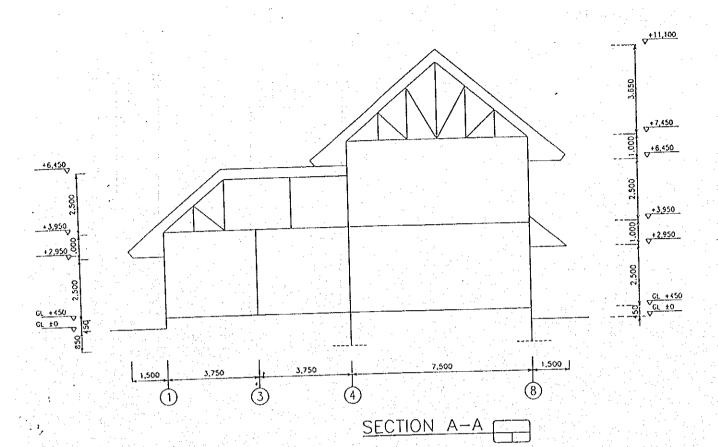
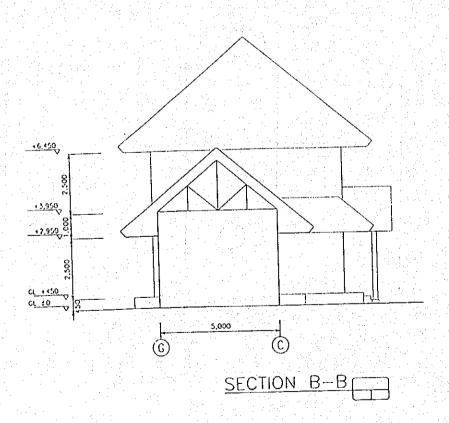

# 4.7. WEIR MANAGEMENT COMPLEX AND GATE CONTROL HOUSE

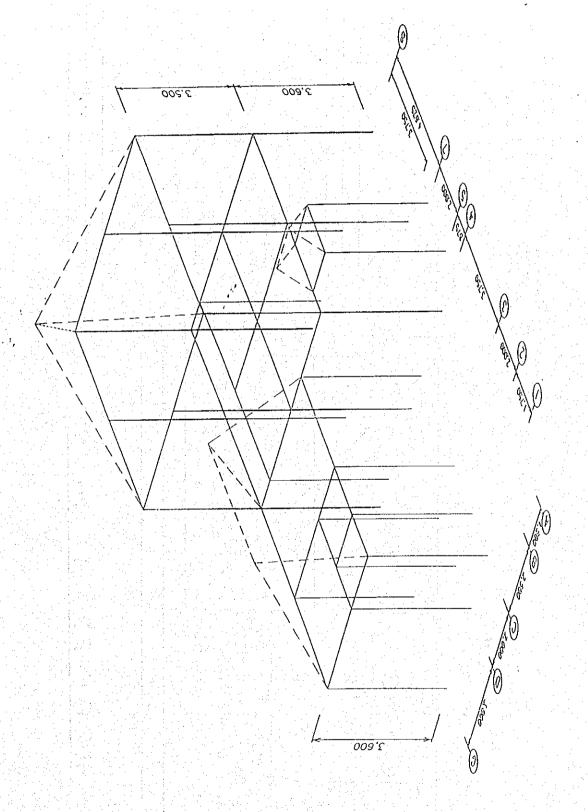
## 4.7.1. OPERATION/MANAGEMENT BUILDING STRUCTURE CALCULATION

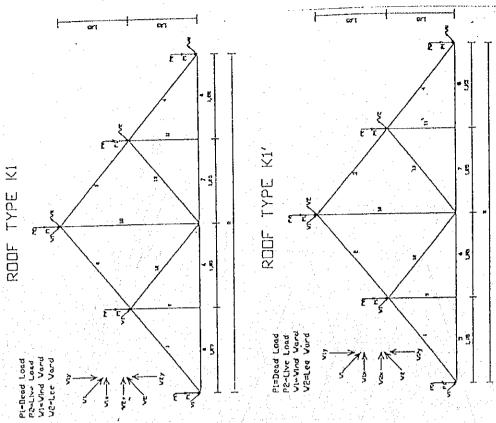
- 1 STRUCTURE
- 2 DESIGN CONDITION
- 3 LOADING CONDITION
- 4 DESIGN OF PURLIN
- 5 DESIGN OF ROOF TRUSS
- 6 DATA FOR TWO STORIES
  - a, DIMENSIONS
  - b. DESIGN CONDITION
  - c. LOADING CONDITION
  - d. DESIGN OF REINFORCEMENT CONCRETE PLATE
- 7 DESIGN OF FOOTING

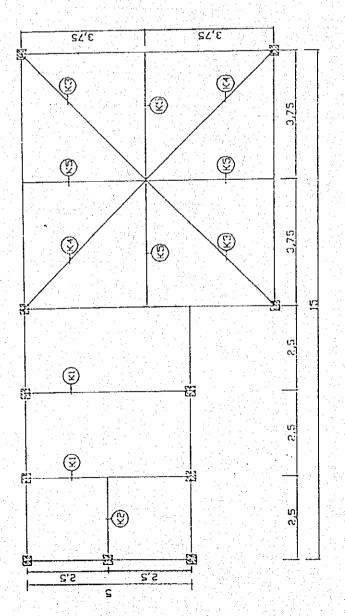

### 1. STRUCTURE







## OPERATION/MANAGEMENT BUILDING


SIMONGAN WIER MANAGEMENT COMPLEX






## OPERATION/MANAGEMENT BUILDING SIMONGAN WIER MANAGEMENT COMPLEX



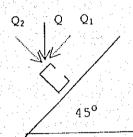




ROOF FRAME PLAN

4 - 7 - 6

#### 2. Design Condition


- a) Roof truss members : double angle steel
  - Tensile strength (Fy) : 2400 kg/cm<sup>2</sup>
- b) Structural model : plane (xy axis) truss, linear elastic
- c) Analysis method : static

#### 3. Loading Condition

- a) Dead Load:
  - Roof cover (ceramic tile + timber rafter) =  $70 \text{ kg/m}^2$ - Ceiling (fibre cement) =  $10 \text{ kg/m}^2$  $80 \text{ kg/m}^2$
- b) Live load
   - Weight of workers as point load = 100 kg
- c) Wind load
  - Wind pressure =  $40 \text{ kg/m}^2$
  - Pressure coefficient (f) . wind ward -0.5
    - lee ward -0.4
    - $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$
    - $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$

#### 4. Design of purlin

- Purlin distance (c/c) = 1.77 m
- Purlin length = 2.50 m
- Purlin self weight say = 8.00 kg/m'



$$Q_1 = Q_2 = Q \cos 45^{\circ}$$
  
= 150 \cos 45^{\circ}  
= 106 \kg/m'

#### Point load

 $P_X = P_Y = P\cos \infty = 100 \cos 45^{\circ} \approx 71 \text{ kg}$ 

#### Bending moment

Mx =  $1/8 \times q_1 \times L^2 + 1/P1 \times L$ =  $1/8 \times 106 \times 2.5^2 + \frac{1}{4} \times L$ = 127.19 kgm = 12.719 kgcm

#### Try light lip channel type:

 $150 \times 50 \times 50 \times 4.5$   $1x = 438 \text{ cm}^4$ ;  $Wx = 58.4 \text{ cm}^3$  $1y = 71.4 \text{ cm}^4$ ;  $Wy = 13.2 \text{ cm}^3$ 

#### Stresses

$$\sigma_{an} = 0.6 \times \text{Fy}$$
 = 0.6 x 2.400  
= 1.440 kg/cm<sup>2</sup>  
 $\sigma = \sigma x \times \sigma y$   
= Mx/Wx + My/Wy.'  
= (12,719/58.4) + (12,719/13.2)  
= 1,181 kg <  $\sigma_{an} = 1.440 \text{ kg/cm}^2$  (OK)

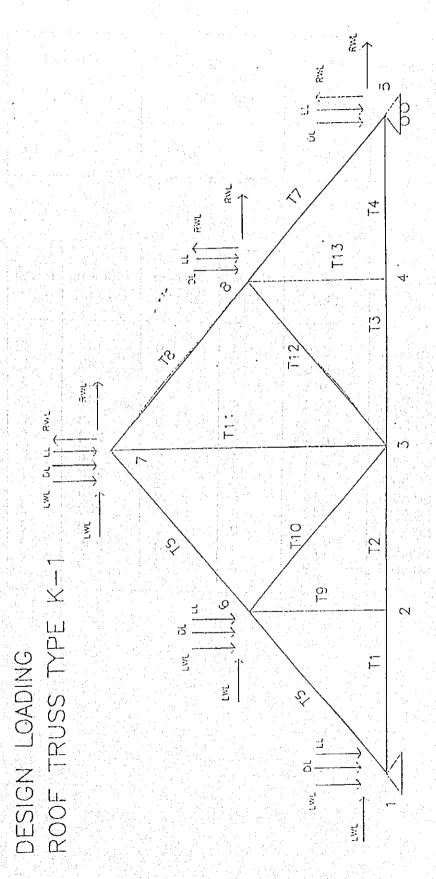
#### Deflection

Fx = 
$$5/384 \times Q1 \times L^4/EIx + 1PL^3/48EIx$$
  
=  $5/384 \times 106 \times 250^4/(2.1 \times 10^6 \times 438) + 71,250^3/(48 \times 2.1 \times 10^6 \times 438)$   
=  $0.09 + 0.03 = 0.12 \text{ cm}$   
Fy =  $0.36 + 0.15 = 0.51 \text{ cm}$   
f =  $(0.12^2 + 0.51^2)^{1/2} = 0.52 \text{ cm}$   
f =  $0.52 \text{ cm} < \text{f all} = 1L/360 = 250/360 = 0.69 \text{ (OK)}$ 

For purlin span up to 3.75 m, use the lip channel type of  $2 \times C$  150 x 65 x 20 x 3.2 (in front to front arrangement)

#### 5. Design of roof truss

a. Dead load


$$P1 = 2.50 \times 1.77 \times 80 = 354 \text{ kg}$$

b. Wind load

$$W1 = 2.50 \times 1.77 \times 20 = 89 \text{ kg}$$
  
 $W2 = 2.50 \times 1.77 \times 16 = 71 \text{ kg}$ 

c. Live load

$$P2 = 100 \text{ kg}$$



()

NOTE

Decd 1000 (DL) = 354 kg

Wind 1000:

Left Wind Load (LWL) = 83 kg (downward)

- Right wind Load (RWL) = 50 kg (downward)

- Right wind Load (RWL) = 50 kg (downward)

Live 1000 (LL) = 100 kg.

## Roof K-1

| Profile   | Plate<br>Thickness<br>(cm) | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |
|-----------|----------------------------|----------------|----------------|-------------------|
| L 50.50.5 | 0.8                        | 2,400          | 3,700          | 1.4               |

| Member                                                            | Profile                                                                                                                                     | , Axial<br>, (kg)                                                                 | Shear<br>(kg)                                            | Torsion<br>(kg.cm) | Moment<br>(kg.cm)                                                            | n Bolt                                                                                      | d Bolt<br>(mm)                                                       |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | L 50.50.5<br>L 50.50.5 | 979<br>979<br>866<br>866<br>990<br>642<br>811<br>1,159<br>18<br>442<br>547<br>273 | 4<br>4<br>4<br>4<br>4<br>4<br>0<br>4<br>0<br>4<br>0<br>4 |                    | 147<br>147<br>147<br>147<br>208<br>208<br>208<br>208<br>0<br>208<br>0<br>208 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 |

- Checking of members Strength of roof steel Truss Type K-1 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T1 & T2 (loading Combination 2)

Force  $F = 979.7 \approx 980 \text{ kg}$ 

Length L = 125 cm

Try : Double angle steel of 50.50.5Cross section area  $A = 2 \times 4.8 = 9.6 \text{ cm}^2$ 

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress

 $\sigma = \frac{F}{A} = \frac{980}{9.6} = 102 \text{ kg/cm}^2 < \sigma_{ali} = 1,440 \text{ kg/cm}^2 \text{ (ok)}$ 

b. Due to Compresion force

Maximum force on member T5 (loading Combination 2)

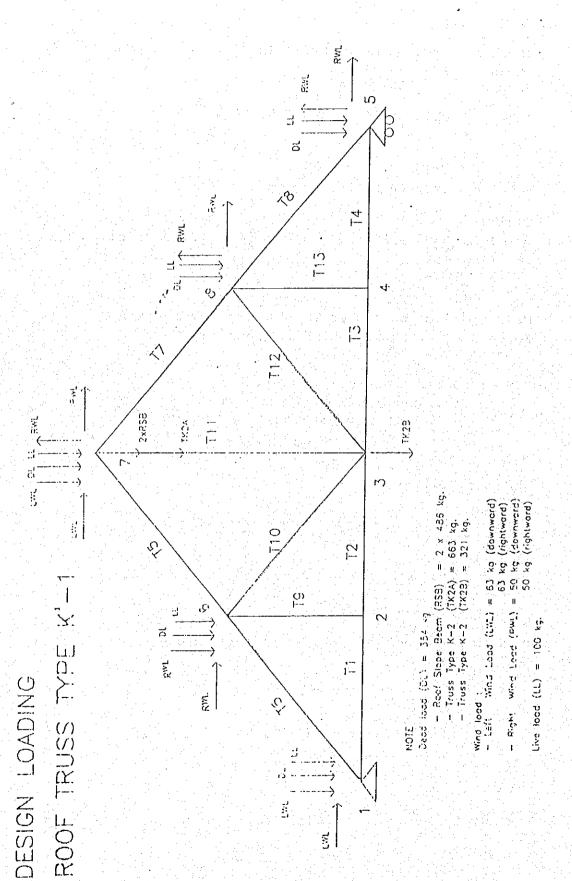
Force  $F = 990.577 \approx 991 \text{ kg (rounded)}$ 

Length L = 176.78 cm

Try : Double angle steel of 50.50.5

Cross section area  $A = 9.6 \text{ cm}^2$ 

ix = 1.51 cm; Ix = 2x11 = 22 cm


 $\lambda = L = 176.79 = 117.07 > 105$  $1 \times 1.51$ 

by Euler Formula

 $F_{a+1} = \frac{\pi^2 \cdot E \cdot Iz}{n \cdot L^2}$ ; n = Safety Factor = 3

 $F_{aii} = \frac{\pi^2 \times (2.1 \times 10^6) \times 22}{3 \times (176.78)^2}$ = 4,863.56 kg > F = 991 kg (ok)

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-1



## Roof K'-1

| Profile              | Plate             | Fy             | Fu             | dia. Bolt  |
|----------------------|-------------------|----------------|----------------|------------|
|                      | Thickness<br>(cm) | (kg/cm2)       | (kg/cm2)       | (cm)       |
| L 50.50.5<br>P101.6B | 0.8<br>0.8        | 2,400<br>2,400 | 3,700<br>3,700 | 1.4<br>1.4 |

| Member                                                            | Profile                                                                                                                                                  | Axial<br>(kg)                                                                            | Shear<br>(kg)                                                                               | Torsion<br>(kg.cm) | Moment<br>(kg.cm)                                                      | n Bolt                                                                                      | d Bolt<br>(mm)                                                 |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | L 50.50.5<br>L 50.50.5 | 1,924<br>1,924<br>1,811<br>1,811<br>2,329<br>199<br>215<br>248<br>9<br>426<br>828<br>281 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                    | 73<br>73<br>73<br>73<br>104<br>104<br>104<br>0<br>104<br>0<br>104<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 |

- Checking of members Strength of roof steel Truss Type K'-1 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T1 & T2 (loading Combination 2)

Force 
$$F = 2,485$$
 kg  
Length  $L = 125$  cm

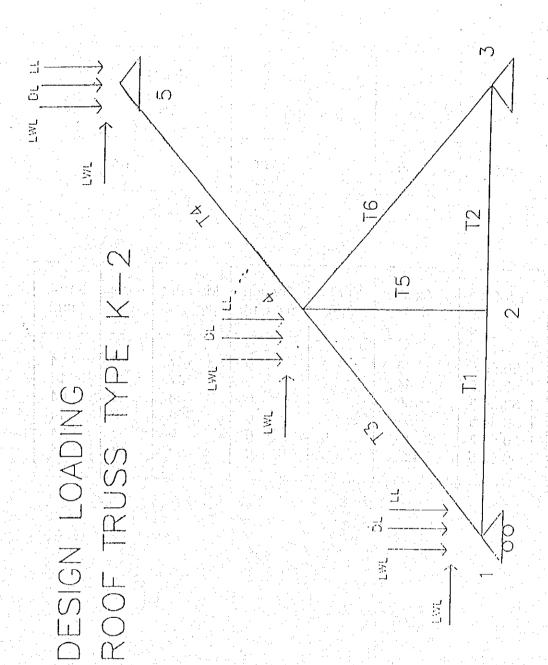
Try : Double angle steel of 50.50.5Cross section area  $A = 2 \times 4.8 = 9.6 \text{ cm}^2$ 

$$\sigma_{all} = 0.6xFy$$
  
= 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress 
$$\sigma = \frac{F}{A} = \frac{2,485}{9.6} = 258,85 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (ok)}$$

b. Due to Compresion force

Maximum force on member T8 (loading Combination 2) Force F = 3,289 kg (rounded) Length L = 176.78 cm (rounded)

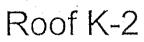

Try : Double angle steel of 50.50.5Cross section area  $A = 9.6 \text{ cm}^2$  ix = 1.51 cm;  $Ix = 2x11 = 22 \text{ cm}^2$  $\lambda = L = \frac{176.78}{1.51} = 117.07 > 105$ 

by Euler Formula

$$F_{all} = \frac{\pi^2 \cdot E \cdot Ix}{n \cdot L^2}$$
;  $n = Safety Factor = 3$ 

$$F_{all} = \frac{\pi^2 \times (2.1 \times 10^6) \times 22}{3 \times (176.78)^2}$$
  
= 4,863.56 kg > F = 3,289 kg (ok)

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K'-1




Live load (LL) = 100 kg.

63 kg (downward) 63 kg (rightward)

Dead load (DL) = 354 kg Wind load - Left Wind Load (LWL) ⇒

NOTE



| Profile   | Plate<br>Thickness<br>(cm) | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |
|-----------|----------------------------|----------------|----------------|-------------------|
| L 50.50.5 | 0.8                        | 2,400          | 3,700          | 1.4               |

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                            | <u></u>                       | ,                          | · · · · · · · · · · · · · · · · · · · |                                      |                                      | <u> </u>                         |
|-----------------------------------------|----------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|
| Member                                  | Profile                                                                    | Axial<br>(kg)                 | Shear<br>(kg)              | Torsion<br>(kg.cm)                    | Moment<br>(kg.cm)                    | n Bolt                               | d Bolt<br>(mm)                   |
| 1<br>2<br>3<br>4<br>5<br>6              | L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5 | 44<br>456<br>191<br>18<br>432 | 4<br>4<br>4<br>4<br>0<br>4 | 0<br>0<br>0<br>0                      | 147<br>147<br>208<br>208<br>0<br>208 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 14<br>14<br>14<br>14<br>14<br>14 |

- Checking of members Strength of roof steel Truss Type K-2 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T4 (loading Combination 2) Force F = 201.19 kgLength L = 176.78 cm

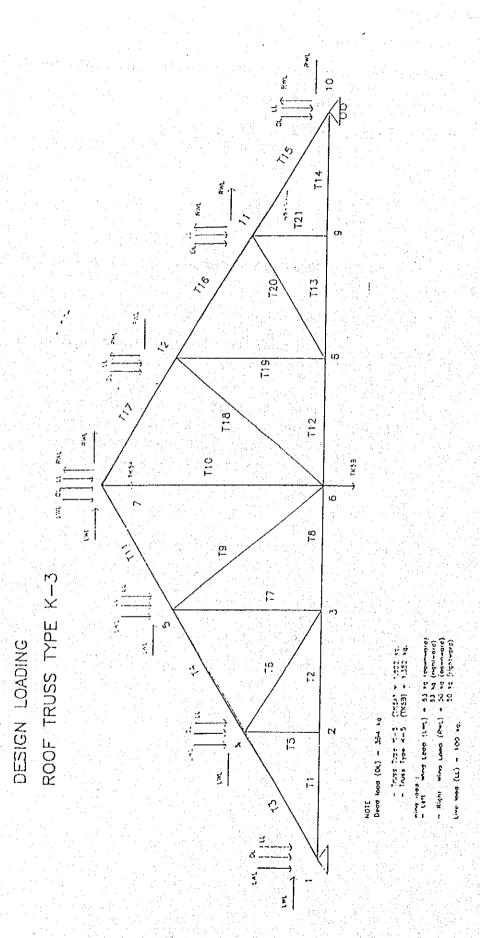
Try : Double angle steel of 50.50.5Cross section area  $A = 2 \times 4.8 = 9.6$  cm

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress  $\sigma = \frac{F}{A} = \frac{201.19}{9.6} = 20.96 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2 \text{ (ok)}$ 

b. Due to Compresion force

Maximum force on member T6 (loading Combination 2) Force F = 442.28 kgLength L = 176.78 cm


Try : Double angle steel of 50.50.5 Cross section area A =  $2x4.8 = 9.6 \text{ cm}^2$  ix = 1.51 cm;  $Ix = 2x11 = 22 \text{ cm}^4$  $\lambda = \frac{L}{ix} = \frac{176.78}{1.51} = 117.07 > 105$ 

by Euler Formula

 $F_{all} = \frac{\pi^2 \cdot E \cdot Ix}{n \cdot L^2}$ ; n = Safety Factor = 3

 $F_{all} = \frac{\pi^2 \times (2.1 \times 10^6) \times 22}{3 \times (176.78)^2}$ = 4,863.56 kg > F = 442.28 kg (ok)

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-2



## Roof K-3

| Profile   | Plate<br>Thickness<br>(cm) | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |
|-----------|----------------------------|----------------|----------------|-------------------|
| L 60.60.6 | 0.8                        | 2,400          | 3,700          | 1.7               |
| P101.6B   | 0.8                        | 2,400          | 3,700          | 1.7               |

| Member                                                                                                            | Profile                                                                                                                                                                                                      | Axial<br>(kg)                                                                                                                                                           | Shear<br>(kg)                                                                                                | Torsion<br>(kg.cm) | Moment<br>(kg.cm)                                                                                             | n Bolt                                                                                           | d Bolt<br>(mm)                                                                  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | L 60.60.6<br>L 60.60.6 | 6,668<br>6,668<br>7,678<br>7,191<br>25<br>572<br>401<br>6,207<br>811<br>3,979<br>6,699<br>6,071<br>6,395<br>6,395<br>7,758<br>7,301<br>6,820<br>575<br>269<br>387<br>25 | 12<br>12<br>12<br>12<br>0<br>12<br>0<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                    | 555<br>555<br>679<br>679<br>0<br>679<br>0<br>555<br>960<br>0<br>679<br>555<br>555<br>679<br>679<br>679<br>679 | 4<br>4<br>4<br>4<br>2<br>2<br>3<br>2<br>4<br>4<br>3<br>3<br>3<br>4<br>4<br>4<br>2<br>2<br>2<br>2 | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1 |

- Checking of members Strength of roof steel Truss Type K-3 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T1 & T2 (loading Combination 2)

Force F = 8,524.58 kg Length L = 177 cm

Try : Double angle steel of 60.60.6Cross section area  $A = 2 \times 6.91 = 13.81 \text{ cm}^2$ 

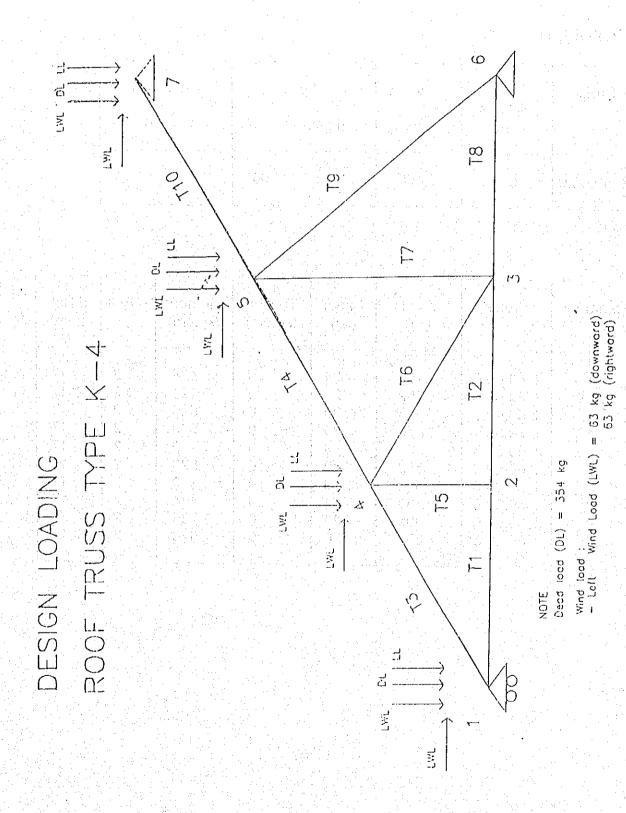
 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress  $\sigma = \frac{F}{A} = \frac{8,524.58}{13.81} = 617.28 \text{ kg/cm}^2 < \sigma_{ell} = 1,440 \text{ kg/cm}^2$ 

b. Due to Compresion force

Maximum force on member T15 (loading Combination 2) Force F = 4,812.42 kgLength L = 216.70 cm

Try : Double angle steel of 60.60.6Cross section area  $A = 2 \times 6.91 = 13.82 \text{ cm}^2$  ix = 1.80 cm;  $Ix = 2 \times 22.8 = 45.6 \text{ cm}^4$  $\lambda = \frac{L}{ix} = \frac{216.7}{1.80} = 120.39 > 105$ 


by Euler Formula

 $F_{ali} = \frac{\pi^2 \cdot E \cdot J \times}{n \cdot L^2}$ ; n = Safety Factor = 3

 $F_{all} = \frac{\pi^2 \times (2.1 \times 10^6) \times 45.6}{3 \times (216.7)^2}$ = 6,708.80 kg > F = 4,812.42 kg (ok)

Hence double angle steel of 60.60.6 can be used as the members of roof truss type K-3

Liv≥ load (LL) = 100 kg.



4 - 7 - 21

## Roof K-4

| Prófile   | Plate<br>Thickness<br>(cm) | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |
|-----------|----------------------------|----------------|----------------|-------------------|
| L 60.60.6 | 8.0                        | 2,400          | 3,700          | 1.7               |

| Samuel State of the control of the c | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                |                                                                  |                                                                |                    |                                                                |                                                               |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|--------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|
| Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Profile                                                                                              | Axial<br>(kg)                                                    | Shear<br>(kg)                                                  | Torsion<br>(kg.cm) | Moment<br>(kg.cm)                                              | n Bolt                                                        | d Bolt<br>(mm)                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L 60.60.6<br>L 60.60.6<br>L 60.60.6<br>L 60.60.6<br>L 60.60.6<br>L 60.60.6<br>L 60.60.6<br>L 60.60.6 | 262<br>262<br>405<br>76<br>32<br>552<br>372<br>183<br>809<br>562 | 424<br>424<br>520<br>520<br>0<br>520<br>0<br>424<br>735<br>520 |                    | 424<br>424<br>520<br>520<br>0<br>520<br>0<br>424<br>735<br>520 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 |

- Checking of members Strength of roof steel Truss Type K-4 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T10 (loading Combination 2)

Force F = 549.31 kgLength L = 216.70 cm

Try : Double angle steel of 60.60.6Cross secsion area  $A = 2 \times 6.91 = 13.82 \text{ cm}^2$ 

 $\sigma_{all} = 0.6xFy$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

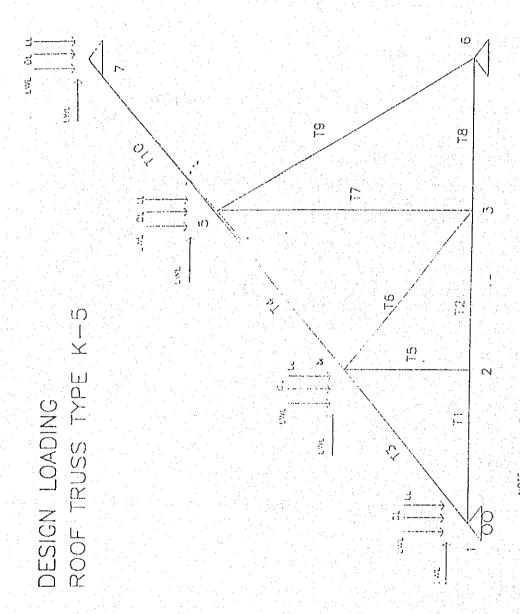
Stress  $\sigma = \frac{F}{E} = \frac{549.31}{13.82} = 39.75 \text{ kg/cm}^2 < \sigma_{ell} = 1,440 \text{ kg/cm}^2$ 

b. Due to Compresion force

Maximum force on member T9 (loading Combination 2) Force F = 782.41 kg (rounded)

Length L = 306.32 cm (rounded)

Try : Double angle steel of 60.60.6Cross section area  $A = 2 \times 6.91 = 13.82 \text{ cm}^2$  $1 \times = 1.82 \text{ cm}$ ;  $1 \times = 2 \times 22.8 = 45.60 \text{ cm}^2$ 


 $\lambda = L = 336.32 = 168.31 > 105$  ix = 1.82

by Euler Formula

 $F_{n,1} = \frac{\pi^2}{n \cdot L^2}$ ; n = Safety Factor = 3

 $F_{u11} = \frac{\pi^2 \times (2.1 \times 10^6) \times 45.6}{3 \times (306.32)^6}$ = 3,357.47 kg > F = 782.41 kg (ok)

Hence double angle steel of 60.60.6 can be used as the members of roof truss type  $K\!-\!4$ 



NOTE  $0.000 (G_L) = 354 k_0$  what load  $(LW_L) = 53 k_0$  (comparate) -1.001 = 0.000 = 0.000

Live locd (LL) = 100 kg.

•

## Roof K-5

| Profile   | Plate<br>Thickness<br>(cm) | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |
|-----------|----------------------------|----------------|----------------|-------------------|
| L 60.60.6 | 0.8                        | 2,400          | 3,700          | 1.7               |

| Member | Profile                | Axial      | Shear  | Torsion | Moment     | n Bolt | d Bolt<br>(mm) |
|--------|------------------------|------------|--------|---------|------------|--------|----------------|
|        |                        | (kg)       | (kg)   | (kg.cm) | (kg.cm)    |        | (11.1111)      |
| 7 × 1  | L 60.60.6              | 171        | 6      | 0       | 211        | 2      | 17             |
| 2      | L 60.60.6              | 171        | 6      | 0       | 211        | 2      | 17             |
| 3 4    | L 60.60.6<br>L 60.60.6 | 325<br>35  | 6<br>6 | 0       | 299<br>299 | 2 2    | 17             |
| 5      | L 60.60.6              | 13         | 0<br>6 | 0       | 0<br>299   | 2      | 17             |
| 6 7    | L 60.60.6<br>L 60.60.6 | 456<br>368 | 0      | 0       | 0          | 2      | 17             |
| 8      | L 60.60.6              | 146        | 6      | 0       | 211<br>473 | 2      | 17<br>17       |
| 9 10   | L 60.60.6<br>L 60.60.6 | 718<br>395 | 6<br>6 | 0 0     | 473<br>229 | 2      | 17             |
|        |                        |            |        |         |            |        |                |

- Checking of members Strength of roof steel Truss Type K-5 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T10 (loading Combination 2)

Force F = 395.73 kgLength L = 176.78 cm

Try : Double angle steel of 60.60.6

Cross section area  $A = 2 \times 6.91 = 13.82 \text{ cm}^2$ 

 $\sigma_{\text{sil}} = 0.6 \text{xFy}$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress

 $\sigma = \frac{F}{A} = \frac{395.73}{13.82} = 28.6 \text{ kg/cm}^2 < \sigma_{all} = 1,440 \text{ kg/cm}^2$ 

b. Due to Compresion force

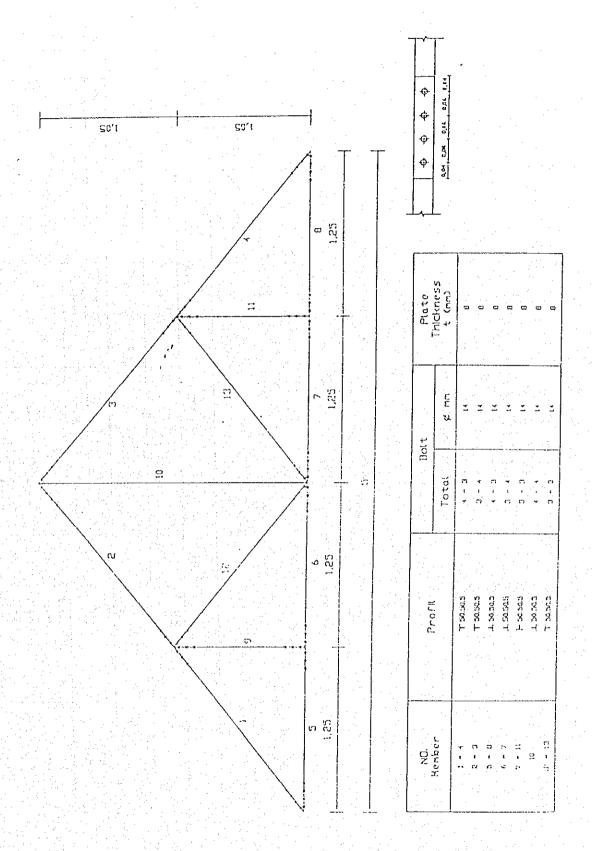
Maximum force on member T9 (loading Combination 2)

Force F = 718.79 kg (rounded)Length L = 279.51 cm (rounded)

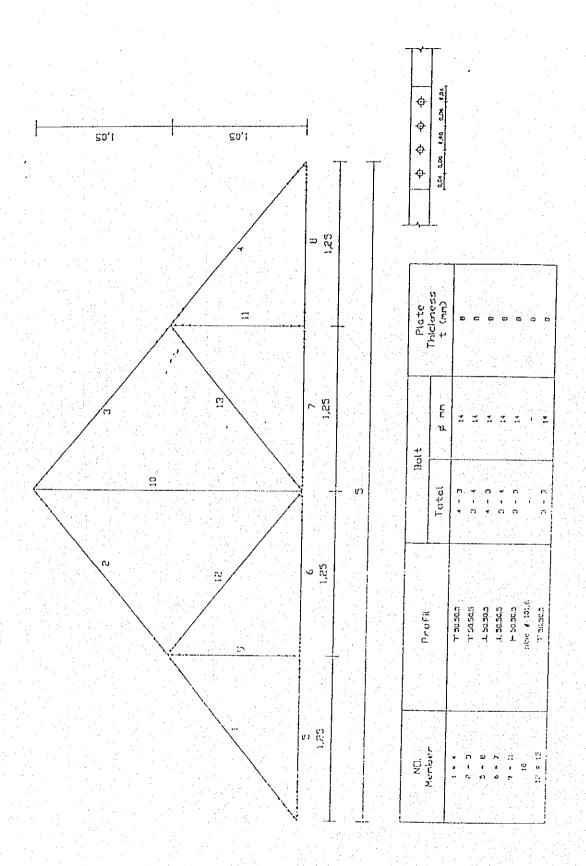
Try : Double angle steel of 60.60.6

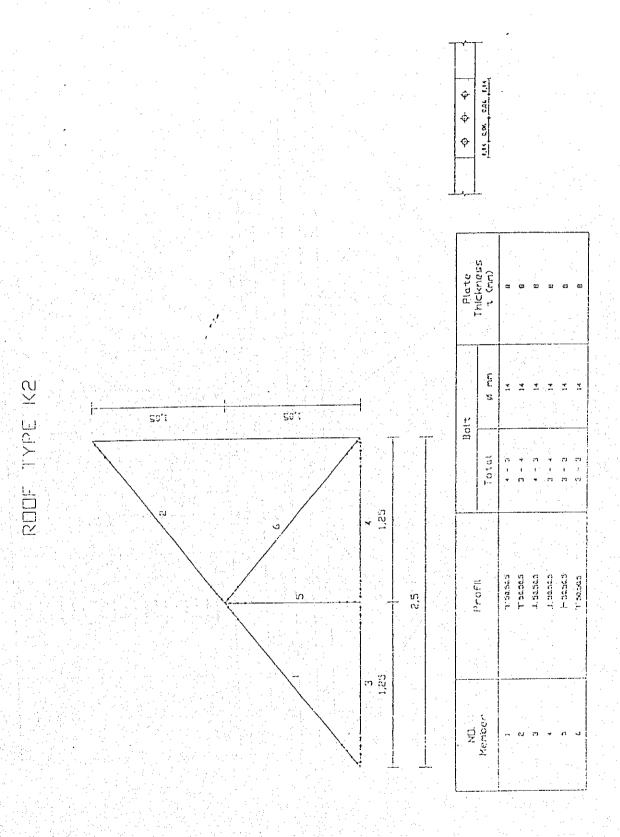
Cross section area  $A = 2 \times 6.91 = 13.82 \text{ cm}^2$ 

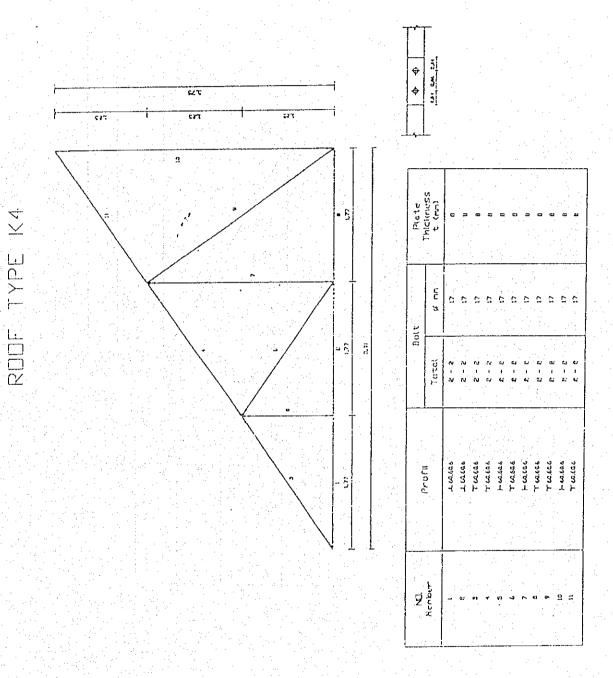
ix = 1.82 cm;  $ix = 2x22.8 = 45.60 \text{ cm}^4$ 


 $\lambda = L = \frac{279.51}{1.82} = 153.58 > 105$ 

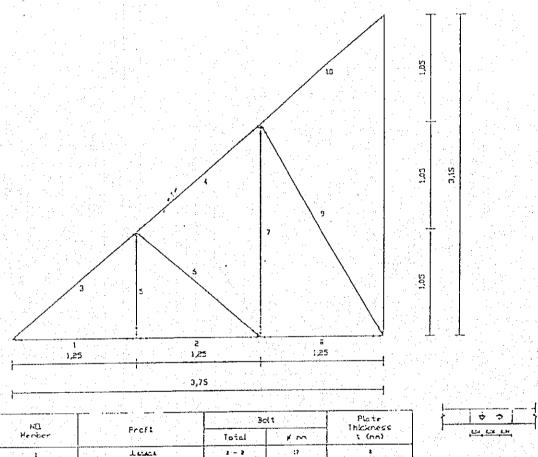
by Euler Formula


 $F_{n11} = \frac{\pi^2.E.Ix}{L}$ 


 $F_{21} = \frac{\pi^{2} \times (2.1 \times 10^{\frac{2}{3}}) \times 45.6}{(279.51)^{2}}$ = 4,032.44 kg > F = 697.32 kg (ok)


Hence double angle steel of 60.60.6 can be used as the members of roof truss type  $K\!-\!5$ 



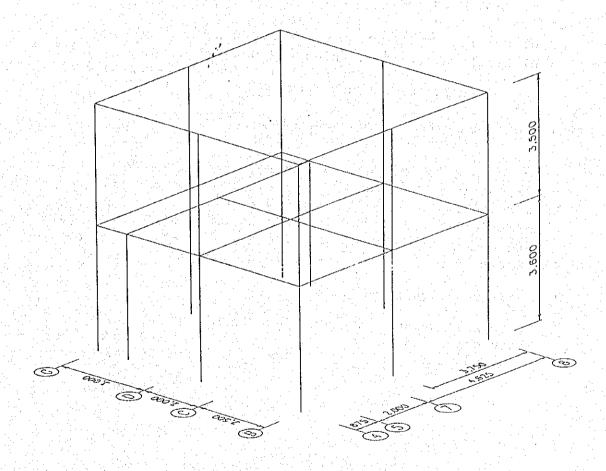

ROOF TYPE KI







## ROOF TYPE K5




| KD.         |           | 3c    | Picte |                     |  |  |
|-------------|-----------|-------|-------|---------------------|--|--|
| Herber      | Profi     | Total | ¥ 200 | Thickness<br>t (nn) |  |  |
| 7 t. 1 't . | Leact     | 3 - 5 | 17    | •                   |  |  |
| ,           | 1676      | 2 - 2 | 17    | •                   |  |  |
| 3           | Tital     | 2 - 2 | 17    | •                   |  |  |
| 4           | T :5/4.1  | 2 - 2 | n     |                     |  |  |
| 3           | ) stans   | t - t | n     |                     |  |  |
| 4           | TEXEL     | 1 - a | 17    | 1.                  |  |  |
| 7           | I-state 4 |       | 17    | •                   |  |  |
|             | 1 1243 (  | 1 - 2 | . 17  | •                   |  |  |
|             | A tower   | 1-1   | n     | 1 1965 A            |  |  |
| 1.0         | Tecase    | t = t | 17    |                     |  |  |

#### 6. DATA FOR TWO STORIES BUILDING

#### a. Dimension

- Length c-c column 7,500 m
- Width c-c column 7,500 m
- Height ground to 2nd floor: 3,600 m
- Height ground to roof truss : 3,500 m



TWO STORIES BUILDING ISOMETRY OPERATION/MANAGEMENT BUILDING

SIMONGAN WEIR MANAGEMENT COMPLEX

## b. Design Conditions

- a) Concrete compression strength  $(K) = 225 \text{ kg/cm}^2$
- b) Reinforcing bar ;

 $= 2.400 \text{ kg/cm}^2 \text{ (BJTP 24)}$ . Plain bar Fy

 $= 3.200 \text{ kg/cm}^2 \text{ (BJTP 22)}$ . Deformed bar Fy

c) Structural model: space (xyz axis) frame

d) Analysis method : static - rigid floor

## C. Loading Conditions

a) Roof load:

(as point load separated to 2 point)

Truss type K3 = 7.000 kg

Truss type K4 = 7.000 kg

Truss type K5 = 2x2.000 kg = 4.000 kg

- b) Slab dead load =  $180 \text{ kg/m}^2$  (including pannel load 1000 kg)
- $= 250 \text{ kg/m}^2$ c) Live load
- d) Concrete self weight =  $2.400 \text{ kg/m}^3$
- e) Brick wall 0,15 cm thick =  $250 \text{ kg/m}^2$
- f) Soil Compression Stress = 1 kg/cm<sup>2</sup> (2 m depth) (given by JICA Study Team)

## d Design of reinforcement concrete plate :

 $h_t$ 12 cm Plate thickness

2 cm ;  $h = h_t - d = 12 - 2 = 10 \text{ cm}$ . Concrete cover

 $= 2,400 \text{ kg/m}^3$ Unit weight

= 225 kg/cm<sup>2</sup>;  $\sigma'_b = 70 \text{ kg/cm}^2$ ; n = 21f.c Compression stress

 $= 3,200 \text{ kg/} ; \sigma_{\mathbf{x}} = 2,000 \text{ kg/cm}^2$ Γu Reinforcement bar

 $= (3.75 \times 3.75) \text{ m}^2$ Plate area

#### Loading design :

Plate self weight:  $0.12 \times 2,400 \text{ kg/m}^3$ = 288 kg/m²

 $= 180 \text{ kg/m}^2$ Plate dead load

 $= 250 \text{ kg/m}^2$ Live load

 $q = 718 \text{ kg/m}^2$ 

Fixed sides  $L_{x}=3,75~\text{m}$   $L_{y}=3,75~\text{m}$ 

$$l_y/l_x = 1.33$$
:

 $M^-_{tx} = 0.001 \times 718 \times 3.75^2 \times 36 = 363.49 \text{ kgm}$ 
 $M^-_{ty} = 0.001 \times 718 \times 3.75^2 \times 36 = 363.49 \text{ kgm}$ 
 $M^-_{1x} = 0.001 \times 718 \times 3.75^2 \times 36 = 363.49 \text{ kgm}$ 
 $M^-_{1y} = 0.001 \times 718 \times 3.75^2 \times 36 = 363.49 \text{ kgm}$ 
 $M^-_{1y} = 0.001 \times 718 \times 3.75^2 \times 36 = 363.49 \text{ kgm}$ 
 $M^-_{2x} = 363.49 \text{ kgm} = 36.349 \text{ kgcm}$ 

$$C_a = \frac{h}{\sqrt{\frac{nxM}{bx\sigma_a}}} = \frac{10}{\sqrt{\frac{21x42,725}{100x2,000}}} = 4.72$$

 $\begin{array}{l} \delta = 0 \text{ (single reinforcement)} \\ \phi = 3.05 > \phi_0 = \sigma_a / (n \times \sigma'_b) = 2,000 / (21 \times 70) = 1.36 \text{ (OK)} \\ n\omega = 0.041 \\ A_{\text{steel}} = \omega \times b \times h = 0.041/21 \times 100 \times 10 = 1.95 \text{ cm}^2 \\ \text{Used } A_{\text{steel}} = \text{dia. } 10 - 15 \text{ cm} = 5.5 \text{ cm}^2 > 1.95 \text{ cm}^2 \text{ (OK)} \,. \end{array}$ 

# BEAM type a

|          |            | 3                         |               |
|----------|------------|---------------------------|---------------|
|          | .≥         | (kg/cm2)                  | 187 3200 2400 |
|          | <b>≥</b>   | kg/cm2) (kg/cm2) (kg/cm2) | 3200          |
|          | ပ္         | (kg/cm2)                  | 0.8 187       |
|          | stirrup    | (cm)                      | 0.8           |
| Diameter | main bar   | (cm)                      | 1.6           |
|          | Cover      | (cm)                      | 4             |
|          | <u>.</u> _ | (cm)                      | 20            |
|          | ρ          | (cm)                      | 25            |

| ,                   |           |                | <br>              |               | ·              |                |             |         |               | ·              |                |               |           |           |  |
|---------------------|-----------|----------------|-------------------|---------------|----------------|----------------|-------------|---------|---------------|----------------|----------------|---------------|-----------|-----------|--|
|                     | Mu        | (kg.cm)        | 181,238           | 181,268       | 181,267        | 181,271        | <b>/</b>    | 181,345 | 181,345       | 181,291        | 180,792        | 180,596       | 180,574   | 180,552   |  |
|                     | Stirrup   | (mm)           | 08-25             | 08-25         | 08-20          | 08-40          | 08-20       | 08-200  | 08-200        | 08-20          | 08-40          | 08-20         | 08-25     | 08-25     |  |
|                     | Right bar | Bottom         | 3016              | 4D16          | 3D16           | 3016           | 5           | ~       |               | ****           |                | 3D16          | 8D16      | 4D16      |  |
|                     |           | Middle         | 2D16              | 2016          | $\overline{}$  | 2012           | ~           | 2012    | Z             | ٣              | £              | 4             | 2012      | 2012      |  |
| u                   |           | Тор            | 4D16              | 3D16          | 2D16           | 3016           | $\Xi$       | 3D16    | 5             | ~ .            | 3D16           | $\overline{}$ |           | 4D16      |  |
| i<br>D              | · Mid bar | Bottom         | 4D16              | 4D16          | 3D16           | 3D16           | 3D16        | 3D16    | 3D16          | 3D16           | 3D16           | 3D16          | 4D16      | 4D16      |  |
| e s                 |           | Miadle         | $\overline{\Box}$ | 2D16          | $\overline{5}$ | 20.12          |             | 2012    | ·             |                | Υ              | 2012          | ν-        | 2012      |  |
| D                   |           | Тор            | <br>3D16          | 3D16          | $\overline{C}$ | $\overline{C}$ | 5           | 2D16    | $\frac{1}{2}$ | $\overline{C}$ | $\overline{C}$ | 5             | 4D16      | 4D16      |  |
|                     | Left bar  | Bottom         | 4D16              | 3016          | τ              | $\overline{}$  | <u> </u>    | 3D16    | 1             | A              | ×-             | $\overline{}$ | 4D16      | 6D16      |  |
|                     |           | Middle         | $\overline{\Box}$ | $\overline{}$ | τ              | 2012           | <del></del> | 2012    | 4             | £              | 4              | $\overline{}$ | Y-1       | 0         |  |
|                     |           | Top            | 3D16              | 4D16          | 3D16           | 3D16           | 3D16        | 2D16    | 3D16          | 3D16           | 3D16           | 3D16          | 4D16      | 5D16      |  |
|                     | Main bar  | (mm)           | D16               | D16           | D16            | D16            | D16         | D16     | •             | D16            | D16            | 016           | D16       | D16       |  |
|                     | Moment    | (kg.cm)        | 239,819           | 239,819       | 247,916        | 151,130        | 185,744     | 353,407 | 353,407       | 185,744        | 151,130        | 247,916       | 1,466,217 | 1,466,217 |  |
| Frame Element Force | Torsion   | (kg.cm)        | 262,439           | 262,439       | 294,713        | 180,403        | 590,065     | 4,399   | 4,399         | 590,055        | 180,403        | 294,713       | 233,502   | 233,502   |  |
| rame Ele            | Shear     | (kg)           | 3,250             | 3,250         | ب              | 2,472          | 1,312       | 2,154   | 2,154         | 1,312          | 2,427          | 3,057         | 7,371     | 7,371     |  |
| 正                   | Axial     | (kg)           | 0                 | 0             | 0              | 0              | 0           | 0       | 0             | 0              | 0              | 0             | 0         | 0         |  |
|                     | Member    | 1.<br>1.<br>1. | 19                | 20            | 21             | 22             | 23          | 24      | 25            | 56             | 27             | 28            | 31        | 32        |  |

# BEAM type b

| 1.1      |             |                                                            |         |
|----------|-------------|------------------------------------------------------------|---------|
| 4        | ><br>><br>: | (kg/cm2)                                                   | 2400    |
| ij       |             | <g d=""><pre><g cm2)<="" cm2) (kg="" pre=""></g></pre></g> | 3200    |
|          | ن<br>د<br>د | (kg/cm2)                                                   | 187     |
|          | Surrup      | (cm)                                                       | 80<br>0 |
| Diameter | main bar    | (cm)                                                       | 1.6     |
|          | ii oo       | (cm)                                                       | 7       |
| <u>.</u> |             | (cm)                                                       | 30      |
|          | Ω.          | (cm)                                                       | 20      |

# BEAM type c

| 9, 1,    | 2        | (kg/cm2)   | 2400 |
|----------|----------|------------|------|
| <br><br> | >        | (kg/cm2)   | 3200 |
|          | ပ္       | (ka/cm2) ( | 187  |
|          | stirrup  | (cm)       | 0.8  |
| Diameter | main bar | (cm)       | 1.2  |
| 1 1 1 1  | Cover    | (cm)       | 4    |
|          | ے        | (cm)       | 30   |
|          | ٩        | (cm)       | 20   |

|         | ĮŪ.  | rame Fle | Frame Flement Force |         |          |      |          |        |      | S O                                   | රි     | C    |           |          | 1 1     |         |  |
|---------|------|----------|---------------------|---------|----------|------|----------|--------|------|---------------------------------------|--------|------|-----------|----------|---------|---------|--|
| Member  | Axia | Shear    | Torsion             | Moment  | Main bar |      | Left bar |        |      | Mid bar                               |        | L.   | Right bar |          | Stirrup | Mu      |  |
|         |      | (kg)     | (kg.cm)             | (kg.cm) | (mm)     | Top  | Middle   | Bottom | Тор  | Middle                                | Bottom | Top  | Middle    | Bottom   | (mm)    | (kg.cm) |  |
|         |      |          |                     |         |          | 1    |          |        |      |                                       |        | :    |           | *.<br>*. |         |         |  |
| 35      | 0    | 213      | 6.783               | 21,282  | 2012     | 2012 | - 1      | 2012   | 2012 |                                       | 2012   | 2012 | • •       | 2012     | 08-70   | 82,408  |  |
| 39      | 0    | 213      | 6.783               | 21,282  | 2012     | 2012 |          | 2012   | 2012 |                                       | 2012   | 2012 | •         | 2012     | 08-70   | 82,408  |  |
| 37      | 0    | 193      | 14 - 1 <sup>3</sup> | 15,242  | 2012     | 2012 |          | 2012   | 2012 |                                       | 2012   | 2012 |           | 2012     | 08-70   | 82,408  |  |
| 89<br>- | 0    | 246      |                     | 28,656  | 2012     | 2012 |          | 2012   | 2012 | , , , , , , , , , , , , , , , , , , , | 2012   | 2012 | •         | 2012     | 08-70   | 82,408  |  |
| 99      | 0    | 207      | 223                 | 20,401  | 2012     | 2012 |          | 2012   | 2012 | • •                                   | 2012   | 2012 |           | 2012     | 08-70   | 82,408  |  |
| 40      | 0    | 207      |                     | 20,401  | 2012     | 2012 |          | 2012   | 2012 |                                       | 2012   | 2012 | r         | 2012     | 08-70   | 82,408  |  |
| - 41    | 0    | 246      | 6,431               | 28,565  | 2012     | 2012 |          | 2012   | 2012 | •                                     | 2012   | 2012 | •         | 2012     | 08-70   | 82,408  |  |
| 42      | 0    | 130      | 6,615               |         | 2012     | 2012 |          | 2012   | 2012 | 1 1.<br>                              | 2012   | 2012 | •         | 2012     | 08-70   | 82,408  |  |
|         |      |          |                     |         |          |      |          |        |      |                                       |        |      |           |          |         |         |  |

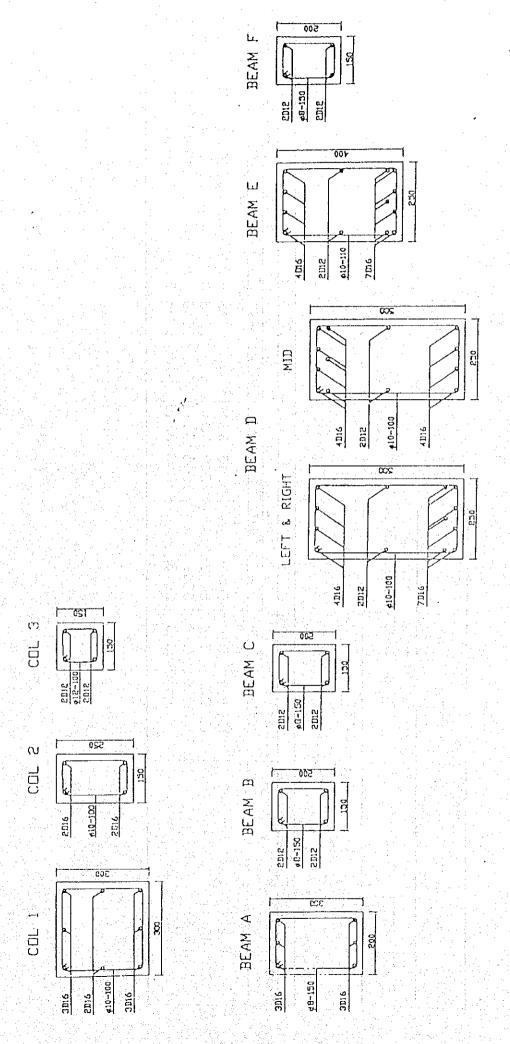
# COLUMN type I

## Prototype

| b<br>(cm) | h<br>(cm) | Cover<br>(cm) | Diameter<br>Main Bar<br>(cm) | Diameter<br>Stirrup<br>(cm) | fc<br>(kg/cm2) | fy<br>(kg/cm2) | fv<br>(kg/cm2) |
|-----------|-----------|---------------|------------------------------|-----------------------------|----------------|----------------|----------------|
| 30        | 30        | 4             | 1.6                          | 0.8                         | 187            | 3,200          | 2,400          |

|                                           | Frame E                                                     | lement force                                                                 | e                                                                                 | Y se                                                         | D                                                                  | e s                                                                  | ig n                                                                                 |                                                                                      |
|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Member                                    | Axial<br>(kg)                                               | Moment-2<br>(kg.cm)                                                          | Moment-3<br>(kg.cm)                                                               | Main Bar<br>(mm)                                             | Stirrup<br>(mm)                                                    | Pu<br>(kg)                                                           | Max<br>(kg.cm)                                                                       | May<br>(kg.cm)                                                                       |
| 1<br>3<br>8<br>10<br>11<br>13<br>16<br>18 | 9,574<br>9,574<br>6,975<br>6,975<br>5,514<br>5,560<br>5,560 | 90,126<br>90,126<br>93,961<br>93,961<br>69,114<br>69,114<br>87,382<br>87,382 | 111,549<br>111,549<br>131,235<br>32,808<br>90,995<br>90,995<br>105,411<br>105,411 | 8D16<br>8D16<br>8D16<br>8D16<br>8D16<br>8D16<br>8D16<br>8D16 | 08-100<br>08-100<br>08-100<br>08-100<br>08-100<br>08-100<br>08-100 | 9,573<br>9,573<br>6,975<br>6,975<br>5,514<br>5,514<br>5,560<br>5,560 | 461,621<br>461,621<br>453,477<br>453,477<br>448,579<br>448,579<br>448,735<br>448,735 | 461,621<br>461,621<br>453,477<br>453,477<br>448,579<br>448,579<br>448,735<br>448,735 |

# COLUMN type 2


| b<br>(cm) | h<br>(cm) | Cover<br>(cm) | Diameler<br>Main Bar<br>(cm) | Diameter<br>Stirrup<br>(cm) | fc<br>(kg/cm2) | fy<br>(kg/cm2) | fv<br>(kg/cm2) |
|-----------|-----------|---------------|------------------------------|-----------------------------|----------------|----------------|----------------|
| 15        | 25        | 4             | 1.6                          | 0.8                         | 187            | 3,200          | 2,400          |

| F        | rame l | Element for | e.       |          | D       | e s   | ig n    |         |
|----------|--------|-------------|----------|----------|---------|-------|---------|---------|
| Member A | Axial  | Moment-2    | Moment-3 | Main Bar | Stirrup | Pu    | Max     | May     |
|          | (kg)   | (kg.cm)     | (kg.cm)  | (mm)     | (mm)    | (kg)  | (kg.cm) | (kg.cm) |
| 2 9      | 9,574  | 90,126      | 111,549  | 8D16     | o8-100  | 9,573 | 461,621 | 461,621 |
|          | 9,574  | 90,126      | 111,549  | 8D16     | o8-100  | 9,573 | 461,621 | 461,621 |

# COLUMN type 3

| b<br>(cm) | h<br>(cm) | Cover<br>(cm) | Diameter<br>Main Bar<br>(cm) | Diameter<br>Stirrup<br>(cm) | fc<br>(kg/cm2) | fy<br>(kg/cm2) | fv<br>(kg/cm2) |
|-----------|-----------|---------------|------------------------------|-----------------------------|----------------|----------------|----------------|
| .15       | 15        | 4             | 1.6                          | 0.8                         | 187            | 3,200          | 2,400          |

|        | Frame ( | Element ford | :e       |          | D       | e s    | i g n   |         |
|--------|---------|--------------|----------|----------|---------|--------|---------|---------|
| Member | Axial   | Moment-2     | Moment-3 | Main Bar | Stirrup | Pu     | Max     | May     |
|        | (kg)    | (kg.cm)      | (kg,cm)  | (mm)     | (mm)    | (kg)   | (kg.cm) | (kg.cm) |
|        |         |              |          |          |         |        |         |         |
| 4      | 13,863  | 4,614        | 78,500   | 8D16     | o8-50   | 30,675 | 78,569  | 78,569  |
| -5     | 13,863  | 4,614        | 78,500   | 8D16     | 08-50   | 30,675 | 78,569  | 78,569  |
| 6      | 6,981   | 8,207        | 46,391   | 8D16     | o8-50   | 32,405 | 46,407  | 46,407  |
| 7      | 6,981   | 8,207        | 46,391   | 8D16     | 08-50   | 32,405 | 46,407  | 46,407  |
| 9      | 8,196   | 4,804        | 0        | 8D16     | 08-50   | 43,081 | 120,920 | 120,920 |
| 14     | 1,635   | 6,710        | 65,399   | 8D16     | 08-50   | 43,081 | 78,578  | 78,578  |
| 15     | 1,635   | 6,710        | 65,399   | 8D16     | o8-50   | 1,635  | 78,578  | 78,578  |
| 17     | 1,660   | 399,504      | 0        | 8D16     | 08-50   | 1,660  | 78,740  | 78,740  |
|        |         |              |          |          |         |        |         |         |



(

4 - 7 - 41

# BEAM type d

|          | se<br>Algo |                            |                   |
|----------|------------|----------------------------|-------------------|
|          | Λ1         | (kg/cm2) (kg/cm2) (kg/cm2) | 2400              |
|          | <u>^</u>   | (kg/cm2)                   | 3200              |
| •        | ပ္         | (kg/cm2)                   | 0.8 187 3200 2400 |
|          | stirrup    | (cm)                       | 0.8               |
| Diameter | main bar   | (cm)                       | 1.6               |
|          | Cover      | (cm)                       | 4                 |
|          | ᅩ          | cm) (cm)                   | 100 25            |
|          | Δ          | (cmo)                      | 100               |

|        |                   | rame Fle    | Frame Flement Force |                                         |          |       |          |                       |             | e s           | Design     | ב    |           |        |               |         |   |
|--------|-------------------|-------------|---------------------|-----------------------------------------|----------|-------|----------|-----------------------|-------------|---------------|------------|------|-----------|--------|---------------|---------|---|
| Member | lember Avial      | Shear       | Torsion             | Moment                                  | Main bar |       | Left bar |                       |             | Mid bar       |            |      | Right bar |        | Stirrup       | Mu      |   |
|        |                   |             |                     | (ka.cm)                                 | (mm)     | Top   | Middle   | Widdle   Bottom   Top |             | Middle Bottom |            | Top  | Middle    | Bottom | (mm)          | (kg.cm) |   |
|        |                   |             |                     |                                         |          |       | . :      |                       | :           | -             |            |      |           | •      |               |         |   |
| ,      | , ,               | 0 0 11      |                     | 7 N N N N N N N N N N N N N N N N N N N | <u> </u> | מירה  |          | 2018 3018             | 3018        | 1             | 5016 5016  | 5018 | ı         | 30.16  | 3016 o8-250   | 534,436 |   |
| -      | 4773              | 4223 3,377  |                     | 800,001                                 |          | 2     | ·        | )<br>)                | )           |               | )          | )    | _         | )      | )             |         | _ |
| Ç      | 4641              | 1641 1730   | 1                   | 182.226                                 | 016      | 5D16  | t        | 3016 3016             | 3D16        |               | 5016  5016 | 5016 |           | 3016   | 3D16   08-250 | 533,845 |   |
| 1 (    | - 1<br>- 0<br>- 0 | ) ()<br>) L |                     | 440                                     |          | מילרת | 3        | 2018 2018             | 2018        |               | RD18 RD18  | 501R | 1         | 3018   | 2016 JOS-250  | 535 618 |   |
| ກ      | 7227              | 0C0         | 1                   | 60.00                                   |          | •     |          | 2                     | )<br>)<br>) | 1             | )          | )    |           | )      | ) !           | 0000    |   |
| 4      | 926               | 3.387       |                     | 90,055                                  | D16      | 5016  |          | 3016 3016             | 3016        |               | 5D16  5D16 | 5016 | i         | 3016   | 3D16  08-250  | 539,468 |   |
|        |                   |             |                     |                                         |          |       |          |                       |             |               |            |      |           |        |               |         |   |

#### 7. DESIGN OF FOOTING

All of footing design are represented by support reaction of joint no.163 or column no.6 (the biggest) for loading Combination 1, the axial force :

N = 9.916 E3 kg Mx = 2.092 E4 kg Mz = 4.997 E4 kg Shear x = 428 kg Shear z = 303 kg

- Soil stress beneath footing :

$$\sigma = \underbrace{N \pm Mx \pm Mz}_{A}$$

$$\sigma \max = 9.916 \times 10^{3} + 2.0923 \times 10^{4} + 4.997 \times 10^{4}$$

$$= 0.44 + 0.04 + 0.09$$

$$= 0.57 \text{ kg/cm}^{2} \times \sigma \text{ all} = 1.0 \text{ kg/cm}^{2} \text{ (ok)}$$

$$\sigma \min = 0.44 - 0.04 - 0.09$$
  
= 0.31 kg/cm<sup>2</sup>

When earthquake occur (loading Combination 3), Support reaction of joint 3 or column no.3 is:

then soil stress beneth footing is

$$\sigma \max = 9.533 \times 10^{4} + 6.3578 \times 10^{4} + \frac{19.1868 \times 10^{5}}{(150)^{2}} + \frac{1/6 \times 150 \times 150^{2}}{1/6 \times 150 \times 150^{2}} = 0.42 + 0.11 + 0.34$$

$$= 0.87 \text{ kg/cm}^{2} < 1.5 \times \sigma_{all} = 1.5 \text{ kg/cm}^{2} \text{ (ok)}$$

$$\sigma \min = 0.42 - 0.11 - 0.34$$
  
= -0.03 kg/cm<sup>2</sup>

note:

 All of footing concrete reinforcement is calculated by "n" method ( Indonesian Code )

Mz = 
$$8.177$$
 E4 kgcm  
Concrete : fc =  $225 \text{ kg/cm}^2$  —  $\sigma' b = 130 \text{ kg/cm}^2$   
Steel Bar : fy =  $3200 \text{ kg/cm}^2$  —  $\sigma' a = 2600 \text{ kg/cm}^2$ 

$$ns = 14$$

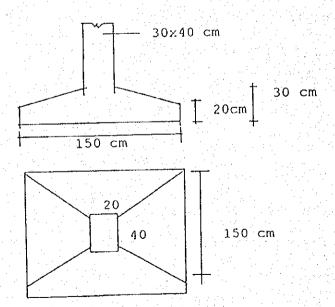
$$\phi_0 = \frac{\sigma_b}{\sigma_b n} = \frac{2,600}{130 \times 14} = 1.43$$

Footing slab thich ht = 25 cm; b = 150 cmCocrete cover d = 5 cmh = ht - d

$$Ca = \frac{h}{\sqrt{\frac{nM}{b\sigma_a}}} = \frac{20}{\sqrt{\frac{14x49,970}{150x2600}}} = 14.93$$

for 
$$-\delta = 1$$

$$\phi = 8.091 > \phi_0 = 1.43$$
 (ok)


$$\phi' = 89$$
 ;  $100n\omega = 0.69$ 

$$A = \omega bh$$
  
=  $\frac{0.69 \times 150 \times 20}{100} = 20,7 \text{ cm}^2$ 

Astell = D16 - 15 cm(two way) 
$$\approx 11 \times 2.01 = 22.12 \text{ cm}^2$$
 (ok)

$$Mx = 2.0993E4 \text{ kgcm}^{\circ}$$

Astell = D16 - 15 cm can be adobted



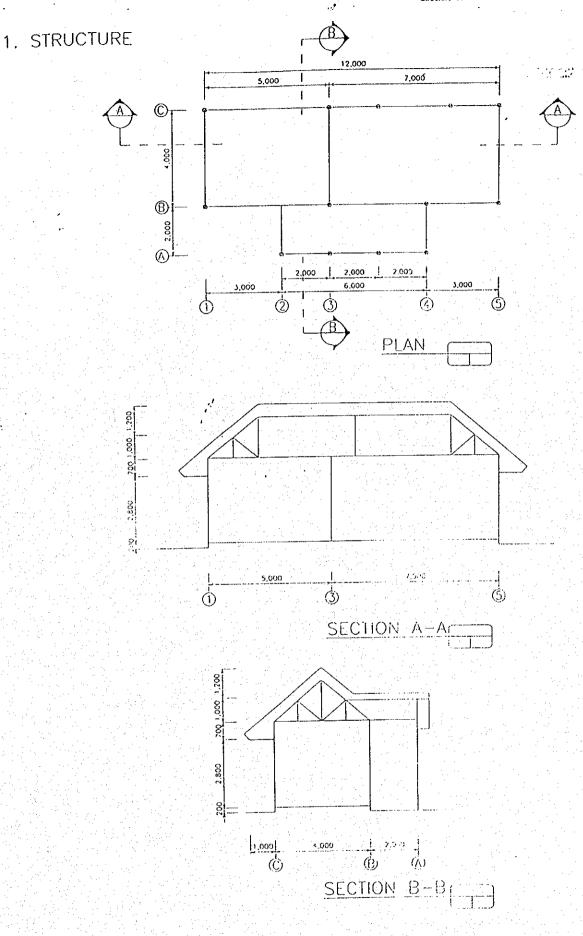
Support reaction of joint no. 2, 4, 6, 7, 9 and 11 due to applied loading column no.2, 4, 5, 6, 7 and 9, each supported by their continous wet masonry foundation with 6 m length.

For example: column no.2 at joint no. 2 (loading Combination 1)

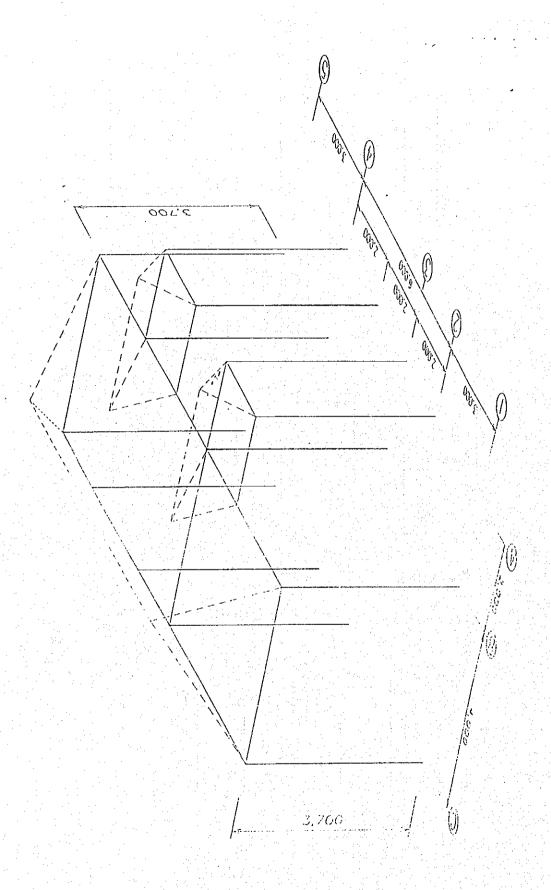
N = 1.7025 E4 kg Mx = 4.3720 E4 kgcm

Mz = 1.09209 E5 kgcmShear x = 387.5 kg

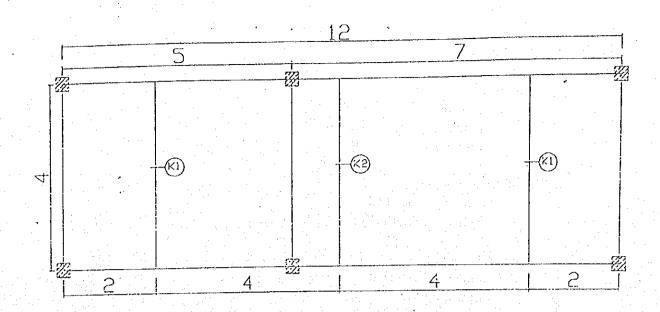
Shear z = 0

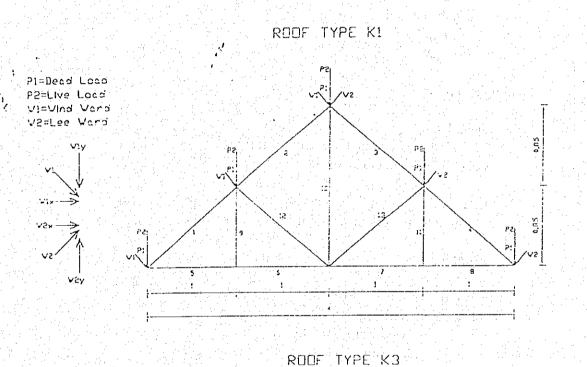

brickwall unit weight = 875 kg/m' (3m height)

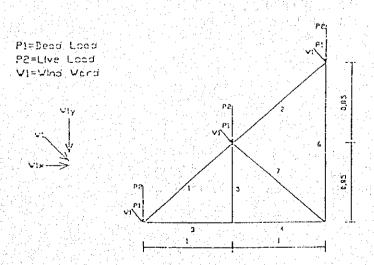
#### - Soil stress beneth foundation


 $\sigma \max = \frac{1.7025 \times 10^4 + 4.3720 \times 10^4 + 1.09209 \times 10^5}{100 \times (750 - 750)} + \frac{1.6 \times 600 \times 100^2}{1/6 \times 100 \times 600^2} + \frac{875}{100 \times 100}$  = 0.28 + 0.04 + 0.02  $= 0.34 \text{ kg/cm}^2 < \sigma \text{ all} = 1.0 \text{ kg/cm}^2 \text{ (ok)}$ 

# 4.7.2. ELECTRICAL BULDING STRUCTURE CALCULATION


- 1 STRUCTURE
- 2 DESIGN CONDITION
- 3 LOADING CONDITION
- 4 DESIGN OF PURLIN
- 5 DESIGN OF ROOF TRUSS





ELECTRICAL BUILDING



ISOMETRY
ELECTRICAL BUILDING
SIMPNON WFIR MANAGEMENT COMPLEX







#### 2. Design Condition

a. Dimensions:

- length.

: 4.00 m

- height

: 1.70 m

- roof slope

: 40°

- .b. Roof truss member
  - Double angle steel
  - Tensile strength (Fy) =  $2.400 \text{ kg/cm}^2$
- Structural model:
  - Plane (xy axis) truss
  - Linear elastic
- Analysis method:
  - Static

#### 3. Loading condition

- a. Dead load
  - Roof cover (ceramic tile + timber rafter)

 $= 70 \text{ kg/m}^2$ 

- Ceilinginber cement)

'= 10 kg/m²

Live load

Weight of workers as point load = = 100 kg

- Wind load
  - Wind pressure = 40 kg/m<sup>2</sup>
  - Pressure koefficient (f)

wind ward = 0.5 kg/m<sup>2</sup>

. lee ward \_\_ - 0.4

 $W1 = 0.5 \times 40 \text{ kg/m}^2 = 20 \text{ kg/m}^2$ 

 $W2 = 0.4 \times 40 \text{ kg/m}^2 = 16 \text{ kg/m}^2$ 

#### 4. Design of Purlin

A. Roof truss type K-1

- Purlin distance (c/c)

= 1.31 m

- Purlin span

= 4.00 m

- Purlin self weight say,

= 15.00 kg/m

q: = 1.31 x 80 kg/m<sup>2</sup> 
$$\approx$$
 104.8 kg/m'  
q: (self weight)  $\approx$  15 kg/m'  
Q = 119.8 kg/m'  
Q<sub>1</sub> = Q<sub>2</sub> = Q Cos 40°  
= 119.8 Cos 40°  
 $\approx$  91.77 kg/m'

- Live Load  $Px = Py = P \cos \alpha = 100 \cos 40^{\circ} \approx 76.6 \text{ kg}$
- Bending moment

$$MX = 1/8 \times Q_1 \times L^2 \div 1/4 \times P_1 \times L$$

$$MX = 1/8 \times 119.8 \times 4^2 + 1/4 \times 76.6 \times 4 = 286.2 \text{ kgm}$$

$$My = Mx = 286.2 \text{ kgm} = 28,620 \text{ cm}$$

- Try Purlin of Lip Channel (in front to front arrangement ) type :

$$150 \times 130 \times 20 \times 3.2$$
 $Ix = 664 \text{cm}^4$ ;  $Wx = 88.6 \text{ cm}^3$ 
 $Iy = 476 \text{ cm}^4$ ;  $Wy = 73.2 \text{ cm}^3$ 

#### Stresses

$$\sigma = \sigma \times \div \sigma y$$
=  $\frac{M \times + \frac{M y}{W \times W y}}{W \times W y}$ 
=  $\frac{28,620}{88.6} \div \frac{28,620}{73.2} = 323.02 \div 390.98$ 
=  $714.0 \text{ kg} < \sigma_{all} = 1,400 \text{ kg/cm}^2 \text{ (OK)}$ 

 $= 0.22 \pm 0.07 = 0.29$  cm

Deflection
$$fx = 5 \times C_1 \times L^3 + 1 \text{ PL}^3$$

$$384 \quad EI_x \quad 48 \text{ EI}_x$$

$$= \frac{5}{384} \times 0.9177 \times \frac{400^4}{2.1 \times 10^5 \times 664} + \frac{1}{48} \frac{76.6 \times 400^3}{2.1 \times 10^5 \times 664}$$

$$f = (0.29^2 \div 0.29^2)^{1/2} = 0.41 \text{ cm}$$
  
 $f = 0.41 \text{ cm} < f_{3!} := \frac{1}{360} = \frac{400}{360} = 1.11 \text{ cm} \text{ (OK)}$ 

### Design of Roof Truss

a. Dead load  

$$- p_1 = 4.00 \times (104.8 + 15) = 479.2 \text{ kg}$$

b. Wind load

Wind fold
$$- W_1 = 4.00 \times 1.31 \times 20 = 104.8 \text{ kg}$$

$$- W_2 = 4.00 \times 1.31 \times 16 = -83.84 \text{ kg}$$

$$W_{1X} = W_{1Y} = 104.8 \text{ Cos } 40^{\circ} = 80.28 \text{ kg}$$
  
 $W_{2X} = W_{2Y} = -83.84 \text{ Cos } 40^{\circ} = -64.23 \text{ kg}$ 

c. Live load

$$-P_2 = 100 \text{ kg}$$

B. Roof Truss Type K-2

- Purlin distance 
$$(c/c) = 1.31 \text{ m}$$

$$= 4.00 \text{ m}$$

$$= 2.500 \text{ kg/s}$$

$$g_1 = 1.31 \times 80 \text{ kg/m}^2$$
  $\approx 104.8 \text{ kg/m}'$   
 $g_2 \text{ (self weight)}$   $= 15 \text{ kg/m}'$   
 $Q = 119.8 \text{ kg/m}'$ 

Q: = 
$$\Omega_2$$
 = C Cos  $40^\circ$   
= 119.8 Cos  $40^\circ$   
 $\approx 91.77 \text{ ig/m}'$ 

- Live Load

$$P_X = P_Y = P \cos \alpha = 100 \cos 40^\circ \approx 76.6 \text{ kg}$$

Bending moment

$$MX = 1/8 \times Q_1 \times L^2 + 1/4 \times P_1 \times L$$

$$Mx = 1/8 \times 119.8 \times 4^2 \div 1/4 \times 76.6 \times 4 = 286.2 \text{ kgm}$$

$$My = Mx = 286.2 \text{ kgm} = 28,620 \text{ cm}$$

- Try Purlin of Lip Channel (in front to front arrangement ) type :

$$150 \times 130 \times 20 \times 3.2$$
 $1x = 664 \text{cm}^4$ ;  $Wx = 88.6 \text{ cm}^3$ 
 $1y = 476 \text{ cm}^4$ ;  $Wy = 73.2 \text{ cm}^3$ 

- Stresses

$$\sigma = \sigma x + \sigma y$$

$$= \frac{Mx + \frac{My}{Wx}}{Wx}$$

$$= \frac{28,620}{88.6} + \frac{28,620}{73.2} = 323.02 + 390.98$$

$$= 714.0 \text{ kg} < \sigma_{all} = 1,400 \text{ kg/cm}^2 \text{ (OK)}$$

- Deflection 
$$fx = 5 \times Q_1 \times L^4 + 1 \text{ PL}^3$$
 $384 \times EI_x = 48 \text{ EI}_x$ 

$$= \frac{5}{384} \times 0.9177 \times \frac{400^4}{2.1 \times 10^5 \times 664} + \frac{1}{48 \cdot 2.1 \times 10^5 \times 664}$$

$$= 0.22 + 0.07 = 0.29 \text{ cm}$$

$$f = (0.29^2 + 0.29^2)^{1/2} = 0.41 \text{ cm}$$

$$f = 0.41 \text{ cm} < f_{411} = \frac{1}{360} = \frac{400}{360} = 1.11 \text{ cm} \text{ (OK)}$$

5 Design of Roof Truss

a. Lead 10ad 
$$= 1.00 \times (104.8 + 15) = 479.2 \text{ kg}$$

$$- y_1 = 4.00 \times 1.31 \times 20 = 104.8 \text{ kg}$$
 $y_2 = 4.00 \times 1.31 \times 16 = -83.84 \text{ kg}$ 

$$W_{12} = W_{12} = 104.8 \text{ Cos } 40 = 30.25 \text{ kg}$$
  
 $W_{12} = W_{12} = -83.84 \text{ Cos } 40 = -64.23 \text{ kg}$ 

4 - 7 - 54

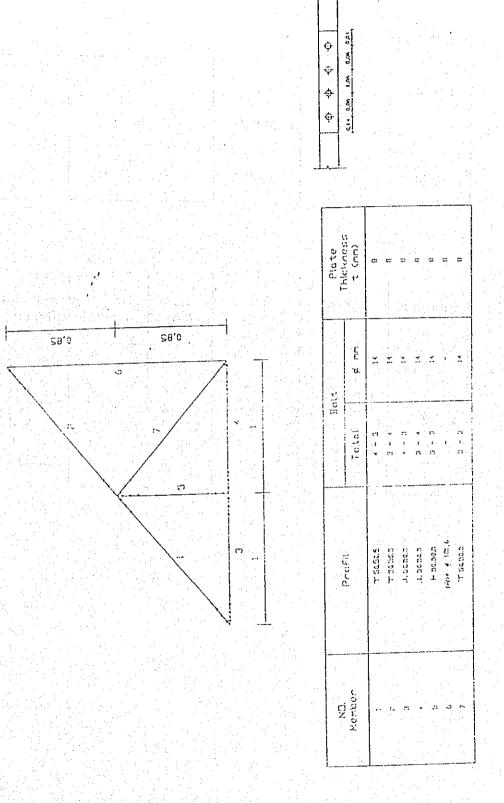
# ROOF K-1 ELECTRICAL BUILDING SIMONGAN

| Profile Plate<br>Thickness<br>(cm) (l |     | Fy<br>(kg/cm2) | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |  |  |
|---------------------------------------|-----|----------------|----------------|-------------------|--|--|
| L 50.50.5                             | 0.8 | 2,400          | 3,700          | 1.4               |  |  |

| Member                                                            | Profile                                                                                                                                     | Axial<br>(kg)                                                                 | Shear<br>(kg)                                  | Torsion<br>(kg.cm)                        | Moment<br>(kg.cm)                                                  | n Boll                                                                                      | d Bolt<br>(mm)                                                 |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>3<br>9<br>10<br>11<br>12<br>13 | L 50.50.5<br>L 50.50.5 | 567<br>567<br>721<br>658<br>395<br>363<br>422<br>795<br>8<br>19<br>182<br>115 | 4<br>4<br>4<br>4<br>4<br>4<br>0<br>4<br>0<br>4 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 94<br>94<br>94<br>124<br>124<br>124<br>124<br>0<br>124<br>0<br>124 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 |

- Checking of members Strength of roof steel Truss Type K-1 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T8 (loading Combination 2) F = 795 kgForce


Try : Double angle steel of 50.50.5 Cross section area  $A = 9.6 \text{ cm}^2$ 

 $\sigma_{\text{ell}} = 0.6 \text{xFy}$  $= 0.6x2,400 = 1,440 \text{ kg/cm}^2$ 

Stress

 $\sigma = \frac{F}{A} = \frac{795}{9.6} = 82.81 \text{ kg/cm}^2 < \sigma_{\text{sil}} = 1,440 \text{ kg/cm}^2 \text{ (OK)}$ 

Hence double angle steel of 50.50.5 can be used as the members of roof truss type  $K\,-\,1$ 



# Roof K-2 ELECTRICAL BUILDING SIMONGAN

| Profile   | Profile Plate Thickness (cm) (kg |       | Fu<br>(kg/cm2) | dia. Bolt<br>(cm) |  |  |
|-----------|----------------------------------|-------|----------------|-------------------|--|--|
| L 50.50.5 | 0.8                              | 2,400 | 3,700          | 1.4               |  |  |

| Member                     | Profile                                                                    | Axial<br>(kg)                   | Shear<br>(kg)              | Torsion<br>(kg.cm)    | Moment<br>(kg.cm)                  | n Bolt                     | d Bolt<br>(mm)             |
|----------------------------|----------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------------|------------------------------------|----------------------------|----------------------------|
| 1<br>2<br>3<br>4<br>5<br>6 | L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5<br>L 50.50.5 | 38<br>38<br>36<br>14<br>8<br>19 | 4<br>4<br>4<br>4<br>0<br>4 | 0<br>0<br>0<br>0<br>0 | 94<br>94<br>124<br>124<br>0<br>124 | 2<br>2<br>2<br>2<br>2<br>2 | 14<br>14<br>14<br>14<br>14 |

- Checking of members Strength of roof steel Truss Type K-3 base on the axial force:
  - a. Due to Tensile force

Maximum force on member T1 (loading Combination 2) Force F = 38 kg

Try : Double angle steel of 50.50.5 Cross section area A = 9.6 cm<sup>2</sup>

 $\sigma_{\text{all}} = 0.6 \text{xFy}$ = 0.6x2,400 = 1,440 kg/cm<sup>2</sup>

Stress  $\sigma = \frac{F}{A} = \frac{38}{9.6} = 3.96 \text{ kg/cm}^2 < \sigma_{\text{si:}} = 1.440 \text{ kg/cm}^2 \text{ (OK)}$ 

Hence double angle steel of 50.50.5 can be used as the members of roof truss type K-2