CHAPTER 8 TEMPORARY COFFERDAM

8.1 Temporary Cofferdam

1 Design Condition

1.1 Surcharge Load

1 1. 4 . 1 . 1 . 2 . 5	Mark	Unit	Surcharge Load
Normal Case	wt	tf/m²	1.00
Seismic Case	wt'	tf/m²	0.50

1.2 Design Seismic Coefficient

Aerial coefficient

Kh = 0.10

Underwater coefficient

 $Khx = Kh \times \gamma b / (\gamma b-1)$

γ b: Wet unit weight (tf/m³)

1.3 Safety Factor

		Normal case	Seismic case
Stability of dam body	Shear deformational failure	1.20	1.20
Stability of dain body	Sliding	1.20	1.00
	Bearing capacity	1.20	1.00
Depth of embedment		1.50	1.20
Impermeable effectivene	ess	3	00

1.4 Soil Condition

1) Soil Condition at River side

	Depth	Layer Unit weight		t	Cohe	178 (1986)		
Soil	Upper Bottom side side	width	Wet	Submer ged	Saturati on	СО	KX	Resista nt angle
	(m) (m)	(m)	(tf/m³)	(tf/m³)	(tf/m ³)	(tf/m³)		(°)
Sand	1.50 1.00	0.50	1.80	1.00	2.00	0.00	0.00	30.00
Sand	1.00 -1.50	2.50	1.80	1.00	2.00	0.00	0.00	30.00
Cray	-1.50 -10.50	9.00	1.80	0.80	1.80	10.00	0.00	0.00
Sand	-10.50 -20.50	10.00	1.80	1.00	2.00	0.00	0.00	40.00

2) Soil Condition at Land side

		pth	Layer	1	Unit weigh	t iii	Cohe	esion	
Soil	Upper side	Bottom side	width	Wet	Submer ged	Saturati on	СО	кх	Resista nt angle
	(m)	(m)	(m)	(tf/m³)	(tf/m³)	(tf/m³)	(tf/m^3)		(°)
Sand	1.00	-1.50	2.50	1.80	1.00	2.00	0.00	0.00	30.00
Cray	-1.50	-10.50	9.00	1.80	0.80	1.80	10.00	0.00	0.00
Sand	-10.50	-20.50	10.00	1.80	1.00	2.00	0.00	0.00	4.00

3) Soil Condition at dam body

-	De	pth	Lavor		Unit weigh	ıt	Coh	esion	n
Soil	Upper side	Bottom side	Layer width	Wet	Submer ged	Saturati on	СО	кх	Resista nt angle
	(m)	(m)	(m)	(tf/m³)	(tf/m³)	(tf/m³)	(tf/m³)		(°)
Sand	5.80	1.00	4.80	1.80	1.00	2.00	0.00	0.00	30.00
Sand	1.00	-1.50	2.50	1.80	1.00	2.00	0.00	0.00	30.00
Cray	-1.50	-10.50	9.00	1.80	0.80	1.80	10.00	0.00	0.00
Sand	-10.50	-20.50	10.00	1.80	1.00	2.00	0.00	0.00	40.00

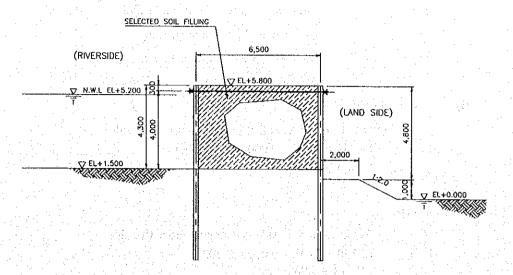
4) Soil filling condition

Item		Mark	Unit	Value
	Wet	γ	tf/m³	1.80
Unit weight	Submerged	γ'	tf/m³	1.00
	Saturation	γst	tf/m³	2.00
Resistant angle		φ	Angle (°)	30.00

1.5 Structural condition

(1).	Dike crown elevation	5.800	(m)
(2).	Design ground elevation	-10.500	(m)
(3)	Wall height at river side	4.300	(m)
(4).	Wall height at land side	4.800	(m)
(5).	Elevation of jointing tie rod	5.500	(m)
(6).	Elevation of excavated surface at land side	0.000	(m)
(7).	Flood plain width at land side	2.000	(m)
(8).	Slope grade at land side	1:2.0	

1.6 Condition of water surface


(1).	High water level (HWL)	5.200	(m)
(2).	Mean water level (MWL)	5.200	(m)
(3).	Low water level (LWL) at river side	5.200	(m)
(4).	Low water level (LWL) at land side	0.000	(m)

1.7 Allowable capacity

Allowable capacity of each member is shown as follows.

Member	Mark	Ünit	Normal case	Seismic case	Material
Steel sheet pile	σ sa	kgf/cm²	1800.0	2700.0	SY295
Tie rod	σsa	kgf/cm ²	880.0	1320.0	SS400(>40mm)
Waling	σsa	kgf/cm²	1400.0	2100.0	SS400

1.2 Figure of considering section

2 Consideration of dam body stability

- 2.1 Consideration of shear deformational failure for sand filling
 - 1) Calculation of dam body width

Dam body width is calculated with following form and it is adopted that dam body width compare normal case and seismic case.

 $F \cdot Md \leq Mr$

Where:

F: Safety factor

Md: Deforming moment at design ground (tf-m)

Mr: Resistant moment at design ground (tf-m)

2) Calculation of deforming moment (Md)

$$\frac{1}{6} \times (Pwl \times Hwl^{2}) + \frac{1}{6} \times (Pa \times La^{2}) - \frac{1}{6} \times (Pw2 \times Hw2^{2})$$

$$Md = -\frac{1}{6} \times (P0 \times L0^{2}) + kh \times B \times \gamma \times hl \times (hl/2 + h2)$$

$$+ kh \times B \times \gamma b \times (h2^{2}/2)$$

Where;

Pw1×Hw1²: Water pressure moment at active side

Pw2×Hw2²: Water pressure moment passive side

Pa×La²: Earth pressure moment at active side

Kh: Aerial seismic coefficient

0.10

γ:

Wet unit weight of sand filling

1.80 tf/m³

γb.

Saturation unit weight of sand filling

2.00 tf/m3

h1:

Wall height above water surface

h2:

Wall height below water surface

(i) Normal case

In normal case, river side is changed into active side.

$$Md = 12.348 + 0.007 - 0.000 - 0.000 + 0.000$$
$$= 12.355 (tf \cdot m)$$

(ii) Seismic case

In seismic case, river side is changed into active side.

$$Md = 12.348 + 0.010 - 0.000 - 0.000 + 9.914 + 3.960 = 26.232 (tf · m)$$

Inertia force

$$kh \cdot B \cdot \gamma \cdot h1 \cdot (h2+0.5 \times h1) = 0.10 \times 6.50 \times 1.80 \times 2.332 \times (2.468+0.5 \times 2.332)$$

$$= 9.914(tf \cdot m)$$

$$kh \cdot B \cdot \gamma b \cdot (0.5 \times h2^2) = 0.10 \times 6.50 \times 2.00 \times (0.5 \times 6.093)$$

$= 3.960(tf \cdot m)$

3) Calculation of resistant moment (Mr)

$$Mr = 1/6 \cdot \gamma m \cdot (RH^3)$$

$$R = 2/3 \cdot V^2 \cdot (3 - V \cdot \cos \phi) \cdot \tan \phi \cdot \sin \phi$$

$$R = V^2 \cdot (3 - V \cdot \cos \phi) \cdot \sin \phi$$

Where;

γm:

Mean consistency of sand filling (tf/m3)

$$(\gamma \times h1 + \gamma 1 \times h2)/H$$

B:

Dam body width

6.50 m

H:

Dam body height

4.80 m

V:

B/H

φ:

Resistant angle of sand filling (°)

(i) Normal case

 $Mr = 1/6 \times 1.39 \times 0.645 \times 4.800^3$

16.505(tf·m)

 $\gamma m = (1.80 \times 2.332 + 1.00 \times 2.468) / 4.80 = 1.39 (tf/m³)$

V = 6.50 / 4.800 = 1.35

 $R = 2/3 \times 1.35^2 \times (3-1.35 \times \cos 30.00) \times \tan 30.00 \times \sin 30.00$

= 0.645

(ii) Seismic case

Mr = $1/6 \times 1.39 \times 1.675 \times 4.800^3$ = $42.881(tf \cdot m)$ γ m = $(1.80 \times 2.332 + 1.00 \times 2.468) / 4.80 = 1.39 (tf/m³)$ V = 6.50 / 4.800 = 1.35R = $1.35^2 \times (3-1.35 \times \cos 30.00) \times \sin 30.00$ = 1.675

4) Summary of calculation results

		化氯化铁 斯特斯 医水体管 化二氯甲基二二氯甲基二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
Item :	Normal case	Seismic case
Active water pressure (1/6 · Pw1 · Hw1²)	12.348 (tf·m/m)	12.348 (tf·m/m)
Active earth pressure (1/6 · Pa · La²)	0.007 (tf:m/m)	0.010 (tf·m/m)
Passive water pressure (1/6 · Pw2 · Hw2²)	0.000 (tf·m/m)	0.000 (tf·m/m)
Passive earth pressure (1/6 · Po · Lo²)	0.000 (tf · m/m)	0.000 (tf·m/m)
Other moment	0.000 (tf·m/m)	
Moment of seismic force		13.874 (tf·m/m)
Deforming moment (Total)	12.355 (tf·m/m)	26.232 (tf·m/m)
Resistant moment (Total)	16.505 (tf·m/m)	42.881 (tf·m/m)
Safety factor $F = Mr / Md$	1.336 ≥ 1.20	1.635 ≧ 1.20

2.2 Consideration of sliding

1) Sliding calculation

Sliding calculation is calculated with following form.

Fs = R/PH

Where;

R:

Sliding resistant force

 $B \times \mu$ (tf/m)

 μ :

Resistant coefficient

PH:

Horizontal force (tf/m)

2) Calculation of sliding resistant force

$$\mu = C + (\gamma \cdot h1 + \gamma \cdot h2) \cdot tan \phi$$

Where:

C:

Cohesion

0.00 (tf/m2)

φ:

Resistant angle

40.00 (°)

(i) Normal case

$$R = 6.50 \times \{0.00 + (1.80 \times 2.332 + 1.00 \times 13.968) \times tan40.00\}$$

= 99.076(tf/m)

(ii) Seismic case

 $R = 6.50 \times \{0.00 + (1.80 \times 2.332 + 1.00 \times 13.968) \times \tan 40.00\}$ = 99.076(tf/m)

3) Calculation of seismic force

Seismic force = $KH \cdot B \cdot (\gamma \cdot h1 + \gamma b \cdot h2)$

 $= 0.10 \times 6.50 \times (1.80 \times 2.332 + 2.00 \times 13.968)$

= 20.887 (tf/m)

4) Summary of calculation results

Item	Normal case	Sesimic case
Active water pressure HPw1 (1/2 · Pw1 · Hw1)	123.245 (tf/m)	123.245 (tf/m)
Active earth pressure Hpa (1/2 · Pa · La)	1.500 (tf/m)	2.130 (tf/m)
Passive water pressure HPw2 (1/2 · Pw2 · Hw2)	55.125 (tf/m)	55.125 (tf/m)
Passive earth pressure HPp (1/2 · Po · Ho)	256.275 (tf/m)	254.696 (tf/m)
Other horizontal force	0.000 (tf/m)	with the state of
Seismic force		20.887 (tf/m)
Horizontal force (PH)	0.000 (tf/m)	0.000 (tf/m)
Sliding resistant force (R)	99.076 (tf/m)	99.076 (tf/m)
Safety factor Fs = R / PH	999.99≩1.20	999.999≥1.00

2.3 Consideration of bearing capacity

1) Calculation of bearing capacity

Bearing capacity is calculated with following form.

F = Qu / W

 $Qu = A'(K \cdot C \cdot Nc + K \cdot r2 \cdot Df \cdot Nq + 0.5 \cdot r1 \cdot B' \cdot Nr)$

Where;

F: Safety factor

Qu: Ultimate bearing capacity (tf/m)

W: Weight of sand filling (tf/m)

A': Effective surcharge area (m²)

B': Effective surcharge area for eccentricity (m)

B: Dam body width (m)

e: Eccentric length of load (m) e = Mb / W

Mb: Moment having affecting length to ground (tf-m)

K: K = 1.0

C: Cohesion

Df: Depth of embedment from existing ground to

consideration point (m)

 γ 1, γ 2: Wet unit weight (tf/m³)

Nc,Nq,Nr: Coefficient of bearing capacity

2) Moment (Mb)

Item	Normal case	Seismic case
Active water pressure MPw1(1/6 · Pw1 · Hw1)	644.982 (tf·m/m)	644,982 (tf·m/m)
Active earth pressure MPa(1/6·Pa·La²)	15.000 (tf·m/m)	21.297 (tf·m/m)
Passive water pressure MPw2(1/6·Pw2·Hw2²)	192.937 (tf·m/m)	192.937 (tf·m/m)
Passive earth pressure MPp(1/6·Po·Lo²)	1181.140 (tf·m/m)	1165.670 (tf·m/m)
Other moment	0.000 (tf·m/m)	
Moment of seismic force		168.111 (tf·m/m)
Deforming moment (Mb)	0.000 (tf·m/m)	168.111 (tf·m/m)

(i) Calculation of seismic force

 $kh \cdot B \cdot \gamma \cdot h1 \cdot (h2+0.5 \times h1) = 0.10 \times 6.50 \times 1.80 \times 2.332 \times (13.968+0.5 \times 2.332)$

 $= 41.286(tf \cdot m)$

 $kh \cdot B \cdot \gamma b \cdot (0.5 \times h2^2) = 0.10 \times 6.50 \times 2.00 \times (0.5 \times 195.116)$

 $= 126.826(tf \cdot m)$

= 41.286+126.826=168.111(tf·m)

3) Summary of calculation results

		and the state of t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Item		Normal case	Seismic case
Surcharge load	W1	6.500 (tf/m)	3.250 (tf/m)
Weight of sand filling	W2	140.619 (tf/m)	140.619 (tf/m)
Moment	Mb	0.000(tf·m)	168.111(tf·m)
Horizontal force	PH	0.000 (tf/m)	0.000 (tf/m)
Eccentric length	E	0.000 (m)	1.169 (m)
Effective surcharge area	B'	6.500 (m)	4.163 (m)
Synthetic grade angle	tan a	0.000	0.000
Resistant angle	ø	40.000 (°)	40.000 (°)
Coefficient of bearing	Nc	72.000	72.000
capacity	Nq	68.000	68.000
	Nr	86.000	86.000
Ultimate bearing capacity	Qu	6899.750 (tf/m)	4000.670 (tf/m)
Safety factor	Fs	46.899≧1.20	27.808≧1.00

(i) Ultimate bearing capacity

Item	Normal case	Seismic case
A' (m²)	6.500	4.163
C:Nc	0.000×72.000	0.000×72.000
1. 医球点 自己的 经产品的	± 0.000	= 0.000
r2·Df·Nq	1.00×11.500×68.000	1.00×11.500×68.000
	= 782.000	= 782.000
rl·B'·Nr	$1.00 \times 6.500 \times 86.000$	1.00× 6.500×86.000
0.5 · r1 · B · Nr	= 279.500	= 279.500
Qu (tf/m)	6899.750	4000.670

3 Consideration of depth of embedment for sheet pile

- 3.1 Calculation of depth of embedment for sheet pile
 - 1) Consideration of sheet pile at land side (Normal case)
 - (i) Calculation of active earth pressure

	Depth	of layer	Lavia	E	arth pressur	e		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
٠,	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300	0.333	0.513	0.127	-0.139	-0.018
2	5.500	3.468	2.032	0.513	1,732	2.282	1.200	2.720
3	3.468	1.500	1.968	1.732	2.388	4.055	3.068	15.161
4	1.500	1.000	0.500	2.388	2.555	1.236	4.253	20.417
5	1.000	0.000	1.000	2.555	2.888	2.722	5.010	34.053
6.	0.000	-1.500	1.500	2.888	3.388	4.708	6.270	63.569
7	-1.500	-9.000	7.500	0.000	0.000	0.000	14.500	63.569
8	-9.000	-10.500	1.500	0.000	0.000	0.000	16.000	63.569
9	-10.500	-20.000	10.000	3.776	5.950	48.632	21.373	1102.96

(ii) Calculation of water pressure

	Depth of	of layer	Taria	γ	Vater pressui	re		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300					0.000
2	5.500	3.468	2.032					0.000
3	3.468	1.500	1.968					6.478
4	1.500	1.000	0.500				LOGISTO NICELIA NICELARIO NICELA	11.203
5	1.000	0.000	1.000	1000000	a, 2544,		and the second	26.128
6	0.000	-1.500	1.500					41.736
_ 7	-1.500	-9.000	7.500		1.00			158.794
8	-9.000	-10.500	1.500	STATE OF STATE				190.010
9	-10.500	-20.500	10.000					464.592

(iii) Calculation of passive earth pressure

100	Depth of	of layer	7. 7	to the second E	arth pressur	e	ragingon.	
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)	The et along		(tf/m)	(m)	(tf·m/m)
5	1.000	0.000	1.000	0.000	5.400	2.700	5.167	13.950
6	0.000	-1.500	1.500	5,400	9,900	11.475	6.324	86.513
7	-1.500	-9,000	7.500	23.300	29.300	197.250	10.893	2235.07
8	-9.000	-10.500	1.500	29.300	30.500	44.850	15.255	2919.26
9	-10.500	-20.500	10.000	48.289	94.278	712.830	21.538	18271.9

(iv) Moment and safety factor around jointing tie rod

	Depth	of layer	Moment	Moment	14	Safety factor
No	Upper side	Bottom side	of active earth pressure	of active water pressure	Moment of passive earth pressure	F
			Ma	Mw	Mp	
-4	(m)	(m)	(tf·m/m)	(tf·m/m)	(tf·m/m)	Mp/(Ma+Mw)
	5.800	5.500	-0.018	0.000		
2	5,500	3.468	2.720	0.000		
3	3.468	1.500	15.161	6.478		
4	1.500	1.000	20.417	11.230		
-5	1.000	0.000	34.053	26.128	13.950	0.232
6	0.000	-1.500	63.569	41.736	86.513	0.822
7	-1.500	-9.000	63.569	158.794	2235.070	10.051
8	-9.000	-10.500	63.569	190.010	2919.260	11.512
9	-10.500	-20.500	1102.960	464.592	18271.900	11.656

(v) Balance equation at 7th layer

Item	A · Z ³ + A	B·Z ² +	C·Z +	D D
Moment of active earth pressure (Ma)	0.000	0.000	0.000	63.569
Moment of water pressure (Mw)	0.000	0.578	11.272	41.736
Moment of passive earth pressure (Mp)	0.267	14.450	163.100	86.513
Safety factor		1.5	0	
$Fs \times (Ma + Mw) - Mp$	-0.267	-13.538	-146.192	71.445
Result of cubic equation		0.4	 	71,443
Depth of embedment from ground			68 (m)	
Original length of sheet pile		7.70	58 (m)	
Adopted length of sheet pile		9.00	00 (m)	

3.2 Consideration of sheet pile at land side (Seismic case)

(i) Calculation of active earth pressure

	Depth	of layer	Love	F	Earth pressur	e		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)	ing Section	1.45.47.60	(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300	0.198	0.412	0.092	-0.132	-0.012
2_	5.500	3.468	2.032	0.412	1.863	2.311	1,232	2.835
3	3.468	1.500	1.968	2.223	3.154	5.291	3.073	19.094
4	1.500	1.000	0.500	3.154	3.391	1.636	4.253	26.054
5	1.000	0.000	1.000	3.391	3.864	3.628	5.011	44.232
6	0.000	-1.500	1.500	3.864	4.574	6.329	6.271	83.920
7	-1.500	-9.000	7.500	0.000	0.000	0.000	14.500	83.920
8	-9.000	-10.500	1.500	0.000	0.000	0.000	16.000	83.920
9	-10.500	-20.000	10.000	5.539	8.824	71.817	21.381	1619.44

(ii) Calculation of water pressure

	Depth of	of layer	Layer	γ	Vater pressui	re	A CC	
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)		7 (4) 1 (2) (4)	(tf/m)	(m)	(tf m/m)
- 1	5.800	5.500	0.300					0.000
2	5,500	3.468	2.032				44 (14.1)	0.000
3.	3.468	1.500	1.968					6.478
4	1.500	1.000	0.500					11.203
5	1.000	0.000	1.000					26.128
6	0.000	-1.500	1.500					41.736
7	-1.500	-9.000	7.500					158.794
8	-9.000	-10.500	1.500					190.010
9	-10.500	-20.500	10.000					464.592

(iii) Calculation of passive earth pressure

	Depth	of layer	Laura	F	A CC			
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
5	1.000	0.000	1.000	0.000	5.078	2.539	5.167	13.119
6	0.000	-1.500	1.500	4,732	8.676	10.056	6.324	76.711
7	-1.500	-9.000	7.500	23.300	29.300	197.250	10.893	2225.27
8	-9.000	-10.500	1.500	29.300	30.500	44.850	15.255	2909.46
9	-10.500	-20.500	10.000	43.599	85.121	643.601	21.538	16771.1

(iv) Moment and safety factor around jointing tie rod

	Depth	of layer	Moment	Moment		Safety factor
No	Upper side	Bottom side	of active earth pressure	of active water pressure	Moment of passive earth pressure	F
		10000000000000000000000000000000000000	Ma	Mw	Mp	
100	(m)	(m)	(tf·m/m)	(tf·m/m)	(tf·m/m)	Mp/(Ma+Mw)
1	5.800	5.500	-0.012	0.000		
2	5.500	3.468	2.835	0.000		elogia i jaka terta a
3	3.468	1.500	19.094	6.478		
4	1.500	1.000	26.054	11.203		
5	1,000	0.000	44.232	26.128	13.119	0.186
6	0.000	-1.500	83.920	41.736	76.711	0.610
7	-1.500	-9.000	83.920	158.794	2225.270	9.168
- 8	-9.000	-10.500	83.920	190.010	2909.460	10.621
9	-10.500	-20.500	1619.440	464.592	16771.100	8.047

(v) Balance equation at 7th layer

Item	$A \cdot Z^3$ + $B \cdot Z^2$ + $C \cdot Z$ + D A B C D
Moment of active earth pressure (Ma)	0.000 0.000 0.000 83.920
Moment of water pressure (Mw)	0.000 0.578 11.272 41.736
Moment of passive earth pressure (Mp)	0.267 14.450 163.100 76.711
Safety factor	
$Fs \times (Ma + Mw) - Mp$	-0.267 -13.756 -149.573 74.076
Result of cubic equation	0.474
Depth of embedment from ground	2.974 (m)
Original length of sheet pile	7.774 (m)
Adopted length of sheet pile	9.000 (m)

3.3 Consideration of sheet pile at river side (Normal case)

(i) Calculation of active earth pressure

	Depth of	of layer	. A .	E	arth pressur	e		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300	0.333	0.513	0.127	-0.139	-0.018
2	5.500	5.200	0.300	0.513	0.693	0.181	0.157	0.011
3	5.200	3.468	1.732	0.693	1.732	2.101	1.290	2.720
4	3.468	1.500	1.968	1.732	2.388	4.055	3.068	15.161
5	1.500	1.000	0.500	2.388	2.555	1.236	4.253	20.417
6	1.000	-1.500	2.500	2.555	3.388	7.429	5.808	63.570
7	-1.500	-8.500	7.000	0.000	0.000	0.000	14.000	63.570
8	-8,500	-10.500	2.000	0.000	0,000	0.000	16.000	63.570
9	-10.500	-20.500	10.000	3.776	5.950	48.632	21.373	1102.96

(ii) Calculation of water pressure

	Depth	of layer	T	γ	vater pressur	e	A CC	
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300				A SECTION OF SECTION O	0.000
2	5.500	5.200	0.300	eger, a lawer et al al elek		Seat Section (Section)		0.000
3	5.200	3.468	1.732					2.182
4	3,468	1.500	1.968	and any organization				12.460
5	1.500	1.000	0.500			1 4		16.139
6	1.000	-1.500	2,500	la gira a rigina e	Sample of the second	1987 1984	di de gade	41.031
7	-1.500	-8.500	7.000					168.304
8	-8.500	-10.500	2.000		1000		1,111	220.252
9	-10.500	-20.500	10.000					387.640

(iii) Calculation of passive earth pressure

	Depth	of layer	I	Laver Earth pressure				
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)		1941	(tf/m)	(m)	(tf·m/m)
5	1.500	0.000	0.500	0.000	1.500	0.375	4.333	1.625
6	1.000	-1.500	2.500	1.500	9.000	13.125	6.048	81.000
7	-1.500	-8.500	7.000	23.000	28.600	180,600	10.627	2000.17
8	-8.500	-10.500	2.000	28.600	30.200	58.800	15.009	2882.70
9	-10.500	-20.500	10.000	46.909	92.898	699.035	21.548	17945.7

(iv) Moment and safety factor around jointing tie rod

4.3	Depth	of layer	Moment	Moment		Safety factor
No	Upper side	Bottom side	of active earth pressure	of active water pressure	Moment of passive earth pressure	F
			Ma	Mw	Mp	
	(m)	(m)	(tf·m/m)	(tf·m/m)	(tf·m/m)	Mp/(Ma+Mw)
_1	5.800	5.500	-0.018	0.000		
2	5.500	5.200	0.011	0.000		Note that the second second
3	5.200	3.468	2.720	2.182		
4	3.468	1.500	15.161	12,460		
5	1.500	1.000	20.417	16.139	1.625	0.870
6	1.000	-1.500	63.570	41.031	81.000	1.920
7	-1.500	-8.500	63.570	168.304	2000.170	4.112
8	-8.500	-10.500	63.570	220.252	2882.700	48.812
9	-10.500	-20.500	1102.960	387.640	17945.700	16.622

(v) Balance equation at 7th layer

Item	A · Z ³ +	B·Z ² +	C·Z +	D D
Moment of active earth pressure (Ma)	0.111	2.028	11.498	20.417
Moment of water pressure (Mw)	0.000	0.866	7.792	16.139
Moment of passive earth pressure (Mp)	1.000	7.500	6.750	1.625
Safety factor	The state of the state of	1.50		<u>and Assaulting States and Assaulting States</u>
$Fs \times (Ma + Mw) - Mp$	-0.833	-5.325	2.705	12.861
Result of cubic equation		1.60		12.301
Depth of embedment from ground		Cara I see Cara See	7 (m)	
Original length of sheet pile		6.40	7 (m)	
Adopted length of sheet pile		9.00	0 (m)	

3.4 Consideration of sheet pile at river side (Seismic case)

(i) Calculation of active earth pressure

	Depth	of layer	T	Е	arth pressur	e		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	5.800	5.500	0.300	0.198	0.412	0.092	-0.132	-0.012
2	5,500	5.200	0.300	0.412	0.627	0.156	0.160	0.013
3	5.200	3.468	1.732	0.627	1.863	2.156	1.309	2.835
4	3.468	1.500	1.968	2.223	3.154	5.291	3.073	19.094
5	1.500	1.000	0.500	3.154	3.391	1.636	4.253	26.054
6	1.000	-1.500	2.500	3.391	4.574	9,957	5.812	83.921
7:	-1.500	-8.500	7.000	0.000	0.000	0.000	14.000	83.921
8	-8.500	-10.500	2.000	0.000	0.000	0.000	16.000	83.921
9.	-10.500	-20.500	10.000	5.539	8.824	71.817	21.381	1619.44

(ii) Calculation of water pressure

	Depth	of layer		V	Vater pressui	re		
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)			(tf/m)	(m)	(tf·m/m)
1	0.000	5.500	0.300					0.000
2	5.500	5.200	0.300	get de la la	4. 二、"流光注。			0.000
3	5.200	3.468	1.732					2.182
4	3.468	1.500	1.968	a V B Q I de la	1. 1. E. A.B.			12.460
5	1.500	1.000	0.500					16.139
6	1.000	-1.500	2.500				ter week to	41.031
7	-1.500	-8.500	7.000		ta di pasidi i i dali			168.304
8	-8.500	-10.500	2.000				Angeles et al.	220.252
9	-10.500	-20.500	10.000	71 34 114				387.640

(iii) Calculation of passive earth pressure

	Depth (Depth of layer		E	arth pressur			
No	Upper side	Bottom side	Layer width	Upper side	Bottom side		Affecting length	Moment
	(m)	(m)	(m)	r e artie		(tf/m)	(m)	(tf·m/m)
5	1.500	1.000	0.500	0.000	1.315	0.329	4.333	1.424
6	1.000	-1.500	2.500	1.315	7.887	11.503	6.048	70.987
7	-1.500	-8.500	7.000	23.000	28.600	180.600	10.627	1990.15
8	-8.500	-10.500	2.000	28.600	30.200	58.800	15.009	2872.69
9	-10.500	-20.500	10.000	42.353	83.876	631.144	21.548	16472.7

(iv) Moment and safety factor around jointing tie rod

	Depth	of layer	Moment	Moment	Moment of	Safety factor
No	Upper side	Bottom side	of active earth pressure	of active water pressure	passive earth pressure	F
		**	Ma	Mw	Mp	14.10 () 14 ()
	(m)	(m)	(tf·m/m)	(tf·m/m)	(tf·m/m)	Mp/(Ma+Mw)
1	5.800	5,500	-0.012	0.000		
2	5.500	5.200	0.013	0.000		
3	5.200	3.468	2.835	2.182		
4	3.468	1.500	19.094	12.460		
5	1.500	1.000	26.054	16.139	1.424	0.674
6	1.000	-1.500	83.921	41.031	70.987	1,335
7	-1.500	-8.500	83.921	168.304	1990.150	25.720
8	-8.500	-10.500	83.921	220.252	2872.690	36.856
9	-10.500	-20.500	1619.440	387.640	16472.700	10.411

(v) Balance equation at 7th layer

Item	A·Z³ + A	B·Z ² +	C·Z +	D D
Moment of active earth pressure (Ma)	0.158	2.760	15.260	26.054
Moment of water pressure (Mw)	0.000	0.866	7.792	16.139
Moment of passive earth pressure (Mp)	0.876	6.573	5.916	1.424
Safety factor		1.20		
$Fs \times (Ma + Mw) - Mp$	-0.687	-4.126	4.640	13.701
Result of cubic equation	The state of the state of	2.04	4	
Depth of embedment from ground		2.54	4 (m)	
Original length of sheet pile		6.84	4 (m)	
Adopted length of sheet pile		9.00	0 (m)	

4 Stress Calculation of Sheet Pile

Balance point that depend on active pressure and passive pressure is estimated fulcurm.

In structural calculation of sheet pile, sheet pile is regarded as simple beam between tie rod joint and estimated fulcrum

(i) Stress calculation of sheet pile

$$Z = Mmax / \sigma a$$

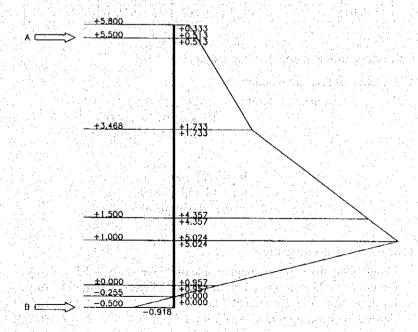
Where;

Z: Section modulus (cm 3 /m) Mmax: Maximum bending moment (kgf·cm/m) Σ a: Allowable stress (kgf/cm)

(ii) Maximum bending moment

$$AX2 + BX + C = 0$$

$$A = 0.5 \cdot (Pi2 - Pi1) / (Zi2 - Zi1)$$


$$B = Pil$$

$$C = \sum pi - Ra$$

Where;

Zil:	Length form dike crown to Upper side of i layer (m)
Zi2:	Length from dike crown to bottom side of I layer (m)
Pil:	Earth pressure until upper side of i layer (tf/m²)
Pi2:	Earth pressure until bottom side of i layer (tf/m²)
Σpi.	Total earth pressure (tf/m²)

4.1 In case of land side sheet pile (Normal case)

(i) Earth pressure for calculation

No	Layer depth	Active earth pressure	Water pressure	Passive earth pressure	Earth pressure for calculation
15 %	(m)	Pa(tf/m²)	Pw(tf/m²)	Pp(tf/m²)	Pa+Pw-Pp(tf/m²)
1	5.800	0.333	0.000	2 284 5 2	0.333
1	5.500	0.513	0.000		0.513
	5.500	0.513	0.000		0.513
2	3.468	1.732	0.000		1.733
	3.468	1.732	0.000		1.733
3	1.500	2.388	1.968		4.357
4	1.500	2.388	1.968		4.357
4	1.000	2.555	2.468		5.024
_	1.000	2.555	2.468	0.000	5.024
5	0.000	2.888	3.468	5,400	0.957
	0.000	2.888	3.468	5.400	0.957
6	-0.255	2.973	3,192	6.165	0.000
	-0.255	2.973	3.192	6.165	0.000
'	-0.500	3.055	2.926	6.900	-0.918

(ii) Moment and load around jointing tie rod

34.4 4.75	Earth pre		Area for	Total earth	Affecting	Moment	Total
No	Upper side	Bottom side	calculation	pressure	length	Monicit	moment
	(tf/m²)	(tf/m²)	(tf/m)	(tf/m)	(m)	(tf • m)	(tf·m)
1	0.333	0.513	0.127	0.127	-0.139	-0.018	-0.018
2	0.513	1.733	2.282	2.409	1.200	2.738	2.720
3	1.733	4.357	5.992	8.401	3.157	18.919	21.639
4	4.357	5.024	2.345	10.746	4.256	9.980	31.620
5	5.024	0.957	2.990	13.736	4.887	14.612	46.232
6	0.957	0.000	0.122	13.858	5.585	0.682	46.913
7	0.000	-0.918		13.858	5.918		46.913

(iii) Calculation of maximum bending moment

a) Calculation of fulcrum reaction

At estimated fulcrum $Rb = \sum PL/L$ Rb = 46.913 / 6.000

c0 = 40.91370.000= 7.819 (tf/m)

At tie rod $Ra = \Sigma P - Rb$ Ra = 13.858 / 7.819= 6.039 (tf/m)

b) Calculation of shearing stress

Zi1: Length from dike crown to upper side of 3 layer 2.332 (m) Length from dike crown to bottom side of 3 layer 4.300 Zi2: (m) Pil: Earth pressure at upper side of 3 layer 1.733 (tf/m^2) Earth pressure at bottom side of 3 layer 4.357 (tf/m^2) Pi2: 2.409 Total earth pressure until 2 layer (tf/m^2) Σ pi:

AX² + BX + C = 0
A = 0.5 · (Pi2 - Pi1) / (Zi2 - Zi1)
= 0.5 · (4.375 - 1.733) / (4.300 - 2.332)
= 0.667
B = Pi1 = 1.733
C =
$$\Sigma$$
 pi - Ra
= 2.409 - 6.039
= -3.630

Result of quadratic equation

$$X = 1.372 (m)$$

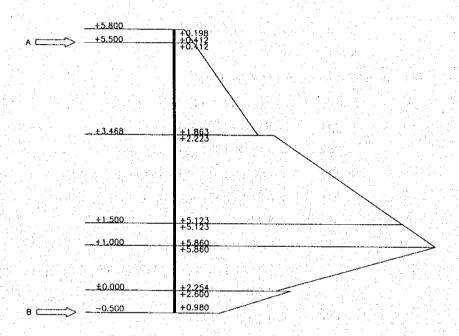
c) Maximum bending moment (Mmax)

Mmax = M1 - M2 - M3
M1 = Ra (X + Zi1 - Zs)
M2 =
$$\Sigma$$
 Pj (X + Zi1 - Zs - Lj)
M3 = PiX · (1/3) · (2 · Pi1 + PiX) / (Pi1 + PiX)
M1 = 6.039 · (1.372 + 2.332 - 0.300) = 20.555
M2 = 5.478
PiX = Pi1 + {(Pi2 - Pi1) / (Zi2 - Zi1)} · X
= 1.733 + {(4.357 - 1.733) / (4.300 - 2.332)} · 1.372
= 3.561
Pix = 0.5 · (Pi1 + PiX) · X
= 0.5 · (1.733 + 3.561) · 1.372 = 3.630
M3 = 3.630 · (1.372 / 3) · {(2 · 1.733 + 3.561) / (1.733 + 3.561)}
= 2.203
Mmax = 12.874 (tf·m/m)

- (iv) Stress calculation of sheet pile
 - a) Stress calculation of sheet pile

Necessary section modulus and bending stress is calculated with following formula.

$$Zr = M/(\sigma sa \times 0.60)$$
 $\sigma s = M/(Z \times 0.60)$


M Bending moment (kgf·cm/m)
 σs Allowable stress (kgf/cm²)

Z Section modulus of sheet pile (cm³/m)
0.60 Joint coefficient

b) Summary of calculation results

Item	Value		
Bending moment		12.874	(tf·m/m)
Necessary section modulus	Zr	1192	(cm ³)
Adopted sheet pile		Type-III	100000000000000000000000000000000000000
Allowable stress	σsa	1800	(kgf/cm²)
Section modulus	Z	1340	(cm ³)
Bending stress	σς	1601	(kgf/cm ²)

4.2 In case of land side sheet pile (Sesimic case)

(i) Earth pressure for calculation

No	Layer depth	Active earth pressure	Water pressure	Passive earth pressure	Earth pressure for calculation	
	(m)	Pa(tf/m ²)	Pw(tf/m²)	Pp(tf/m ²)	Pa+Pw-Pp(tf/m ²)	
1	5.800	0.198	0.000		0.198	
	5.500	0.412	0.000		0.412	
2	5,500	0.412	0.000		0.412	
	3.468	1.863	0.000		1.863	
3	3.468	2.223	0.000		2.223	
3	1.500	3.154	1.968		5.123	
4	1.500	3.154	1.968		5.123	
	1.000	3.391	2.468		5.860	
5	1.000	3.391	2.468	0.000	5,860	
	0.000	3.864	3.468	5.078	2.254	
6	0.000	3.864	3.468	4.732	2.600	
	-0.500	4.101	2.926	6.047	0.980	

(ii) Moment and load around jointing tie rod

Earth pressure for calculation			Area for	Total earth	Affecting		Total
No	Upper side	Bottom side	calculation	pressure	length	Moment	moment
	(tf/m²)	(tf/m²)	(tf/m)	(tf/m)	(m)	(tf·m)	(tf·m)
1	0.198	0.412	0.092	0.092	-0.132	-0.012	-0.012
2	0.412	1.863	2.312	2.403	1.232	2.848	2.836
3	2.223	5.123	7.229	9.632	3.145	22.737	25.573
4	5.123	5.860	2.746	12.378	4.256	11.684	37.257
5	5.860	2.254	4.057	16.435	4.926	19.984	57.241
6	2.600	0.980	0.895	17.330	5.712	5.114	62.355

(iii) Calculation of maximum bending moment

a) Calculation of fulcrum reaction

At estimated fulcrum
$$Rb = \sum PL/L$$

 $Rb = 62.355 / 6.000$
 $= 10.392 (tf/m)$

At tie rod
$$Ra = \sum P - Rb$$

 $Ra = 17.330 / 10.392$
 $= 6.937 \text{ (tf/m)}$

b) Calculation of shearing stress

Zi1:	Length from dike crown to upper side of 3 layer	2.332	(m)
Zi2:	Length from dike crown to bottom side of 3 layer	4.300	(m)
Pil:	Earth pressure at upper side of 3 layer	2.223	(tf/m²)
Pi2.	Earth pressure at bottom side of 3 layer	5.123	(tf/m^2)
Σpi:	Total earth pressure until 2 layer	2.403	(tf/m²)

$$AX^2 + BX + C = 0$$
 $A = 0.5 \cdot (Pi2 - Pi1) / (Zi2 - Zi1)$
 $= 0.5 \cdot (5.123 - 2.223) / (4.300 - 2.332)$
 $= 0.737$
 $B = Pi1 = 2.223$
 $C = \sum pi - Ra$
 $= 2.403 - 6.937$
 $= -4.534$

Result of quadratic equation

$$X = 1.395 (m)$$

c) Maximum bending moment (Mmax)

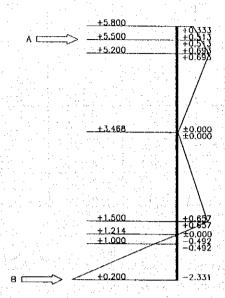
Mmax = M1 - M2 - M3
M1 = Ra (X + Zi1 - Zs)
M2 =
$$\Sigma$$
 Pj (X + Zi1 - Zs - Lj)

(iv) Stress calculation of sheet pile

a) Stress calculation of sheet pile

Necessary section modulus and bending stress is calculated with following formula.

$$Zr = M/(\sigma sa \times 0.60)$$
 $\sigma s = M/(Z \times 0.60)$


M Bending moment (kgf·cm/m)
 σs Allowable stress (kgf/cm²)

Z Section modulus of sheet pile (cm³/m)
0.60 Joint coefficient

b) Summary of calculation results

<u>Item</u>		Va	lue
Bending moment		15.543	(tf·m/m)
Necessary section modulus	Zr	959	(cm ³)
Adopted sheet pile	V 1	Type-III	The second
Allowable stress	σsa	2700	(kgf/cm ²)
Section modulus	Z	1340	(cm³)
Bending stress	σς	1933	(kgf/cm ²)

4.3 Incase of river side sheet pile (Normal case)

(i) Earth pressure for calculation

No	Layer depth	Active earth pressure	Water pressure	Passive earth pressure	Earth pressure for calculation
	(m)	Pa(tf/m ²)	Pw(tf/m ²)	Pp(tf/m²)	Pa+Pw-Pp(tf/m²)
1	5.800	0.333	0.000		0.333
	5.500	0.513	0.000		0,513
2	5.500	0.513	0.000		0.513
	5.200	0.693	0.000		0.693
3	5.200	0.693	0.000		0.693
	3.468	1.732	1.732		0.000
1	3.468	1.732	1.732		0.000
	1.500	2.388	1.732		0.657
۱ ۲	1.500	2.338	1.732	0.000	0.657
	1.214	2.484	1.626	0.857	0.000
6	1.214	2.484	1.626	0.857	0.000
	1.000	2.555	1.547	1.500	-0.492
7	1.000	2.555	1.547	1.500	-0.492
	0.200	2.822	1.253	3.900	-2.331

(ii) Moment and load around jointing tie rod

	Earth pre	ssure for lation	Area for	Total earth	Affecting		Total
No	Upper side	Bottom side	calculation	pressure	length	Moment	moment
	(tf/m²)	(tf/m²)	(tf/m)	(tf/m)	(m)	(tf·m)	(tf·m)
1	0.333	0.513	0.127	0.127	-0.139	-0.018	-0.018
2	0.513	0.693	0.181	0.308	0.157	0.028	0.011
3	0.693	0.000	0.601	0.909	0.878	0.527	0.538
4	0.000	0.657	0.647	1.556	3.343	2.163	2.701
.5	0.657	0.000	0.094	1.649	4.095	0.348	3.085
6	0.000	-0.492		1.649	4.429		3.085
7	-0.492	-2.331		1.649	4.978		3.085

- (iii) Calculation of maximum bending moment
 - a) Calculation of fulcrum reaction

At estimated fulcrum $Rb = \sum PL/L$ Rb = 3.085 / 5.300= 0.582 (tf/m)

> At tie rod $Ra = \Sigma P - Rb$ Ra = 1.649 / 0.582= 1.067 (tf/m)

b) Calculation of shearing stress

Zil:	Length from dike crown to upper side of 3 layer	2.332 (m)
Zi2:	Length from dike crown to bottom side of 3 layer	4.300 (m)
Pil:	Earth pressure at upper side of 3 layer	$0.000 \text{ (tf/m}^2)$
Pi2:	Earth pressure at bottom side of 3 layer	$0.657 \text{ (tf/m}^2\text{)}$
Σpi:	Total earth pressure until 2 layer	$0.909 \text{ (tf/m}^2\text{)}$

$$AX^2 + BX + C = 0$$

 $A = 0.5 \cdot (Pi2 - Pi1) / (Zi2 - Zi1)$
 $= 0.5 \cdot (0.657 - 0.000) / (4.300 - 2.332)$
 $= 0.167$
 $B = Pi1 = 0.001$
 $C = \sum pi - Ra$
 $= 0.909 - 1.067$
 $= -0.159$
Result of quadratic equation
 $X = 0.974$ (m)

c) Maximum bending moment (Mmax)

Mmax =
$$M1 - M2 - M3$$

M1 = $Ra (X + Zi1 - Zs)$

$$M2 = \sum Pj (X + Zi1 - Zs - Lj)$$

$$M3 = PiX \cdot (1/3) \cdot (2 \cdot Pi1 + PiX) / (Pi1 + PiX)$$

$$M1 = 1.067 \cdot (0.974 + 2.332 - 0.300)$$

$$= 3.208$$

$$M2 = 2.193$$

$$PiX = Pi1 + \{(Pi2 - Pi1) / (Zi2 - Zi1)\} \cdot X$$

$$= 0.000 + \{(0.657 - 0.000) / (4.300 - 2.332)\} \cdot 0.974$$

$$= 0.325$$

$$Pix = 0.5 \cdot (Pi1 + PiX) \cdot X$$

$$= 0.5 \cdot (0.000 + 0.325) \cdot 0.974$$

$$= 0.158$$

$$M3 = 0.158 \cdot (0.974 / 3) \cdot \{(2 \cdot 0.000 + 0.325) / (0.000 + 0.325)\}$$

$$= 0.051$$

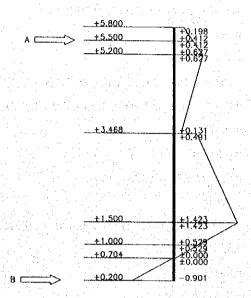
$$= 0.063 (tf \cdot m/m)$$

(iv) Stress calculation of sheet pile

a) Stress calculation of sheet pile

Necessary section modulus and bending stress is calculated with following formula.

$$Zr = M/(\sigma \operatorname{sa} \times 0.60)$$


$$\sigma s = M/(Z \times 0.60)$$

M	Bending moment (kg	f·cm/m)
σs	Allowable stress (kgf/cm²)
Z	Section modulus of sheet pile	(cm³/m)
0.60	Joint coefficient	right, and

b) Summary of calculation results

Item 1	Value		
Bending moment		0.963	(tf·m/m)
Necessary section modulus	Zr	89	(cm³)
Adopted sheet pile		Type-III	1 201
Allowable stress	σ sa	1800	(kgf/cm²)
Section modulus	Z	1340	(cm ³)
Bending stress	σs	120	(kgf/cm²)

4.4 In case of river side sheet pile (Seismic case)

(i) Earth pressure for calculation

No	Layer depth	Active earth pressure	Water pressure	Passive earth pressure	Earth pressure for calculation
	(m)	Pa(tf/m²)	Pw(tf/m²)	Pp(tf/m²)	Pa+Pw-Pp(tf/m²)
1	5.800	0.198	0.000		0.198
	5.500	0.412	0.000		0.412
2	5.500	0.412	0.000	A CHANGA A	0.412
	5.200	0.627	0.000		0.627
3	5.200	0.627	0.000		0.627
	3.468	1.863	1.732		0.131
4	3.468	2.223	1.732		0.491
'	1.500	3.154	1.732		1.423
5	1.500	3.154	1.732	0.000	1.423
	1.000	3.391	1.547	1.315	0.529
6	1.000	3,391	1.547	1.315	0.529
	0.704	3.531	1.438	2.093	0.000
7	0.704	3.531	1.438	2.093	0.000
	0.200	3.770	1.253	3.418	-0.901

(ii) Moment and load around jointing tie rod

	Earth pressure for calculation		Area for Total earth	Affecting		Total	
No	Upper side	Bottom side	calculation	pressure	length	Moment	moment
	(tf/m²)	(tf/m²)	(tf/m)	(tf/m)	(m)	(tf·m)	(tf·m)
1	0.198	0.412	0.092	0.092	-0.132	-0.012	-0.012
2	0.412	0.627	0.156	0.247	0.160	0.025	0.013
3	0.627	0.131	0.656	0.903	0.977	0.641	0.653
4	0.491	1.423	1.883	2.787	3.176	5.981	6.635
5	1.423	0.529	0.488	3.275	4.212	2.055	8.690
6	0.529	0.000		3.275	4.599	2.000	8.690
7	0.000	-0.901		3.275	5.132		8.690

(iii) Calculation of maximum bending moment

a) Calculation of fulcrum reaction

At estimated fulcrum $Rb = \sum PL/L$ Rb = 8.690 / 5.300= 1.640 (tf/m)

At tie rod
$$Ra = \sum P - Rb$$

 $Ra = 3.275 / 1.640$
 $= 1.635 (tf/m)$

b) Calculation of shearing stress

Zil:	Length from dike crown to upper side of 3 layer	2.332	(m)
Zi2:	Length from dike crown to bottom side of 3 layer	4.300	(m)
Pil:	Earth pressure at upper side of 3 layer	0.491	(tf/m ²)
Pi2:	Earth pressure at bottom side of 3 layer		(tf/m ²)
Σpi:	Total earth pressure until 2 layer	0.903	(tf/m²)

$$AX^2 + BX + C = 0$$
 $A = 0.5 \cdot (Pi2 - Pi1) / (Zi2 - Zi1)$
 $= 0.5 \cdot (1.423 - 0.491) / (4.300 - 2.332)$
 $= 0.237$
 $B = Pi1 = 0.491$
 $C = \sum pi - Ra$
 $= 0.903 - 1.635$
 $= -0.732$
Result of quadratic equation
 $X = 1.004$ (m)

c) Maximum bending moment (Mmax)

$$\begin{array}{lll} \text{Mmax} &= \text{M1} - \text{M2} - \text{M3} \\ \text{M1} &= \text{Ra} \left(X + \text{Zi1} - \text{Zs} \right) \\ \text{M2} &= \sum \text{Pj} \left(X + \text{Zi1} - \text{Zs} - \text{Lj} \right) \\ \text{M3} &= \text{PiX} \cdot (1/3) \cdot (2 \cdot \text{Pi1} + \text{PiX}) / \left(\text{Pi1} + \text{PiX} \right) \\ \text{M1} &= 1.635 \cdot (1.004 + 2.332 - 0.300) \\ &= 4.964 \\ \text{M2} &= 2.089 \\ \text{PiX} &= \text{Pi1} + \left\{ \left(\text{Pi2} - \text{Pi1} \right) / \left(\text{Zi2} - \text{Zi1} \right) \right\} \cdot X \\ &= 0.491 + \left\{ \left(1.423 - 0.491 \right) / \left(4.300 - 2.332 \right) \right\} \cdot 1.004 \\ &= 0.967 \\ \text{Pix} &= 0.5 \cdot \left(\text{Pi1} + \text{PiX} \right) \cdot X \\ &= 0.5 \cdot \left(0.491 + 0.967 \right) \cdot 1.004 \\ &= 0.732 \\ \text{M3} &= 0.732 \cdot \left(1.004 / 3 \right) \cdot \left\{ \left(2 \cdot 0.491 + 0.967 \right) / \left(0.491 + 0.967 \right) \right\} \\ &= 0.327 \\ \text{Mmax} &= 2.548 \left(\text{tf} \cdot \text{m/m} \right) \end{array}$$

(iv) Stress calculation of sheet pile

a) Stress calculation of sheet pile

Necessary section modulus and bending stress is calculated with following formula.

$$Zr = M/(\sigma sa \times 0.60)$$
 $\sigma s = M/(Z \times 0.60)$

M Bending moment (kgf cm/m)
 σs Allowable stress (kgf/cm²)

Z Section modulus of sheet pile (cm³/m)
0.60 Joint coefficient

b) Summary of calculation results

Item	Value		
Bending moment		2.548	(tf·m/m)
Necessary section modulus	Zг	157	(cm ³)
Adopted sheet pile		Type-III	
Allowable stress	σsa	2700	(kgf/cm ²)
Section modulus	Z	1340	(cm ³)
Bending stress	σς	317	(kgf/cm ²)

4.5 Consideration of tie rod

(i) Load affecting tie rod

Load affecting tie rod is equal to fulcrum reaction of tie rod.

		At lan	d side	At river side		
			Normal case	Seismic case	Normal case	Seismic case
	Fulcrum reaction	Ra(tf/m)	6.039	6.937	1.067	1.635

Therefore:

Pe (Normal case) =
$$6.039$$
 (tf/m)
Pe (Seismic case) = 6.937 (tf/m)

(ii) Tension calculation of tie rod

Tension stress affecting tie rod is calculated with following formula.

$$T = Pe \cdot L \cdot 1000$$

Where;

T: Tension stress (kgf)
Pe: Fulcrum reaction (tf/m)
L: Installed interval (m)

a) Normal case

$$T = 6.039 \times 2.00 \times 1000$$
$$= 12078.80 \text{ (kgf)}$$

b) Seismic case

$$T = 6.937 \times 2.00 \times 1000$$

= 13874.40 (kgf)

(iii) Stress calculation of tie rod

Section area of tie rod is calculated with following formula.

$$A = T / \sigma a$$

Where;

A: Section area (cm^2) T: Tension stress (kgf) σ a: Allowable stress (kgf/cm^2)

Iter	n	Normal case	Seismic case
Tension stress	(kgf)	12078.80	13874.40
Allowable strength	(kgf/cm²)	880	1320
Section area	(cm ²)	13.73	10.51
Necessary diameter	(mm)	41.80	36.60

Therefore, it is adopted that diameter of tie rod is 42.0 mm.

(iv) Summary of calculation results

		Normal case		Seismic case		
Material of tie rod	Allowable strength	Necessary section area	Necessary diameter	Allowable strength	Necessary section area	Necessary diameter
	(kgf/cm ²)	(cín²)	(mm)	(kgf/cm ²)	(cm ²)	(mm)
SS400(<40mm)	960	12.58	40.1	1440	9.64	35.1
SS400(>40mm)	880	13.73	41.8	1320	10.51	36.6
SS490(<40mm)	1120	10.78	37.1	1680	8.26	32.5
SS490(>40mm)	1040	11.61	38.5	1560	8.89	33.7
High tension steel 390	1600	7.55	31.0	2400	5.78	27.2
High tension steel 440	1800	6.71	29.3	2700	5.14	25.6

4.6 Consideration of waling

(i) Calculation of bending moment

Bending moment is calculated with following formula.

$$M = T \cdot L/4$$

Where;

M: Bending moment (tf·m)
T: Tension stress (tf)
L: Horizontal interval (m)

a) Normal case

$$M = (12.08 \cdot 2.00) / 4$$
$$= 6.04 (tf \cdot m)$$

b) Seismic case

$$M = (13.87 \cdot 2.00) / 4$$
$$= 6.94 (tf \cdot m)$$

(ii) Stress calculation

Stress calculation of waling is calculated with following formulas.

(Section modulus)

 $Zr = M/\sigma sa$

(Bending strength)

 $\sigma s = M/Z$

Where;

M: Bending moment (tf·m) σ sa: Allowable strength (kgf/cm²) Z: Section modulus (cm³)

It is adopted that waling member is $2[200 \times 90 \times 8 \times 13.5]$.

Item	Normal case	Seismic case		
Tension stress	(tf)	12.08	12.87	
Horizontal interval	(m)	2.00	2.00	
Bending moment	(tf·m)	6.04	6.94	
Allowable stress	(kgf/cm ²)	1400.00	2100.00	
Section modulus	(cm³)	498.0		
Bending strength	(kgf/cm ²)	1212.73	1393.01	
Necessary section modulus	(cm³)	431.39	330.34	

(iii) Summary of calculation results

	Waling member	- 1	Section modulus	Evalı	lation
			(cm³)	Normal case	Seismic case
1	$2[100 \times 50 \times 5 \times 7]$.5	75.2	(X)	(X)
2	$2[125 \times 65 \times 6 \times 8]$		135.6	(X)	(X)
3	$2[150 \times 75 \times 6.5 \times 1]$	0	230.0	(X)	(X)
4	$2[150 \times 75 \times 9 \times 1]$	2.5	280.0	(X)	(×)
5	$2[180 \times 75 \times 7 \times 1]$	0.5	306.0	(X)	(×)
6	$2[200 \times 80 \times 7.5 \times 1]$	1	390.0	(X)	(O)
7	$2[200 \times 90 \times 8 \times 1]$	3.5	498.0	(O)	(0)
8	$2[250 \times 90 \times 9 \times 1]$	3	668.0	(O)	(O)
9	$2[250 \times 90 \times 11 \times 1]$	4.5	748.0	(O)	(O)
10	$2[300 \times 90 \times 9 \times 1]$	3	858.0	(O)	(O)
11	$2[300 \times 90 \times 10 \times 1]$	5.5	988.0	(O)	(O)
12	$2[300 \times 90 \times 12 \times 1]$	6	1050.0	(O)	(O)
13	$2[380 \times 100 \times 10.5 \times 1]$	5	1526.0	(0)	(O)
14	$2[380 \times 100 \times 13 \times 1]$	5.5	1646.0	(O)	(O)
15	$2[380 \times 100 \times 13 \times 20]$	0	1852.0	(O)	(O) a

Consideration of impermeable effectiveness

5.1 Calculation formula

F1 = L1/h1

F2 = L2 / h2

Where;

: Safety factor (3.00) Fi

L1 : Vertical seepage length (m)

L2 : Horizontal seepage length (m) hl

: Height from HWL to ground level

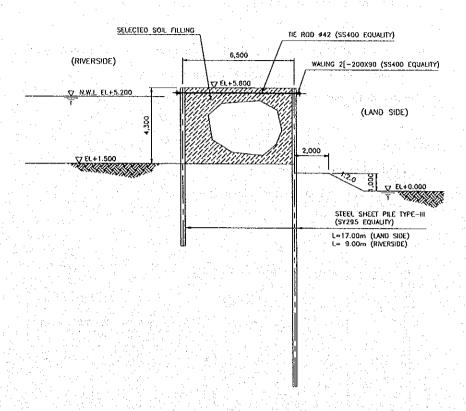
5.200 - (1.000)

4.200 (m)

h2 : Height form HWL to excavation level

5.200 - (0.000) 5.200 (m)

5.2 Calculation of impermeable effectiveness


Height from bottom of sheet pile to excavation surface = $\sqrt{4.00^2 + 3.20^2}$ = 5.12 (m) L2 = 4.70 + 6.50 + 5.12 = 16.32 (m) F1 = 16.32 / 5.20

= 3.14O.K

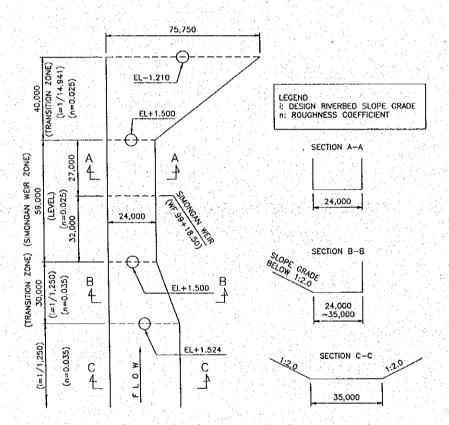
Therefore, it is adopted that sheet pile length for impermeable effectiveness is 17.00

$$L = L2 + 0.30 \text{ m} = 16.62 = 17.00 \text{ m}$$

Standard cross section of temporary cofferdam is shown as follows.

STANDARD CROSS SECTION OF TEMPORARY COFFERDAM

8.2 Consideration of Discharge Capacity


In case of temporary work, discharge capacity is calculated with temporary cofferdam around Simongan weir at second stage.

Method of discharge capacity calculation adopts non-uniform flow.

1 Design condition

a) Configuration of section

Figure of estimated channel is shown as follows.

b) Design dike crown elevation of temporary cofferdam

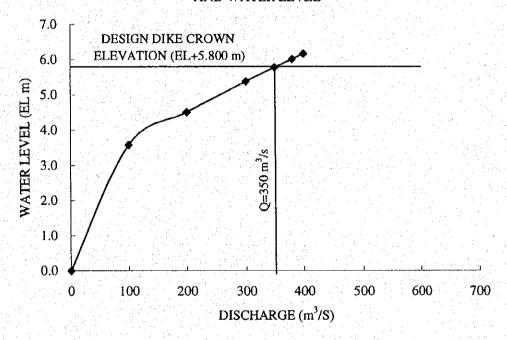
Design dike crown elevation of temporary cofferdam is adopted as follows.

Design dike crown elevation

= N.W.L + freeboard

EL+5.800 m

= EL+5.200m + 0.60 m

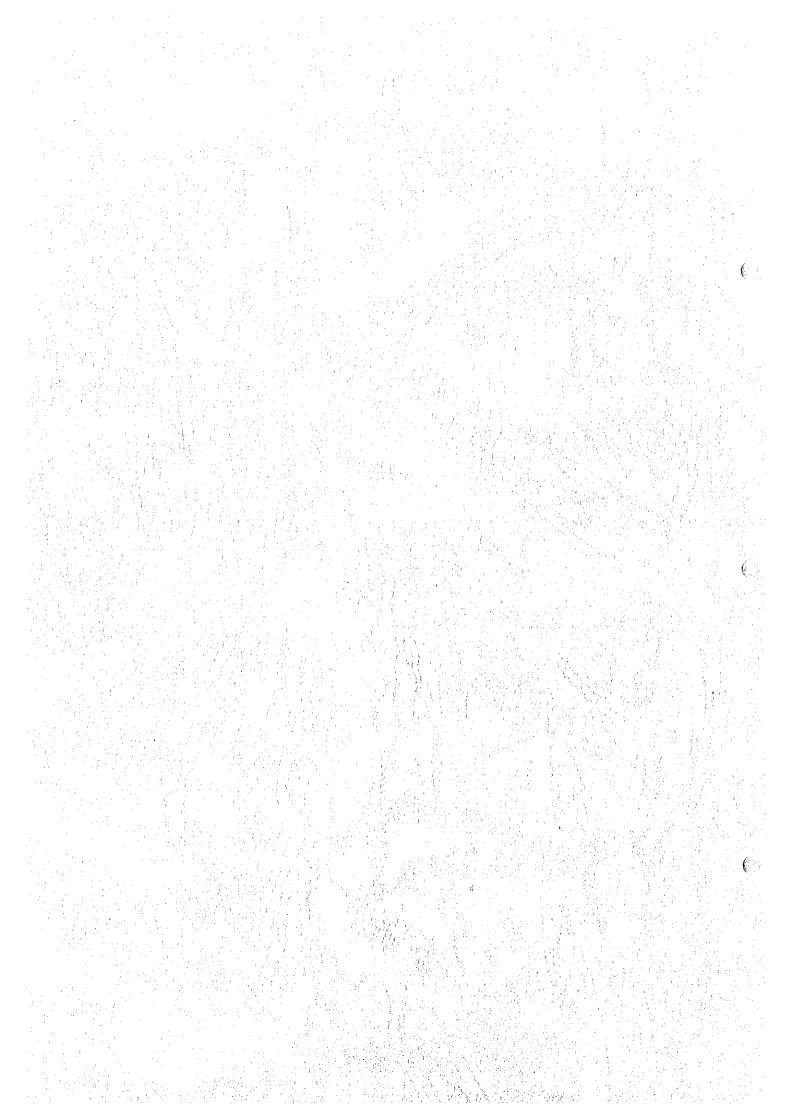

Decision point of water level is most upstream temporary cofferdam (WF.99+80.50), because dike crown elevation of temporary cofferdam is level.

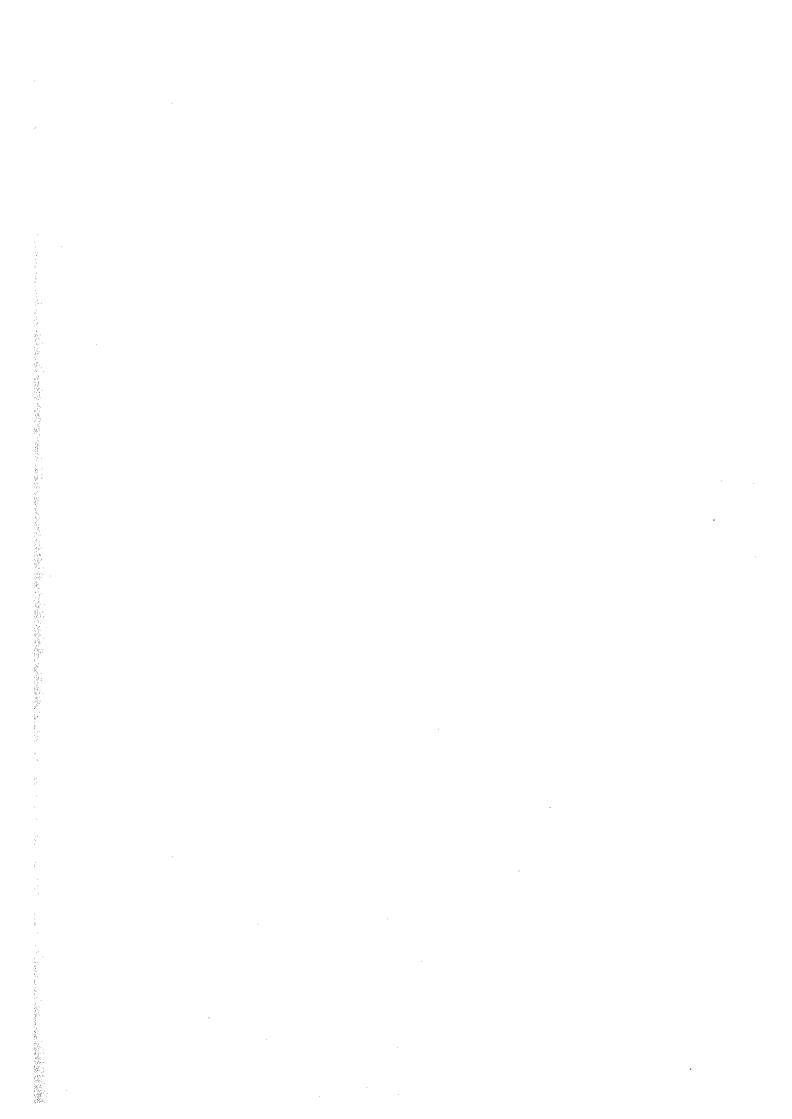
2 Result of Discharge Capacity

In case of each discharge, results of water elevation and flowing velocity are shown as follows.


Discharge	Water level	Velocity of flowing	Remarks
$Q = 100 \text{ m}^3/\text{s}$	EL+3.476 m	1.316 m/s	Below dike crown
$Q = 200 \text{ m}^3/\text{s}$	EL+4.511 m	1.634 m/s	- ditto -
$Q = 300 \text{ m}^3/\text{s}$	EL+5.381 m	1.821 m/s	- ditto -
$Q = 350 \text{ m}^3/\text{s}$	EL+5.780 m	1.890 m/s	- ditto -
$Q = 380 \text{ m}^3/\text{s}$	EL+6.011 m	1.926 m/s	Above dike crown
$Q = 400 \text{ m}^3/\text{s}$	EL+6.162 m	1.948 m/s	- ditto -

RELATION BETWEEN DISCHARGE AND WATER LEVEL




Result of calculation at table and graph says that allowable discharge capacity with temporary cofferdam is below 350 m³/s, in case of above 350 m³/s, flowing water across temporary cofferdam.

The discharge of 350 m³/s is regarded as about 2 – year return period flood.

Compared to the second

