CHAPTER 5 GROUND SILL

5.1. Ground Sill with Head at WF. 124

Location and Purpose

检测

The following groundsill is proposed in the river improvement plan.

Being located at 1,055 m upstream portion from Simongan Weir, this ground sill is placed at the point in which the riverbed elevation changes in the form of step.

The requirements that the ground sill must meet are i) to prevent riverbed degradation ii) to stabilize the upstream and downstream riverbeds and, iii) to maintain longitudinal and cross sectional forms of river channel.

Structural Type

The ground sill (WF 124) is of concrete gravity type connected with an apron to safeguard its own body from hydraulic force during floods. The concrete body is constructed on the hard sandy layer without using foundation piles. Flexible gabion mattresses are placed on upstream and downstream riverbeds of the ground sill with a length of 20 m and 30 m respectively to protect riverbed, while 3.5 m length of RC Sheet piles are provided at both end of main sill body for protection against seepage.

The design of ground sills is made to ensure structural stability against sliding, overturning and bearing capacity of the sub-base ground, and to satisfy hydraulic stability against piping, uplift and scouring.

- (1) Structural Dimension, etc
- (a) River Channel

	Upstream	downstream
Riverbed width	40.0 m	35.0 m
Elevation of riverbed	EL. +3.843	EL. +2.343
Side slope (m)	2.0 m	2.0 m
Riverbed slope (I)	1/ ₁₂₅₀	1/1250
Manning Coefficient (n)	0.030	0.030

(b) Hydraulic Drop

Main body height	(H ₁)	2.50 m
Main body crown width	(B)	1.50 m
Main body bottom width	(B ₀)	2.25 m
Drop height	(p)	1.50 m
Apron thickness	(t)	1.00 m
Apron length	(L)	9.00 m
Total bottom width	(L ₀)	10.50 m

(c) Side Wall

n 1944 - Antonio Maria, and Antonio Ballina. Antonio di Antonio anto		Transiti	on wall
	Main wall	Upstream	Downstream
		end	end
Total height (h _o)	2.50 m	2.50 m	1.00 m
Wall height (h)	2.00 m	2.00 m	0.50 m
Wall thickness (b ₁ -b ₂)	(0.3 - 0.4) m	(0.3 - 0.4) m	0.30 m
Slab thickness (h ₁)	0.50 m	0.50 m	0.50 m
Bottom width of slab (b)	1.80 m	1.80 m	0.80 m
Length (1)	10.50 m	10.9	0 m

(d) Revetment

Length	Upstream	20.00 m
	Main structure	10.50 m
	Downstream	30,00 m
Section	as shown on standard d	rawings

(e) Riverbed protection

Upstream length (L ₁)	20.00 m
Downstream length (L ₂)	30.00 m
Thickness (t ₁)	0.50 m

5.1.1 Hydraulic Design

(1) Design Condition

(a) Normal condition

Design discharge	$Q = 70.0 \text{ m}^3/\text{s}$
Upstream water level	EL. + 5.283 m
Downstream water level	EL. + 3.893 m
Upstream water depth	$H_{o} = 1.55 \text{ m}$
Downstream water depth	H = 1.44 m

(b) Flood condition

Design discharge	$Q = 790.0 \text{ m}^3/\text{s}$
Upstream water level	EL. + 9.743 m
Downstream water level	EL. + 8.843 m
Upstream water depth	$H_{o} = 5.90 \text{ m}$
Downstream water depth	H = 6.50 m

(2) Examination of Apron Length

(a) Normal condition

$$\Delta h = (+5.283) - (+3.893) = 1.39 m$$

perfect overflow will be occurred.

Upstream channel :

Α	= (B + n	n . H _o) H _o			
	= (40.0 -	+2 x 1.44) x 1.44	= 61.74	7 m²
V.	= Q/A				
	= 70/61	.747		= 1.134	m/s
	nin - Annaza Maria				

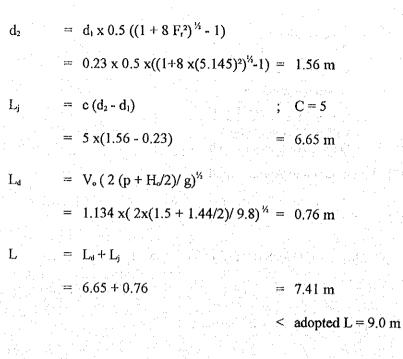
 $V_o^2/2g = (1.134)^2/2/9.8 = 0.065 m$

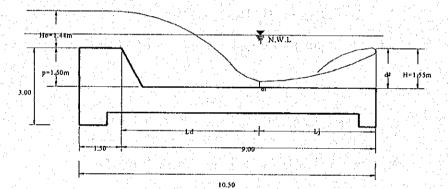
Examination of hydraulic jump by Bernoulli equation

$$d_1 + V_1^2/2g = p + H_0 + V_0^2/2g$$

= 1.5 + 1.44 + 0.065 = 3.005 m

Trial $d_1 = 0.23 \text{ m}$


Vi


= $Q/b/d_1$ = 70.0/39.4/0.23 = 7.725 m/s

$$d_1 + V_1^2 / 2g = 0.23 + (7.725)^2 / 2 / 9.8 = 3.044 m$$

~ 3.005 m

 $F_{r} = V_{1} / (g \cdot d_{1})^{V_{2}}$ = 7.725 / (9.8 x 0.23)^{V_{3}} = 5.145

(b) Flood condition

 $\Delta h = (+9.743) - (+8.843) = 0.90 \text{ m}$

> H_o/3 (= 1.967 m)

All when the

unperfect overflow will be occurred (No hydraulic jump).

(3) Examination of Apron Thickness

Applying the following formula

t

=
$$0.1 (0.6 \text{ p} + 3 \text{ H}_{\circ} - 1.0)$$

= $0.1 \text{ x}(0.6 \text{ x} 1.5 + 3 \text{ x} 1.44 - 1.0) = 0.422 \text{ m}$
< adopted t = 1.0 m

(4) Examination of Creep Length

Normal condition, after construction, downstream channel start to fill.

Creep length will be estimated by Lane's method as follows :

Cl = $(\Sigma L_v + \Sigma L_h / 3)/H$ Cl \ge C (= 7 for fine sand)

The cut off wall of about 3.5 m length are provided at both end.

H = 1.44 + 1.5 = 2.94 m $L_{v} = 3.0 + 1.5 + 2 \times 0.5 + 4 \times 3.5 = 19.5 m$ $L_{h} = 10.5 m$ $C_{1} = (19.5 + 10.5 / 3) / 2.94 = 7.823$ > C (=7)

5.1.2 Structural Design

5.1.2.1 Main Sill Body

(1) Design Condition

(a) Hydraulic Condition

(i) Normal Condition

Design discharge	$Q = 70.0 \text{ m}^3/\text{s}$	
Upstream water depth	H _o = 1.55 m	:
Downstream water depth	H = 1.44 m	

(ii) Flood condition

Design discharge $Q = 790.0 \text{ m}^3/\text{s}$	
Upstream water depth $H_0 = 5.90 \text{ m}$	
Downstream water depth $H = 6.50 \text{ m}$	and a set

(iii) Seismic condition

8708. 34

Water level	EL. + 5.20
Upstream water depth	$H_{o} = 5.90 \text{ m}$
Downstream water depth	H = 6.50 m

(b) The material data

(i) Soil Material *)

Original soil material	 	
Wet unit weight		$\gamma_{\rm t}=1.6~{\rm t/m^3}$
Submerged unit weight		$\gamma_{s}^{*}=0.8 \text{ t/m}^{3}$
Internal friction angle		$\phi = 27^{\circ}$
Cohesion		$c = 0.0 t/m^2$
and the second		

Back fill under the main body

		$\gamma_{\rm tl} = 1.8 \text{ t/m}^3$	Wet unit weight
		$\gamma^{2}_{sl} = 1.0 \text{ t/m}^{3}$	Submerged unit weight
1 (1 ⁻	14 J. 1	$\phi_1 = 30^\circ$	Internal friction angle
:		$c_1 = 0.0 t/m^2$	Cohesion
		$c_1 = 0.0 t/m^2$	Cohesion

(ii) Others

	<u>그는 것 같</u> 는 동안에서 가지 않는 것을 하는 것이 없다.
Unit weight of mass concrete	$\gamma^{\circ} = 2.35 \text{ t/m}^3$
Unit weight of gabion mattress	$\gamma_{\rm gm} = 2.00 \ {\rm t/m^3}$
Unit weight of water	$\gamma_{\rm w} = 1.0 \ t/m^3$
Seismic coefficient	kh = 0.12

*) Based on soil investigation on RB33 and RB34 (Location WF124) soil layer at El. + 0.3m to + 5.0m are silty sand, fine to medium with average N-value of about N = 12. Soil internal friction angle will be estimated based on N-value as follows : φ=15 + √15.N = 27.25 - 27° For N=12, assumed γ_t = 1.6 t/m³ (wet), γ_s' = 0.8 t/m³ (submerged) At main body foundation, original soil material of about 1 m depth will be excavated and to be filled by very fine sand with an internal friction angle of about φ₁ = 30°

(c) Design Load

(i) Earth pressure

Coulomb's formula

 $\alpha = 0, \qquad \theta = 0, \qquad \delta = 0$

- Passive earth pressure is omitted.
- (ii) Uplift pressure

Effective uplift pressure is 70% only.

(d) The Combination of Load

Load	Condition	Normal	Flood	Seismic
The vertical load	Weigth of main body	+	+	+
	Weight of water	+	+	+
	Uplift pressure	+	+	+
The horizontal load	Earth pressure	1 +	+	+
	Water pressure	+	+	+
	Horizontal earthquake pressure			+

"+" consider in the calculation

- (2) Stability Analysis
- (a) Coefficient of Active earth pressure

Applying Coulomb's formula as follows:

(in ordinary)

$$K_{a} = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \ \cos(\phi + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \alpha)}{\cos(\theta + \delta)\cos(\theta - \alpha)}}\right]^{2}}$$

(in seismic)

$$K_{ca} = \frac{\cos^{2}(\phi - \theta_{o} - \theta)}{\cos\theta_{o} \cdot \cos^{2}\theta \cdot \cos(\theta + \theta_{o} + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \alpha - \theta_{o})}{\cos(\theta + \theta_{o} + \delta)\cos(\theta - \alpha)}}\right]^{2}}$$

$$kh' = \frac{\gamma_s}{\gamma_s - 1} kh$$

$$tan \theta = \frac{kh}{1 - kv} , kv = 0$$

$$tan \theta_o = \frac{kh'}{1 - kv}$$
For $\theta = 0$, $\delta = 0$, $\alpha = 0$

$$kh' = \frac{1.8}{1.8 - 1} \times 0.12 = 0.27$$

$$\theta = atan 0.12 = 6.84$$

$$\theta_o = atan 0.27 = 15.11$$

(in ordinary)

Ka =
$$\frac{\cos^2(27)}{1 + \sqrt{\sin^2(27)}}$$
 = 0.376

(in seismic)

$$K_{ca} = \frac{\cos^2(27 - 6.84)}{\cos 6.84 \times \cos 6.84 \times \left[1 + \sqrt{\frac{\sin 27 \times \sin (27 - 6.84)}{\cos (6.84)}}\right]^2}$$

= 0.458
$$K_{ca} = \frac{\cos^2(27 - 15.11)}{\cos 15.11 \times \left[1 + \sqrt{\frac{\sin 27 \times \sin (27 - 15.11)}{\cos (15.11)}}\right]^2}$$

= 0.5975

(saturated)

(submerged)

(b) Allowable bearing capacity

Bearing capacity beneath structure will be estimated by the following formula:

$$q_{u} = \alpha . c . k . N_{e} + k . q . N_{q} + \frac{1}{2} . \gamma . B . N_{r}$$

$$k = 1 + 0.3 D_{r} / B$$

$$q_{a} = q_{u} / 3$$

$$q_{ea} = q_u/2$$

For
$$\theta = 27$$
 , $N_q = 14.0$

 $N_{\gamma} = 9.0$

At upstream end, Df = 3.0 m

Ì

ð

$$k = 1 + 0.3 \times 3 / 10.50 = 1.010$$

$$q_u = 1.01 \times (3.0 \times 0.8) \times 14.0 + \frac{1}{2} \times 1.0 \times 10.5 \times 9.0$$

$$= 64.386 \text{ t/m}^2$$

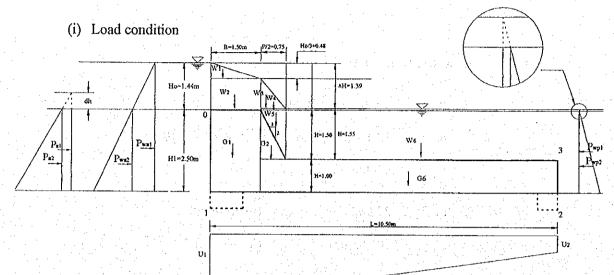
$$q_a = 27.062 \text{ t/m}^2 \text{ (in ordinary)}$$

$$q_{ta} = 40.593 \text{ t/m}^2 \text{ (in seismic)}$$

At downstream end, Df = 1.5 m

k

 $= 1 + 0.3 \times 1.5 / 10.50 = 1.02$


 $q_u = 1.02 \text{ x} (1.5 \text{ x} 0.8) \text{ x} 14.0 + \frac{1}{2} \text{ x} 1.0 \text{ x} 10.5 \text{ x} 9.0$

 $= 54.936 \text{ t/m}^2$

 $q_a = 21.462 t/m^2 \qquad (in ordinary)$

 $q_{ea} = 32.193 \text{ t/m}^2$ (in seismic)

(c) Stability analysis on Normal Condition

(ii) Weight of structure

Gı	$= (\mathbf{p} + \mathbf{t}) \mathbf{x} \mathbf{B} \mathbf{x} \boldsymbol{\gamma} \mathbf{c}$	
ara Alian Alian Alian	$= 2.5 \times 1.5 \times 2.35$	8.812 t/m
<i>x</i> 1	= 10.5 - 1.5/2	9.750 m
G2	$= \frac{1}{4} p^2 \mathbf{x} \gamma' \mathbf{c}$	
	$= \frac{1}{4} \times (1.5)^2 \times 2.35 =$	1.322 t/m
<i>x</i> ₂	= 10.5-1.5-0.75/3 =	8.750 m
G3	$= (L-B)x t x \gamma^{2}c$	
	$= 9 \times 1.0 \times 2.35$ =	21.150 t/m
X 3	= (10.5 - 1.5)/2 =	4.500 m

(iii) Uplift pressure

Applying the following formula:

$$U_{x} = H_{x} - L_{x} / L . \Delta H$$

$$\Delta H = 1.39 m$$

$$L = 3.0 + 10.5 + 1.5 + 4 x 3.5 = 30 m$$

· · ·			
Point	H _x	Lx	u,
0	1.44	0.00	1,440
1	4.44	3.00	4.301
2	4.44	28.50	3.120
3	2.94	30.00	1.550

 $U_{1-2} = (U_1 + U_2)/2 \times L \times \gamma_w$

= $(4.301 + 3.120)/2 \times 10.5 \times 1.0$ = 38.960 t/m = $10.5 - (4.301 + 2 \times 3.12)/7.421 \times 10.5/3$ = 5.529 m

(iv) Water pressure

 X_{u}

Vertical

	그는 그 그는 것 같은 것 같	·	
W ₁	= $\frac{1}{2} x (H_0/3) x B x \gamma_w$		
	= ½ x (0.48) x 1.5 x 1.0	=	0.360 t/m
x_{wl}	= 10.5 - 1.5 / 2	=	10.000 m
			an San San San San San San San San San San
W2	$= (^{2}/_{3}H_{o}) \times B \times \gamma_{w}$		
	$= 0.96 \times 1.50 \times 1.0$	=	1.440 t/m
x_{w^2}	= 10.5 - 1.5 / 3	=	9.750 m
W3	= $\frac{1}{2} x (\frac{1}{2}p) x (\Delta H - H_0/3) x \gamma_w$		
	$= \frac{1}{2} \times 0.75 \times 0.91 \times 1.0$	=	0.341 t/m
<i>x</i> _{w3}	= 10.5 - 1.5 - 0.75 / 2		8.750 m
an Ush.			
W4	$= (\frac{1}{2}p) \times (H-p) \times \gamma_w$		nel e departen 17 de seu en
	$= 0.75 \times 0.05 \times 1.0$	=	0.380 t/m
X	= 10.5 - 1.5 - 0.75 / 2		8.625 m
W ₅	$= \frac{1}{2} x (\frac{1}{2}p) x p x \gamma_{*}$	at. Nation	
	$= \frac{1}{2} \times 0.75 \times 1.5 \times 1.0$	=	0.563 t/m
Xws	$= 10.5 - 1.5 - \frac{2}{3} \times 0.75$		8.500 m
W ₆	$= H \mathbf{x} (L - B - p/2) \mathbf{x} \gamma_w$		
	$= 1.55 \times 8.25 \times 1.0$	=	12.787 t/m
X _{w6}	= (10.5 - 2.25)/2	=	4.125 m

Horizontal

Ŋ

 $P_{wai} = H_o x \gamma_w x H_i$

	$= 1.44 \times 1.0 \times 2.5$	==	3,600 t/m
Ywal	$= H_1/2$		1.250 m
Pw2	$= \frac{1}{2} \times H_1 \times \gamma_w$		
	$= \frac{1}{2} \times (2.5)^2 \times 1.0$	=	3.125 t/m
y_{wa2}	$= H_{1}/3$	=	0.8333 m
P_{wpI}	$= (H-p) \mathbf{x} \gamma_{w} \mathbf{x} H_{1}$		
	$= 0.05 \times 1.0 \times 2.5$	_	0.125 t/m
\mathcal{Y}_{wp1}	= 1.250 m	ta Taya	
		: •	
Pwp2	$= \frac{1}{2} \times H_1^2 \times \gamma_w$		
n i Maria	$= \frac{1}{2} \times (2.5)^2 \times 1.0$	=	3.125 t/m
${\mathcal Y}_{{ m wp}2}$	= 0.833 m		

あるというないであるというないである

(v) Earth pressure

Surcharge due to gabion :

dh =
$$(t_1 \times \gamma_{gm})/\gamma_s^2 - t_1$$

= $(0.5 \times 1.20)/0.8 - 0.5$ = 0.250 t/m

Active earth pressure :

$$P_{a1} = dh \times \gamma'_{s} \times K_{a} \times H_{1}$$

$$= 0.25 \times 0.8 \times 0.376 \times 2.5 = 0.188 t/m$$

$$y_{a1} = H_{1}/2 = 1.250 m$$

$$P_{a2} = \frac{1}{2} \times H_{1}^{2} \times \gamma'_{s} \times K_{a}$$

$$= \frac{1}{2} \times (2.5)^{2} \times 0.8 \times 0.376 = 0.940 t/m$$

$$y_{a2} = H_{1}/3 = 0.833 m$$

(vi) Vertical Force and Moment

			and the second
Vertical 1	Force (t/m)	Arm (m)	Vertical Moment (tm/m)
G	8.812	9.750	85.917
G ₂	1,322	8,750	11,568
G3	21.150	4.500	95,175
W ₁	0.360	10.000	3.600
W2	1.440	9.750	14.040
W3	0.341	8.750	2.984
W.	0.038	8.625	0.328
Ws	0.563	8.500	4.786
W ₆	12.787	4.125	52.746
U ₁₋₂	-27.272	5.529	-150.787
FV	19.541	MV	120.357

* Effective uplift of about 70%.

(vii)Horizontal Force and Moment

Horizonta	l Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Pa	0.138	1.250	0.235
Pa ₂	0.940	0.833	0.783
Pwa	3.600	1.250	4.500
Pwa ₂	3.125	0.833	2.604
Pwpi	-0.125	1.250	-0.156
Pwp ₂	-3.125	0.833	-2.604
FH	4.603	MH	5.362

* Effective uplift of about 70%.

(viii)Check of stability

e

Stability against sliding

SF = FV / FH .
$$\tan \phi_1$$

= 19.541 / 4.603 x $\tan 30$ = 2.451
> 1.5

Stability against overturning

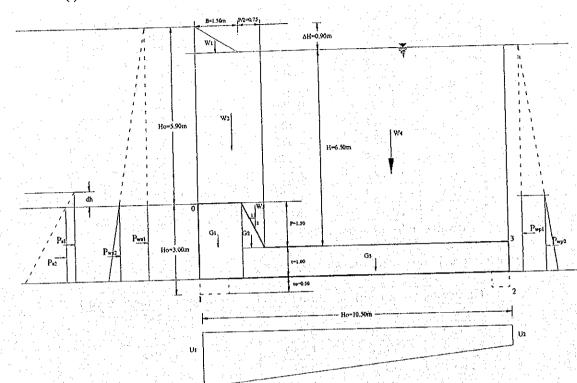
e =
$$L/2 - (MV - MH)/FV$$

= $10.5/2 - (120.357 - 5.362)/19.541 = 0.635 (-)$
< $L/6 (1.75 m)$

Stability of bearing strata

$$q = FV/L (1 \pm 6 e/L)$$

$$q_{max} = 19.541 / 10.5 x(1 + 6 x 0.635/10.5) = 2.536 t/m^{2}$$


$$< q_{a} = 21.462 t/m^{2}$$

$$q_{min} = 19.541 / 10.5 x(1 - 6 x 0.635/10.5) = 1.186 t/m^{2}$$

$$< q_{a} = 27.062 t/m^{2}$$

(d) Stability analysis on Flood Condition

(i) Load condition

(ii) Weight of structure

Gı	$= (p+t) \mathbf{x} \mathbf{B} \mathbf{x} \boldsymbol{\gamma}^{*} \mathbf{c}$	
	$= 2.5 \times 1.5 \times 2.35$	= 8.812 t/m
<i>x</i> 1	= 10.5 - 1.5/2	= 9.750 m
G2	$= \frac{1}{2}p^2 \mathbf{x} \mathbf{\gamma} \mathbf{c}$	
	$= \frac{1}{4} \times (1.5)^2 \times 2.35$	= 1.322 t/m
<i>x</i> ₂		= 8.750 m
G	$= (L-B)x t x \gamma^{2}c$	
	그는 물건이 있는 것 같아요. 이 것 같아요. 이 것 같아요. 이 가지 않는 말했다. 것 같아요. 것 이 것 같아요.	= 21.150 t/m
X,	= (10.5 - 1.5)/2	= 4.500 m

(iii) Uplift pressure

Applying the following formula:

$$U_x = H_x - L_x / L \cdot \Delta H$$
$$\Delta H = 0.90 \text{ m}$$
$$5 - 1 - 14$$

Point	H,	L _x	Ux
0	5,90	0.00	5,900
1	8,90	3.00	8,810
2	8,90	28.50	8.045
3	7.40	30.00	6.500

L = $3.0 + 10.5 + 1.5 + 4 \times 3.5 = 30 \text{ m}$

 $U_{1-2} = (U_1 + U_2)/2 \times L \times \gamma_w$

==	(8 810 +	8.045)/2 x	10.5×1.0	= 88.489 t/r	n
	(0.010 /	0.045 ji 2. A	10,5 A 1.0	00,707 01	11
	and the second	and the second			

 $x_u = 10.5 - (8.81 + 2 \times 8.045)/16.855 \times 10.5/3 = 5.329 \text{ m}$

(iv) Water pressure

<u>.</u>

Vertical

			14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
Wı	$= \frac{1}{2} \times \Delta H \times B \times \gamma_w$		
	$= \frac{1}{2} \times 0.90 \times 1.5 \times 1.0$	=	0.675 t/m
X _{wi}	= 10.5 - 1.5 / 3	=	10.000 m
W ₂	$= (B + p/2) x (H-p) x \gamma_w$		
** 2	$= 2.25 \times 5.00 \times 1.0$		11.250 t/m
		_	e di Stelle Steller
X _{**2}	= 10.5 - (B + p/2)/2		9.375 m
W3	$= \frac{1}{2} x p(\frac{1}{2}p) x \gamma_w$		
	$= \frac{1}{2} \times 1.50 \times 0.75 \times 1.0$	=	0.563 t/m
X _{**3}	= 10.5 - 1.5 - 2/3 * 0.75	=	8.500 m
Wa	$-$ II. $(I, D) = \langle 0 \rangle$		
YY 4	= H x (L-B-p/2)		an a
	$= 6.5 \times (10.5 - 2.25)$		53.625 t/m
X _{w4}	= 8.250/2	-	4.125 m
Horizontal			
\mathbf{P}_{wal}	$=$ $H_{o} \mathbf{x} \mathbf{y}_{w} \mathbf{x} H_{i}$		
	$= 5.90 \times 1.0 \times 2.5$	=	14.750 t/m
Y wal	= H ₁ /2	=	1.250 m
		.a 19	
P_{wa2}	$= \frac{1}{2} \mathbf{x} \mathbf{H}_{\mathbf{i}} \mathbf{x} \gamma_{\mathbf{w}}$		
ne sked ne Listepri	$= \frac{1}{2} \times (2.5)^2 \times 1.0$	=	3.125 t/m
Ywra2	= H ₁ /3		0.833 m
P _{wp1}	$= (H-p) \mathbf{x} \gamma_{\mathbf{w}} \mathbf{x} H_{\mathbf{i}}$		
	$= 5.00 \times 1.0 \times 2.5$	=	12.500 t/m
) Ywpi	$= 1.250 \mathrm{m}$		
	かたまち しょうちん ひがら コート・ジャント うちていたいがた	· · · .	

$$P_{wp2} = \frac{1}{2} \times H_1^2 \times \gamma_w$$

= $\frac{1}{2} \times (2.5)^2 \times 1.0$ = 3.125 t/m
 $y_{wp2} = 0.833$ m

(v) Earth pressure

Surcharge due to gabion :

dh =
$$(t_1 \times \gamma'_{gm})/\gamma'_s - t_1$$

= $(0.5 \times 1.20)/0.8 - 0.5$ = 0.250 t/m

Active earth pressure :

$$P_{a1} = dh \times \gamma'_{s} \times K_{a} \times H_{1}$$

$$= 0.25 \times 0.8 \times 0.376 \times 2.5 = 0.188 t/m$$

$$y_{a1} = H_{1}/2 = 1.250 m$$

$$P_{a2} = \frac{1}{2} \times H_{1}^{2} \times \gamma'_{s} \times K_{a}$$

$$= \frac{1}{2} \times (2.5)^{2} \times 0.8 \times 0.376 = 0.940 t/m$$

$$y_{a2} = H_{1}/3 = 0.833 m$$

(vi) Vertical Force and Moment

Vertica	ıl Force (t/m)	Arm (m)	Vertical Moment (tm/m)
G	8.812	9.750	85.917
G ₂	1.322	8.750	11.568
G3	21.150	4.500	95.175
W ₁	0.675	10.000	6.750
W_2	11.250	9,375	105.469
W3.	0.563	8.500	4.786
W4	53.625	4.125	221.203
U ₁₋₂	-61.942	5.329	-330.089
FV	35.455	MV	200.779

* Effective uplift of about 70%.

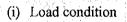
(vii)Horizontal Force and Moment

·		and the state of the second	化化乙基甲基乙二乙基甲基乙基甲基甲基乙基甲基
Horizonta	al Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Paı	0.188	1.250	0.235
Pa ₂	0.940	0.833	0.783
Pwa	14.750	1.250	18.438
Pwa ₂	3.125	0.833	2.604
Pwp ₁	-12.500	1.250	-15.625
Pwp ₂	-3.125	0.833	-2.604
FH	3.378	MH	3.831

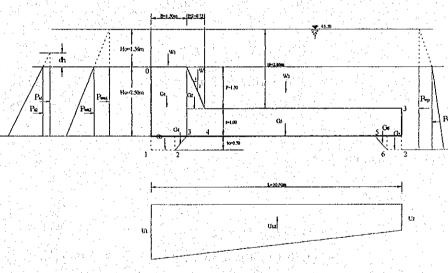
* Effective uplift of about 70%.

(viii)Check of stability

Stability against sliding


SF = FV / FH
$$\cdot \tan \phi$$

= 35.455 / 3.378 x tan 27 = 6.060
> 1.5


Stability against overturning

e =
$$L/2 - (MV - MH)/FV$$

= $10.5/2 - (200.779 - 3.831)/35.455 = 0.305(-)$
< $L/6(1.75 m)$

Stability of bearing strata

(e) Stability analysis on Seismic Condition

(ii) Weight of Structure

 $G_1 = (p+t) \times B \times \gamma' c$

	$= 2.5 \times 1.5 \times 2.35$	= 8.812 t/m
x_1	= 10.5 - 1.5/2	= 9.750 m
G ₂	$= \frac{1}{4} p^2 x \gamma' c$	
	$= \frac{1}{4} \times (1.5)^2 \times 2.35$	= 1.322 t/m
<i>x</i> ₂	= 10.5-1.5-0.75/3	= 8.750 m
G,	= $(L-B_1-B_2)x t x \gamma'c$ = $9 x 1.0 x 2.35$	- 21 iso 44-
X3	$= 9 \times 1.0 \times 2.33$ = (10.5 - 1.5)/2	= 21.150 t/m = 4.500 m

(iii) Uplift pressure

Applying the following formula:

$$U_x = H_x - L_x / L \cdot \Delta H$$
$$\Delta H = 0.00 \text{ m}$$
$$L = 30.0 \text{ m}$$

- 1	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			이 가슴 이 가지 않는 것 같은 것 같
	Point	H _x	L _x	U _x
÷	0	1.36		1.36
	1	4.36	3.00	4.36
	2	4.36	28.50	4.36
	3	2.86	30.00	2.86
				· · · · · · · · · · · · · · · · · · ·

 $U_{1.2} = (U_1 + U_2)/2 \times L \times \gamma_w$ = 4.36 × 10.5 × 1.0 $x_{1.2} = 10.5/2$ = 5.25 t/m

(iv) Water pressure

Vertical

W1	= $(B + p/2)x H_o x \gamma_w$	
	$= (1.50 + 0.50) \times 1.36 \times 1.0 = 100$	3.060 t/m
x_{w1}	= 10.5 - 2.25 / 2 =	9.375 m
W ₂	$= \frac{1}{2} x(p/2) x p x \gamma_{x}$	
	$= \frac{1}{2} \times 0.75 \times 1.50 \times 1.0 = 0$	0.563 t/m
X _{w2}	$= 10.5 - 1.5 - 2/3 \times 0.75 = 1$	8.500 m

W3	= $(L - B - p/2)x H x \gamma_*$	
	$= (10.5 - 1.50 - 0.75) \times 2.86 \times 1.0$	= 23.595 t/m
X _{w3}	= (10.5 - 1.5 - 0.75)/2	= 4.125 m

Horizontal

$$P_{wa} = P_{wp}$$
 (balance)

(v) Earth pressure

Surcharge due to gabion :

dh =
$$(t_1 \times \gamma'_{gm})/\gamma'_s - t_1$$

= $(0.5 \times 1.20)/0.8 - 0.5$ = 0.250 m

Active earth pressure :

$$P_{eel} = dh \times \gamma_s' \times K'_{ee} \times H_1$$

= 0.25 x 0.8 x 0.598 x 2.5 = 0.299 t/m
$$\Box_{eel} = H_1/2$$
 = 1.250 m

$$P_{es2} = \frac{1}{2} (H_1)^2 \times \gamma'_s \times K'_{ca}$$

= $\frac{1}{2} (2.5)^2 \times 0.8 \times 0.598$ = 1.495 t/m
 $\square_{es2} = H_1/3$ = 0.833 m

(vi) Earthquake pressure

Get	$= \mathbf{G}_{1} \mathbf{x} \mathbf{k} \mathbf{h}$
	$= 8.812 \times 0.12 = 1.057 \text{ t/m}$
Yel	= 2.5/2 = 1.250 m
Ge2	$= \mathbf{G}_2 \mathbf{x} \mathbf{k} \mathbf{h}$
	$= 1.322 \times 0.12 \qquad = 0.159 \text{ t/m}$
ye2	= 1.0 + 1.50 / 3 $= 1.50 m$
Ge	$= \mathbf{G}_{3} \mathbf{x} \mathbf{k} \mathbf{h}$
	$= 21.150 \times 0.12$ = 2.538 t/m
Уы	= 0.5 + 1.0 / 2 = 0.50 m

(vii)

Vertical Force and Moment

Vertic	al Force (t/m)	Arm (m)	Vertical Moment (tm/m)
Gı	8.812	9.750	85.917
G ₂	1.322	8.750	11.568
G ₃	21,150	4.500	95.175
W ₁	3.060	9.375	28.688
W ₂	0.563	8,500	4,786
- W3	23,595	4.125	97.329
U ₁₋₂	-32,046	5.250	-168.242
FVé	26.456	MVe	155.221

* Effective uplift of about 70%.

(viii) Horizontal Force and Moment

Horiz	ontal Force	Arm	Horizontal Moment
	(t/m)	(m)	(tm/m)
Gel	1.057	1.250	1.321
G _{c2}	0.159	1.500	0.239
Ge3	2.538	0.500	1.269
Peal	0.299	1.250	0.374
Pea2	1.495	0.833	1.246
FH.	5.548	MH.	4.449

• Effective Uplift of about 70%.

(ix) Check of stability

e

q

Stability against sliding

$$SF = FV_e / FH_e \cdot tan \phi_1$$

= 26.456 / 5.548 x tan 30 = 2.753

1.200

Stability against overturning

$$= L/2 - (MV_{e} - MH_{e})/FV_{e}$$

= 10.5/2 - (155.221 - 4.449)/26.456 = 0.449 (-)
< L/3 (3.50 m)

Stability of bearing strata

$$= FV/L (1 \pm 6 e/L)$$

 $q_{max} = 26.456 / 10.5 x(1 + 6 x 0.449 / 10.5) = 3.166 t/m^2$

 $< q_{cs} = 32.193 \text{ t/m}^2$

 $q_{min} = 26.456 / 10.5 x(1 - 6 x 0.449 / 10.5) = 1.873 t/m^2$

 $< q_{ea} = 40.593 \text{ t/m}^2$

5.1.2.2 Approach Wall

Design Condition

- (a) Hydraulic Condition
 - (i) Normal Condition
 - No water in the river
 - Ground water level 1.0 m above bottom level
 - (ii) Seismic Condition
 - No water in the river
 - Ground water level 1.0 m above bottom level
 - kh = 0.12

(b) The Material Data

(i) Soil Material

그는 것 같아요. 그 그는 것 같아요. 그는 것 ? 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 그는 것 ? 그는 그는 것 ? 그는 그는 것 ? 그는 그는 그는 요. 그는	a second a second for the second s
Wet unit weight	$\gamma_i = 1.6 \text{ t/m}^3$
Saturated unit weight	$\gamma_{\rm s}=1.8~{\rm t/m^3}$
Submerged unit weight	$\gamma^{2}{}_{s}=0.8 \text{ t/m}^{3}$
Internal friction angle	φ = 27°
Cohesion	$c = 0.0 t/m^2$

(ii) Others

10.00

물건 가슴 물건 이가 많다. 가슴 가슴 가슴 가슴 가슴 가 가 나는 것이 있다.	geo II del control d'Alder de
Unit weight of R.C.	$\gamma_{\rm e}=2.50~{\rm t/m^3}$
Unit weight of mass concrete	$\gamma'_{\circ} = 2.35 \text{ t/m}^3$
Unit weight of wet masonry	$\gamma_{\rm m}=2.30~{\rm t/m^3}$
Unit weight of gravel	$\gamma_{\rm g} = 2.00 \text{ t/m}^3$
Allowable compressive strength of concrete (K ₂₂₅)	$\overline{\sigma}_{b} = 75 \text{ kg/m}^2$
Allowable compressive strength of steel (U ₂₄)	$\overline{\sigma} = 1400 \text{ kg/m}^2$
Variable – n	n = 21

- (c) Design Load
 - (i) Earth pressure
 - Latin prosouro
 - Coulomb's formula
 - Mean ground surface slope

α=26.56°(=atn0.5)

- Angle between backside of wall & vertical plane $\theta=2.86^{\circ}(=atn0.05)$

Friction angle at wall (δ)

de la construcción de la construcc La construcción de la construcción d La construcción de la construcción d		Normal	Seismic
Stability calculation	Soil to soil	ф	ф/ ₂
Structural calculation	Soil to concrete	¢/3	0

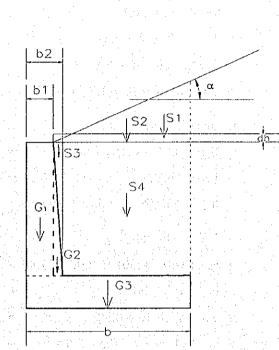
(ii) Surcharge due to Revetment

dh =
$$(t1 \times \gamma m + t2 \times \gamma g)/\gamma s - (t1 + t2) = 0.097 \sim 0.10 m$$

(iii) Surcharge due to Apron

dh1 =
$$(t3 \times y'c)/ys - t3$$
 = 0.305 ~ 0.3 m

(d) The Combination of Load


Load	Condition	Normal	Seismic
The ertical load	Weight of main wall	+	+
vert o	Weight of soil	+	+
tal	Earth pressure	+	+
The horizontal load	Water pressure	+	+
	Horizontal earthquake pressure		1111

"+" consider in the calculation

Stability Analysis

(a) Center gravity of Structure

Proposed condition

(ii) Weight of wall body

$G_1 = b_1 x h x \gamma_e$	
$= 0.3 \times 2.0 \times 2.50$	= 1.500 t/m
$\mathbf{x}_1 = \mathbf{b}_1 / 2$	= 0.15 m
$y_i = h_i + h/2 = 0.50 + 2.0/2$	= 1.50 m

G ₂	$= \frac{1}{2} (b_2 - b_1) \times h \times \gamma_c$	
en en sense Referencia	$= \frac{1}{2}(0.4 - 0.3) \times 2.0 \times 2.50$	= 0.250 t/m
X2	$= b_1 + (b_2 - b_1)/3 = 0.3 + (0.4 - 0.3)/3$	= 0.333 m
y 2	$= h_1 + h/3 = 0.50 + 2.0/3$	= 1.167 m
G3	$= \mathbf{b} \mathbf{x} \mathbf{h}_{l} \mathbf{x} \boldsymbol{\gamma}_{e}$	
	$= 1.80 \times 0.50 \times 2.50$	= 2.250 t/m
.X3	= b/2 = 1.80/2	= 0.90 m
Уз	$= h_1/2 = 0.5/2$	= 0.250 m

(i)

Ś

(iii) Weight of soil

	1/ /8 1 \2
S_1	$= \frac{1}{4} (b-b_1)^2 \times \gamma_s$
	$= \frac{1}{4} \times (1.80 - 0.30)^2 \times 1.80 = 1.013 \text{ t/m}$
X _{S1}	$= b_1 + \frac{3}{3} (b - b_1)$
•	$= 0.3 + \frac{1}{3}(1.8 - 0.3) = 1.300 \text{ m}$
Уsı	$= h + h_1 + dh + (b - b_1)/2/3$
	= 2.0 + 0.5 + 0.10 + (1.8 - 0.3)/2/3 = 2.850 m
S ₂	$= dh x (b - b_1) x \gamma_s$
	= 0.10 x (1.8 - 0.3) x 1.8 = 0.270 t/m
X _{S2}	$= b_1 + (b - b_1)/2 = 0.3 + (1.8 - 0.3)/2 = 1.050 \text{ m}$
y _{S2}	$= h + h_1 + dh/2 = 2.50 + 0.10/2 = 2.600 m$
S3	$= \frac{1}{2} (b_2 - b_1) x h x \gamma_s$
	$= \frac{1}{2} \times (0.40 - 0.30) \times 2.00 \times 1.80 = 0.180 \text{ t/m}$
X ₅₃	$= b_1 + \frac{2}{3} (b - b_1)$
	$= 0.3 + \frac{2}{3} (0.40 - 0.30) = 0.367 \mathrm{m}$
y _{s3}	$= h_1 + \frac{2}{3}h = 0.5 + 2.0 x^2/_3 = 1.833 m$
S₄	$= (b-b_2) \times h \times \gamma_s$
	$= (1.80 - 0.40) \times 2.00 \times 1.80 = 5.040 \text{ t/m}$
X _{S4}	$= b_2 + (b - b_2)/2$
	= 0.4 + (1.8 - 0.4)/2 = 1.100 m
y s4	$= h_1 + h/2$
	= 0.5 + 2.00 / 2 = 1.500 m

(iv) Buoyant Force / Uplift

 $U = b x (h + h_1 - z) x \gamma_w$ = 1.8 x (2.0 + 0.5 - 1.5) x 1.0 = 1.800 t/m x_u = b/2 = 1.8/2 = 0.900 m y_u = (h + h_1 - z)/2 = (2.0 + 0.5 - 1.5)/2 = 0.500 m

Center Gravity of Structure

Weig	ht, w(t/m)	x (m)	W.x (tm/m)	y (m)	W.y (tm/m)
Gi	1.500	0.150	0.225	1.500	2.250
G ₂	0.250	0.333	0.083	1.167	0.292
G ₃	2.250	0.900	2.025	0.250	0.563
S_1	1.012	1.300	1.316	2.850	2.884
S ₂	0.270	1.050	0.284	2.600	0.702
S3	0.180	0.367	0.066	1.833	0.330
S.	5.040	1.100	5.544	1.500	7.560
U	-1.800	0.900	-1.620	0.500	-0.900
Σ	8.702		7.922		13.680

 $x_{o} = \Sigma W_{x} / \Sigma W = 0.910 m$

 $y_o = \Sigma W_y / \Sigma W = 1.572 m$

For without uplift :

ΣW =	10.502
$\Sigma W_x =$	9.543
$\Sigma W_y =$	14.581
x _o =	0.909 m

 $y_{o}' = 1.388 \text{ m}$

(b) Bearing Capacity Beneath Slab

 $\alpha \cdot \mathbf{c} \cdot \mathbf{k} \cdot \mathbf{N}_{e} + \mathbf{k} \cdot \mathbf{q} \cdot \mathbf{N}_{q} + \frac{1}{2} \cdot \gamma \cdot \beta \cdot \mathbf{B} \cdot \mathbf{N}_{r}$ q_u = ' $\beta = 1.0$ α _ с 0 <u>---</u> Df. = 1.00 mk $= 1 + 0.3 D_{f} / B$ = 1 + 0.3 (1.0 / 1.8) =1.167 $= Df x \gamma'_{c}$ q For $\phi = 27^{\circ}$;θ = 0 N_q 14.0 -----N_y = 9.0

 $q_u = 1.167 \times (1.0 \times 2.35) \times 14.0 + \frac{1}{2} \times 0.8 \times 1.0 \times 1.8 \times 9.0$

= 44.874 t/m²

(v)

Q _a	=	q ₄ / 3		=	14,958 t/m ²	(in ordinary)
qea	==	qu / 2	· · · · · · ·	—	22.437 t/m²	(in seismic)

(c) Coefficient of Earth Pressure

Applying Coulomb's formula as follows:

(in ordinary)

$$\theta = 2.86^{\circ} \quad ; \alpha = 26.56^{\circ} \quad ; \delta = \phi = 27$$

$$K_{a} = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \ \cos(\theta + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \ \sin(\phi - \alpha)}{\cos(\theta + \delta) \ \cos(\theta - \alpha)}}\right]^{2}$$

$$\cos^2(27 - 2.86)$$

$$K_{a} = \frac{\cos^{2}(27 - 2.86)}{\cos^{2}(2.86) \times \cos(2.86 + 27) \left[1 + \sqrt{\frac{\sin(27 + 27) \times \sin(27 - 26.56)}{\cos(2.86 + 27) \times \cos(2.86 - 26.56)}}\right]}$$

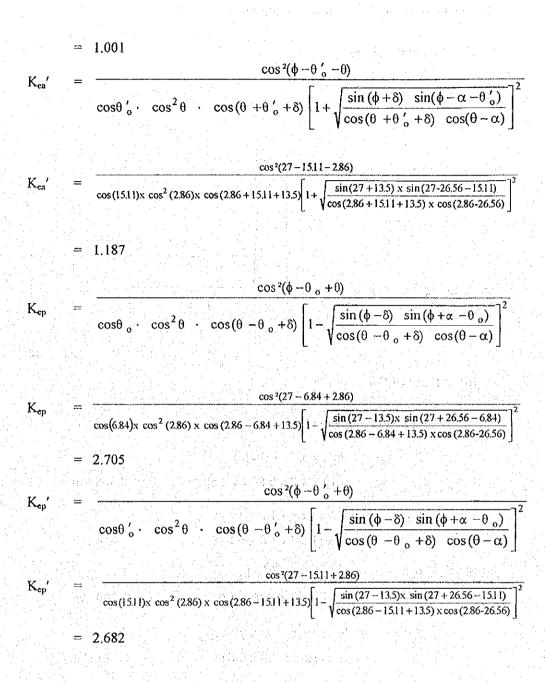
= 0.818

$$K_{p} = \frac{\cos^{2}(\phi + \theta)}{\cos^{2}\theta \cos(\theta + \delta) \left[1 - \sqrt{\frac{\sin(\phi - \delta) \times \sin(\phi + \alpha)}{\cos(\theta + \delta)} \cos(\theta - \alpha)}\right]^{2}}$$

$$K_{p} = \frac{\cos^{2}(27 + 2.86)}{\cos^{2}(2.86) \times \cos(2.86 + 27) \left[1 - \sqrt{\frac{\sin(27 - 27) \times \sin(27 - 26.56)}{\cos(2.86 + 27) \times \cos(2.86 - 26.56)}} \right]$$

2ר

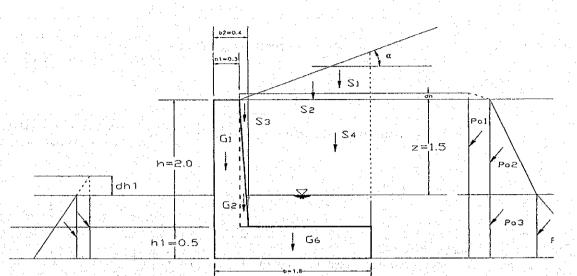
0.869


(in seismic)

$$\theta = 6.84^{\circ} ; \quad \theta_{o}' = 15.11^{\circ}$$

$$\delta = \phi/2 = 13.5^{\circ} ; \quad \theta = 2.86^{\circ} ; \quad \alpha = 26.56^{\circ}$$

$$K_{ea} = \frac{\cos^{2}(\phi - \theta_{o} - \theta)}{\cos\theta_{o} \cdot \cos^{2}\theta \cdot \cos(\theta + \theta_{o} + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \alpha - \theta_{o})}{\cos(\theta + \theta_{o} + \delta) \cos(\theta - \alpha)}}\right]^{2}}$$


$$K_{ea} = \frac{\cos^{2}(27 - 684 - 286)}{\cos(684) \times \cos^{2}(2.86) \times \cos(2.86 + 6.84 + 13.5) \left[1 + \sqrt{\frac{\sin(27 + 13.5) \times \sin(27 - 26.56 - 6.84)}{\cos(2.86 + 6.84 + 13.5)}}\right]^{2}}$$

5 - 1 - 27

(d) Stability analysis on Normal Condition

(i) Load Condition

(ii) External Force

Pal

 \mathbf{P}_{a2}

 P_{a3}

 P_{a4}

Active earth pressure :

$$= dh x \gamma_{s} x K_{s} x (h+h_{1})$$

$$= 0.10 x 1.8 x 0.818 x 2.50 = 0.368 t/m$$

$$= \frac{1}{2} x z^{2} x \gamma_{s} x K_{s}$$

$$= \frac{1}{2} x (1.5)^{2} x 1.8 x 0.818 = 1.656 t/m$$

$$= z x \gamma_{s} x K_{s} x (h+h_{1}-z)$$

$$= 1.5 x 1.8 x 0.818 x 1.0 = 2.209 t/m$$

$$= \frac{1}{2} x (h+h_{1}-z) x \gamma'_{s} x K_{s}$$

$$= \frac{1}{2} x (1.0)^{2} x 0.8 x 0.818 = 0.327 t/m$$

Horizontal Active Earth Pressure

Pahl	$= P_{a1} x \cos{(\theta + \delta)}$
	$= 0.368 \text{ x} \cos (2.86 + 27) = 0.319 \text{ t/m}$
y₀ı	$= (h + h_1)/2 = 2.5/2 = 1.250 m$
P _{h2}	$= P_{s_2} x \cos (\theta + \delta)$
	$= 1.656 \text{ x} \cos (29.86) = 1.437 \text{ t/m}$
y ₁₂	= $(h + h_1 - z) + z/3 = 1.0 + 1.5/3 = 1.500 m$

P_{ah3}	$= P_{a} x \cos{(\theta + \delta)}$	
	$= 2.209 \times \cos(29.86)$	= 1.915 t/m
Уаз	$= (h + h_1 - z) + z/2 = 1.0/2 =$	= 0.500 m
Pahi	= $P_{st} x \cos(\theta + \delta)$	
	$= 0.327 \times \cos(29.86)$	= 0.284 t/m
y _{a4}	= $(h + h_1 - z)/3$ = 1.0/3 =	= 0.333 m

Vertical Active Earth Pressure

Pavi	$= P_{a1}x\sin(\theta+\delta)$	
	$= 0.368 \text{ x} \sin(29.86)$	= 0.183 t/m
X _{al}	= 1.800 m	
P_{av2}	$= P_{a2} x \sin (\theta + \delta)$	
	$= 1.656 \text{ x} \sin(29.86)$	= 0.825 t/m
X _{a2}	= 1.800 m	
P _{av3}	$= P_{a3} x \sin (\theta + \delta)$	
	$= 2.209 \text{ x} \sin(29.86)$	= 1.100 t/m
X _{a3}	= 1.800 m	
P _{av4}	$= P_{a4}x \sin(\theta + \delta)$	
	$= 0.327 \text{ x} \sin(29.86)$	= 0.163 t/m
Y24	= 1.800 m	

Passive earth pressure :

P _{p1}	$= dh_1 \times \gamma_s \times K_p \times (h - h_1 - z)$	
	$= 0.30 \times 1.8 \times 0.869 \times 1.0$	= 0.469 t/m
P _{p2} =	$= \frac{1}{2} x (h - h_1 - z)^2 x \gamma_s x K_p$	
	$= \frac{1}{2} \times (1.0)^2 \times 1.8 \times 0.869$	= 0.782 t/m

Horizontal Passive Earth Pressure

P _{phi} =	$P_{pl} x \cos{(\theta \cdot \delta)}$
	$0.469 \ge 0.201 \text{ t/m}$
y _{p1} =	$(h + h_1 - z)/2 = 0.500 m$
	$P_{p2} x \cos (\theta - \delta) = 0.714 t/m$
y _{p2} =	$(h + h_i - z)/3 = 0.333 m$

Water Pressure

$$P_{wa} = \frac{1}{2} (h + h_1 - z)^2 x \gamma_w$$

= $\frac{1}{2} (1.0)^2 x 1.0$ = 0.500 t/m
 $y_w = (h + h_1 - z)/3$ = 1.0/3 = 0.333 m

(iii) Vertical Force and Moment

	an an i	그는 요즘 한 옷을 가야?	化二烯基 建氯化化物 化分子子 化分子子
Vertical I	Force (t/m)	Arm (m)	Vertical Moment (tm/m)
Pavi	0.183	1.800	0.329
Pav ₂	0.825	1,800	1.485
Pav ₃	1.100	1,800	1.980
Pav4	0.163	1,800	0.293
W	8.702	0.910	7.919
FV	10.973	MV	12.006

(iv) Horizontal Force and Moment

Horizonta	ul Force (t/m)	Arm (m)	Horizontal Moment (tm/in)
Pah1	0.319	1.250	0.399
Pah2	1.437	1.500	2.156
Pahi	1.915	0.500	0.958
Pah ₂	0.284	0.333	0.095
Pwa	0.500	0.167	0.084
Pphi	-0.201	0.500	-0.101
Pph2	-0.714	0.333	-0.238
FH	3.540	MH	3.353

(v) Check of stability

Stability against sliding

SF = FV / FH . tan
$$\phi$$

= 10.973 / 3.540 x tan 27 = 1.565
> 1.5

Stability against overturning

e =
$$b/2 - (MV - MH)/FV$$

= $1.8/2 - (12.006 - 3.353)/10.973$ = $0.111 (-)$
< $B/6 (=0.30 \text{ m})$

Stability against bearing strata

$$q = FV/b (1 \pm 6 e / L)$$

$$q_{max} = 10.973 / 1.8 x(1 + 6 x 0.111/1.8) = 8.352 t/m^{2}$$

$$< q_{s} = 14.958 t/m$$

(e) Stability analysis on Seismic Condition

(i) External Force

Active earth pressure :

$$P_{ca1} = dh x \gamma_s x K_{ca} x (h+h_1)$$

$$= 0.10 x 1.8 x 1.001 x 2.50 = 0.450 t/m$$

$$P_{ca2} = \frac{1}{2} x z^2 x \gamma_s x K_{ca}$$

$$= \frac{1}{2} x (1.5)^2 x 1.8 x 1.001 = 2.027 t/m$$

$$P_{ca3} = z x \gamma_s x K_{ca} x (h+h_1-z)$$

$$= 1.5 x 1.8 x 1.001 x 1.0 = 2.703 t/m$$

$$P_{ca4} = \frac{1}{2} x (h+h_1-z) x \gamma'_s x K_{ca}$$

$$= \frac{1}{2} x (1.0)^2 x 0.8 x 1.187 = 0.475 t/m$$

Horizontal Active Earth Pressure

Peahl	$= P_{eal} x \cos{(\theta + \delta)}$	
	$= 0.450 \times \cos(2.86 + 13.5)$	= 0.432 t/m
Yaı	= 1.250 m	
P _{cah2}	$= P_{ea2} x \cos(\theta + \delta)$	
	$= 2.027 \times \cos(16.36)$	= 1.945 t/m
Yea2	= 1.000 m	
P _{eah3}	$= P_{eab} x \cos{(\theta + \delta)}$	
	$= 2.703 \times \cos(16.36)$	= 2.593 t/m
y _{ea3}	= 0.500 m	
P _{cah4}	$= P_{ea4} x \cos (\theta + \delta)$	
	$= 0.475 \times \cos(16.36)$	= 0.455 t/m
Y _{ca4}	= 0.333 m	

Vertical Active Earth Pressure

Peavl	=	$P_{ext} x \sin(\theta + \delta)$	an franski samel Maria († 1917) 1945 - Andrea Starik
	=	$0.450 \ge \sin(16.36) = 0.$	127 t/m
Xeal	=	1.800 m	

y_{ca4}

1000

Peav2	$= P_{es2}x \sin(\theta + \delta)$
1	$= 2.027 \text{ x} \sin (16.36) \qquad = 0.571 \text{ t/m}$
X _{ea2}	= 1.800 m
P_{eav3}	$= P_{ea3}x\sin(\theta+\delta)$
	$= 2.703 \text{ x} \sin (16.36) = 0.761 \text{ t/m}$
X _{ca3}	₩ 1.800 m
P _{eav4}	$= P_{est}x \sin(\theta + \delta)$
	$= 0.475 \text{ x} \sin(16.36) = 0.134 \text{ t/m}$
Yea1	≈ 1.800 m

Passive earth pressure :

Pept	=	$dh_1 \ge \gamma_s \ge K_{sp} \ge (h + h_1 - z)$
		$0.30 \ge 1.8 \ge 2.705 \ge 1.0$ = 1.461 t/m
Pep2		$\frac{1}{2} \times (h + h_i - z)^2 \times \gamma_s \times K_{cp}$
	=	$\frac{1}{2} \times (1.0)^2 \times 1.8 \times 2.705 = 2.455 t/m$

Horizontal Passive Earth Pressure

P _{eph1} =	$P_{ept} x \cos (\theta - \delta)$
-	$1.461 \ge \cos(2.86 - 13.5) = 1.436 t/m$
y _{ep1} =	0.500 m

$$P_{eph2} = P_{ep2} x \cos (\theta - \delta)$$

= 2.435 x cos (10.64) = 2.393 t/m
y_{ep2} = 0.333 m

Water Pressure

P_{wa}	i kon Nationali	"	$\frac{1}{2} (h + h_1 - z)^2 x \gamma_w$	
	in Star Star	=	$\frac{1}{2}$. (1.0) ² x 1.0 = 0.500 t/m	
y.		=	$(h + h_1 - z)/3 = 1.0/3 = 0.333 m$	

Earthquake Force

 $W_e = W x kh$ = 10.502 x 0.12 = 1.260 t/m y_e = 1.388 m

(ii) Vertical Force and Moment

			and the second
Vertical 1	Force (t/m)	Arm (m)	Vertical Moment (tm/m)
Peav ₁	0,127	1.800	0.229
Peav ₂	0.571	1,800	1.028
Peav ₃	0.761	1.800	1.370
Peav ₄	0.134	1.800	0.241
W	8.702	0.910	7.919
FV.	10.295	MV.	10.787

(iii) Horizontal Force and Moment

Horizonta	al Force (t/m)	Arm (m)	Horizontal Moment (tm/m)	
Peah	0.432	1.250	0.540	
Peah ₂	1.945	1.000	1.945	
Pcah ₃	2.593	0.500	1.297	
Peahi	0.455	0.333	0.152	
Pw	0.500	0.333	0.167	
Pephi	-1.436	0.500	-0.718	
Peph2	-2.393	0.333	-0.797	
We	1.260	1.388	1.749	
FH	3,356	MH _e	4.335	

(iv) Check of stability

Stability against sliding

SF =
$$FV_e / FH_e \cdot tan \phi$$

= 10.295 / 3.356 x tan 27 = 1.561
> 1.2

Stability against overturning

$$= b/2 - (MV_{e} - MH_{e})/FV_{e}$$

= 1.8/2 - (10.787 - 4.335)/10.295 = 0.273
 $\leq B/3 (=0.60 \text{ m})$

Stability of bearing strata

e

$$q = FV_{e}/b (1 \pm 6 e / b)$$

$$q_{max} = 10.787 / 1.8 x(1 + 6 x 0.273 / 1.8) = 11.446 t/m^{2}$$

 $< q_{ea} = 22.437 \text{ t/m}$

(3) Stress Strain Analysis

(a) Coefficient of Active Earth Pressure

Applying Coulomb's formula as follows:

$$\theta = 2.86^{\circ}$$
; $\alpha = 26.56^{\circ}$; $\delta = \phi/3 = 9^{\circ}$

$$K_{a} = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \cos(\phi + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \alpha)}{\cos(\theta + \delta)\cos(\theta - \alpha)}}\right]^{2}}$$

$$K_{a} = \frac{\cos^{2}(27 - 2.86)}{\cos^{2}(2.86) \times \cos(2.86 + 9) \left[1 + \sqrt{\frac{\sin(27 + 9)\sin(27 - 26.56)}{\cos(2.86 + 9) \times \cos(2.86 - 26.56)}}\right]^{2}}$$

= 0.744

(in seismic)

$$\theta = 6.84^{\circ} ; \theta_{o}' = 15.11^{\circ} ; \theta = 2.86^{\circ} ; \alpha = 26.56^{\circ} ; \delta = 0$$

$$K_{ea} = \frac{\cos^{2}(\phi - \theta_{o} - \theta)}{\cos\theta_{o} \cdot \cos^{2} \theta \cdot \cos(\theta + \theta_{o} + \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \alpha - \theta_{o})}{\cos(\theta + \theta_{o} + \delta)\cos(\theta - \alpha)}}\right]^{2}}$$

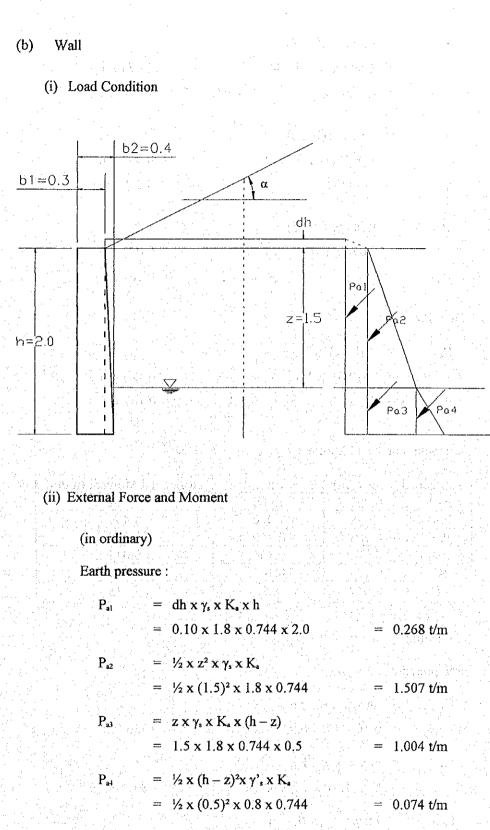
$$K_{ea} = \frac{\cos^{2}(27 - 6.84 - 2.86)}{\cos(6.84)x \cos^{2}(2.86)x \cos(2.86 + 6.84 + 0) \left[1 + \sqrt{\frac{\sin(27 + 0)x \sin(27 - 26.56 - 6.84)}{\cos(2.86 + 6.84 + 0)x \cos(2.86 - 26.56)}}\right]$$

 $\cos^{2}(\phi - \theta_{0}' - \theta)$

$$\frac{1}{\cos\theta_{0}^{\prime} \cdot \cos^{2}\theta_{0} \cdot \cos(\theta_{0} + \theta_{0}^{\prime} + \delta)} \left[1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \alpha - \theta_{0}^{\prime})}{\cos(\theta_{0} + \theta_{0}^{\prime} + \delta)}}\right]^{2}$$

 $\cos^2(27 - 5.11 - 2.86)$

$$\cos(15.11) \times \cos^{2}(2.86) \times \cos(2.86 + 15.11) \left[1 + \sqrt{\frac{\sin(27) \times \sin(27 - 26.56 - 15.11)}{\cos(2.86 + 15.11) \times \cos(2.86 - 26.56)}} \right]$$


= 1.065

0.934

=

Kca

Kea'

Horizontal Earth Pressure

P _{ahl} =	$P_{a1} x \cos{(\theta + \delta)}$	
	$0.268 \ge (2.86 + 9) =$	0.262 t/m
y _{al} =	h/2 =	1.000 m

P_{ab2}	=	$P_{a2}x\cos(\theta+\delta)$
		1.507 x $\cos(11.86)$ = 1.474 t/m
y _{s2}	=	(h - z) + z/3 = 0.5 + 1.5 / 3 = 1.000 m
P_{ah}	=	$P_{a3} x \cos{(\theta + \delta)}$
	=	$1.004 \times \cos(11.86) = 0.983 t/m$
y _{a3}	=	(h - z)/2 = 0.5/2 = 0.250 m
\mathbf{P}_{sh4}	=	$P_{s4}x\cos{(\theta+\delta)}$
	=	$0.074 \ge 0.073 \ t/m$
Уы	=	(h - z)/3 = 0.5/3 = 0.167 m

Water Pressure

$$P_{w} = \frac{1}{2} (h - z)^{2} x \gamma_{w}$$

= $\frac{1}{2} (0.5)^{2} x 1.0$ = 0.125 t/m
$$y_{w} = (h - z)/3 = 0.5/3 = 0.167 m$$

Horizontal Force and Moment

Horizonta	al Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Pahl	0.262	1.000	0.262
Pah2	1.474	1.000	1.474
Pah3	0.983	0.250	0.246
Pahi	0.073	0.167	0.012
Pw	0.125	0.167	0.021
FH	2.917	MH	2.015

(in seismic)

Earth pressure :

P _{cal}	=	dh x γ_s x K_{a} x h
	=	$0.10 \ge 1.8 \ge 0.934 \ge 2.0$ = 0.336 t/m
P _{es2}	=	½ x z² x γ, x K _{ca}
	=	$\frac{1}{2} \times (1.5)^2 \times 1.8 \times 0.934 = 1.891 \text{ t/m}$
P _{et} i	=	$z \ge \gamma_{t} \ge K_{a} \ge (h-z)$
ata ya shi Maria ya Maria Maria ya Maria ya	=	$1.5 \times 1.8 \times 0.934 \times 0.5 = 1.261 t/m$
P _{es4}		$\frac{1}{2} \times (h-z)^2 \times \gamma^2 \times K_{ca}$
	=	$\frac{1}{2} \times (0.5)^2 \times 0.8 \times 1.065 = 0.107 t/m$

Horizontal Earth Pressure

Peahl	$= P_{csl} x \cos{(\theta + \delta)}$
	$= 0.336 \text{ x} \cos (2.86) \qquad = 0.336 \text{ t/m}$
Yeat	= 1.000 m
	and the second of the second secon
Peah2	$= P_{ca2} x \cos (\theta + \delta)$
	= 1.891 x cos (2.86) = 1.889 t/m
y _{ea2}	= 1.000 m
P _{eah3}	$= P_{\text{eal}} x \cos (\theta + \delta)$
	= 1.261 x cos (2.86) = 1.259 t/m
Уra3	= 0.250 m
P _{cah-1}	$= P_{eal} x \cos (\theta + \delta)$
	$= 0.107 \times \cos(2.86) = 0.106 \text{ t/m}$
Yea4	= 0.167 m

Water Pressure

Pw

y_w

Ņ

A

=	$\frac{1}{2} (h - z)^2 x \gamma_w$			la series a series	
=	¹ / ₂ . (0.5) ² x 1.0			= 0.12	!5 t/m
	(h - z)/ 3	=	0.5/3	= 0.16	57 m

Horizontal Force and Moment

Horizonta	al Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Peah1	0.336	1.000	0.336
Peah2	1.889	1.000	1.889
Peah ₃	1.259	0.250	0.315
Peahi	0.106	0.167	0.018
Pw	0.125	0.167	0.021
FH	3.715	MH	2.579

(iii) Bending Moment and Shear Force

FH	= 2.917	1
MH	= 2.015	
FH.	= 3.715 < 1.5 FH	
MH.	= 2.579 < 1.5 MH	10 17

5 - 1 - 37

Therefore bending moment and shear force in normal condition will be adopted for strain stress calculation.

(iv) Required Re-Bar

ht = 40 cm; d = 5 cm; h = 35 cm

$$\phi_o = \sigma_v / n \sigma_b$$

= 1400/(21 x 25) = 0.889
 $C_a = \frac{h}{\sqrt{\frac{n \times M}{b \times \sigma_a}}}$
 $= \frac{35}{\sqrt{\frac{21 \times 201500}{100 \times 1400}}}$
= 6.366
For $C_a = 6.366$

$$n_{\omega} = 0.0265$$

Stresses:

σ, =	σ _a =	1400 kg/c	m²
σ'ь = ·	$\frac{\overline{\sigma}_a}{n\phi} =$	$\frac{1400}{21 \times 3.93}$	= 16.96 kg/cm ²
σ'ε = -	$\frac{\overline{\sigma}_a}{\phi'} =$	<u>1400</u> 7.754	= 180.552 kg/cm ²

Re-bar will be arranged

Å

$$A = \omega b h$$

= 0.0265 / 21 x 100 x 35 = 4.417 cm²

Α,	=	0.2 x A	· · · · ;	•	$= 0.883 \text{ cm}^2$
Α'	=	δ.Α			$= 0.883 \text{ cm}^2$
A',	=	0.2 x A'		et et e	$= 0.176 \text{ cm}^2$
Re-bar	•	D ₁₃₋₂₅ ,		A =	5.32 cm ²
e de la composition de la comp		D ₁₃₋₂₅ ,	1 - 144 • - 1 • - 1	A. =	5.32 cm ²

(c) Slab

Ś

ð

(i) Load Condition

See sketch of load condition for stability analysis.

(ii) Reaction beneath slab

(in ordinary)

 P_{at}

 $P_{\mathsf{a}2}$

 $\{\cdot,\cdot\}$ P_{a3}

 $P_{\mathfrak{s}\mathfrak{l}}$

Active earth pressure :

=	$dh \ge \gamma_s \ge K_s \ge (h+h_i)$
=	$0.10 \ge 1.8 \ge 0.744 \ge 2.50 = 0.335 \text{ t/m}$
-	$\frac{1}{2} \times z^2 \times \gamma_s \times K_s$
=	$\frac{1}{2} \times (1.5)^2 \times 1.8 \times 0.744 = 1.507 \text{ t/m}$
=	$z \ge \gamma_s \ge K_s \ge (h + h_l - z)$
=	$1.5 \ge 1.8 \ge 0.744 \ge 1.0$ = 2.009 t/m
	$\frac{1}{2} \mathbf{x} (\mathbf{h} + \mathbf{h}_1 - \mathbf{z}) \mathbf{x} \gamma_s \mathbf{x} \mathbf{K}_s$
. =	$\frac{1}{2} \times (1.0)^2 \times 0.8 \times 0.744 = 0.298 \text{ t/m}$

Horizontal Active Earth Pressure

\mathbf{P}_{ahl}		$P_{a1} x \cos(\theta + \delta)$
		$0.335 \times \cos(11.86) = 0.328 \text{ t/m}$
\dot{P}_{ah2}	=	$P_{a2}x\cos{(\theta+\delta)}$
	: . ₩	$1.507 \text{ x} \cos(11.86) = 1.474 \text{ t/m}$
\mathbf{P}_{ab3}		$P_{a3} x \cos(\theta + \delta)$
	=	$2.009 \times \cos(11.86) = 1.966 \text{ t/m}$
P _{sh4}	-	$P_{a4}x\cos{(\theta+\delta)}$
	=	$0.298 \ge 0.291 \text{ t/m}$

Vertical Active Earth Pressure

$\mathbf{P}_{\mathrm{avl}}$	$= P_{*1} x \sin (\theta + \delta)$	
e Ng se	$= 0.335 \text{ x} \sin(11.86)$	= 0.069 t/m
P _{av2}	$= P_{s2}x \sin(\theta + \delta)$	
e e North	$= 1.507 \text{ x} \sin(11.86)$	= 0.310 t/m
\mathbf{P}_{av3}	$= P_{*3}x\sin(\theta+\delta)$	
	$= 2.009 \text{ x} \sin(11.86)$	= 0.413 t/m
P _{av4}	$= P_{a4}x \sin(\theta + \delta)$	
	$= 0.298 \text{ x} \sin(11.86)$	= 0.061 t/m
1. S. S. S. S.		

(in seismic)

P _{cal}	=	$dh \ge \gamma_s \ge K_{cs} \ge (h+h_1)$
	=	$0.10 \times 1.8 \times 0.934 \times 2.50 = 0.420 \text{ t/m}$
P _{ea2}	=	$\frac{1}{2} \times z^2 \times \gamma_s \times K_{es}$
		$\frac{1}{2} \times (1.5)^2 \times 1.8 \times 0.934 = 1.891 \text{ t/m}$
P _{ea3}	- 1. ==	$z \ge \gamma_s \ge K_{es} \ge (h + h_1 - z)$
	=	$1.5 \times 1.8 \times 0.934 \times 1.0$ = 2.522 t/m
P _{es4}	-	$\frac{1}{2} \times (h + h_1 - z) \times \gamma_s \times K_{ea}$
	=	$\frac{1}{2} \times (1.0)^2 \times 0.8 \times 1.065 = 0.426 t/m$

Horizontal Active Earth Pressure

P _{eahl}	$= P_{eal} x \cos{(\theta + \delta)}$
	$= 0.420 \text{ x} \cos(2.86) = 0.420 \text{ t/m}$
P _{cah2}	$= P_{a2} x \cos (\theta + \delta)$
	$= 1.891 \text{ x} \cos(2.86) = 1.889 \text{ t/m}$
P _{cab3}	$= P_{ra3} x \cos{(\theta + \delta)}$
· · · · ·	$= 2.522 \times \cos(2.86) = 2.519 \text{ t/m}$
P _{cah4}	$= P_{cot} x \cos{(\theta + \delta)}$
	$= 0.426 \text{ x} \cos(2.86) = 0.425 \text{ t/m}$

Vertical Active Earth Pressure

Peavt	=	$P_{eal} x \sin(\theta + \delta)$		
	-	0.420 x sin (2.86)	=	0.021 t/m
P _{cav2}	=	$P_{ea2} x \sin(\theta + \delta)$		
	=	1.891 x sin (2.86)		0.094 t/m
P _{eav3}	=	$P_{eas} x \sin(\theta + \delta)$	•	
	==	2.522 x sin (2.86)	=	0.126 t/m
P _{eav-1}	=	$P_{ea4}x \sin(\theta + \delta)$		
		0.426 x sin (2.86)	=	0.021 t/m

Water Pressure

$$P_{wa} = \frac{1}{2} (h + h_1 - z)^2 x \gamma_w$$

= $\frac{1}{2} (1.0)^2 x 1.0$ = 0.500 t/m

Earthquake Force

We

ye i

Vertical Force and Moment

(in ordinary)

Vertical Force (t/m)		Arm (m)	Vertical Moment (tm/m)	
W	8.702	0.910	7.919	
Pavt	0.069	1.800	0.124	
Pav ₂	0.310	1.800	0.558	
Pav ₃	0.413	1.800	0.743	
Pav ₄	0.061	1.800	0.110	
FV	9.555	MV	9.454	

(in seismic)

Vertical F	orce (t/m)	Arm (m)	Vertical Moment (tm/m)
W	8.702	0.910	7,919
Peav	0.021	1,800	0.038
Peav ₂	0.094	1.800	0.169
Peav3	0.126	1.800	0.227
Peav ₄	0.021	1.800	0.038
FVe	8.964	MVe	8.391

Horizontal Force and Moment

(in ordinary)

Horizonta	al Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Pahl	0.328	1.250	0.410
Pah2	1.474	1.500	2.211
Pah3	1.966	0.500	0.983
Psh4	0.291	0,333	0.097
Pw	0.500	0.167	0.084
FH	4,559	MH	3.785

(in seismic)

Horizonta	l Force (t/m)	Arm (m)	Horizontal Moment (tm/m)
Peahl	0.420	1.250	0.525
Peah2	1.889	1.500	2.834
Prah3	2.519	0.500	1.260
Peah4	0.425	0.333	0,142
Pw	0.500	0.167	0.084
W.	1.260	1,388	1.749
FHe	7.013	MH _c	6.594

Reaction beneath Slab.

FV =	9.555	
MV =	9.454	
FV, =	8.964	< 1.5 FV
MV _e =	8.391	< 1.5 MV

Therefore, force and moment in normal condition will be adopted on the estimation of Reaction Beneath Slab and Stress Strain analysis.

Reaction beneath slab will be estimated as follows:

e =
$$b/2 - (MV - MH)/FV$$

= $1.8/2 - (9.454 - 8.391)/9.555$
= $0.30 m$
= $b/6$
q = $FV / b \times (1 \pm 6e/b)$
q_{max} = $2 FV/b$
= $2 \times 9.555 / 1.8$
= $10.617 t/m^2$

q_{min} =

 \mathbf{q}_2

q

v

5. 17 (iii) Shearing Force and Moment

$$q_{1} = 0.5 \times \gamma_{c} + (h + dh) \times \gamma_{s} - (h + h_{1} - z) \times \gamma_{s}$$

= 0.5 × 2.5 + 2.10 × 1.8 - 1.0 × 1.0
= 4.030 t/m²

$$= q_{1} + (b - b_{1})/2 \times \gamma_{s}$$

$$= 4.03 + 0.75 \times 1.8$$

$$= 5.380 \text{ t/m}^{2}$$

$$= q_{2} - 0.93 1x - q_{min} - 5.898x$$

$$= 5.380 - 0.921x - 0 - 5.898x$$

$$= 5.380 - 6.829x$$

$$= \Box q (dx)$$

$$= \sum_{0}^{x=1.45} \left[(5.380 - 6.829x) dx \right]_{0}^{1.45}$$

$$= 5.380x - 6.829 \frac{x^{2}}{2} \bigg]_{0}^{1.45}$$

= 0.622 t/m

$$M = \Box v (dx)$$

= $\int_{0}^{x=1.45} (5.380x - 6.829 \frac{x^2}{2}) dx$
= $5.380 \frac{x^2}{2} - 6.829 \frac{x^3}{6} \Big]_{0}^{1.45}$

(iv) Required Re-bar

ht		50 cm; d = 5 cm; h = 45 cm
ф.	=	$\sigma / n \sigma_b$
	=	$1400 / (21 \times 25) = 0.889$
Ca		$\frac{h}{h}$

$$\sqrt{\frac{n \times M}{b \times \sigma_a}} = \frac{45}{\sqrt{\frac{21 \times 218600}{100 \times 1400}}} = 7.859$$

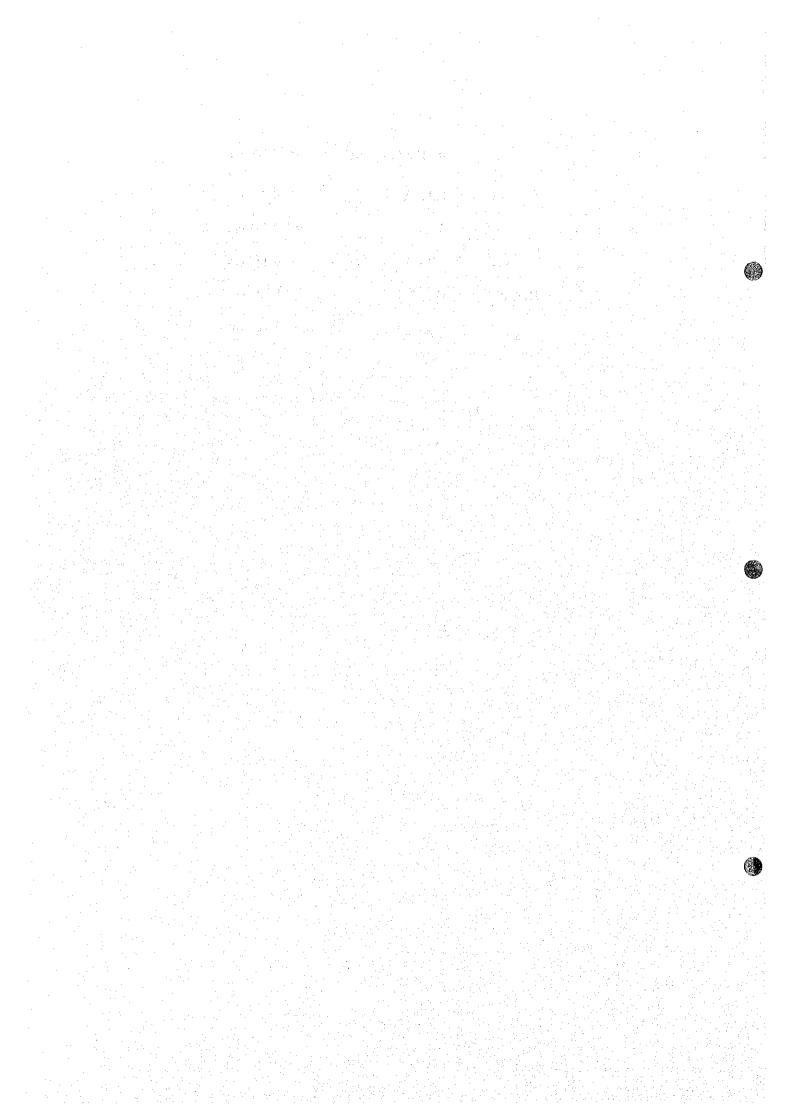
For $C_a = 7.859$

$$δ = 0.60$$

 $φ = 5.050$
 $φ' = 12.790$
 $n_ω = 0.0172$

Stresses:

 $\sigma_{\bullet} = \overline{\sigma}_{a} = 1400 \text{ kg/cm}^{2}$ $\sigma_{\bullet}^{*} = \frac{\overline{\sigma}_{a}}{n\phi} = \frac{1400}{21 \times 5.05} = 13.201 \text{ kg/cm}^{2}$ $\sigma_{\bullet}^{*} = \frac{\overline{\sigma}_{a}}{\phi^{*}} = \frac{1400}{12.790} = 109.46 \text{ kg/cm}^{2}$


Re-bar will be arranged

Α	Ħ	ωbh		·
1		0.0172/21 x 100 x	45 =	= 3.686 cm ²
A,	=	0.2 x A	=	$= 0.737 \text{ cm}^2$
A'	===	δ.Α	=	= 2.211 cm ²
A',	=	0.2 x A'	- =	$= 0.442 \text{ cm}^2$
Re-bar	:	D ₁₃₋₂₅ , A	X _ =	= 5.32 cm ²
		D ₁₃₋₂₅ , A	Ls =	= 5.32 cm ²

1000

Call of the

5 - 1 - 45

5.2 Ground Sill without Head at WF 173

Location and Purpose

The following groundsill is proposed in the river improvement plan.

It is anticipated that riverbed degradation of Garang River channel downstream from the confluence with Kreo River arises after the completion of Jatibarang Dam. Accordingly, the existing structures constructed in the channel may be affected. For this reason, a ground sill aiming at protecting the pier foundation of Toll Road Bridge from riverbed/river bank encroachment is proposed at the immediate downstream portion of about 100 m from the bridge.

Structural Type

5

On the other hand, the ground sill (WF 173) consists of main sill body made of wet masonry and mounded gabion mattress placed on the upstream and downstream riverbeds. This type of ground sill is flexible to conform the riverbed variations.

The design of ground sills is made to ensure structural stability against sliding, overturning and bearing capacity of the sub-base ground, and to satisfy hydraulic stability against piping, uplift and scouring.

Structural Dimension etc.

(a) River Channel

	그는 것 같은 것 같
Riverbed width	40.0 m
Side slope (m)	2.0
Riverbed Slope (I)	l/ ₁₂₅₀
Design Riverbed elevation	EL. + 5.793 m
Existing Lowest riverbed elevation	EL. + 5.030 m

(b) Main Sill Body

	4. V. A. M.	Construction of the second s Second second seco	
Height	(H)	2.0 m	
Crown width	B1)	1.5 m	
Bottom width	(B)	2.5 m	

(c) Side Wall

Height (h)	2.5 m
Crown width (b1)	0.5 m
Bottom width (b)	where $1,2$ is m , the set of ϵ
Length	26.5 m

(d) Revetment

and a start start	Upstream	10.0 10.0	m
Length	Main structure	1.5	m
V	Downstream	15.0	m

(e) Riverbed Protection

사람은 가슴을 모두는 것이 없는 것이 가지 나온 바람 <u>가</u> 다.	u el esta en 2016 de las estados en 1970 - El
Upstream length	12.0 m
Downstream length	15.0 m
Thickness	0.5 m

5.2.1 Structural Design of Side Wall

Design Condition

(i)

(a) Hydraulic Condition

Normal Condition

Water elevation	an a	EL + 5.293
Water Depth		z = 0.30 m
Ground Water Table		EL + 5.593

(ii) Seismic Condition

	and the second secon
Water elevation	EL + 5.293
Water Depth	z = 0.30 m
Ground Water Table	EL + 5.593

(b) The Material Data

(i)

Soil Material *)

Wet unit weight	$\gamma_{t} = 1.800 \text{ t/m}^{3}$
Saturated unit weight	$\gamma_{s} = 1.955 \text{ t/m}^{3}$
Submerged unit weight	$\gamma'_{1} = 0.955 \text{ t/m}^{3}$
Internal friction angle	φ = 42°

^{*)} Basel on geological investigation on RB 47 and RB 48 (Location WF 173) Soil layer at el. 3.00 m to el. 7.00 m are silky gravelly sand, fine to very coarse grained with N-value of about N = 50 and γ_{sat} = 1.955 t/m². Soil internal friction angle will be estimated based on N-value as follows $\phi = 15 + \sqrt{15.N} = 42.38 \sim 42^{\circ}$.

Cohesion	10	= 0.0	t/m ³
Concsion		- 0.0	VIII

(ii)

 A statistical statistical statistics of the statistical statistical statistical statistics. 	$ _{\mathcal{L}_{2}}^{2} = _{\mathcal{L}_{2}}^{2} = $	1.1.2	
Unit weight of wet masonry	γm	= 2.30) t/m^3
Unit weight of gabion mattress / cobbles	Ygm	= 2.20) t/m^3
Unit weight of gravel	γ _g	= 2,00) t/m ³
Unit weight of water	γ _w	= 1.00) t/m ³

- (c) Design Load
 - (i) Earth Pressure

•---

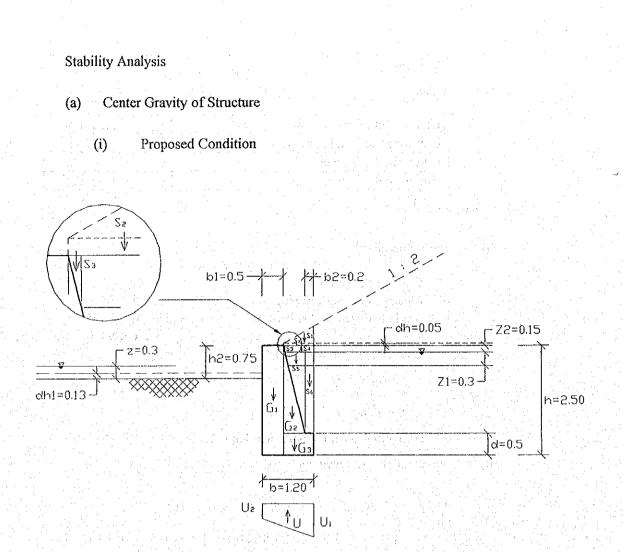
_

Others

- Coulomb's formula
- Mean ground surface slope, $\alpha = 26.56^{\circ}$ (=atn 0.5) Angle between backside of wall & vertical plane, $\theta = 13.50^{\circ}$
 - (=atn 0.6/2.5)
- Friction angle at wall (δ)

Normal $\delta = \phi$

- Seismic $\delta = \phi/2$
- Horizontal seismic coefficient Kh = 0.12
- (ii) Surcharge due to revetment


$$\begin{aligned} \mathrm{d}h &= (t_1 \ \mathrm{x} \ \gamma_\mathrm{m} + t_2 \ \mathrm{x} \ \gamma_\mathrm{g}) \ / \ \gamma_\mathrm{i} - (t_1 + t_2) \\ &= (0.25 \ \mathrm{x} \ 2.3 + 0.25 \ \mathrm{x} \ 2.0) \ / \ 1.8 - 0.5 = 0.10 \ \mathrm{m} \end{aligned}$$

(iii) Surcharge due to gabion mattress (submerged)

$$dh_{1} = (t \times \gamma'_{gm}) / \gamma'_{s} - t$$
$$= (0.50 \times 1.20) / 0.955 - 0.5 = 0.13 t$$

(d) The Combination of Load

	Load Condition	Normal	Seismic
	Weight of wall		+
g H c	Weight of soil	+	+
al ver al ver	Uplift pressure	e e contra de la c	+
9	Earth Pressure	+	+
the horiz ntal load	Water Pressure	+	+
목독물정	Horizontal Earthquake Pressure		
	"+" Consider in the calculation		

(ii) Weight of Wall Body

G ₁	=	$b_1 \times h \times \gamma_m$			
	=	0.5 x 2.5 x 2.30	그는 것은 것은 것이 물이 물이 물이 물이 물이 물이 물이 물이 물었다.	2.875	t/m
x_1	=	$b_1/2 = 0.5/2$		0.25	
yı.		h/2 = 2.5/2		1.25	m
G ₂	· . =	$(b - b_1 - b_2) x^{(h-d)}/_2$	XΥm		
1.5		$0.5 \times \frac{2.00}{2} \times 2.30$	-	1,150	t/m
x2	=		= 0.5 + 0.5/3 =	0.667	m
<i>y</i> ₂	=	$(h - d)/_{3}$	= 2.0/3 =	0.667	m
G ₃	=	$(b-b_1) \times d \times \gamma_m$			
	=	0.70 x 0.50 x 2.3	242 영습은 사람들!	0.805	t/m
<i>x</i> ₃	=	$b_1 + (b - b_1)/2$	= 0.5 + 0.7/2 =	0.85	m
<i>y</i> ₃	=	d/2	= 0.5/2 =	0.25	m
		the second s	(a) A set of the se	- 1	

(iii) Weight of Soil

$$S_{1} = \frac{1}{4} (b - b_{1})^{2} \times \gamma_{t}$$

= $\frac{1}{4} (0.7)^{2} \times 1.80$ = 0.221 t/m
 $x_{S1} = b_{1} + \frac{2}{3} (b - b_{1})$

5 - 2 - 4

	$0.5 + \frac{2}{3} (0.5)$	-	0.833	m
•	$ \begin{array}{r} h + dh + (b - b_1)/2/3 \\ 2.5 + 0.10 + (0.7)/6 \end{array} $, F	2.717	m
	dh x $(b-b_1)$ x γ_1 0.10 x 0.5 x 1.8 $b_1 + (b-b_1)/2$		0.09	t/m
-	0.5 + 0.7/2	=	0.850	m
$y_{s2} =$	$\frac{h + dh/2}{2.50 + 0.10/2}$	=	2.550	m
==	$\begin{array}{r} z_2 \ x \ (z_2/4)/2 \ x \ \gamma_1 \\ 0.15 \ x \ (0.15/4)/2 \ x \ 1.8 \\ b_1 \ + \ 2/3 \ (z_2/4) \end{array}$	=	0.005	t/m
=	0.5 + 2/3 (0.15/4)	·	0.525	m
		=	2.45	m
	$(b-b1-z_2/4) \times z_2 \times \gamma_1$ (0.7-0.15/4) x 0.15 x 1.8 $b - (b-b1-z_2/4)/2$	-	0.179	t/m
=	1.20 - (0.7 - 0.15/4)/2		0.869	m
y ₈₄ == =	$\frac{h - z_2}{2.5 - 0.15/2}$	=	2.425	m
	$(b - b_1 - b_2 - z_2/4) \times (h - d - z_2)/2 \times \gamma_s$ 0.463 x ^{1.85} / ₂ x 1.955	-	0.836	t/m
=	$\begin{array}{l} b_1 \ x \ z_2/4 \ + \ {}^2/_3 \ (b - b_1 - b_2 - z_2/4) \\ 0.5 + 0.15/4 + 2/3 \ (0.5 - 0.15/4) \end{array}$	=	0.846	m
	$d + {}^{2}/_{3} (h - d - z_{2})$ 0.5 + ${}^{2}/_{3} (1.85)$	=	1.733	m
	$(h - d - z_2) \times b_2 \times \gamma_s$ 1.85 x 0.2 x 1.955	=	0.723	t/m
	$b - b_2/2$ 1.20 - 0.2/2	· · · · ·	1.10	m
	$d + (h - d - z_2)/2$ 0.5 + 1.85/2		1.425	m
Buoya	nt Force (Uplift)			
<u>лт</u> —	0.2 m		· · · ·	

(iv)

3

ΔH	= 0.3 m		
	= 2.50 - 0.15 = 2.35 - 2.05 =	2.35 2.05	m m
U	= b x $(u_1 + u_2)/2$ x γ_W = 1.20 x (2.35 + 2.05)/2 x 1.0 =	2.640	t/m
x _U	$= b - b/3 (u_1 + 2u_2)/(u_1 + u_2)$ = 1.2 - 1.2/3 (2.35 + 2 x 2.05) / 4.40 =	0.614	m

= 0.0 mУU

(v) Center Gravity of Structure

Weig	ght . Wi (t/m)	xi (m)	$W_i \cdot x_i (tm/m)$	<i>y</i> _i (m)	$W_i \cdot y_i \pmod{m}$
G	2.875	0.250	0.719	1.250	3.594
G ₂	1.150	0.667	0.767	0.667	0.767
G ₃	0.805	0.850	0.684	0.250	0.201
S ₁	0.221	0.833	0.184	2.717	0.600
S ₂	0.090	0.850	0.077	2.550	0.230
S ₃	0.005	0.525	0.003	2.450	0.012
S ₄	0.179	0.869	0.156	2.425	0.434
S ₅	0,836	0.846	0.707	1.733	1.449
S ₆	0.723	1.100	0.795	1.425	1.030
U	-2.640	0.614	-1.621	0.000	0.000
Σ	4.244		2.470		8.317

 $\begin{aligned} x_{o} &= \Sigma W_{i} \cdot x_{i} / \Sigma W \\ y &= \Sigma W_{i} \cdot x_{i} / \Sigma W \end{aligned}$

0.582 m 1.952 m

For without uplift :

 $\Sigma W = 6.884 \text{ t/m}$ $\Sigma W_i \cdot x_i = 4.091 \text{ m}$ $\Sigma W_i \cdot x_i = 8.317 \text{ m}$ $x_o' = 0.594 \text{ m}$ $y_o' = 1.208 \text{ m}$

(b) Bearing Capacity Beneath Slab

 $\mathbf{q}_{U} = \boldsymbol{\alpha} \cdot \mathbf{c} \cdot \mathbf{k} \cdot \mathbf{N} + \mathbf{k} \cdot \mathbf{g} \cdot \mathbf{N}\mathbf{q} + \frac{1}{2} \cdot \boldsymbol{\gamma} \cdot \boldsymbol{\beta} \cdot \mathbf{b} \cdot \mathbf{N}\boldsymbol{\gamma}$ $\alpha = \beta = 1.0$ = 0 c Df = 1.75 mk = 1 + 0.3 Df/b= 1 + 0.3 (1.75 / 1.20) = 1.438 $q = t \times \gamma'_{gm} + (h_1 - t) \times \gamma'_s$ = 0.5 x 1.0 + 1.25 x 0.955 = 1.694 t/m² $= 42^{\circ}; \theta = 13.5; Nq$ ф = 33 For, = 30 Nγ. $q_U = 1.438 \times 1.694 \times 33 + \frac{1}{2} \times 1.20 \times 30$ = 98.387 t/m² $qa = \frac{q_{U}}{3} = 32.796 \text{ t/m2}$ (in ordinary) $qa = \frac{q_{U}}{3} = 49.194 \text{ t/m2}$ (in seismic)

(c) Coefficient of Earth Pressure

Applying Coulomb's formula as follows :

In Ordinary

θ =

ŀ

Kp

法律

$$13.5^{\circ} ; \alpha = 26.56^{\circ} ; \delta = \phi = 42^{\circ}$$

$$Ca = \frac{\cos^{2}(\phi - \theta)}{\cos^{2} \theta \cos(\phi + \delta) \left[1 + \sqrt{\frac{(\sin \phi + \delta)\sin(\phi - \alpha)}{\cos(\theta + \delta)\cos(\theta - \alpha)}}\right]^{2}}$$

$$= \frac{\cos^{2}(42 - 13.5)}{\cos^{2}(13.5) \times \cos(13.5 + 42) \left[1 + \sqrt{\frac{\sin(42 + 42) \times \sin(42 - 26.56)}{\cos(13.5 + 42) \times \cos(13.5 - 26.56)}}\right]^{2}$$

= 0.503

cos

0.599

$$= \frac{\cos^2(\phi + \theta)}{\cos^2 \theta \cdot \cos(\theta + \delta) \left[1 - \sqrt{\frac{(\sin \phi - \delta)\sin(\phi + \alpha)}{\cos(\theta + \delta)\cos(\theta - \alpha)}}\right]}$$

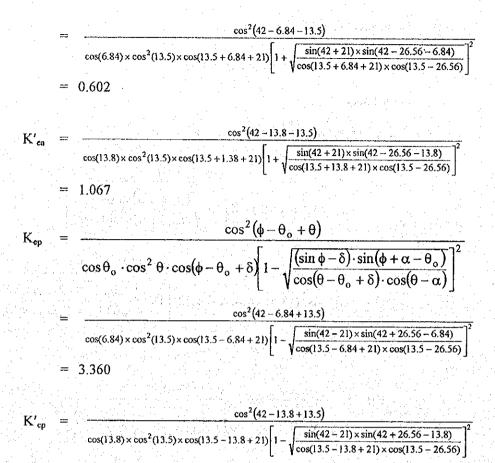
$$\frac{\cos^2(42+13.5)}{13.5\times\cos(13.5+42)\left[1-\sqrt{\frac{\sin(42-42)\times\sin(42+26.56)}{\cos(13.5+42)\times\cos(13.5-26.56)}}\right]}$$

2

(In Seismic)

$$Kh' = \frac{\gamma_{\rm S}}{\gamma_{\rm S} - 1} \times Kh$$

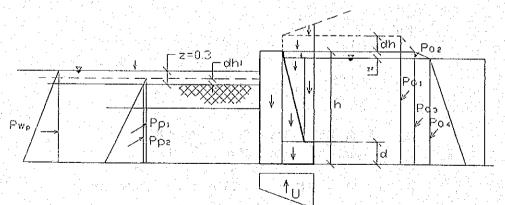
$$= \frac{1.955}{0.955} \times 0.12 = 0.2456$$


$$\theta_{\rm O} = \operatorname{atn} Kh' = \operatorname{atn} 0.12 = 6.84^{\circ}$$

$$\theta_{\rm O}' = \operatorname{atn} Kh' = \operatorname{atn} 0.2456 = 13.80^{\circ}$$

$$\delta = \phi/2 = 21^{\circ} ; \ \theta = 13.5^{\circ} ; \ \alpha = 26.56^{\circ}$$

$$K_{\rm ea} = \frac{\cos^2(\phi - \theta_{\rm o} - \theta)}{\sqrt{(\sin \phi + \delta) \cdot \sin(\phi - \alpha - \theta)}}$$


 $\cos\theta_{o} \cdot \cos^{2}\theta \cdot \cos(\phi + \theta_{o} + \delta) \left[1 + \sqrt{\frac{(\sin\phi + \delta) \cdot \sin(\phi - \alpha - \theta_{o})}{\cos(\theta + \theta_{o} + \delta) \cdot \cos(\theta - \alpha)}}\right]$

= 3.458

(d) Stability analysis on Normal Condition

(i) Load Condition

Active Earth Pressure

Pai	Ħ	$dh \times \gamma_t \times Ka \times h$
	=	$0.10 \times 1.80 \times 0.503 \times 2.5 = 0.226 \text{ t/m}$
Pa ₂	=	$\frac{1}{2} \times (z_2)^2 \times \gamma_t \times Ka$
	· =	$\frac{1}{2} \times (0.15)^2 \times 1.80 \times 0.503 = 0.010 \text{ t/m}$
Pa ₃	-	$z_2 \times \gamma_t \times Ka \times (h + z_2)$
	===	$0.15 \times 1.80 \times 0.503 \times 2.35 = 0.319 t/m$
Pa ₄		$\frac{1}{2} \times (h - z_2)^2 \times \gamma'_s \times Ka$
	=	$\frac{1}{2} \times (2.35)^2 \times 0.955 \times 0.503 = 1.326 \text{ t/m}$

Horizontal Active Earth Pressure

Pahı	=	$Pa_l \propto \cos(\theta + \delta)$	
	=	$0.226 \times \cos(13.5 + 42) =$	0.128 t/m
Y _{a1}	=	h/2 = 2.5/2 =	1.25 m
Pah ₂	=	$Pa_2 \times \cos(\theta + \delta)$	
	=	$0.010 \times \cos{(55.5)} =$	0,006 t/m
Ya2	=	$z_2/3 + (h-z_2)$	
	=	(0.15)/3 + 2.35 =	2.400 m
Pah ₃	=	$Pa_3 \times \cos{(\theta + \delta)}$	
	=	0.319 x cos (55.5) =	0.181 t/m
Ya3		$(h - z_2) / 2$	
an an ta Airtí tha gcart	=	2.35/2	1.175 m
Pah ₄	=	$Pa_4 \propto \cos(\theta + \delta)$	
	=	$1.326 \times \cos(55.5) =$	0.751 t/m
Ya4	=	$(h - z_2)/3$	
		2.35/3 =	0.783 m
Ya4			0.783 m

Vertical Active Earth Pressure

$Pav_1 =$	$Pa_1 \times sin(\theta + \delta)$				
=	0.226 x sin (55.5)			***	0.187 t/m
$x_{ai} =$	1.20 m		an Ali an ta Ali atao		
$Pav_2 =$	$Pa_2 x \sin(\theta + \delta)$	an an Taona			
	0.010 x sin (55.5)				0.008 t/m

 $x_{a2} = 1.20 \text{ m}$ $Pav_{3} = Pa_{3} \times \sin(\theta + \delta)$ $= 0.319 \times \sin(55.5) = 0.263 \text{ t/m}$ $x_{a3} = 1.20 \text{ m}$ $Pav_{4} = Pa_{4} \times \sin(\theta + \delta)$ $= 1.326 \times \sin(55.5) = 1.093 \text{ t/m}$ $x_{a4} = 1.20 \text{ m}$

Passive Earth Pressure

$$Pp_1 = dh_1 \times \gamma'_S \times Kp \times h_1$$

= 0.13 x 0.955 x 0.599 x 1.75 = 0.130 t/m

$$Pp_{2} = \frac{1}{2} \times h_{1}^{2} \times \gamma'_{s} \times Kp$$

= $\frac{1}{2} \times (1.75)^{2} \times 0.955 \times 0.599 = 0.876 t/m$

Horizontal Passive Earth Pressure

Pphi	· ==	$Pp_1 \times \cos(\theta - \delta)$
	=	$0.130 \times \cos(13.5 - 42) = 0.114 t/m$
$\mathcal{Y}_{\mathrm{pl}}$	·	h _i / 2
	Ξ	1.75/2 = 0.875 m

$$Pph_{2} = Pp_{2} \times \cos (\theta - \delta)$$

= 0.876 x cos (-28.5) = 0.770 t/m
$$y_{p2} = h_{1} / 3$$

= 1.75 / 3 = 0.583 m

Water Pressure

$$P_{wa} = \frac{1}{2} (h - z_2)^2 \times \gamma_w$$

= $\frac{1}{2} (2.35)^2 \times 1.0$ = 2.761 t/m
$$y_{wa} = (h - z_2) / 3$$

2.35 / 3 = 0.783 m

5 - 2 - 10

Vertical Force and Moment

Vertical Fo	rce (t/m)	Arm (m)	Vertical Moment (tm/m)
Pavi	0.187	1,200	0.224
Pav2	0.008	1.200	0.010
Pav3	0.263	1.200	0.316
P _{av4}	1.093	1.200	1.312
W	4.244	-	2.470
FV	5.795	MV	4.331

(iv)

Horizontal Force

Horizontal 1	Force (t/m)	Arm (m)	Horizontal Moment (tm/m)		
Pahl	0.128	1.250	0.160		
P _{ah2}	0.006	2.400	0.014		
P _{ah3}	0.181	1.175	0.213		
Pah4	0.751	0.783	0,588		
P _{ph2}	-0.114*)	0.875	-0.100		
P _{wa}	2.761	0.783	2.162		
Pwp	-2.101	0.683	-1.435		
FH	1.726	MH	1.153		

^{*)} Passive earth pressure is omitted

(v) Check of Stability

Stability against sliding

$$SF = FV/_{FH} \cdot \tan \phi$$

= 5.795/1.726 x tan 42 = 3.02
> 1.5

Stability against overturning

$$C = \frac{b_2'}{2} - \frac{(MV - MH)}{FV}$$
$$= \frac{1.20_2'}{2} - \frac{(4.311 - 1.153)}{5.795} = 0$$

0.052 m (–)

 $< B_{6} (=0.20 \text{ m})$

Stability of bearing strata

$$q = \frac{FV_b}{b} \times (1 \pm \frac{6e_b}{b})$$

$$q_{max} = \frac{5.795_{1.20}}{1.20} \times (1 + 6 \times \frac{0.052_{1.20}}{1.20}) = 5.085 \text{ t/m}^2$$

 $q_a = 32.796 \text{ t/m}^2$

(iii)

(e) Stability Analysis on Seismic Condition

(i) External Force

Active Earth Pressure

Pea ₁	==	dh x γ_T x Kea x h	an a
	=	$0.10 \times 1.80 \times 0.602 \times 2.5 =$	0.271 t/m
Pea ₂	=	$\frac{1}{2}$ x $(z_2)^2$ x γ_1 x Kea	
	===	$\frac{1}{2} \times (0.15)^2 \times 1.80 \times 0.602 =$	0.012 t/m
Pea ₃	=	$(z_2) \times \gamma_S \times \text{Kea} \times (h - z_2)$	
	-	$0.15 \times 1.80 \times 0.602 \times 2.35 =$	0.382 t/m
Pea ₄		$\frac{1}{2} \times (h - z_2)^2 \times \gamma'_S \times K'ea$	
	=	$\frac{1}{2} \times (2.35)^2 \times 0.955 \times 1.067 =$	2.814 t/m

Horizontal Active Earth Pressure

Peahl	=	$P_{cal} \propto \cos{(\theta + \delta)}$	
	===	0.271 x cos (13.5 + 21) =	0.223 t/m
Yeal	=	h/2 =	1.25 m
P _{eah2}	=	$P_{ca2} \propto \cos{(\theta + \delta)}$	
	=	0.012 x cos (34.5) =	0.010 t/m
Yea2		$(z_2)/3 + (h_1 - z) =$	2.400 m

P_{eah3}	-	$P_{ea3} \times \cos(\theta + \delta)$	
	==	$0.382 \times \cos(34.5) = 0.315 t/m$	
Yea3	-	$(h - z_2) / 2 = 1.175 m$	
Р.,,		$P_{\rm ref} \propto \cos{(\theta + \delta)}$	

r _{cah4}		r _{ca4} X	cos (0 - 0)						Ś
	==	2.814	x cos	(34.5)	n ya Antonia		n sy atro Gynasia	=	2.319 t/	m
	e e				· ·		e istud	é e.		· · .
Yea4		$(h - z_2)$)/3	a fa shekara ta shekar Na shekara ta shekara t		inter de la composition A generalista		=	0.783 п	n j

Vertical active Earth Pressure

$$P_{eav1} = P_{ea1} \times \sin(\theta + \delta)$$

= 0.271 x sin (34.5)
 $P_{ea1} = 1.20 \text{ m}$

Peav2	= $P_{ea2} \times \sin(\theta + \delta)$	
	$= 0.012 \text{ x} \sin(34.5) =$	0.007 t/m
Yea2	= 1.20 m	· .
Peav3	$= P_{ea3} \times \sin(\theta + \delta)$	
	$= 0.382 \times \sin(34.5) =$	0.216 t/m
Усаз	= 1.20 m	
Pcav4	= $P_{eal} \times sin(\theta + \delta)$	
a di Sana Manazarta	$= 2.814 \times \sin(34.5) =$	1.594 t/m
Yea4	≓ 1.20 m	
Passi	ve Earth Pressure	
Р.,	= $dh_1 \times \gamma'_S \times K'ep \times h_1$	
- ebi	$= 0.13 \times 0.955 \times 3.458 \times 1.75 =$	0.751 t/m
		0,751.011
Pep2	$= \frac{1}{2} \times h_1^2 \times \gamma_8' \times K' ep$	
	en en ser en se se sen en ser en En ser en ser	5.057 t/m
	1996年1月1日,1996年1月1日,1997年1月1日日本 - 1997年1月1日 1月19日日 - 「第三日日日本 - 1997年1月1日日日 1月19日日 - 第三日日日日本 - 1997年1月1日	
Horiz	ontal Passive Earth Pressure	
P _{eph1}	= $P_{epl} \times \cos(\theta + \delta)$	
	$= 0.751 \times \cos(13.5 - 21) =$	0.745 t/m
Vent	$= h_1/3$ =	0.875 m
, chi		
P_{eph2}	= $P_{ep2} \times \cos(\theta + \delta)$	
	= 5.057 x cos (-7.5)	5.014 t/m
y_{ep2}	$= h_1/3$ =	0.583 m
Water	Pressure	
P _{wa}	= 2.761 t/m	
y _{wa}	= 0.783 t/m	
	= 2.101 t/m	
y _{wp}	= 0.683 t/m	
Earth	quake Force	
W.	= W x kh	0.826 t/n
y _e	= 1.208 m	
		and the second

5-2-13

(ii) Vertical Force and Moment

Vertical F	orce (t/m)	Arm (m)	Vertical Moment (tm/m)
Peavl	0.153	1.200	0.184
P _{cav2}	0.007	1.200	0.008
Peav3	0.216	1.200	0.259
Peav4	1.594	1.200	1.913
W	4.244	-	2.470
FVe	6.214	MVe	4.834

(iii)

Horizontal Force and Moment

Horizontal I	Force (t/m)	Arm (m)	Horizontal Moment (tm/m)	
P _{cahl}	0.223	1.250	0.279	
P _{cah2}	0.010	2.400	0.024	
Peah3	0.315	1.176	0.370	
Peah4	2.319	0.783	1.816	
Peph	-0,745 *)	0.875	0.652	
P _{wa}	2,761	0.785	2.162	
P _{wp}	-2.101	0.683	-1.435	
We	0.826	1.208	0,998	
FHe	4.353	МНе	0.639	

*) Passive earth pressure is omitted

(iv) Check Stability

e

Stability against sliding

$$SF = FV_e / FH_e \cdot \tan \phi$$
$$= 6.214 / 4.353 \times \tan 42^\circ$$

1.2

1.285

Stability against overturning

$$= \frac{b}{2} - (MV_{e} - MH_{e}) / FV_{e}$$

= $\frac{1.2}{2} - (4.834 - 0.639) / 6.214 = 0.075 m$

 $\frac{b}{6}$ (=0.20 m)

Stability of bearing strata

$$q = \frac{FV_{c}}{b} (1 \pm be/b)$$

$$q_{max} = \frac{6.214}{1.2} (1 + 6 \times \frac{0.075}{1.20}) = 7.120 t/m$$

$$< qea (= 49.194 t/m^{2})$$

5 - 2 - 14