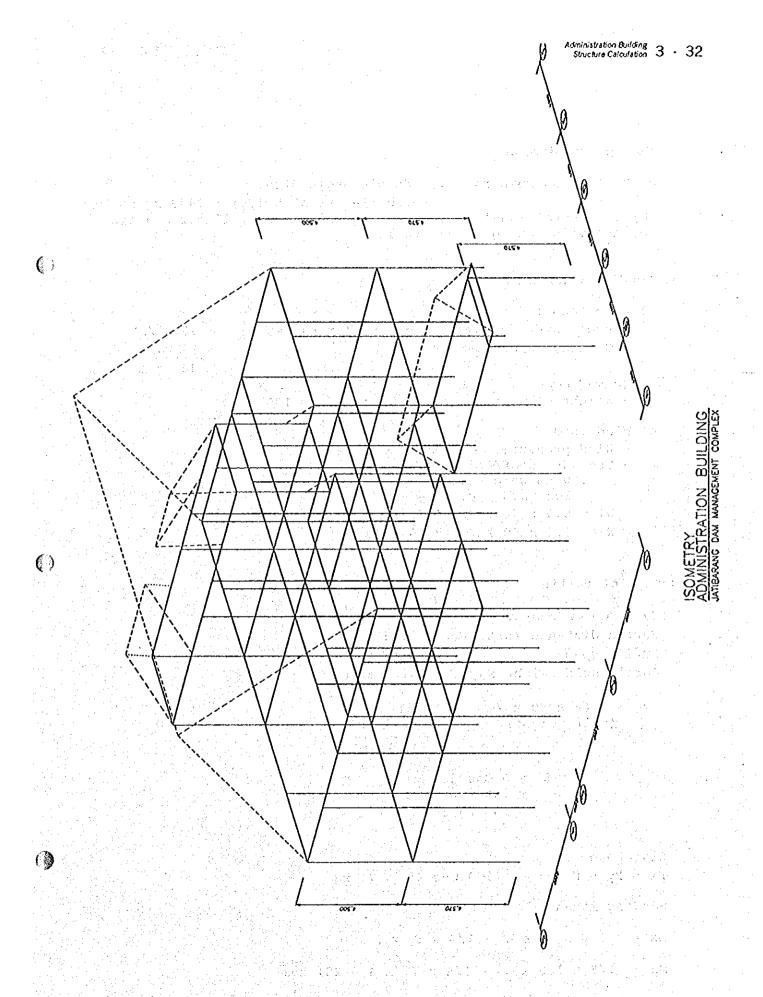

Chapter 5 ARCHITECTURAL DESIGN

5.1 Design of Dam Management Complex


5.1.1 Administration Building Structural Calculation

i.	Structure			Page 1
2.	Design Condition			Page 4
3	Loading Condition			Page 4
1.	Design of Purlin			Page 4
5.	Design of Roof Truss		• .	Page 7
Ś.	Data for Two Stories			Page 15
,	a. Dimensions			Page 15
	b. Design Condition			Page 15
	c. Loading Condition			Page 15
	d. Design of Reinford	cement-Concrete Plate		Page 15
7.	Design of Footing			Page 31

1. STRUCTURE (3) 4 3 3 2 3rd FLOOR PLAN 2nd FLOOR PLAN **O** (1) 3 2 1st FLOOR PLAN ADMINISTRATION BUILDING JATIBARANG DAM MANAGEMENT COMPLEX **(**)

ADMINISTRATION BUILDING JATIBARANG DAM MANAGEMENT COMPLEX

2. Design Condition

a) Roof truss members : - double angle steel

- Tensile strength (Fy): 2400 kg/cm²

b) Structural model

: plane (xy axis) truss, linear elastic

c) Analysis method : static

3. Loading Condition

a) Dead Load:

- Roof cover (ceramic tile + timber rafter)

- Ceiling (fibre cement)

b) Live load

- Weight of workers as point load = 100 kg

c) Wind load

- Wind pressure = 40 kg/m^2

- Pressure coefficient (f)

. wind ward -0.5

. lee ward -0.4

 $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$

 $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$

4. Design of Purlin

A. Roof Truss Type K-1

- Purlin distance (c/c) = 1.63 m

- Purlin span

= 4.00 m

- Purlin self weight say = 15.00 kg/m'

 $q_1 = 1.63 \times 80 \text{ kg/m}^2 \approx 131 \text{ kg/m}'$ $q_2 \text{ (self weight)} = 15 \text{ kg/m}'$

Q = 146 kg/m'

 $Q_1 = Q_2 = Q \cos 45^{\circ}$ = 146 Cos 45° $\approx 105 \text{ kg/m'}$

- Live Load

 $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$

- Bending moment

 $Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$

 $Mx = 1/8 \times 105 \times 4^2 + 1/4 \times 71 \times 4 = 281 \text{ kgm}$

My = Mx = 281 kgm = 28,100 kgcm

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$
 $1x = 664 \text{cm}^4$; $Wx = 88.6 \text{ cm}^3$
 $1y = 476 \text{ cm}^4$; $Wy = 73.2 \text{ cm}^3$

- Stresses

$$\sigma = \sigma x + \sigma y$$
= Mx + My
Wx Wy
= 28,100 + 28,100 = 317.16 + 383.88
= 701.04 kg < σ_{all} = 1,400 kg/cm² (OK)

- Deflection $fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{EI_x} + \frac{1}{48} \frac{PL^3}{EI_x}$ $= \frac{5}{384} \times 1.05 \times \frac{400^4}{2.1 \times 10^6 \times 664} + \frac{1}{48} \frac{71 \times 400^3}{2.1 \times 10^6 \times 664}$ = 0.25 + 0.07 = 0.32 cm

$$fy = 0.35 + 0.09 = 0.44$$
 cm

$$f = (0.32^2 + 0.44^2)^{1/2} = 0.54$$
 cm

$$f = 0.54 \text{ cm} < f_{all} = \frac{1}{360} L = \frac{400}{360} = 1.11 \text{ cm} (OK)$$

B. Roof Truss Type K-2

- Purlin self weight say = 15.00 kg/m'

$$q_1 = 1.41 \times 80 \text{ kg/m}^2 \approx 113 \text{ kg/m'}$$
 $q_2 \text{ (self weight)} = 8 \text{ kg/m'}$
 $Q = 121 \text{ kg/m'}$

$$Q_1 = Q_2 = Q \cos 45^{\circ}$$

= 121 Cos 45°
 $\approx 86 \text{ kg/m'}$

- Live Load $P_X = P_Y = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$

- Bending moment

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$$

$$Mx = 1/8 \times 86 \times 2.5^2 + 1/4 \times 71 \times 2.5 \approx 112 \text{ kgm}$$

$$My = Mx = 112 \text{ kgm} = 11,200 \text{ kgcm}$$

- Try Purlin of Lip Channel type :

- Stresses

$$\sigma = \sigma x + \sigma y$$

= Mx + My
Wx Wy
= 11,200 + 11,200 = 191.78 + 848.48
58.4 13.2
= 1,040.26 kg < σ_{all} = 1,400 kg/cm² (OK)

- Deflection

$$fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{EI_x} + \frac{1}{48} \frac{PL^3}{EI_x}$$

$$= \frac{5}{384} \times 0.86 \times \frac{250^4}{2.1 \times 10^6 \times 438} + \frac{1}{48} \frac{71 \times 250^3}{2.1 \times 10^6 \times 438}$$

$$= 0.05 + 0.03 = 0.08 \text{ cm}$$

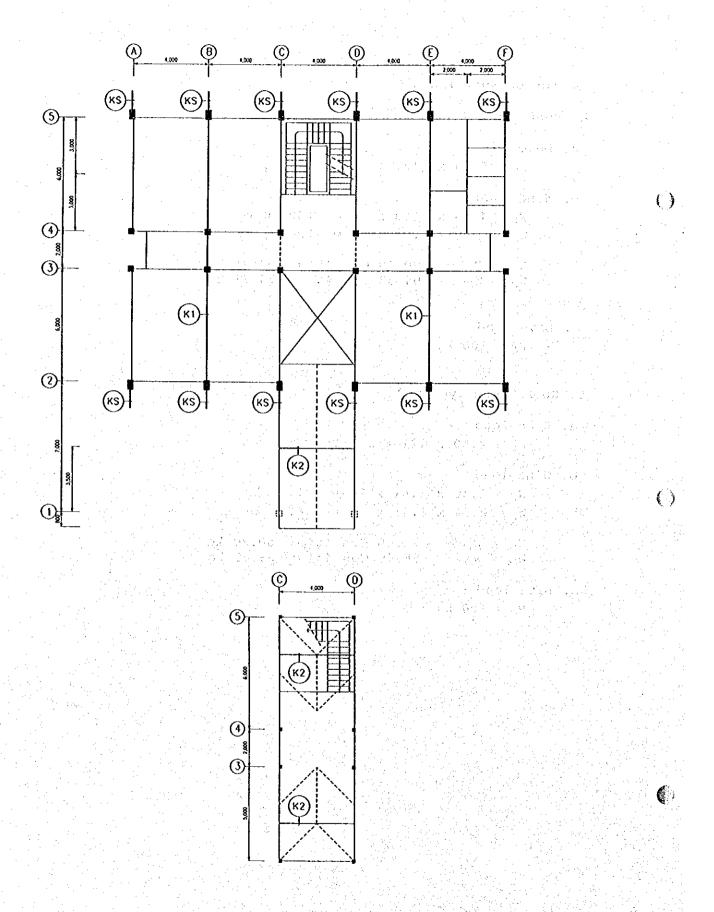
$$fy = 0.29 + 0.15 = 0.44 \text{ cm}$$

$$f = (0.08^2 + 0.44^2)^{1/2} = 0.45 \text{ cm}$$

$$f = 0.45 \text{ cm} < f_{all} = \frac{1}{360} L = \frac{250}{360} = 0.69 \text{ cm} (OK)$$

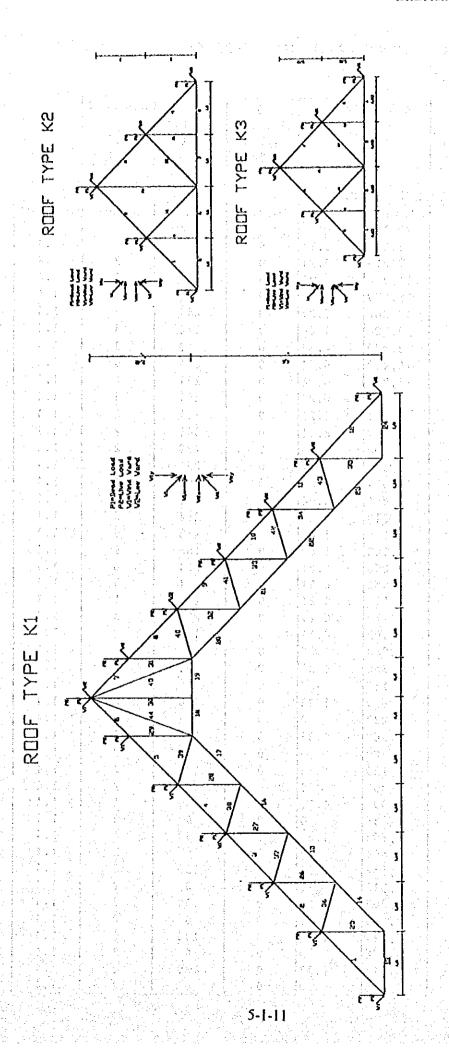
5. Design of Roof Truss

()


- A. Roof Truss type K1
 - a. Dead load $- p_1 = 4.00 \times (131 + 15) = 584 \text{ kg}$
 - b. Wind load - $W_1 = 4.00 \times 1.63 \times 20 = 130.40 \text{ kg}$ - $W_2 = 4.00 \times 1.63 \times 16 = -104.32 \text{ kg}$

$$W_{1X} = W_{1Y} = 130.40 \text{ Cos } 45^{\circ} = 92.21 \text{ kg}$$

 $W_{2X} = W_{2Y} = -104.32 \text{ Cos } 45^{\circ} = -73.77 \text{ kg}$


- c. Live load $-P_2 = 100 \text{ kg}$
- B. Roof Truss Type K-2
 - a. Dead load - $P_1 = 2.50 \times 121 \approx 303 \text{ kg}$
- b. Wind load $- W_1 = 2.50 \times 1.41 \times 20 = 71.00 \text{ kg}$
 - $-W_2 = 2.50 \times 1.41 \times 16 = -56.40 \text{ kg}$

$$W_{1X} = W_{1Y} = 71.00 \text{ Cos } 45^{\circ} = 50.20 \text{ kg}$$

 $W_{2X} = W_{2Y} = -56.40 \text{ Cos } 45^{\circ} = -39.89 \text{ kg}$

c. Live load $- P_2 = 100 \text{ kg}$

ROOF PLAN
ADMINISTRATION BUILDING
JATIBARANG DAM MANAGEMENT COMPLEX

·)

STEEL ROOF TRUSS JATIBARANG TYPE K-1 PROTOTYPE

PROFILE	PLATE THICKNESS	Fy	Fu	DIA.BOLT
	(cm)	(kg/cm2)	(kg/cm2)	
L 50.50.5	1.0	3,700	2,400	1.4
L 60.60.6	1.0	3,700	2,400	1.4

[h 00.00.0]			استنست			
FRAME ELE		RCE			1	
Member	Axial	Shear	Torsion	Moment	n bolt	dia.bolt
	(kg)	(kg)	(kg.cm)	(kg.cm)		(mm)
1	5,100	8.14	0	305	⊋r * 2	1.4
2	7,219	6.24	0	254	2	1.4
3	11,750	6.24	0	254	4	1.4
4	15,679	6.24	0	254	5	1.4
5	17,806	6.24	0	254	5	1.4
6	8,720	4.88	0	110	3	1.4
7	8,720	4.88	0	110	3	1.4
8	16,478	6.24	0	254	5	1.4
9	13,724	6.24	0	254	4	1.4
10	10,329	6.24	0	254	3	1.4
11	6,211	6.24	0	254	2	1.4
12	4,387	8.14	0	305	2	1.4
13	5,708	8.14	0	432	2	1.4
14	10,368	6.24	0	254	₩3	1.4
15	14,027	6.24	Ŏ	254	4	1.4
16	16,684	6.24	Ŏ	254	5	1.4
17	18,340	6.24	0	254	6	1.4
18	18,469	4.88		155	6	1.4
19	17,963	4.88		155	5	1.4
20	18,068	6.24	4 4 4 4 4	254	6	1.4
21	16,061	6.24		254	5	1.4
22	13,411	6.24		254	4	1.4
23	10,120	6.24	- 1	254	3	1.4
24	6,109	8.14		432	2	1.4
25	5,083	0.14	1	0	2	1.4
26	3,350	4.33	1 .	130	2	1.4
		0		0	2	1.4
27	4,157			130	2	1.4
28	2,610	4.33	1			1.4
29	3,233	0	l '	0	2 2	1.4
30	1,869	4.33		130	2	
31	2,309			0	The second second	1.4
32	1,129	4.33	1 /	130	2 2	1.4
33	895	0		0		1.4
34	14,095	4.33		130	4	1.4
35	36			0	2	1.4
36	12,603	4.33		130	2	1.4
37	564	0		0	2 2	1.4
38	1,562			130	2 2	1.4
39	2,518		4 4 4	0		- :
40	2,307	4.33	1	130	2	1.4
41	3,110			0	2	1.4
42	2,511	4.33		130	2	1.4
43	3,776			0	2	1.4
44	3,045	4.33	0	130	2	1.4

	- 1
?	: .
YPE K-	
TYP	
Š	75
4RA	
SS JATIBARANG TYPE K-2	
R	
TRUSS	
TR	
ROOF	긾
	ZZ
STEEL	PROTOTYPE
SI	R

()

				dia hol	(mm)	7		*	7,4	7 7	(e			3 ⁴ <	* 4		7	4.	7
DIA.BOLT		1.4		n bolt		2	١٨		2	2		100	1 0	10		. ~	~	1 0	~
Fu	(kg/cm2)	2,400		Moment	(kg-cm)	94.2	94.2		7-36	94.2	133.22	133.22		. ~	خ. ۱	133.22	0	133.22	•
7.7	(kg/cm2)	3,700		Torsion	(kg-cm)	0	0		-	•	0	0	0	0	0	0	0	0	0
ICKNESS			FORCE	Shear	(kg)	3.77	3.77	3 77	~	3.77	3.77	3.77	3.77	3.77	0	3.77	0	3.77	0
PLATE THICKNESS	(cm)	0.5		Axial.	(gg)	. 843	843	753	- 1	753	385	578	705	1,012	13	382	478	254	15
PROFILE		L 50.50.5	FRAME ELEMENT	Member		- -1	2	~			S	ω	_	80	6.	នុ	ri H	27	13

ROOF K-3
Jati barang Administration Building

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	1.4

Member	Profile	Axial (kg)	Shear (kg)	Torsion (kg.cm)	Moment (kg.cm)	n Bolt	d Bolt (mm)
1	L50.50.5	823	3	0	68	2	14
2	L50.50.5	823	3	0	6668	2	14
3	L50.50.5	288	3	0	686	2	14
4	L50.50.5	288	3	0	68	2	14
5	L50.50.5	856	3	0	96	2	14
6	L50.50.5	553	3	0	96	2	14
7	L50.50.5	681	3	0	96	2	14
8	L50.50.5	795	3	0	215	2	14
9	L50.50.5	12	0	0	0	2	14
10	L50.50.5	377	3	0	96	2	14
11	L50.50.5	525	0	0	0	2	14
12	L50.50.5	864	3	0	215	2	14
13	L50.50.5	25	0	0	0	2 5	14

- Checking of members Strength of roof steel Truss Type K-1 base on the axial force:
 - a. Due to Tensile force

Maximum force on member T5 (loading Combination 2) F = 18,106 kg

Length L = 162.63 cm

Try : Double angle steel of 70.70.7 Cross section area $A = 2 \times 9.40 = 18.80 \text{ cm}^2$

= 0.6xFy σ_{all} $= 0.6x2,400 = 1,440 \text{ kg/cm}^2$

Stress

$$\sigma = \frac{F}{A} = \frac{18,106}{18.80} = 963 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$$

b. Due to Compresion force

Maximum force on member T18 (loading Combination 2) Force F = 18,764 kgLength L = 127.28 cm ~ 127.28 cm ~ 127

ga (b. 1. A. g. g. ga an indinada kan

Try : Double angle steel of 70.70.7 Cross section area $A = 2 \times 9.40 = 18.80 \text{ cm}^2$ ix = 2.28 cm; $Ix = 2x42.4 = 84.80 \text{ cm}^4$ $\lambda = \underline{L} = \underline{127.28} = 55.82 < 105$ $\alpha = 0.788$

Stress:

 $\sigma = \alpha \times \sigma_{all}$ $= 0.788 \times 1,440$ = 1,135 kg/cm² < σ_{all} = 1,440 kg/cm² (OK)

Hence double angle steel of 70.70.7 can be used as the members of roof truss type K - 1

- Checking of members Strength of roof steel Truss Type K-2 base on the axial force:
 - a. Due to Tensile force

Maximum force on member T1 & T2 (loading Combination 2) Force F = 816 kgLength L = 100 cm

Try : Double angle steel of 50.50.5 Cross section area $A = 2 \times 4.8 = 9.6 \text{ cm}^2$

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress

$$\sigma = \frac{F}{A} = \frac{816}{9.6} = 88.69 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$$

b. Due to Compresion force

Maximum force on member T8 (loading Combination 2) Force F = 973 kg (rounded) Length L = 141.42 cm

Try : Double angle steel of 50.50.5 Cross section area A = 9.6 cm² ix = 1.51 cm; $Ix = 2x11 = 22 \text{ cm}^4$ $\lambda = \underline{L} = \underline{176.78} = 117.07 > 105$ ix = 1.51

by Euler Formula

$$F_{all} = \frac{\pi^2.E.Ix}{n.L^2}$$
; n = Safety Factor = 3

$$F_{al1} = \frac{\pi^2 \times (2.1 \times 10^6) \times 22}{3 \times (176.78)^2}$$

= 4,863.56 kg > F = 973 kg (OK)

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-2

6. DATA FOR BUILDING

a. Dimensions

- length c c column 20,000 m
- width c c column 14,000 m height ground to 2^{nd} floor : 4,500 m
- height ground to 3rd floor : 9,000 m height ground to roof truss : 13,100 m

b. Design Conditions

- a) Concrete compression strength (K) = 225 kg/cm2
- b) Reinforcing bar;
 - $= 2.400 \text{ kg/cm}^2 \text{ (BJTP 24)}$. Plain bar Fy
 - $= 3.200 \text{ kg/cm}^2 \text{ (BJTP 22)}$ Deformed bar Fy
- c) Structural model: space (xyz axis) frame
- d) Analysis method : static rigid floor

c. Loading Conditions

- a) Roof load:
 - (as point load separated to 2 point)
 - Truss type K1 = 10.000 kg
 - Truss type K2 = 2.000 kg
- b) Slab dead load $= 150 \text{ kg/m}^2$
- c) Live load $= 250 \text{ kg/m}^2$
- $= 2.400 \text{ kg/m}^3$ d) Concrete self weight
- e) Brick wall 15 cm thick $= 250 \text{ kg/m}^2$
- f) Soil Compression Stress = 20 kg/cm^2 (given by JICA Study Team)

d. Design of reinforcement concrete plate :

Plate thickness ht 12 cm

Concrete cover 2 cm; $h = h_t - d = 12 - 2 = 10 \text{ cm}$.

Unit weight $2,400 \text{ kg/m}^3$

Compression stress fc. 225 kg/cm²; $\sigma'_b = 70 \text{ kg/cm}^2$; n = 21

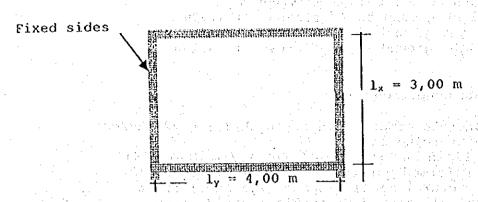
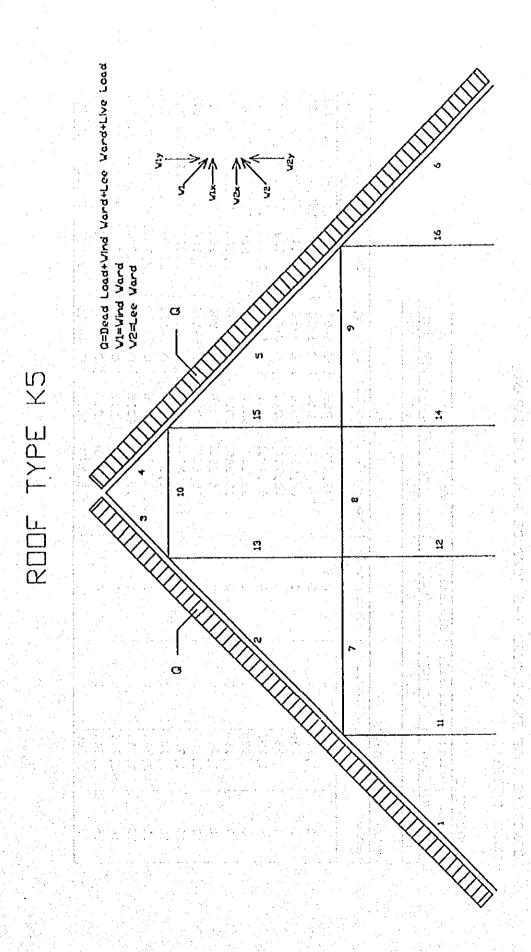

Reinforcement bar 3,200 kg/; $\sigma_a = 2,000 \text{ kg/cm}^2$ Fu

Plate area $= (3.75 \times 3.75) \text{ m}^2$

Loading design :


Plate self weight: 0.12 x 2,400 kg/m3 $= 288 \text{ kg/m}^2$ Plate dead load $= 150 \text{ kg/m}^2$ Live load $= 250 \text{ kg/m}^2$

 $q = 688 \text{ kg/m}^2$

 $l_y/l_x = 1.33$: $M_{tx} = 0.001 \times 688 \times 3.00^2 \times 69 = 427.248 \text{ kgm}$ $M_{ty} = 0.001 \times 688 \times 3.00^2 \times 57 = 352.944 \text{ kgm}$ $M_{lx} = 0.001 \times 688 \times 3.00^2 \times 31 = 191.952 \text{ kgm}$ $M_{ly} = 0.001 \times 688 \times 3.00^2 \times 19 = 177.648 \text{ kgm}$ $M_{max} = 427.248 \text{ kgm} = 42,725 \text{ kgcm}$

 $\delta = 0$ (single reinforcement) $\phi = 2.73 > \phi_0 = \sigma_a / (n \times \sigma'_b) = 2,000 / (21 \times 70) = 1.36$ (OK) $n\omega = 0.049$ $A_{steel} = \omega \times b \times h = 0.049/21 \times 100 \times 10 = 2.33 \text{ cm}^2$ Used $A_{steel} = \text{dia. } 10 - 15 \text{ cm} = 5.5 \text{ cm}^2 > 2.33 \text{ cm}^2$ (OK).

()

CONCRETE ROOF FRAME TYPE K-5 (OFFICE ADM. JATIBARANG)
COLOUM TYPE 1

PROTOTYPE	DE E								
r a	cover	dia.main	dia.stirrup	ξc	£y	ξv			
(cm) (cm)	(Gm)	bar (cm)	(cm)	(kg/cm2)	(kg/cm2)	(kg/cm2)			
15 15	4	1.6	0.8	187	3200	2400			
FRAME ELE	ELEMEN FORCE				Design				
member	Axial	Torsi	Moment-2	Moment-3	Main Bar	Stirrup	Pu	Mox	Moy
	(kg)	(kg.cm)	(kg.cm)	(kg.cm)	(mm)	(mm)	(kg)	(kg.cm)	(kg.cm)
7	928	0	0	92,107	9108	08-80	928	111,811	111,811
8	1,298	0	0	90,109	8016	0.8-50	1,297	109,320	109,320
ო	239		0	64,929	4016	0 8-50	239	75,686	19,686
4	239	6	0	43,714	4016	08-20	239	79,686	79,686
Ŋ	1,298	0	0	90,109	8016	0 8-50	1,297	109,320	109,320
G	928	0	0	92,107	8016	08-80	928	111,811	111,811
7	1,186	0	0	15,865	4016	0 8-150	1,186	79,072	79,072
80	1,268	0		6,293	4016	0.8-150	1,268	79,016	79,016
σ	1,186	0	0	15,865	4016	08-150	1,186	79,072	79,072
70	1,701	0	0	18,303	4016	0.8-150	1,701	78,712	78,712
44	3,200	0	•	5,373	4016	0.8-150	3,197	77,520	77,520
12	2,744	0	70 0	700	4016	08-150	2,746	77,844	77,844
61	1,744	0	0	16,878	4016	0 8-150	1,745	78,680	78,680
14	2,744	0	0	700	4016	0 8-150	2,746	77,844	77,844
15	1,744	0	0	16,878	4016	0 8-150	1,745	78,680	78,680
16	3,200	0	0	5,373	4D16	0 8-150	3,197	77,520	77,520

		٠
	-	
٠.	٠	
ក	•	
n		
×	•	
3	٠	
1.		
r	•	
_	_	
7	•	
٠	•	
Ž	3	
٠,	•	
_	_	
-	₹	
_	,	
7	•	
€	,	
,	•	
ι	,	

()

)

			Mov	574,984	653,585	241 271	240,327	659,630	575,076	574,507	683,380	402,407	65,030	657,719	605,320	493,082	533,672	869.897	866,969	533,673	493,092	493,038	533,662	724,281	724,505	518,437	495,157	
			Max	1047,523	8871.941	177,762	160,003	88.738	1,047,706	1,046,564	92,653	176,933	150,288	50,369	110,931	860,658	24,679	1,652,596	1,659,665	24,680	860,879	860,768	24,674	1,354,389	1,355,241	17,452	867,148	
N (ka/cm2)	2,400	·	ā	15,022	29 573	203 489	203 482	29 579	15.037	14 941	30.884	181,539	31,108	30,173	20,460	8	8,226	11,971	12,013	8,227	1,94%	1,941	8,225	11.699	11,759	5,817	2.4.9	
fy (ka/cm2) (k	3,200		Simp	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120				010-120	010-120	010-120	
fc (Ko/cm2)	187	entForce	Main bar	8 016	8016 0	90.16	80.16	8016	8 51 6	8016	8018	8D16	30.08	<u> </u>	> 1	8 3	٠.	ž	16016	8 6	8016	8 5	8 35		12016	8 35	8 31 31	
dia. samp (cm)	1.0	Frama Elament Force	Moment-3	739,997	334,997	177 641	160,033	297,105	-222,762			.17		٠.		187,703	100	201,638			٠.	1	16,371	158,006	203,566	3,739	186,791	
dea. main barl dia. somup (cm) (cm)	1.6	:	Moment-2	348 639	467 799	241,402	240,090	469,625	352,843	325,542	523,002	402.075	345,850	531,633	411.194	261,296	340,064	642,531	644,512	340,821	263,558	276,427	412,035	527,665	476,691	419,003	342,765	-
Cover (cris)	4		Torsian	25	3	3	23	22	22	22	ह	K	X	22	22	22	38	88	8	269	88	997	269	289	269	269	269	
υ (Cω)	જ		Axial (kg)	15,028	29,584	32,936	32,805	29,590	15.044	14,946	30,394	31.80	31,119	30,146	20,472	<u>'</u> 2	6,228	11,973	12,015	6,228	656,1	96.	8,226	11,702	11,301	5,817	2,418	
ი (w)	90		Member	က	4	۲ņ	9	7	Ø	21		23	7	ς. S	56	23	28	59	တ္တ	5	32	45	46	47	48	Ð	જ	
sk jet											٠, .	11																

-			
C.	ı		
U.	ŀ		
Ç	:		į
COLLON TYPE U			
Ö			

		2	4	451,912	495,547	535.484	186,070	184.840	535,859	496,069	495,598	21.50	273,427	553,898	539,493	161,518	456,420	47.95	507,904	607.904	447.85	456,266	456,25,	447.85	484.97	485.72	447.851	456,419
		X	401,947	451,912	48.87	62,590	147,037	46.354	22,824	496,069	455,598	67,805	106.87 478,32	807.32	65.897	237,815	456,420	47,851	607.924	607,504	47,851	456,266	456,252	447,851	484,971	485,729	447,651	456,419
	d	2	2.148	2,141	16,142	26.079	123.583	123.788	26,006	15.519	16,080	28,169	115,849	32,970	27.457	116,167	3,242	1.167	16,033	16.033	11.674	3.203	3,200	1 167	11 027	11 267	1 167	3 241
		Sumo	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	0:0-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120	010-120
į	ent ronce	300	3	8016	9016	8016 8016	8	8016	8018	8016	3D16	8 8 8	8016	8016	9 31 31	918	9016	9 9 1 8	12016	12016	90	80,16	8016	8016	8016	8D16	8016	9016
Û	Frame Element Force		20.20	16.416	235,609	13,357	146,955	146,350	13,827	236,151	235,439	537,627	106,734	2 2	20,580	237,579	177,421	9.576	161,232	180,830	10,421	177,714	177,355	3.520	156 308	160,588	15,649	178.751
	Momora	7.00	000.	CON R.	12,539	272,667	185,543	184,885	269,562	123,839	137,747	329,077	273,518	234,095	316,673	161,528	118,288	214,105	337,829	338,411	212,155	117,325	106,315	237,203	324,111	266,976	227 522	125,917
	Topsion	3 2	8 ;	S	፠	አያ	B	88	8	B	R	B	B	፠	ሄ	B	2	<u>ව</u>	წე	28	38	<u>8</u>	28	103	28	200	200	<u>න</u>
	Levil (Levil	ŧ.	7 6	7,138	4.4	26,072	33,587	X 5	26.139	15,524	16,083	26,151	8,2	32,949	27,454	17,799	3,241	1.166	16,039	16,030	1.68	3,202	3.199	1,166	080,11	11271	1.166	3,240
	Mombar		- (4	ဘ	2	=	7	<u></u>	4	ñ	2	77	82	g,	ឧ	É	प्र	55	38	34	99	σ: (E)	Ş	4	42		4

5-1-22

10.05					1			
,	£	Š	dia. main bandia. stimp	dia. stirup	ħ	≵	.≥	
G	(cm)	(cm)	(cm)	(cw)	(kg/cm2)	(ko/crn2)	(kg/cm2)	
ନ	20	4	1.6	0.8	187	00ZE	2400	
								٠.
				rame Elemen	rt Force			

COULOM TYPE 3

()

			- 1		_		8	œ	ø	00
	1				δ 	(kg.cm	65,678	82,878	65,878	65.87
					χοχ	(kg.cm)	65,878	65,876	65,878	65,878
	fv (ka/cm2)	2400			ď	\$	282	82	282	292
	fy (ko/cm2)	3200			Strup	(ww)	08-40	08 40 C4 00	08 04 0	08-40
	fc (ka/cm2)	187		tFore	Main bar	(mm)	L	_	4016	
	dia. stimup (cm)	0.8		Frame Element Force	Moment-3	(kg.cm)	1,920	1,927	1,036	1,013
	dia. main barl dia. هفسلم (ص) (ص)	1.6		F	Moment-2	(kg.cm)	4.675	5,014	1,126	1,209
	cover (cm)	4			Torsion	(kg.cm)	3	ന	6	ന
Ж	ი (ლე	50			Axial	(K.	292	292	787	. 292
PROTOTYPE	ۇ م	25			Member		1.5	23	57	85
. · .			٠		-				7 -	

CCULOM TYPE 4

5-1-24

	ተ	~	And other Park	des chimin	٤	2	2				· · ·		: :	· .		
ر ق م	c ĝ	(Cm)	da. man oar (cm)	Ga. surup (cm)	_	3	(kg/cm2)					\$*** 			: }	*
Q	ន	4	9'1	•	187	3200	2400					::::: 				
	1									Cosign	٤					
	انا	in Ee	Frame Element Force		1		1000			200			Rich	ľ	Spiruo bars	ž
Member		Shear	Lorsion 100 cm	Momen.	TPO LINE	5	motie	bottom	200	middle	pottom	8		pottom	(mm)	ş
			100.00	227.004		30,0	2012	-	Tic.	2012	3016	╁	2012	4016	010-75	જ
5, 6	5 C	200	61.52	891013	_	9	2012			2012				3016	010-120	8
2 6	5 6	1		:	016	95	2012			2012		3016	2012	2016	010-200	8
100	50	062.6	35.293	-		5016	2012			2012		3016	2012	4016	010-120	3 8
	0	834		1.1	. ··· .	3 8 1 8	2012	-		2012		3016	20.0	2016	0.50	3 3
102	o	10,948		*	: 1	S 6	2012			2012	8	9100	707	2 6	35	5 8
5	0	10,818			_	5016	2012		2 3	7.07		2 6	3 6	2 6	919120	8
크	3	6	282	- 1	2 0	2010	7107	20.0	36.6	2012		8016	8 2	3016	010-120	•
105	э (2 2		000 00+		3 5	200		3018	2012		2018	8	3016	010-75	٥.
2 5	2 0	277	200.40		٠.,	30,0	2012		2016	2012	8	3018	2012	5016	019-60	<u>e</u>
- ag.	5 C	3 6	37 623			8	2012		2016	2012	8	3016	<u>5</u> 2	2016	010-120	0,1
) C	1.05		-	1	5016	2012	3016	2016	2012	8016	4016	22	8012	010-126	
110	Ö	3390	(2)	•		4016	2012		4016	2012	8	5016	915	2016	010	
Ξ	ವ	10.414		-		5016	2012	7016	Š	2012	9	5016	2 6	2 6	2 6	-
Ċ	၁	9,657		1,004,506	4.	4016	2012	90	8	2012	8 8		9 5	200	2 6	
113	C	2,444		•	10	30.5	2012	200	Ŝį	7107	3 8		3 6	2 6	010-120	
7	O	9,970	5,632			<u>2</u>	707	2 6	3 6	2012	3 8	30.6	2017	50.6	010-120	
2	0 (8,78	14	0000	2 4	2 <u>4</u>	2017	50.5	3 6	2012	8	3016	2012	2016	010-60	Ξ
<u>.</u>	,	900			· 11	300	2012	2016	30.00	2012	8	6016	2012	4016	010-90	Ξ
- a	• c	200		: -		910	2012	3016	<u>8</u>	2012	6 5	5016	2012	7016	010-120	-
9		3	2.526	3 1,274,380	0 016	5016	2012	7016	2016	2012	8	4016	20.0	30.0	010-120	
2	_	1,027	757	7 1,422,449		50.6	2012	3016	2018	2012	8	5016	2 5	200	27.010	
12	<u>ت</u>	12,608		•	Ξ.		2012	9016	2016	2012	9 9	200	2 5	200	23.50	-
12	J	11,440			<u> </u>	- 2	2012	3016	5 8	7.07	2 % 3 %	2 6	2 5	200	25.5	6
ភ	<u>ت</u>	10,385	8		11.	3 ¢	2012	ָ קַלָּ קַלָּ	2 6	207	3 8	5 6		2016	010-200	2
<u>~</u>		418	. ,		•	0.5	7 6	2 6	y Ç	200	8	3		4016	010-120	ğ
<u>z</u>		800		, .	5 6	, <u> </u>	2 6	9 6) <u>ç</u>	2012	<u> </u>	3016		2016	010-80	প্র
22	. (200	64.00			`	300	9	2012	9	2016		3016	010-35	
2 ;		200			•	25		3016	20,6		8	4016		3016	010-120	-
		1 C		-	1	8	4 .	2016	2016		8			3016	010-75	
? ;) }	704		. į	0	2016	1	3016	2016	2012	8	3016		2016	0.0-120	7
1 3		7.00		. :	-	30.		2016	2016		8			2016	010-120	
9		009	7,832	٠.		2016		30 16	2016	~	8				010-120	
5		9329	. ; . ; . ;	٠,	4 016	4036	2012	31,16	9	202	4016	2		200	071-010	
					-			-	_			-	•	_	166	

			l	_	E C		400,40	230,33	400,40	400,40	400.40	400.40	400,40	400.40	400 40	400 40	230.2	200	() () ()	76	30	3	400,4	400,40	566.5	594.2	3266	2 4 .i	266	4004	4004	4727	230.3	4004	4004	4004	4004	2303	4004	4004 4004	230
÷ .				Structo bara	(3.0)				010-75	010-75	27.75	010-75	010-75	010-75	010-75	0.10-75	77.07.0	77.0		57.47.0	4/-010	010-75	0.10-75	010-75	010-75	010-75	010-75	0.10-85	010-75	910-75	010-75	010-75	010-120	010-75	010-75	010-75	o10-75	010-75	010-75	010-75	01-010
) A						2	ှ ငြ	g A	3016	20,00	Š		2016	3016	5	ķ	16	3 6		200	9	9	2	2016	50.16	97	ξ ω	4016	20.0	တ္တ	3016	နှ နွ	S S S	2016	2016	3016	2016	2016	3016	8	25 15 16
					E G	•				•				•				•	•		•	•	•		•	•	•	•	•	•	•	•	,	•	•		:		. / ₂ ,	·	,
					ğ	40,6	3016	2016	4016	3018	5 (107	2016	Ş	7) (2 (5 6	9	_		-	_						_	_			_				<u>ဂ</u>		8	30,4
			Oesign	50	ECTOR	20,0	5	2016	2016	100	֓֞֝֝֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֝֓֡֓֡֝֓֡֓֡֝֓֡֓֡֝֡֓֡֝֡֓֡֝֡֓֡֝֓֡֓֡֝֡֓֡֡֡֝֡֡֓֡֡֝֡֓֡֝֡֡֡֝֓֡֡֝֡֡֓֡֝	֓֞֝֝֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3 5	3 6	֓֞֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓֓֡֓֡	2 4	2 6	3 6	ر د	20.18	9 5	2016	2016	2019	2016	3078	2016	803	2016	2016	2016	4016	20,18	2016	3016	2016	2015	2016	2016	2016	20,00
			å	Mid bars	radde	ì	,	•	•	,	,						· ;	1	•	٠		•	•	•	•	•	: .4	•			. /	•	•			9 1	1	: : • :			
		-			8	<u>8</u>	2016	8	7016	2 6	~ t	3 ¢	36) (c	36) <u>}</u>	36	3 6	5	8	<u>8</u>	200	8	3016			2016		2016	8	8 R	3016	2016	8	2016	<u>8</u>	8	<u>გ</u>	ä	Ŕ	8
		 V			pottou		30,76	S	Š	3 5		3 6	3 5	3 6	36	36	38	9	5	8 8	30,16	8	8	3016	Б	4016	ğ	3016				3016	2016	3	3016	818	3016	20	2016	85	Š
tv (koʻcm2)	2400			elt bars	middle		•	•			,		•		•	•	•	•	•	•			•	•	•			•		•		2 1 3 4 4 1					to the second	: , : ,		•	
fy (Ko/cm2)	187 3200 2400				top	3016	4016	2	2 5	3 6	3 6	98	3 6	2 ç	3 (5 6	5	ğ	3	. 2 016	4016	7016	2016	4016	30,5	ğ	2 2 3 3 4 6	4D16	7016	8	Ŕ	g š	32,6	30	Q 0 1 0	3016	6 6	ğ	30,16	4016	8
fc Foo(m2)	187			Mainba	(mm)	910	0.16	č	2 6	2 4	2 6	5 6	1.5			٠.	٠.	٠.		δ	5	٠.	-		D16	D16	016	016	y - '	ö	- 1-5	016	٠.		- "		177			910	
	1			Moment	(Ma cm)	357,015	362 856	28.95	200	707,000	970,000	CP3777	70.00	ָאָרָ רָאָרָ אָרָאָרָאָרָ	3,000	3	3.7.110	553,968	527.22	188,722	527,713	53,263	377,582	377,617	559 147	504 557	259,666	512 052	519 349	380,613	350.895	479 752	207 925	327.210	336,713	361,781	355,794	217 525	360,603	358,365	70,019
da. main bar dia. stimp	1.6	1	larrent Force	Torsion	(kg.crn)	5,769	11 130	200	34	007.00	5,70	/B	000	aga	n c	1.676	36,25	28,329	7,010	26	096.9	28,433	38,025	35,513	32 551	4,587	3 272	6.672	30,208	39.811	1.595	1 360	2.063	1.932	- 86	9715	5,855	2 691	9.144	5,832	336
cover lo	 	-	Frame Elam	138	(S)	4 885	4 900	1	2 0	76.27	4 20 4	S S S	4 .	3, 5	4	4 3 4	6.857	6.988	6.652	1738	6 653	6989	6.858	6871	7 009	6 508	3 297	6.520	6976	6904	4 4 28	8849	1951	4 052	4 283	4 905	4871	3053	4 885	7 383	2
ياد ق	R			1884	(kg	0	-	5 5	5 <	5 (0	<u> </u>	5	5	0	0	ō	?	Ö	Ö	Ö	Ö	Ö	ō	O			C	Ö	0	ं		0			0	Ö	_	0	Ö	· 0
17 10 10 10 10 10 10 10 10 10 10 10 10 10	20			Member		ia B	3 6	ξ ^υ	3 8	S :	67	\$	3	2 2	L	7		2	75	75	7	7.9	27	2	<u>.</u>	8	8	3	8	y U	6	<u>.</u>	œ.	3 5	ភ	ទ	ត្ត	3	, <u>y</u> ,	3	127

BEAM TYPE

5-1-26

	انت	Frame Eleme	nent Force							Design	ign					
ember	Axx	Shear	Torsion	Moment	Mainbar		Supply such			Mid bars	S.		Right		Strup bars	ny.
	(kg)	(K3)	(kg.cm)	(kg.cm)	(mm)	ဒ္ဌ	maddle	togeth.	og S	roidale	battom)। चंदा	rid de	pottom	(mm)	(wo cw)
28	O	1,479	8,369	239,517	1	3016		2016	2016	•		2016		2016	010-120	326,635
2	0	1,365	6.615	293,326		30,48	•	2016	2016	•		3016		2016	010-120	326,635
<u>ج</u>	0	1,483	1,359	308,436		30,16	•	2016	20:6	•		3016	•	8	010-120	326,635
132	0	3	91	68,065		8	•	2016	2016	•		2016	•	2016	010-120	230,335
35	9	Ħ	5	18,170		2016	•	2016	2016	•	2016	2016		2016	010-120	230,335
37	0	Ŕ	77	20,714	Ω	2016		30.6	2016		2016	2016	•	2016	010-120	326,635
33	0	35	6	3.498	016	8	•	876	2016	•	2016	2016	,	2016	010-120	230,335
덖	0	2,910	4,795	301,758	016	3016		2016	816	•	2016	2016	•	2016	010-120	230,335
45	0	3.057	23.	162,323	9	ğ	•	8	2016	•	2016	2016	•	30,78	010-75	230,335
87	0	298	683	367,970	0.16	9 9	•	8	2016		2016	3016	•	9 5	010-120	326,636
<u>.</u>	0	4,899	58	284,532	016	3016		2016	2016		3016	30.16	. •	ğ	010-75	230,335
្រ	0	3,586	129	261,742	918	2016	•	8216	2016	•	3016	2016		2016	010-75	230,335
ន្ទ	0	3,281	356	218,423	016	, 50, 60, 160, 160, 160, 160, 160, 160, 160		30	8		2016	2016	•	8	010-75	230,335
3	0	1,382	172	2.2.	910	8	•	2016	2 3 3 3		2016	2016		5 5 6	010-120	230,336
							1						_	_		

٠.				'
			•	
		. ·		
			÷	
٠.		•	4. 1	
	.≿	(kg/cm2)	2400	
	ž	(kg/cm2)	3200	
	ပ္ပ	(kg/cm2)	187	
	dia. sanco	(cu)	1	
	dia main bari di	(B)	1.6	
	carec	(c _w)	ব	
Щ	ч	<u>ε</u>	ଙ୍କ	
PRCTOTYPE	۵	(Gm)	20	
		-		

	₹	(kg. cm)	436,222	436,222	436,222	436,222]	
	Sprup bars	(mm)	010-220	010-220	010-220	010-220	-
		pottom	8	2016	30,6	20 16	
	Right	middle	2012	2012	2012	2D16 2D16 2012 2D16 2D16 2D16 2012 2	
		dot	12016	2016	2016	2016	_
Sesion	S	bottorn	2016	2016	2016	2016	_
దే	Mid ba	middle	2012	2012	2012	2012	
		t d	2016	2016	8	<u>8</u>	_
		pogow	2016	2016	201E	2 3 3 3	
	eft bars	middle	2012	2012	2012	2012	
			2016	2016	3102	2016	
	Manbar	(mm)			510		
	Moment	(m)	401,419	48 155	48,322	404,505	
nertForce	Torsion	(Ka.cm)	12 349	1 150	1 536	12,657 4	1
Frame Elst	Shear	(§	1727	633	629	1,735	
E.	AXIN	ટ	O	Ö	0	0	
	Mambar		133	<u>'</u>	385	138	

5-1-28

					N.	(kg. cm)	131,270	131,270	131,270	131,270	131,270	131,270	131,277	131,270	131,270	131,270	131,270	131,270	131,270	131,270	131,270	131,270	131,270	131,261	131,270	165,343	165,343	131,239	165,343	131,270	131,267	131,261
					Sorrup bars	(ww)	09-50	0 8 -50	08-80	08-80	08-80	08-80	08-80	08-80	08-80	08-80	08-80	08-80	09-90	08-80	08-80	08-80	og-20	08-80	08-80	08-89 89	899	08-80	08-80	08-80	08-80 8-80	08-80 -
						-34	3D16	3016	20,5	30,6	2016	2016	2016	2016	2016	20,6	2016	2016	2016	2016	2016	2016	2016	2018	2016	30,16	2016	3016	5 5 6	2018	2016	2016 8
					Right	נגיקמפ	٠	•	•	•	•	•	•	•	•	•	•	•	•	1		• 1	•	•	•	•	•	•	,	•		
						top	2D16	2016	12016	2D16	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	3016	2016	2D16	2D16
	-			UOIS	5	cotton	2016	2016	2D16	2016	2016	2016	2016	2D16	2016	2016	2D16	2016	2016	2D16	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2018	2016
			.	Design	Nid bars	elppim	,	•	•	1	•		,	•	i	•		•	•	•	•				•	•		•	•	•	·•	
						đợ	3 3 16		В В	8	<u>8</u>	<u>8</u>	8 S	8	30.56	<u>प्र</u>	<u>8</u>	9	30,0	9	성	<u>R</u>	<u>8</u>	<u>영</u>	ह्यू हि	<u> </u>	8	8 8		8 S	N N	ξ Ř
. :	: :	se s				bottorn	2016	Х Э	8 1 1 8	2016	Х Ж	8 2 3 3 4 8	80,78	2 2 2 1 6	2016 6	2016	2016	2016	2016	2018	2016	2015	2016	8 2 3 3 4 8	2016	20 20 16	3016	2016	3016	2016	2016	8
≥ .	(kg/cm ²)	300			Left bars	middle	•	•	•		•	•	•	•				•			• •				•	•	•		•	•	•	•
≥.	(Kg/cm2)	3600				qot	2016	9	8	ğ	8	S S	2016	8	8	2016	8	20,6	ğ	2016			ğ	ξ Š	Ŕ	ည်	Š	8	Ŕ	ģ	ğ	Ŋ K
n E	(kg/cm2)	ò			Main bad	(mm)	016	016	0.56	910	9,0	016	016	92	0,0	0.0	016	016	0,16	- 016	26	95	26	016	016	016	Š	016	016	016	016	9
-	(W ₀)	9				(kg.cm)	13,008	20,973	21,329	17,582	33.544	8,461	36 180	16,952	20,577	21,371	17,866	300	7,615	32,256	15,143	10.281	127,384	122,370	88.94	159,633	157,425	151,626	152,751	96,339	117,657	122,332
da. main bar dia. sump	(w ₀)	9		ament Force	Torsion	(kg.cm)	1,027	9,420	9,484	366	340	37	1,323	1,123	6.157	5,991	1,561	1,337	13	1,314	313	ğ	5	1,827	422	2,080	1,067	1,050	2,087	412	1,818	102
	<u></u>	7		Fracne Elec	Spear	(£3)	201	202	208	139	270	5	279	195	206	500	8	277	111	270	7	<u>E</u>	25	361	8	<u>၅</u>	1,028	595	1,093	38	836	. 165
ے	<u> </u>			Ę.	Axial Shea	(kg)	ō	0	0	Ö	0	Ö	ö	0	Ö	ō	ō.	ō	Ö	Ö	6	Ö	o	0	ő	5	Ö	0	0	0	0	0
	(cm)	2			Member	-	155	156	157	158	159	66	161	162	163	Ä	185	R	167	22	169	170	171	7	173	77	175	176	177	178	179	03.
								,		:										1		1					. 3	•				

5-1-29

BEAM TYPE 4

()

CONCRETE ROOF FRAME TYPE K-5 (OFFICE ADM. JAIIBARANG) STAIR

dia.stirrup (cm)

dia.main (d 5

Cover (OB)

(ano)

PROTOTYPE

Į											
	Stirrup	(mm)	0.8-250	0.8-250	0 8-250	0 8-250	0 8-250	0 8-250	0 8-250	0 8-250	0 8-250
	Bar	bottom	9705	5226	5016	3016	3016	3016	3016	5016	5016
	Right 1	middle	-	1	,	1	1	1	1	1	1
		cop	3016	3016	3016	SD16	5016	3D16	SDIG	3216	3016
		bottom	SD16	3016	5016	3016	3016	5D16	3016	3016	5016
	Mid Bar	middle	,	1	1		1		ı	1	ı
		top	3016	5016					SD16		<u> </u>
	 4	Dotton	3016	5016	3016	5016	3016	5016	9105	5016	5016
	Left Bar	Biddle	'	1	1	1		1			ı
₹.	H	g	SDIG	3016	5016	3016	9108	3016	3016	3016	3016
Design	Main Bar	(MM)	516	016	910	סופ			016	910	016
	Moment	(kg.cm)	67,793	67,793	10,310	15,890	13,576	19,541	43,802	55,081	115.992
	Toraion	(kg.cm)	o	0	0	•	0	0	0	0	•
ĕ	Shear	(% d)	845	1276	1133	764	069	1244	2112	1257	2030
MEN FOR	Axaal	(Ka)	2,245	2,032	764	1,092	574	2,112	1,460	3,336	0.0
FRAME ELEMEN FORCE	member		٦	N	M	। पर	v	. 10	7	α	G
	٠.		: ·	V.							

540890

537938

· Checking of Beam reinforcement bar & stress

On Beam No. F138

Maximum Bending Moment =
$$404,505$$
 kgcm
b (width) = 20 cm
h_t (height) = 50 cm
Concrete cover = 4 cm
Fc = 225 kg/cm² $\rightarrow \sigma'_b = 130$ kg/cm²
Fu = $3,200$ kg/cm² $\rightarrow \sigma_a = 2,600$ kg/cm²
ns = 14

$$\phi_0 = \frac{\sigma_a}{n \sigma'_b} = \frac{2,600}{14 \times 130} = 1.43$$

For Maximum BM, M = 404,505 kgcm

$$b = 20$$

 $h_t = 50$; $d = 4$ _____h = $h_t - d = 50 - 4 = 46$ cm

Ca =
$$\frac{h}{\sqrt{\frac{nM}{b\sigma_a}}}$$
 = $\frac{46}{\sqrt{\frac{14x404,505}{20x2,600}}}$

$$\delta$$
 = 0.4 (required of minimum compression reinforcement bar)
 \rightarrow ϕ = 1.546 > ϕ_0 = 1.43 (OK)
 ϕ' = 2.103
 $n\omega$ = 0.0602

Stresses

$$\sigma_a = \overline{\sigma_a} = \frac{2,600}{2.103} = 1,236 \text{ kg/cm}^2 < \overline{\sigma_a} = 2,600 \text{ kg/cm}^2 \text{ (OK)}$$

. Reinforcement bar

A steel (tensile) =
$$\frac{\omega bh}{14}$$
 = 0.0043 x 20 x 46 = 4.01 cm²

A steel (compression) = $\delta \times A$ steel (tensile)

$$= 0.4 \times 4.01 \text{ cm}^2 = 1.604 \text{ cm}^2$$

Used A steel (tensile) =
$$2 D 16 = 4.02 cm^2$$
 (OK)

· Checking of Column reinforcement bar & stress

On Column No. F25

Maximum Bending Moment = 531,633 kgcm
b (width) = 30 cm
h_t (height) = 50 cm
Concrete cover = 4 cm
h = h_t - d = 50 - 4 = 46 cm
Fc = 225 kg/cm²
$$\longrightarrow \sigma'_{b} = 130 \text{ kg/cm}^{2}$$
Fu = 3,200 kg/cm² $\longrightarrow \sigma_{a} = 2,600 \text{ kg/cm}^{2}$
ns = 14

$$\phi_0 = \overline{\sigma}_a = 2,600 = 1.43$$

$$\overline{n \sigma'_b} = 14x130$$

For Maximum BM M = 531,633 kgcm

$$Ca = h = 46 = 4.71$$

$$\sqrt{\frac{nM}{b\sigma_a}} \sqrt{\frac{14x531,633}{30x2,600}}$$

$$\delta$$
 = 1 (for symetrical reinforcement)
 \rightarrow ϕ = 5.25 > ϕ_0 = 1.43 (OK)
 ϕ' = 14.00
 $n\omega$ = 0.0164

. Stresses

$$\overline{\sigma}_{a} = 2,600 \text{ kg/cm}^{2}
\overline{\sigma}_{b} = \overline{\sigma}_{a} = 2,600 = 35.37 \text{ kg/cm}^{2} < \sigma'_{b} = 130 \text{ kg/cm}^{2}
\underline{\sigma}_{a} = 14x5.25
\sigma_{a} = 2,600 = 185.71 \text{ kg/cm}^{2} < \sigma_{a} = 2,600 \text{ kg/cm}^{2}
\overline{\phi'} = 14.00$$

. Reinforcement

A =
$$\omega bh = \frac{0.0164 \times 30 \times 45}{14} = 1.581 \text{ cm}^2$$

A $_{steel} = 1.581 \text{cm}^2 < 1 \% \times 1,500 \text{ cm}^2 \text{ (sectional area of column)}$

Hence applied:
A steel = 8 D 16
= 16.08 cm²
=
$$\frac{16.08 \times 100 \% \text{ A concrete}}{30 \times 50}$$

= 1.072 % A concrete (OK)

7. DESIGN OF FOOTING

All of footing Type - 1 design are represented by support reaction of joint no.7 of member F5 as the biggest of the frame element forces.

1. Soil stress:

For loading Combination 1, the element forces are :

```
N = 30,335 kg
Mx = 61,017 kgcm
Mz = 77,101 kgcm
Shear x = 514 kg
Shear z = 405 kg
Try size of Footing = (1.20 x 1.20) m<sup>2</sup>
```

- Soil stress beneath footing :

$$\sigma = \frac{N}{A} \pm \frac{M_X}{W_X} \pm \frac{M_Z}{W_Z}$$

$$\sigma_{max} = \frac{30,335}{120x120} + \frac{61,017}{\frac{1}{6}x120x120^2} + \frac{77,101}{\frac{1}{6}x120x120^2}$$

$$\sigma_{max} = 2.11 + 0.21 + 0.27 = 2.59 \text{ kg/cm}^2 < \sigma_{all} = 20 \text{ kg/cm}^2 \text{ (OK)}$$

$$\sigma_{min} = 2.11 - 0.21 - 0.27 = 1.63 \text{ kg/cm}^2$$

For loading Combination 2 any Earthquake Force the element forces are

- Soil stress beneath footing :

$$\sigma = \frac{N}{A} \pm \frac{M_x}{W_x} \pm \frac{M_z}{W_z}$$

$$\sigma_{\text{max}} = \frac{24,453}{120 \times 120} + \frac{123,385}{\frac{1}{6} \times 120 \times 120^2} + \frac{449,966}{\frac{1}{6} \times 120 \times 120^2}$$

$$\sigma_{max} = 1.70 + 0.43 + 1.56 = 3.69 \text{ kg/cm}^2 < 1.5 \times \sigma_{all} = 30 \text{ kg/cm}^2 \text{ (OK)}$$
 $\sigma_{mln} = 1.70 - 0.43 - 1.56 = -0.29 \text{ kg/cm}^2$

note:

$$\sigma_{all} = 20 \text{ kg/cm}^2$$

= Allowable soil compression stress was given JICA Study Team

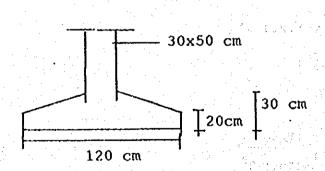
1. Concrete reinforcement bar :

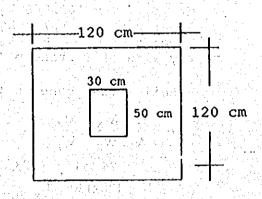
All of footing concrete reinforcement is calculated by "n" method (Indonesian Code)

Mz = 449,966 kgcm Concrete : fc = 225 kg/cm² \Rightarrow $\sigma'b$ = 130 kg/cm² Steel Bar : fy = 3200 kg/cm² \Rightarrow $\sigma'a$ = 2,600 kg/cm² ns = 14 $\phi_0 = \sigma_0 = 2,600 = 1.43$ $\sigma_0 = 0.000$ $\sigma_0 = 0.000$

Footing slab thick ht = 25 cm; width b = 120 cmCocrete cover d = 5 cmh = ht - d = 25 - 5 = 20 cm.

$$Ca = \frac{h}{\sqrt{\frac{nxM}{bx\sigma'_a}}} = \frac{20}{\sqrt{\frac{14x449,966}{120x2,600}}} = 4.45$$

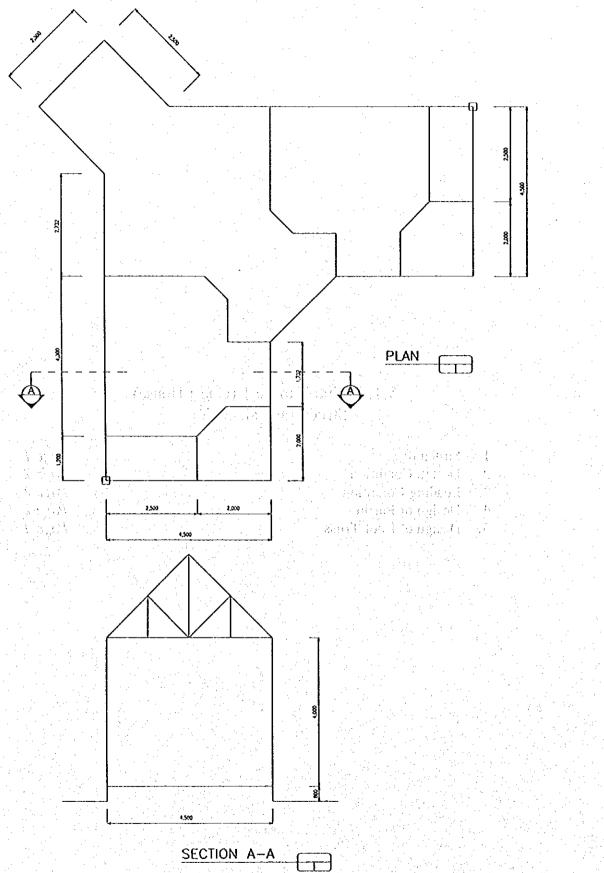

for δ = 0 (single reinforcement bar) ϕ = 2.534 > ϕ ₀ = 1.43 (OK) $n\omega$ = 0.056


> $A = \omega bh$ = $\frac{0.056}{14} \times 120 \times 20 = 9,6 \text{ cm}^2$

 $A_{stell} = D16 - 15 \text{ cm} \approx 7 \times 2.01 = 14.07 \text{ cm}^2 \text{ (OK)}$

Mx = 123,385 kgcm

Astell = D16 - 15 cm can be adopted



5.1.2 Staff House 1 (Guest House) Structural Calculation

()

1.	Structure	Page 1
2.	Design Condition	Page 2
3.	Loading Condition	Page 2
4.	Design of Purlin	Page 2
5.	Design of Roof Truss	Page 4

1. STRUCTURE

GUEST HOUSE
JATIBARANG DAM MANAGEMENT COMPLEX

2. Design Condition

a) Roof truss members : - double angle steel

- Tensile strength (Fy): 2400 kg/cm²

b) Structural model : plane (xy axis) truss, linear elastic

c) Analysis method : static

3. Loading Condition

a) Dead Load :

- Roof cover (ceramic tile + timber rafter) = 70 kg/m^2 - Ceiling (fibre cement) = 10 kg/m^2 80 kg/m^2

b) Live load

- Weight of workers as point load = 100 kg

c) Wind load

- Wind pressure = 40 kg/m^2

- Pressure coefficient (f)

. wind ward -0.5 . lee ward -0.4

 $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$

 $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$

4. Design of Purlin

A. Roof Truss Type K-1

- Purlin distance (c/c) = 1.25 m

- Purlin span = 2.875 m

- Purlin self weight say = 15.00 kg/m'

 $q_1 = 1.25 \times 80 \text{ kg/m}^2$ $\approx 100 \text{ kg/m}'$ $q_2 \text{ (self weight)} = 15 \text{ kg/m}'$ Q = 115 kg/m'

> $Q_1 = Q_2 = Q \cos 45^{\circ}$ = 115 Cos 45° $\approx 81.31 \text{ kg/m'}$

- Live Load

 $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$

- Bending moment

 $Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$

 $Mx = 1/8 \times 115 \times 2.875^2 + 1/4 \times 71 \times 2.875 = 169.85 \text{ kgm}$

My = Mx = 169.85 kgm = 16,985 kgcm

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$
 $Ix = 664 cm^4$; $Wx = 88.6 cm^3$
 $Iy = 476 cm^4$; $Wy = 73.2 cm^3$

- Stresses

- Deflection

$$fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{EI_x} + \frac{1}{48} \frac{PL^3}{EI_x}$$

$$= \frac{5}{384} \times 1.15 \times \frac{287.5^4}{2.1 \times 10^6 \times 664} + \frac{1}{48} \frac{71 \times 287.5^3}{2.1 \times 10^6 \times 664}$$

$$= 0.07 + 0.00008 = 0.07 \text{ cm}$$

$$f = (0.07^2 + 0.07^2)^{1/2} = 0.1 \text{ cm}$$

 $f = 0.1 \text{ cm} < f_{all} = \frac{1}{360} \frac{L}{360} = \frac{287.5}{360} = 0.8 \text{ cm} \text{ (OK)}$

B. Roof Truss Type K-2

- Purlin self weight say = 15.00 kg/m'

$$q_1 = 1.25 \times 80 \text{ kg/m}^2$$
 $\approx 100 \text{ kg/m}'$
 q_2 (self weight) $\approx 15 \text{ kg/m}'$
 $Q = 115 \text{ kg/m}'$

$$Q_1 = Q_2 = Q \cos 45^{\circ}$$

= 115 Cos 45°
 $\approx 81.31 \text{ kg/m'}$

- Live Load $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$ - Bending moment

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$$
 $Mx = 1/8 \times 115 \times 2.875^2 + 1/4 \times 71 \times 2.875 = 169.85 \text{ kgm}$
 $My = Mx = 169.85 \text{ kgm} = 16,985 \text{ kgcm}$

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$

 $Ix = 664 \text{cm}^4$; $Wx = 88.6 \text{ cm}^3$
 $Iy = 476 \text{ cm}^4$; $Wy = 73.2 \text{ cm}^3$

- Stresses

- Deflection

$$fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{48 EI_x} + \frac{1}{48 EI_x}$$

$$= \frac{5}{384} \times 1.15 \times \frac{287.5^4}{2.1 \times 10^6 \times 664} + \frac{1}{48 2.1 \times 10^6 \times 664}$$

$$= 0.07 + 0.00008 = 0.07 \text{ cm}$$

$$f = (0.07^2 + 0.07^2)^{1/2} = 0.1 \text{ cm}$$

$$f = 0.1 \text{ cm} < f_{all} = \frac{1}{2.00} L = \frac{287.5}{2.50} = 0.8 \text{ cm} \text{ (OK)}$$

C. Roof Truss Type K-3

- Purlin distance
$$(c/c) = 1.41 \text{ m}$$

- Purlin self weight say = 15.00 kg/m'

$$q_1 = 1.41 \times 80 \text{ kg/m}^2 \approx 113 \text{ kg/m}'$$

 $q_2 \text{ (self weight)} = 8 \text{ kg/m}'$
 $Q = 121 \text{ kg/m}'$

$$Q_1 = Q_2 = Q \cos 45^{\circ}$$

= 121 Cos 45°
 $\approx 86 \text{ kg/m'}$

- Live Load $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$
- Bending moment

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$$

$$MX = 1/8 \times 86 \times 2.5^2 + 1/4 \times 71 \times 2.5 \approx 112 \text{ kgm}$$

$$My = Mx = 112 \text{ kgm} = 11,200 \text{ kgcm}$$

- Try Purlin of Lip Channel type :

$$150 \times 50 \times 50 \times 3.2$$
 $Ix = 438 ext{ cm}^4 ext{ ; } Wx = 58.4 ext{ cm}^3$
 $Iy = 71.4 ext{ cm}^4 ext{ ; } Wy = 13.2 ext{ cm}^3$

- Stresses

$$\sigma = \sigma x + \sigma y$$

= Mx + My
Wx Wy
= 11,200 + 11,200 = 191.78 + 848.48
58.4 13.2
= 1,040.26 kg < σ_{all} = 1,400 kg/cm² (OK)

- Deflection

$$fx = 5 \times Q_1 \times L^4 + 1 PL^3$$

384 EI_x 48 EI_x

$$= 5 \times 0.86 \times 250^{4} + 1 \quad 71 \times 250^{3}$$

$$384 \qquad 2.1 \times 10^{6} \times 438 \quad 48 \quad 2.1 \times 10^{6} \times 438$$

$$= 0.05 + 0.03 = 0.08$$
 cm

$$fy = 0.29 + 0.15 = 0.44$$
 cm

$$f = (0.08^2 + 0.44^2)^{1/2} = 0.45 \text{ cm}$$

$$f = 0.45 \text{ cm} < f_{all} = \frac{1}{360} L = \frac{250}{360} = 0.69 \text{ cm} \text{ (OK)}$$

- 5. Design of Roof Truss
- A. Roof Truss Type K-1
 - a. Dead load $-P_1 = 2.875 \times (115 + 15) = 373.75 \text{ kg}$
- b. Wind load

- W₁ = 2.875 x 1.25 x 20 = 71.88 kg
- W₂ = 2.875 x 1.25 x 16 = -57.50 kg

$$W_{1X} = W_{1Y} = 71.88 \text{ Cos } 45^{\circ} = 50.77 \text{ kg}$$

 $W_{2X} = W_{2Y} = -57.50 \text{ Cos } 45^{\circ} = -40.66 \text{ kg}$

- c. Live load
 - $P_2 = 100 \text{ kg}$
- B. Roof Truss Type K-2
- a. Dead load

$$-P_1 = 2.875 \times (115 + 15) = 373.75 \text{ kg}$$

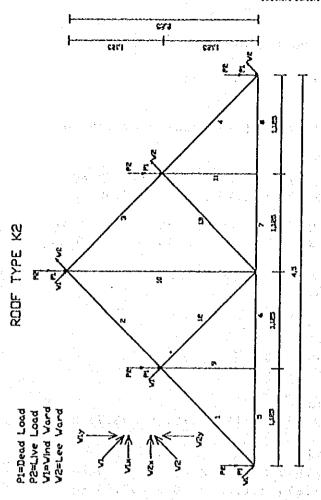
- b. Wind load
 - W₁ = 2.875 x 1.25 x 20 = 71.88 kg
 - $W_2 = 2.875 \times 1.25 \times 16 = -57.50 \text{ kg}$

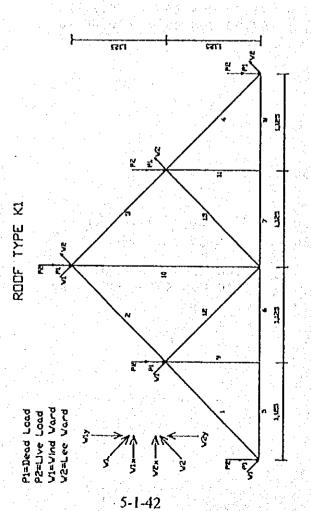
$$W_{1X} = W_{1Y} = 71.88 \text{ Cos } 45^{\circ} = 50.77 \text{ kg}$$

 $W_{2X} = W_{2Y} = -57.50 \text{ Cos } 45^{\circ} = -40.66 \text{ kg}$

- c. Live load
 - $-P_2 = 100 \text{ kg}$
- C. Roof Truss Type K-3
 - a. Dead load

$$-$$
 P₁ = 2.50 x 121 \approx 303 kg


- b. Wind load
 - $W_1 = 2.50 \times 1.41 \times 20 = 71.00 \text{ kg}$
 - $W_2 = 2.50 \times 1.41 \times 16 = -56.40 \text{ kg}$


$$W_{1X} = W_{1Y} = 71.00 \text{ Cos } 45^{\circ} = 50.20 \text{ kg}$$

 $W_{2X} = W_{2Y} = -56.40 \text{ Cos } 45^{\circ} = -39.89 \text{ kg}$

- c. Live load
 - $P_2 = 100 \text{ kg}$

()

()

STEEL ROOF TRUSS QUEST HOUSE JATIBARANG TYPE K-1 PROTOTYPE

				dia.bolt	(mm)	7 · 4	1-4	1.4	₽-T	7.4	₽. T	er -1	7.4	4.1	작-	₽• T	7-7	1.4
DIA.BOLT		1.4		n bolt		7	2	2] 7 7	7	2	2	7	2	N	Ν	,73	2
25	(kg/cm2)	2,400		Moment	(kg.cm)	19.T	192	192	167	6TT	651	119	119	0	0	0	167	167
<u>></u>	(kg/cm2)	3,700		Torsion	(kg.cm)	0	0	(1. 0 30)	0	0	0	0	0	0	0	0	0	0
CKNESS			RCE	Shear	(kg)	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4-24	0	0	0	4.24	4.24
PLATE THICKNESS	(ED)	0.8	MENT FO	Axial	(kg)	866	649	853	1,200	1,011	1,011	106	106	17	678	17	533	378
PROFILE		I 50.50.5	FRAME ELEMENT FORCE	Member	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	2	9		w	9	1	۵	6	10	-1	12	133

0

STEEL ROOF TRUSS QUEST HOUSE JATIBARANG TYPE K-2 PROTOTYPE

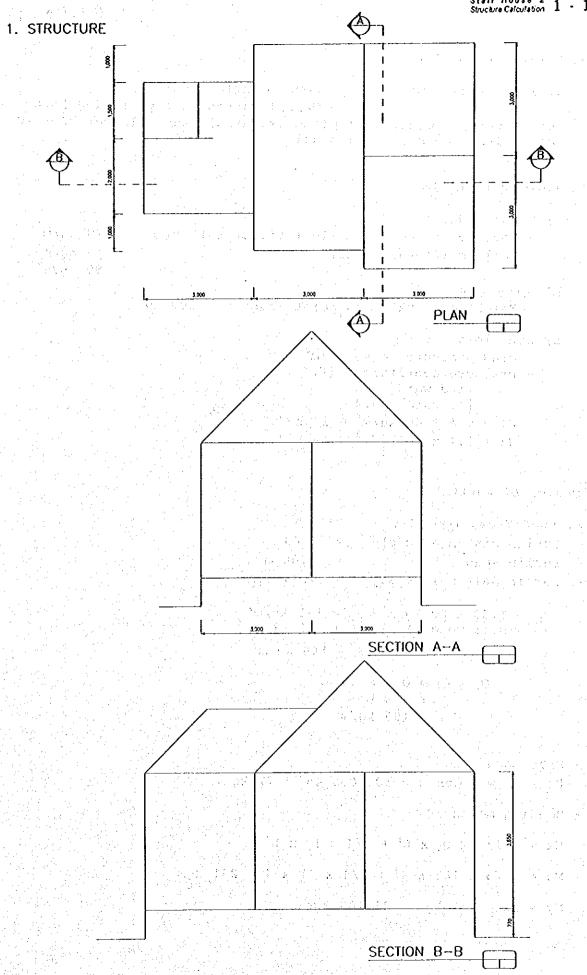
		* 1. 1.4 1.7	
<u></u>			5 2 5 54
BOLT	.	4	
DIA.BOLT		H	
H-1	5)	00	
다 기	/ Cm;	2,4	
- 1	(kg/cm2) (kg/cm2)		. :
	n2)	00	
<u>۲</u> .	g/c	3,700	
	Č		
SS	٠,		
X			
HIC	\Rightarrow		
E.	(GEO	æ	1.5
PLATE THICKNESS		0	
	•	S	
37	· '. ·	50.	
PROFILE	7	50.50.5	7.
۵		H	J
		-	

	dia.bolt	(mm)	1-4		4	₽-T	전-단	1.4	1.4	1.4	٦.4	1.4	1-4	्र ।	1-4
	n bolt		7	2	2	2	2	2	2	2	2	2	8	2	2
	Moment	(kg.cm)	169	192	192	169	119	119	119	119	0	0	0	169	169
	Torsion	(kg.cm)	0	0	0	0	0	0	0	0	0	0	0	0 0 1 1	0
RCE	Shear	(kg)	4-24	4.24	4.24	4.24	4.24	4-24	4.24	4.24	0	0	0	4.24	4-24
MENT FO	Axial	(kg)	866	649	853	1,200	1,011	1,011	106	901	17	678	17	533	378
FRAME ELEMENT FORCE	Member		1	2	ĸ	4	9	Ó	7	ω	6	10	- T	12	13

- Checking of members Strength of roof steel Truss Type K-1 base on the axial force:
 - a. Due to Tensile force

Maximum force on member T4 (loading Combination 2) Force F = 1,200 kg

Try : Double angle steel of 50.50.5 Cross section area A = 9.6 cm²


 $\sigma_{311} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress $\sigma = \frac{F}{A} = \frac{1,200}{9.6} = 125 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2$ (OK)

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-1

5.1.3 Staff House 2 Structural Calculation

1.	Structure			Page 1
2.	Design Condition		en e	Page 2
3.	Loading Condition			Page 2
4.	Design of Purlin	-		Page 2
5.	Design of Roof Truss			Page 5

()

STAFF HOUSE
JATIBARANG DAM MANAGEMENT COMPLEX

2. Design Condition

a) Roof truss members : - double angle steel

- Tensile strength (Fy) : 2400 kg/cm²

b) Structural model

: plane (xy axis) truss, linear elastic

c) Analysis method

: static

3. Loading Condition

a) Dead Load:

 $= 70 \text{ kg/m}^2$ - Roof cover (ceramic tile + timber rafter) = 10 kg/m² - Ceiling (fibre cement)

80 kg/m⁴

b) Live load

- Weight of workers as point load = 100 kg

c) Wind load

- Wind pressure = 40 kg/m^2

- Pressure coefficient (f)

. wind ward -0.5

. lee ward -0.4

 $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$

 $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$

4. Design of Purlin

A. Roof Truss Type K-1

 Purlin distance (c/c) = 1.63 m

= 4.00 m Purlin span

= 15.00 kg/m'Purlin self weight say

 $q_1 = 1.63 \times 80 \text{ kg/m}^2$ ≈ 131 kg/m′ q2 (self weight) = 15 kg/m[']

> = 146 kg/m'

 $Q_1 = Q_2 = Q \cos 45^{\circ}$ $= 146 \cos 45^{\circ}$

 $\approx 105 \text{ kg/m'}$

Live Load

 $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$

- Bending moment

 $1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$

 $Mx = 1/8 \times 105 \times 4^2 + 1/4 \times 71 \times 4 = 281 \text{ kgm}$

My = Mx = 281 kgm = 28,100 kgcm

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$
 $Ix = 664 cm^4$; $Wx = 88.6 cm^3$
 $Iy = 476 cm^4$; $Wy = 73.2 cm^3$

- Stresses

6

$$\sigma = \sigma x + \sigma y$$
= Mx + My
Wx Wy
= 28,100 + 28,100 = 317.16 + 383.88
88.6 73.2
= 701.04 kg < σ_{all} = 1,400 kg/cm² (OK)

- Deflection

B. Roof Truss Type K-2

- Live Load $Px = Py = P \cos \alpha = 100 \cos 45^{\circ} \approx 71 \text{ kg}$

≈ 86 kg/m'

- Bending moment

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L^2 + 1/4 \times P_2 \times L^2$$

$$Mx = 1/8 \times 86 \times 2.5^2 + 1/4 \times 71 \times 2.5 \approx 112 \text{ kgm}$$

$$My = Mx = 112 \text{ kgm} = 11,200 \text{ kgcm}$$

- Try Purlin of Lip Channel type :

150 x 50 x 50 x 3.2
Ix = 438
$$cm^4$$
 ; Wx = 58.4 cm^3
Iy = 71.4 cm^4 ; Wy = 13.2 cm^3

- Stresses

$$\sigma = \sigma x + \sigma y$$
= Mx + My
Wx Wy
= 11,200 + 11,200 = 191.78 + 848.48
58.4 13.2
= 1,040.26 kg < σ_{all} = 1,400 kg/cm² (OK)

- Deflection

fx =
$$5 \times Q_1 \times L^4 + 1 PL^3$$

 $384 EI_x 48 EI_x$

$$= 5 \times 0.86 \times 250^{4} + 1 \quad 71 \times 250^{3}$$

$$= 384 \quad 2.1 \times 10^{6} \times 438 \quad 48 \quad 2.1 \times 10^{6} \times 438$$

Charles and the second

$$= 0.05 + 0.03 = 0.08 \text{ cm}$$

$$fy = 0.29 + 0.15 = 0.44$$
 cm

$$f = (0.08^2 + 0.44^2)^{1/2} = 0.45 \text{ cm}$$

$$f = 0.45 \text{ cm} < f_{all} = 1$$
 $L = 250 = 0.69 \text{ cm}$ (OK)
360 360

5. Design of Roof Truss

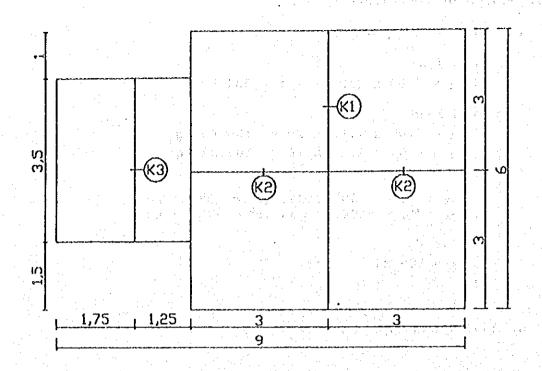
A. Roof Truss Type K-1

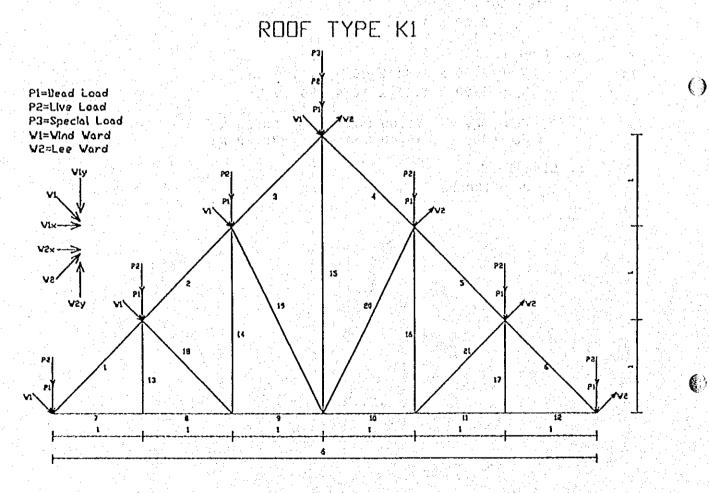
- a. Dead load
 - $-P_1 = 4.00 \times (131 + 15) = 584 \text{ kg}$
- b. Wind load
 - $W_1 = 4.00 \times 1.63 \times 20 = 130.40 \text{ kg}$ - $W_2 = 4.00 \times 1.63 \times 16 = -104.32 \text{ kg}$

 $W_{1X} = W_{1Y} = 130.40 \text{ Cos } 45^{\circ} = 92.21 \text{ kg}$ $W_{2X} = W_{2Y} = -104.32 \text{ Cos } 45^{\circ} = -73.77 \text{ kg}$

c. Live load

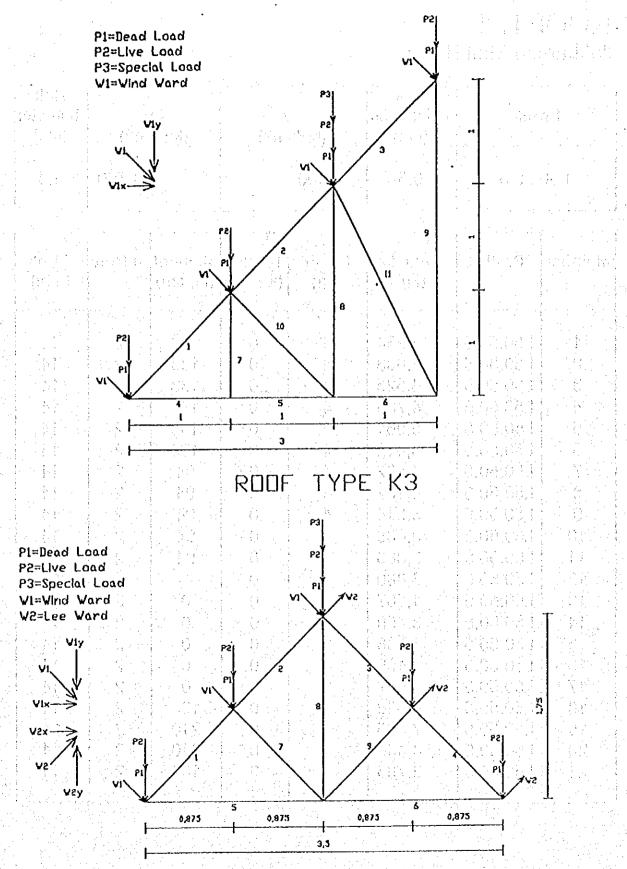
 $-P_2 = 100 \text{ kg}$


B. Roof Truss Type K-2


- a. Dead load
 - $-P_1 = 2.50 \times 121 \approx 303 \text{ kg}$
- b. Wind load
 - W₁ = 2.50 x 1.41 x 20 = 71.00 kg
 - $-W_2 = 2.50 \times 1.41 \times 16 = -56.40 \text{ kg}$

 $W_{1X} = W_{1Y} = 71.00 \text{ Cos } 45^{\circ} = 50.20 \text{ kg}$ $W_{2X} = W_{2Y} = -56.40 \text{ Cos } 45^{\circ} = -39.89 \text{ kg}$

- c. Live load
 - $-P_2 = 100 \text{ kg}$


()

ROOF TYPE K2

(-)

ROOF K-1
Jatibarang Staff House

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	1.4

	Member	Profile	Axial (kg)	Shear (kg)	Torsion (kg.cm)	Moment (kg.cm)	n Bolt	d Bolt (mm)
Ì								
	1	L50.50.5	5,234	4	0	133	2	14
	2	L50.50.5	4,883	4	0	133	2	14
	3	L50.50.5	4,525	4	0	133	2	14
	4	L50.50.5	4,703	4	0	133	2	14
	5	L50.50.5	5,061	4	0	133	2	14
1	6	L50.50.5	5,412	4	0	133	2	14
1	7	L50.50.5	4,132	4	0	94	2	14
	8	L50.50.5	4,132	4	0	94	2	14
	9	L50.50.5	3,814	4	0	94	2	14
ļ	10	L50.50.5	3,688	4	0	94	, 2 👙	14
	11	L50.50.5	3,880	4	0	94	2	14
	12	L50.50.5	3,880	4	0	94	2	14
	13	L50.50.5	1,507	4	0	0	2	14 II
Ì	14	L50.50.5	3,459	0	0	0	2	14
	15	L50.50.5	1,388	0	0	0	2	14
	16	L50.50.5	2.199	0	0	0	2	14
1	17	L50.50.5	1,507	0	0	0	2 2	14
	18	L50.50.5	4,536	4	0	133		14
	19	L50.50.5	7,305	4	0	210	2	14
	20	L50.50.5	4,488	4	0	210	2	14
	21	L50.50.5	2,783	4	0	133	2	14
					<u> </u>			

ROOF K-2 Jatibarang Staff House

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	,,1.4

Member	Profile	Axial (kg)	Shear (kg)		Moment (kg.cm)	n Bolt	d Bolt (mm)
	1 50 50 5	40.4			422	•	4.4
1	L50.50.5	424	4	0	133	2	14
2	L50.50.5	73	4	0	133	2	14
3	L50.50.5	376	4	0	133	2	14
4	L50.50.5	227	4	0	94	2	14
5	L50.50.5	227	4	0	94	2	14
6	L50.50.5	90	4	0	94	2	14
7	L50.50.5	16	0	0	0	2	14
8	L50.50.5	345	0	0	0	2	14
9	L50.50.5	453	4	0	133	2	14
10	L50.50.5	1,338	4	0	210	2	14

ROOF K-3 Jatibarang Staff House

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	1.4

Member	Profile	Axial (kg)	Shear (kg)		Moment (kg.cm)	n Bolt	d Bolt (mm)
1	L50.50.5	1,533	3	0	102	2	14
2	L50.50.5	1,194	3	0	103	2	14
3	L50.50.5	1,373	3	0	103	2	14
4	L50.50.5	1,711	3	0	103	2	14
5	L50.50.5	1,390	7	0	288	2	14
6	L50.50.5	1,264	7	Ö	288	2	14
7	L50.50.5	440	3	Ŏ	101		14
8	L50.50.5	516	ō	ŏ	0	2	1/1
9	L50.50.5	262	3	ŏ	101	2	14
	1 A 1					udjaki [177

• Checking of members Strength of roof steel Truss Type K-1 base on the axial force:

Due to Tensile force

(2)

Maximum force on member T10 (loading Combination 2) Force F = 3,688 kg

Try : Double angle steel of 50.50.5 Cross section area $\Lambda = 9.6 \text{ cm}^2$

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress $\sigma = \frac{F}{A} = \frac{3,688}{9.6} = 384.17 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$

文字:《禁护》:[additional and a property in the best of the party of the party in the pa

tha maid kasmad basa asa lebih lebi

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K - 1

 Checking of members Strength of roof steel Truss Type K-2 base on the axial force;

Due to Tensile force

Maximum force on member T10 (loading Combination 2) Force F = 1,338 kg

Try : Double angle steel of 50.50.5Cross section area A = 9.6 cm^2

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress $\sigma = \frac{F}{A} = \frac{1,338}{9.6} = 139.38 \text{ kg/cm}^2 < \sigma_{311} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K - 2

• Checking of members Strength of roof steel Truss Type K-3 base on the axial force:

Due to Tensile force

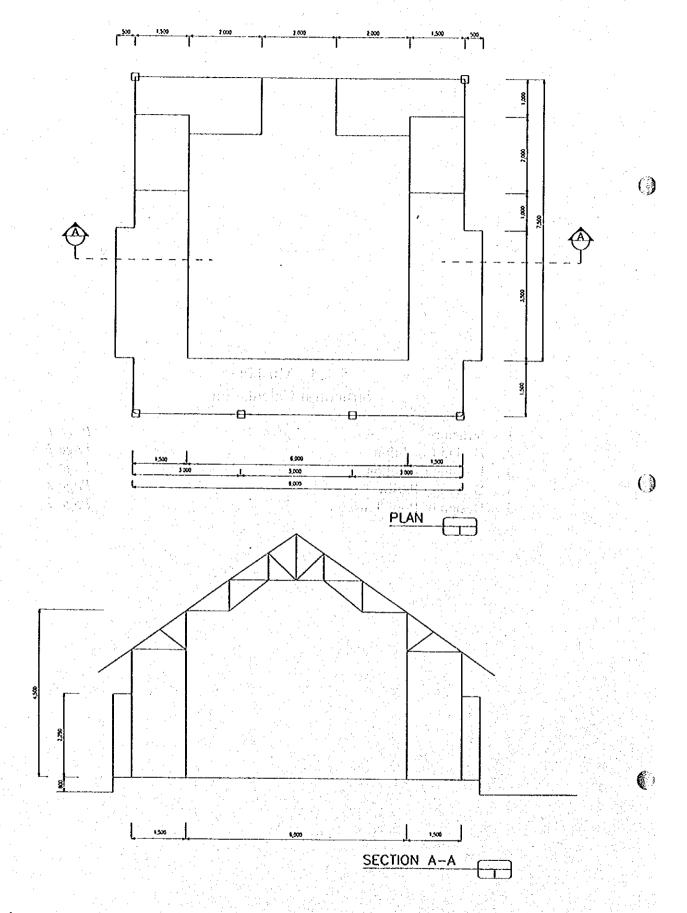
Maximum force on member T4 (loading Combination 2) Force F = 1,711 kg

Try : Double angle steel of 50.50.5Cross section area A = 9.6 cm^2

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress $\sigma = \frac{F}{A} = \frac{1,711}{9.6} = 178.23 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-3


करी अग्रहा जिल्हा के लिए

5.1.4 Mushola Structural Calculation

1.	Structure	Page .
2.	Design Condition	Page 2
3	Loading Condition	Page 1
	Design of Purlin	Page 2
	Design of Roof Truss	Page .

Colonial Colonia Colonial Colonial Colo

1. STRUCTURE

MUSHOLA
JATIBARANG DAM MANAGEMENT COMPLEX

2. Design Condition

- a) Roof truss members : double angle steel
 - Tensile strength (Fy) : 2400 kg/cm²
- b) Structural model : plane (xy axis) truss, linear elastic
- c) Analysis method : static

3. Loading Condition

a) Dead Load:

(

- Roof cover (ceramic tile + timber rafter)
- Ceiling (fibre cement)
- $= 70 \text{ kg/m}^2$ = 10 kg/m²
 80 kg/m²

- b) Live load
 - Weight of workers as point load = 100 kg
- c) Wind load
 - Wind pressure = 40 kg/m^2
 - Pressure coefficient (f)
 - . wind ward -0.5
 - . lee ward -0.4
 - $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$
 - $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$

4. Design of Purlin

- A. Roof Truss Type K-1
- Purlin distance (c/c) = 1.35 m
- Purlin span = 3.00 m
- Purlin self weight say = 15.00 kg/m'
 - $q_1 = 1.35 \times 80 \text{ kg/m}^2 \approx 108 \text{ kg/m}'$
 - q_2 (self weight) = 15 kg/m'
 - Q = 123 kg/m'
 - $Q_2 = Q \cos 35^\circ$
 - = 123 $\cos 35^{\circ}$
 - = 100.75
 - ≈ 101 kg/m′
- Live Load
 - $Py = P \cos \alpha = 100 \cos 35^{\circ} = 81.9 \approx 82 \text{ kg}$
- Bending moment
 - $Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$
 - $Mx = 1/8 \times 101 \times 3^2 + 1/4 \times 82 \times 3 = 175.125 \text{ kgm}$
 - Mx = 175.125 kgm = 17,512.5 kgcm

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$

 $1x = 664 \text{cm}^4$; $Wx = 88.6 \text{ cm}^3$
 $1y = 476 \text{ cm}^4$; $Wy = 73.2 \text{ cm}^3$

- Stresses

$$\sigma = \sigma x + \sigma y$$
= $\frac{Mx}{Wx} + \frac{My}{Wy}$
= $\frac{17,512.5}{88.6} + \frac{17,512.5}{73.2} = 197.658 + 239.241$
= $436.89 \text{ kg} < \sigma_{all} = 1,400 \text{ kg/cm}^2 \text{ (OK)}$

- Deflection

$$fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{48} + \frac{1}{48} \frac{PL^3}{EI_x}$$

$$= \frac{5}{384} \times 1.01 \times \frac{300^4}{2.1 \times 10^6 \times 664} + \frac{1}{48} \times \frac{82 \times 300^3}{2.1 \times 10^6 \times 664}$$

$$= 0.076 + 0.00011 = 0.0765 \text{ cm}$$

$$fy = 0.0765 \text{ cm}$$

$$f = (0.0765^2 + 0.0765^2)^{1/2} = 0.1082 \text{ cm}$$

$$f = 0.1082 \text{ cm} < f_{all} = \frac{1}{360} \text{ L} = \frac{400}{360} = 1.11 \text{ cm} \text{ (OK)}$$

B. Roof Truss Type K-2 (1/2 K1)

- Purlin distance (c/c) = 1.35 m
- Purlin span = 3.00 m
- Purlin self weight say = 15.00 kg/m'

$$q_1 = 1.35 \times 80 \text{ kg/m}^2 \approx 108 \text{ kg/m'}$$

 $q_2 \text{ (self weight)} = 15 \text{ kg/m'}$
 $Q = 123 \text{ kg/m'}$

 $Q_2 = Q \cos 35^{\circ}$ = 123 Cos 35° = 100.75 $\approx 101 \text{ kg/m'}$ - Live Load

$$Py = P \cos \alpha = 100 \cos 35^{\circ} = 81.9 \approx 82 \text{ kg}$$

- Bending moment

$$Mx = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$$

$$Mx = 1/8 \times 101 \times 3^2 + 1/4 \times 82 \times 3 = 175.125 \text{ kgm}$$

$$Mx = 175.125 \text{ kgm} = 17,512.5 \text{ kgcm}$$

- Try Purlin of Lip Channel (in front to front arrangement) type :

$$150 \times 130 \times 20 \times 3.2$$

 $1x = 664 \text{cm}^4$; $Wx = 88.6 \text{ cm}^3$
 $1y = 476 \text{ cm}^4$; $Wy = 73.2 \text{ cm}^3$

- Stresses

$$\sigma = \sigma x + \sigma y$$
= $\frac{Mx}{Wx} + \frac{My}{Wy}$
= $\frac{17,512.5}{88.6} + \frac{17,512.5}{73.2} = 197.658 + 239.241$
= $436.89 \text{ kg} < \sigma_{\text{all}} = 1,400 \text{ kg/cm}^2 \text{ (OK)}$

- Deflection

$$fx = \frac{5}{384} \times Q_1 \times \frac{L^4}{EI_x} + \frac{1}{48} \frac{PL^3}{EI_x}$$

$$= \frac{5}{384} \times 1.01 \times \frac{300^4}{2.1 \times 10^6 \times 664} + \frac{1 \times 82 \times 300^3}{48 \ 2.1 \times 10^6 \times 664}$$

$$= 0.076 + 0.00011 = 0.0765 \text{ cm}$$

$$fy = 0.0765$$
 cm

$$f = (0.0765^2 + 0.0765^2)^{1/2} = 0.1082 \text{ cm}$$

$$f = 0.1082 \text{ cm} < f_{all} = 1 \quad L = \frac{400}{360} = 1.11 \text{ cm} \text{ (OK)}$$

5. Design of Roof Truss

A. Roof Truss Type K-1

a. Dead load

$$-P_1 = 3.00 \text{ x} (108 + 15) = 369 \text{ kg}$$

b. Wind load

-
$$W_1 = 3.00 \times 1.35 \times 20 = 81.0 \text{ kg}$$

- $W_2 = 3.00 \times 1.35 \times 16 = -64.8 \text{ kg}$

$$W_{1X} = 81.0 \text{ Cos } 35^{\circ} = 66.3 \text{ kg}$$

 $W_{1y} = 81.0 \text{ Sin } 35^{\circ} = 46.0 \text{ kg}$
 $W_{2X} = -64.8 \text{ Cos } 35^{\circ} = -53.0 \text{ kg}$
 $W_{2y} = -64.8 \text{ Sin } 35^{\circ} = -37.0 \text{ kg}$

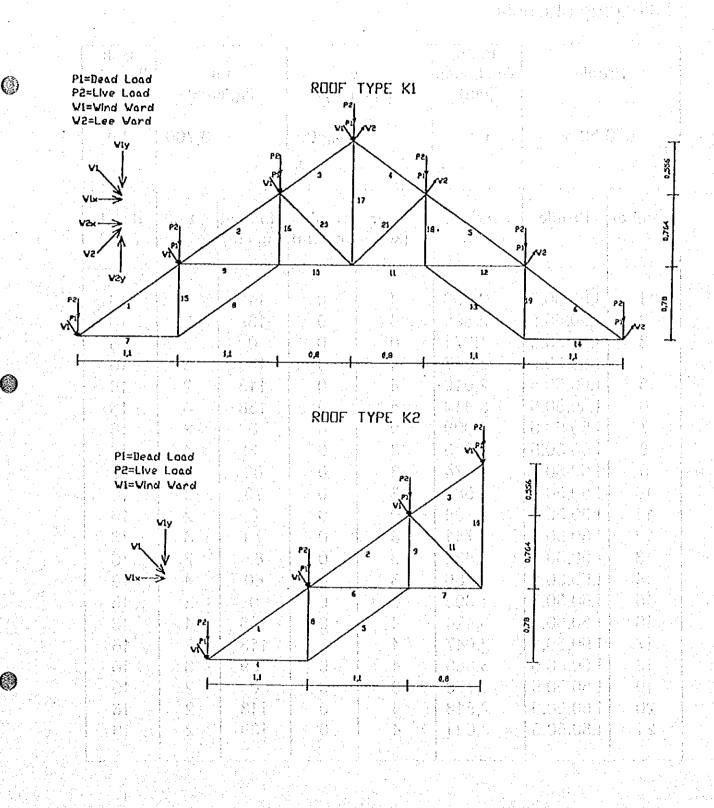
c. Live load

$$- P_2 = 100 \text{ kg}$$

B. Roof Truss Type K-2 (1/2 K1)

a. Dead load

$$-P_1 = 3.00 \times (108 + 15) = 369 \text{ kg}$$


b. Wind load

-
$$W_1 = 3.00 \times 1.35 \times 20 = 81.0 \text{ kg}$$

$$W_{1X} = 81.0 \text{ Cos } 35^{\circ} = 66.3 \text{ kg}$$

 $W_{1Y} = 81.0 \text{ Sin } 35^{\circ} = 46.0 \text{ kg}$

c. Live load

$$- P_2 = 100 \text{ kg}$$

ROOF K-1
Jatibarang Mushola

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	1.4

Member	Profile	Axial (kg)	Shear (kg)	1.0	Moment (kg.cm)	n Bolt	d Bolt (mm)
	1.50.50.5	2.702	4	•	440	•	46
	L50.50.5	2,793	4	0	113	2	16
2 3	L50.50.5	2,895	4	0	139	2 2	16
1	L50.50.5	1,971	0	0	0		16
4	L50.50.5	3,227	4	0	139	3	16
5	L50.50.5	2,019	4	0	113	2	16
6	L50.50.5	5,419	4	0	138	4	16
7	L50.50.5	1,999	0	0	0	2	16
8	L50.50.5	4,813	3	0	30	4	1. _{9.} 16 ⋅
9	L50.50.5	2,174	3	0	83	2 3	16
10	L50.50.5	3,588	3	0	73		16
11	L50.50.5	2,794	.0	0	0	2	16
12	L50.50.5	3,741	3	0	73	3	16
13	L50.50.5	1,836	3	0	83	2	16
14	L50.50.5	1,585	3	0	60	4	16
15	L50.50.5	1,803	0	0	0	2	16
16	L50.50.5	5,424	4	0	138	4	16
17	L50.50.5	2,047	4	0	113	2	16
18	L50.50.5	3,089	4	0	139	3	16
19	L50.50.5	1,778	0	0	0	2	16
20	L50.50.5	2,518	4	0	113	2	16
21	L50.50.5	3,021	4	0	139	2	16
			A 4 2 4 5 1 4 5				

ROOF K-2 Jatibarang Mushola

Profile	Plate Thickness (cm)	Fy (kg/cm2)	Fu (kg/cm2)	Bolt diameter (cm)
L50.50.5	0.5	2,400	3,700	1.4

Member	Profile	Axial (kg)	Shear (kg)		Moment (kg.cm)	n Bolt	d Bolt (mm)
1	L50.50.5	781	4	0	133	2	14
2	L50.50.5	703	4	0	139	2	14
3	L50.50.5	544	44,444	0	0	2	14
4	L50.50.5	980	4	0	139	2	14
5	L50.50.5	729	4	0	113	2	14
6	L50.50.5	694	4	0	138	2	14
7	L50.50.5	572	0	0	0	2	14
8	L50.50.5	708	3	0	60	2	14
9	L50.50.5	9,982	3	0	83	2	14
10	L50.50.5	873	3	0	73	2	14
			5 % ***	3. 1. 1.			

 Checking of members Strength of roof steel Truss Type K-1 base on the axial force:

Due to Tensile force

Maximum force on member T16 (loading Combination 2) Force F = 5,424.000 kg

Try : Double angle steel of 50.50.5 Cross section area A = 9.6 cm²

 $\sigma_{311} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress $\sigma = \frac{F}{A} = \frac{5,424}{9.6} = 565 \text{ kg/cm}^2 < \sigma_{\text{all}} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-1

 Checking of members Strength of roof steel Truss Type K-2 base on the axial force:

Due to Tensile force

Maximum force on member T9 (loading Combination 2) Force F = 9,982 kg

Try : Double angle steel of 50.50.5Cross section area A = 9.6 cm^2

 $\sigma_{311} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm²

Stress

 $\sigma = \frac{F}{A} = \frac{9,983}{9.6} = 1,040 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-2