
3.2.2 Leaning

3.2.2.1 Leaning Wall for Concrete Type

Consideration Section: WF.110L +15.0 m to WF.111 L - 15.0 m

Design Condition

(a) Proposed Section

(b) The Material Data

(i) Plain concrete type D (K 175)

Unit Weight	$\gamma_{\rm c}$	=	2.35	t/m ³
Allowable Compressive stress	σ_{ca}	=	60	kg/cm ²
Allowable shear strength	$\tau_{\rm ca}$	=	5.50	kg/cm ²

(ii) Soil Material (Base on geological investigation on RB 30)

N – value	N	= 20	100
Soil internal friction angle	ф	= 32°	
Unit weight	γ_{s}	= 1.80	t/m³
Cohesion	C	= 0.0	t/m^2

(c) Design Load

(i) Earth Pressure

Coulomb Formula

Friction angle at wall

Angle between back side of wall & vertical plane $\phi = \phi = 31^{\circ}$ $\phi = -18.189^{\circ}$ $\phi = -18.189^{\circ}$ $\phi = -18.189^{\circ}$

(ii) Surcharge Load

$$q = 1.00 \text{ t/m}^2$$

(1) Allowable bearing capacity beneath slab

$$q_{u} = \alpha \cdot k \cdot c \cdot Nc + k \cdot g \cdot Nq + \frac{1}{2} \cdot \gamma \cdot \beta \cdot B \cdot N_{\gamma}$$

$$k = 1 + 0.3 \text{ Df/B}$$

$$q = \gamma \cdot \text{Df}$$

For
$$\phi=32$$
, $N_c=38$ $N_q=22$ $N_{\gamma}=20$

Df = 1.20 m

$$k = 1 + 0.3 \times 1.20/2.10$$
 = 1.17
 $q = 1.8 \times 1.2$ = 2.16 t/m²
 $q_u = 1.17 \times 2.16 \times 22 + \frac{1}{2} \times 1.8 \times 1.0 \times 2.55 \times 20 = 101.498 \text{ t/m}^2$
 $q_a = q_u/3$ = 33.833 t/m²

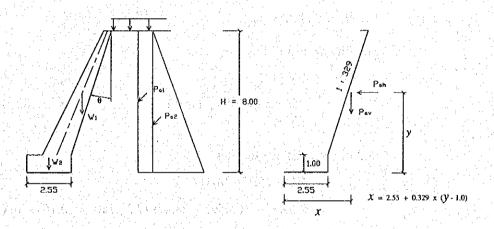
(2) Coefficient of active earth pressure

$$\phi = 32^{\circ}, \quad \alpha = 0, \quad \theta = -18.189^{\circ}, \quad \delta = \phi = 32^{\circ}$$

$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \cdot \cos(\phi + \delta) \cdot \left[1 + \sqrt{\frac{(\sin\phi + \delta) \cdot \sin(\phi - \alpha)}{\cos(\theta + \delta) \cdot \cos(\theta - \alpha)}}\right]^{2}}$$

$$= \frac{\cos^2(32+18.189)}{\cos^2(-18.189) \times \cos(-18.189+32) \left[1 + \sqrt{\frac{\sin(32+32) \times \sin(32)}{\cos(-18.189+32) \times \cos(-18.189)}}\right]^2}$$

$$= 0.158$$


(3) Center Weight of structure

	W _i (t/m)		x ₁ (m)		Wi ⋅ x _i (tm/m)	y _i (m)		Wi y _i (tm/m)
Wı	$(0.45 + 1.65) \times \frac{7.0}{2}$ $\times 2.35$	17.273	0.9 + 1.65/2 + 0.4143 x 2.833	2.899	50.074	$\frac{1.0 + \frac{(2 \times 0.45 + 1.65)}{2.1} \times \frac{1.0}{7}}{7/3}$	3.833	66.207
W ₂	1.0 x 2.55 x 2.35	5.992	2.55/2	1.275	7.640	10/2	0.500	1.000
Σ		23.265			57.714			67.207

$$x_o = \sum W_i \cdot x_i / \sum W = 57.714 / 23.265 = 2.481 \text{ m}$$

 $y_o = \sum W_i \cdot y_i / \sum W = 67.207 / 23.265 = 2.889 \text{ m}$

(4) Stability Analysis

(i) Load Condition

$$Pa_{1} = q \cdot H \cdot Ka$$

$$= 1.0 \times 8.0 \times 0.158 = 1.264 \text{ t/m}$$

$$Pa_{2} = \frac{1}{2} \cdot H^{2} \cdot \gamma_{s} \cdot Ka$$

$$= \frac{1}{2} \times (8.0)^{2} \times 1.8 \times 0.158 = 9.101 \text{ t/m}$$

Horizontal Earth Pressure

Pah₁ = Pa₁ · cos (
$$\delta$$
 + θ)
= 1.264 x cos (32 - 18.189) = 1.227 t/m
Pah₂ = Pa₂ · cos (δ + θ)
= 9.101 x cos (13.811) = 8.838 t/m

Vertical Earth Pressure

Pav₁ = Pa₁ · sin (
$$\delta$$
 + θ)
= 1.264 x sin (13.811) = 0.302 t/m
Pav₂ = Pa₂ · sin (δ + θ)
= 9.101 x sin (13.811) = 2.173 t/m

(iii) Vertical Load and Moment

Vertical Force (t/m)		Arm (m)		Moment (tm/m)
W	23.265			57.714
Pav ₁	0.302	$2.55 + 0.329 \times (4.0 - 0.9)$	3.570	1.078
Pav ₂	2.173	$2.55 + 0.329 \times (8.0/3 - 0.9)$	3.131	6.804
FV	25.740		MV	65,596

(iv) Horizontal Force and Moment

Horiz	ontal Force (t/m)	Arm (m)		Moment (tm/m)
Pahl	1.227	8.0/2	4.000	4.908
P _{ah2}	8.838	8.0/3	2.667	23.571
FH	10.065		MH	28.479

(v) Check of Stability

Stability against tilting

$$SF = FV / FH \cdot \tan \phi$$

= 25.740/10.065 x tan 32 = 1.580
> 1.5

Stability against overturning

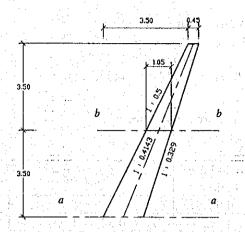
$$e = B/2 - (MV - MH) / FV$$

= 2.55/2 - (65.596 - 28.479) / 25.740 = 0.167 m (-)
< $^{B}/_{6}$ (=0.425 m)

Stability of bearing strata

$$q = FV / B (1 \pm 6e/B)$$

$$q_{max} = {}^{25.740}/_{2.55} x (1 + 6 x 0.167/2.55) = 14.061 t/m^{2}$$


$$< q_{a} (=33.833 t/m^{2})$$

$$q_{max} = {}^{25.740}/_{2.55} x (1 - 6 x 0.167/2.55) = 6.128 t/m^{2}$$

$$> 0$$

Stress strain analysis of wall

(i) Load Condition

(ii) Weight of structure

Sect. a	$W_a =$	$(0.45 + 1.65) \times 7.0/2 \times 2.35$	= 1	17.273	t/m
	$y_2 =$	$(2 \times 0.45 + 1.65)/2.10 \times 7.0/3$	=	2.833	m
	$x_a =$	2.833 x 0.4143 + 1.65/2	= 7	1.999	m
			." <i>)</i>		. 9
Sect. b	$W_b =$	$(0.45 + 1.05) \times 3.5/2 \times 2.35$	= .	6.169	· t/m
		$(2 \times 0.45 + 1.05)/1.50 \times 3.5/3$	=	1.517	m
선수됐습니다	$x_{\rm b} =$	1.517 x 0.4143 + 1.05/2	=	1.153	m

(iii) Earth Pressure

Section a.

$$P_{av 1a} = P_{a 1a} \times \sin(\delta + \theta)$$

= 1.106 x sin (13.811) = 0.264 t/m
 $P_{av 2a} = 6.968 \times \sin(13.811)$ = 1.663 t/m

Section b.

$$P_{a \ 1b} = 1.0 \times 0.158 \times 3.50 = 0.553 \text{ t/m}$$

 $P_{a \ 2b} = \frac{1}{2} \times (3.5)^2 \times 1.8 \times 0.158 = 1.742 \text{ t/m}$

Horizontal Earth Pressure

$$P_{ab\ 1b} = P_{a\ 1b} \ x \ \cos(\delta + \theta)$$

= 0.553 x \cdots (13.811) = 0.537 t/m
 $P_{ab\ 2b} = 1.742 \ x \ \cos(13.811)$ = 1.692 t/m

Vertical Earth Pressure

$P_{ah 1b} = P_{a 1b} \times \sin(\delta + \theta)$				
$= 0.553 \times \sin(13.811)$	ż	=	0.132	t/m
$P_{av 2b} = 1.742 \times \sin(13.811)$	i-	=	0.416	t/m

(iv) Vertical Force and Moment

at section a

Vertical Force (t/m)		Arm (m)	Arm (m)		
Wa	17.273		1.999	34.529	
Pavla	0.264	$\frac{7.0}{2} \times 0.329 + 1.65$	2.802	0.740	
P _{av2a}	1.663	$^{7.0}/_{3} \times 0.329 + 1.65$	2.418	4.021	
FV _a	19.200		MV _a	39.290	

at section b

Vertical Force (t/m)		Arm (m)		Moment (tm/m)		
W_b	6.169		1.153	7.113		
Pavlb	0.132	$3.5/_2 \times 0.329 + 1.05$	1.626	0.215		
P _{av2b}	0.416	$3.5/_3 \times 0.329 + 1.05$	1.434	0.597		
FV_b	6.171		MV _b	7.924		

(v) Horizontal Force and Moment

at section a

Horizontal Force (t/m)		Arm (m)	Moment (tm/m)	
Pahla	1.074	7.0/2	3.500	3.759
P _{ah2a}	6.766	7.0/3	2.333	15.785
FHa	7.840		MH _a	19.544

at section b

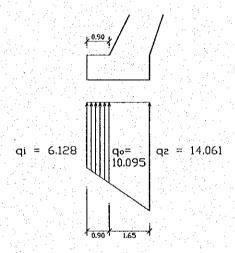
Horizontal Force (t/m)		Arm (m)	Moment (tm/m)		
Pahlb	0.553	3.5/2	1.750	0.968	
P _{ah2b}	1.742	3.5/3	1.167	2.033	
FH_b	2.295		MH _b	3.001	

(vi) Check of Stresses

$$e = B/2 - (MV - MH)/FV$$

q = FV/b (1 ± 6e/B)

at section a.


$$e = 1.65/2 - (39.290 - 19.544)/19.200 = 0.203 \text{ m} (-)$$

 $q_{\text{max}} = 19.200/1.65 \text{ x} (1 + 6 \text{ x} 0.203/1.65) = 20.226 \text{ t/m}^2$
 $= 2.023 \text{ kg/cm}^2$
 $< \sigma_{\text{ca}} (= 60 \text{ kg/cm}^2)$

at section b.

$$e = 1.05/2 - (7.924 - 3.001)/6.717 = 0.208 \text{ m (-)}$$

 $q_{max} = 6.717/1.05 \text{ x } (1 + 6 \text{ x } 0.208/1.05) = 14.001 \text{ t/m}^2$
 $= 1.400 \text{ k/cm}^2$
 $<\sigma_{ca}(= 60 \text{ kg/cm}^2)$

(5) Stress strain analysis of slab

(i) Load Condition

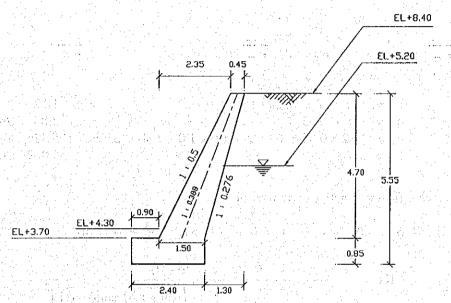
(ii) Weight of Structure

$$W = 0.9 \times 1.0 \times 2.35$$
 = 2.115 t/m
 $M_w = 2.115 \times 0.9/2$ = 0.952 tm/m

(iii) Reaction Beneath Slab

Q =
$$(6.128 + 10.095) \times 0.9/2$$
 = 7.300 t/m
 x_q = $(6.128 \times 2 + 10.095)/16.233 \times 0.9/3$ = 0.413 m
 M_q = 7.300 x 0.413 = 3.015 t/m

(iv) Check of Stress


= 3.015 - 0.952 $M = Mq - M_W$ 2.063 tm/m S = Q - W= 7.300 - 2.1155.185 t/m $I = bh^3/12$ $= 100 \times 100^3 / 12$ $= 8,333,333.000 \text{ cm}^4$ Z = I/y= 8,333,333 / 50 166,666.667 cm³ $\sigma_c = M/Z$ = 206,300/166,666.667 = 1.238 kg/cm² kg/cm² $\sigma_{ca} = 60$ $\tau_c = S/A$ $= 5185 / (100 \times 100)$ 0.519 kg/cm^2 $\tau_{ca} = 5.5$ kg/cm²

3.2.2.2 Leaning Wall for Wet Stone Masonry Type

Consideration Section: WF.105L to WF.110L

(1) Design Condition

(a) Proposed Section

(b) The Material Data

(iii) Wet Stone Masonry

Unit Weight	Υm	=	2.30	t/m³
Allowable Compressive stress	σ_{ca}	=	15	kg/cm ²
Allowable shear strength	τca	=	4.5	kg/cm ²

(iv) Soil Material (Base on geological investigation on SB 3)

N – value	N	= 41	
Soil internal friction angle	ф	= 40°	
Wet unit weight	Ϋ́s	= 2.0	t/m³
Submerged unit weight	Ys	= 1.0	∶t/m³
Cohesion	c	= 0.0	t/m ²

(c) Design Load

(iii) Earth Pressure

Coulomb Formula

Friction angle at wall $\delta = \phi = 40^{\circ}$ (in ordinary)

Angle between back side of wall &

$$= -15.461^{\circ}$$

(atn. 1.3/4.7)

$$q = 1.00 \text{ t/m}^2$$

Allowable bearing capacity beneath slab (2)

$$qu = \alpha \cdot k \cdot c \cdot Nc + k \cdot g \cdot Nq + \frac{1}{2} \cdot \gamma \cdot \beta \cdot B \cdot N_{\gamma}$$

$$k = 1 + 0.3 \text{ Df/B}$$

$$q = \gamma \cdot \text{Df}$$

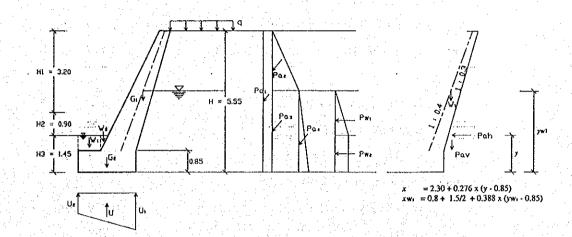
For
$$\phi = 40$$
, $N_c = 75$
 $N_g = 63$
 $N_{\gamma} = 83$

$$Df = 0.85 \text{ m}$$

$$k = 1 + 0.3 \times 0.85/2.15$$
 = 1.12
 $q = 1.0 \times 0.85$ = 2.85 t/m²
 $q_u = 1.12 \times 0.85 \times 63 + \frac{1}{2} \times 1.0 \times 1.0 \times 2.30 \times 83 = 155.426$ t/m²
 $q_a = q_u/3$ = 55.809 t/m²

(3)Coefficient of active earth pressure

$$\phi = 40^{\circ}$$
, $\alpha = 0$, $\theta = -15.641$, $\delta = \phi = 40^{\circ}$


$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \cdot \cos(\phi + \delta) \cdot \left[1 + \sqrt{\frac{(\sin\phi + \delta) \cdot \sin(\phi - \alpha)}{\cos(\theta + \delta) \cdot \cos(\theta - \alpha)}}\right]^{2}}$$

$$= \frac{\cos^2(40+16.7)}{\cos^2(-16.7) \times \cos(-16.7+40) \times \left[1 + \sqrt{\frac{\sin(40+40) \times \sin(40)}{\cos(-16.7+40) \times \cos(-16.7)}}\right]^2}$$

$$= 0.111$$

(4) Stability Analysis

(vi) Load Condition

$$x_2 = 2.30/2 = 1.150 \text{ m}$$

(viii) Uplift Pressure

$$U_1 = (EL+5.20) - (EL+3.70) + 0.85$$
 = 2.350 t/m²
 $U_2 = (EL+4.30) - (EL+3.70) + 0.85$ = 1.450 t/m²
 $U = (U1 + U2) \times 8/2 \times \gamma_w$
= (3.35 + 1.45) x 2.30/2 = 4.370 t/m
 $x_u = 2.30 - (2.35 + 2 \times 1.45) / 3.80 \times 2.3/3$ = 1.241 m

(ix) Earth Pressure

Horizontal Earth Pressure

Pah₁ = Pa₁ x cos (
$$\delta + \theta$$
)
= 0.616 x cos ($40 - 15.641$) = 0.560 t/m
ya₁ = H/2 = 5.55/2 = 2.775 m
Pah₂ = Pa₂ x cos ($\delta + \theta$)
= 1.137 x cos (24.539) = 1.034 t/m
ya₂ = H - 2/3 H₁ = 5.55 - 2/3 x 3.2 = 3.417 m

 $Pah_3 = Pa_3 \times \cos(0 + 0)$ $= 1.669 \times \cos(24.539)$ = 1.519 t/m $Pah_4 = Pa_4 \times \cos(\delta + \theta)$ $= 0.360 \times \cos(24.539)$ = 0.279 t/m $Pah_4 = (H_2 + H_3)/3 = 2.35/3$ = 0.783 m

Vertical Earth Pressure

Pavı	=	$Pa_1 \times sin(\delta + \theta)$			
e v Agol Samo des	=	0.616 x sin (24.539)	==	0.256	t/m
xa ₁	=	2.30 + 0.276 (ya ₁ -0.85)	=	2.831	m
Pav ₂	=	$Pa_2 \times \sin(\delta + \theta)$			
	===	1.137 x sin (24.539)	=	0.472	t/m
xa ₂	=	2.30 + 0.276 (ya ₂ $- 0.85$)	=	3.008	m
Pav ₃	=	Pa ₃ x $\sin(\delta + \theta)$			
	=	1.669 x sin (24.539)	=	0.693	t/m
xa ₃	=	2.30 + 0.276 (ya ₃ + 0.85)	=	2.390	m
Pav ₄	=	Pa ₄ x $\sin(\delta + \theta)$			
	=	0.306 x sin (24.539)	=	0.127	t/m
xa ₄	=	2.30 + 0.276 (ya ₄ $- 0.85$)	=	2.300	m
Passi	ve (earth pressure: to be omitted			

(x) Water Pressure

Vertical water pressure

$$W_1 = 0.80 \times 0.6 \times 1.0$$
 = 0.480 t/m
 $x_{w1} = 0.80/2$ = 0.400 m

$$y_{w1} = 0.85 + 0.6/2$$
 = 1.150 m
 $W_2 = \frac{1}{2} \times 0.6 \times (0.6/2) \times 1.0$ = 0.090 t/m
 $x_{w2} = 0.80 + 0.3/3$ = 0.900 m
 $y_{w2} = 1.45 - 0.6/3$ = 1.250 m

Vertical water pressure

$$P_{w1} = \frac{1}{2} (H_2)^2 \cdot \gamma_w$$

 $= \frac{1}{2} x (0.9)^2 x 1.0$ = 0.405 t/m
 $y_{w1} = H_3 + H_2/3 = 1.45 + 0.9/3$ = 1.750 m
 $P_{w2} = H_2 \cdot \gamma_w \cdot H_3$
 $= 0.9 x 1.0 x 1.45$ = 1.305 m
 $y_{w2} = H_3/2$ = 1.45/2 = 0.725 m

(xi) Vertical Force and Moment

		l Force m)	Arm (m)	Moment (tm/m)			
	Gi	10.540	2.298	24.221			
ſ	G_2	4.497	1.150	5.172			
	W_1	0.480	0.400	0.192			
	W_2	0.090	0.900	0.081			
	Pav ₁	0.256	2.831	0.725			
	Pav ₂	0.472	3.008	1.420			
ſ	Pav ₃	0.693	2.390	1.656			
ſ	Pav ₄	0.127	2,300	0.292			
	U	4.370	1,241	-5.423			
. [FV	12.785	MV	28.335			

(xii) Horizontal Force and Moment

1	tal Force m)	Arm (m)	Moment (tm/m)
Pah ₁	0.560	2.775	1.554
Pah ₂	1.034	3.417	3.533
Pah ₃	1.519	1.175	1.785
Pah ₄	0.279	0.783	0.218
Pw ₁	0.405	1.750	0.709
Pw ₂	1.305	0.725	0.946
FH	5.102	a Colifor Col MH	8.745

(xiii) Check of Stability

Stability against tilting

SF = FV / FH · tan
$$\phi$$

= 12.785/5.102 x tan 40 = 2.103
> 1.5

Stability against overturning

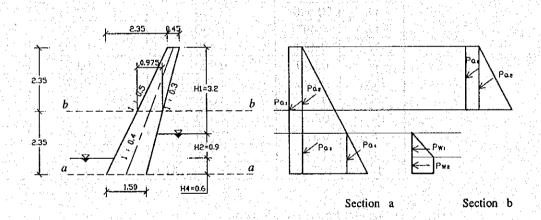
$$e = B/2 - (MV - MH)/FV$$

= 2.30/2 - (28.335 - 8.745)/12.785 = 0.382 m (-)
< $^{B}/_{6}$ (=0.383 m)

Stability of bearing strata

$$q = FV / B (1 \pm 6e/B)$$

$$q_{max} = 12.785/_{2.30} x (1 + 6 \times 0.382/2.30) = 11.098 t/m^{2}$$


$$< q_{a} (= 51.809 t/m^{2})$$

$$q_{min} = 12.785/_{2.30} x (1 + 6 \times 0.382/2.30) = 0.019 t/m^{2}$$

$$> 0$$

(5) Stress Strain Analysis of Wall

(i) Load Condition

(ii) Load Condition

Section a

$$W_a = (0.45 + 1.50) \times 4.70/2 \times 2.30 = 10.540 \text{ t/m}$$

 $y_a = (2 \times 0.45 + 1.5)/1.95 \times 4.7/3 = 1.928 \text{ m}$
 $x_a = 1.928 \times 0.388 + 1.50/2 = 1.498 \text{ m}$

Section a

$$W_b = (0.45 + 0.975) \times 2.35/2 \times 2.30$$
 = 3.851 t/m

	$y_b = ($	(2 x 0.45 + 0.975)/1.425 x 2.35/3	=	1.031	m
	$x_b = 1$	1.031 x 0.388 + 0.975/2	=	0.877	m
iii)	Load Condi	tion			٠.
	Section a		%		•
	$Pa_1 a = 0$	_l ·Ka·H			
	= 1	1.0 x 0.111 x 4.7	=	0.522	t/m
	$Pa_2 a = \frac{1}{2}$	$^{\prime}_{2}$ $\mathrm{H_{1}}^{2} \cdot \gamma_{s} \cdot \mathrm{Ka}$	1.		
	= 1	$4 \times (3.2)^2 \times 2.0 \times 0.111$	=	1.137	t/m
	$Pa_3 a = I$	$H_1 \cdot \gamma_s \cdot Ka \cdot (H_2 + H_4)$			·.
	= 3	3.2 x 2.0 x 0.111 x 1.5	=	1.066	t/m
	$Pa_4 a = 1$	$\frac{1}{2} (H_2 + H_4)^2 \cdot \gamma_5^4 \cdot Ka$			
	= 1	$4 \times (1.5)^2 \times 1.0 \times 0.111$	=	0.125	t/m
	Horizontal e	earth pressure			
	$Pah_1 a = I$	$Pa_1 a \times cos(\delta + \theta)$			i Tewa Maja
	= 0).522 x cos (24.539)	=	0.475	t/m
	$Pah_2 a = 1$	1.137 x cos (24.539)	=	1.034	t/m
	$Pah_3 a = 1$	1.066 x cos (24.539)	-	0.969	t/m
	$Pah_4 a = 0$).125 x cos (24.539)	=	0.114	t/m
	Vertical ear	th pressure			
	$Pav_1 a = I$	$Pa_1 a \times \sin(\delta + \theta)$			
	= C	0.522 x sin (24.539)	=	0.217	t/m
	$Pav_2 a = 1$	1.137 x sin (24.539)	=	0.472	t/m
	$Pav_3 a = 1$	1.066 x sin (24.539)	=	0.443	t/m
	$Pav_4 a = 0$).125 x sin (24.539)	=	0.052	t/m
	Section b				
	$Pa_1 b = c$	ı · Ka · H			
	= 1	1.0 x 0.111 x 2.35	,=;	0.261	t/m
	$Pa_2b = \frac{1}{2}$	⁄ ₂ H ₁ ² γ ₃ Ka			
	 III TOY 64-14 	4 x (2.35) ² x 2.0 x 0.111	=	0.613	t/m
	Horizontal e	earth pressure			
	$Pah_1 b = 0$	0.261 x cos (24.539)	=	0.237	t/m
	$Pah_2 b = 0$	0.613 x cos (24.539)	=	0.558	t/m
医多点类		医骶足畸形 网络 海绵 医乳腺病 医多克斯氏管切除性炎	11		

Vertical earth pressure

 $Pav_1 b = 0.261 \times sin (24.539)$ = 0.108 t/m $Pav_2 b = 0.613 \times sin (24.539)$ = 0.255 t/m

(iv) Water Pressure

(v) Vertical Force and Moment

Vertical Force (t/m)		Arm (m)	Moment (tm/m)	
Wa	10.540	[18] <u>基金等的</u> 是18.18。1997年	1.498	15.789
Pavla	0.217	$\frac{4.7}{2} \times 0.276 + 1.50$	2.149	0.466
P _{av2a}	0.472	(1.5+ 3.2/3) x 0.276 + 1.50	2.208	1.042
P _{av3a}	0.443	$1.5/_2 \times 0.276 + 1.50$	1.707	0.756
Pav4a	0.052	$^{1.5}/_{3} \times 0.276 + 1.50$	1.638	0.085
FVa	11.724	l de la companya de l	IV _a	18.139

at section	on b	The Art Switzer Law Constitution		
Vertical Force (t/m)		Arm (m)	Moment (tm/m)	
W _b	3.851	0.877	3.377	
Pavib	0.108	$\frac{2.35}{2} \times 0.276 + 0.975$ 1.299	0.140	
P _{av2b}	0.255	$2.35/_3 \times 0.276 + 0.975$ 1.191	0.304	
FV_b	4.214	MV_b	3.821	

(vi) Horizontal Force and Moment

at section a

46.5	izontal e (t/m)	Arm (m)	Moment (tm/m)
Pavia	0.475	4.7/2 2.350	1.116
P _{av2a}	1.034	1.5+ 3.2/3 2.567	2.654
P _{av3a}	0.969	$1.3/_{2}$ 0.750	0.727
P _{av4a}	0.114	1.5/3 0.500	0.057
FH _a	2.592	un di este cura dia una MV, sta	4.554

at section b

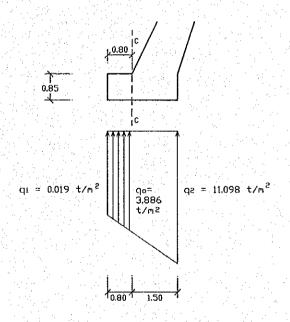
Vertical Force (t/m)		and the second s		Arm (m)	Moment (tm/m)
Pavib	0.237	$ ^{2.35}/_{2}$ 1.175	0.278		
P _{av2b}	0.558	2.35/3	0.437		
FV_b	0.795	MV_b	0.715		

Check of Stresses

= B/2 - (MV - MH)/FV

= $FV/b \cdot (1 \pm 6e/B)$ for e < B/6

at section a.


$$e$$
 = 1.50/2 - (18.139 - 4.554)/11.724 = 0.409 m
 q_{max} = 11.734/1.5 x (1 + 6 x 0.409/1.5) = 20.603 t/m²
= 2.060 kg/cm²
 $< \sigma_{ca} (= 15 \text{ kg/cm}^2)$

at section b.

$$e = 0.975/2 - (3.821 - 0.715)/4.214 = 0.250$$
 m
 $q_{max} = 4.214/0.975 \text{ x} (1+6 \text{ x} 0.250/0.975) = 10.971 \text{ t/m}^2$
 $= 1.097 \text{ kg/cm}^2$
 $<\sigma_{ca}(= 15 \text{ kg/cm}^2)$

(6) Stress strain analysis of slab

(v) Load Condition

(vi) Weight of Structure

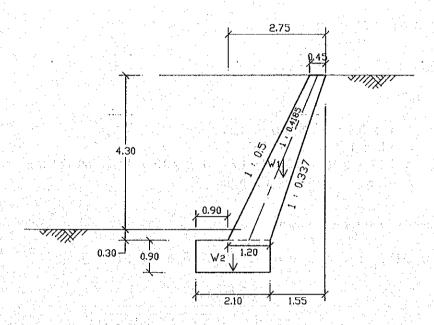
$$W = 0.8 \times 0.85 \times 2.3$$
 = 1.564 t/m
 $M_w = 1.564 \times 0.8/2$ = 0.626 tm/m

(vii) Reaction Beneath Slab

$$Q = (0.019 + 3.886)/2 \times 0.8 = 1.562 \text{ t/m}$$

```
x_q = (2 \times 0.019 + 3.886)/3.905 \times 0.8/3 = 0.268 \text{ m}

M_q = 1.562 \times 0.268 = 0.419 \text{ t/m}
```


(viii) Check of Stress

```
M = Mq - M_W
                    = 0.626 - 0.419
                                                            0.207 tm/m
                    = 1.564 - 1.562
S = Q - W
                                                            0.002 t/m
I = bh^3/12
                    = 100 \times 85^3 / 12
                                               = 5,117,708.000 \text{ cm}^4
Z = I/y
                    = 5,117,708/42.5
                                               =
                                                    120,416.667 cm<sup>3</sup>
\sigma_c = M/Z
                    = 20,700 / 120,416.667 =
                                                           0.172 \text{ kg/cm}^2
                                               < \sigma_{ca} (= 15 \text{ kg/cm}^2)
                                                          0.0002 kg/cm<sup>2</sup>
                    = 2/(100 \times 85)
\tau_c = S/A
                                                     \tau_{ca} (= 4.5 \text{ kg/cm}^2)
```

3.2.2.3 Leaning Wall for Wet Stone Masonry Type

Consideration Section: WF.91R+25.0 to WF.94R+22.0

- (1) Design Condition
 - (a) Proposed Section

- (b) The Material Data
 - (i) Wet Stone Masonry

Unit Weight	$\gamma_{\rm m}$	=	2.30	t/m ³
Allowable Compressive stress	σ_{ca}	=	15	kg/cm ²
Allowable shear strength	тса	=	4.5	kg/cm ²

(ii) Soil Material (Base on geological investigation on RB 26)

N – value	ah. ara)		N	=	17	
Soil internal	friction	angle	ф	=	31°	
Unit weight			γs	. =	1.80	t/m ³
Cohesion	建筑	特殊 经	C	=	0.0	t/m ²

- (c) Design Load
 - (i) Earth Pressure

Coulomb Formula

Friction angle at wall

Angle between back side of wall & vertical plane $\phi = 18.622^{\circ}$ (atn. 1.55/4.6)

$$q = 1.00 t/m^2$$

(2) Allowable bearing capacity beneath slab

$$qu = \alpha \cdot k \cdot c \cdot Nc + k \cdot g \cdot Ng + \frac{1}{2} \cdot \gamma \cdot \beta \cdot B \cdot N_{\gamma}$$

$$k = 1 + 0.3 \text{ Df/B}$$

$$q = \gamma \cdot Df$$

For
$$\phi = 31$$
, $N_c = 30$
 $N_g = 17$
 $N_{\gamma} = 14$

$$Df = 1.20 \text{ m}$$

$$k = 1 + 0.3 \times 1.20/2.10 = 1.17$$

 $q = 1.8 \times 1.20 = 2.16 \text{ t/m}^2$
 $q_u = 1.17 \times 2.16 \times 17 + \frac{1}{2} 1.8 \times 1 \times 2.10 \times 14 = 69.422 \text{ t/m}^2$
 $q_a = q_u/3 = 23.14 \text{ t/m}^2$ (in ordinary)

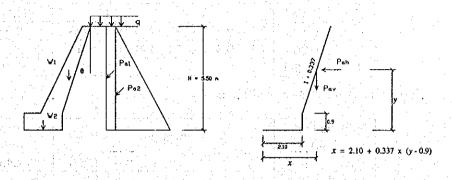
(3) Coefficient of active earth pressure

$$\phi = 31^{\circ}, \quad \alpha = 0, \quad \theta = -18.622, \quad \delta = \phi = 31^{\circ}$$

$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \cdot \cos(\phi + \delta) \cdot \left[1 + \sqrt{\frac{(\sin\phi + \delta) \cdot \sin(\phi - \alpha)}{\cos(\theta + \delta) \cdot \cos(\theta - \alpha)}}\right]^{2}}$$

$$= \frac{\cos^{2}(31 + 18.622)}{\cos^{2}(-18.622) \times \cos(-18.622 + 31) \times \left[1 + \sqrt{\frac{\sin(31 + 31) \times \sin(31)}{\cos(-18.622 + 31) \times \cos(-18.622)}}\right]^{2}}$$

$$= 0.170$$


(4) Center Weight of structure

	W _i (Vm)		ង (m)		Wixx₁ (tm/m)	y _i (m)		Wixy _i (tm/m)
Wı	$(0.45 + 1.2) \times {}^{4.6}/_{2} \times 2.3$	8.729	0.9 + 0.6 + 0.4185 x 1.952	2.317	20.225	$0.9 + \frac{(2x0.45+1.2)}{1.65}$ X $\frac{4.6}{3}$	2.852	24.895
W ₂	0.9 x 2.1 x 2.3	4.347	21/2	1.050	4.564	0.9/2	0.450	1.856
Σ		13.076			24.789	i ba Dark Tirk		26.851

$$x_0 = \Sigma W_i \cdot x_i / \Sigma W = 24.789 / 13.076 = 1.895 \text{ m}$$

 $y_0 = \Sigma W_i \cdot y_i / \Sigma W = 26.851 / 13.076 = 2.053 \text{ m}$

(5) Stability Analysis

(i) Load Condition

(ii) Earth Pressure

$$Pa_{1} = q \cdot H \cdot Ka$$

$$= 1.0 \text{ x } 5.5 \text{ x } 0.165 = 0.908 \text{ t/m}$$

$$Pa_{2} = \frac{1}{2} \cdot H^{2} \cdot \gamma_{s} \cdot Ka$$

$$= \frac{1}{2} \cdot (5.5)^{2} \cdot 1.8 \cdot 0.165 = 4.492 \text{ t/m}$$
Horizontal Earth Pressure
$$Pah_{1} = Pa_{1} \cdot \cos(\delta + \theta)$$

$$= 0.908 \text{ x } \cos(31 - 18.622) = 0.886 \text{ t/m}$$

$$Pah_{2} = Pa_{2} \cdot \cos(\delta + \theta)$$

$$= 4.492 \text{ x } \cos(12.378) = 4.338 \text{ t/m}$$

$$Vertical Earth Pressure$$

$$Pav_{1} = Pa_{1} \cdot \sin(\delta + \theta)$$

$$= 0.908 \text{ x } \sin(12.378) = 0.195 \text{ t/m}$$

$$Pav_{2} = Pa_{2} \cdot \sin(\delta + \theta)$$

$$= 4.492 \text{ x } \sin(12.378) = 0.963 \text{ t/m}$$

(iii) Vertical Load and Moment

Vertical Force (t/m)		Arm (m)		Moment (tm/m)	
W	13.076			22.607	
Pavı	0.195	$2.1 + 0.337 \times (2.75 - 0.9)$	2.723	0.531	
Pav ₂	0.963	$2.1 + 0.337 \times (1.833 - 0.9)$	2.414	2.325	
FV	14.234	Properties with the grown was the	MV	25.463	

(iv) Horizontal Force and Moment

A 10 .	al Force /m)	Arm (m)		Moment (tm/m)
Pavi	0.886	5.5/2	2.750	2.436
Pav ₂	4.338	5.5/3	1.833	7.953
FH	5.224		МН	10.389

(v) Check of Stability

Stability against tilting

$$SF = FV / FH \cdot \tan \phi$$

= 14.234/5.224 x tan 31 = 1.637
~ 1.5

Stability against overturning

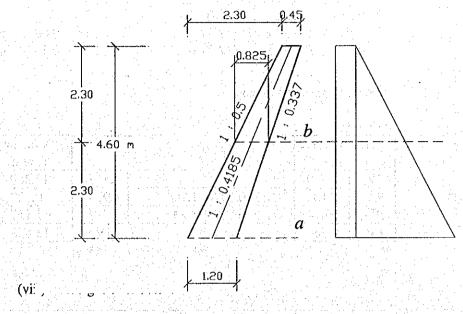
$$e = B/2 - (MV - MH) / FV$$

= 2.10/2 - (25.463 - 10.389) / 14.234 = 0.009 m (-)
< $^{B}/_{6}$ (=0.35 m)

Stability of bearing strata

$$q = FV / B (1 \pm 6e/B)$$

$$q_{max} = 14.234/_{2.1} \times (1 + 6 \times 0.009/2.1) = 6.790 \text{ t/m}^2$$


$$< q_a (=23.141 \text{ t/m}^2)$$

$$q_{max} = 14.234/_{2.1} \times (1 - 6 \times 0.009/2.1) = 6.604 \text{ t/m}^2$$

$$> 0$$

(6) Stress strain analysis of wall

(vii) Load Condition

Sect. a	$W_a =$	$(0.45 + 1.2)/2 \times 4.6 \times 2.3 = 8.72$	9 t/m
	$y_a =$	$(2 \times 0.45 + 1.2)/1.65 \times 4.6/3 = 1.95$	2 m
	$x_a =$	$1.952 \times 0.4185 + 0.6 = 1.41$	7 m
Sect. b	$W_b =$	$(0.45 + 0.825)/2 \times 2.30 \times 2.30 = 3.50$	5 t/m
11 7 27	$y_b =$	$(2 \times 0.45 + 0.825)/1.275 \times 2.3/3 = 1.03$	7 m
	$x_{\rm b} =$	$1.037 \times 0.4185 + 0.6 = 1.03$	4 m

Earth Pressure (ix)

Section a.

	$P_{a 1a} =$	q · Ka · H			
	=	1.0 x 0.165 x 4.6		0.759	t/m
9.3	$P_{a 2a} =$	$\frac{1}{2} \cdot H^2 \cdot \gamma_s \cdot Ka$			
		$\frac{1}{2} \cdot (4.6)^2 \times 1.8 \times 0.165$		3.142	t/m
	Horizon	tal Earth Pressure			
	$P_{ah la} =$	$P_{a \mid a} \times \cos(\delta + \theta)$			
		0.759 x cos (12.378)		0.741	t/m
	$P_{ah\ 2a} =$	3.142 x cos (12.378)	=	3.069	t/m
	Vertical	Earth Pressure			
	$P_{av la} =$	$P_{a \mid a} \times \sin(\delta + \theta)$	Jaka Barasa		
		0.759 x sin (12.378)		0.163	t/m
	$P_{av 2a} =$	3.142 x sin (12.378)		0.674	t/m
		[편안 [18] [18] [18] [18] [18]			
Sec	ction b.	보이 보는 사람들은 사람이 되었다. 그 경험이 되었다. 보이 보는 사람들은 사람들이 가장 하나 있다.			
	$P_{a 1b} =$	1.0 x 0.165 x 2.30		0.380	t/m
	$P_{a 2b} =$	$\frac{1}{2} \cdot (2.3)^2 \times 1.8 \times 0.165$	<u> </u>	0.786	t/m

Horizontal Earth Pressure

$$P_{ah\ 1b} = P_{a\ 1b} \times \cos(\delta + \theta)$$

= 0.380 x cos (12.378) = 0.371 t/m
 $P_{ah\ 2b} = 0.786 \times \cos(12.378)$ = 0.767 t/m

Vertical Earth Pressure

$P_{ah 1b} = P_{a 1b} x \sin (\delta + \theta)$				19.
$= 0.380 \times \sin(12.378)$		= .	0.081	t/m
$P_{av 2b} = 0.786 \times \sin(12.378)$	1	=	0.168	į t/m

(x) Vertical Force and Moment

at section a

1	al Force /m)	Arm (m)		Moment (tm/m)
Wa	8.729		1.417	12.369
Pavla	0.163	$^{4.6}/_{2}$ x $0.337 + 1.20$	1.975	0.322
P _{av2a}	0.674	$\frac{4.6}{3} \times 0.337 + 1.20$	1.717	1.157
FVa	9.566		MVa	13.848

at section b

2.37	al Force /m)	Arm (m)		Moment (tm/m)
Wb	3.505		1.034	3.624
Pavlb	0.081	$^{2.3}/_{2} \times 0.337 + 0.825$	1.213	0.098
P _{av2b}	0.168	$^{2.3}$ / ₃ x 0.337 + 0.825	1.083	0.182
FV_b	3.754		MV _b	3.904

(xi) Horizontal Force and Moment

at section a

at section	JII a		
	izontal e (t/m)	Arm (m)	Moment (tm/m)
Pahla	0.741	4.6/2	1.704
P _{ah2a}	3.069	4.6/3	4.705
FH _a	3.810	MH _a	6.409

at section b

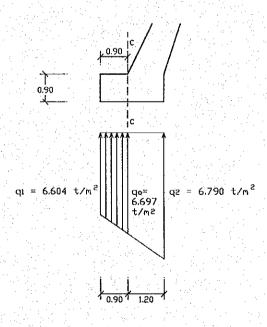
	izontal e (t/m)			Moment (tm/m)
P_{ah1b}	0.371	2.3/2	1.150	0.427
Pah2b	0.767	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767	0.588
FH_b	1.138		МНь	1.015

(xii) Check of Stresses

$$e = B/2 - (MV - MH)/FV$$

 $q = FV/b \cdot (1 \pm 6e/B)$

at section a.


$$e = 1.20/2 - (13.848 - 6.409)/9.566 = 0.18 \text{ m}$$

 $q_{\text{max}} = 9.566/1.2 \text{ x} (1 + 6 \text{ x} 0.18/1.2) = 15.146 \text{ t/m}^2$
 $= 1.515 \text{ kg/cm}^2$
 $< \sigma_{\text{ca}} (= 15 \text{ kg/cm}^2)$

at section b.

$$e = 0.825/2 - (3.904 - 1.015)/3.754 = 0.357$$
 m
 $q_{max} = 3.754/0.825$ x $(1 + 6 \times 0.357/0.825) = 16.365$ t/m²
 $= 1.637$ kg/cm²
 $< \sigma_{ca} (= 15 \text{ kg/cm}^2)$

(7) Stress strain analysis of slab

(ix) Load Condition

(x) Weight of Structure

$$W = 0.9 \times 0.9 \times 2.3 = 1.863 \text{ t/m}$$

 $M_w = 1.863 \times 0.9/2 = 0.838 \text{ tm/m}$

(xi) Reaction Beneath Slab

```
Q = (6.604 + 6.697) \times 0.9/2 = 5.985 \text{ t/m}

x_q = (6.604 \times 2 + 6.697)/13.301 \times 0.9/3 = 0.449 \text{ m}

M_q = 5.985 \times 0.449 = 2.687 \text{ t/m}
```

(xii) Check of Stress

CHAPTER 4 SIMONGAN WEIR

4.1 Scope of Work

Aiming at flood control in Garang River and water supply for PDAM intake and intake facilities for Semarang River and the left bank irrigation channel, the existing fixed type weir is to be reconstructed as a gated weir composed of the following structures. The weir is constructed at the same location as the existing one.

- ① Flood discharge gates,
- ② Sediment flush gates,
- 3 Main weir body comprised of gate piers, gate floor slabs and operation decks,
- Stilling basin, concrete apron and side approach walls,
- (5) Intake structures for Semarang River and left bank irrigation channel,
- Maintenance and approach bridges,
- (7) Gate control houses, Operation/Management office building, and
- Protection works for riverbed/riverbank of up and downstream channels

Based on the definitive plan (basic design), the detailed design of the weir is being carried out. The progress of the detailed design works is presented below.

Design Conditions and Structural Dimensions

Design conditions determined in the basic design are summarized below.

(a) Channel Dimensions and Elevations of Structure

- Design flood discharge	790 m ³ /s
- Width of channel (Flood discharge portion)	60.5 m
- Water level	
High water level	EL. 8.000
Normal water level (upstream channel)	EL. 5.200
- Elevation of structure	
Design dike crown	EL. 9.000
Gate floor elevation (design Riverbed)	EL 1.500
Floor level of stilling basin	EL. 0.900
Lower end of riverbed protection	EL0.100
- Underside elevation of gate when opened	EL 9.000
- Top elevation of gate pier	EL 15.600
- Floor elevation of intake (right bank)	EL, 3,800
- Floor elevation of intake (left bank)	EL. 4.000

(b) Structural Dimensions of Weir and Gate

The structural dimensions of weir are summarized in the following table.

Gate

Item	Dimension
- Flood discharge gate	3 gates
Gate type	Shell type steel roller gate
Height	3:70 m
Clear span length	18,50 m
- Sediment discharge gate	2 gates
Gate type	Girder type steel roller gate
Height	4.35 m
Clear span length	5.50 m (A page 4 9 1 page 5 1
- Right intake gate	for Semarang River
Gate type	Steel slide gate
Dimension	H=2.0m x W=2.25m x 4
Water intake	0.50 m ³ /s
- Left intake gate	for Irrigation Channel
Gate type	Steel slide gate
Dimension	H=2.0m x W=2.00m x 2
Water intake	0.15 m ³ /s

Weir Structure

if the same with the same and t	Dimension
- Number of pier	Center pier: 4, End pier: 2
- Center pier	
Length (flow direction)	16.5 m
Width (right angle to flow)	2.5 m x 4 units
Height 1997 1997 1997	14.1 mg 4 12.2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Footing the state of the second	18.5 m x 8.0 m x 2.2/1.6 m
- End pier	
Length (flow direction)	16.5 m
Width (right angle to flow)	2.00 m x 2 units
Height	14.1 m
Footing	18.5 m x 15.0 m x 2.2/1.6 m
- Gate floor slab	18.5 m x 13.0 m x 2.0/1.4 m
- Stilling basin	L=20.0 m, Depth=0.6 m
- Concrete apron (Downstream-1)	76.5m x 15.0m x 1.2m
- Concrete apron (Downstream-2)	79.5m x 10.0m x 1.0m
- Concrete apron (Upstream)	76.5m x 10.0m x 7.5m
- Approach wall (Downstream-1)	H=9.1m, L=15.0m
- Approach wall (Downstream-2)	H=7.5m, L=10.0m
- Approach wall (Upstream)	H=8.5m, L=15.0m
- Deck of Control House	6.7m x 6.7m x 2units, 13.05m x 6.70m x 2units

4.2 Main Weir

4.2.1 **Design Condition**

(a) Established position of Simongan Weir		WF.99+18.50 n
(b) Design dike crown level		EL +9.00 m
(c) Design riverbed level		EL +1.50 m

(d) Top of flood discharge gate elevation

EL +5.20 m

none

(d) Hydraulic condition

On gate operation rule of Simongan Weir, when Garang river will get design discharge that is above a 70.0 m³/s (overflowing water depth is about 0.65 m), flood discharge gates of Simongan Weir will be opened.

Maintenance water requirement is usually discharged from Jatibarang Dam. Therefore, in stability and structure calculation, hydraulic conditions are decided as follows.

(i) Normal condition

Design discharge	$Q = 70.0 \text{ m}^3/\text{s}$
Upstream water level at gate	EL+5.85 m
Downstream water level at gate	EL+1.55 m

(ii) Design flood condition

Design discharge	$Q = 790.0 \text{ m}^3/\text{s}$
Upstream water level at gate	EL+8.00 m
Downstream water level at gate	EL+8.00 m

(iii) Constructional condition Design discharge

relation for the state of the first section of the		
Upstream water level at gate		Bottom of structure
Downstream water level at gate	e	Bottom of structure
		the Artist of the Artist Control of the Control of

Design discharge	$Q = 70.0 \text{ m}^3/\text{s}$
Upstream water level at gate	EL+5.85 m
Downstream water level at gate	EL+1.55 m

(1) Design Criteria

(a) Material

(i)

Reinforced concrete σ ck = 250 equivalent	kgf/cm ²	or
equivalent	and the first	
		٠, ،
Leveling concrete σ ck = 175	kgf/cm ²	or
equivalent	viv.Up (
Secondary concrete σ ck = 225	kgf/cm²	or
equivalent	ely in	. 3

(ii) Concrete fabrication

PC pile 500 kgf/cm² equivalent Concrete sheet pile ock = 350 kgf/cm² equivalent (iii) Reinforcing bar Deformed bar JIS SD 295 or equivalent Round bar JIS SR 235 or equivalent (iv) Structural steel H-steel pile JIS SS 400 or equivalent Steel sheet pile JIS SY 295 or equivalent (v) Backfill and filling materials Soil Sand (vi) Others Other materials are followed by "DESIGN CRITERIA REPORT (VOLUME one (1))".

(b) Unit weight

(i) Concrete

Reinforced concrete $\gamma c = 2.50 \text{ tf/m}^3$ Plain concrete $\gamma c' = 2.35 \text{ tf/m}^3$ (ii) Steel material $\gamma s = 7.85 \text{ tf/m}^3$

(iii) Backfill and filling materials

Wet unit weight $\gamma t = 1.80 \text{ tf/m}^3$ Submerged unit weight $\gamma^3 = 1.00 \text{ tf/m}^3$ Internal friction angle $\phi = 30.00$ ° Cohesion $C = 0.00 \text{ tf/m}^2$ (iv) Timber $y = 0.30 \text{ tf/m}^3$ (v) Asphalt pavement $\gamma = 2.30 \text{ tf/m}^3$

(vi) Others

Other materials are followed by "DESIGN CRITERIA REPORT (VOLUME one (1))".

(c) Allowable strength capacity of materials

(i) Reinforced concrete

Allowable compressive stress due to bending $\sigma ca = 75.0 \text{ kgf/cm}^2$ Allowable axial compressive stress $\sigma ca = 60.0 \text{ kgf/cm}^2$ Allowable shearing stress $\tau cal = 3.8 \text{ kgf/cm}^2$ Allowable punching shear stress $\tau ca3 = 8.8 \text{ kgf/cm}^2$ Allowable bond stress (for unformed bar) $tba = 15.0 \text{ kgf/cm}^2$

The value of allowable bearing stress at bottom slab concrete for pile head treatment work is described as follows.

Consideration item		Allowable stress (kgf/cm²)	
		Normal	Earthquake
Allowable vertical bearing stress	σbav	112	168
Allowable horizontal bearing stress	σbah	67	100
Allowable punching shear stress	тса3	8	.8

(ii) Reinforced bar

Allowable tensile stress

$$\sigma$$
sa = 1,600 kgf/cm² (underwater)
= 1,800 kgf/cm² (Aerial)

(iii) Steel material (SS 400)

Allowable axial tensile stress

 σ sa = 1,400 kgf/cm²

Allowable bending tensile stress

 σ sa = 1,400 kgf/cm²

Allowable axial compressive stress

In case of $\frac{1}{r} \le 20$

 σ sa = 1,400 kgf/cm²

In case of $20 < \frac{1}{r} \le 93$

 σ sa = 1,400 - 8.4×($\frac{l}{l}$ - 20) kgf/cm²

In case of $\frac{1}{r} > 93$

 $\sigma sa = \frac{12,000,000}{6,700 + (l/r)} \text{ kgf/cm}^2$

Where,

1: Member of effective buckling length (cm)

r: Radius of gyration in member (cm)

Allowable shearing stress

 τ sa = 800 kgf/cm²

But in temporary construction, the above values show a 50 % increase.

(iv) Others

Other materials are followed by "DESIGN CRITERIA REPORT (VOLUME one (1))".

(d) Extra allowable stress

In case of temperature change

a 15 % increase

In case of earthquake

a 50 % increase

In case of temperature change with earthquake

a 65 % increase

(e) Design load

(i) Earth pressure

The calculation of earth pressure follows Coulomb's formula. The value of friction angle at wall (δ) is shown as follows.

Friction angle at wall (δ)

Kind of calculation	Item	Normal condition	Earthquake condition
Stability calculation	Soil to soil	ф	ф / 2
Structural calculation	Soil to concrete	ф /3	0

Where,

 ϕ : internal friction angle of soil (degree)

(ii) Surcharge load

 $\begin{array}{lll} \mbox{Normal condition} & q = 1.00 \ \mbox{tf/m}^2 \\ \mbox{Construction} & q = 1.00 \ \mbox{tf/m}^2 \\ \mbox{Design flood condition} & q = 1.00 \ \mbox{tf/m}^2 \\ \mbox{Earthquake condition} & q' = 0.50 \ \mbox{ft/m}^2 \\ \end{array}$

(iii) Wind load

 $W = 0.15 \text{ tf/m}^2$

(to horizontal projective area)

(iv) Sidewalk live load

 $W = 0.30 \text{ tf/m}^2$

(v) Shed load

 $W = 0.50 \text{ tf/m}^2$

(vi) Temperature change

The assumed ambient temperature for design purpose is 30 °C, and structure are designed for a variation of minimum 15 °C to maximum 40 °C. The coefficients of liner expansion of 1.0×1.0^{-5} and 1.2×1.0^{-5} are used for concrete member and steel member.

(vii) Muddy soil pressure

Flood discharge gates of Simongan Weir have to be always shut to take the waters of Garang river.

It assumes that muddy soil is accumulated on gate floor slab until one (1) meter depth.

(viii) Earthquake load

There is Simongan Weir that is located between two zone which has a difference factor (Z).on geographic position, therefore, the average value of those different factors will be adopted for detailed design. Formula is shown on "DESIGN CRITERIA REPORT (VOLUME one (1))", while any others factor are shown as follows.

ac = 160 cm/s² (design shock acceleration: return period 100 years)

n = 1.56 (coefficient for soil type: alluvium)

m = 0.89 (coefficient for soil type: alluvium) and

g = 980 cm/s² (acceleration of gravity)

In case of
$$Z = 0.56$$

$$ad_1 = n(ac \times Z)^m = 1.56 \times (160 \times 0.56)^{0.89} = 85.25 \text{ cm/s}^2$$

In case of Z = 1.00

$$ad_2 = n(ac \times Z)^m = 1.56 \times (160 \times 1.00)^{0.89} = 142.82 \text{ cm/s}^2$$

$$Ave(ad) = (ad_1 + ad_2)/2 \neq 114.04$$

Therefore.

$$E = ad/g = 114.04/980 = 0.116 = 0.12$$

(ix) Others

Other materials are followed by "DESIGN CRITERIA REPORT (VOLUME one (1))".

(f) The numbers

(i) Elastic modulus

In case of calculation of elastic deformation

Steel materials

Es = 2.1×10^6 kgf/cm²

Concrete

 $Ec = 2.45 \times 10^5 \text{ kgf/cm}^2$

In case of stress calculation of member

Reinforced bar

Es = 2.1×10^6 kgf/cm²

Concrete

 $Ec = 1.4 \times 10^5 \text{ kgf/cm}^2$

(ii) Safety factor of foundation

The pile foundation with bearing layer is introduced into Simongan Weir, because of thinking about resistance of ground subsidence around Semarang City and importance of intake structure.

Safety factor of pile foundation is shown as follows.

Allowable compressive bearing capacity

Loading condition	Safety factor
Loading condition	Bearing pile
Normal case	3
Seismic case	2

Allowable axial pull-out capacity

Landing andition	Safety factor	
Loading condition	Bearing pile	
Normal case	6	
Seismic case	3 1	

Allowable displacement

Kind of displacement	Normal case	Seismic case
Horizontal displacement	10 mm	15 mm
Vertical displacement	10~20 mm	10~20 mm
Angle of inclination	1/500~1/1,000 radian	1/500~1/1,000 radian

(iii) Minimum thickness of structure member

Minimum thickness of reinforced concrete member shall be 30 cm for river structures subjecting to river current about workability.

(iv) Minimum concrete cover

Protective cover for reinforced bar shall not be less than the following.

The following numbers are shown the distance between concrete surface and center of reinforced bar.

Important concrete footing and slab exposed to soil 115 i	mm
Lower side of footing supported by pile foundation 165 i	7.
Important structures exposed to weather or backfilling soil or under water 90 m	ım
Not exposed to earth or weather 50 m	ım

4.2.2 Gate pier

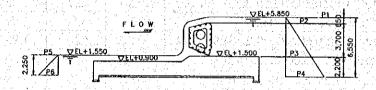
4.2.2.1 Center Pier

1. Loading Calculation

Weight of body

Total weights of center weir pier are shown as follows.

Table of total weight of center pier


		Weight X		YZ	
No.	Calculation form	(tf)	(m)	(m)	(m)
	1.60×18.50×8.00×2.50 tf/m³	592.00	9.25	0.80	4.00
1	$-(1.10\times3.05\times0.50\times(2.50-2.35)\text{tf/m}^3\times2$	-0.50	10.75	1.35	4.00
2	$7.75 \times 0.60 \times 8.00 \times 2.50 \text{ tf/m}^3$	93.00	3.88	1.90	4.00
2	$-(1.00\times3.45\times0.50\times(2.50-2.35)\text{tf/m}^3\times2$	-0.52	6.51	1.95	4.00
3	$(0.90 \times 0.60)/2 \times 8.00 \times 2.50 \text{ tf/m}^3$	5.40	8.05	1.80	4.00
4	$0.50 \times \pi \times 1.25^2 \times 7.50 \times 2.50 \text{ tf/m}^3$	46.02	1.72	5.95	4.00
5	$3.00 \times 7.50 \times 2.50 \times 2.50 \text{ tf/m}^3$	140.63	3.75	5.95	4.00
6	$(0.75 \times 7.50 \times 0.70 \times 2.35 \text{ tf/m}^3) \times 2$	18.51	5.63	5.95	4.00
7	$1.10 \times 2.50 \times 7.50 \times 2.50 \text{ tf/m}^3$	51.56	6.50	5.95	4.00
8	$(0.75\times7.50\times0.70\times2.35$ tf/m³)×2	18.51	7.38	5.95	4.00
9	$(0.90 \times 0.60)/2 \times 2.50 \times 2.50 \text{ tf/m}^3$	1.69	8.35	2.00	4.00
10	$1.05 \times 0.60 \times 2.50 \times 2.50 \text{ tf/m}^3$	3.94	9.18	1.90	4.00
11	$(0.30 \times 8.10 \times 0.50 \times 2.35 \text{tf/m}^3) \times 2$	5.71	9.85	5.65	4.00
12	$(0.50 \times 0.30 \times 8.10 \times 2.35 \text{tf/m}^3) \times 2$	5.71	10.65	5.65	4.00
13	$1.50 \times 1.10 \times 8.10 \times 2.50 \text{ tf/m}^3$	33.41	10,25	5.65	4.00
14	$5.45 \times 8.10 \times 2.50 \times 2.50 \text{ tf/m}^3$	275.91	14.03	5.65	4.00
15	$1.00 \times 2.25 \times 2.50 \times 2.50 \text{ tf/m}^3$	14.06	17.38	9.20	4.00
16	$0.50 \times \pi \times 1.25^2 \times 7.10 \times 2.50 \text{tf/m}^3$	43.57	16.78	5.15	4.00
17	$(0.85\times1.25\times5.40\times2.50\text{tf/m}^3)\times4$	57.38	6.50	12.40	4.00
18	$(0.40 \times 0.80 - 0.50 \times \pi \times 0.40^2) \times 1.25 \times 2$ ×2.50 tf/m ³	0.43	6.50	12.05	4.00
19	$(0.80 \times 1.25 \times 3.00 \times 2.50 \text{ tf/m}^3) \times 2$	15.00	6.50	13.60	4.00
20	$(1.20 \times 1.20)/2 \times 0.80 \times 2.50 \text{ tf/m}^3$	1.44	9.80	10.10	4.00
21	$(0.30 \times 0.30)/2 \times 0.80 \times 2.50 \text{ tf/m}^3 \times 4$	0.36	9.60	10.30	4.00
22	$0.50 \times 1.50 \times 1.50 \times 2.50 \text{ tf/m}^3$	2.81	10.75	10.45	4.00
	$0.5/\times \{(7.00\times7.00) + (2.50\times5.00)\}$				
23	$\binom{0.76}{6}$ + 4×(6.00×4.75)	36.56	6.50	15.36	4.00
	×2.50				
24	$7.00 \times 7.00 \times 0.70 \times 2.50 \text{ tf/m}^3$	85.75	6.50	15.95	4.00
25	$7.50 \times 1.95 \times 2.50 \times 2.50 \text{ tf/m}^3$	91.41	8.73	5.95	4.00
26	Stair	1.07	2.00	11.78	4.00
100	Sub total	1640.80	8.85	4.83	4.00

No.	Calculation form	Weight (tf)	X (m)	Y (m)	Z (m)
	Control house 7.00×7.00×(0.50+0.30) tf/m ²	39.20	6.50	16.30	4.00
	Machine of gate system	49.00	6.50	16.30	4.00
	Gate	90.00	6.50	4.05 (11.55)	4.00
	Maintenance bridge	344.00	15.00	10.70	4.00
÷1	Total	2163.00	9.63	6.20 (6.51)	4.00

The number in parentheses shows condition of opening flood discharge gates.

Hydrostatic pressure

(Normal case)

In case of upstream flood discharge gate

$$P1 = 0.00 \times 1.00 \text{ tf/m}^3 = 0.00 \text{ tf/m}^2$$

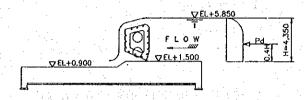
$$P2 = 0.65 \times 1.00 \text{ tf/m}^3 = 0.65 \text{ tf/m}^2$$

$$P3 = 4.35 \times 1.00 \text{ tf/m}^3 = 4.35 \text{ tf/m}^2$$

$$P4 = 6.55 \times 1.00 \text{ tf/m}^3 = 6.55 \text{ tf/m}^2$$

In case of downstream flood discharge gate

$$P5 = 0.00 \times 1.00 \text{ tf/m}^3 = 0.00 \text{ tf/m}^2$$


$$P6 = 2.25 \times 1.00 \text{ tf/m}^3 = 2.25 \text{ tf/m}^2$$

Position of load	Calculation form	W (tf)	Y (m)	Z (m)
Upstream of gate	$(0.65 + 4.35) \times \frac{1}{2} \times 3.70 \times 18.50$	171.13	3.59	4.00
Upstream of pier	$\frac{1}{2} \times 4.35^2 \times 2.50$	23.65	3.65	4.00
Upstream of slab	$(4.35 + 6.55) \times \frac{1}{2} \times 2.20 \times 8.00$	95.92	1.03	4.00
Downstream of slab	$-\frac{1}{2} \times 2.25^2 \times 8.00$	- 20.25	0.75	4.00
Total		270.45	2.90	4.00

(Seismic case)

Refer to normal condition in hydrostatic pressure.

Hydrodynamic pressure due to earthquake

$$P_d = \frac{7}{12} W_0 \times Kh \times H^2 \times B$$

Where,

P_d: Hydrodynamic pressure (tf)

Wo: Unit weight of water (tf/m3)

Kh: Design seismic coefficient

H: Water depth (m)

B: Affected width of load (m)

(Direction of flowing water)

$$W_0 = 1.00 \text{ tf/m}^3$$

$$Kh = 0.12$$

$$H = 4.35 \text{ m}$$

and

$$B = (18.50 + 2.50) = 21.00 \text{ m}$$

$$P_d = \frac{7}{12} \times 1.00 \times 0.12 \times 4.35^2 \times 21.00 = 27.82 \text{ tf}$$

$$Y = 2.20 + 0.40 \times 4.35 = 3.94 \text{ m}$$

(Direction of weir axis)

$$W_0 = 1.00 \text{ tf/m}^3$$

$$Kh = 0.12$$

$$H = 4.35 \text{ m}$$
 and

$$B = 5.50 \text{ m}$$

$$P_d = \frac{7}{12} \times 1.00 \times 0.12 \times 4.35^2 \times 5.50 = 7.29 \text{ tf}$$

$$Y = 2.20 + 0.40 \times 4.35 = 3.94 \text{ m}$$

Following water force

$$P = K \times V^2 \times A$$

Where,

K: coefficient of pier resistance

V: maximum flow velocity (m/s)

A: projective area of pier in vertical direction (m²)

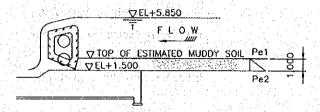
In design flooding case, there is supercritical flow around Simongan weir, because downstream position of Simongan weir has about 2.70 m drop between top of slab and downstream design riverbed.

Velocity of supercritical flow is faster than uniform flow. Therefore, velocity of supercritical flow is adopted.

The velocity is used in design discharge by non-uniformed flow calculation at WF.98.

 $Q = 790 \text{ m}^3/\text{s}$

H = 2.80 m


V = 4.20 m/s

K = 0.04

Therefore

$$P = 0.04 \times 4.20^{2} \times (2.50 \times 4.35) = 7.67 \text{ tf}$$

 $Y = 0.60 \times 2.80 + 2.20 = 3.88 \text{ m}$

Muddy soil pressure

The pressure of muddy soil is estimated as follows

$$Pe = Ce \times W1 \times D$$

Where

Pe: muddy soil pressure (tf/m²)

Ce : coefficient of muddy soil pressure ($Ce = 0.4 \sim 0.6$)

W1: unit weight of muddy soil (tf/m3)

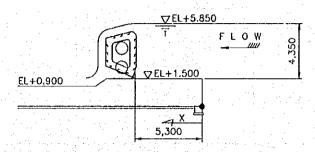
D: depth from the surface (m)

Ce = 0.5

 $W1 = 1.00 \text{ tf/m}^2$

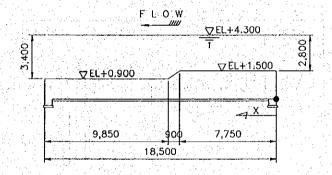
D = 1.00 m

 $Pe_1 = 0.00 \text{ tf/m}^2$


 $Pe_2 = 0.5 \times 1.00 \times 1.00 = 0.50 \text{ tf/m}^2$

Therefore

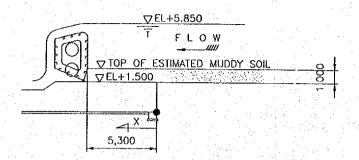
$$P_E = \frac{1}{2} \times 0.50 \times 1.00 \times (18.50 + 2.50) = 5.25 \text{ tf}$$


$$Y = \frac{1}{3} \times 1.00 + 2.20 = 2.53 \text{ m}$$

Weight of water (Normal case)

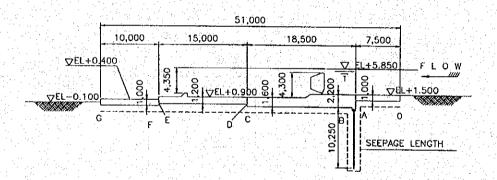
Position of load	Calculation form	W (tf)	(m)	Z (m)
Section of gate	5.30×4.35×(8.00-2.50)×1.00	126.80	2.65	4.00
	$(1.25+1.00)\times 2.50\times 4.35\times 1.00$	24.47	1.13	4.00
Section of pier	$-\frac{\pi}{4} \times 2.50^2 \times \frac{1}{2} \times 4.35 \times 1.00$	-10.68	1.72	4.00
Total		140.59	2.46	4.00

(Design flooding case)



Position of load	Calculation form	W (tf)	X (m)	Z
	7.75×2.80×(8.00-2.50)×1.00	119.35	3.88	(m) 4.00
Upstream	$(1.25+1.00)\times 2.50\times 2.80\times 1.00$	15.75	1.13	4.00
section	$-\frac{\pi}{4} \times 2.50^2 \times \frac{1}{2} \times 2.80 \times 1.00$	-6.87	1.72	4.00
Slop section	Slop section $(2.80+3.40) \times \frac{1}{2} \times 0.90 \times (8.00-2.50)$ $\times 1.00$		7.61	4.00
	9.85×3.40×(8.00-2.50)×1.00	184.20	13.58	4.00
Downstream	$(1.25+1.00)\times 2.50\times 3.40\times 1.00$	19.13	17.37	4.00
section	$-\frac{\pi}{4} \times 2.50^2 \times \frac{1}{2} \times 3.40 \times 1.00$	-8.34	16.78	4.00
Total		338.57	9.69	4.00

(Seismic case)


Refer to normal case.

Weight of muddy soil

Position of load	Calculation form	W (tf)	X (m)	Z (m)
Section of gate	5.30×1.00×(8.00-2.50)×1.00	29.15	2.65	4.00
The state of the s	$(1.25+1.00)\times 2.50\times 1.00\times 1.00$	5.63	1.13	4.00
Section of pier	$-\frac{\pi}{4} \times 2.50^2 \times \frac{1}{2} \times 1.00 \times 1.00$	-2.45	1.72	4.00
Total		32.33	2.46	4.00

Uplift

Vertical creep length

$$Lv := (2.20-1.00)+10.25 \times 2 + (1.60-1.20)+((1.00+0.50)-1.20) = 22.40 \text{ m}$$

Horizontal creep length

Lh = 51.00 m

Weighted creep length

$$Lw = \frac{51.00}{3} + 22.40 = 39.40 \text{ m}$$

Different water level

$$\Delta h = 4.35 \text{ m}$$

In between "0" point to "A" point weight creep length

Lwa =
$$7.50/3 + (2.20 - 1.00) = 3.70 \text{ m}$$

In between "0" point to "B" point weight creep length

Lwb =
$$7.50/3 + (2.20 - 1.00) + 10.25 \times 2 = 24.20 \text{ m}$$

In between "0" point to "C" point weight creep length

Lwc =
$$\frac{26.00}{3}$$
 + $(2.20 - 1.00)$ + $10.25 \times 2 = 30.37$ m

Uplift at "A" point Ua =
$$(4.35 + 2.20) - \frac{3.70}{39.40} \times 4.35 = 6.14 \text{ tf/m}^2$$

Uplift at "B" point Ub =
$$(4.35 + 2.20) - \frac{24.20}{39.40} \times 4.35 = 3.88 \text{ tf/m}^2$$

Uplift at "C" point Uc =
$$(4.35 + 2.20) - \frac{30.37}{39.40} \times 4.35 = 3.20 \text{ tf/m}^2$$

Position of load	Calculation form	U (tf)	(m)	Z (m)	
Upstream section of seepage blocking	6.14×0.60×8.00	29.47	0.30	4.00	
Downstream section of seepage blocking	$(3.88 + 3.20) \times \frac{1}{2} \times 17.90 \times 8.00$	506.93	9.54	4.00	
Total		536.40	9.03	4.00	

(Design flooding case)

$$\Delta h = (EL + 4.30 \text{ m-BL} + 1.50 \text{ m}) + 2.20 = 5.00 \text{ m}$$

$$Ua = Ub = Uc = 5.00 \times 1.00 \text{ tf/m}^3 = 5.00 \text{ tf/m}^2$$

Therefore

$$U = 5.00 \times 18.50 \times 8.00 = 740.00 \text{ tf}$$

$$X = \frac{1}{2} \times 18.50 = 9.25 \text{ m}$$

$$Z = 4.00 \text{ m}$$

(Seismic case)

Refer to Normal condition in uplift.

Wind pressure

(Normal case: Direction of Flowing water)

Direction of wind: from upstream to downstream

Position of load				
Control house section	7.00×4.85×0.15 tf/m ²	5.09	18.03	
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39	
Gate post section	$3.40 \times 2.50 \times 0.15 \text{ tf/m}^2$	1.28	13.40	
Maintenance bridge section	2.00×21.00×0.15 tf/m ²	6.30	10.70	
Gate pier section	$(EL + 9.00-EL +5.85) \times 2.50 \times 0.15 \text{ tf/m}^2$	1.18	8.13	
Total		14.21	13.47	

(Normal case: Direction of weir axis)

Position of load	Calculation form	U (tf)	Y (m)
Control house section	7.00×4.85×0.15 tf/m ²	5.09	18.03
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39
Gate post section	5.40×2.50×0.15 tf/m ²	2.03	12.40
	$1.00 \times 17.50 \times 0.15 \text{ tf/m}^2$	2.63	9.20
Gate pier section	$(EL + 8.00-EL +5.85) \times 16.50$ $\times 0.15 \text{ tf/m}^2$	5.32	7.63
Total		15.43	12.14

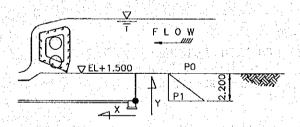
(Design flooding case: Direction of flowing water)

Direction of wind: from upstream to downstream

Position of load	Calculation form	U (tf)	(m)
Control house section	$7.00 \times 4.85 \times 0.15 \text{ tf/m}^2$	5.09	18.03
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39
Gate post section	$5.40 \times 2.50 \times 0.15 \text{ tf/m}^2$	2.03	12.40
Maintenance bridge section	2.00×21.00×0.15 tf/m ²	6.30	10.70
Gate pier section	$(EL + 9.00-EL + 8.00) \times 2.50 \times 0.15 \text{ tf/m}^2$	0.38	9.20
Gate section	18.50×3.70×0.15	10.27	11.55
Total		24.43	12.77

(Design flooding case: Direction of weir axis)

Position of load	Calculation form	U (tf)	Y (m)
Control house section	7.00×4.85×0.15 tf/m ²	5.09	18.03
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39
Gate post section	5.40×2.50×0.15 tf/m ²	2.03	12.40
Gate pier section	1.00×17.50×0.15 tf/m ²	2.63	9.20
Total		10.11	14.51


(Constructional case: Direction of flowing water)
Direction of wind: from upstream to downstream

Position of load	on of load Calculation form		Y (m)
Control house section	7.00×4.85×0.15 tf/m ²	5.09	18.03
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39
Gate post section	5.40×2.50×0.15 tf/m ²	2.03	12.40
Maintenance bridge section	2.00×21.00×0.15 tf/m ²	6.30	10.70
Gate pier section	$(EL+9.00-EL+1.50)\times 2.50\times 0.15 \text{ tf/m}^2$	2.81	5.95
Gate section	18.50×3.70×0.15 tf/m ²	10.27	11.55
Total		26.86	12.11

(Construction case: Direction of weir axis)

Position of load	Calculation form	U (tf)	Y (m)
Control house section	7.00×4.85×0.15 tf/m ²	5.09	18.03
Haunch of control rack section	$(7.00 + 2.50) \times \frac{1}{2} \times 0.50 \times 0.15 \text{ tf/m}^2$	0.36	15.39
Gate post section	5.40×2.50×0.15 tf/m ²	2.03	12.40
	$1.00 \times 17.50 \times 0.15 \text{ tf/m}^2$	2.63	9.20
Gate pier section	6.50×16.50×0.15 tf/m ²	16.09	5.45
	$(9.75 + 8.85) \times \frac{1}{2} \times 0.60 \times 0.15 \text{ tf/m}^2$	0.84	1.90
Total		27.04	8.73

Earth pressure

Earth pressure is adopted in case of direction of flowing water.

(Normal case)

The earth pressure acting is calculated by the following Coulom's formulas.

Unit weight of soil

 $\gamma' = 1.00 \text{ tf/m}^3 \text{ (under water)}$

Coefficient of active earth pressure

Ka = 0.308

Depth

 $\Delta h = 2.20 \text{ m}$

Therefore

$$P0 = 0.00 \text{ tf/m}^2$$

 $P1 = 0.308 \times 1.00 \times 2.20 = 0.678 \text{ tf/m}^2$

$$P = \frac{1}{2} \times 0.678 \times 2.20 \times 8.00 = 5.97 \text{ tf}$$

$$Y = \frac{1}{3} \times 2.20 = 0.73 \text{ m}$$

$$Z = 4.00 \text{ m}$$

(Design flooding case)

Refer to Normal case in earth pressure.

(Construction case)

Unit weight of soil

 $\gamma t = 1.80 \text{ tf/m}^3$

Coefficient of active earth pressure

Ka = 0.308

Depth

 $\Delta h = 2.20 \text{ m}$

Therefore

 $P0 = 0.00 \text{ tf/m}^2$

 $P1 = 0.308 \times 1.80 \times 2.20 = 1.220 \text{ tf/m}^2$

$$P = \frac{1}{2} \times 1.220 \times 2.20 \times 8.00 = 10.74 \text{ tf}$$

$$Y = \frac{1}{3} \times 2.20 = 0.73 \text{ m}$$

$$Z = 4.00 \text{ m}$$

(Seismic case)

Unit weight of soil

 $\gamma' = 1.00 \text{ tf/m}^3 \text{ (underwater)}$

Coefficient of active earth pressure

Kae = 0.492 (underwater)

Depth

 $\Delta h = 2.20 \text{ m}$

Therefore

 $Pe0 = 0.00 \text{ tf/m}^2$

 $Pe1 = 0.492 \times 1.00 \times 2.20 = 1.082 \text{ tf/m}^2$

$$Pe = \frac{1}{2} \times 1.082 \times 2.20 \times 8.00 = 9.52 \text{ tf}$$

$$Y = \frac{1}{3} \times 2.20 = 0.73 \text{ m}$$

$$Z = 4.00 \text{ m}$$

Load Combination

Load combinations for stability analysis are made as follows.

Load	Condition	Normal case	Design flooding case	Construction case	Seismic case
	Weight of body	0	0	7, 11 TO 11 TO	: O
1.11	Weight of gate	O	0	0	0
The Vertical load	Weight of maintenance bridge	0	0	0	0
cal	Weight of control house		0	0	0
Weight of machine		0	0	0	0
je v	Weight of earth	0	· O	0	0
ĮĮ.	Weight of water	0	0		0
	Weight of muddy soil	0			
	Uplift	O	0		0
	Hydrostatic pressure	0	0	O	0
The horizontal load	Hydrodynamic pressure due to earthquake				0
ıtal	Flowing water force		0		
izoı	Earth pressure	0	0		0
hor	Muddy soil pressure	0			0
he	Wind pressure	0	0	0	
L	Horizontal earthquake load				O

Symbol " O" shows that it puts in the calculation.

Calculation loads are categorized for each calculation cases as follows.

[Normal case: Direction of flowing water]

		Vertica	l. Tarren	Horizontal		
	V(tf)	X(m)	Mx(tf-m)		Y(m)	My(tf-m)
Weight of body	1640.80		14524.36		- (/	117) (11 111)
Weight of muddy soil	32.33					
Weight of water	140.59					
Weight of earth			2.2.2.2			
Weight of maintenance bridge	388.80	15.00	5832.00			
Weight of control house	39.20				141	
Weight of machine	25.00				3.0 L 2.3	
Weight of gate	50.00				The Theration	
Hydrostatic pressure			023.00	270,45	2.90	784.31
Flowing water force				0.27	4.81	1.28
Earth pressure				5.97	0.73	4.38
Muddy soil pressure				5.25	2.53	
Wind pressure				14.21		13.28
Uplift	-536.40	9.03	4843.69	14.21	13.47	191.41
Total	1780.32	9.03	16680.35	296.15		994.66

Vn = 1,780.32 tf

Hn = 296.15 tf

Mn = Mx + My = 17,625.01 tf m

[Normal case: Direction of weir axis]

		Vertical			Horizontal		
	V(tf)	Z(m)	Mz(tf-m)			My(tf-m)	
Weight of body	1640.80				-()	11.27 (61 111)	
Weight of muddy soil	32.33	4.00					
Weight of water	140.59					 -	
Weight of earth							
Weight of maintenance bridge	388.80	4.00	1555.20				
Weight of control house	39.20	4.00	156.80	<u> </u>			
Weight of machine	25.00		100.00				
Weight of gate	50.00	4.00	200.00				
Hydrostatic pressure		200	200.00				
Flowing water force							
Earth pressure		5 6 6 7					
Muddy soil pressure			1 141				
Wind pressure				15,43	12.14	197.20	
Uplift	-536.40	4.00	-2145.60	15,45	12.14	187.32	
Total	1780.32	7.00	7121.28	15.43		187.32	

Vn = 1,780.32 tf

Hn = 15.43 tf

Mn = Mz + My = 7,308.60 tf m

[Design flooding case: Direction of flowing water]

	Vertical			Horizontal			
	V(tf)	X(m)	Mx(tf-m)	H(tf)	Y(m)	My(tf-m)	
Weight of body	1640.80	8.85	14524.36				
Weight of muddy soil							
Weight of water	338.57	9.69	3280.74			1 . 44	
Weight of earth		1.6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Weight of maintenance bridge	388.80	15.00	5832.00				
Weight of control house	39.20	6.50	254.80		63,		
Weight of machine	25.00	6.50	162.50				
Weight of gate	50.00	6.50	325.00				
Hydrostatic pressure							
Flowing water force				7.67	3.88	29.76	
Earth pressure		3.35		5.97	0.73	4.38	
Muddy soil pressure		170.4				J. 50.1531	
Wind pressure				24.43	12.77	311.97	
Uplift	-740.00	9.25	-6845.00				
Total washington and skind him	1742.37	a de la composición	17534.40	38.07		346.11	

Vf = 1,742.37 tf

Hf = 38.07 tf

Mf = Mx + My = 17,880.51 tf m

[Design flooding case: Direction of weir axis]

A. C. See A. C. C. See March 1997, Learn 1997, Asset 1998.	Vertical			Horizontal			
	V(tf)	Z(m)	Mz(tf-m)	H(tf)	Y(m)	My(tf-m)	
Weight of body	1640.80	4.00	6563.20				
Weight of muddy soil				ye i e			
Weight of water	338.57	4.00	1354.28	Asset In			
Weight of earth		en Tawi	(V. 5.53.A				
Weight of maintenance bridge	388.80	4.00	1555.20				
Weight of control house	39,20	4.00	156.80			E. S. Gregoria	
Weight of machine	25.00	4.00	100.00	W			
Weight of gate	50.00	4.00	200.00		100 miles	The Control	
Hydrostatic pressure					in the line of the		
Flowing water force			The Section of the Se		1 1 1 1		
Earth pressure		ant F			11 14 14 14 14 14 14 14 14 14 14 14 14 1		
Muddy soil pressure				11.11.4	7		
Wind pressure			1337673	10.11	14.51	146.70	
Uplift	-740.00	4.00	-2960.00	10 mg	Transport		
Total	1742.37	***1.00	6969.48	10.11		146.70	

Vf = 1,742.37 tf

Hf = 10.11 tf

Mf = Mz + My = 7,116.18 tf m

[Construction case: Direction of flowing water]

		Vertical			Horizontal		
	V(tf)	X(m)	Mx(tf-m)	H(tf)	Y(m)	My(tf-m)	
Weight of body	1640.80	8.85	14524.36	2.7			
Weight of muddy soil				1.		1 1 1 1 1	
Weight of water				11.11.1	11 2 57	5	
Weight of earth	. as talkalala						
Weight of maintenance bridge	260.80	15.00	3912.00				
Weight of control house	39.20	6.50	254.80	ra Elettra			
Weight of machine	25.00	6.50	162.50				
Weight of gate	50.00	6.50	325.00		i Banana	10.11	
Hydrostatic pressure				4.71	1711	3 44 4 13	
Flowing water force					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Earth pressure				10.74	0.73	7.87	
Muddy soil pressure							
Wind pressure		i i	A Company	26.86	12.11	325,27	
Uplift						HARLES	
Total	2015.80	1.35	19178.66	37.60		333.15	

Vc = 2,015.80 tf

Hc = 37.60 tf

Mc = Mx + My = 19,511.81 tf m

[Construction case: Direction of weir axis]

	Vertical			Horizontal		
	V(tf)	Z(m)	Mz(tf-m)	H(tf)	Y(m)	My(tf-m)
Weight of body	1640.80	4.00	6563.20			
Weight of muddy soil			J. H. W. 1. J.			
Weight of water				3.1	11.430111	
Weight of earth				and section		
Weight of maintenance bridge	260,80	4.00	1043.20			6
Weight of control house	39.20	4.00	156.80			
Weight of machine	25.00	4.00	100.00			
Weight of gate	50.00	4.00	200.00		975-20	
Hydrostatic pressure		DEMONST				
Flowing water force			10.00		Advisor is	
Earth pressure				1.5 (2.6)		Jak Assi
Muddy soil pressure	19.40 N.B		1.1			to it is tow
Wind pressure		1.00		27.04	8.73	236.06
Uplift	4 (17.74)		45. \$ 135.8.			
Total (1)	2015.80		8063.20	27.04		236.06

Vc = 2,015.80 tf

Hc = 27.04 tf

Mc = Mz + My = 8,299.26 tf m

[Seismic case: Direction of flowing water]

	Vertical			Horizontal		
	V(tf)	X(m)	Mx(tf-m)	H(tf)		My(tf-m)
Weight of body	1640.80	8.85	14524.36			
Weight of muddy soil	32.33	2.46	· · · · · · · · · · · · · · · · · · ·			
Weight of water	140.59	2.46		·		
Weight of earth					2. 7	
Weight of maintenance bridge	260.80	15.00	3912.00	31.30	10.51	328,92
Weight of control house	24.50	6.50	159.25	2.94	18.38	54.02
Weight of machine	25.00	6.50	162.50	3.00	16.45	49.35
Weight of gate	50.00	6.50	325.00	6.00	4.05	24.30
Hydrostatic pressure	a est Al est de la compa		A STATE OF THE STA	270.45	2.90	784.31
Hydrodynamic pressure				27.82	3.94	109.61
Flowing water force		i diser	and the field	0.27	4.81	1.28
Earth pressure				9.86	0.73	7.23
Muddy soil pressure				5.25	2.53	13.28
Wind pressure						
Uplift; he wisels for the wall?	-536.40	9.03	-4843.69			
Total	1637.62		14664.80	557.66		2333.79

Vs= 1,637.62 tf

Hs = 557.66 tf

Ms = Mx + My = 16,998.59 tf m

[Seismic case: Direction of weir axis]

	Vertical			Horizontal			
	V(tf)	Z(m)	Mz(tf-m)	H(tf)	Y(m)	My(tf-m)	
Weight of body	1640.80	4.00	6563.20	196,90	4.83	951.01	
Weight of muddy soil	32.33	4.00	129.32	3.88	2.70	10.47	
Weight of water	140.59	4.00	562.36				
Weight of earth	0, 70 % √ 10 30,7% H = 5	11					
Weight of maintenance bridge	260.80	4.00	1043.20	31.30	10.51	328.92	
Weight of control house	24.50	4.00	98.00	2.94	18.38	54.02	
Weight of machine	25.00	4.00	100.00	3.00	16.45	49.35	
Weight of gate	50.00	4.00	200.00	6.00	4.05	24.30	
Hydrostatic pressure					*3.54		
Hydrodynamic pressure				7.29	3.94	28.72	
Flowing water force							
Earth pressure		4.4		1.11			
Muddy soil pressure		. N. a <u> </u>				1 4 1 1144	
Wind pressure							
Uplift	-536.40	4.00	-2145.60	A Bree			
Total	1637.62		6550.48	251.30		1446.80	

Vs= 1,637.62 tf

Hs = 251.30 tf

Ms = Mz + My = 7,997.28 tf m