4.5.4 Left Bank Intake Gate

1. DESIGN ITEM

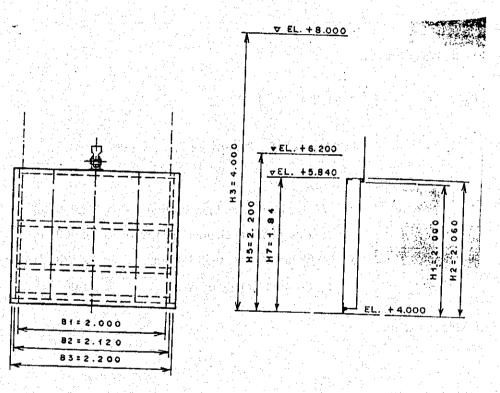
1.1 Design Condition

-	Type of Gate	Market States	Steel R	oller Gate
· -	Number of Gate		2	Gates
-	Clear span		2.000	m
. 	Height of Gate		2.000	m
-	Design Water Dept	h		
		Upstream	4.000	m
		Downstream	0.000	m
-	Water Depth for O	peration		
	Lifting Time			
		Upstream	2.200	m
		Downstream	0.000	m
	• Lowering time			
. 17 1		Upstream	1.840	m
		Downstream	0.000	m
· •	Gate Floor Level	EL	4,000	m
_	Method for Waterti			ont 4 faces watertight
_	Hoisting System			ndle rod
÷.	Hoisting Speed).3 m/min
. ·	Total Head		2.500	m
-	Operation Method			nanual operation and
)·				manual operation
_	Power		Electric	
	Sources of Power		a di di sa Mar	50 Hz.

1.2 Design Condition

- General Item

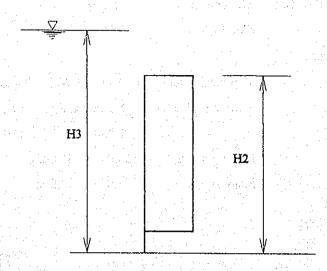
•	Horizontal Seismic Intensity 0.120
•	Deffelence in Temperature
•	Wind Load 150 kgf/m ²
•	Deformation of Main Girder 1/800


Skin Plate (Side fac	ing water)	1.00	mm	
Other Members (Sie	1.00	mm		
Major Material of Gate	Main beam	SS400		
	Skin Plate	SS400	٠.	
Allowable Stress				
Steel	Technical Manual f	or Dam and	d Weir C	hapter 2, 2-0-7
	Correction Factor	Normal	Case	Seismic Case
		1.000		1.500
Concrete	Bearing stress	55.0	kgf/cm	2

Share stress

kgf/cm²

4.0


2. BASIC DIMENSIONS

186 A.		报告书 打工	w i
B1	: Clear Span	2.000	m
B2	: Length of Watertight Area	2.120	щ
В3	: Span Between Rollers	2.200	m
HI	: Height of Gate	2.000	m
H2	: Height of Watertight Area	2.060	m
НЗ	: Design Water Depth Upstream	4.000	m
H4	: Design Water Depth Downstream	0.000	m
H5	: Water Depth for Operation (Upstream)	2.200	m
H7	: Water Depth for Operation (Downstream)	1.840	m
1			

3. ACTING LOADS

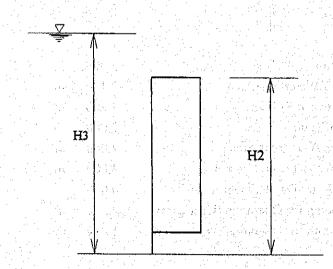
3.1 Loads in Normal Time

(1) Static Water Pressure

$$P_{W} = \frac{1}{2} \cdot \{H3^{2} - (H3 - H2)^{2}\} \cdot B2 \cdot \gamma$$

$$= \frac{1}{2} \times \{4.000^{2} - (4.000 - 2.060)^{2}\} \times 2.120 \times 1.00$$

$$= 12.971 \quad \text{tf}$$


Where, H2: Height of Watertight Portion 2.060 m

H3: Design Water Depth (Upstream) 4.000 m

B2: Width of Watertight Portion 2.120 m

γ : Specific Gravity of Water 1.00

3.2 Loads in Seismic Time

(1) Wave Height in Seismic Time (hwe)

hwe =
$$\frac{\mathbf{k} \cdot \mathbf{\tau}}{2 \cdot \mathbf{\pi}} \cdot (\mathbf{g} \cdot \text{Hee})^{0.5}$$

Where,

k : Design seismic intensity 0.12

t : Seismic cycle 1.0 sec

g : Acceleration of gravity 9.8 m/sec²

Hee: Distance between riverbed and water surface 3.700 m

$$= \frac{0.12 \times 1.0}{2 \cdot \pi} \times (9.8 \times 3.700)^{0.5}$$

= 0.115 tf

(2) Static Water Pressure in Seismic Time (Peg)

Peg =
$$\frac{1}{2} \cdot \{ (H3 + hwe)^2 - (H3 + hwe - H2)^2 \cdot B2 \}$$

= $\frac{1}{2} \times (4.000 + 0.115)^2 - (4.000 + 0.115 - 2.060)^2 \} \times 2.120$
= 13.473 tf

(3) Dynamic Water Pressure in Seismic Time (Pdo)

Pdo =
$$\frac{7}{12} \cdot k \cdot \text{Hee}^{05} \cdot (\text{H3}^{1.5} - h^{1.5}) \cdot \text{B2}$$

Where,

k : Seismic intensity 0.12

Hee: Distance between riverbed and

water surface 3.700 m

H3: Design Water Depth 4.000 m

h: H3-H2 1.940 m

32: Width Watertight portion 2.120 m

=
$$\frac{7}{12} \times 0.12 \times 3.700^{0.5} \times (4.000^{1.5} - 1.940^{1.5}) \times 2.120$$

= 1.512 tf

(4) Force of Inertia in Seismic Time (Wge)

$$Wge = k Wg$$

Where,

Wg: Self weight of gate

1.300 tf

$$= 0.12 \times 1.3$$

$$= 0.156$$

(5) Total Force in Seismic Time (Pe)

(6) Comparison between Pe and Pa

Allowable stress in seismic time is 1.5 times of that of normal time. Therefor, Pe which is divided by 1.5, is used for comparison as follow:

$$\frac{\text{Pe}}{1.5} = \frac{18.1795.141}{1.5} = 10.094 < \text{Pw} = 12.971$$

Therefor, the design of gate is done using loads of normal time.

4. LOADS FOR GATE OPERATION

4.1 Lifting Time

Pu =
$$\frac{1}{2} \cdot \{H5^2 - (H5 - H2)^2\} \cdot B2 \cdot \gamma$$

= $\frac{1}{2} \times \{2.200^2 - (2.200 - 2.060)^2\} \times 2.120 \times 1.00 = 5.110 \text{ tf}$

Where,

H2: Height of watertight portion 2.060 m

H5: Water depth for Operation (Upstream) 2.200 m

B2: Width of watertight portion 2.120 m

γ : Specific gravity of water 1.00

4.2 Lowering Time

Pd =
$$\frac{1}{2} \cdot H7^2 \cdot B2 \cdot \gamma$$

= $\frac{1}{2} \times 1.840^2 \times 2.120 \times 1.00 = 3.589 \text{ tf}$

Where,

H7: Water depth for Operation (Upstream) 1.840 m

5. MAIN BEAM

5.1. Mean Beam and Allotted Load

(1) Arrangement of Beam

No Distance L (m)	Water Pressure p(tf/m²)
1 $L(1) = 0.750$	p(1) = 1.940
L(2) = 0.630	p(2) = 2.690
3 $L(3) = 0.600$	p(3) = 3.320
4 L(4) = 0.080	p(4) = 3.920
At the gate floor	p(5) = 4.000

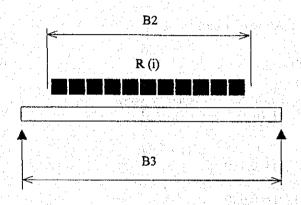
(2) Allotted Load

$$R(1) = p(B) = \{p(2) + 2 \cdot p(1)\} \cdot L(1)/6 = 0.821$$

$$R(1) = 0.821 \text{ tf/m}$$

$$R(2) = p(U) = \{p(1) + 2 \cdot p(2)\} \cdot L(1)/6 = 0.915$$

$$p(B) = \{p(3) + 2 \cdot p(2)\} \cdot L(2)/6 = 0.914$$


$$R(2) = 1.829 \text{ tf/m}$$

$$R(3) = p(U) = \{p(2) + 2 \cdot p(3)\} \cdot L(2)/6 = 0.980$$

$$p(B) = L1 \cdot [3 \cdot L(3) \cdot \{p(3) + p(5)\} - L1 \cdot \{p(3) + 2 \cdot p(5)\}] / 6/L(3) = 1.035$$

$$R(3) = 2.015 \text{ tf/m}$$

5.2. Sectional Force of Main Beam

Where,

B2 : Distance of watertight rubbers

2.120 m

B3: Span length

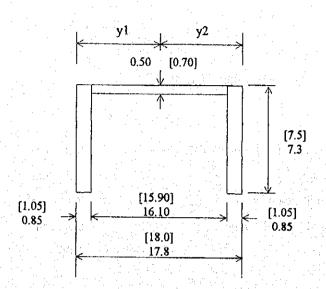
2.200 m

R(i): Unit load

tf/m

(1) Bending Moment

$$M(i) = \frac{1}{8} \cdot R(i) \cdot B2 \cdot (2 \cdot B3 - B2) \text{ tf-m}$$


(2) Shearing Force

$$S(i) = \frac{1}{2} \cdot R(i) \cdot B2 \text{ tf}$$

No	R (i) (tf/m)	M(i) (tf/m)	S(i) (tf)
1	0.821	0.496	0.870
2	1.829	1.105	1.939
3	2.015	1.217	2.136
4	1.454	0.879	1.541

5.3. Stress of Main Beam

Moment of Area
$$I = 1.066 \text{ cm}^4$$

Section Modulus

$$Zt = 120 \text{ cm}^3$$

$$Zc = 120 \text{ cm}^3$$

Sectional area of web

$$Aw = 8.1 \text{ cm}^2$$

Sectional area of flange

$$Ac = 6.2 cm^2$$

Member cm	A cm²	y em	A · y cm³	A·y²	I o cm ⁴
t 0.85 x 7.3	6.2	0.43	2.67	1.15	0.37
t 0.50 x 16.1	8.1	8.90	72.09	641.60	173.89
t 0.85 x 7.3	6.2	17.38	107.76	1,872.80	0.37
Total	20.5		182.52	2,69	0.18

y1 =
$$\frac{\Sigma(A \cdot y)}{A} = \frac{182.52}{20.5} = 8.90 \text{ cm}$$

$$y2 = 17.8 - 8.90 = 8.90 \text{ cm}$$

Moment of area (I)

I =
$$\Sigma (A \cdot y^2 + I \circ) - \Sigma A \cdot yI^2$$

= 2,690.18 - 20.5 x 8.90² = 1,066 cm⁴

Section Modulus (Z)

$$Zt = \frac{I}{y2} = \frac{1,066}{8.90} = 120 \text{ cm}^3$$

$$Zc = \frac{I}{yl} = \frac{1,066}{8.90} = 120 \text{ cm}^3$$

(b) Bearing Stress

$$\sigma c = \frac{M(i)}{Zc}$$

$$\frac{9}{K} < \frac{L}{b} \le 30 \qquad \sigma \text{ ac} = 1,200 - 11 \cdot \left(K \cdot \frac{L}{b} - 9\right)$$

$$\frac{9}{2.0} < \frac{70.0}{7.3} \le 30 \qquad : \sigma \text{ ac} = 1,200 - 11 \cdot \left(2.0 \cdot \frac{70.0}{7.3} - 9\right)$$

$$4.5 < 9.6 \le 30 \qquad = 1,088 \text{ kgf/cm}^2$$

Where,

Distance between fixed points of flange 70.0 cm Width of flange 7.3 cm Total sectional area of web 8.1 cm² : Total sectional area of flange 6.2 cm² : Correction factor 1.00 $K = \sqrt{3 + \frac{1}{2} \cdot \frac{Aw}{Ac}} \qquad \text{In case } \frac{Aw}{Ac} < 2 \rightarrow K = 2$ Where, $\frac{Aw}{Ac} = \frac{8.1}{6.2} = 1.3$

Allowable bearing stress

$$\sigma$$
 ac = fa · σ ac = 1.00 x 1,088 = 1,088 kgf/cm²

Beam No.	M (i) (tf-m)	σς (kgf/cm²)	Allowable Stress (kgf/cm²)
1	0.496	4.13	1,088
2	1.105	921	1,088
3	1.217	1,014	1,088
4	0.879	733	1,088

(c) Shearing Stress

$$\tau = \frac{S(i)}{Aw}$$

Allowable shearing stress

$$\tau a = fa \cdot \tau a = 1.00 \times 700 = 700 \text{ kgf/cm}^2$$

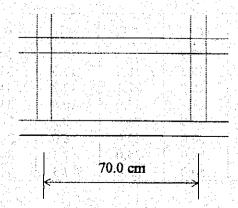
No	S (i) (tf	τ (kgf/cm²)	Allowable Stress (kgf/cm²)
1	0.870	107	700
2	1,939	239	700
3	2.136	264	700
4	1.541	190	700

5.4. Deformation Rate of Main Beam

Deformation

$$\delta (i) = \frac{R(i) \cdot B2}{48 \cdot E \cdot I} \cdot (B3^3 - \frac{1}{2} \cdot B3 \cdot B2^2 + \frac{1}{8} \cdot B2^3)$$
 cm

Where,


Deformation Rate

$$\frac{1}{Rd(i)} = \frac{\delta(i)}{B3}$$

Beam No.	R(i) Kgf/cm)	I (cm ⁴)	δ (i) (cm)	$\frac{1}{Rd(i)}$	Allowable Deformation
1	8.21	1,066	0.112	1 1,964	1 800
2	18.29	1,066	0.249	1 884	1 800
3	20.15	1,066	0.274	1 803	1 800
4	14.54	1,066	0.198	1,111	1 800

6. SKIN PLATE

6.1 Beam Allocation and Water Pressure

Water Pressure (kgf/cm²)		Block No.	Length of Block (cm)	Span Length (cm)
				a sayî di a mirtir
0.2585	ſ			
Average value between	→	1	67.5	67.5
flanges of Main Beam				
0.3310			er a Lighter (kveik – er	
Average value between	→	2	55.5	55.5
flanges of Main Beam	ſ			
0.3858	- 1			
0.3838 Average value between		,	A. C.	45.0
flanges of Main Beam	-	3	45.0	45.0
Hanges of Want Death				
	·			

6.2 Stress on Skin Plate

Bearing moment on skin plate due the water pressure is estimated by the formula of DIN 10704 as follows:

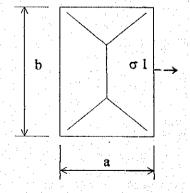
$$\sigma = \frac{1}{100} \cdot k \cdot L^2 \cdot \frac{p}{(t-\epsilon)^2}$$

Where, σ: Stress on Skin Plate kgf/cm²

k : Coefficient shown in table below

a : Length of shorter side of bloc cm

b: Length of longer side of bloc cm


L : Span Length as a shorter side cm

p : Acting water pressure kgf/cm²

t: Thickness of plate 0.90 cm

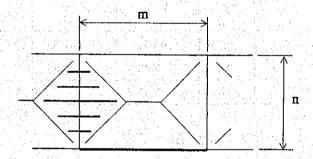
ε : Margin of thickness of plate 0.20 cm

k Value

b/a	σ1	σ1	σ1	σ1
1.00	30.9	13.7	13.7	30.9
1.25	40.3	18.8	13.5	33.9
1.50	45.5	22.1	12.2	34.3
1.75	48.4	23.9	10.8	34.3
2.00	49.9	24.7	9.5	34.3
2.50	50.0	25.0	8.0	34.3
3.00	50.0	25.0	7.5	34.3
b/a > 3	50.0	25.0	7.5	34.3

Calculation Result

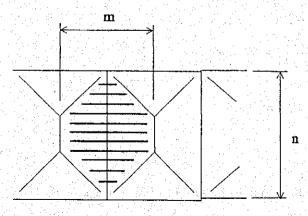
Allowable Stress: $\sigma a = fa \cdot \sigma a = 1.00 \times 1,200 = 1,200 \text{ kgf/cm}^2$


 ,							and the second	
Block No.	a cm	b cm	b/a	k	L cm	p kgf/cm ²	t - ε cm	σ kgf/cm²
1	67.5	70.0	1.04	32.29	67.5	Average value 0.2353	0.70	706
2	55.5	70.0	1.26	40.53	55.5	Average value 0.3043	0.70	775
3	45.0	70.0	1.56	1.56	45.0	Average value 0.3620	0.70	690

Based on the calculation result, the thickness of 9.0 mm is employed for the skin plate.

7. VERTICAL SUPPORTING BEAM

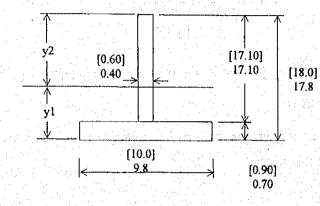
The relation between main beam and vertical beam is illustrated as follows. In the figure the bold horizontal lines are acting on vertical beam.


In case $m \ge n$

Bearing Moment

$$M = \frac{n^2 \cdot w}{12} \cdot m \quad \text{or} \quad \frac{n^3}{12} \cdot p \quad \text{(kgf-cm)}$$

In case m < n



Bearing Moment

$$M = \frac{1}{24} \cdot (3 \cdot n - \frac{m^2}{n}) \cdot w \qquad (kgf-cm)$$

$$M = \frac{1}{24} \cdot (3 \cdot n^2 - m^2) \cdot m \cdot p \quad (kgf-cm)$$

PL 180 x 100 x 6 x 9

Moment of Section
$$I = 438 \text{ cm}^4$$

Section Modulus

$$Zt = 92 \text{ cm}^3$$

Sectional area of web

$$w = 6.8 \text{ cm}^2$$

Member cm	A cm²	y cm	A · y cm³	A·y² cm⁴	I o cm
t 0.40 x 17.1	6.8	9.25	62.90	581.83	166.67
t 0.70 x 9.8	6.9	0.35	2.42	0,85	0.28
Total	13.7	V <u>200</u>	65.32	749	0.63

$$y1 = \frac{\Sigma(A \cdot y)}{A} = \frac{65}{13.7} = 4.77 \text{ cm}$$

$$y2 = 17.8 - 4.77 = 13.03$$
 cm

Moment of Section (I)

I =
$$\Sigma (A \cdot y^2 + I \circ) - \Sigma A \cdot y1^2$$

= 750 - 13.7 x 4.77² = 438 cm⁴

Section Modulus (Z)

$$Z = \frac{I}{v^2} = \frac{438}{4.77} = 92 \text{ cm}^3$$

(2) Stress on Vertical Beam

$$\sigma = \frac{M}{Z}$$

$$\frac{9}{K} < \frac{L}{b} \le 30 : \sigma a = 1,200 - 11 \cdot \left(K \cdot \frac{L}{b} - 9\right)$$

Where,

L : Distance between fixed points of flange

ı cm

b : Width of flange 9.8 cm

Aw : Total sectional area of web 6.8 cm²

Ac : Total sectional area of flange 6.9 cm²

fa : Correction factor 1.0

$$K = \sqrt{3 + \frac{1}{2} \cdot \frac{Aw}{Ac}} \quad \text{In case } \frac{Aw}{Ac} < 2 \rightarrow K = 2$$

Where, $\frac{Aw}{Ac} = \frac{6.8}{6.9} = 1.0$

$$\sigma a = fa \cdot \sigma a = 1.00 \times \sigma a$$

Block No.	m cm	n	p kgf/cm²	M kgf/cm²	σ kgf/cm²	Allowable Stress kgf/cm ²
1	70.0	75.0	0.2353	8218	89	1,131
2	70.0	63.0	0.3043	6341	69	1,158
3	70.0	60.0	0.3620	6516	71	1,164

8. GUIDE FRAME

8.1 Bearing Stress of Slide Plate

$$\sigma s = \frac{p \cdot B2}{2 \cdot b}$$

Where,

p : Water pressure

0.400 kgf/cm² (State of rest)

0.220 kgf/cm² (State of move)

B2: Width of watertight area 212.0 cm

: Width of slide plate 8.0 cm

$$= \frac{0.400 \times 212.0}{2 \times 8.0} = 5.3 \text{ kgf/cm}^2 < \sigma \text{ sa (State of rest)}$$

$$= \frac{0.220 \times 212.0}{2 \times 8.0} = 2.9 \text{ kgf/cm}^2 < \sigma \text{ sa (State of move)}$$

Allowable Bearing Stress

$$\sigma$$
 sa = 180 kgf/cm² (State of rest)
= 60 kgf/cm² (State of move)

8.2 Bearing Stress of Concrete

$$\sigma c = \frac{\mathbf{p} \cdot \mathbf{B2}}{2 \cdot \mathbf{bf}}$$

Where,

p : Water pressure

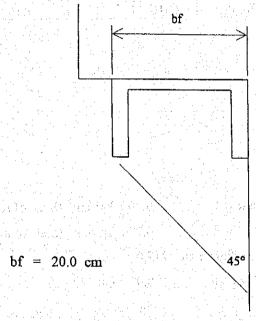
0.400 kgf/cm²

B2: Width of watertight area

 $212.0 kgf/cm^2$

bf : Width of stress receiving area

20.0


cm

$$= \frac{0.400 \times 212.0}{2 \times 20.0} = 2.1 \text{ kgf/cm}^2 < \sigma \text{ ca}$$

Allowable Bearing Stress

$$\sigma$$
 ca = 55 kgf/cm²

8.3 Shear Stress of Concrete

Length of shearing stress: L

$$L = 2 \cdot bf$$
= 2 x 20.0 = 40 cm

Shearing stress of concrete: τ c

$$\tau c = \frac{\sigma c \cdot bf}{L}$$

$$= \frac{2.1 \times 20.0}{40} = 1.1 \text{ kgf/cm}^2 < \tau \text{ ca}$$

Allowable shearing stress

9. LOADS FOR GATE OPENING AND CLOSING

9.1 Loads in Gate Operation

(1) Gate Lifting Time

Pu = 5.110 tf (Water pressure)

(2) Gate Lowering Time

Pd = 3.539 tf (Water pressure)

9.2 Loads Acting on Gate

(1) Total Weight of Gate Wg

Self Weight

Wg1 = 1.300 tf

Weight of Spindle

Wg2 = 0.300 tf

Total Weight

Wg = Wg1 + Wg2 = 1.600 tf

(2) Friction Due to Slide

(Gate lifting time)

 $Fgu = \mu s \cdot Pu$

Where,

μs: Friction coefficient of sliding face 0.6

Pu : Loads in gate lifting time

5.110 tf

 $= 0.6 \times 5.110$

= 3.066 tf.

(Gate lowering time)

 $Fgd = \mu s \cdot Pd$

Where,

μs: Friction coefficient of sliding face

0.6

Pd: Loads in gate lifting time

3.589 tf

 $= 0.6 \times 3.589$

= 2.153 tf

(3) Friction of Rubber

(Gate Lifting Time)

Fru = $\mu r \cdot \{q \cdot (L1 + 2 \cdot L2) + p1 \cdot b \cdot L1 + 2 \cdot p2 \cdot b \cdot L2\}$

Where,

μr: Friction coefficient of rubber 0.7 : Initial pressure 0.100 tf/m q pl : Average force on upper face 0.140 tf/m^2 : Average force of side face 1.170 tf/m^2 p2 : Effective width of stress receiving area 0.050 m : Length of watertight rubber of upper side 2.120 m : Length of watertight rubber of side face 2.060 m

= $0.7 \times \{0.100 \times (2.120 + 2 \times 2.060) + 0.140 \times 0.050 \times 2.120 + 2 \times 1.170 \times 0.050 \times 2.060\}$

= 0.616 tf.

(Gate lowering time)

Frd =
$$\mu r \cdot \{ q \cdot (L1 + 2 \cdot L2) + 2 \cdot p2 \cdot b \cdot L2 \}$$

Where,

μr: Friction coefficient of rubber 0.7
q: Initial pressure 0.100 tf/m
p2: Average force of side face 0.822 tf/m²
b: Effective width of stress receiving area 0.050 m
L1: Length of watertight rubber of upper side 2.120 m
L2: Length of watertight rubber of side face 2.060 m
0.7 x {0.100 x (2.120 + 2 x 2.060) + 2 x 0.822 x 0.050 x 2.060}
0.555 tf.

(4) Up Lift

(Gate Lowering Time)

=

$$Fbd = \frac{Wg}{\gamma} \cdot \frac{s}{100}$$

Where,

Wg : Self weight of gate 1.000 tf γ : Specification gravity of steel 7.85 s : Portion of gate submerged 20.0 % $\frac{1.000}{7.850} \times \frac{20.0}{100} = 0.025$ tf

(5) Downward Force Acting on Upper Portion of Gate

(Gate Lifting TIme)

 $Ftdu = p \cdot t \cdot B \cdot k \cdot \Delta H + D \cdot B$

Where,

p : Acting pressure	0.140 tf/m
t : Width of stress receiving area	0.249 m
B : Length of stress receiving area	2.120 m
k : Coefficient of water overflowed	0.000
ΔH: Water level difference	0.140 m
D: Thickness of gate body	0.209 m
$0.140 \times 0.249 \times 2.120 + 0.000 \times 0.140 \times$	0.209 x 2.120
0.074 tf.	

Upward Force Acting in Lower Portion of Gate

(Gate Lowering Time)

Fbud = $p \cdot t \cdot B$

(6)

Where,

p : Acting pressure 1.840 tf/m²
t : Width of stress receiving area 0.050 m
B : Length of stress receiving area 2.120 m
1.840 x 0.050 x 2.120
0.195 tf.

9.3 Total Loads for Gate Opening and Closing

Item	Lifting Force	Lowering Force
Self weigh	1.300	1.300
Friction of supporting plate	3.066	-2.153
Friction of rubber	0.616	-0.555
Up Lift	PARK STATE	-0.025
Downward force of gate	0.074	
Upward force of gate		-0.195
Total	5.056	-1.628

Nota: Lifting Force 5.500 tf Lowering Force 2.000 tf

10. GATE HOISTING SYSTEM

10.1 Specification of System

Method

Middle Shoe Non

Operation Method Electrical and manual operation

Spindle Rod (1)

Control Method

Local manual operation & remote manual operation

Total Head

2.500 m

Hoisting Sped

0.3 m/min

Hoisting Load

Lifting time

W1 = 5,5000 kgf

Lowering time

W2A = 2,000 kgf

(by the calculation of gate opening and

closing loads)

Lowering time

W2B = 8,276 kgf

(by motor output)

Power

220 V, 50 Hz

Applied Standard

Technical Standard for Dam/Weir Facilities

10.2 Spindle

Specification on Spindle Screw

• Na	me of Spindle Screw 1r - 90 (30° 1 rapezoidal scre	37
	Outer diameter 90 mm	1
	Diameter in Vally Portion 78.0 mm	
	Effective Diameter 84.0 mm	
	Interval 12 mm	

Number of screw line

line

Sectional Dimension of Screw in Vally Portion

Area (A) 47.8 cm²
Moment of Area 181.7 cm⁴

• Spindle Factor FS = 0.010707

• Supporting Interval of Spindle 270.0 cm

• Condition of Spindle End (Driving Portion) Pin - Pin (Coefficient = 1.00)

• Material of Spindle (Driving Portion) SUS 304

10.3 Force on Spindle

(1) Spindle of Torque

 $TS = W \cdot FS$

= 5,500 x 0.010707

= 58.89 kgf·m

10.4 Selection of Limi Torque

(1) Selection of Limi Torque

Diameter of Spindle, Thrust Force, Torque \rightarrow JMB-3 selected

Allowable Spindle Diameter $57 \sim 127 \Leftrightarrow 90 \text{ mm}$ Allowable Thrust Force 44,100 > 5,500 kgfAllowable Torque 406 > 58,89 kgf·m

(2) Rotation Number of Limi Torque Axis

$$NB = \frac{V}{L} = \frac{300}{12} = 25.00 \text{ rpm}$$

Where,

V: Lifting Speed 300 mm/min
L: Screw lead 12 mm

(3) Ratio of Reduction Speed

ia =
$$\frac{\text{NM}}{\text{NB}} = \frac{1,450}{25,00} = 58.00$$

Where,

NM: Design rotation number of motor 1,450 rpm
Based on the above, the ratio of reduction speed applied is 61.50

(4) Calculation of Motor

$$KW = \frac{TS \cdot NM}{974 \cdot i \cdot \eta L}$$

Where,

 ηL : Operation efficiency of limit orque 0.39

$$= \frac{58.89 \times 1,450}{974 \times 61.50 \times 0.39}$$

= 3.66 kw

Therfore, a motor with 5.50 kw is used

(5) Backling Stress of Spindle

Wc =
$$\frac{974 \cdot \text{KW} \cdot \eta \text{I} \cdot \text{i}}{\text{NM} \cdot \text{FS}}$$

= $\frac{974 \times 5.50 \times 0.39 \times 61.50}{1,450 \times 0.010707}$
= 8,276 kgf

(6) Safety Factor Against Backling Load on Spindle

(Screw Axis of Driving Portion)

Slenderness ratio at boundary (λ_o)

$$\lambda_o = \pi \cdot \sqrt{\frac{E}{0.6 \cdot \sigma y}}$$

Where,

E : Young's modulus

 1.97×10^6 kgf/cm²

σy: Yield point or proof stress of material

2,100 kgf/cm²

$$= 3.14 \times \sqrt{\frac{1.97 \times 10^6}{0.6 \times 2,100}} = 124.2$$

• Slenderness ratio (λ)

$$\lambda = \beta \cdot L/r$$

Where,

β : Condition at material end

1.00

L : Design Length

270.0 cm

r : Radius of gyration of spindle

$$=\sqrt{I/A} = \sqrt{181.7/47.8} = 1.95$$
 cm

$$= 1.00 \times 270.0 / 1.95 = 138.5$$

• $\lambda > \lambda_o$ therefore, Euler's equation is adopted

$$\sigma k = \frac{\pi^2 \cdot E}{\lambda^2}$$

$$= \frac{3.14^2 \times 1.97 \times 10^6}{138.5^2} = 1,014 \text{ kg/cm}^2$$

• Compressive Stress σ c

$$\sigma c = \frac{Wc}{n \cdot A}$$

$$= \frac{8,276}{1 \times 47.8} = 173 \text{ kg/cm}^2$$

Safety factor Sf

Normal use
$$Sf = \frac{\sigma k}{\sigma c} = \frac{1,014}{173} = 5.86 > 4.0$$
At maximum torque
$$Sf = \frac{\sigma k}{3 \cdot \sigma c} = \frac{1,014}{3 \times 173} = 1.95 > 1.1$$

(7) Calculation in Manual Operation

$$F = \frac{TS}{HR \cdot \eta H \cdot R \cdot HRR \cdot \eta R}$$

Where,

HR : Standard ratio of reduction speed 41.00

ηΗ : Efficiency rate under manual operation 0.33

R : Radius of handle 0.305 m

HRR: Ratio of reduction speed of manual reduction gear 5.50

ηR : Efficiency manual reduction gear 0.95

$$= \frac{58.89}{41.00 \times 0.33 \times 0.305 \times 5.50 \times 0.95}$$
$$= 2.7 \text{ kgf}$$

10.5 Selection Result

With all calculation results mentioned above, the hoisting equipment is designed as follows:

• Limi Torque JMB-3

• Electrical Motor 5.50 kw

With manual reduction gear

• Spindle Screw Tr-90 1 line screw

10.6 Pressure on Stem Nut Surface

Q =
$$\frac{\text{Wc}}{\text{n} \cdot \frac{\pi}{4} \cdot (\text{D}^2 - \text{d}^2) \cdot \text{Z}}$$

= $\frac{8,276}{1 \times 0.785 \times (9.0^2 - 7.8^2) \times 19.83}$ = 26.4 kgfcm² < Qa
Where,

Ws: Bucking load of spindle 8,276 kgf

Number of spindle 1 Outer diameter of spindle 9,0 cm Spindle diameter of vally portion đ 7.8 cm Z Number of screw $Z = \frac{L}{P} = \frac{23.8}{1.2} =$ 19.83 Length of stem nut 23.8 cm

1.2

cm

Allowable surface pressure Qa = 60 kgf/cm²

Internal of screw

4.5.5 Temporary Gate (Steel Stop Log)

1. DESIGN ITEM

1.1 Design Condition

-	Type of Gate	Steel SI	ide Gate
-	Number of Gate	12	Gates
-	Clear span	2.730	m
-	Height of Gate	2.500	m
- ? - ?	Design Water Depth		
· · ·	Upstream	4.400	m
;	Downstream	0.000	m

- Water Depth for Operation

Balance by water pressure

- Gate Floor Level

EL 0.900

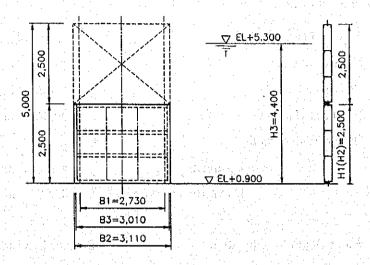
- Method for Watertightness

For front 3 faces watertightness

- Hoisting System

by Truck Crane

1.2 Design Condition

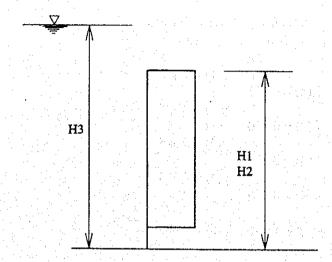

- General Item

•	Horizontal Seismic Intensity	ann an ing notae 	Addison a
•	Deffelence in Temperature		
•	Wind Load		
•	Deformation of Main Girder	1/ 600	
•	Margin of Thickness		er grot egist
	Skin Plate (Side facing water)	0.00	mm
	Other Members (Side facing water)	0.00	mm
•	Major Material of Gate Main beam	SS400	
i e	Skin Plate	SS400	

Allowable Stress

Steel	Technical Manual f	or Dam and Weir (Chapter 2, 2-0-7
	Correction Factor	Normal Case	Seismic Case
		1.000	1.650
Concrete	Bearing stress	55.0 kgf/cn	1 ²
	Share stress	4.0 kgf/cn	n^2

2. BASIC DIMENSIONS



Where,

B 1	•	Clear Span	2.730	m
B2		Length of Watertight Area	3.110	m
В3	:	Span Between Rollers	3.010	m
HI	:	Height of Gate	2.500	m
H2	:	Height of Watertight Area	2.500	m
Н3	٠:	Design Water Depth Upstream	4.400	m
H4	:	Design Water Depth Downstream	0.000	m

3. ACTING LOADS

3.1 Loads in Normal Time

(1) Static Water Pressure

$$P_{W} = \frac{1}{2} \cdot \{H3^{2} - (H3 - H2)^{2}\} \cdot B2 \cdot \gamma$$

$$= \frac{1}{2} \times \{4.400^{2} - (4.400 - 2.500)^{2}\} \times 3.110 \times 1.00$$

$$= 24.491 \quad \text{tf}$$

Where, H2: Height of Watertight Portion 2.500 m

H3: Design Water Depth (Upstream) 4.400 m

B2: Width of Watertight Portion 3.110 m

γ : Specific Gravity of Water 1.00

4. LOADS FOR GATE OPERATION

4.1 Lifting Time

Non

4.2 Lowering Time

Non

5. MAIN BEAM

5.1. Mean Beam and Allotted Load

(1) Arrangement of Beam

No	Distance L (m)	Water Pressure p(tf/m²)
1	L(1) = 0.825	p(1) = 1.900
2	L(2) = 0.800	p(2) = 2.725
3	L(3) = 0.800	p(3) = 3.525
4	L(4) = 0.075	p(4) = 4.325
At t	he gate floor	p(5) = 4.400

(2) Allotted Load

$$R(1) = p(B) = \{p(2) + 2 \cdot p(1)\} \cdot L(1)/6 \qquad = 0.897$$

$$R(1) = 0.897 \quad tf/m$$

$$R(2) = p(U) = \{p(1) + 2 \cdot p(2)\} \cdot L(1)/6 \qquad = 1.011$$

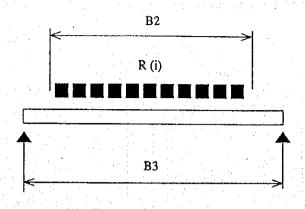
$$p(B) = \{p(3) + 2 \cdot p(2)\} \cdot L(2)/6 \qquad = 1.197$$

$$R(2) = 2.208 \quad tf/m$$

$$R(3) = p(U) = \{p(2) + 2 \cdot p(3)\} \cdot L(2)/6 \qquad = 1.303$$

$$p(B) = L1 \cdot [3 \cdot L(3) \cdot \{p(3) + p(5)\} - L1 \cdot \{p(3) + 2 \cdot p(5)\}] / 6 / L(3) \qquad = 1.501$$

$$R(4) = p(T) = \{p(3) + 2 \cdot p(5)\} \cdot L1^2 / 6 / L(3) \qquad = 1.966$$


$$R(5) = 1.966 \quad tf/m$$
Where, $L1 = L(3) + L(4)$

0.875

m

0.800 + 0.075

5.2. Sectional Force of Main Beam

Where,

B2 : Distance of watertight rubbers

3.110 m

B3: Span length

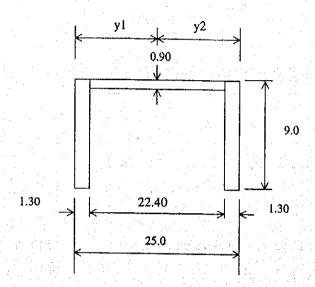
3.010 m

R(i): Unit load

tf/m

(1) Bending Moment

$$M(i) = \frac{1}{8} \cdot R(i) \cdot B2 \cdot (2 \cdot B3 - B2) \text{ tf-m}$$


(2) Shearing Force

$$S(i) = \frac{1}{2} \cdot R(i) \cdot B2 \text{ tf}$$

Beam No	R (i) (tf/m)	M(i) (tf/m)	S(i) (tf)
1	0.897	1.015	1.395
2	2.208	2.498	3.433
3	2.804	3.172	4.360
4	1.966	2.224	3.057

5.3. Stress of Main Beam

(a) Sectional Dimension of Beam

380 x 125 x 16.0 x 25.0

Moment of Area $I = 4,132 \text{ cm}^4$

Section Modulus

 $Zt = 331 \text{ cm}^3$ $Zc = 331 \text{ cm}^3$

Sectional area of web

 $Aw = 20.2 \text{ cm}^2$

Sectional area of flange

 $Ac = 11.7 \text{ cm}^2$

	Member cm	A cm ²	y cm	A y	A·y² cm²	I o
	t 1.30 x 9.0	11.7	0.65	7.61	4.94	1.65
	t 0.90 x 22.4	20.2	12.50	252.50	3,156.25	842.96
Ĺ	t 1.30 x 9.0	11.7	24.35	284.89	6,937.19	1.65
	Total	43.6	**	545.00	10,94	14.64

$$y1 = \frac{\Sigma(A \cdot y)}{A} = \frac{545.00}{43.6} = 12.50 \text{ cm}$$

$$y2 = 25.0 - 12.50 = 12.50$$
 cm

Moment of area (1)

$$I = \Sigma (A \cdot y^2 + Io) - \Sigma A \cdot y1^2$$
$$= 10.944.64 - 43.6 \times 12.50^2 = 4.132 \text{ cm}^4$$

Section Modulus (Z)

$$Zt = \frac{I}{y^2} = \frac{4,132}{12.50} = 331 \text{ cm}^3$$

$$Zc = \frac{I}{y1} = \frac{4,132}{12.50} = 331 \text{ cm}^3$$

(b) Bearing Stress

$$\sigma c = \frac{M(i)}{Zc}$$

Allowable bearing stress

$$\sigma$$
 ac = fa · σ ac = 1.10 x 1,200 = 1,320 kgf/cm²

Beam No	M(i) (tf/m)	σc (kgf/cm²)	Allowable Stress (kgf/cm²)	
1	1.015	307	1,320	
2	2.498	755	1,320	
3	3.172	958	1,320	
4	2.224	672	1,320	

(c) Shearing Stress

$$\tau = \frac{S(i)}{Aw}$$

Allowable shearing stress

$$\tau a = fa \cdot \tau a = 1.10 \times 700 = 770 \text{ kgf/cm}^2$$

Beam No	M (i) (tf/m)	τ (kgf/cm²)	Allowable Stress (kgf/cm²)
	1.395	69	770
2	3.433	170	770
3	4.360	216	770
4	3.057	151	770

5.4. Deformation Rate of Main Beam

Deformation

$$\delta$$
 (i) = $\frac{R(i) \cdot B2}{48 \cdot E \cdot I} \cdot (B3^3 - \frac{1}{2} \cdot B3 \cdot B2^2 + \frac{1}{8} \cdot B2^3)$ cm

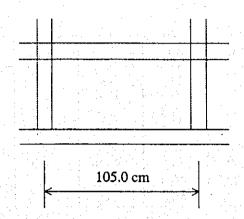
Where, R(i): Unit Load kgf/cm

B2: Width of watertight portion 311 cm

B3 : Span 301 cm

E: Modulus of elasticity 2.1 x 10⁶ kgf/cm²

I : Moment of section vm⁴


Deformation Rate

$$\frac{1}{Rd(i)} = \frac{\delta(i)}{B3}$$

				<u>. </u>	
Beam No.	R(i) Kgf/cm)	I (cm⁴)	δ (i) (cm)	1 Rd(i)	Allowable Deformation
1	8.97	4,132	0.110	1 2,736	1 600
 2	22.08	4,132	0.272	1,107	1 600
3	28.04	4,132	0,345	<u>1</u> 872	<u>1</u> 600
4	19.66	4,132	0.242	1,244	1 600

6. SKIN PLATE

6.1 Beam Allocation and Water Pressure

Water Pressure	Block No.	Length of Block	Span Length (cm)	
(kgf/cm ²)		(cm)		
0.2358				
Average value between →	. 1	73.5	73.5	
flanges of Main Beam				
0.3170				
Average value between → flanges of Main Beam	2	71.0	71.0	
0.3925			pading district district and second district dis	
Average value between → flanges of Main Beam	3	62.0	62.0	

6.2 Stress on Skin Plate

Bearing moment on skin plate due the water pressure is estimated by the formula of DIN as follows:

$$\sigma = \frac{1}{100} \cdot k \cdot L^2 \cdot \frac{p}{(t-\epsilon)^2}$$
Where, σ : Stress on Skin Plate kgf/cm^2

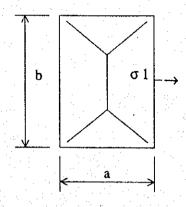
$$k$$
: Coefficient shown in table below
$$a : Length of shorter side of bloc cm$$

$$b : Length of longer side of bloc cm$$

$$L : Span Length as a shorter side cm$$

$$p : Acting water pressure kgf/cm^2$$

t: Thickness of plate


0.90 cm

ε

Margin of thickness of plate

0.00 cm

k Value

1						
b/a	σ1	σ1	σ1	σ1		
1.00	30.9	13.7	13.7	30.9		
1.25	40.3	18.8	13.5	33.9		
1.50	45.5	22.1	12.2	34.3		
1.75	48.4	23.9	10.8	34.3		
2.00	49.9	24.7	9.5	34.3		
2.50	50.0	25.0	8.0	34.3		
3.00	50.0	25.0	7.5	34.3		
b/a > 3	50.0	25.0	7.5	34.3		

Calculation Result

Allowable Stress: $\sigma a = fa \cdot \sigma a = 1.10 \times 1,200 = 1,320 \text{ kgf/cm}^2$

Block No.	a cm	b cm	b/a	k	L cm	p kgf/cm²	t - ε cm	σ kgf/cm²
1	73.5	105.0	1.43	44.01	73.5	Average value 0.2358	0.90	692
2	71.0	105.0	1.48	45.06	71.0	Average value 0.3170	0.90	889
3	62.0	105.0	1.69	47.75	62.0	Average value 0.3925	0.90	889

Note: Indicates the thickness of imaginary plate.

Based on the calculation result, the thickness of 9.0 mm is employed for the skin plate.

7. GUIDE FRAME AND OTHERS

7.1 Bearing Stress of Slide Plate

$$\sigma s = \frac{p \cdot B2}{2 \cdot b}$$

Where,

p: Water pressure

0.440 kgf/cm² (in state of rest)

0.000 kgf/cm² (in state of motion)

B2: Width of watertight area 311.0 cm

b: Width of slide plate 15.0 cm

 $= \frac{0.440 \times 311.0}{2 \times 15.0} = 4.6 \text{ kgf/cm}^2 < \sigma \text{ sa (in state of rest)}$

 $= \frac{0.000 \times 311.0}{2 \times 15.0} = 0.0 \quad \text{kgf/cm}^2 < \sigma \text{ sa (in state of motion)}$

Allowable Bearing Stress

$$\sigma$$
 sa = 180 kgf/cm² (in state of rest)
= 60 kgf/cm² (in state of motion)

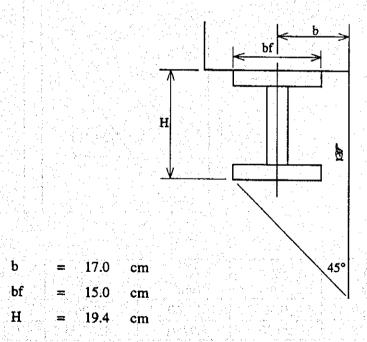
7.2 Bearing Stress of Concrete

$$\sigma c = \frac{p \cdot B^2}{2 \cdot bf}$$

Where,

p : Water pressure 0.440 kgf/cm²

B2: Width of watertight area 311.0 kgf/cm²


bf: Width of stress receiving area 15.0 cm

$$= \frac{0.440 \times 311.0}{2 \times 15.0} = 4.6 \text{ kgf/cm}^2 < \sigma \text{ ca}$$

Allowable Bearing Stress

$$\sigma ca = 55 \text{ kgf/cm}^2$$

7.3 Shear Stress of Concrete

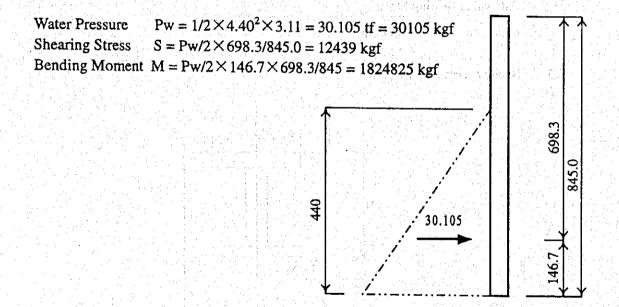
Shearing length of concrete: (L)

$$L = 2 \cdot \left(b + \frac{bf}{2}\right) + H$$

$$= 2 \times \left(17.0 + \frac{15.0}{2}\right) + 19.4 = 68 \text{ cm}$$

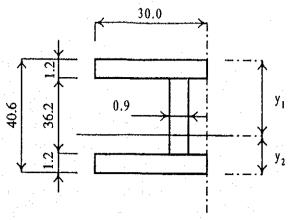
Shearing strength of concrete: τc

$$\tau c = \frac{\sigma c \cdot bf}{L}$$


$$= \frac{4.6 \times 15.0}{68} = 1.0 \text{ kgf/cm}^2 < \tau \text{ ca}$$

Allowable shearing strength

$$\tau = 4.0 \text{ kgf/cm}^2$$


8. CENTER POST

Loading Calculation

	Member cm	A cm²	y cm	A·y cm³	A·y² cm²	Io cm ⁴
L	30.0×1.2	36.00	0.60	21.60	12.96	4,32
	0.9×38.2	34.38	20.30	697.91	14167.65	7180.72
L	30.0×1.2	36.00	40.00	1440.00	57600.00	4.32
L	Σ	106.38	_	2159.51	7590	59.98

$$y_1 = \Sigma (A \cdot y)/\Sigma A = 2159.51/106.38 = 20.30cm$$

$$y_2 = 40.6 - 20.30 = 20.30$$
cm

Geometrical moment of inertia

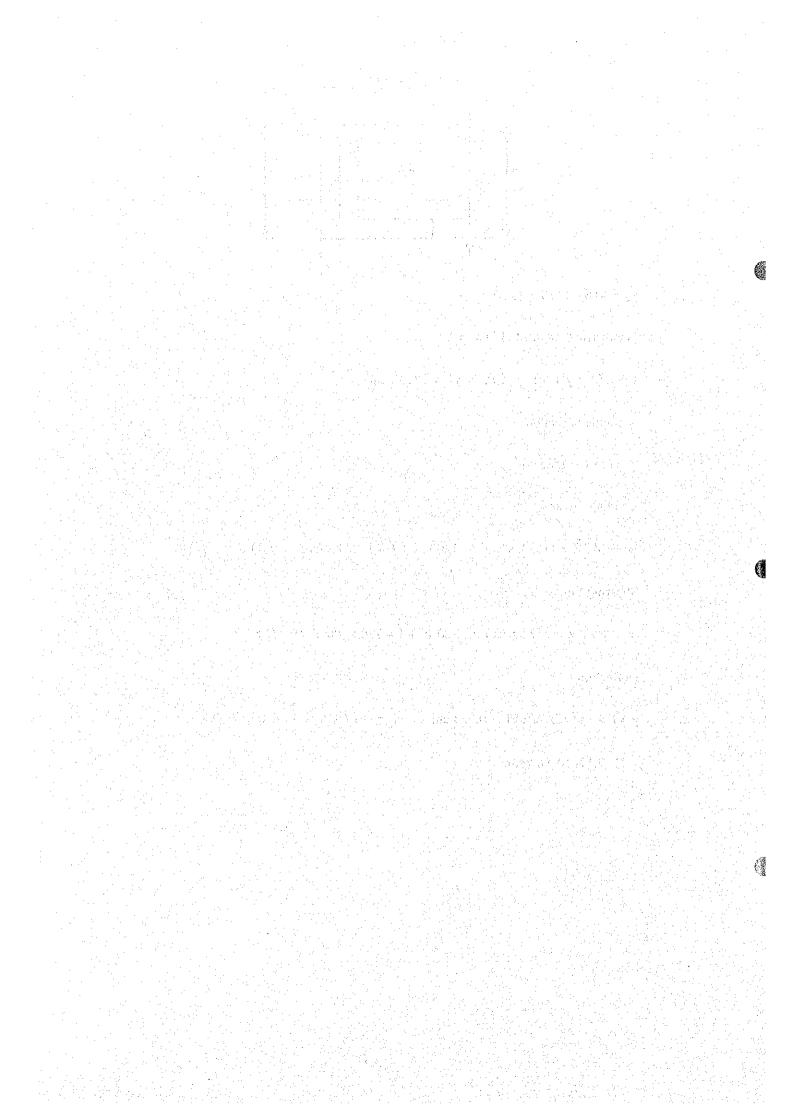
$$I = \Sigma (A \cdot y^2 + I_0) - \Sigma A \times y1^2 = 32132 \text{ cm}^4$$

Modulus of section

$$Z = I / y1 = 1583 \text{ cm}^3$$

Bending Stress

$$\sigma = M/Z = 1153 \text{ kgf/cm}^2 < 1200 \times 1.1 = 1320 \text{ kgf/cm}^2 \cdots O.K.$$


Shearing Stress

$$\tau = S / Aw = 362 \text{ kgf/cm}^2 < 700 \times 1.1 = 770 \text{ kgf/cm}^2 \cdots O.K.$$

Deflection

$$y = Pw \cdot a^2 \cdot b^2/6/E/I/L = 0.923 cm$$
 $\sigma = 1/915 < 1/600 \cdots O.K$

E: $2.1 \times 10^6 \, \text{kgf/cm}^2$

4.6 Maintenance Bridge

4.6.1 Maintenance Bridge

(a) Features of Bridges

The features of maintenance bridges are shown in the table below.

Bridge Name	Span	Bridge	Effective		Width(m)		
	Length (m)	Length (m)	Width (m)	Driving	Sidewalk	Total	
Maintenance Bridge No.1	5.5	8.3	6.4	5.0	1.4	7.0	
Maintenance Bridge No.2	18.5	21.0	6.4	5.0	1.4	7.0	
Maintenance Bridge No.3	18.5	21.0	6.4	5.0	1.4	7.0	
Maintenance Bridge No.4	18.5	21.0	6.4	5.0	1.4	7.0	
Maintenance Bridge No.5	5.5	8.3	6.4	5.0	1.4	7.0	

Note: Sidewalk is adopted at one side only.

(b) Type of Substructure

There are various types of super structure which are adaptable for bridges with these spans and load conditions. From the viewpoint of maintenance, concrete structures are preferable, as they require less maintenance efforts.

Therefore, a reinforced concrete type (RC type) and a post-tension pre-stressed concrete type (PC type) are recommended for superstructure here. When the structures of RC type and PC type compared, PC type has thinner girder than RC type. On the other hand, RC type is commonly cheaper and more often adopted than PC type when the length is smaller than 20 m (refer to Fig.6.4.5). Therefore, for type selection, the length of 20 m shall be the border between RC type and PC type, as far as the depth of girder brings about no problem.

In case of the maintenance bridges for Simongan Weir, the length of bridge No.1 and 5 is less than 20 m and there is no problem of girder depth. Therefore, RC type girder is selected for these two bridges.

For bridge No.2, 3 and 4 of which lengths are longer than 20m, then PC type is selected. For design of superstructure, a standard design of BINAMARUGA was adopted.

(c) Design Criteria

The following design criteria are used to set up the loading conditions on the superstructures of the proposed bridges.

- Peraturan Perencanaan Teknik Jembatan 1992 BINA MARGA (BMS)
 (Bridge Design Code)
- Design Manual, December 1992 BINA MARGA

The design criteria for the bridge design are stated in the "INTERIM REPORT (4), VOLUME II: DESIGN CRITERIA".

Live load

- Wheel load (T) = 10 tf/wheel (Truck Crane)
- Side walk load = 350 kgf/m²

Earthquake force is applied in accordance with "Technical Design of Bridge (Peraturan Prencanaan Teknik Jembatan Tahun 1922)" (hereinafter called the Code). The minimum earthquake design load is derived from the following formula:

 $Teq = Kh \cdot I \cdot Wr$

where,

Teq: total base shear force in the direction being considered (kN)

Kh: coefficient of horizontal seismic loading

 $Kh = C \cdot S$

Where,

C: base shear coefficient for the appropriate zone, period and side condition (=0.15, zone 4 (refer to INTERIM REPORT (4), VOLUME II DESIGN CRITERIA))

ଞ

S: structure type factor (= 1.0 for RC type or 1.3 for PC type)

I: safety factor of importance of structure (= 1.0 road bridge)

Wr: total nominal weight of structure object to seismic

acceleration taken as dead load superimposed dead load (kN)

Therefore, the design seismic loads are as calculated follows:

- For No.1 and No.5 bridges

$$Teq = 0.15 \times 1.0 \times 1.0 \times Wr = 0.15 Wr$$

- For No.2,3 and 4 bridges

Teq =
$$0.15 \times 1.3 \times 1.0 \times W_r = 0.195W_r \Rightarrow 0.2 W_r$$

- Horizontal force from temporary gate: 9.25 tf/m
- 4.6.2 Approach Bridge
 - (a) Features of Bridges

The features of approach bridges are shown in the table below.

Bridge Name	Span Length (m)	Bridge Length (m)	Effective Width (m)	Width (m)	Load
Approach Bridge No.1	11.46	13.0	6.4	7.0	vehicle
Approach Bridge No.2	7.46	9.0	6.4	7.0	vehicle

(b) Geology at the Site

The boring data clarified that Damar Formation, which is the base rock, appears below EL.2.0 m at the bridge site, when the ground elevation of bridge side is EL.8.634 m (hole No. SB-3). Above that elevation, an alluvial layer exists. The base rock is composed of Sedimentary Rock and Pyroclastic Sedimentary Rock. The N values of the layer are 11 to 18 above EL.2.0 m and over 40 below El.2.0 m was selected as the bearing layer.

(c) Type of Superstructure

As the bridge lengths are less than 20m in both No.1 and No.2 bridges, RC type girder is selected for these two bridges.

For design of superstructure, a standard design of BINAMARUGA was adopted.

- Peraturan Perencanaan Teknik Jembatan 1992 BINA MARGA (BMS) (Bridge Design Code)
- Design Manual, December 1992 BINA MARGA

(d) Type of Substructure

The substructures consist of two (2) abutments (A1 and A2) and one (1) pier (P1) with PC pile foundation. The bottom elevations of footings are determined as follows.

Item	A 1	P1	A2
Bottom elevation of Footing	6.057m	4.658m	5.644m

(e) Design Criteria

The design criteria for the bridge design are stated in "VOLUME III DESIGN CRITERIA". For seismic load, following coefficient was adopted as for RC type bridge.

$$Teq = 0.15 \times 1.0 \times 1.0 \times Wr = 0.15Wr$$

(f) Structure Calculation of Sub-Structure

Structure Calculation of the sub-structures are summarized in the following tables.

Tables 4.6.1 and 4.6.2 show the reinforcing bar calculation of the Abutment-1 (A1) and Abutment-2 (A2) respectively. Table 4.6.3 shows the reinforcing bar calculation of the Pier (P1).

Table 4.6.4 shows stress calculation of the foundations piles of A1, A2 and P1.

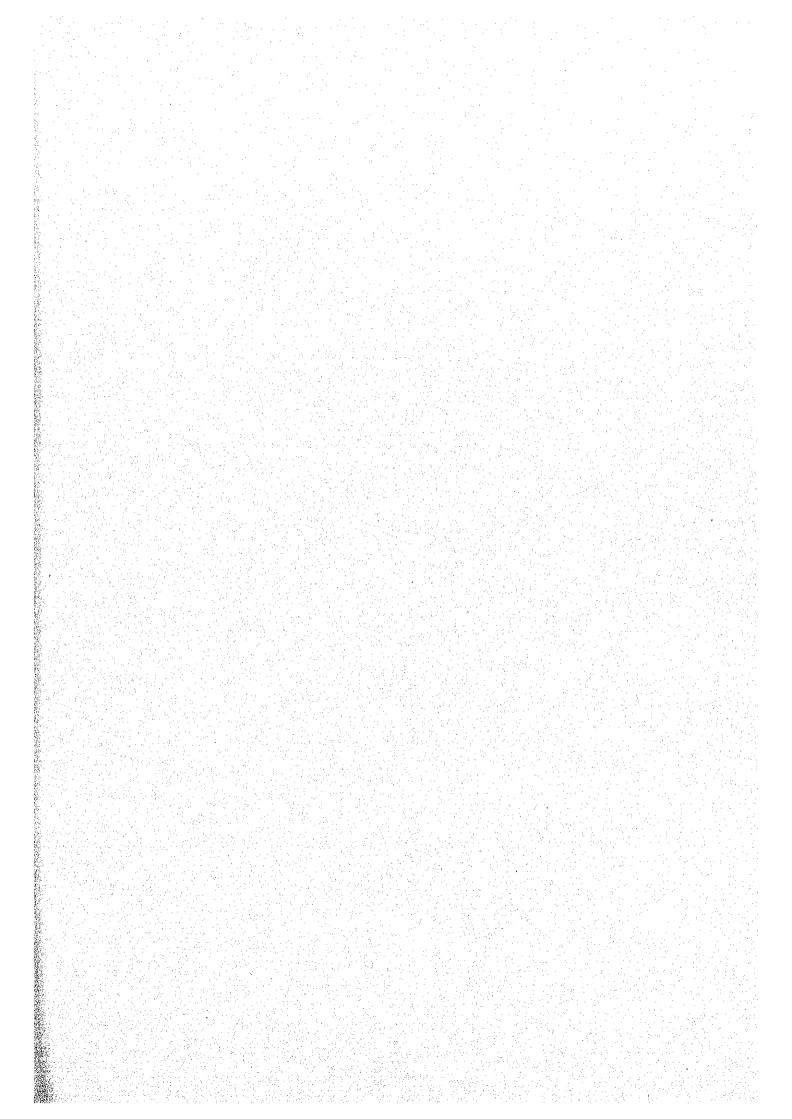


Table 4.6.1 Reinforcing Bar Calculation of Abutment 1(A1)

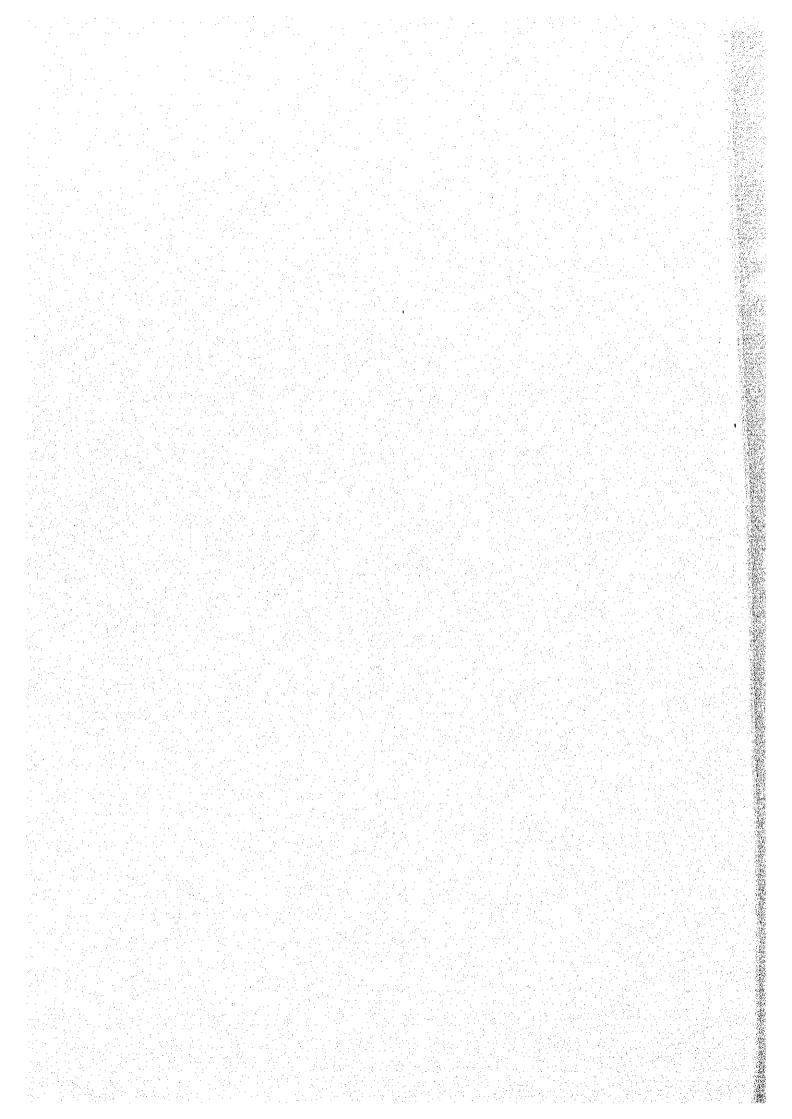
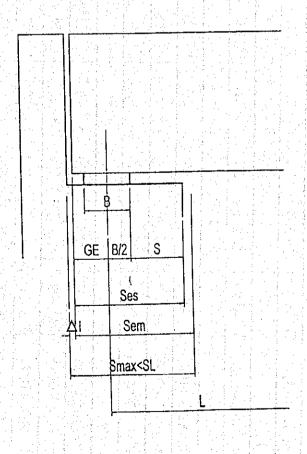

		SUBSTF		E DESIG	N RECO	ORD	ABUTMENT 1	NAME		SIMONGAN BE	IDGE
SUBSTRUCTURE No.		HEMBERSAPOSITION	LOAD	FOR	CES		BAR ARRANGEMEN	VT TV			REMARKS
PRESSURE NORMAL SEISMIC	0.308 0.433	PARAPET		M(tf·m)	19.492	760		0.002bd≤As 0.02bd ≥As		38.7<75	
DIMENSION	35 80	① (BACK)	NORMAL	S(tf)	32.254	10	 1	As= 117,174cm ²	σ_{s}	952<1800	DECIDED BY LEAST MAIN BAR
						FRONT	30 BAC	D16-125 ctc	τ	2.12<2,2	
		PARAPET ②	SEISMIC	M(tf·m)							
	88	(BACK)		S(tf)							
70	115 65 70 00			M(tf·m)	15.125	760	As	0.0015A < As 0.008A < As	σς	2.30<75	
	100 s		NORMAL	N(tf)	112.995	10		$As = cm^2$ $D - ctc$ $Ac_{-}E0 E9 cm^2$		8.20<1800	DECIDED BY LEAST MAIN BAR
)		S(tf)	13.391	FRONT	110 BAC	As=59.58 cm ² D 16 - 250 ctc 0.0015A < As	<u> </u>	0.18<2.2	
			SEIONIC	M(tf·m)	19.467	760	As As'	0.008A < As As = cm ²	$\sigma_{\mathfrak{c}}$	2.26<112.5	DECIDED BY
### 1841 1842 1846 	25.0 s	(FOOT)	SEISMIC	N(tf) S(tf)	69.995 23.553	1	1 100 BAC	D - ctc As=59.58 cm ²	σς	7.35<2700	LEAST MAIN BAF
G U DAD ADDANGENTARI	The state of the s	3			20,000	FRONT		D 16 - 250 ctc	84.1	0.31<2.6	
U BAR ARRANGEMENT R E		FOOTING	SEISMIC	M(tf·m)	12.613		100 10	0.002bd≦As 0.02bd≧As		2.89<112.5	MORE THAN 1/3 (BELOW BARS DOUBLE PITCH
			SEISMIC	S(tf)			250	As=59.58 cm ² D16-250ctc	σ _s	247.53<2700	
	59-D16 dc12 5	FOOTING		M(tf·m)	-1.239	100	100	0.002bd ≦ A: 0.02bd ≧ A: As=59,58 cm D16-250ct		0.31<112.5	DECIDED BY STRESS
	0	(FRONT)	SEISMIC	S(tf)			250		σ_s	25.79<2700	30-D16 =59.58
	30-D16 dc125								1 .	<_	
2	30-D16 dc125										
w	30-D16 dc125										
	130.010 00.123										

Table 4.6.2 Reinforcing Bar Calculation of Abutment 2 (A2)

				SUBS	TRUCTU	RE DESI	GN RECO	ORD	ABUTM	ENT2	NAME		SIMONGAN BR	IDGE
	UBSTRUCTURE			MEMBERSAPOS	TION LOAD	FOI	RCES		BAR AF	RANGEMEN				REMARKS
	ESSURE	NORMAL SEISMIC	0.308 0.433	PARAP	ET	M(tf·m)	26.777	760			0.002bd≦As 0.02bd≧As	$\sigma_{ m c}$	36.7<75	
	DIMENS	SION J		① (BACK	NORMAL	S(tf)	36.107	10	d l 20		Ac-117 17/am ²	$\sigma_{ extsf{s}}$	1033.9<1800	DECIDED BY LEAST MAIN BAR
			80 .35				1 1 1 1 1 1	FRONT	30	BAC	As= 117.174cm ² D16-125 ctc	τ	1.90<2.2	
			8	PARAP	ET SEISMIC	M(tf·m)								
			88	(BACK		S(tf)								
		100	115 05 0			M(tf·m)	59.618		As	1	0.0015A <as 0.008A <as< td=""><td>$\sigma_{ m c}$</td><td>6.18<75</td><td></td></as<></as 	$\sigma_{ m c}$	6.18<75	
		100	115 85 44 462	S (FOOT	LUNGUMAL	N(tf)	181.618] % 	As'		As = cm ² D - ctc	W. Juli	31.85<1800	DECIDED BY LEAST MAIN BAR
				C T		S(tf)	36.736	FRONT	1100	BAC	As=59.58 cm ² D 16 - 250 ctc	τ	0.46<2.2	
			10.0	I O N BODY(M(tf·m)	92,345	760	As		0.0015A < As 0.008A < As $As = cm^2$		14.30<112.5	BEOLDER TV
- F			300	N BODY((FOOT	I SEISMII		129.618		100		As = cm D - ctc As=59.58 cm ²	σς	541.71<2700	DECIDED BY LEAST MAIN BAR
G				T R		S(tf)	62.603	FRONT	110	BAC	D 16 - 250 ctc	t	0.76<2.6	
U R E	BAR ARRAI	NGEMENT		E S FOOTII S (5)	IG SEISMIC	M(tf·m)	26.291			100	0.002bd≦As 0.02bd≧As	As	6.03<112,5	MORE THAN 1/3 (
				C (BAC)		S(tf)			250		As=59.58 cm ²	σs	515.94<2700	DOUBLE PITCH
			59-D16 dc125	H E C K FOOTII	lG	M(tf·m)	-67.249			100 B5	D16-250ctc 0.002bd≦As		16.86<112.5	DECIDED BY STRESS
				⑥ (FRON	SEISMIC	AIC S(tf)			250	الي	0.02bd ≧As As=59.58 cm²	$\sigma_{\rm s}$	1399.31<2700	30-D16 =59.58
			.30 -D16 dc12 t						230		D16-250ctc	r	_<_	=35,30
	유		30-D16dc125											
	<u>, l</u>													
			30-D16dc125											

Table 4.6.3 Reinforcing Bar Calculation of Pier (P1) SUBSTRUCTURE DESIGN RECORD PIER NAME SIMONGAN PIER REMARKS LOAD BAR ARRANGEMENT **FORCES** SUBSTRUCTURE No. COEFFICIENT OF EARTH NORMAL 0,0015A < As 0.308 M(tf·m) 1.181 PRESSURE SEISMIC As 0.008A < As 3.52 < 75 0.433 $\sigma_{\mathfrak{c}}$ LONGITUD BODY **DECIDED BY** DIMENSION As' E N(tf) 246 LEAST MAIN BAR -50.24<1800 (FOOT) NORMAL 80 As= 55.608cm² 100 S(tf) FRONT BAC D16-250 ctc 0<2.2 τ 160 0.0015A < As 80 80 M(tf m) 70 0.008A < As 11.89<112.5 σc BODY LONGITUD (FOOT) E SEISMIC N(tf) **DECIDED BY** As' 170 204.58<2700 LEAST MAIN BAR 100 As= 55.608cm 100 27 FRONT D16-250 ctc 0.43 < 3.3 τ 0.0015A < As M(tf m) 0 As 0.008A < As 3.50 < 75 စ္တ σ_{c} 378 09 TRANSVE DECIDED BY BODY As' 100 100 100 RSAL 246 S E LEAST MAIN BAR (FOOT) -52.45<1800 NORMAL 80 As= 7.944cm2 100 С FRONT 100 D16-250 ctc 0<2.2 τ T 0.0015A < As M(tf·m) 65 0.008A < As 3.21 < 112.5 σο 0 TRANSVE BODY DECIDED BY RSAL 171 -25.04<2700 LEAST MAIN BAR (FOOT) 300 SEISMIC 80 S As= 7.944cm2 S(tf) 27 FRONT T D16-250 ctc 0.39 < 3.3 τ R 0.002bd≤As G U BAR ARRANGEMENT 0.02bd ≧As 14.79 < 112.5 σς M(tf·m) -54.636 8 8 MORE THAN 1/3 S R $As = cm^2$ **FOOTING** S SEISMIC OF BELOW BARS (BACK) D16 - 250 ctc 1218.45 < 2700 σ_{s} DOUBLE PITCH As=55.608cm2 S(tf) 0 300 C D 16 - 250 ctc τ Н 0.002bd≤As ·E C 0.02bd ≧As 15.39<112.5 M(tf·m) -56,866 σ_{c} 88 28-D16dc125 $As = cm^2$ **DECIDED BY FOOTING** SEISMIC LEAST MAIN BAR D 16 - 250 ctc (FRONT) 1268.18 < 2700 σ_{s} S(tf) As=55.608 cm² 250 D 16 - 250 ctc 28-D16dc125 2B-D16dc125 28-D16dc125

4-6-7


	-	
	v	
	Ž	
	۰	
	,	
•	-4	
•	٠,	
	_	٩
	蛩	į,
	-	
	=	
	-	
	-72	
	_	
	=	
	a.i	
	×	
	-	
	£	
	=	
	=	
	9	
	. "	
	444	
	0	
	-	
	~	
	쿅	
	.0	
	~	
	=	
	-33	
	=	
	$\overline{}$	
	7	
	_=	
•	ζì	
	v	
	-	
	7.2	
	-71	
	•	
	-	
	-	
	S	
	a)	
	_	
	-	
	۵.	
	_	
	4	
٠		
	v	
	_7	
	₹	
	₩	
٠	7	
	_	
	-	

YPE		PC DRIVEN PILES	PCD	PC DRIVEN PILES
DIAMETERS mm LENGTH OF PILES		¢ 500 5.5	φ 500 4,0	\$ 5.00
NUMBER OF PILES		9	8	*8
JOÍN METHOD		TYPEN · TYPEB	TAPEN - TYPEB	TYPE) · TYPEB
FACTOR OF LIQUEFACTION DE		0 - 63 - 23 - 1	0 · TØ 23 · 1	0 · 169 23 · 1
SECTION OF LIQUEFACTION IN (WEAK CLAY SECTION)	(N)			
HORIZONTAL REFLECT FACTOR OF GROUND KN(11/8 SECTION)	(NOL			
DECIDED FACTOR OF PILES NUMBER		s·a·£	s• a•Đ	s·a·⊕
DECIDED CASE		NORMAL CASE	NORMAL CASE	NORMAL CASE
BEND MOMENT If 'm. 's		2.538	(N) 0.064	3.702
VERTICAL: FORCE		39.656	(N) 43<72	37.688
HORIZONTAL FORCE 1		0	0 (N)	0
	kgt/cm²	136.9<170	(N) 117.1<170	146.1<170
	kgt/cm²	8047.2<8700	(S) 8112.7<8700	8100.9<8700.0
	kgt/cm²			
	Mo	2.538	Ö	3.702
	Mm		0. 30. 4.	
	Mız	1.269	0	1.851
	- [1]	2.873	0.	2.665
	Ç.	4.025	1.356	2
	ī	4.025	1.356	2
	ጎ			
L	L ₃			
	Diorti	ф 200	005 ∲	Ø 200
D1 ~ D3:Bar arrangement of cast-in-place piles	D2 or t2			
11 ~ 13. The thickness of steel tube, express by the types of	D3 or t3			
	Amin			

μ-	
Ξ.	
=	
Ç	
LL	
ū	
1C COEFF1(
_	
ပ	
S	
ನ	
띯	
. 0	
~<	
NEA.	
ਠ	
7	
=	
ਠ	
뜻	
8	
CULATION	
\simeq	
-	
~<	
팩	
ರ	

												3.70,000		
		LONGITUD E WIDTH	LATERAL WIOTH	HEIGHT	YOUNG'S MODULUS	WEIGHT OF SUPERSTRUCTURE Wu	WEIGHT OF SUBSTRUCTURE Wp	SECTION MODULUS I y	PERIOD T	BASE SHEAR COEFFICIENT C	STRUCTURE TYPE FACTOR S	OF SEISMIC Kh	IMPORTANC E FACTOR I	Kh. I
NAME	ш	E	E	.	√m²			Ē	8					
1, 1 1, 1 1, 1	A1	1.4	10.2	۶	2.6E+06	202.8	178.5	2.3324	0:030	0.15		0.195		020
ASIN No.1	A2	1.4	10.2	3	2.6E+06	202.8	178.5	2.3324	060.0	0.15	1,3	0.195		0.20
	A1	1.4	3.85	ۍ	2.6E+06	165.7	154.875	2.0237	980:0	0.15	1.3	0.195	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.20
ASIN No.2	A2	1.4	8.85	ഗ	2.6E+06	166.7	154.875	2.0237	0.088	0.15	1.3	0.195	-	0.20
	A1	1.4	5.6	5	2.6E+06	101.9	98	1,2805	0.087	0.15	1.3	0.195		0.20
ASIN PUMP	Α2	1.4	5.6	5	2.6E+06	101.9	98	1,2805	0.087	0.15	13	0.195	* <u>*</u>	0.20
	!				2.6E-06			0	#Div/oi	0.15	1.0	0.150	-	0.15
	á				2:6E+06			0.	#DIV/OI	0.15	1.0	0.150	÷	0.15
DAM	3				2.6E+06			0	#DIV/O	0.15	1,0	0.150	•	0.15
	: 6				2.6E+06			0	#DIV/OI	0.15	0.	0.150	- A	0.15
	A2				2.6E+06			0	I/O/A/OI	0.15	1.0	0.150		0.15
	¥.	1.15	1	2	2.6E+06.			0.8872	0.000	0.15	1.0	0.150		0.15
SIMONGAN	ā	1		3	2.6E+06			0.5833	0.000	0.15	1.0	0.150		0.15
	A2	115	200	3.6	2.6E+06			0,8872	0000	0.15	1,0	0.150		0.15
RAIL	A1				2.6E+06			0	iO/AIG#	0.15	12	0.180	-	0.18
i	Ann There are													

Calculation of SL

CALCULATION OF SL

GE GE = 300 15 < 1 < 20 Sem = 70+0.5L S = 20 + 0.5L

_			-			 	 	 								
	ದ	mm	900		006	006		850	1600	800	1700	800		1600	800	
	Smax	mm	836		836	836		812	1594	762	1634	772	1514	1556	793	
	Sem	mm	806		908	908		782	782	732	802	742	742	763	763	
	Ses		746		746	746		732	732	632	742	692	692	713	713	
	ဟ	mm	306	1	306	306		282	282	232	302	242	242	263	263	
	œ	mm	280		280	280		300	300	200	280	300	300	300	300	
		mm	30		30	30	7	30	30	30	30	30	30	30	30	
	យ	mm	300		300	300		300	300	300	300	300	300	300	300	
	-	· E	21.2		21.2	21.2		16.4	16.4	6.4	20.4	8.4	8.4	12.6	12.6	
			A1.2		A12	A1,2		A1.2	P1~3	RC7.0	PC21.0	A1	P11	P12	A2	
			A STN No.1		A STN No	ASIN PUNP	MINIO	DI IM ISLAND		SIMONGAN		SIMONGAN SIDE				
												\top_{∞}				