2</sup>
- 2) Live load =  $400 \text{ kg/m}^2$
- 3) Concrete self weight = 2400 kg/m<sup>3</sup>
- 4) Brick wall 15 cm thick = 250 kg/m<sup>2</sup>

# e. Prototype of Element and Recapitulation of Frame Element Force

1). Column

a) Column type I (column in level 0+000 until 5+500)

Prototype of Element

| Prototy   | /pe or .  | Riemen        |                                   |                         |                 |                |                |
|-----------|-----------|---------------|-----------------------------------|-------------------------|-----------------|----------------|----------------|
| b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia. main<br>bar (mm)<br>(deform) | dia.<br>stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
| 20        | 30        | 10            | 25                                | 10                      | 300             | 3700           | 2400           |

|          | Frame I | Element | Force   |        |          | Desi              | gn    |         |
|----------|---------|---------|---------|--------|----------|-------------------|-------|---------|
|          | Axial   | Shear   | Torsion | Moment | Main bar | Stirrup           | Pu    | Mu      |
| Members  | (kg)    | (kg)    | (kgcm)  | (kgcm) | (mm)     | (mm)              | (kg)  | (kgcm)  |
| 1        | 30410   | 1160    | 0       | 464000 | 4D25     | \$10@-300         | 36354 | 611587  |
| 2        | 35290   | 1480    | 0       | 591000 | 4D25     | φ10@-300          | 36354 | 611587  |
|          | 34510   | 1480    | 0       | 591000 | 4D25     | <b>♦10</b> @-300  | 36354 | 611587  |
| 3        | 35290   | 1480    | 0       | 591000 | 4D25     | φ10@-300          | 36354 | .611587 |
| 1.4 (15) |         |         | 0       | 464000 | 4D25     | <b>\$10</b> @-300 | 36354 | 611587  |
| 5        | 30410   | 1160    |         | 464000 | 4D25     | \$10@-300         | 36354 | 611587  |
| 6        | 30410   | 1160    | 0       | L      | 4D25     | \$10/20-300       | 36354 | 611587  |
| 7        | 35290   | 1480    |         | 591000 |          | <del></del>       | 36354 | 611587  |
| 8        | 34510   | 1480    | 0       | 590000 | 4D25     | φ10@-300          |       |         |
| 9        | 35290   | 1480    | 0       | 591000 | 4D25     | \$10@-300         | 36354 | 611587  |
| 10       | 30410   | 1160    | 0       | 464000 | 4D25     | φ10@-300          | 36354 | 611587  |

# 2). Beam (1997)

# a) Beam type a

Prototype of Element

| b<br>(cm) | h (cm) | cover | dia. Main bar<br>(nun) | dia. stirwp<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |   |
|-----------|--------|-------|------------------------|---------------------|-----------------|----------------|----------------|---|
| 20        | 40     | 10    | (deform)<br>16         | 10                  | 300             | 3700           | 2100           | j |

|         |               | Frame Element | Force             |                  |
|---------|---------------|---------------|-------------------|------------------|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) |
| 11      | 80            | 6730          | 16000             | 666000           |
| 12      | 60            | 6990          | 0                 | 664000           |
| 13      | 60            | 6990          | 0                 | 664000           |
| 13      | 80            | 7140          | 16000             | 666000           |
| 15      | 80            | 7140          | 16000             | 666000           |
| 16      | 60            | 6990          | 0                 | 664000           |
| 17      | 60            | 6990          | 0                 | 664000           |
| 18      | 80            | 7140          | 16000             | 666000           |

| Members | Main Bar (mm) | Stirrup Bar (mm)  | Mu (kgcm) |
|---------|---------------|-------------------|-----------|
| 11      | D16           | ф10-@50           | 673254    |
| 12      | D16           | \$10 <i>-@5</i> 0 | 673254    |
| 13      | D16           | φ10-@50           | 673254    |
| 14      | D16           | φ10-@50           | 673254    |
| 15      | D16           | φ10-@50           | 673254    |
| 16      | D16           | φ10-@50           | 673254    |
| 17      |               | φ10 <i>-(</i> @50 | 673254    |
| 18      | D16           | \$10-@50          | 673254    |

|         |      | •. •     | ·.     | Desi | gn         |        |      |          |        |
|---------|------|----------|--------|------|------------|--------|------|----------|--------|
| Members |      | Left Bar |        |      | Middle Bar |        |      | Right Ba | ı.     |
|         | Top  | Mid      | Bottom | Тор  | Mid        | Bottom | Top  | Mid      | Bottom |
| 11      | 2D16 | 2410     | 2D16   | 2D16 | 2φ10       | 2D16   | 2D16 | 2\$10    | 2D16   |
| 12      | 2D16 | 2410     | 2D16   | 2D16 | 2010       | 2D16   | 2D16 | 2ф10     | 2D16   |
| 13      | 2D16 | 2610     | 2D16   | 2D16 | 2410       | 2D16   | 2D16 | 2410     | 2D16   |
| 14      | 2D16 | 2410     | 2D16   | 2D16 | 2010       | 2D16   | 2D16 | 2φ10     | 2D16   |
| 15      | 2D16 | 2010     | 2D16   | 2D16 | 2610       | 2D16   | 2D16 | 2410     | 2D16   |
| 16      | 2D16 | 2010     | 2D16   | 2D16 | 2610       | 2D16   | 2D16 | 2010     | 2D16   |
| 17      | 2D16 | 2010     | 2D16   | 2D16 | 2010       | 2D16   | 2D16 | 2410     | 2D16   |
| 18      | 2D16 | 2610     | 2D16   | 2D16 | 2610       | 2D16   | 2D16 | 2φ10     | 2D16   |

# b) Beam type b

Prototype of Element

| b<br>(cm) | h<br>(cm) | (mm)<br>cover | dia. Main bar<br>(mm)<br>(deform) | dia. stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|-----------|-----------|---------------|-----------------------------------|----------------------|-----------------|----------------|----------------|
| 20        | 40        | 10            | 16                                | 10                   | 300             | 3700           | 2400           |

|         |               | Frame Element | Force             | ff out the back of the de- |
|---------|---------------|---------------|-------------------|----------------------------|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment (kgcm)              |
| 23      | 1150          | 11090         | 72000             | 1255000                    |
| 24      | 1480          | 13240         | 4000              | 1661000                    |
| 25      | 1480          | 12970         | 0                 | 1621000                    |
| 26      | 1480          | 13240         | 4000              | [661000                    |
| 27      | 1150          | 11090         | 72000             | 1255000                    |

|         |               | Design           |           |
|---------|---------------|------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (mm) | Mu (kgcm) |
| 23      | D19           | φ10-@150         | 1756489   |
| 24      | D19           | φ10-@150         | 1756489   |
| 25      | D19           | φ10-@150         | 1756489   |
| 26      | 04 D19        | φ10-@150         | 1756489   |
| 27      | D19           | φ10-@150         | 1756489   |

|             | 1.11.15  |      |        | Des  | ign        |        |      | <u>) (1 - 5 %)</u> | <u> 184</u> 0 a B |  |
|-------------|----------|------|--------|------|------------|--------|------|--------------------|-------------------|--|
| Members     | Left Bar |      |        |      | Middle Bar |        |      | Right Bar          |                   |  |
| 1. 14.1.1.1 | Тор      | Mid  | Bottom | Тор  | Mid        | Bottom | Тор  | Mid                | Bottom            |  |
| 23          | 3D16     | 2410 | 2D16   | 2D16 | 2φ10       | 3D16   | 3D16 | ∶2φ10              | 2D16              |  |
| 24          | 3D16     | 2410 | 2D16   | 2D16 | 2610       | 3D16   | 3D16 | 2ф10               | 2D16              |  |
| 25          | 3D16     | 2010 | 2D16   | 2D16 | 2010       | 3D16   | 3D16 | 2φ10               | 2D16              |  |
| 26          | 3D16     | 2610 | 2D16   | 2D16 | 2410       | 3D16   | 3D16 | 2610               | 2D16              |  |
| 27          | 3D16     | 2610 | 2D16   | 2D16 | 2410       | 3D16   | 3D16 | 2φ10               | 2D16              |  |

### c) Beam type c

Prototype of Element

| b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia. Main bar<br>(mm)<br>(deform) | dia. stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |  |
|-----------|-----------|---------------|-----------------------------------|----------------------|-----------------|----------------|----------------|--|
| 15        | 30        | 10            | 16                                | 10                   | 300             | 3700           | 2400           |  |

|         |               | Frame Eleme   | ent Force         |                  |          |
|---------|---------------|---------------|-------------------|------------------|----------|
| Members | Axial<br>(kg) | Shear<br>(kg) | Torsion<br>(kgcm) | Moment<br>(kgcm) |          |
| 28      | 0             | 5220          | 12000             | 590000           | <u>;</u> |
| 29      | 2001 0        | 2640          | 0                 | 232000           |          |
| 10      | 0             | 5220          | 12000             | 590000           |          |
| 31      | 0             | 5220          | 12000             | 590000           | 4        |

|         |               | Design            |           |
|---------|---------------|-------------------|-----------|
| Members | Main Bar (mm) | Stirrup Bar (nun) | Mu (kgcm) |
| 28      | D16           | φ10-@100          | 658457    |
| 29      | D16           | \$10-@100         | 658457    |
| 30      | D16           | ф10-@100          | 658457    |
| 31      | D16           | \$10-@100         | 658457    |

|         |         | F. 151. | Design | J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |          |        |
|---------|---------|---------|--------|-------------------------------------------|----------|--------|
| Members | 3 2 3/4 | Left Ba |        |                                           | Right Ba | ır     |
|         | Тор     | Mid     | Bottom | Тор                                       | Mid      | Bottom |
| 28      | 3D16    | 2φ10    | 2D16   | 3D16                                      | 2ტ10     | 2D16   |
| 29      | 3D16    | 2610    | 2D16   | 3D16                                      | 2φ10     | 2D16   |
| 30      | 3D16    | 2φ10    | 2D16   | 3D16                                      | 2410     | 2D16   |
| 31      | 3D16    | 2610    | 2D16   | 3D16                                      | 2010     | 2D16   |

## d) Beam type d

| b<br>(cm) | h<br>(cm) | cover<br>(mm) | dia. Main bar<br>(mm)<br>(plain) | dia. stirrup<br>(mm) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|-----------|-----------|---------------|----------------------------------|----------------------|-----------------|----------------|----------------|
| 10        | 95        | 10            | 10                               | 8                    | 300             | 3700           | 2400           |

|          | •               |               |         |                      |  |  |
|----------|-----------------|---------------|---------|----------------------|--|--|
|          |                 | Frame Element | Force   |                      |  |  |
| Members  | Axial           | Shear         | Torsion | Moment               |  |  |
| MEHIOCIS | (kg)            | (kg)          | (kgcm)  | (kgcm)               |  |  |
| 32       | 5 St. 6 0 1 St. | 900           | 7000    | 85000                |  |  |
| 33       | 10              | 1340          | 0 0     | 117000               |  |  |
| - 34     | 10              | 1230          | 0       | 116000               |  |  |
| 35       | 10              | 1290          | 0       | 116000               |  |  |
| 36       | 10              | 1180          | 0       | 117000               |  |  |
| 37       | 0               | 900           | 7000    | 85000                |  |  |
| . 38     | 0               | 900           | 7000    | 85000                |  |  |
| 39       | 10              | 1340          | 0       | 117000               |  |  |
| 40       | 10              | 1290          | 0       | 116000               |  |  |
| 41       | 10              | 1290          | 0       | 0 116000             |  |  |
| 42       | 10              | 1340          | . 0     | 117000               |  |  |
| 43       | 0               | 90000         | 7000    | 85000                |  |  |
| 44       | 0               | 610           | 7000    | 42000                |  |  |
| 45       | 10              | 1660          | 7000    | 241000               |  |  |
| 46       | 10              | 1660          | 7000    | 241000               |  |  |
| 47       | 0               | 610           | 7000    | 42000 State of 42000 |  |  |
| 48       | 0               | 610           | 7000    | 42000                |  |  |

|         |               | Design           |              |
|---------|---------------|------------------|--------------|
| Members | Main Bar (mm) | Stirrup Bar (mm) | Mu (kgcm)    |
| 32      | <b>φ10</b>    | φ8-@150          | 245678       |
| 33      | φ10           | φ8-@:150         | 245678       |
| 34      | φ10           | <b>φ8-@150</b>   | 245678       |
| 35      | φ10           | <b>φ8-@150</b>   | 245678       |
| . 36    | φ10           | <b>∮8-@150</b>   | 245678       |
| 37      | φ10           | φ8-@150          | 245678       |
| 38      | φ10           | ф8-@150          | 245678       |
| 39      | φ10           | φ8-@150          | 245678       |
| 40      | <b>φ10</b>    | <b>∮8-@150</b>   | 245678       |
| 41      | ф10           | ф8-@150          | 245678       |
| 42      | φ10           | <b>\$8-@150</b>  | 9 PER 245678 |
| 43      | φ10           | <b>\$8-@150</b>  | 245678       |
| 44      | φ10           | <b>∮8-@150</b>   | 245678       |
| 45      | φ10           | <b>φ8-@150</b>   | 245678       |
| 46      | φ10           | ф8-@150          | 245678       |
| 47 - 3  | φ10           | ф8-@150          | 245678       |
| 48      | φ10           | <b>∮8-@150</b>   | 245678       |

|         |              |        |        | Des        | ign      | ·      | · · · · · · · · · · · · · · · · · · · |       | <del></del>   |
|---------|--------------|--------|--------|------------|----------|--------|---------------------------------------|-------|---------------|
| Members | ers Left Bar |        |        | Middle Bar |          |        | Right Bar                             |       |               |
| 32      | Тор          | Mid    | Bottom | Тор        | Mid      | Bottom | Top                                   | Mid   | Bottom        |
| 33      | 2φ10         | 12φ10  | 2φ10   | 2φ10       | 12\phi10 | 2ф10   | 2φ10                                  | 12410 | 2φ10          |
| 34      | 2φ10         | 12010  | 2φ10   | 2φ10       | 12010    | 2փ10   | 2φ10                                  | 12410 | 2ф10          |
| 35      | 2φ10         | 12010  | 2φ10   | 2φ10       | 12410    | 2φ10   | 2φ10                                  | 12010 | 2∳10          |
| 36      | 2φ10         | 12φ10  | 2φ10   | 2¢10       | 12φ10    | 2φ10   | 2φ10                                  | 12010 | 2 <b>ģ1</b> 0 |
| 37      | 2010         | 12φ10  | 2φ10   | 2¢10       | 12410    | 2010   | 2410                                  | 12410 | 2610          |
| 38      | 2¢10         | 12φ10  | 2φ10   | 2410       | 12φ10    | 2φ10   | 2φ10                                  | 12φ10 | 2փ10          |
| 39      | 2φ10         | 12\$10 | 2610   | 2010       | 12\$10   | 2010   | 2φ10                                  | 12010 | 2ф10          |
| 40      | 2610         | 12010  | 2φ10   | 2φ10       | 12φ10    | 2φ10   | 2փ10                                  | 12ტ10 | 2∳10          |
| 41      | 2010         | 12410  | 2¢10   | 2φ10       | 12610    | 2փ10   | 2փ10                                  | 12φ10 | 2φ10          |
| 42      | 2φ10         | 12φ10  | 2φ10   | 2φ10       | 12φ10    | 2010   | 2¢10                                  | 12φ10 | 2∳10          |
| 43      | 2φ10         | 12010  | 2φ10   | 2φ10       | 12φ10    | 2∳10   | 2410                                  | 12010 | 2փ10          |
| 44      | 2410         | 12410  | 2φ10   | 2φ10       | 12φ10    | 2φ10   | 2¢10                                  | 12010 | 2φ10          |
| 45      | 2¢10         | 12010  | 2φ10   | 2φ10       | 12\$10   | 2φ10   | 2φ10                                  | 12010 | 2¢10          |
| 46      | 2φ10<br>2φ10 | 12010  | 2φ10   | 2410       | 12\$10   | 2610   | 2φ10                                  | 12010 | 2∳10          |
| 47      | 2φ10<br>2φ10 | 12010  | 2010   | 2φ10       | 12\$10   | 2¢10   | 2\$10                                 | 12410 | 2φ10          |
| 48      | 2010         | 12010  | 2¢10   | 2φ10       | 12\$10   | 2φ10   | 2φ10                                  | 12010 | 2ბ10          |

# 3). Slab between each console

| t<br>(cm) | (cm) | w<br>(cm) | cover<br>(mm) | dia. Main bar<br>(mm)<br>(plain) | fc'<br>(kg/cm²) | fy<br>(kg/cm²) | fv<br>(kg/cm²) |
|-----------|------|-----------|---------------|----------------------------------|-----------------|----------------|----------------|
| 12        | 100  | 100       | 1             | 12                               | 300             | 3700           | 2400           |

| Design (x and y dir  | ection)         |
|----------------------|-----------------|
| Point of support Bar | Yield Bar       |
| φ12-@100             | <b>∮12-@150</b> |

