Table 2.3 (1/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION FEATURE

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

	HOLE No.			RB - 5	RB - 5	RB-6	RB - 6
NO	DEPTH (m)			7.00 - 7.50	13,00 - 13.50		13.00 - 13.70
	GROUP SYMBOL	SYM	UNIT	CH	CH	. CH	CH
		BOL		1 weith	That i		
1	Specific Gravity	G	-	2.706	2.733	2.603	2.650
2	Natural Water Content	Wn	%	77.15	71.57	71.08	69.00
3	Unit Weight, Natural State	γm	Vm^3	1.545	1.583	1.538	1.575
4	Dry Unit Weight	γd	: Vm^3	0.872	0.923	0.899	0.932
5	Natural Void Ratio	е	• 6	2.103	1.962	1.895	1.843
6	Natural Porosity	n	%	67.770	66.240	65.463	64.832
7	Degree of Saturation	Sr	%	99.285	99.689	97.613	99,187
8	Saturation of Water Content	Wsat	%	77.705	71.793	72.818	69.566
9 .	Saturation Unit Weight	γsat	t/m^3	1.550	1.585	1.554	1.580
10	Unconfined Compr. Strength	qu	kg/cm²				
11	Sensitivity	St	, - - 23	Ω ε	1 12 (2.34)		3. 71 (1.1
12	Liquid Limit	LL	%	112.84	94.23	101.65	105.88
13	Plastic Limit	PL	%	34.38	28.10	36.36	36.24
14	Plasticity Index	Pl	%	78.47	66.12	65.29	69.64
15	Shrinkage Limit	SL.	%				75. ALT 3
16	% Passing 200 US Stand Sieve	· -	%	95.50	94.70	92.70	93.80
1	Triaxial	þ	deg		1.279	1 . 35 . 3	
	U.U. Compression Test	С	kg/cm²	3 10 10 10 10	0.025		19 1 W 1
17	Triaxial Total	ф	deg	1 - 1 - 1			9.990
	C.U. Compression	С	kg/cm²				0.231
	Test Effective	<u> </u>	deg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			12.290
-		_ <u>c</u> _	kg/cm²	1 56 1		<u> </u>	0.241
18	Consolidation Test	Cc		0.706	***	0.661	1 445
		Рс	kg/cm²	0.4189		0.3195	1 4-1 1 1
19	N Value		blow	- 20 F			2.4
				1925		<u> </u>	
	a'ssme97/lab'uds'rb						

Table 2.3 (2/43)

SUMMARY OF LABORATOR FOUNDATION INVESTIGATION

PROJECT

LOCATION FEATURE

: U D W R D (U.D.S.) : SEMARANG, CENTRAL JAWA

AREA DESIGNATION:

	HOLE No.		~~~~	RB-7	RB - 8	RB - 9	RB - 9
NO	DEPTH (m)				10.00 - 10.70		13.00 - 13.50
	GROUP SYMBOL	SYM	UNIT	СН	СН	CH	CH
<u>. N</u>		BOL					
1	Specific Gravity	G	•	2.681	2.722	2.639	2.723
2	Natural Water Content	Wn	%	88.83	72.66	81.57	73.00
3	Unit Weight, Natural State	γm	t/m^3	1.469	1.543	1.673	1.561
4	Dry Unit Weight	γd	t/m^3	0.778	0.894	0.921	0,902
5	Natural Void Ratio	ė	-	2.446	2.046	1.864	2.018
6	Natural Porosity	n	%	70.983	67.169	65.085	66.863
7	Degree of Saturation	Sr	%	97.355	96.672	100.000	98.513
8	Saturation of Water Content	Wsat	%	91.244	75.161	81.570	74.102
9	Saturation Unit Weight	γsat	t/m^3	1.488	1.565	1.673	1.571
10	Unconfined Compr. Strength	qu	kg/cm²	1000			
11	Sensitivity	St	1 2			5.5	
12	Liquid Limit	LL.	%	120.94	111.12	80.37	96.83
13	Plastic Limit	PL	%	38.81	35.93	27.22	32.74
14	Plasticity Index	Pl	%	82.13	75.19	53.15	64.09
15	Shrinkage Limit	SL	%				
16	% Passing 200 US Stand Sieve	-	%	99.40	96.40	94.30	96.10
1 .	Triaxial	ф	deg	4.710	1.668	- 4	1.882
	U.U. Compression Test	С	kg/cm²	0.047	0.019	; - .	0.049
17	Triaxial Total	þ	deg	- 10 - 10 - 15 - 10 - 10 - 10 - 10 - 10		1 2 2	
	C.U. Compression	C	kg/cm²	\$ 200			
	Test Effective	ф	deg			4 - 50 (1)	Tak San
		С	kg/cm²	1		territorio de	11 k = 1 k
18	Consolidation Test	Сс	• * * •			0.574	A
		Рс	kg/cm²	1	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.4238	
19	N Value		blow			1000	
				Age of the			
r cida	ta'ssme97/lab'ude'rh						

f: c: data'ssmg97/lab'uds'rb

Table 2.3 (3/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.		-		RB - 1	RB - 2	RB-3	· RB - 4
NO	DEPTH (m)			······	10.00 - 10.70	9.00 - 9.70		10.00 - 10.70
	GROUP SYMBO)L	SYM	UNIT	СН	CH	CH	СН
			BOL					4 2 4
1 1	Specific Gravity		G	- :	2.662	2.633	2.763	2.776
2	Natural Water Content		Wn	· %	74.56	70.31	61,65	80,01
3	Unit Weight, Natural Sta	ale	γm	t/m^3	1.563	1.570	1.495	1.531
4	Dry Unit Weight		γd	Vm^3	0.895	0.922	0.925	0.851
5	Natural Void Ratio	4100	е		1.973	1.856	1.988	2.264
6	Natural Porosity	77-48-55	n	%	66.364	64.989	66.528	69.362
7.	Degree of Saturation		Sr	%	100.000	99.733	85.703	98.107
8	Saturation of Water Con	lent	Wsat	%	74.560	70.498	71.935	81.554
9	Saturation Unit Weight		γsat	t/m^3	1.563	1.572	1.590	1.544
10	Unconfined Compr. Stre	ngth	qu	kg/cm²	2.7	38.0 m. 7.17	11 1.45	
11,	Sensitivity	The fact	St					
12	Liquid Limit		LL	%	93.54	104.33	114.53	110.18
13	Plastic Limit		PL.	%	35.80	30.38	36.08	26.80
14	Plasticity Index (1995)		PL-	%	57.74	73.95	78.45	83.37
15	Shrinkage Limit		SL	%	701:		1845, T.	4-1-46
16	% Passing 200 US Slan	d Sieve	-	%	98.30	93.60	88.30	98.00
	Triaxial		φ.	deg	anti t		1.213	1.610
	U.U. Compression		С	kg/cm²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.019	0.049
17	Triaxial	Total	Ş	deg	2.000		La Balling en	<u> </u>
155	C.U. Compression		C	kg/cm²	0.191			
	Test	Effective	φ	deg	3.470		· ·	
40	Consolidation Tool		C	kg/cm²	0.185			<u> </u>
18	Consolidation Test		Cc	1 (2		0.617		
40	A1 A / - L		Pc	kg/cm²		0.3529		
19	N Value			blow	3.00	6.00	3.00	0.00
	ta'ssmg97/lab'uds'rb							

Table 2.3 (4/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

FEATURE -

AREA DESIGNATION:

	HOLE No.				RB - 10	RB - 11	RB - 11	RB - 12
ΝО	DEPTH (m)	The second second		eg e e	10.00 - 10.70			10.00 - 10.70
	GROUP SYMBO	OL	SYM	UNIT	CH	СН	СН	СН
		147.0	BOL	VI 1		tu Makita		
1	Specific Gravity		G	4.	2.764	2.547	2.746	2.661
2	Natural Water Content	3. C.	Wn	%	78.05	88.68	57.82	97.12
3	Unit Weight, Natural Sta	ale	γm	l/m^3	1.531	1.511	1.616	1.473
4	Dry Unit Weight	1000	γd	t/m^3	0.860	0.801	1.024	0.747
5	Natural Void Ratio		е		2.214	2.180	1.682	2.561
6	Natural Porosity		n	%	68,890	68.558	62.711	71.918
7	Degree of Saturation	Tempore	Sr	%	97.420	100.000	94.409	100.000
8	Saturation of Water Co.	nlent	Wsat	%	80.117	88.680	61.244	97.120
9	Saturation Unit Weight		ysat	t/m^3	1.549	1.511	1.651	1.473
10	Unconfined Compr. Str	englh	qu	kg/cm²				in the f
11	Sensitivity		St	1 4		in selfe		3 3 4 1
12	Liquid Limit	ALCOHOL:	LL	%	119.84	106.91	95.70	105.49
13	Plastic Limit		PL	%	36.00	36.26	31.43	32.35
14	Plasticity Index	The House	PΙ	%	83.84	70.65	64.27	73.14
15	Shrinkage Limit		SL	%		100 11 11 11		
16	% Passing 200 US Star	nd Sieve	-	%	90.60	97.30	86.30	97,90
	Triaxia	1	ф	deg	1.168	-	2.470	1.425
	U.U. Compression	n Test	С	kg/cm²	0.020		0.036	0.005
17	Triaxial	Total	ф	deg		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		1 1 1
	C.U. Compression		С	kg/cm²	fa.j.e. v. 1, 1,41		1 1 1 1 1	
	Test	Effective	ø	deg		<u>at vites</u>		
			C	kg/cm²		7 7 7		
18	Consolidation Test		Cc		<u> </u>	0.692		
			Рс	kg/cm²	3 1 2	0.3011		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19	N Value			blow				
	The state of the s		1, 54 g 1, 5					$\mathcal{F}_{\mathcal{F}}}}}}}}}}$

f: c:\data'ssmg97.lab'uds'rb

Table 2.3(5/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

UDWRD (U.D.S.) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.		-		,			
NO	DEPTH (m)		-		RB - 13	RB - 14	RB - 15	RB - 16
1.00	GROUP SYMBOL		TSYM	LINDT	10.00 - 10.45	10.00 - 10.70	10.00 - 10.70	
	ONOO! OTWIDOL	•	BOL	UNIT	CH	СН	CH	СН
1	Specific Gravity		G	-	2,670	2.560	2.644	2.743
2	Natural Water Content		Wn	%	77.74	65.10	69.20	78.54
3	Unit Weight, Natural State	,	γm	Vm^3	1.560	1.572	1.585	1.577
4	Dry Unit Weight	4777	γd	Vm^3	0.878	0.952	0.937	0.883
5	Natural Void Ratio	1.111.111	e e	-	2.042	1.689	1.822	2.105
6	Natural Porosity		n	%	67.128	62.807	64.570	67,799
7	Degree of Saturation		Sr	%	100.000	98,692	100.000	100,000
8	Saturation of Water Conte	nt	Wsat	%	77.740	65,963	69.200	78.540
9	Saturation Unit Weight	10.0	ysat	t/m^3	1.560	1.580	1,585	1.577
10	Unconfined Compr. Streng	glh	qu	kg/cm²			1.000	1.577
11	Sensitivity		SI		8. J. J. J. S.	Transport		
12	Liquid Limit		LL:	%	114.79	102.66	107.78	102,48
13	Plastic Limit	1. AT 181	PL	%	33.83	32.47	27.34	28.21
14	Plasticity Index		PI	%	80.96	70.20	80.44	74.28
15	Shrinkage Limit	13.13	SL:	%			4,414144	
16	% Passing 200 US Stand	Sieve	•	%	96.40	95.70	96.80	96.20
	leixeinT	13.55	ø	deg	5.841		6.815	2.192
_	U.U. Compression To		С	kg/cm²	0.119	-	0.097	0.042
17		Tolal	_ \$	deg	1		100000000000000000000000000000000000000	
	C.U. Compression		C	kg/cm²				
1 5 1	Test Ef	fective	- þ	deg			-	A 18 1 14 1
40			С	kg/cm²			.11	1 - 1 - 1
18	Consolidation Test		Cc			0.714	10 T N V	74. 1 14.
			Рс	kg/cm²	14.14	0.8404		
19	N Value	i si sa		blow		<u> </u>	in the grant	\$4.000
$oxed{oxed}$				*				
f: c:\dat	a'ssnig97/lab'uds'rb				· · · · · · · · · · · · · · · · · · ·			

Table 2.3 (6/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

FEATURE

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

		HOLE No.				RB - 17	RB - 17	RB - 18	I RB - 18
NO		DEPTH (m		tyre.	eres la	7.60 - 8.10	10.60 - 11.10	7.00 - 7.60	10.00 - 10.60
		GROUP SYM	3OL	SYM BOL	UNIT	СН	СН	CH	CH
1	Spe	cific Gravity		G		2.704	2.720	2.604	2.54
2	Natu	ural Water Conten	t	Wn	%	52.64		63.68	67.43
3	Unit	Weight, Natural S	tale	ym	t/m^3	1.700		1.605	1.576
4	Dry	Unit Weight		γd	t/m^3	1.114	0.878	0.981	0.94
5	Natu	ıral Void Ratio		ė	-	1.428	2.097	1.656	1.703
6	Natu	ral Porosity		n.	%	58.812	67.712	62,344	63,000
7	Deg	ree of Saturation		Sr	%	99.686	100.000	100.000	100.000
8	Satu	ration of Water Co	ontent	Wsat	%	52.806	80.250	63.680	67.430
9	Salu	ration Unit Weight		ysat	Vm^3	1.702	1.583	1.605	
10	Unce	onfined Compr. St	rength	qu	kg/cm²		1.505	1.003	1.576
11	Sens	sitivity		St					
12	Liqui	d Limit		LL	%	67.99	96.21	85.77	00.00
13	Plas	lic Limit		PL.	%	26.77	34.00	32.57	96.90
14	Plasi	licity Index		PI	%	41.22	62.21	53.19	35.75
15	Shrin	kage Limit		SL	%	11.24	02.21	33.19	61.15
16	% Pa	assing 200 US Sta	nd Sieve		%	86.30	95.30	02.50	71 11 11 1
	1.15	Triaxia		φ	deg	00.00	90.00	92.50	94.70
	U.U.	Compressio		С	kg/cm²	44.44			
17	Λ.I.	Triaxial	Total	<u>\$</u>	deg		7.210	13.510	12.650
•	C.U.	Compression		С	kg/cm²		0.195	0.048	0.283
- 1	. 4	Test	Effective	_ \$ _	deg	A Think	8.240	25.080	22.920
8	Cono	Alidatia T. I			kg/cm²		0.201	0.056	0.216
10	Cons	olidation Test		Сс		0.434		F2 7 .39	74.
				Pc	kg/cm²	0.7561		1 1 1 1 1 1 1	
9	N Val	ue			blow	V 1 4			
		7/lob'uds/rb	<u> </u>				San Series		English shi

Table 2.3 (7/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (U.D.S.) SEMARANG, CENTRAL JAWA

	HOLE No.			RB - 19	RB - 20	RB - 21	RB - 22
NO	DEPTH (m)			10.00 - 10.55	10.00 - 10.60	9.00 - 9.55	9.00 - 9.55
	GROUP SYMBOL	SYN BOI		СН	СН	СН	СН
1	Specific Gravity	G	-	2.666	2.742	2.730	2.770
2	Natural Water Content	Wn	%	58.48	60.54	66,85	53.85
3	Unit Weight, Natural State	γm	Vm^3	1.636	1.612	1.606	1.680
4	Dry Unit Weight	γd	1/m^3	1.032	1.004	0.963	1.092
5	Natural Void Ratio	е	-	1.583	1.731	1.836	1.537
6	Natural Porosity	n	%	61.279	63.380	64.742	60.579
7	Degree of Saturation	Sr	%	98.516	95.911	99.388	97.068
8	Saturation of Water Content	Wsa	1 %	59.361	63.121	67.262	55.476
9	Saturation Unit Weight	γsa	t //m^3	1.645	1,638	1.610	1.698
10	Unconfined Compr. Strength	qu	kg/cm²				1 3 1
11	Sensitivity	St	-				
12	Liquid Limit	LL	%	95.49	84.88	75.17	84.87
13	Plastic Limit	PL	%	36.42	34.81	31.94	36.42
14	Plasticity Index	PI	%	59.07	50.07	43.23	48.45
15	Shrinkage Limit	SL	%			100 mm - 200	
16	% Passing 200 US Stand Sie		%	85.40	92.60	85.80	72.30
	Triaxial U.U. Compression Test	<u>\$</u>	deg				- 1 i
17	Triaxial To		kg/cm² deg	12.420	6.020	7.850	40.500
	C.U. Compression	C	kg/cm²	0.064	0.020	0.055	12.530 0.187
	Test Effec	tive 🐧	deg	17,300	9.020	10.270	17.620
18	Compalitation	<u> </u>	kg/cm²	0.076	0.130	0.107	0.268
10	Consolidation Test	Cc	1,2,12,20	5 3 600			
19	N Value	Pc	kg/cm²				
'` -	THE PURISON OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PURISON OF THE		blow	3 3 3 3			
(alde	alssmg97/labluds/rb		<u> </u>	- 1 - 1			

Table 2.3 (8/43)

SUMMARY OF LABORATORY TEST RESULTS

PROJECT

LOCATION

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

FEATURE

AREA DESIGNATION:

		HOLE No.		, ,		RB - 24	RB - 25	RB - 28	RB - 28
ИО		DEPTH (m)		۵.		6.00 - 6.70	9.00 - 9.60	5.00 - 5.60	8.00 - 8.60
		GROUP SYMB	OL :	SYM	UNIT	CL	СН	CL	OL
				BOL			1 1		the shake
1	Spec	ific Gravity	<u></u>	G	<u> </u>	2.632	2.756	2.637	2.665
2	Natur	al Water Content	+ 1 + 1	Wn	%	39.59	36.38	42.72	37.98
3	Unit \	Weight, Natural St	ate	γm	√m^3	1.735	1.811	1.765	1.812
4	Dry L	Init Weight		γđ	Vm^3	1.243	1.328	1.237	1.313
5	Natu	al Void Ratio		е	<u>-</u>	1.118	1.075	1.132	1.029
6	Natu	ral Porosity		n	%	52.776	51.818	53,102	50.723
7	Degr	ee of Saturation	1.1.	Sr	%	93.238	93.229	99,489	98.331
8	Satur	ation of Water Co	ntent	Wsat	%	42.461	39.022	42.939	38.624
9	Satur	ation Unit Weight		γsat	Vm^3	1.771	1.846	1.768	1.820
10	Unco	nfined Compr. Str	ength	qu	kg/cm²				***************************************
11	Sens	ilivily		St				1.54	
12	Liquid	i Limit		LL.	%	49.64	68.18	48.43	40.68
13	Plasti	ic Limit		PL	%	25.93	28.65	26.67	23.21
14	Plast	icity Index		Pl.	%	23.71	39.53	21.76	17.47
15	Shrin	kage Limit		SL.	%	F 10 32		11/2 (5.15)	
16	% Pa	ssing 200 US Sta	nd Sieve	-	%	45.50	81.50	79.40	67.80
47.7		Triaxia	N App.	þ	deg			7.427	12.885
	U.U.	Compressio	n Test 💢	С	kg/cm²	4 1 1		0.077	0.183
17		Triaxial	Total	þ	deg	6.330	21.540		
	C.U.	Compression		С	kg/cm²	0.453	0.170		
		Test	Effective	\$	deg :	9.830	30.780		
		# 16 11 11 11 11 11 11 11 11 11 11 11 11		С	kg/cm²	0.428	0.146		
18	Cons	olidation Test		Сс		11 1 X 12 X	<u> </u>	11 154 144	0.172
	- 1 P			Pc	kg/cm²			No. 1 Tayle	1.2017
19	N Val	ue in a sec			blow	A SHAPE TO SHAPE		50	42
			· · · · · · · · · · · · · · · · · · ·						

f: c: data ssmg97 lab'uds'rb

Table 2.3(9/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

0

U D W R D (U.D.S.) SEMARANG, CENTRAL JAWA

-							
	HOLE No.			RB - 29	RB - 30	I RB - 51	RB - 51
NO	DEPTH (m)		and the second	4.00 - 4.50	4.50 - 4.90	4.00 - 4.70	7.00 - 7.65
	GROUP SYMBOL	SYM BOL	UNIT	ОН	СН	СН	СН
1	Specific Gravity	G	 	2,620	2.756	2,576	2.533
2	Natural Water Content	Wn	%	36.86	45.75	64,39	88.97
3	Unit Weight, Natural State	ym	Vm^3	1.809	1.819	1.567	1.581
4	Dry Unit Weight	γd	Vm^3	1.322	1.248	0.953	0.837
5	Natural Void Ratio	e	0111 0	0.982	1.208	1.702	<u> </u>
6	Natural Porosity	n n	%	49.550	54.716	62,996	2.028
7	Degree of Saturation	Sr	%	98.327	100.000		66.970
8	Saturation of Water Content	Wsat	%	37.487	45.750	97.431	100.000
9	Saturation Unit Weight	γsat	/m^3	1,817		66.088	88.970
10	Unconfined Compr. Strength	qu	kg/cm²	1,017	1.819	1.583	1.581
11	Sensitivity Sensitivity	St	Ryciti				V - :
12	Liquid Limit	LL	%	88.45	02.07	00.00	00.40
13	Plastic Limit	PL	%	25.00	83.97	90.29	99.16
14	Plasticity Index	Pi	/º %	63.45	26.09	26.34	29.89
15	Shrinkage Limit	SL	%	03.43	57.88	63.95	69.27
16	% Passing 200 US Stand Sieve		%	00.40	00.00	04.00	
	Triaxial	φ	deg	96.10 15.728	93,30	84.60	95.42
	U.U. Compression Test	C	kg/cm²	0.437	0.153	1.156 0.010	
17	Triaxial Tota	· · · · · · · · · · · · · · · · · · ·	deg	0.107	0.100	0.010	
	C.U. Compression	С	kg/cm²				
1	Test Effecti	}	deg				
18	Consolidation Test	C	kg/cm²			. <u></u>	
'	Consolidation Test	Cc Pc	kg/cm²				0.593
19	N Value	- -	blow				0.6069
3.1							
f: c:\dat	talesmg97/lab'uds'rb			L	<u></u>		لنـــــــــــــــــــــــــــــــــــــ

Table 2.3 (10/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT LOCATION FEATURE

: UDWRD (U.D.S.) : SEMARANG, CENTRAL JAWA

	HOLE No.				RB - 52	I RB - 52	RB - 52	
ИО	DEPTH (m		**	9 - 4	3.00 - 3.60	7.00 - 7.60	11.00 - 11.60	
2.3	GROUP SYME	BOL	SYM BOL	UNIT	СН	СН	СН	
1	Specific Gravity		G	-	2.655	2.659	2,753	
2	Natural Water Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wn	%	56.24	89.26	64,54	
3	Unit Weight, Natural S	late	ym	Vm^3	1.742	1.490	1.605	
4	Dry Unit Weight 💖 🐇	A. 41.42	γd	Vm^3	1.115	0.787	0.975	1
5	Natural Void Ratio	4 3 4	е	-	1.381	2.377	1.822	
6	Natural Porosity	1,1,5,4,5,5	ก	%	58.006	70.392	64.568	
7:	Degree of Saturation	1 3 4 4 1 4	Sr	%	100.000	99.830	97.503	
8	Saturation of Water Co	ntent	Wsat	%	56.240	89.412	66.193	
9	Saturation Unit Weight		ysal	₩^3	1.742	1.491	1.621	
10	Unconfined Compr. Str	englh	qu	kg/cm²			1.021	
11	Sensitivity		St	-			1 1736	
12	Liquid Limit		LL	%	67.22	85,44	92.72	
13	Plastic Limit		PL	%	26.44	38.27	28.81	
14	Plasticity Index		PI	%	40.78	47.17	63.91	
15	Shrinkage Limit		SL	%		11, 28 T 14/3		
16	% Passing 200 US Sta	nd Sieve		%	80.80	82.10	92.60	
	Triaxia		- ¢	deg	2.837	1.515	2.700	
	U.U. Compression	n Test	С	kg/cm²	0.055	0.011	0.009	
17	Triaxial	Total	þ	deg			10 10 10 10	
	C.U. Compression		С	kg/cm²				*
	Test	Effective	ф	deg	1			2 · 1 · 1 · 1 · 1 · 1 · 1
40			С	kg/cm²	10 10 64 71			14.3 A.2 \$
18	Consolidation Test		Cc	· · · · ·				. 1
	1117.1		Pc	kg/cm²				- 10
19	N Value			blow			Astronomic	
	a'ssmg97/lab'uds/rb							

Table 2.3 (11/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

1	HOLE No.			RB-1	RB - 1	DD 3	<u> </u>
NO	DEPTH (m)			7.55 - 8.00	12.55 - 13.00	RB - 2 3.55 - 4.00	RB - 2
	GROUP SYMBOL	SYM BOL	UNIT	OH	CH	Loammy Sand	CH
1	Specific Gravity	G	¥ - 4.	2.703	2.640	2.788	2.769
2	Natural Water Content	Wn	%	40.36	59.39	37.52	95.42
3	Unit Weight, Natural State	γm	t/m^3	1.852	1.677		
4	Dry Unit Weight	γd	t/m^3	1.319	1.052		
5	Natural Void Ratio	e		1.049	1.509		
6	Natural Porosity	n	%	51.185	60.146		
7	Degree of Saturation	Şr	%	100.000	100.000		
8	Saturation of Water Content	Wsat	%	40.360	59,390		
9	Saturation Unit Weight	γsat	₩^3	1.852	1,677		
10	Unconfined Compr. Strength	qu	kg/cm²		1 1 1	1.7.1.	
11	Sensitivity	St		7 - 1 -	1 1 1	74. T. A	
12	Liquid Limit	LL	%	51.02	124.92		124.04
13	Plastic Limit	PL	%	26.24	39.44		37.04
14	Plasticity Index	PI	%	24.78	85.48		87.00
15	Shrinkage Limit	SL.	%		3 - 11 - 1		
16	% Passing 200 US Stand Sieve	4.0	%	64.00	86.70	22.00	97.80
	Triaxial	φ	deg	ing the state of			
	U.U. Compression Test	C	kg/cm²				14.5
17	Triaxial Total	ф	deg		1 1 201 1		
	C.U. Compression Effective	C	kg/cm²			16.44	<u> </u>
	lest Ellective	_ ဗု	deg				<u> </u>
18	Consolidation Test	Cc	kg/cm²			- 181 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Pc	kg/cm²				
19	N Value		blow	3.00	6.00	3.00	0.00

Table 2.3 (12/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

NIO.	HOLE No.	1.1.	1 1 1 1	RB - 3	RB-3	RB - 4	RB - 4
МО	DEPTH (m)			4.55 - 5.00	14.55 - 15.00	3.50 - 4.00	6.55 - 7.00
	GROUP SYMBOL	SYM	UNIT	CH	CH	СН	CH
1	Specific County	BOL	743	2.54	<u> </u>		
	Specific Gravity	G	<u> </u>	2.783	2.713	2.677	2.680
2	Natural Water Content	Wn	%	75.81	83.32	48.13	60.08
3	Unit Weight, Natural State	γm	Vm^3				7,14, 4, 7,
4	Dry Unit Weight	γd	t/m^3			Brunghar	
5	Natural Void Ratio	е					
6	Natural Porosity	n	%				
7	Degree of Saturation	Sr	%				1 2 4 4 4
8	Saturation of Water Content	Wsat	%			7 (4 4 5 to 24 to	
9	Saturation Unit Weight	ysat	Vm^3				
10	Unconfined Compr. Strength	qu	kg/cm²	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1	34 6 1, 14 3 4 1 1 7
11	Sensitivity	St	- tg/ O//				
12	Liquid Limit	LL	%	101.60	109.37	00.44	
13	Plastic Limit	PL	%	34.94	——————————————————————————————————————	66.44	85.52
14	Plasticity Index	PI	%	66.66	31.96	30.46	29.03
15	Shrinkage Limit	SL	%	00.00	77.41	35.98	56.49
16	% Passing 200 US Stand Sieve	OL.		20.00			
	Triaxial		%	98.60	97.60	66.30	93.20
	U.U. Compression Test	<u>ф</u>	deg kg/cm²				
17	Triaxial Total	4	deg				· · · · · · · · · · · · · · · · · · ·
	C.U. Compression	С	kg/cm²				
	Test Effective	ø	deg				
8	Connelidation Tout	C.	kg/cm²				
'	Consolidation Test	Cc		3 44 44 4		17853	
9	N Value	Pc	kg/cm²				
-	TY FOIGE		blow	0.00	6.00	0.00	3.00
	n'semarang'sum *	l					A 10 1 1 1 1

Table 2.3 (13/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.					B - 5	RB·5	RB - 5	RB - 6
ИО	DEPTH (m)	<u> </u>	1000	T ::::::::::::::::::::::::::::::::::::		5 - 5.00		22.55 - 23.00	3.55 - 4.00
- 1	GROUP SYMBO	JI.	SYM BOL	UNIT		CH	СН	СН	СН
1	Specific Gravity	7.	G			2.553	2.750	2.546	2.655
2	Natural Water Content		Wn	%		49.11	88.00	38.88	47.82
3	Unit Weight, Natural Sta	ate	γm	t/m^3		. ,;		-N. 11 JN.	1 7 1
4	Dry Unit Weight	11,1 (44)	γd	Vm^3				S. 44 (7.4)	
5	Natural Void Ratio		е				1 1 1 1	40.00	
6	Natural Porosity		n	%	, ,				
7	Degree of Saturation	24 - 32	Sr	%	1				
8	Saturation of Water Cor	itent	Wsal	%				5 95 5.5	
9	Saluration Unit Weight	1	γsat	t/m^3				, a 1 (4 a 1 a 1	
10	Unconfined Compr. Stre	nglh	qu	kg/cm²				arata ta s	
11	Sensitivity		St	:, - i.			1	1.7 30 12 4	
12	Liquid Limit	No.	LL	%		70.31	113.16	90.99	57.58
13	Plastic Limit	1.3 / 2	PL	%	3	26.21	32.02	27.59	23.56
14	Plasticity Index	. 1 St. 5 at	PI	%	1 . 3	44.10	81.14	63.40	34.02
15	Shrinkage Limit		SL.	%	1				11.451
16	% Passing 200 US Stan	d Sieve	- ′.	%	, i i	86.90	93.40	98.10	69.80
	Triaxial		φ.	deg	11 1				ji v j.* i
,	U.U. Compression		СС	kg/cm²			N - N - N	5,41 8 8,3	garanta da ka
17	Triaxial	Total	<u>\$</u>	deg					1. i 21.
	C.U. Compression Test	Effective	C.	kg/cm²					1111
- 1	lest	Effective	<u> </u>	deg					
18	Consolidation Test	· · · · · · · · · · · · · · · · · · ·	C _C	kg/cm²					3 1 1
``	Consolidation Test		Pc	kg/cm²	3		1 1 1 1		
19	N Value		' '	blow		0.00	7.00	29.00	8.00
	The first section of the section of							20,00	3.00

Table 2.3 (14/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

AREA DESIGNATION:

		HOLE No.				RB-6	RB - 6	RB - 7	RB - 7
ИО		DEPTH (m)	And the second	. 14 4	5 11 5 75	9.55 - 10.00	16.55 - 17.00	3.55 - 4.00	14.55 - 15.00
		GROUP SYMB	OL	SYM	UNIT	СН	СН	СН	СН
				BOL	10 11 1		, superior de la companya de la comp		
1		ific Gravity	Tata Liv	G		2.619	2.663	2.657	2.636
2	Natu	al Water Content		Wn	%	90.47	43.59	67.24	69.35
3	Unit \	Weight, Natural St	ate	γm	Vm^3				1
4	Dry U	Init Weight		γd	t/m^3				
5	Natur	al Void Ratio		е	. · · · · ·		11.1		2 : 4 5 4
6	Natur	al Porosity		n	%		11 th 14 14 14		
7	Degree of Saturation			Sr	%			5,875,337.1	
8	Satur	ation of Water Co	nlent	Wsat	%			Every Year	
9	Saturation Unit Weight			γsat	t/m^3				1. 1. 1. 1.
10	Unco	nfined Compr. Str	ength	qu	kg/cm²	1.1	; .	\$1.7	
11	Sens	itivity . 🖖 📜 😁 .	For the EAST	St	5.0 .	1 1 1	2.5		9 1 4 1
12	Liquid	d Limit	1 1 1 1 1 1 1 1 1 1	LL	%	130.28	117.97	82.35	104.33
13	Plasti	c Limit		Pl.	%	35.15	27.38	25.52	24.75
14	Plasti	city Index		Ρĺ	%	95.13	90.59	56.83	79.58
15	Shrin	kage Limit		SL	%				
16	% Pa	ssing 200 US Sta		> ; -	%	99.20	96.60	82.20	97.90
	1	Triaxia	The state of the s	φ_	deg			1,1,1,4,4,4,1,4	s to early
	U.U.	Compressio		С	kg/cm²	1 171			50 to 50 to
17		Triaxial	Total	φ	deg				1 1 1
1	C.U.	Compression		С	kg/cm²			The second state	
		Test	Effective	φ.	deg			<u> </u>	
				C.	kg/cm²	<u> </u>			1. 1
18	Cons	olidation Test		Сс	1.5			L NAME OF	
				Рс	kg/cm²	1 1/4			
19	N Val	ue			blow	3.00	6.00	3.00	4.00
					27 - 27 - 7			_	

f: c: data semarang sum

Table 2.3 (15/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.				RB-8	RB - 8	RB-9	RB - 9
NC					2.55 - 3.00	5.55 - 6.00	4.55 - 5.00	19.55 - 20.00
	GROUP SYM	BOL	SYM BOL	UNIT	СН	СН	СН	СН
1	Specific Gravity	y to the light	G	- 1	2.750	2.704	2.779	2,656
2	Natural Water Conten	t e e e e	Wn	%	56.52	59.29	ŧ	46.48
3	Unit Weight, Natural S	State	γm	Vm^3			100	10.40
4	Dry Unit Weight		γd	Vm^3				
5	Natural Void Ratio	111111	е	1				
6	Natural Porosity		n	%				
7	Degree of Saturation	1.1.190.1.15	Sr:	%				
8	Saturation of Water Co	ontent	Wsat	%				1
9	Saturation Unit Weight	1	ysat	Vm^3.		7 7 + + 11		1 2 3 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10	Unconfined Compr. St	rength	qu	kg/cm²				Acres 40 A
11	Sensitivity		St	-				
12	Liquid Limit		LL	%	68.01	70.74	102.93	89.74
13	Plastic Limit		PL	%	22.17	21.13	21.53	21.15
14	Plasticity Index		Pl	%	45,84	49.61	81.40	68.59
15	Shrinkage Limit		SL	%				10.00
16	% Passing 200 US Sta	ind Sieve	-	%	93.50	81.70	94.80	98.40
	Triaxia		_ф	deg				00.40
	U.U. Compression		С	kg/cm²	ne ne trak iye. Ye			7 5 1
17	Triaxial	Total	φ_	deg	3		:	
	C.U. Compression		С	kg/cm²				
	Test	Effective		deg				
18	Consolidation Test		C	kg/cm²				
ľ	Consolidation rest		Cc Pc	kg/cm²				
19	N Value		-FG	blow	4.00	2 00	4.00	
				DION	4.00	3.00	1.00	13.00
f.c.do	ta'semarang'sum*					1		

- Table 2.3 (16/43) - 1511 4 15 14 14 15 15 15 15

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.	The second second					***	. W 4
NO	DEPTH (m	 			RB - 9	RB - 10	RB - 11	RB - 11
	GROUP SYME	201	I CVII	1 1333	23.55 - 24.00		4.55 - 5.00	17.55 - 18,00
	OKOOF STIME	OL.	SYM	UNIT	СН	СН	CH	CH:
1	Specific Gravity	4 10 10 10	BOL	 				
			G	- ;	2.762	2.776	2.666	2.646
2	Natural Water Conten		Wn	%	42.28	52.65	82.45	54.98
3	Unit Weight, Natural S	tate	γm.	Vm^3				
4	Dry Unit Weight		γd	Vm^3				
5	Natural Void Ratio		е	-				
6	Natural Porosity	n.	%					
7	Degree of Saturation		Sr	%				
8	Saturation of Water Co	ontent	Wsat	%				
9	Saluration Unit Weight		ysat	Vm^3		v - 1		
10	Unconfined Compr. Str	rength	qu	kg/cm²				
11	Sensitivity		St	- 1				
12	Liquid Limit		LL	%	80.91	96.91	96,82	73.79
13	Plastic Limit		PL	%	21.05	19.89	29.63	22.99
14	Plasticity Index		PI	%	59.86	77.01	67.19	50.80
15	Shrinkage Limit		SL	%				00.00
16	% Passing 200 US Sta		-	%	88.60	96.80	95.70	87.90
	Triaxia		þ	deg	Karal Fall			3.33
,,	U.U. Compressio		С	kg/cm²	Agriculture (30.73.76.7	
17	Triaxial	Total		deg	e ville (Ass			
	C.U. Compression		С	kg/cm²				
	Test	Effective	¢	deg	47 (14		F 18 15	2 × 2 × 2
18	Consolidation Test		C	kg/cm²	4 4		22 B H H H 35	
	Consultation Test		Cc					V 41 ; .4
19	N Value	2 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pc_	kg/cm²				
19	ia Agin6			blow	23.00	26.00	1.00	16.00
	la'semarang'sum*							
i. C. da	ia Semarano sum *		· .					

Table 2.3 (17/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT LOCATION

FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

	HOLE No.				RB - 11	RB - 12	RB - 12	RB - 13
NO	DEPTH (m)		2 J		20.55 - 21.00		14.55 - 15.00	4.55 - 5.00
	GROUP SYMB	OL	SYM BOL	UNIT	СН	СН	СН	СН
1	Specific Gravity		G	-	2.650	2.792	2.658	2.657
2	Natural Water Content		Wn	%	36.89	67.27	74.65	75.97
- 3	Unit Weight, Natural St	ale	γm	t/m^3	1			
4	Dry Unit Weight	Fig. 1	γd	t/m^3				
5	Natural Void Ratio		е	- 1				
6	Natural Porosity		n	%				
7	Degree of Saturation		Sr	%		:		
8	Saturation of Water Co	ntent	Wsat	%				
9	Saturation Unit Weight	18.18.2.2	γsat	Vm^3				
10	Unconfined Compr. Str	ength	qu	kġ/cm²	V i			
11	Sensitivity		St	15 J		1 1 1 1 1		
12	Liquid Limit		LL	%	86.49	74.00	101.11	120.71
13	Plastic Limit		PL	%	25.53	25.86	28.66	28.98
14	Plasticity Index		PI	%	60.96	48.14	72.46	91.73
15	Shrinkage Limit		SL	%				· · · · · · · · · · · · · · · · · · ·
16	% Passing 200 US Star	nd Sieve	- :	. %	86.70	85.50	93.40	92.40
	Triaxial		ģ	deg				7, 1
	U.U. Compression		С	kg/cm²	4 3 5 6			
17	Triaxial	Total	. •	deg	<u> </u>			
	C.U. Compression		C	kg/cm²				
	Test	Effective		deg			4 (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
10	Cossellation	et e a	_c	kg/cm²		ata atau atau		
18	Consolidation Test		Cc					
	MAZAL	Pc	kġ/cm²	4.4				
19	N Value			blow	> 50.00	3.00	3.00	3.00
	a'semarang'sum*							

Table 2.3 (18/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.							4 1	RB - 14	1 6	B - 15
NO	DEPTH (m			e despiration	6.55	- 13 - 7.00	RB - 1-		14.55 - 15.00		55 - 4.00
	GROUP SYM	BOL	SYM BOL	UNIT	C		СН	Ť	CH	1	CH
1	Specific Gravity		G	-		2.672	2.6	19	2.750	\vdash	2.671
2	Natural Water Conten	1 4 4 5	Wn	%		74.93	51.		63.57		49.66
3	Unit Weight, Natural S	State	γm	Vm^3					00.07		49.00
4	Dry Unit Weight		γd	t/m^3	 						
5	Natural Void Ratio		e		-						
6	Natural Porosity		n	%				\dashv			1 (14 ³).
7	Degree of Saturation	Sr	%						7	-	
8	Saturation of Water Co	onlent	Wsat	%				-+			
9	Saturation Unit Weight	γsat	t/m^3				\dashv	Andreas Communication	1.3	8 7 5 1 7 8	
10	Unconfined Compr. Strength		qu	kg/cm²					<u> </u>		
11	Sensitivity		St					-	- V + 11214		1 1 1 1 1 Sal
12	Liquid Limit		LL	%	11	6.15	122,9	01	104.25		440.04
13	Plastic Limit		Pl.	%		2.70	25.4		25.00		116.91
14	Plasticity Index		PI	%	·	3.44	97.4		79.25		33.52
15	Shrinkage Limit		SL	%		3.44	31.4	-	79.25	1 9	83.39
16	% Passing 200 US Sta	nd Sieve		%	<u> </u>	7.00	96.1		00.70	-11:	20.50
	Triaxia		φ	deg		7.00	90.1		96.70		66.50
	U.U. Compressio	n Test	C	kg/cm²	-			-			
17	Triaxial	Total	þ	deg	4			_ -			-
- /	C.U. Compression		С	kg/cm²	1 - 1	24 11	1 3 1 1				
	Test	Effective	ф	deg	1		1000	7		:	
		2 2 3 4 22	C	kg/cm²	1 14 3		1 1		67.25	7.7	1 411 (
18	Consolidation Test		Cc		VI I			\top			
			Pc	kg/cm²			3 15 Jan 5		703.71		1 111
19	N Value			blow	:	3.00	7.0	0	6.00	<u> </u>	3.00
	a semarang sum*	<u>_a</u>	i graci		7.7			_	FV, 4, 7	.5+4	

Table 2.3 (19/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION FEATURE

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

	I	HOLE No.				RI	3 - 15	RB - 16	RB - 16	RB - 17
NO		DEPTH (m))				5 - 15.00		14.55 - 15.00	3.55 - 4.00
		GROUP SYMI	BOL	SYM BOL	UNIT	-	СН	СН	СН	CH
1_1_	Spe	cific Gravity	1.30	G	-		2.686	2.751	2.635	2,537
2	Natu	ıral Water Conten	l 1	Wn	%		49.46	82.83	59.85	79.60
3	Unit	Weight, Natural S	late	ym	Vm^3	1 .			00.00	1.648
4	Dry	Unit Weight		γd	Vm^3					0,918
5	Natu	ıral Void Ratio		е		1	-			1.765
6	Natu	ral Porosity		n	%					63,832
7	Deg	ree of Saturation		Sr	- %					100.000
8	Salu	ration of Water Co	ontent	Wsat	%	-				79,600
9	Saturation Unit Weight			ysat	Vm^3		7			1,648
10	Unconfined Compr. Strength			qu	kg/cm²					1.040
11	Sensitivity Sensitivity			St						
12	Liqui	d Limit		LL.	%		82.13	96.23	81.97	100.85
13	Plasi	ic Limit		ÞΓ	%	- 40	25.00	32.93	25.50	38.69
14	Plasi	icity Index	A 1 3.8 %	PI	%		57.13	63.30	56.47	62.16
15	Shrin	kage Limit		SL	%				00.11	- OZ.10
16	%Pa	ssing 200 US Sta	nd Sieve	•	%		87.40	92.90	92.60	85.70
		Triaxia	1 1	φ	deg				02.00	03.70
	U.U.	Compressio	~~~~	C	kg/cm²		84 x 7	H 1949 A 13	N. 4 9 W	
17		Triaxial	Total	þ_	deg			\$5.60 (2.27)		
	C.U.	Compression		_ C :	kg/cm²			1.8 1.9		
		Test	Effective	ф	deg			2	No.	
18	Co	olidalian Tast		C	kg/cm²	\$		Date Stage	east are a line of the	
10	Consolidation Test			Cc	1. (<u> </u>	24/12/15			
19	At Volum			Pc	kg/cm²	- 1				
19	N Value				blow		24.00	3.00	18.00	>50.00
	<u> </u>	ang sum*			19. As	31 E			<u> </u>	

At 1 Table 2.3 (20/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.							
NO	DEPTH (m)			-	RB - 17	RB - 17	RB - 17	RB - 18
100	GROUP SYMBOL		TSYM	TINU	5.55 - 6.00 CH	16.55 - 17.00	27.55 - 28.00	3.55 - 4.00
			BOL		Un .	СН	CH	CH
1	Specific Gravity		G		2.661	2.584	2.554	2.555
2	Natural Water Content		Wn	%	52.77		42.46	
3	Unit Weight, Natural State		γm	Vm^3	1.760		1.784	50.96
4	Dry Unit Weight		γd	Vm^3	1.152	1.369		1.733
5	Natural Void Ratio		е		1.310	 	1.252	1.148
6	Natural Porosity		n	%	56.706	0.887 47,015	1.039	1.226
7	Degree of Saturation		Sr	%	100.000		50.968	55.069
8	Saturation of Water Content		Wsat	%	52.770	100.000	100.000	100.000
9	Saturation Unit Weight		ysat	t/m^3		35.560	42.460	50.960
10	Unconfined Compr. Strength				1.760	1.856	1.784	1.733
11	Sensitivity		qu St	kg/cm²				
12	Liquid Limit		LL		1		441123	1.1
13	Plastic Limit			<u>%</u>	69.71	54.98	74.80	74.49
14	Plasticity Index	-	PL	%	28.49	28.07	31.33	23,43
15	Shrinkage Limit		PI	%	41.22	26.91	43.48	51.06
16			SL	%				
	% Passing 200 US Stand Sie	eve		%	76.80	66.50	93.10	66.00
	U.U. Compression Tes	. 1	<u>-\$_</u>	deg			14 14 14 14	
17		tal	c 6	kg/cm² deg				
	C.U. Compression	^~"	O I	kg/cm²				
	Test Effe	clive	ø	deg	, 			
18	Constitution		С	kg/cm²	<u> </u>	* - 1		- 1 10 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
10	Consolidation Test	-	Cc	1,				
19	N Value		Pc	kg/cm²				
	· · · · · · · · · · · · · · · · · · ·			blow	42.00	0.00	6.00	3.00
i cilda	ta'semarang'sum*							

Table 2.3 (21/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.				RB - 18	RB - 18	RB - 19	RB - 19
ЙО	DEPTH (m)		\$ 5 TE		5.55 - 6.00	17.55 - 18.00		8.55 - 9.00
	GROUP SYMBO)L	SYM BOL	UNIT	СН	СН	СН	ОН
1	Specific Gravity	, 4 s , 12	G		2.595	2.617	2.730	2.707
2	Natural Water Content		Wn	%	60.92	40.67	46.65	46.64
3	Unit Weight, Natural Sta	le	γm	Vm^3	1.743	1.768	1.703	1.760
4	Dry Unit Weight		γd	₹/m^3	1.083	1.257	1.161	1.200
5	Natural Void Ratio	1 1 1 1 1 1	е	-	1.396	1.082	1.351	1.255
6	Natural Porosity		n	%	58.260	51.974	57.463	55.662
7	Degree of Saturation	J. M. S. S.	Sr	%	100.000	98.349	94.275	100,000
8	Saturation of Water Cor	itent	Wsat	%	60.920	41.353	49.483	46.640
9	Saturation Unit Weight	11.7.1	γsat	t/m^3	1.743	1.777	1.736	1.760
10	Unconfined Compr. Stre	ngth	qu	kg/cm²				
11	Sensitivity	et lines.	St	- 1	1			
12	Liquid Limit		ll	%	57.19	123.62	83.42	54.39
13	Plastic Limit		PL	%	23.98	40.85	27.47	42.03
14	Plasticity Index		Ы	%	33.21	82.76	55.94	12.36
15	Shrinkage Limit		SL	%				
16	% Passing 200 US Stan	d Sieve	•	%	91.50	93.90	87.10	53.60
,1	Triaxial		ģ	deg				
47	U.U. Compression		С	kg/cm²			e ukuleari la liiti	
17	Triaxial C.U. Compression	Total	Ø	deg				
	Test	Effective	<u>C</u> .	kg/cm²		N 1		
	lest	Ellective	ф С	deg kg/cm²	-			
18	Consolidation Test		Cc	Ag/Citi				<u> </u>
<i>[]</i>			Pc	kg/cm²				
19	N Value			blow	3.00	>50.00	7.00	13.00
								20.00

Table 2.3 (22/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.				RB - 19	RB - 20	I RB - 20	RB - 20
МО	DEPTH (m	ere en en en en	1150		14.55 - 15.00	2.55 - 3.00	6.55 - 7.00	12.55 - 13.00
2.5 2.5	GROUP SYME	OL	SYM BOL	UNIT	ОН	СН	CL	СН
1	Specific Gravity		G	-	2.623	2.629	2.679	2.602
2	Natural Water Content		Wn	%	58.26	48.24	46.77	57.41
3	Unit Weight, Natural S	late	γm	t/m^3	1.725	1.795	1.721	1.662
4	Dry Unit Weight	1 1 4 5 1 1 N	γď	Vm^3	1.090	1.211	1.173	1.056
5	Natural Void Ratio		е		1,406	1,171	1.285	1.464
6	Natural Porosity		n:	%	58.445	53.942	56.231	59,422
7	Degree of Saturation		Sr	%	100.000	100,000	97.530	100.000
8	Saturation of Water Co	ntent	Wsat	%	58,260	48.240	47.954	57.410
9	Saturation Unit Weight		ysat	1/m^3	1.725	1.795	1.735	1,662
10	Unconfined Compr. Str	qu	kg/cm²			1.100	1.002	
11	Sensitivity		St					
12	Liquid Limit	di seletifici della	LL	%	80.54	76.07	37.02	73.79
13	Plastic Limit		PL	%	42.58	22.99	23.04	30.52
14	Plasticity Index		PI.	%	37.96	53.08	13.99	43.27
15	Shrinkage Limit		SL	%	- 0.00	00.00	10.00	43.21
16	% Passing 200 US Sta	nd Sieve		%	90.70	83.00	71.50	87.90
2.54 S	Triaxia		ф	deg			71.00	07.50
	U.U. Compressio	n Test	С	kg/cm²				
17	Triaxial	Tolal	ø	deg	4.14	V.		
	C.U. Compression	gradina di	С	kg/cm²	1 1 1			
	Test	Effective	ф	deg		an griff and his		
			C >	kg/cm²				10 10 10 10
18	Consolidation Test	1.00	Cc				3 3 - 3 - 3	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			Pc	kg/cm²		12 4 7 5 6	1 8 4 1 4	
19	N Value			blow	19.00	6.00	3.00	3.00
	la'semarang'sum*			_nusi.]				10.00

Table 2.3 (23/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

		HOLE No.				RB - 21	RB - 21	RB - 21	RB - 21
ИО		DEPTH (m			A 10 10 10 10 10 10 10 10 10 10 10 10 10	4.55 - 5.00	6.55 - 7.00	13.55 - 14.00	
		GROUP SYME	BOL	SYM BOL	UNIT	CL	CH	CH	CH
1	Spec	cific Gravity		G	-	2.637	2.577	2.706	2.624
2	Natu	ıral Water Content		Wn	%	41.28	52.70	60,30	40.59
3	Unit	Weight, Natural S	late	γm	Vm^3	1.891	1.733	1.668	1.655
4	Dry I	Unit Weight		γd	Vm^3	1.338	1.135	1.041	1.177
5	Natu	ral Void Ratio		е	- "	0.970	1.271	1,601	1.229
6	Natu	ral Porosity		n	%	49.242	55,960	61.547	55.138
7	Degr	ee of Saturation	40 100	Sr	%	100.000	100.000	100.000	86,659
8	Satu	ration of Water Co	ntent	Wsat	%	41,280	52,700	60.300	46.839
9	Satu	Saturation Unit Weight			Vm^3	1.891	1.733	1.668	1.729
10		Unconfined Compr. Strength			kg/cm²	1.001	1.155	1,000	1.729
11		sitivity		qu St	1.3. 0	4 1 1 4 4			3. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12	Liqui	d Limit		LL	%	45.19	71.42	83.69	76.53
13	Plast	ic Limit		PL	%	21.13	31.40	34.36	
14	Plast	icity Index		PI	%	24.07	40.02	49.33	30,12
15	Shrin	kage Limit		SL	%	24.01	40.02	49.33	46.41
16		ssing 200 US Sta	nd Sieve		%	46.80	78.50	79.30	00.00
		Triaxia		4	deg	40.00	70.30	79.30	93.30
	U.U.	Compression	n Test	С	kg/cm²	in the state of th			
17		Tnaxial	Total	ф	deg	11 1 1 1 1 1			
, -> [C.U.	Compression	<u> </u>	С	kg/cm²				
		Test	Effective	φ	deg				
18		elidaliaa Taal		C	kg/cm²	1000	4 114 4		
10	Cons	olidation Test		Cc	1.7.3	\$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
19	N Val	uó		Рс	kg/cm²				
	14 491	uo			blow	3.00	6.00	7.00	30.00
		ang sum*					and the second	47 × 1	

Table 2.3 (24/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

		HOLE No.			is a second	RB - 22	RB - 22	RB - 22	RB - 22
NO	·	DEPTH (m)				2.55 - 3.00	6.55 - 7.00	12.55 - 13.00	
		GROUP SYMB	BOL	SYM BOL	UNIT	СН	СН	СН	CH
1		cific Gravity		G	-	2.583	2.736	2.559	2.652
2	Natu	ral Water Content		Wn	%	52.44	59.20	51.23	43.70
3	Unit	Weight, Natural St	lale	ym	Vm^3	1.704	1.689	1.757	1.553
4	Dry (Jnit Weight		γd	Vm^3	1.118	1.061	1.162	1.081
5	Natu	ral Void Ratio		e	-	1.311	1.579	1,203	1.454
6	Natu	ral Porosity		n	%	56.724	61.223	54.599	59.249
7	Degr	Degree of Saturation			%	100,000	100.000	100,000	79.711
8	Satu	Saturation of Water Content			%	52,440	59.200	51.230	54.823
9	Saturation Unit Weight			Wsat ysat	t/m^3	1.704	1.689	1.757	
10		onfined Compr. Str		qu	kg/cm²	1.104	1.009	1.131	1.673
11		itivity		St	- rigitalii				
12	Liqui	d Limit		LL	%	71.89	86.36	70.50	20.01
13		ic Limit		PL	%	27.85		79.59	98.94
14		icity Index		PI	%	44.05	27.68	32.34	30.67
15		kage Limit		SL	<i>%</i>	44.03	58.69	47.25	68.27
16		assing 200 US Sta	nd Sieve	OL.	%	00.40	30.00		
		Triaxia		φ	deg	83.10	88.90	90.90	97.10
	U.U.	Compressio		C C	kg/cm²				
17		Triaxial	Total	d d	deg				
	C.U.	Compression		С	kg/cm²	\$ - 3	1 6 3 3 3		417)
		Test	Effective	_ ģ	deg		Programa i		
18	Cons	olidation Test		C	kg/cm²				
``	00113	Ollog(011 185)		Cc Pc	kg/cm²				21,5 1 1 5
19	N Value		10	blow	3.00	2 00	2 00		
\$10.					DIOW	3,00	3.00	3.00	29.00
f: c:\dat	alsemor	ang\sum*			1 F- 115				

Table 2.3 (25/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

UDWRD (S.P.T) SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.		-	RB - 23	RB - 23	1 66 65	-
NO	DEPTH (m)			6.55 - 7.00		RB - 23	RB - 24
	GROUP SYMBOL	SYM BOL	UNIT	CL	CH	CH	2.55 - 3.00 CH
1	Specific Gravity	G G		2.684	2.610	2.635	2.639
2	Natural Water Content	Wn	%	41.81	43.89	35.70	
3	Unit Weight, Natural State	γm	t/m^3	1.774	1.782	1.874	44.61
4	Dry Unit Weight	γd	1/m^3	1.251	1.238	 	
5	Natural Void Ratio	e	1	1.146		1.381	
6	Natural Porosity	n	%		1.107	0.908	<u> </u>
7	Degree of Saturation		ļ	53.392	52.550	47.591	
8	Saturation of Water Content	Sr	%	97.961	100.000	100.000	3,4 %
9		Wsat	%	42.680	43.890	35.700	
	Saturation Unit Weight	γsat	Vm^3	1.785	1.782	1.874	
10	Unconfined Compr. Strength	Qu	kg/cm²				
11	Sensitivity	St	_				
12	Liquid Limit	" LL	%	46.78	50.51	67.50	73.53
13	Plastic Limit	PL.	%	22.80	22.86	28.05	25.00
14	Plasticity Index	PI	%	23.98	27.65	39.45	48.53
15	Shrinkage Limit	SL	%	1.3		- 00.40	40.55
16	% Passing 200 US Stand Sieve		%	50.70	52.40	97.40	00.50
ing.	Triaxial	8	deg	00.70	32.40	87.10	90.50
	U.U. Compression Test	C	kg/cm²				
17	Triaxial Total	ф	deg		10. 1 1.		
	C.U. Compression Fffection	С	kg/cm²				
	Test Effective		deg				
18	Consolidation Test	C Cc	kg/cm²		1		
		Pc	kg/cm²	2 4 2			The little
19	N Value		blow	11.00	8.00	> 50.00	
					0.00	- 50.00	1-13 C 1 .
: c:\dat	a'semarang'sum*				!		

Table 2.3 (26/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

: UDWRD (SPT)
: SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.	-	-					<u>. </u>
NO	DEPTH (m)				RB - 24	RB - 25	RB - 25	RB - 26
. !	GROUP SYMBO	<u> </u>	SYM	UNIT	12.55 - 13.00		12.55 - 13.00	
	Bangara Pagaran		BOL	Civil	Loamy Sand	СН	CH	СН
1	Specific Gravity		G		2.750	2.574	2.572	
2	Natural Water Content		Wn	%	35.61	44.06	}	2.645
3	Unit Weight, Natural Sta	ite	γm	Vm^3	33.01	 	44.46	68.17
4	Dry Unit Weight		γd	t/m^3	100	1.791	1.788	
5	Natural Void Ratio		e	Units		1.243	1.238	
6	Natural Porosity		<u> </u>		<u> </u>	1.070	1.078	
7	Degree of Saturation		, n	%		51.700	51.877	
8			Sr	%		100.000	100.000	
	Saturation of Water Con	tent	Wsat	%		44.060	44.460	
9	Saturation Unit Weight	<u> 1541 - 441 13</u>	γsat	Vm^3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.791	1.788	
10	Unconfined Compr. Street	ngth	qu	kg/cm²				
11	Sensitivity		St					
12	Liquid Limit		l.L	%	_	102.05	76.89	112.64
13	Plastic Limit		PL	%		25.71	26.76	
14	Plasticity Index		PI	%		76.34		27.50
15	Shrinkage Limit		SL	%	7	70.34	50.13	85.14
16	% Passing 200 US Stand	1 Sieve				14, 37, 14		
	Tnaxial	JOICVE		<u>%</u>	27.20	92.30	95.60	98.20
	U.U. Compression	Test	ф С	deg kg/cm²				
17	Triaxial	Total	ġ.	deg				
	C.U. Compression	<u> </u>	С	kg/cm²		Asplication		
	Test	Effective	· d	deg				
18	Consolidation Test		C	kg/cm²	i vadi s		संद्राम्य है ।	
``	Consolination 162f		Cc Pc	1:013		\$ 10,000		
19	N Value		PC	kg/cm²				
				blow	34.00	10.00	16.00	13.00
21/24	a'semarano yum*						A SAME	

Table 2.3 (27/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

AREA DESIGNATION:

	HOLE No.		1 1 1		RB - 26	RB - 27	RB - 27	RB - 28
NO	DEPTH (m)		eta ka	a tract	14.55 - 15.00		11.55 - 12.00	4.55 - 5.00
	GROUP SYMB	OL	SYM	UNIT	СН	Loamy	Loamy	СН
	to the second se		BOL			Sand	Sand	
1	Specific Gravity	The second second	G	-	2.500	2.782	2.736	2.636
2	Natural Water Content		Wn	%	55.58	36.72	46,47	26.81
3	Unit Weight, Natural Sta	ate	γm	₩^3		1.656	1.661	
4	Dry Unit Weight		γd	Vm^3		1.211	1.134	N 1 1 1
5	Natural Void Ratio		ę	-		1.297	1.413	Hatti X
6	Natural Porosity		n	%		56.462	58,552	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7	Degree of Saturation		Sr	%		78.773	90.002	\$40 10 3
8	Saturation of Water Cor	ntent	Wsat	%		46,615	51.632	
9	Saturation Unit Weight		ysat	Vm^3		1.776	1.720	1000
10	Unconfined Compr. Stre	ength	qu	kg/cm²			Pro Marija	
11	Sensitivity	Department	St	-		the state		7.44
12	Liquid Limit		LL	: %	81.57	· · ·		50.87
13	Plastic Limit		PL	%	29.41		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.36
14	Plasticity Index		PI	%	52.16		1. 1 - 1. 1	28.51
15	Shrinkage Limit		SL	%			334534	
16	% Passing 200 US Star	nd Sieve	-	%	97.50	15.70	25.80	62.60
1.5	Triaxia		ф	deg				
	U.U. Compression		С	kg/cm²		Miking tip	1 18 A 2	
17	Tnaxial	Total	þ	deg			19. 144	general de la
	C.U. Compression		С	kg/cm²		Section 1995	as trybas et al. 1	
	Test	Effective	þ	deg			y \$6.50 p. 1	
18	Consolidation Test	<u> </u>	C	kg/cm²		<u> </u>		i i
10	Consultation rest		Cc Pc	lealans?		<u> </u>	(2) A 1 of (2) (4.8)	
19	N Value		PC	kg/cm² blow	44.00	50,00	50.00	7.00
H	Le regre (Milyste) to get a			UIUW	44.00	30.00	30.00	

f: c:\data\semarang\sum*

Table 2.3 (28/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION **FEATURE**

UDWRD (SPT) SEMARANG, CENTRAL JAWA

NO	HOLE No.	7.1		RB - 29	DD 00		, in the second
IVU	DC[11] ([1])			2.55 - 3.00	RB - 29	RB - 30	RB - 30
	GROUP SYMBOL	SYM	UNIT	CH	9.55 - 10.00 CH	3.55 - 4.00 CH	9.55 - 10.0 CH
1	Specific Gravity	G	 	2.538			
2	Natural Water Content	Wn	%	}	2.552	2.620	2.51
3	Unit Weight, Natural State		Vm^3	42.21	52.97	36.91	55.1
4	Dry Unit Weight	γm	 				7.4
5	Natural Void Ratio	γd	Vm^3				.45 7
6	Natural Porosity	e		1 1 1 1 1			
7	Degree of Saturation	n	%		1 44.7		
8	Saturation of Material	Sr	%				
9	Saturation of Water Content	Wsat	%				
10	Saturation Unit Weight	γsat	ľ/m^3				
	Unconfined Compr. Strength	qu	kg/cm²		- 1		
11	Sensitivity	St					
12	Liquid Limit	LL	%	64.83			
13	Plastic Limit	Pl.	%		80.66	84.49	82.0
14	Plasticity Index	PI	%	23.74	22.94	24.73	26.52
5	Shrinkage Limit			41.08	57.72	59.77	55.52
6	% Passing 200 US Stand Sieve	SL	%				
	Triaxial Triaxial		%	79.10	90.30	88.70	91.20
	U.U. Compression Test	<u> </u>	deg			- C 94 5 %	
7	Triaxial Total	C \$	kg/cm² deg			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	C.U. Compression	-v	kg/cm²	-	<u> </u>	popular erese i	
	Test Effective	ø	deg				
8	Consolidation Test	С	kg/cm²			grand grand a	
·	Consolidation 1881	Cc				12.00	<u> </u>
9	N Value	Pc	kg/cm²	1 145 1 1			<u></u> 된 28 10 출 중
+			blow	6.00	7.00	23.00	8.00
dos	o'semorang'sum					2 10 20 20 20	

Table 2.3 (29/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

<u>.</u>	HOLE No.			100	RB - 31	RB - 31	RB - 31	DD 35
ИО	DEPTH (m			· · · · · · · · · · · · · · · · · · ·	2.55 - 3.00	8.55 - 9.00		RB - 32
	GROUP SYME	30L	SYM BOL	UNIT	СН	Loamy Sand	Loamy Sand	Loamy Sand
1	Specific Gravity		G	7 : - 1	2.526	2.887	2.850	2.779
2	Natural Water Content		Wn	%	36.56	13.18	8.17	
3	Unit Weight, Natural S	tate	ym	Vm^3	30.00	10.10	0.17	26.57
4	Dry Unit Weight		γd	Vm^3				
5	Natural Void Ratio		8	-				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
6	Natural Porosity		n	%				1991 (S
7	Degree of Saturation		Sr	%			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
8	Saturation of Water Co	onlent	Wsat	%		- 1 C		
9	Saturation Unit Weight		ysat	Vm^3				
10	Unconfined Compr. Str		qu	kg/cm²		and the second		
11	Sensitivity		St	Ngrom				
12	Liquid Limit		LL	%	78.91	The second second	14.2	
13	Plastic Limit	1 1 2 2 2 2 2	PL	%		-	-	•
14	Plasticity Index		PI	%	26.63	-	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<u> </u>
15	Shrinkage Limit		SL	%	52.28	-		<u> </u>
16	% Passing 200 US Sta	nd Ciovo	OL.				1,274 (2)	
- T	Triaxia			%	77.00	11.90	23.31	17.80
	U.U. Compressio		ģ C	deg kg/cm²		2.5		3.51.1.1
17	Triaxial	Total		deg			2 15 To 1	
	C.U. Compression	1	C	kg/cm²				
	Test	Effective	ø	deg	1 14 14 1			
18	Consolidation Test		C	kg/cm²			36.5	2 2 2
·	Consolidation 162[Cc Pc	le=(a==2				3 }
19	N Value	Andrew Andrew Andrews	PC	kg/cm²	40.00			4-2-3-1
2				blow	10.00	46.00	50.00	24.00
014	alsemarang'sum*		1000	And the second				sa a yaƙ

Table 2.3 (30/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

UDWRD (SPT)

LOCATION

SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.				RB - 32	RB - 33	RB - 33	00 33
ИО	DEPTH (m				12.55 - 13.00		6.55 - 7.00	R8 - 33
	GROUP SYME	BOL	SYM BOL	UNIT	СН	CH	Loamy Sand	CH
1	Specific Gravity		G	c	2.725	2.625	2.855	2.765
2	Natural Water Content		Wn	%	38.17	51.58	14.12	43.21
3	Unit Weight, Natural S	late	γm	₩^3			17,12	40.21
4	Dry Unit Weight		γď	Vm^3				
5	Natural Void Ratio		e					
6	Natural Porosity		n	%				14 m - 1 m
7	Degree of Saturation		Sr	%	a la			
8	Saturation of Water Co	ntent	Wsat	%				
9	Saturation Unit Weight		γsat	t/m^3		20 10 1		
10	Unconfined Compr. Str	ength	qu	kg/cm²		2 4 4 4		<u> </u>
11	Sensitivity		St	- 3				
12	Liquid Limit		LL	%	62.66	72.83		
13	Plastic Limit		PL	%	21.18	25.79		61.01
14	Plasticity Index		PI	%	41.48	47.04	•	26.49
15	Shrinkage Limit		SL	%	41.40	47.04		34.52
16	% Passing 200 US Sta	nd Sieve		%	57.90	05.40	43.70	
Tail	Triaxia		ф	deg	31.30	85.10	17.70	90.60
	U.U. Compressio		С	kg/cm²			, , , ,	4 1 1 7 1
17	Triaxial	Total	\$	deg	To design	3 44,33		
	C.U. Compression Test	F. 11	С	kg/cm²	1 2 2 2 2			
	1651	Effective	ф	deg	2			E Letter
18	Consolidation Test		Cc Cc	kg/cm²		Principal Control		10
1			Pc	kg/cm²				
19	N Value		Ť	blow	> 50.00	3.00	20.00	40.00
					00.00	3.00	20.00	13.00
c:\dat	alsemaranglsum*		 -					

Table 2.3 (31/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT

LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

	HÖLE No.				RB - 34	I RB - 34	RB - 35	RB - 35
NO	DEPTH (m				3.55 - 4.00	7.55 - 8.00	3.55 - 4.00	8.55 - 9.00
	GROUP SYME	BOL	SYM	UNIT	CL	CH	CH	9.55 - 9.00 Sand
			BOL			Hera Taras		Valid
1	Specific Gravity	Company of the	G		2.785	2.685	2.738	2.747
2	Natural Water Content		Wn	%	34.49	39.28	42.96	17.22
3	Unit Weight, Natural S	late	γm	Vm^3			1,665	1.884
4	Dry Unit Weight		γd	Vm^3	1 1		1,165	1.607
5	Natural Void Ratio		е	-			1.351	0.709
6	Natural Porosity		n	%			57.463	41.491
7	Degree of Saturation		Sr	%			87.071	66.705
8	Saturation of Water Co	ntent	Wsat	%		7 7 77	49.339	25.815
9	Saturation Unit Weight		γsat	Vm^3			1.739	2.022
10	Unconfined Compr. Str	ength	qu	kġ/cm²				2.022
11	Sensitivity		St	-	7 (5 1 1)			
12	Liquid Limit	i	LL	%	37.65	88.06	74.74	
13	Plastic Limit		PL	%	21.70	25.75	30.43	
14	Plasticity Index		Pl	%	15.95	62.31	44.31	_ :
15	Shrinkage Limit		SL.	%				
16	% Passing 200 US Sta	nd Sieve	-	%	34.80	91.20	77.40	5.50
	Triaxia	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ф	deg				0.00
	U.U. Compressio		С	kg/cm²		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
17	Triaxial	Total	. •	deg	1,12			, °
	C.U. Compression		c	kg/cm²				
	Test	Effective	_ \$	deg				
18	Conselidation To 1		С	kg/cm²	<u>. 74) </u>			- 4.2. A E - 5
10	Consolidation Test		Cc					
19	Al Mahan		Pc	kg/cm²	The substitute	<u> </u>	ji kara ya	
19	N Value			blow	7.00	15.00	8.00	> 50.00
	u'semarang\sum*					and the second		A Section 1

Table 2.3 (32/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION **FEATURE**

UDWRD (SPT) SEMARANG, CENTRAL JAWA

		HOLE No.		:		RB - 36	RB - 36	RB - 37	1 00 07
ИО		DEPTH (m				3.55 - 4.00	8.55 - 9.00	3.55 - 4.00	RB - 37
		GROUP SYME	3OL	SYM	UNIT	Loamy	Loamy	CH	9.55 - 10.00 CL
<u> </u>	<u> </u>	1 · 1	e sue de la company	BOL	1 1 11	Sand	Sand		, CL
1		cific Gravity		G		2.833	2.857	2.754	2.531
2	Nati	ıral Water Content		Wn	%	19.46	9.06	40.33	29,49
3		Weight, Natural S	tate	γm	Vm^3			1.820	1.848
4	Dry	Dry Unit Weight		γd	t/m^3			1.297	1.427
5		Natural Void Ratio		е	-			1.123	0.773
6	Natu	Natural Porosity			%			52,907	43.614
7		ree of Saturation		Sr	%			98.864	96,498
8	Satu	ration of Water Co	ontent	Wsat	%			40.794	30.560
9	Satu	ration Unit Weight	11 199	ysal	t/m^3			1.826	1.863
10	Unc	onfined Compr. St	rength	qu	kg/cm²	42.00		1.020	1.003
11	Sen	sitivity		St					
12		id Limit	1. 1. 1. 4.	LL.	%			80.59	38.33
13		tic Limit		PL	%			26,58	19.41
14		licity Index		Ы	%	_	•	54.01	18.92
15	Shrir	ıkage Limit		SL	%			1 1 10	10.92
16	% Pa	assing 200 US Sta	nd Sieve	-	%	24.40	14.70	87.90	32.20
7		Triaxia		b	deg			07.50	
4.	U.U.	Compressio	n Test	С	kg/cm²		194.1 9, 195		
17-	A.I.	Triaxial	Total	φ.	deg				
	C.U.	Compression	4 500 6	C	kg/cm²			10.00	100
		Test	Effective	þ	deg	1.5	N. 1. 1	10.04	1.54
18	Cons	olidolian Taul	<u> </u>	С	kg/cm²				
	Consolidation Test			Cc			<u> </u>	0.6 - 2030	A 4 2 4- 3 12
19	N Value			Рс	kg/cm²	territor y	1 1 1 1 1 1 1	44	
13	N value				blow	5.00	48.00	10.00	24.00
		ang sum*				1 1			1 4 4 1 3

Table 2.3 (33/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

NO.	HOLE No.			RB - 38	RB - 38	RB - 39	RB - 40
NO	DEPTH (m)			4.55 - 5.00	8.55 - 9.00	9.55 - 10.00	2.55 - 3.00
	GROUP SYMBOL	SYM BOL	UNIT	СН	CL	СН	СН
1	Specific Gravity	G		2,654	2.782	2.675	2.790
2	Natural Water Content	Wn	%	62.91	49.51	30.21	20.61
3	Unit Weight, Natural State	γm	Vm^3.				
4	Dry Unit Weight	γd	t/m^3				
5	Natural Void Ratio	е	-				
6	Natural Porosity	n	%				
7	Degree of Saturation	Sr	%			e falleta fa	
8	Saturation of Water Content	Wsat	%		B. Witten		
9	Saturation Unit Weight	γsat	1/m^3	1 1/25		a je	
10	Unconfined Compr. Strength	qu	kg/cm²				
11	Sensitivity	St					
12	Liquid Limit	ill.	%	99.98	41.14	33,86	63,46
13	Plastic Limit	PL	%	29.69	21.99	22.39	21.21
14	Plasticity Index	Pl	%	70.29	19.15	11.47	42.25
15	Shrinkage Limit	SI.	%	- 1		1 (4.41)	
16	% Passing 200 US Stand Siev	/e -	%	97.20	77.20	49.70	58.00
14	Triaxial	4	deg	1 1 1 1 1			
17	U.U. Compression Test	c	kg/cm²		it. Kit be i	St. 2011 2	
11	Triaxial Tot		deg				
1		C	kg/cm²			<u> </u>	1 1 1
	Test Effec		deg				
18	Consolidation Test	C Cc	kg/cm²				
		Pc	kg/cm²				
19	N Value		blow	6.00	5.00	43.00	11.00
			15.00		3.30	10.00	71.00

Table 2.3 (34/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

NO	HOLE No DEPTH (n				RB - 40	RB - 41	RB - 41	RB - 42
	GROUP SYM	n)	-		9.55 - 10.00		5.55 - 5.85	3.50 - 4.00
		BOL.	SYM BOL	UNIT	Loamy Sand	СН	CH	CH
1	Specific Gravity		G		2.866	2.752	2.555	0.54
2	Natural Water Conten		Wn	%	5.03			2.54
3	Unit Weight, Natural S	State	ym	t/m^3	1.00	30.34	28.90	28.4
4	Dry Unit Weight		γd	Vm^3				
5	Natural Void Ratio		e	0,,,, 0				
6	Natural Porosity		T n	%				
7.	Degree of Saturation		Sr	%				
8	Saturation of Water Co	ontent	Wsat	%				<u> </u>
9	Saturation Unit Weigh		ysat	Vm^3				Sant Co
10	Unconfined Compr. St	rengih	 -`	l				
11	Sensitivity	rengar	qu	kg/cm²				
12	Liquid Limit		St	-		Arran Jacob		
13	Plastic Limit		LL	%	•	64.66	58.40	61.94
14		. 6 S	PL	%		30.00	28.57	23.67
15	Plasticity Index		PI	%	•	34.66	29.82	38.27
	Shrinkage Limit	eas N	SL	%	17.5	1.14.4.12.		
16	% Passing 200 US Sta			%	12.73	79.90	74.10	80,80
	U.U. Compression		ф	deg			7 7.10	00.00
17	U.U. Compressio Triaxial	n rest Total	C	kg/cm²			•	
	C.U. Compression	างเล	ф С	deg				
	Test	Effective	\$	kg/cm² deg			the plant	a San Jan
<u></u> -			C	kg/cm²				
8	Consolidation Test		Cc.	, disciplina				
9	N Value	<u> 19 11 (1</u>	Рс	kg/cm²	1 /4 /3 3	Transfer and		
-	14 Yaius			blow	> 50.00	> 50.00	> 50.00	24.00
	alsemarangisum*		32.44	T		4 4 4 4 4 4 4 4	, , ii	

Table 2.3 (35/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

FEATURE

AREA DESIGNATION:

	HOLE No.		-		RB - 43	RB - 43	RB - 43	00.44
NO	DEPTH (m				2.55 - 3.00	4.55 - 5.00	5.55 - 5.78	RB - 44 4.55 - 5.00
	GROUP SYME	BOL	SYM BOL	UNIT	СН	СН	OL	CH
1	Specific Gravity		G	-	2.746	2.779	2.644	2.584
2	Natural Water Content		Wn	%	29.48	34.18	34.85	32.87
3	Unit Weight, Natural S	tate	γm	t/m^3	1.642	1.694	1.624	32,07
4	Dry Unit Weight	<i>1</i>	γď	t/m^3	1.268	1.262	1.204	
5	Natural Void Ratio		e		1.165	1.201	1.195	A
6	Natural Porosity		n	%	53.818	54.571	54.452	
7	Degree of Saluration		Sr	%	69.465	79.075		_
8	Saturation of Water Co	ntent	Wsat	%	42,438		77.078	
9	Saturation Unit Weight		ysat	Vm^3		43.225	45.214	
10	Unconfined Compr. Str		 		1.806	1.808	1.749	
11	Sensitivity	endar	qu	kg/cm²				1991
12	Liquid Limit		St	-				
13	Plastic Limit		LL	%	64.33	61.38	44.19	55.77
14			PL	%	20.81	31.15	28.37	25.26
	Plasticity Index		PI	%	43.52	30.24	15.82	30.51
15	Shrinkage Limit		SL	%				
16	% Passing 200 US Sta			%	80.80	86.20	46.80	56.30
	Triaxia		ф	deg		A service	10.02	
17	U.U. Compressio Triaxial	n test Total	<u> </u>	kg/cm²			a Army Sung	4.4 (1.7)
·'	C.U. Compression	Total	С ф	deg kg/cm²				<u></u>
	Test	Effective	9	deg				
			Ç	kg/cm²				
18	Consolidation Test		Сс	11471				
10	Maria		Pc	kg/cm²		10 10 2 10 1		
19	N Value			blow	18.00	>50.00	>50.00	>50.00
	a senarana cum*					144444		

f: c: data semarang sum

Table 2.3 (36/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION FEATURE

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

	HOLE No.				RB - 44	T 00		
NO	DEPTH (m)		12 2 2 2			RB - 45	RB - 45	RB - 45
	GROUP SYMBOL		SYM	UNIT	7.55 - 8.00 CH	2.55 - 3.00 CH	4.55 - 5.00 Sand	5.55 - 5.65 GP
1	Specific Gravity		G	 	2.544	0.001		
2	Natural Water Content	<u> </u>	Wn	%	1	2.604	2.745	2.713
3	Unit Weight, Natural State		γm	t/m^3	28.50	42.50	15.50	13.81
4	Dry Unit Weight	-	 	 		1.863	1.866	1.873
5	Natural Void Ratio	-	γd	Vm^3		1.307	1.616	1.646
6	Natural Porosity		e			0.992	0.699	0.649
7	*		n	%		49.794	41.144	39.339
8	Degree of Saturation	. j. 44.	Sr	%		100.000	60.863	57.773
9	Saturation of Water Conten	t	Wsat	%		42.500	25,467	23,904
	Saturation Unit Weight		γsat	Vm^3		1.863	2.027	2.039
10	Unconfined Compr. Strengtl	h	qu	kg/cm²				2.033
11	Sensitivity		St	-	1.11			
12	Liquid Limit		LL	%	77.93	52.23		
13	Plastic Limit		PL.	%	27.64	15.34		<u> </u>
14	Plasticity Index		Pi	%	50.29			
15	Shrinkage Limit		SL	% -	50.29	36.89	-	3 6 4 6 6
16	% Passing 200 US Stand Si	01/0	- 51				STATES OF	
	Triaxial	CVE		<u>%</u>	66.70	71.80	12.74	0.68
4 2	U.U. Compression Tes	st	¢ c	deg kg/cm²			CE / Lynn -	
17	Triaxial Tr	otal	4	deg				
.	C.U. Compression		c ·	kg/cm²				
	Test Effe	ective	þ	deg				
18	Consolidation Test		C	kg/cm²	- 10 T 10 T		1014 575	
	Ostroolidation 163f		Cc Pc	kg/cm²			THE SECTION	
19	N Value			blow				28 - 2
				DIOW		13.00	> 50.00	> 50.00
c:\dat	a'semarang'sum •							San Frank

Table 2.3 (37/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (SPT) SEMARANG, CENTRAL JAWA

	HOLE No.				RB - 46	1 55 46		a a series of
NO	DEPTH (m)		*****	1.55 - 2.00	I RB - 46	RB - 47	RB - 47
14,7,1	GROUP SYME	BOL	SYM	UNIT	CH	2.50 - 3.00 CH	1.55 - 2.00 .CH	2.55 - 3.00 CH
[1	Specific Gravity		G	 -	2.556	0.000		
2	Natural Water Content		Wn	%	·	1		2.565
3	Unit Weight, Natural S		· 	l	40.60		37.14	39.67
4	Dry Unit Weight		γm	Vm^3	1.663		1.797	1.764
5	Natural Void Ratio		γd	Vm^3	1.183	1.267	1.310	1.263
6	Natural Porosity		e		1.161	1.101	1.032	1.031
7			n	%	53.725	52.408	50.776	50.761
8	Degree of Saturation		Sr	%	89.383	97.433	95.844	98.702
	Saturation of Water Content		Wsat	%	45.422	41.352	38.750	40.192
9	Saturation Unit Weight	ysat	t/m^3	1.720	 	1.818	1.771	
10	Unconfined Compr. Strength			kg/cm²		gii ann siil	010	1.771
11	Sensitivity							
12	Liquid Limit	1. 1. 10. 11. 11.	ԼԼ	%	66.35	60.23	50.07	
13	Plastic Limit		PL	%	21.43		56.87	61.30
14	Plasticity Index		PI	%		21.95	24.54	30.18
15	Shrinkage Limit		SL		44.92	38.28	32.33	31.12
16	% Passing 200 US Star	nd Cious	OL	%				
	Triaxia			%	88.40	83.50	58.30	69.70
	U.U. Compression		ф С	deg kg/cm²		<u> </u>		
17	Triaxial	Total	φ	deg			-3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	C.U. Compression		c	kg/cm²	1 2			
1.	Test	Effective	ф	dég				
18	Consolidation Test	11.0	_ c	kg/cm²				
]	CONSONINGHOLL [62]		Cc	10-10-3				
19	N Value		Pc	kg/cm²	2.5			1 1
				blow	8.00	15.00	24.00	15.00
c:\dot	semarang sum *		لــــــــــــــــــــــــــــــــــــــ					

Table 2.3 (38/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT LOCATION

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

FEATURE

	HOLE No.			RB - 48	RB - 48	I RB - 49	I 00 70
ИО	DEPTH (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.55 - 3.00	8.55 - 9.00	3.55 - 4.00	RB - 49
	GROUP SYMBOL	SYM BOL	UNIT	Sand	CL	GP	CL
1	Specific Gravity	· G	-	2.672	2.751	2.723	2.627
2	Natural Water Content	Wn	%	24.36	33.35	14.06	27.84
3	Unit Weight, Natural State	γm	t/m^3	1.898	1.851	1.898	
4	Dry Unit Weight	γd	Vm^3	1.526	1.388	1,664	1.852
5	Natural Void Ratio	e		0.751	0.982	0.636	1.449
6	Natural Porosity	n	%	42.881	49,543	38.890	0.813
7	Degree of Saturation	Sr	%	86.701	93.439		44.854
8	Saturation of Water Content	Wsat	- %	28.096	35.692	60.161	89.917
9	Saturation Unit Weight	γsat	Vm^3	1,955	1.884	23.371	30.962
10	Unconfined Compr. Strength	qu	kg/cm²	1,503	1.004	2.053	1.897
11	Sensitivity		rig/OIII				
12	Liquid Limit	St	%		10.75		1 2 7
13	Plastic Limit	PL	%	•	48.75	•	37.48
14	Plasticity Index	PI	%		22.34		21.88
15	Shrinkage Limit	SL	%		26.41		15.61
16	% Passing 200 US Stand Sieve	- 0.	%	4.00			
	Triaxial	φ	deg	4.20	54.80	5.13	47.90
	U.U. Compression Test	C	kg/cm²				
17	Triaxial Total	ф	deg			3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
	C.U. Compression	С	kg/cm²	2			
	Test Effective	ф	deg	.y . j			
18	Consolidation Test	С	kg/cm²	112		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	Consolidation rest	Cc		M.M		All areas	1 1 1 1 1
19	N Value	Рс	kg/cm²			25 55 J. V. 141	
+	W Value Control (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		blow	> 50.00	29.000	> 50.00	39.000
	a'semarang'sum*				<u></u>	a Design seed of	

Table 2.3 (39/43)

SUMMARY OF LABORATORY TEST RESULTS **FOUNDATION INVESTIGATION**

PROJECT LOCATION FEATURE

: UDWRD (SPT) : SEMARANG, CENTRAL JAWA

	HOLE No.							
NO	DEPTH (m	1			RB - 50	RB - 50	RB - 51	RB - 51
		GROUP SYMBOL			1.50 - 2.00 CH	2.55 - 3.00	13.55 - 14.00	
			SYM BOL	UNIT	Un Programme	GP	СН	СН
1	Specific Gravity		G	-	2.672	2.657	2.664	2.644
2	Natural Water Content		Wn	%	43.80	37.14	41.55	51.23
3	Unit Weight, Natural St	lale	γm	t/m^3	1.866	1.813	3 7. %	31.23
4	Dry Unit Weight		γď	t/m^3	1.298	1,322		
5	Natural Void Ratio		е	, -)	1.059	1.010		
6	Natural Porosity		n	%	51.436	50.244		
7	Degree of Saturation		Sr	%	100.000	97.721		
8	T	Saturation of Water Content			43.800	38.006	10 At 10 At 1	
9		Saturation Unit Weight			1.866	1.824		
10	Unconfined Compr. Str	qυ	kg/cm²					
11	Sensitivity	St	•	14,517				
12	Liquid Limit	LL	%	58.73	-	80.85	99.15	
13	Plastic Limit		PL	%	22.58		25.39	27.60
14	Plasticity Index		Pl	%	36.15	_	55,46	71.55
15	Shrinkage Limit		SL	%			00.70	71.00
16	% Passing 200 US Star	nd Sieve	-	%	58.30	9.56	89.80	93.50
	Triaxia		ф	deg			- 00.00	
17	U.U. Compression		С	kg/cm²		1 1. Jan 14.		
	Triaxial C.U. Compression	Total	ф	deg	10.00	from N. R	A serial serial	
	Test	Effective	С	kg/cm²	and the Europe			
	1631	cilective	ф_	deg	<u> </u>		371 3	
18	3 Consolidation Test		CC	kg/cm²	1 1 in 10	81 B. C. 18	26.8 (6.9)	<u> </u>
	o consolidation rest			leafam?	4 (1 × 1 / 1)			1 1 1
19	N Value		Pc	kg/cm²			<u> </u>	¹¹ 电压力 表示
	TT TAILUS			blow	3.00	> 50.00	45.00	26.00
المارة أ	la'semarang'sum*							

Table 2.3 (40/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

UDWRD (SPT) SEMARANG, CENTRAL JAWA

PROJECT :
LOCATION :
FEATURE :
AREA DESIGNATION :

	HOLE No.				RB - 51	I RB - 52		
ИО	DEPTH (m)		1 1 1 1 1		28.55 - 29.00		<u> </u>
	GROUP SYME	30L	SYM BOL	UNIT	CL.	CH		146
1	Specific Gravity		G	- 1	2.684	2.691		<u> </u>
2	Natural Water Content	1 1 1 1 1 1 1 1 1	Wn	%	29.05	47.68		
3	Unit Weight, Natural S	tate	γm	Vm^3	20.00	77.00		
4	Dry Unit Weight	Control of the second	γd	Vm^3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3
5	Natural Void Ratio		e					
6	Natural Porosity		n	%				
7.	Degree of Saturation		Sr	%				7
8	Saturation of Water Co	ontent	Wsat	%				
9	Saturation Unit Weight		ysat	t/m^3				
10	Unconfined Compr. Strength		qu	kg/cm²			<u> </u>	
11	Sensitivity		St	iligioni			1 1 1 1 1 1 1 1 -	
12	Liquid Limit		LL	%	101.13	74.43	The second second	
13	Plastic Limit		ΡĹ	%	19.17			
14	Plasticity Index		PI	%	81.96	31.52		
15	Shrinkage Limit		SL	%	01.90	42.91		
16	% Passing 200 US Sta	nd Sieve		%	85.70		162 1332	
	Triaxia		· d	deg	63.70	91.40		
	U.U. Compressio	n Test	C	kg/cm²				
17	Triaxial	Total	ф	deg				
1	C.U. Compression		С	kg/cm²	- 1 to 1 to 1			
1 .	Test	Effective	ф	deg	132,502			
18	Consolidation Test		С	kg/cm²				
	Jest Homening	l	Сс				F + F4 4	1.3.3.3.2
19	N Value		Pc	kg/cm²		11 1147 4 3		
	11 YGIUB			blow	43.00	40.00		
Colda	alsemarangisum*						n de la companya de l	- 4 A A V

Table 2.3 (41/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION

: UDWRD (U.D.S.)
: SEMARANG, CENTRAL JAWA

FEATURE :

	HOLE No.				SB - 1			
NO	DEPTH (m)					SB - 1	SB - 1	SB - 2
	GROUP SYMBO)L	SYM BOL	UNIT	CL.	16.15 - 16.75 CH	17.70 - 18.30 CH	8.55 - 9.00 CH
1	Specific Gravity		G		2.736	2.556	2.663	2.684
2	Natural Water Content	1000000	Wn	%	36.04	49.64	45.32	42.88
3	Unit Weight, Natural Stat	te	ym	Vm^3	1.861	1.722	1.774	
4	Dry Unit Weight		γd	Vm^3	1.368	1.722		1.830
5	Natural Void Ratio		e	-	1.000	 -	1.221	1.281
6	Natural Porosity		<u> </u>	%	· · · · · · · · · · · · · · · · · · ·	1.221	1.181	1.096
7	Degree of Saturation	<u>10 - 1 4 58</u> 35 - 11 - 12	 		50,001	54.978	54.159	52.280
8			Sr	%	98.603	100,000	100.000	100.000
9	Saturation of Water Cont	ent	Wsat	% :	36.551	49.640	45.320	42.880
ļ	Saturation Unit Weight		γsat	Vm^3	1.868	1.722	1.774	1.830
10	Unconfined Compr. Strength			kg/cm²			1,745	
11	Sensitivity			-	31 I W			
12	Liquid Limit		LL	%	49.78	61.65	58.44	54.96
13	Plastic Limit	A Paragraphy	PL	%	22.17	25,36	26.29	25.14
14	Plasticity Index		Pi	%	27.61	36.30	32.15	29.82
15	Shrinkage Limit		SL	%	21.01	00.00	32.13	29.82
16	% Passing 200 US Stand	Sieve	-	%	42.20	70.40	04.00	
	Triaxial		þ	deg	42.20	76.40	61.80	52.40
	U.U. Compression	Test	C C	kg/cm²				
17	Triaxial	Total	ф	deg	17.010		17.830	17.370
	C.U. Compression	5 15/17 6	С	kg/cm²	0.208		0.310	0.140
	Test	Effective	фф	dég	28.860	<u> </u>	31.140	26.870
18	Consolidation Test		CC	kg/cm²	0.203	-	0.240	0.135
<u>'</u> ".	Consolidation lest			kala2	* * · · ·	0.379		-
19	N Value		Рс	kg/cm²	• i	0.5815		•
	regular eterror a National process (1975)	A	731	blow		-		
C cildar	a'ssmg97/lab'uds/rb						natia ya fishi	

Table 2.3 (42/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT

LOCATION

UDWRD (U.D.S.) SEMARANG, CENTRAL JAWA

FEATURE AREA DESIGNATION:

	HOLE No.	SB - 2	i SB - 2	SB - 3	SB - 3			
МО	DEPTH (m)					13.60 - 14.20		
, A.	GROUP SYMB	OL	SYM BOL	UNIT	СН	ОН	СН	CH
1	Specific Gravity		G	-	2.603	2.526	2.712	2.783
2	Natural Water Content		Wn	%	48.24	49.00	46.60	
3	Unit Weight, Natural St		γm	t/m^3	1.756	1,722		42.76
4	Dry Unit Weight		 	t/m^3	1.185		1.778	1.846
5	Natural Void Ratio		γd	VIII'S		1.156	1.213	1.293
6	Natural Porosity	·	e		1.197	1.186	1.236	1.152
7			n	- %	54.492	54.248	55.279	53.536
<u> </u>	Degree of Saturation	<u> </u>	Sr	%	100.000	100.000	100.000	100.000
8	Saturation of Water Co	ntent	Wsat	%	48.240	49.000	46.600	42.760
9	Saturation Unit Weight		γsat	t/m^3	1.756	1.722	1.778	1.846
10	Unconfined Compr. Strength		qu	kg/cm²				
11	Sensitivity		St	16.40				
12	Liquid Limit		LL	%	62.95	82.86	68.70	58.48
13	Plastic Limit		PL.	%	26.29	40.83	29.07	28.09
14	Plasticity Index	\$. Y, s if	Ы	%	36.66	42.04	39.62	30.37
15	Shrinkage Limit	\$ 13:5 B	SL	%		1 1/2 1/2 1/2 2		
16	% Passing 200 US Star	nd Sieve	•	%	86.70	97.60	84.90	56.90
	Triaxia	1	þ	deg	1	81V - 11 J-15		00.00
	U.U. Compression	n Test	C	kg/cm²		44.14.14.		
17	Triaxial	Total	\$	deg		20.990		15.740
	C.U. Compression		С	kg/cm²		0.285	33 - E 2 - 2	0.297
	Test	Effective	ф_	deg		30.340		21.450
18	Consolidation Test		- c Cc	kg/cm²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.207	1.63	0.257
''	Consolidation Test			1	0.437		0.310	
19	N Value			kg/cm²	1.2295	<u> </u>	1.4016	The production of the
	r value			blow		- 1 <u>- 21</u>		
	a ssmg97.lab uds rb		a selet	1000				

Table 2.3 (43/43)

SUMMARY OF LABORATORY TEST RESULTS FOUNDATION INVESTIGATION

PROJECT LOCATION FEATURE

UDWRD (U.D.S.) SEMARANG, CENTRAL JAWA

	HOLE No.			SB - 3	SB - 5		1	
ИО	DEPTH (m				17.00 - 17.55			<u> </u>
	GROUP SYME	30L	SYM BOL	UNIT	СН	СН		
1	Specific Gravity		G	-	2.729	2.527	<u>.</u>	<u> </u>
2	Natural Water Content	t	Wn	%	37.69	69.43		
3	Unit Weight, Natural S	late	γm	Vm^3	1.768	1.652	 	
4	Dry Unit Weight		γď	Vm^3	1.284	0.975	ļ	
5	Natural Void Ratio		е		1.125	1.592	ļ	
6	Natural Porosity		n	%	52.948	61.415	 	
7	Degree of Saturation		Sr	%	91.402	91.402	 	
8	Saturation of Water Co	ontent	Wsat	%	41.236	41.236	·	
9	Saturation Unit Weight		ysat	Vm^3	1,814	1.814		
10	Unconfined Compr. Str	qu	kg/cm²	1.014	1.014	<u> </u>	1	
11	Sensitivity	St						
12	Liquid Limit		LL	%	76.91	63.60		
13	Plastic Limit		PL	%	30.36	···-		
14	Plasticity Index		PI	%	46.55	27.67		
15	Shrinkage Limit		SL	%	40.00	35.92		
16	% Passing 200 US Sta	nd Sieve	- 02	%	00.00			
	Triaxia		φ	deg	96.80	95.40		
	U.U. Compressio		c	kg/cm²		4.639 0.446		
17	Triaxial	Total	ф	deg		0.440		
	C.U. Compression		С	kg/cm²				
	Test	Effective	ф	deg				
18	Consolidation Test		.Cc	kg/cm²	0.050			
			Pc	kg/cm²	0.256 0.9302	0.401		
19	N Value	5.7.35.54		blow	0.3002	1.1716		
: c: dat	a ssnig97 lab'uds'rb							