CHAPTER 3

INVESTIGATION AND ANALYSIS

en en la grande de la companya de l La companya de la co	
	4
	<i>7.</i>
	٠. :
어로 보는 시간 점점 이번 경험 이번 시간에 되었다. 이번 시간 사람이 되는 것이 없는 것이 없다.	1.42
그는 사람들이 가는 이렇게 하시죠? 그들은 사람들은 살림 사람들은 사람들이 가득하는 것이 되었다.	. :
그는 문제를 살로 들었다면 하고, 한번에 다른 사람들에 하고 모양을 보는 것이 되었다면 하나 하였다. 학교들이	
그 하는 아이들은 하면 하는데 모든데 살아온 하게 말을 살았다고 하게 되었는데 현존 모든데 말을 했다. 함께 하는 점	V. [
그 마음이 하여 보는 것이 하는 것이다. 그렇게 되는 것이 되었다는 것이 하는 것이 하는 것이 없는 것이 없다.	
그리다. 하고 하고 있다고 하고 하고 있는데 되는 어린 사람들이 가는 그들이 가장하는 것은 생각이 살아갔다. 그는데 없는	
그 이 그들 없어 내려가 있어 않는 악하다 하는 사람들이 하는 것이 하는 것이 나를 맞는다고 말했다. 그를 했다.	
그는 맛요? 이 것으로 살아가는 아니까지 않는데 모든데 되는데 모든데 그리고를 내려가야 할 말을 보는다	
그런 나는 모양하는 그를 한 점점 하고 있는 것만큼 회사 학교에 대로 보이지 않는 것을 모양하였다.	
그리다 하네 사람들은 얼굴 내는 사람들은 하는 생님, 양생은 사람들은 살이 되었다면 되었다.	1.5
그리는 문제를 살고 살아보는 물건을 하는 것이 되는 것을 하는 것으로 얼마나 되었다. 이렇게 이렇게 되었다.	
그는 것, 그렇고 말로요 그런 그는 그들은 그들은 모양 보고 없는 그는 그를 들는 그는 것이 다른 회에 다른 걸었다.	
그들은 그렇다면 하고싶었다. 나는 이 제가는 이 사람들은 그리고 하는 이 사람들이 모든 것이다. 나는 사람들은 사람들이 살아 없는데 없는데 없었다.	
그렇게 하는데 소설하다 하는 동생들은 사람들이 아래를 하는데 하는데 뭐 하는데 얼마를 하는데 했다.	sued Carlot
그 연극을 뭐 생각한 때 가장 마리지를 들었다는 그렇게 하는 사람이 하고 있다는 하면 모든 것 같아. 하는 것 같아.	À
그리고 그리다는 그는 사람들은 사람들이 되었다. 그들의 사람들은 그리는 그는 그는 그는 그를 모양하는 것을 모양했다.	
그리다 공업에는 경우 전하고 하는데 없다. 하는데 되는 아름답답다고 말했다고 말했다고 있다고 있다.	
그러는 경기를 하는 유학을 하는 말을 보니 않는 말을 받는 것도 하는데 하는 말을 하는 것을 하는 것	Agr.
그는 장하기를 하는 것이는 물건이 되고 있습니다. 그는 그를 하는 것이다.	
는 마음에 하는 것이 되었습니다. 현실이 가장 전문에는 사용하는 사용에 되었습니다. 그런 아이들에 보통 이 사용이 되었습니다. 그는 사용이 가장 사용이 되었습니다. 그런 그렇게 되었습니다. 	řívař Late
그는 방문이 하면 있다면 하다면 되고 있는데 하는 사람들은 살이 하는 사람들이 모든 사람들이 살아 되었다.	
그들이 많이 하다 나는 아이들이 되었다. 그렇게 되었다는 그 사람들이 되었다는 것이 되었다. 그는 사람들이 아이들이 생각하는 것이다.	
그는 이 그는 가는 사람들이 있는 것이 그렇게 만하셨다. 이번째 그렇게 되는 사람들이 사고 있다면 가게 하는 것이었다.	
는 마음에 가장 사용하다 하는 것이 되어 되었다. 그리고 가장 마음이 다른 생활하는 것은 모양하는 아들에게 하는 것이 되었다. 그런 사용하는 것이 되었다. 그런 것이 되었다. 그런 것이 되었다. - 그리고 있는 것이 하는 것이 되었다. 그런 그리고 있는 것이 되었다. 그런 것이 되었다. 그런 것이 없는 것이 되었다. 그런 것이 되었다. 그런 것이 되었다. 그런 것이 되었다. 그런 것이 되었다	
그는 이 그는 것 같은 사람들이 그렇게 되었다. 그는 사람들이 얼마를 하는 것 같은 사람들이 되었다. 그는 것 같은 사람들이 없는 것 같은 것 같	
그는 듯하는 하는 것들은 점점 얼마를 하는데	414
그 하면 그 말이 하는 것으로 가장 이 사람들이 되면 되었다. 그 사람들은 그는 사람들은 사람들은 함께 되었다.	10 P
	pfet -
	National National
그 마이 아이트 그는 사람이 그는 하고 말이 가장 살아가 들어 들었다. 그는 사람이 하는 사람들은 사람들이 되었다.	
그는 그 사람들이 되는 사람들이 얼마나 살아왔다. 그는 사람들이 살아들이 살아 살아 들어 살아 들어 가지 않는데 살아	
그 일시 그리는 사람들은 하고 말을 하는데 말이 되는데 그들은 그 말을 하는데 하는데 되었다. 그리는 사람이 되었다.	
그는 이번 전 사람이 하고로 사용을 하고 말한다고 하는 일반에 되어 가는 얼마나를 모으면 하고 말을 수 있을까지 않는 모인다.	N.
그리는 보고 보는 사람들은 아이들이 되고 있다. 그리는 하는 일반 사람들이 하는 사람들이 되고 있다면 하는데 모든 사람들이 되었다. 그렇게 하는데	
그는 이 하는 것이 하는 보고 있는데 회교에 된다. 한번 불없었다면서 보고 없다. 하나 점점 환경 수 있다고 했다면서 하는데 되었다.	
그 보이 그는 경우 있는 이번 사람들 보지 않아야 한 경우를 받아 보는 사람들이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	NVIII Sat Zh
	3.
그 없는 용기를 보고 있는데 화를 가지 않는데 이사는 말이 되었다면 하면 하면 하는데	
그 인생님은 사람이 되는 아래를 하다고 하는 것이 없는 사람들이 되었다면 하는 것이 되었다면 하는데	
그리는 그는 한 일을 하고 아름다면 그는 그는 그는 그는 그들이 가장하는 것이 되었다. 그는 그는 사람들은 모든 가장이 되었다.	
X - B - B - B - B - B - B - B - B -	5 19 5 1 5 7 5 1
그는 그리아를 살아보니까 한다. 그리고 그림 사람들은 사고 말하는 것 같아 보다는 것 같아. 나를 가게 되었다.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
그는데, 그는 말이 많은 사람들은 경기를 하는데 한 사람들이 되는 한 바람이 되는데 얼마를 하는데 되었다. 그를 받는데 다른 사람들이 되었다.	
그 아고 아이는 일이 돌아가는 하는 것이 되었다면 하는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
는 모든 사람들은 그런 그는 그런 그를 가장하지만 하는데 보고 있다. 그는 그는 사람들이 되고 있는데 모든 중요한다는데 그를 가는데 되는데 함께 되었다. 그를 모든데 그를 모든데 그를 모든데 그를 그를 하고 있는데 그를 하는데 그를 모든데 그를 보고 있는데 그를 보고 있다.	TATELLA Aventua
그는 보는 항상 사람들이 하는 것이 살았다면 하는데	
그런 사람은 사람들은 살림을 하고 있는데 얼마를 받는데 되었다. 이 아이들은 그를 가게 들었다는데 하는데 아름이 사용하다는 사람이 없다.	IM.
그는 사람이 하는 사람들이 가는 사람들이 하는 사람들이 되었다. 그는 사람들이 얼마를 하는 것이 되었다.	
᠆᠆ઌ૽૽૱ૡ૽ૡ૽ૡૡૡ૽૽ૡ૽૽૱ૡ૽ૡ૽ૡ૽ૡ૽ૡૡ૽ૡૡૡૡૡૡૡૡૡૡ	197 V 33

CHAPTER 3 INVESTIGATION AND ANALYSIS

3.1 Photogrammetric Mapping, Topographic and River Survey

3.1.1 Aerial Photography and Mapping

(1) Aerial Photography

Aerial photography at a scale of 1:8,000 and covering approximately 64 line kilometer in total was started after obtaining permission from the Central Survey and Mapping ABRI (PUSSURTA ABRI).

The results of the aerial photography are as follows:

Total No. of Films	1 Roll
Total Flight Runs	12 Runs
Total Exposures	156 Photos
Overlap and Side Lap	55% and 35%

The aerial photographs were taken by using Semarang Airport as a base, and processing of film and printing of aerial photos were done in Jakarta. The aerial photos were developed for mapping after checking navigation routes. The extent of the aerial photograph and navigation routes are shown in Fig. 3.1.1.

(2) Uncontrolled Mosaic

Using aerial photographs that are newly taken at a scale 1:8,000 in 1997, uncontrolled mosaic photo at a scale of 1:10,000 was established for the area of 35 km² in total. The uncontrolled mosaic are shown in Fig.3.1.2.

(3) Photo Control Point Survey

Photo control point survey was conducted by Global Positioning System (GPS), and spirit leveling started from the photo control points and bench marks (BMs) for the above-mentioned photogrammetry and the existing national control points and Tanda Tinggi Geodesi (TTGs). (refer to Fig.3.1.1)

(a) Control Point Survey

The control point survey by GPS was executed to determine the X and Y

coordinates of a minimum two (2) existing control points to be used for the photogrammetric mapping, cross section survey, longitudinal profile and

topographic survey. Final results of all photo control points by GPS are shown in Table 3.1.1.

(b) Datum Coordinates

The Indonesian Government changed the surveying datum in 1997 from the Indonesian Datum 1974 (ID74) ellipsoid to the World Geodetic System in 1984 (WGS 84).

Two (2) existing GPS stations having the new Indonesian Datum, namely N1.0259 and N.0004, which were established by Badan Koodinasi Survey Dan Pemetaan National (Bakosurtanal) in 1994, were chosen and applied as the X and Y geographical coordinates datum for this study by the JICA Study Team.

(c) GPS Observation

At least four (4) satellites were simultaneously observed for one hour for all the control points. In general, the base line lengths were planned between two (2) to five (5) kilometers.

(d) Post-processing

The post-processing was done using GPS survey software to obtain the best independent baseline solutions for all the GPS sessions. With the existing two stations (N1.0259, N.0004) fixed as the planimetric control on the modified WGS ellipsoid and the same stations serving as the vertical control for mean sea level height, the whole GPS network was constrained and adjusted by the GPS surveying software.

(e) Accuracy of GPS Survey

Accuracy of trigonometric closures for coordinates and height were checked to be less than 10 PPM (10/1,000,000) between the control points (refer to Figs. 3.1.3 and 3.1.4).

(4) Leveling

Minor order leveling was executed to obtain the heights of control points necessary for the topographic survey, cross section survey and longitudinal profile survey.

Leveling survey was conducted by means of closed loops and double runs, and temporary bench marks were established at every 2 km interval on the leveling routes. Also temporary bench marks were established at 49 points in Semarang City. And a total distance of the leveling survey was approximately 105 km.

The leveling works are described below:

(a) Datum Height

Government bench marks obtained from the Mean Sea Level of Indonesia as established by Bakosurtanal are applied for the leveling survey.

(b) Checking of Government Bench Marks

Before starting leveling survey, heights of three government bench marks namely TTG446, TTG449 and TTG449 were checked by the local contractor.

Leveling Loops	Distance	Misclosure
TTG449 to TTG447	4.601 km	14 mm
TTG447 to TTG446	5.095 km	-201 mm

From the above, it was judged by the JICA Study Team that TTG446 shall be ignored because TTG446 had ground subsidence about 20 cm from 1983.

The JICA Study Team decided to use TTG447 as the bench mark for topographic survey, river cross section survey and longitudinal profile survey in this project.

(c) Accuracy of Leveling

As show in Figs. 3.1.5 and 3.1.6, any misclosure of leveling does not exceed 20√S between bench marks and/or control points (S: a single distance between bench marks in kilometer). And Standard division was 3.80 mm/km.

(5) Field Verification

Using two (2) times enlarged aerial photographs, the keys for interpretation required for plotting and cartography was done by verifying them in the field. The work quantity was 35 km² for mapping with the scale of 1:2,000 and 1 km² for mapping with the scale of 1:1,000. The area of field verification are shown in Fig.3.1.7.

(6) Aerial Triangulation

The implication and purpose of Aerial Triangulation work are to obtain the coordinates (X, Y, Z) of the aerial photo points necessary for the orientation process of each stereo model on the plotting instrument for the purpose of topographic map on the scale of 1:2,000 and 1:1,000 applying coordinates (X, Y, Z) of ground control points resulting from field measurement (GPS and leveling) (refer to Figs. 3.1.8 and 3.1.9).

(a) Aerial Triangulation and Block Adjustment

The sequence of works to be carried out is as follows:

(i) Quantity

119 models of aerial triangulation work was carried out, and the quantity of models for each flight run was as follows:

Run Number	Number of Photo	Number of Model
Run 1(Semarang Area)	10 PCs	9 Models
Run 2(Semarang Area)	14 PCs	13 Models
Run 3(Semarang Area)	13 PCs	12 Models
Run 4(Semarang Area)	13 PCs	12 Models
Run 5(Semarang Area)	13 PCs	12 Models
Run 6(Semarang Area)	11 PCs	10 Models
Run 7(Semarang Area)	18 PCs	17 Models
Run 8(Semarang Area)	19 PCs	16 Models
Run 9(Semarang Area)	17 PCs	6 Models
Run 11(Semarang Area)	9 PCs	6 Models
Run 12(Semarang Area)	9 PCs	6 Models
Total	146 PCs	119 Models

(ii) Data Collection

All necessary data such as flight index, control point coordinate and calibration of the aerial photographic camera were collected.

(iii) Planning

Preparation of aerial triangulation was carried out as follows:

Selection of the Aerial Photos

Total sheets of aerial photos for Ungaran Area : 12 models

Total sheets of the aerial photos for Semarang Area : 107 models.

Control Point Selection

Total control points were 22, consisting of 5 horizontal and 17 vertical control points for aerial triangulation processing at Ungaran area.

Total control points of 74, consisting of 21 horizontal and 53 vertical control points for aerial triangulation processing at Semarang area.

(iv) Preparation

The preparation stages were carried out as follows:

Point selection and numbering

Pass points and tie points were selected within the triple overlap area with the circle notation on the index model.

Numbering system for aerial triangulation

Ex. Model number: 80111

Where:

8011: First two digits show the number of flight run as shown and last two digits show the number of aero photographs.

I : Tie point number

The horizontal and vertical control points were annotated on the index models as a square, and vertical control points were annotated as triangle.

The point selection and numbering were carried out on the 1:2,000 and 1: 1,000 scale of aerial photographs by using mirror stereoscope.

(v) Point Transfer

The selected and control points on the diapositive film were marked and then transferred to adjacent diapositive film by using Wild PUG-4 instrument. This process was carried out until the last photo.

(vi) Index Model

The index model on 1:50,000 scale, where all point numbers were plotted showing the relationship between each point, was produced.

(vii) Measurement of Coordinates

Photo coordinates were observed and measured by using an analytical stereoplotter Leica SD-2000. All points including fiducial marks were measured.

(viii) Adjustment

The final step of the aerial triangulation is the block adjustment using PATM-GPS software.

(ix) Result

Block adjustment of Ungaran Area

Sigma Naught in the model system is as below.

Sigma naught for horizontal block = 21.064 micron

Sigma naught for vertical block = 14.773 micron

Weight root mean square values and check value of residual of Photogrammetric observations.

Model Points	RMS. (meter) Terrain system	RMS. (micron) Model system	CHV VXY/Z Model system
OBS X/Y	0.090	11.216	47.586
OBS z	0.063	7.888	23.664
Projection center	RMS. (meter) Terrain system	RMS. (micron) Model system	CHV VXY/Z Model system
OBS X/Y	0.120	14.975	65.532
OBS z	0.094	11.750	73.658

Block adjustment of Semarang Area

Sigma Naught in the model system, is as below.

Sigma naught for horizontal block = 18.890 micron

Sigma naught for vertical block = 20.353 micron

Weight root mean square values and check value of residual of Photogrammetric observations.

Model Points	RMS. (meter) Terrain system	RMS. (micron) Model system	CHV VXY/Z Model system
OBS X/Y	0.094	12.118	51.411
OBS z	0.080	10.273	30.820

Projection center	RMS. (meter) Terrain system	RMS. (micron) Model system	CHV VXY/Z Model system
OBS X/Y	0.254	32.718	138.809
OBS z	0.130	13.292	39.875

(x) Equipment

The equipment used in Aerial Triangulation is as follows:

Stereoscope	2 units
Point transfer Wild PUG-4	lunit
Analytical Stereoplotter Leica SD-2000	1 unit
Computer	1 unit
PATM-GPS Software	1 unit

(7) Plotting and Editing

The implication and purpose of stereo plotting and editing work are drawing details and contour lines using aerial photo diapositives, which are placed on the plate holders of the stereo plotter instrument (refer to Figs. 3.1.10 to 3.1.13).

The sequences of the plotting and editing works are as follows:

(a) Data collection

All the following necessary data were collected and prepared for stereo plotting.

- Model index of aerial triangulation
- Print out of aerial triangulation adjustment
- Vertical control points and description on two (2) times enlarged aerial photographs
- Field identification on two(2) times enlarged aerial photographs

(b) Planning

Preparation of stereo plotting was carried out as follows:

(i) Control sheets

Total control sheets of the stereo plotting topographic map are:

- 48 sheets for 1:2,000 scale of Semarang topographic map (including 4 sheets of sounding survey result);
- 4 sheets for 1:2,000 scale of Ungaran topographic map; and
- 26 sheets for 1:1,000 scale of channel topographic map

(ii) Models

Total models of stereo plotting are:

- 52 models for 1:2,000 scale of Semarang topographic map
- 4 models for 1:2,000 scale of Ungaran topographic map
- 12 models for 1:1,000 scale of channel topographic map

(c) Preparation of Control Sheets

Control sheets were produced by block adjustment result of aerial triangulation on polyester base material.

(d) Plotting

Plotting manuscript at the scale of 1:2,000 and 1:1,000 were produced from aerial photos at the scale of 1:8,000 by using second order precision plotter.

The sequences of the stereo plotting works are as follows:

- Inner Orientation:
- Relative Orientation:
- Absolute Orientation; and
- Plotting of details, spot height, vegetation boundary and contour lines.

Contour intervals for intermediate contour line are 1 m both maps with the scale of 1:2,000, and 1:1,000.

Editing works was carried out on the plotting manuscript by compiling result of field identification, such as symbol annotation etc.

(e) Result

The final manuscript was used for the fair drawing work and the number of sheets plotting manuscript are as below.

- 48 sheets plotting manuscript at scale of 1:2,000 for Semarang area (including 4 sheets of sounding survey result)
- 4 sheets plotting manuscript at scale of 1:2,000 for Ugarang area
- 26 sheets plotting manuscript at scale of 1:1,000 for channel area

(f) Equipment

The equipment used for plotting and editing are:

Computer	2 units
Roland Plotter	1 unit
Stereo Plotter, Wild A-8	2 units
Plotter Wild AG-1	1 unit
Stereo Plotter, Leica SD-2000	1 unit
Drafting Table	3 units

(8) Fair Drawing

The implication and purpose of fair drawing work are drawing details using symbols and contour lines with tracing method from the plotting manuscript and other additional data and information.

The sequence of the fair drawing were carried out as follows:

(a) Data Collection

All necessary data were collected and prepared for fair drawing such as:

- Plotting manuscript
- Vertical control points and description on two (2) times enlarged aerial photographs
- Field identification results on two (2) times enlarged aerial photographs

(b) Planning

Preparation for fair drawing were carried out as follows:

(i) Drawing sheets

Total sheets of fair drawing are 78 sheets, consisting of 48 sheets of

Semarang map (including 4 sheets of sounding survey result) and 4 sheets of Ungaran map at the scale of 1:2,000; 26 sheets of map at scale of 1:1,000.

(ii) Legend and Symbol

Legend, symbols and annotation used for the map are as approved by the JICA Study Team. Legend and symbol are as shown in Table 3.1.2.

(c) Preparation

The preparations were carried out as follows:

(i) Drawing sheets

Drawing sheets were made using computer PC on polyester base. The sheet's size is A1 (60 cm ~ 85 cm). Numbering system is as follows:

Sheet number 45-12

Where:

45 = Total sheets

12 = Sheet number

(d) Fair drawing

Fair drawing was carried out with tracing method using drafting pen and black ink from plotting manuscript at scale of 1:2,000 and 1:1,000.

Fair drawing works are as follows:

- Drawing details
- Spot heights and contour lines
- Symbols and annotations, on the map symbols must be matched to legend
- Vegetation boundary

Contour interval for intermediate contour lies are 1 m for map at scale of 1:2,000 and 1 m for map at scale of 1:1,000.

(e) Results

The final results of the fair drawing are:

- 48 sheets of topographic map at scale of 1:2,000 for Semarang area,
- 4 sheets of topographic map at scale of 1:2,000 for Ugarang area,
- 26 sheets of topographic map at scale of 1:1,000 for Channel area,
- 48 sheets duplicate at scale of 1:2,000 for Semarang area,
- 4 sheets duplicate at scale of 1:2,000 for Ugarang area, and
- 26 sheets duplicate at scale of 1:1,000 for channel area.

The equipment used for the fair drawing works are:

• Computer : 2 units

Roland plotter : 1 unit

Drafting table : 9 units

• Drafting tools : 9 units

3.1.2 Ground Survey

(1) River Longitudinal Profile and Cross-Section Survey

(a) Installation of Kilometer Post

Prior to the commencement of the river longitudinal profile survey, kilometer posts of wooden pegs were installed on the right and left banks of West Floodway/Garang river. When the location of a kilometer post is very close to such structures as bridges, water intake and water pipes, kilometer posts were shifted to the center line of these structures. The position of a kilometer post was decided by traverse method in the field. All coordinates data are as shown in Table 3.1.3.

(b) Longitudinal Profile Survey

The river longitudinal profile survey (the profile survey) by direct leveling was executed to obtain heights of kilometer posts for the river cross section survey and to prepare longitudinal profile sections. Leveling routes were formed by closed loops and double-runs. A total distance of the leveling survey covering West Floodway, Garang, Semarang, Asin and Baru rivers was 41 km.

The datum height was applied for the longitudinal profile survey including river cross section survey and auxiliary leveling. The heights of TTGs bench

marks are applied to the kilometer posts by direct leveling.

All results of heights of kilometer posts by the profile survey, the deepest height of the river cross section survey, names of bridge and others were edited by Auto CAD system. The longitudinal profile sections at a horizontal scale of 1:2,000, 1:1,000 and vertical scale of 1:100 were prepared on the draft plotting paper sheets using the longitudinal profile data. Final longitudinal profile data as shown in Table 3.1.4.

(c) River Cross Section Survey

Heights and distance of slope changing points, roads, channels, etc. along the cross section lines were measured by using a Total Station System, levels and Electric Distance Meter (EDM).

Water levels and depths of the rivers were measured using a survey rod, and the distance of these measured simultaneously. The bridges, irrigation intakes and water pipes of all rivers were also measured. A total number of cross sections surveyed are approximately 814.

(d) Checking of Longitudinal Profile

(i) The check results of differences in height closure between the kilometer posts did not exceed 20√S (S: length of single run in kilometer) as specified in the Technical Specifications.

(ii) Checking of River Cross Sections

At the same kilometer posts checked above, river cross section lines were measured. The check results of height of these cross section line points did not exceed ± 50 mm and distance errors between the cross section line points are less than 1/300 as specified in the Technical Specifications.

Longitudinal profile and cross-section were surveyed along West Floodway/Garang river and two (2) tributary channels along Garang River.

West Floodway and Garang River

Work Item	Volume	Drawing		D .
WOLK HOLL	Volume	No. of Sheets	Scale	Remarks
Longitudinal Profile	9.598 km	5	H=1/2,000 V=1/100	Sheet Size: A1
Cross-Section Survey	204 sections	104	H=1/200 V=1/100	Sheet Size: A1

Cengkek River (tributary of Garang River)

Work Item	Vork Item Volume Drawing			
Work hem	Y Olullie	No. of Sheets	Scale	Remarks
Longitudinal Profile	0.499 km	1	H=1/1,000 V=1/100	Sheet Size: A1
Cross-Section Survey	15 sections	8	H=1/200 V=1/100	Sheet Size: A1

Kalito River (tributary of Garang River)

Work Item Volume		Drawing		
Work nem	ork Item Volume	No. of Sheets	Scale	Remarks
Longitudinal Profile	0.498 km	1	H=1/1,000 V=1/100	Sheet Size: A1
Cross-Section Survey	12 sections	6	H=1/200 V=1/100	Sheet Size: A1

3.1.3 Topographic Survey

Topographic survey was carried out for Jatibarang Dam site, Simongan Weir, Asin Pumping Station, West and East Bandarharjo Pumping Station, West and East Bandarharjo Drainage area, a bridge across Semarang River and a water gate at Baru River.

The work quantities carried out are as follows:

(a) Scale 1:200

Simongan Weir	9.0 ha
Asin Pumping Station	9.0 ha
West Bandarharjo Pumping Station	6.0 ha
East Bandarharjo Pumping Station	3.0 ha
Bridge (Semarang River)	0.5 ha
Water gate (Baru River)	1.0 ha

(b) Scale 1:500

Jatibarang Dam Site	15.0 ha
West Bandarharjo Drainage Area	2.8 ha
East Bandarharjo Drainage Area	3.2 ha

(c) Scale 1:1,000

Jatibarang Dam Site		15.0 ha

3.1.4 Sounding Survey

(1) Location and Quantity

The location is shown in Fig.3.1.14. The work quantities are 3 km², consisting of 16 survey lines and 1 km per line.

(2) Setting of Base Survey Line

Base survey line was established along the coastline for 3 km eastward from the mouth of West Floodway by GPS, traversing and spirit leveling. All control monuments were set at 200 m interval along the base survey line.

Misclosure of leveling does not exceed 20 \sqrt{s} between bench mark and control points (S: a single distance in kilometer between control points).

(3) Measuring Interval of Survey Line

From the control point, water depth of each line 1 km offshore were measured at 30 m interval. Water surface was also measured.

(4) Equipment

Echo sounder and survey rod for water depth measurement, GPS and Total Station Surveying System for positioning were used.

(5) Chart Drawing

Charts were interpolated in the 1:2,000 scale topographic map.

3.1.5 Land Subsidence

Recently land subsidence is observed at the coastal and the central area of Semarang City. Subsidence is caused mainly by excessive development of ground water.

In the urban and coastal areas of Semarang City, for many years, it has been pointed out that local subsidence is a problem, yet there has been no careful examination to determine the actual levels of this subsidence.

During this study period, leveling measurements were conducted between TTGs to more accurately grasp the actual magnitude of subsidence.

As a result of these measurements, no subsidence was found in the western part of the study area. However in the eastern port of the city and study area, considerable subsidence was found with a maximum measure of -0.972m observed.

For future examination, 49 permanent bench marks were established in this study period. The amount of annual subsidence can more easily be checked by re-examining these points at regular intervals. The survey result as shown in Fig.3.1.15.

3.2 Geological and Soil Mechanical Investigation

The geological and soil mechanical surveys conducted in the D/D Study stage consist of: (1) core drilling and testing in bore hole, and (2) laboratory testing.

Borings were carried out at the locations along the river and at the major proposed structures to know the geological features and soil properties of the typical sub-base layers. Laboratory tests were conducted for the soil samples taken out from boring cores as well.

3.2.1 Boring and Tests

(1) Scope of Work and Method

Core drilling was carried out to obtain the subsurface geology of ground along West floodway/Garang River, i.e. soil type, thickness, sequence and physical conditions. During the drilling, the standard penetration test (SPT) was executed to gain soil's haardness/consistency.

Core drilling was performed according to the hydraulic deed rotary drilling method.

Single tube core barrels and tungsten bits were used in order to gain good quality of core sample. The core samples were sequentry arranged into core boxes from top to bottom, representing soil types and layer distribution.

The scope of works are as follows:

(a) West Floodway/Garang River

Bore holes of 52 with a total depth of 870 m. SPT was performed in the bore hole by every 1.0 m depth with a total of 824 tests. A total length of 118 m core samples were taken and arranged in core boxes.

(b) Simongan Weir Site

6 bore holes with a total depth of 120 m was performed. A total number of SPT is 88.

The location of borings is shown in Fig. 3.2.1 and test data are presented in Table 3.2.1.

(2) Geological features along West Floodway/Garang River

Fig. 3.2.2 shows the geological stratification profile along West Floodway/Garang River, which was made based on the boring test results mentioned above. The base layer consists of Damar Formation formed in tertiary to early quaternary period. Damar Formation forms a hilly land in the upstream area of Simongan Weir, and distributes below the flood plain of West Floodway/Garan River.

Damar Formation along Garang River spreads 5 to 15 m below the riverbed in the river stretch between Simongan Weir and the river section WF140 (7,300 m from river mouth), and exposes to the riverbed in the upper reaches from WF140. On the other hand, Damar Formation lowers drastically its position having the depth of more than 30 m from the ground surface in the lower reaches from Simongan Weir. So, the alluvium and diluvial deposit layers account for all of the ground of flood plain area.

Damar Formation geologically consists of sedimentary rock including conglomerate sand rock and silty rock, and volcanic detritus, which covers a wide range of area in Garang River basin.

The diluvial layer in the flood plain spreads with a thickness of more than 10 m under

the alluvium soft ground. This layer is a mix of considerably hard layers of clay, sand and gravel, having a N-value of more than 30. This layer can be a bearing layer of heavy structures such as bridge, weir, tall building and so on.

The alluvium layer, widely deposited in the low-lying area, is characterized as high compressible soft ground, consisting of mainly clay, silt and organic soil. Sandy layers are partially exists in the thick clayey layer. The thickness of layer is 15 to 25 m in the downstream coastal area and 5 to 15 m in the middle reaches covering Simongan Weir. N-value of clayey layer is mostly less than 8, while that of sandy layer ranges from 5 to 20.

(3) Geological Features of Simongan Weir Area

Regarding the geological features of Simongan Weir area, there is a big difference in geological composition and layer's distribution between downstream and upstream sections. Namely, Damar Formation forms a kind of mound and its top elevation is situated at the riverbed in the downstream section, while Damar Formation forms a valley shape and alluvium layers are piled up in the valley in the upstream section. These alluvium layers are river deposits, sandy layer with medium hardness, soft layer of sandy silt from the top position. There exists a diluvium hard sand layer with the N-value of more than 50 below the alluvium layer. Fig. 3.2.3 shows the geological profile of immediate upstream section of the existing weir.

3.2.2 Geological Condition and Soil Properties

(1) Laboratory Test

The laboratory test was conducted to determine the physical and mechanical properties of soil sample. The test followed the standard method of ASTM. The test items and quantity are shown in the table below.

Item	Standard Method	Quantity
Gradation Analysis	ASTM D422	200
Moisture Content	ASTM D4959	200
Specific Gravity	ASTM D854	200
Liquid and Plastic Limits	ASTM D431	200
Density	USBR 5370	200
Unconfined Compression Test	ASTM D2435	25
Triaxial Compression Test (UU)	ASTM D2850	59

(2) Soil Types and Property of Sub-base Layers at Simongan Weir Site

Based on the boring and laboratory test results, the soil layer at the Simongan Weir site can classified into 1) riverbed deposit (Rd), 2) Embankment fill (B), 3) Fine coarse sand (As), and 4) Very soft clay (Ac).

- (a) Embankment (B) consists of earthfill and it is found at the left and right wings of Simongan Weir. The thickness of this layer is about 6 m.
- (b) Riverbed deposit (Rd) consists of sand and gravel, dense to very dense, having the N value of 20 to 50. This riverbed deposit is found at the borehole SB-2, SB-4, SB-5 and SB-6.
- (c) Fine grain sand (As) consists of fine medium grain sand and intercalated with clay and silt, loose to very dense. This layer is found at the boreholes SB-1, SB-2 and SB-3, lying beneath the embankment or riverbed deposit. The thickness of this layer varies from 8.5 m to 10 m.
- (d) Clay and sandy clay (Ac) is lying beneath As layer. It is gray, consisting of clay and sandy clay, soft to medium stiff clay with the N value range of 11 to 20. This layer is found at the boreholes SB-1, SB-2 and SB-3 at the elevation of approximately -10 m.
- (e) Intercalation of Volcanic and Sedimentary rocks are considered as the base rock at this area. It is fractured, poor RQD and very weak rock.
- (3) Soil Types and Soil Mechanical Properties of Sub-base Layer in West Floodway
 - (a) The top layer is made of embankment fill (B) with a thickness of 2 to 3 m.
 - (b) Very soft clay layer (Ac) is exists beneath the embankment. This layer consists of clay and sandy clay containing shells. N-value ranges 1 to 5.
 - (c) The lenses layer (As) consists of fine to medium grain sand and it is intercalated with clay and silt. The layer is very loose with average N-value of 6. The thickness of this lenses is about 1 to 3 m.
 - (d) Hard clay layer (Dc) with lenses of gravelly sand (Da) lies beneath Ac layer.

 The layer Dc is dark brown and the surface part is characterized by oxidation,

containing coral limestone. The average N-value of this layer is 25.

- (e) The sedimentary rock (Da) consists of alternation of conglomerate, sandstone, mudstone, having a N-value of more than 50.
- (4) Soil Types and Soil Mechanical Properties of Sub-base Layer in Garang River

The soil profile along this section consists of embankment fill (B), very soft clay (Ac) and sedimentary rock (Da) from the surface to the bottom.

- (a) The surface ground is covered by embankment fill with a thickness of 2 to 3 m and average N-value of 15.
- (b) Riverbed deposit (Rd) consists of sand and clay. The thickness is 1 to 2 m.
- (c) Soft clay layer (Ac) is found beneath the embankment (B) or river deposit, consisting of clay and sandy clay. Ac is medium stiff with average N-value of 12. The thickness is 2 to 4 m.
- (d) The lenses layer (As) lies between Ac and sedimentary rock Da. It consists of fine to medium grain sand, and intercalated with clay and silt. The thickness is very thin of around 1 m.
- (e) The bottom part of boreholes is sedimentary rock consisting of alternation of conglomerate, sandstone and mudstone. SPT gives a N-value of 40 or more.

The results of the mechanical and physical tests for the above layers are presented in Table. 3.2.2. In designing structures, soil test results shall be used. If there is no available data regarding physical test of soil, the N-value will be used for the estimation of necessary soil parameters.

3.3 Hydrological Analysis

3.3.1 Data Collection and Compilation

The location of Garang River basin and hydrological observatories are shown in Fig.2.1.1 and the conditions of data recording are presented in Table 3.3.1. These observatories are operated by Provincial Public Works Services (DPUP), Center of Meteorology and Geophysics (BMG), or Institute of Hydraulic Engineering (IHE).

Hourly rainfall data are available at two(2) automatic rainfall stations, namely BMG-Semarang station in lowland and Kaligading station in highland. Manual rainfall stations have only daily rainfall data. The stations shown in the table and figure were selected in the Feasibility Study in 1993.

There are three(3) automatic water level stations in the Garang river system. One is Panjangan station which is located at immediately downstream of the confluence of Garang River and Kreo River. It was set up in 1983, but the data before 1986 are not available. The others are Paternon station in Garang River upstream and Kalipancur station in Kreo River. Those were both set up in 1992.

Besides, intermittent water level data at Simongan Weir recorded manually at flood time are available.

The kinds and periods of the hydrological data added in this study stage are shown in the right part of Table 3.3.1 as "Additional Data" ranging from 1991 to 1996. The hydrological analyses, which are necessary for the flood control plan and water use plan, are supposed to be updated using the additional data.

3.3.2 Probable Rainfall

(1) Annual Maximum Rainfall

Hourly rainfall data are available at BMG-Semarang station and Kaligading station. Of the two, the latter has shorter record period of 17 years and contains many missing data. And it was found in the Feasibility Study that probable rainfall by the latter is smaller than that by the former. Therefore, the former, which has longer record period and contains less missing data, is adequate to be adopted.

Annual maximum rainfall for each duration (5, 10, 15, 30, 45, 60, 120 minutes, 3, 6, 12 hours and 1 day) at BMG-Semarang station in 28 years until 1996 are extracted and tabulated in Table 3.3.2.

(2) Probable Rainfall

Gumbel Method was employed to calculate probable rainfalls. The results are shown in Table 3.3.3 and Figs.3.3.1 and 3.3.2. One(1) hour probable rainfall of 100-year return period was calculated at 144.6 mm, and one(1) day rainfall of 100-year at

319.4 mm. These values are bigger than that of Feasibility Study by some 10 percent (refer to the lower part of Table 3.3.3).

(3) Rainfall Intensity Formula

As to Rainfall Intensity Formula, the Horner Type equation is used as well as the Feasibility Study. The results of calculation are shown in Tables 3.3.4 and 3.3.5 and Fig.3.3.3. Two types of rainfall intensity curves are presented in Fig. 3.3.3 for short duration less than two (2) hours which is used for planning urban drainage and long duration more than one (1) hour which is used for planning dams.

(4) Design Storm

The length of One(1) day is appropriate to the duration of design storm to be used in the flood control plan, considering actual rainfall patterns, the size of river basin and the kind of flood control facilities.

Hourly distribution pattern of the design storm should be made from hourly rainfall data of actual storms. Hourly rainfall data of annual maximum rainfalls in the past 10 years at BMG-Semarang station are tabulated in Table 3.3.6. The ratio of each hourly rainfall to total are calculated, and shifted so that the peak ratio can locate in center time. Shown in Table 3.3.7 are the results. The average ratio of 10 storms are adopted to express the hourly distribution ratio of the design storm.

The design storm of each return period is calculated from probable one(1) day rainfall multiplied by the hourly distribution ratio (refer to the lower part of Table 3.3.7). One(1) hour rainfall at peak time accounts for 39 percent of one(1) day rainfall. Illustrated in Fig.3.3.4 is the design storm of 100-year return period.

3.3.3 Probable Peak Discharge

(1) Annual Maximum Flood Discharge

In the case which has less flood discharge data, probable flood discharge is calculated by a flood run-off model with input design storm. However, in the case of Garang River, probable flood discharge can be calculated directly from the peak discharge data at flood time.

Annual maximum water levels at Simongan Weir have been recorded manually from

1961 to 1996 at present. Annual maximum discharges are able to be converted from these water level data with the discharge formula for overflow as a rating curve.

Simongan Weir consists of flood discharge section at center portion with fixed weir and side portions with flushing gates on both sides. The gates are closed even at flood time, and the river water overflows above the gates with the same overflow depth as that of center portion.

Different discharge coefficients were applied to the center portion and side portions of the weir. Shown in Table 3.3.8 are annual maximum discharges at Simongan Weir in the past 36 years calculated by the overflow discharge formula.

(2) Probable Peak Discharge

Gumbel Method was employed to calculate probable flood discharges, with annual maximum discharges shown in Table 3.3.8. The results of calculation are shown in Table 3.3.9 and Fig.3.3.5.

According to this, 100-year probable discharge is 1,010 m³/s, and 25-year probable discharge is 790 m³/s (rounded up from raw value of 785 m³/s). Compared with those of the Feasibility Study, 100-year probable discharge increased by 30 m³/s, and 25-year discharge by 20 m³/s.

3.3.4 Flood Run-off Model

(1) Outline of Storage Function Method

Probable peak discharges have been estimated as described in Section 3.3.3. In addition to the peak discharge, discharge hydrograph is necessary to establish a flood control plan with dams. Accordingly, a flood run-off model, which can converts input hyetograph into discharge hydrograph, is needed.

The Storage Function Method is recommended to be employed as a flood run-off model. This method receives wide recognition as the de-facto standard method in planning flood control with dams.

The Storage Function Method has been developed to express non-linear characteristics of run-off phenomena. This method can give the process of transformation from rainfall to run-off on the assumption that there is a one-to-one

functional relation between the volume of storage and run-off. Calculations of the run-off from rainfall are made through the use of the volume of storage as medium function. The relationship between the volume of storage of a basin and the discharge is expressed as follows:

$$S = K * q^P$$

where, S: Depth of storage (mm)

q: Depth of run-off (mm/hr)

K, P: Constants

This relation formula is used as a substitution for the solution of equation of motion. That is, this formula establishes that the run-off is proportional to the exponent of the volume of storage. This is equivalent to the thinking in which the phenomena of rainfall and run-off are considered to be similar to the run-off from a notch in a container filled up with water.

Run-off calculations are performed by the combination of this equation of motion with the following equation of continuity.

dS/dt = F * Ra(t) - q(t+TL)

where, F: Inflow coefficient

Ra(t): Average rainfall in a watershed (mm/hr)

q(t+TL): Depth of run-off with lag time (mm/hr)

TL: Lag time (hr)

t:: Time

When making the run-off calculations for a basin, it is necessary to make calculations of effective rainfall. With the Storage Function Method, it is thought that coefficient (F) is not related to rainfall (Ra) but to the catchment area (A). Namely, it is thought that F=F1 in the early stages of rainfall (termed the primary run-off rate) and that only the area F1*A (called the run-off zone) causes the run-off. When cumulative rainfall exceeds Rsa (saturated rainfall), then F=1 (this is termed the saturated run-off rate), and the run-off may occur even from the remaining part (1-F1)*A (infiltration zone) due to the rainfall exceeding Rsa.

However, both the run-off zone and infiltration zone should be calculated separately for the run-off until the end of the flood. The volume of run-off from the basin should be the sum of run-off from both zones plus base run-off. Run-off (m³/s) from

the basin (including the base run-off) is given by the following formula:

Q(t) = F1*A*qt(t)/3.6 + (1-F1)*A*qs(t)/3.6 + Qb

where, Q(t): Run-off (m³/s)

F1: Primary run-off rate

A: Catchment area (km²)

qt(t): Run-off by total rainfall (mm/hr)

qs(t): Run-off by rainfall after saturation (mm/hr)

Qb: Base flow (m³/s)

(2) Hourly Data of Rainfall and Discharge at Flood Time

Hourly discharges are able to be calculated from the water level data recorded manually at Simongan Weir at flood time intermittently, with the same rating curve as calculation of annual maximum discharge mentioned before. Discharge hydrograph of major floods are available to be used as check data for the calibration of flood run-off model.

Five(5) annual maximum floods since 1987 were selected as the calibration data of flood run-off model considering the response between rainfall and discharge. The basin average daily rainfalls during those floods are calculated with Thiessen Polygon (refer to Fig.3.3.6) and shown in Table 3.3.10.

It is appropriate that hourly rainfall data of Kaligading station in highland are used after its total daily rainfalls have being adjusted to the basin average daily rainfalls already shown in Table 3.3.10.

The following data in five(5) floods are contained in Table 3.3.11.

- (a) hourly water levels
- (b) hourly discharges by a)
- (c) hourly rainfalls at Kaligading station
- (d) basin average hourly rainfalls proportional to c)

(3) Calibration of Flood Run-off Model

If the whole Garang river basin is expressed by sole basin model of Storage Function Method, the parameters in the model (namely K, P, TL, F) can be counted backward analytically using the data mentioned above. The results of backward analysis are

shown in Table 3.3.12 and Fig.3.3.7.

(4) Flood Run-off Model for Garang River Basin

The flood run-off model should be divided so that it can express the effects of flood control by dams and the confluence of tributaries. Sub-basin division for the Garang river basin is shown in Fig.3.3.8. Shown in Fig.3.3.9 is the model diagram for flood run-off calculation which consists of basin units and channel units

The parameters in the flood run-off model by Storage Function Method are tabulated in Table 3.3.13. Here, the main parameters for basin units are determined by the average values from backward analysis shown in Table 3.3.12. For channel units, only the time lag of flow down is taken into account, because the storage effect in the river channel seems little, considering from the size of the river channels.

(5) Area Reduction Factor

The hydrograph of probable flood are obtained from the flood run-off model with design storm as input. However, the peak discharge in hydrograph becomes bigger than the probable discharge estimated directly from annual maximum discharges in Section 3.3.3.

The difference between the peak discharge in hydrograph and the probable discharge is adjusted by the area reduction factor which means the ratio of basin average rainfall to point rainfall. The area reduction factors, which depend on the catchment area and the magnitude of storm, were estimated at Simongan Weir site as shown in the table below. And the distribution curves of the area reduction factor for catchment area are shown in Fig.3.3.10. Here, the area reduction factor is 1.0 at catchment area of zero, and 0.75 at catchment area of 204 km² in the case of 100-year return period.

Return Period	5-year	10-year 25-y	ear 50-year	100-year	٦
Area Reduction Factor	0.667	0.697 0.72	23 0.738	0.750	٦

(at Simongan Weir A=204 km²)

3.3.5 Flood Control Plan

(1) Design Flood Discharge for River Improvement

The design storm multiplied by area reduction factor was inputted into the flood runoff model by Storage Function Method and then the flood routing calculation by Jatibarang Dam was carried out. The results are shown in Tables 3.3.14 to 3.3.16 and Fig.3.3.11, and the summary is shown in the table below.

Return	Peak	Discharge a	at Dam	Peak Disch	narge at
Period (year)	Inflow (m³/s)	Outflow (m³/s)	Out-max. (m³/s)	without Dam (m³/s)	with Dam (m³/s)
5	150	20	60	520	400
10	180	30	70	640	500
25	220	30	90	790	620
50	260	40	100	900	700
100	290	40	120	1,010	790

Note: Discharge figures were rounded up to the nearest 10 m³/s

The design scale of Garang River/West Floodway is 100-year return period and the 100-year probable discharge is 1,010 m³/s. The design discharge of river channel at the downstream of confluence was calculated at 790 m³/s with the flood control by Jatibarang Dam. This design discharge is equivalent to 25-year probable discharge without the dam.

The distribution diagram of the design flood discharges in the Garang river system is shown in Fig.3.3.12.

(2) Flood Control Capacity of Jatibarang Dam

Since the catchment area of Jatibarang Dam is as small as 53.0 km², it is difficult to operate flood gates properly under the fast flood run-off from basin. So, the no-gate-discharging system is employed as the flood control system of Jatibarang Dam.

The flood control outlet shapes open spillway whose crest elevation equals the normal water level of the reservoir. The width of over flow section is determined at 15 m so that the peak discharge of 100-year return period at Simongan Weir site should be 790 m³/s with the flood control by the dam. The outflow and storage conditions used in the flood routing calculation are shown in Table 3.3.15.

The net value for the flood control capacity required of Jatibarang Dam is estimated at 2,505,000 m³ as shown in Table 3.3.14. Therefore, the flood control capacity of Jatibarang Dam is determined at 3,100,000 m³ including 20 percent allowance in accordance with "Manual for River Works in Japan".

3.3.6 Low Flow Analysis

(1) Daily Rainfall

Low flow analysis aims to convert a series of daily rainfalls into a series of daily discharges. The daily rainfall data at Sumurjurang station (No.65c), which is located in the middle reaches of the Garang river basin, are used as a representative daily rainfall pattern. The rainfall data at Sumurjurang station in the past 30 years (from 1967 to 1996) are tabulated monthly in Table 3.3.17 (after supplementation of missing data).

The basin average daily rainfalls are calculated by multiplying daily rainfalls at Sumurjurang and the modification coefficient together (refer to Table 3.3.20) based on the Thiessen polygon shown in Fig.3.3.6.

(2) Water Balance and Annual Loss

The data at three(3) automatic water level stations (namely, Panjangan, Paternon and Kalipancur stations) in the Garang river basin are available as daily average discharge. Those discharge data are compiled monthly in Table 3.3.18. Fig.3.3.13 shows daily discharge fluctuation at Panjangan station in the past 10 years (from 1987 to 1996).

Flow regime and water balance by observed discharge are tabulated in Table 3.3.19. According to this, Annual loss (= annual rainfall - annual runoff depth) at Panjangan station amounts 1,181 mm in average. This amount of loss corresponds to 73 percent of pan evaporation, and it seems pertinent amount from a hydrological view. Compared with this, annual loss at Kalipancur station makes extremely small amount at 408 mm. It seems to be caused by the rating curve being used.

(3) Selection of Calibration Data

The daily discharge data at Jatibarang Dam and Simongan Weir sites are necessary in water use simulation mentioned later. Simongan Weir site is located very near Panjangan station. Therefore, the discharges at Simongan Weir should be calculated from the discharges at Panjangan multiplying by the catchment area ratio (=204.0/192.6km²).

On the other hand, although Kalipancur station is located near Jatibarang Dam in

Kreo River, the data at Kalipancur has a problem about accuracy as mentioned above. Therefore, it is appropriate that the discharges at Jatibarang Dam also should be calculated from the discharges at Panjangan multiplying by the catchment ratio (=53.0/192.6km²).

Accordingly, the available daily discharge data observed at Panjangan station in the past 10 years are used in low flow analysis as calibration data for a run-off model.

(4) Outline of Tank Model Method

The Tank Model Method is applied to low water run-off calculations. This method incorporates calculations of direct run-off during rainfall as well as other elements such as the separation of infiltrated rainwater, evapotranspiration, and oozing-out of groundwater.

Serial storage type model, which is called the Tank Model, is used for run-off calculations in which the catchment is replaced with containers having several run-off holes on their sides and bottoms (refer to Fig.3.3.14). Rainwater is placed in the top container of the model. Containers below the top one receive water from the hole in the bottom of a higher container. Part of water in each container runs off to the outside through the holes on the side, while the remaining water moves to a lower container. The sum of run-off from the holes on the sides of containers of all stages becomes the discharge of a river.

(5) Tank Model Simulation

Daily rainfalls at Sumurjurang multiplied by modification coefficient 0.99 are inputted into Tank Model. Evaporation amount, which is subtracted daily from Tanks, is 1,181 mm by annual total, and monthly pattern of evaporation is assumed to be proportioned to pan evaporation pattern (refer to Table 3.3.21).

The parameters of Tank Model, which include run-off holes, seepage holes and initial storage depths, were determined by trial simulation so that the calculation discharges can simulate the observed ones well. The parameters are finally determined as shown in Fig.3.3.14.

The flow regime of calculated discharges and observed discharges in the past 10 years are compared in Table 3.3.22, and the simulation plottings of discharges in the

past 30 years are shown in Fig.3.3.15, where the calculated discharges and observed discharges in the latest 10 years are plotted by comparison. It is obvious that the Tank Model simulation resulted in success.

As to the discharge data which should be used in water use simulation described later, the observed discharges in the latest 10 years, and the calculated discharges by Tank Model in the previous 20 years, are adopted. The flow regime and water balance at Simongan Weir site in the past 30 years are shown in Table 3.3.23. The average annual loss in 30 years became exactly 1,200 mm finally.

(6) 5-days Discharge for 30 years

The water use simulation described later are carried out with 5-days intervals. The data of 5-days discharges in the past 30 years are contained in Table 3.3.24.

3.3.7 Design Tidal Level at River Mouth

The design tidal levels at the river mouth were determined based on the tidal data observed at Semarang Harbour. Since the tidal data observed in the past has been affected by land subsidence in the low lying area, the most recent data of April 1997 to August 1997, which is considered less affected, is used for the tidal analysis.

The mean high water level at river mouth is defined as the average monthly maximum tide level. Similarly, the mean low water level is defined as the average monthly minimum tide level. Applying these definitions to the said monthly data, the mean high and low water levels are given as presented in Table 3.3.25. Then, by relating the chart datum of the water level gauge to the M.S.L of Jakarta Harbour, the basic tidal levels such as mean high level, mean low water level and mean sea level of Semarang Port were determined as follow:

Kind of Water Level	Elevation (TTG)
Highest High Water Level (HHWL)	EL. +0.450 m
Mean High Water Level (MHWL)	EL. +0.250 m
Mean Sea Level (MSL)	EL0.230 m
Mean Low Water Level (MLWL)	EL0700 m
Lowest Low Water Level (LLWL)	EL0900 m

For the non-uniform flow calculation in the event of flooding, the mean high water level of EL. +0.250 m is used as the starting water level at the river mouth.

TABLES

CHAPTER 3

INVESTIGATION AND ANALYSIS

Table 3.1.1 FINAL RESULT OF CONTROL POINTS

<	5	,
	_	,
3	þ	•
ç	<u>.</u>	•
,	_	
	_	
Ç	5	
7	4	
1	⊃ = 7	
Ş	ز ج	
(Ş	

STATION			NOR	NORTHING	Ŀ	EA	EASTING	LATITUDE	LONGITUDE	FI EVATION REMARKS	REMARKS
N.0004		70	4	4' 7.0809 " S	110°	CA	55.856 " S	9,218,632,118	442,814,138		
NI.0259 (JP-7	7-	و.	59,	1.5641 " S	110°	24	34.282 " S	9,228,004.682	434,777.817	4.362	
JP-1		و.	56	51.327 " S	1100	25	6.6671 " S	9,232,005.355	435,766.570	0.922	
JP-2		وه	56	289296 " S	110°	56,	41.964 " S	9,232,696.655	438,690.025	1.015	
JP-3		9	56	47.216 " S	110°	231	32.077 " S	9,232,127.943	432,863.829	0.926	
JP-4		9	57	46.846 " S	110°	25'	59.398 " S	9,230,302.408	437,386.684	0.744	
JP-5		و,	58	38.309 " S	110°	26	54.603 " S	9,228,724.049	439,082.490	2.999	
JP-6		و.	58,	26.135 " S	110°	231	40.153 " S	9,229,090.579	433,115.536	986.0	
JP-8		9	59'	9.3077 " S	110°	251	43.672 " S	9,227,769.509	436,907.230	2.864	
JP-9		و.	59	46.084 " S	110°	231	22.693 " S	9,226,634.706	432,582.979	33.702	
JP-10		٩	0,	19.071 " S	110°	26	56.307 " S	9,225,629.835	439,138.413	7.980	
JP-11		70	o,	18.851 " S	110°	25	40,332 " S	9,225,633.799	436,807.342	14.416	
JP-12		70	0,	22.165 " S	110°	24	30.875 " S	9,225,529.384	434,676.387	86.673	
JP-13		70	0,	44.328 " S	110°	22,	14.317 " S	9,224,834.319	430,487.408	60.949	
JP-14		70		23.127 " S	110°	23'	19.32 " S	9,223,654.479	432,483.354	34.648	
JP-15		20		32.24 " S	110°	22	46.351 " S	9,223,372.085	430,551.770	90.953	
JP-16		۶	<u>-</u> ,	37.649 " S	110°	20,	54.44 " S	9,223,202.528	428,038.896	184.599	
JP-17		2	3.	1.1278 " S	110°	21	33.513 " S	9,220,640.610	429,241.206	204.198	
JP-18		%	3.	1.4915 " S	110°	6	36.619 " S	9,220,624.394	425,654.959	219.344	
JP-19		٩	<u>س</u>	34.459 " S	110°	20'	5.4294 " S	9,219,613.256	426,540.306	218.583	
JP-20		2,	4	15.283 " S	1100	20	28.568 " S .	28.568 " S . 9,218,360.582	427,251.956	212.435	
BM-13		وه	57'	52.112 " S	110°	24,	38.519 " S	9,230,137.634	434,905.154	0.349	

Table 3.1.2 (1/3) MAP SYMBOLS

Δ	Triangulation Point		Market
<u></u>	GPS Point	4	Transformer house
·	Bench Mark TTG	Ω	Bank
•	Minor Order leveling	\triangle	Gas station
•	Spot elevation	T	Telephone office
\boxtimes	Minor order BM	<u> </u>	Government office
	House/Building	H	Hotel
Ē	Factory		Main road
Ph	Public hall		Road >2m
Ps	Public station		Road 1-2m
Ç*	Mosque		Road under construction
<u></u>	Church		Footpath
<u></u>	Temple		Median strips
+	Hospital		Road and strips
Fs	Fire Station		Cutting and embankment
P	Post Office	=>-(=	Iron and concrete bridge
	School	=>-<=	Wooden bridge

Table 3.1.2 (2/3) MAP SYMBOLS

->	Foot bridge bamboo bridge		Cultivation land boundary
~//m	Culvert	11	Rice field
+++-	Railway	V	Farm/cultivated
+- == -	Railway bridge	∀	Sugar cane
st +=	Station	논	Palm plantation
++/+-	Intersecting railway	<u> </u>	Rubber plantation
Water/oil	Water/Oil Pipe	:a:	Teak plantation
Water/oil	Water/Oil Tank		Coffee plantation
G	Automatic waterlevel gauge	Со	Cacao plantation
₩	Electricity power	9	Orchard
*	Wall hedge/fence	9	Other plantation
	Monument	(ō)	Bush
·	Moslem graves	V	Grass field
	Christian cemetery	Q	Trees/Forest
	Chinese graves	Τ\	Dead trees
	Buddha graves	\ \ \ \	Bore land
• • •	Vegetation boundary	/\	Bamboo copse

Table 3.1.2 (3/3) MAP SYMBOLS

146	River(a), rivulet(b), direction(c)	+	Kecamatan boundary
	Channel		
	Water fall		
7	Small/large revetment		
	Small/large weir		
• - •	Small/large watergate		
a b	Sand(a), shore line(b)		
SALT	Saltarn		
w	Fishpond/Pond, Lake		
===:	Swamp		
	Depression		
6666	Rocks		
m mm	Precipice, Land slide		
FEEF	Cliff		
1	Contour		
	Storages		
·+	Kabupaten boundary		

Table 3.1.3 (1/8) COORDINATES OF CROSS SECTION POINT

WEST FLOODWAY

STATION	N NORTHING EASTING ELEVATION	I	DISTANCE	ACCUM.DIS	STATION	NORTHING EASTING FI EVATION DISTANCE ACCITM DIS	TNG FI FV	ATTON DI	STANCE!	STOLEMENTS
WF9L	9232169.780 432894.394	ļ	0.00	0.00			0.11	101111		ACCOMINATOR
WF8L	9232158.066432901.499	0.747	13.70	13.70						
WF7L	9232115.138 432926.953	0.611	49.91	63.61						
WF6L	9232074.061 432951.733	596:0	47.97	111.58						
WF5L	9232027.812 432979.706	0.829	54.05	165.63						
WF4L	9231986.758433004.490	0.892	47.96	213.59						
WF3L	9231943.797433030.118	0.968	50.02	263.61						
WF2L	9231900.990433055.925	1.164	49.98	313.59						
WF1L	9231858.601 433082.465	0.442	50.01	363.61			-			
WF.0L	9231815.846433108.376	0.462	49.99	413.60	WF.0R	9231907.759 433291.856	.856	0.214	000	000
WF.1L	9231773.085 433134,135	0.475	49.92	463.52	WF.1R	9231859.923 433293.931	.931	0.778	47.88	47.88
WF.2L	9231729.761 433159.760	0.413	50.33	513.85	WF.2R	9231823.179 433313.404	.404	0.294	41.58	80.47
WF.3L	9231689.008433192.834	0.692	52.48	566.34	WF.3R	9231774.871 433332.644	.644	969.0	52.00	141 46
WF.4L	9231646.605433217.404	1.046	49.01	615.35	WF.4R	9231720.612433352.893	.893	0.688	57.91	19938
WF.5L	9231597.273 433245.801	1.157	56.92	672.27	WF.5R	9231662.905 433381.815	.815	0.830	64.55	263.93
WF.6L	9231555.016433264.350	1.267	46.15	718.42	WF.6R	9231600.276433376.999	666	1.652	62.81	326 74
WF.7L	9231512.402433282.977	1.150	46.51	764.92	WF.7R	9231559.956 433394.364	.364	1.933	43.90	370.64
WF.8L	9231467.334433304.101	1.128	49.77	814.70	WF.8R	9231511.476433416.047	.047	2.267	53.11	423.75
WF.9L	9231423.067 433327.455	1.052	50.05	864.75	WF.9R	9231471.635 433435.06	.061	2.775	44.15	467.90
WF.10L	9231377.213 433347.574	0.662	50.07	914.82	WF.10R	9231427.965 433461.435	.435	2.565	51.02	518.91
WF.11L	9231332.093 433368.951	0.459	49.93	964.75	WF.11R	9231388.974 433485.796	796	2.135	45.98	564.89
WF.12L	9231286.520433388.883	0.208	49.74	1014.49	WF.12R	9231355.193 433530.92	922	0.700	56.37	621.26
WF.13L	9231240,914433409,396	1.784	50.01	1064.50	WF.13R	9231303.505 433545.565	565	1.249	53.72	674.98
WF.14L	9231195.017 433429.741	1.398	50.20	1114.70	WF.14R	9231267.500 433561.255	255	1.541	39.28	714.25
WF.15L	9231152.785 433459.230	0.409	51.51	1166.21		9231206.293 433589.02	024	0.340	67.21	781.47
Wr.16L	9231106.938433478.304	0.048	49.66	1215.87	WF.16R	9231151.723 433620.576	.576	0.630	63.04	844.50
WF.17L	9231060.338 433495.984	0.307	49.84	1265.71	WF.17R	9231110.977 433632.417	417	0.933	42.43	886.93
WF.18L	9231012.435 433510.555	0.852	50.07	1315.78	WF.18R	9231062.464433646.692	692	1.042	50.57	937.50
WF.19L	9230957.154433534.263	0.236	60.15	1375.93		9231002.847 433664.649	649	1.064	62.26	92.666
WF.ZUL	9230916.892 433541.171	1.274	40.85	1416.78		9230953.067 433680.526	526	1.041	52.25	1052.02
WF.ZIL	9230808.472433551.868	1.322	49.59	1466.37		9230901.801 433698.22	221	1.191	54.23	1106.25
WF.22L	9230819.358433561.096	1.930	49.97	1516.34		9230852.244 433715.786	786	1.327	52.58	1158.83
WF.23L	9230770.257433371.042	1.184	50.10	1566.44	WF.23R S	9230803.154 433731.352	352	1.121	51.50	1210.33

Table 3.1.3 (2/8) COORDINATES OF CROSS SECTION POINT

TACATON TO	NOTA VE A STING ST EVATION	1-	DISTANCE	ACCITM DIS	STATION	NORTHING E	FASTING IFI EVATION		DISTANCE	ACCUM.DIS
WF 241	9230721 207 433580.955	[1616.48	WF.24R	9230762.355 433745.148	3745.148	1.435	43.07	1253.39
WF.25L	9230672.770433594.508	1.261	50.30	1666.78	WF.25R	9230724.870 433757.382	3757.382	1.443	39.43	1292.83
WF 261.	9230625.403 433610.161	1.113	49.89	1716.66	WF.26R	9230677.241 433770.657	3770.657	1.204	49.44	1342.27
WF 271.	9230578.492433624.282	1.163	48.99	1765.65	WF.27R	9230621.738 433786.835	3786.835	1.505	57.81	1400.08
WF.28L	9230528.461 433637.434	0.999	51.73	1817.38	WF.28R	9230569.362 433803.228	3803.228	1.402	54.88	1454.96
WF.29L	9230480.870433651.284	1.354	49.57	1866.95	WF.29R	9230514,423 433811.02	3811.021	1.484	55.49	1510.45
WF.30L	9230431.588 433658.513	0.608	49.81	1916.76	WF.30R	9230460.33043	433821.259	1.070	55.05	1565.51
WF.31L	9230377.760433662.183	0.769	53.95	1970.71	WF.31R	9230405.09943	433830.733	1.017	56.04	1621.54
WF.32L	9230331.589 433665.974	0.880	46.33	2017.04	WF.32R	9230348.24843	433849.902	1.928	00.09	1681.54
WF.33L	9230281.638 433669.033	1.227	50.04	2067.08	WF.33R	9230291.301 433	433849.444	1.221	56.95	1738.49
WF.34L	9230231.576433671.454	1.935	50.12	2117.20	WF.34R	9230233.169433856.449	3856.449	1.322	58.55	1797.04
WF.35L	9230181.702 433675.803	1.427	50.06	2167.27	WF.35R	9230195.552 433860.904	3860.904	1.324	37.88	1834.92
WF.36L	9230131.625 433679.044	0.968	50.18	2217.45	WF.36R	9230157.472 433861.705	3861.705	1.545	38.09	1873.01
WF.37L	9230081.953 433682.812	1.118	49.81	2267.26	WF.37R	9230109.515433869.462	3869.462	1.503	48.58	1921.59
WF.38L	9230032.044 433685.872	1.371	50.00	2317.26	WF.38R	9230061.998 433876.133	3876.133	2.152	47.98	1969.57
WF.39L	9229982.213 433689.810	1.093	49.99	2367.25	WF.39R	9230002.017 433879.699	3879.699	1.220	60.09	2029.66
WF.40L	9229932.472 433694.915	1.060	50.00	2417.25	WF.40R	9229961.498433883.50	3883.501	1.126	40.70	2070.36
WF.41L	9229883.125 433702.451	1.231	49.92	2467.17	WF.41R	9229904.295 433876.71	3876.713	0.374	57.60	2127.96
WF.42L	9229833.820433711.791	0.930	50.18	2517.35	WF.42R	9229852.847 433885.940	3885.940	1.189	52.27	2180.23
WF.43L	9229784.375433718.618	1.226	49.91	2567.27	WF.43R	9229806.828 433887.558	3887.558	0.695	46.05	2226.28
WF.44L	9229735.389 433728.165	1.203	49.91	2617.18	WF.44R	9229755.591 433889.164	3889.164	. 1.107	51.26	2277.54
WF.45L	9229685.882 433736.089	1.241	50.14	2667.31	WF.45R	9229699.913 433882.93	3882.931	0.313	56.03	2333.56
WF.46L	9229636.365 433742.389	1.523	49.92	2717.23	WF.46R	9229647.800433890.73	3890.737	0.936	52.69	2386.26
WF.47L	9229586.624433748.667	1.648	50.14	2767.37	WF.47R	9229603.612 433892.55	3892.551	0.902	44.23	2430.49
WF.48L	9229537.068 433755.078	2.282	49.97	2817.33	WF.48R	9229550.709 433897.489	3897.489	2.521	53.13	2483.62
WF.49L	9229487.475 433761.330	2.098	49.99	2867.32	WF.49R	9229497.081 43	433898.411	1.651	53.64	2537.25
WF.50L	9229438.130433768.858	2.028	49.92	2917.24	WF.50R	9229449.531 43.	433899.152	1.274	47.56	2584.81
WF.51L	9229388.364433774.740	2.273	50.11	2967.35	WF.51R	9229403.240 43.	433901.582	1.595	46.35	2631.16
WF.52L	9229338.832 433780.563	2.197	49.87	3017.22	WF.52R	9229354.31743.	433902.621	2.322	48.93	2680.10
WF.53L	9229289.110433786.398	2.328	50.06	3067.28	WF.53R	9229300.283 43	433904.461	2.545	54.07	2734.16
WF.54L	9229239.436 433791.772	1.813	49.96	3117.25	WF.54R	9229245.278 43.	433904.497	1.336	55.00	2789.17
WF.55L	9229189.911 433798.837	1.382	50.03	3167.27	WF.55R	9229198.571 43.	433906.081	2.163	46.73	2835.90
WF.56L	9229140.065 433803.348	1.993	50.05	3217.32	WF.56R	9229148,164 433909.01	3909.011	2.329	50.49	2886.39
WF.57L	9229090.445 433810.098	2.250	50.08	3267.40	WF.57R	9229097.242 433904.326	3904.326	1.414	51.14	2937.53

Table 3.1.3 (3/8) COORDINATES OF CROSS SECTION POINT

2.227 50.18 337.78 WF.58R 9220044058,43913.18 L.PAJION INTROLEGISTARY 2.207 2.50 2.50 3416.78 WF.58R 9228047.972433914.855 2.237 2.20 2.568 49.07 3416.70 WF.6RR 9228893.107433914.855 2.237 2.568 49.07 3416.70 WF.6RR 9228893.107433914.855 2.01 2.707 49.03 346.70 WF.6RR 9228893.107433914.865 2.289 2.707 49.03 346.70 WF.6RR 9228890.21043390.062 2.482 4.507 36.10 370.19 WF.6RR 9228880.2314437 4.625 4.366 50.14 370.19 WF.6RR 922864.1843393.60.62 3.208 4.566 50.60 370.19 WF.6RR 922884.8064.3399.22.60 3.742 4.567 50.80 370.19 WF.6RR 922884.8064.3399.22.60 3.742 4.567 50.80 370.19 WF.6RR 922884.8064.3399.22.60 3.742 4.786 50.13 WF.73RR	STATION	NORTHING EASTING	ELEVATION	DISTANCEL	ACCIMENTS	STATION	OLGANIZATION OF A CHARLES	1-	1004	- 10
9228991,3324,43854,565 2.598 50.04 3367.02 WF.50R 9228991,43314,407 2.501 9228940,31324,83827,225 2.668 49.07 3416.70 WF.60R 9228993,107433916,855 2.277 92288941,871,433827,015 2.707 3.108 346.70 WF.63R 9228893,107433919,668 2.041 92288941,871,433837,015 2.707 3.108 346.70 WF.63R 9228890,034,43391,669 2.472 92288941,871,433890,131 3.153 50.24 3.567.92 WF.63R 9228890,034,4374,43390,062 2.472 9228801,384,234 4.366 50.14 3.710,19 WF.63R 9228800,034,4374,43394,031 3.572 9228801,386,234 4.366 50.04 3.761,14 3.710,19 WF.63R 9228800,034 4.727 9228801,387,234 4.366 4.750 50.10 3.762 922800,037 3.762 9228801,387,234 4.366 4.750 9.750 9.750 9.750 9.750 9.750 9228801,474,374,374,374 4.750 4.750 9.7	WF.58L				3317.58	Ľ	9220044 035/433013 136		STANCE	ACCUM.DIS
9228891.3154/33827.275 2.668 49.07 341.670 WF.61R 9228947.3154/33916.85 2.237 9228891.64/43833.256 2.1757 49.08 34.776 WF.61R 9228941.074/33910.86 2.237 9228891.1716/43383.256 2.1757 49.09 35.10 36.776 WF.61R 9228845.101/433910.86 2.238 9228891.1716/43384.236 1.870 50.18 36.81.10 WF.63R 9228846.018/43391.96 2.288 9228891.1716/43384.238 4.565 51.44 3710.59 WF.63R 9228845.016/43391.96 3.200 922860.1606/43386.243 4.566 37.00.11 WF.63R 9228546.911/33944.67 3.200 9228640.286/13386.243 4.566 4.70.79 97.00.00 9228540.031 4.33940.931 3.200 9228640.286/13386.243 4.566 4.70.79 97.00 97.00 97.00 97.00 97.00 9228640.286/13386.244 4.50.70 3.70.01 WF.63R 97.228546.031/33902.06 3.20.0 3.20.0 9228640.286/144 4.50.70 3.70.01	WF.59L	9228991.332 433824.965	2.598	50.04	3367.62	1	9228999.490433914.047	2,626	22.22	3036.02
9228891,644433833,556 2.757 \$1.06 3467.76 WF.61R 9228893,107 4339919,688 2.041 9228891,64433843,516 2.707 49.53 \$31.76 WF.63R 9228840,110 433991,068 2.045 9228891,164,433840,511 3.153 50.24 3567.92 WF.63R 9228840,2314,33926,630 2.452 9228841,206,433846,531 4.592 50.05 3668.13 WF.64R 9228648,4467 4.625 9228841,572 4.363 51.44 3710.59 WF.64R 9228648,918433391,02 3.553 9228842,572 4.33866,249 4.567 50.30 3868.47 WF.64R 92286440,9339,00 3.556 9228842,572 4.478 5.03 3868.47 WF.64R 9228644,01 4.625 9228842,572 4.478 3.139 386.84 7.704 4046.88 WF.71R 9228640,04467 3.562 9228842,591,666,43385,502 4.78 3.188.47 WF.64R 9228640,04467 4.625 9228842,501,666,43387,502 4.78 4.79 4.704,08	WF.60L	9228942.315433827.275	2.668	49.07	3416.70	WF.60R	9228947.972433914.895	2 237	51.53	3087 54
9228841.871433827.015 2.707 49.93 3517.68 WF.62R 9228846.212 (433922.004 2.259 922879.1716/j.33840.511 3.153 50.24 3567.92 MF.63R 9228800.231 (43392.660) 2.452 922874.206/j.33847.326 1.870 50.05 3668.13 WF.64R 9228804.618 (43392.91) 4.502 922886.196/j.3388.23.43 4.363 51.44 3719.59 WF.65R 922880.031 3.533 922886.196 j.606/j.3388.23.44 4.566 50.30 3818.17 WF.64R 9228854.051 4.507 922886.108 j.606 j.3388.6.249 4.566 50.30 3918.46 WF.67R 9228854.01 4.007 922881.1.6.20 4.567 50.30 3918.46 WF.77R 9228850.036 3.562 922881.1.6.20 4.358 5.139 3918.46 WF.77R 9228850.036 3.562 922881.1.6.20 4.358 8.432 4.138.81 WF.72R 9228850.036 3.562 922881.1.6.20 4.33887.32 4.439 4.138.81 WF.72R 9228850.036 <td>WF.61L</td> <td>9228891.644 433833.565</td> <td>2.757</td> <td>51.06</td> <td>3467.76</td> <td>WF.61R</td> <td></td> <td>2.041</td> <td>55.07</td> <td>3147.62</td>	WF.61L	9228891.644 433833.565	2.757	51.06	3467.76	WF.61R		2.041	55.07	3147.62
9228/91/10/43840/51 3153 50.24 3567/92 WF.64R 9228/92.65023 433926.650 2.452 9228/94/20/06 433844/326 1.870 50.18 36.81.10 WF.64R 9228/94.61843393.060 3.000 9228/86/1.806 433845.581 4.592 50.005 3.719.59 WF.65R 9228/94.61943393.060 3.500 9228/86/1.806 43385.134 4.366 50.00 3.770.10 WF.63R 9228/94.6143392.061 4.007 9228/84/2.907 43386.134 4.366 4.758 3818.17 WF.68R 9228/94.614.3194.22.061 4.007 9228/44/2.907 43386.249 4.567 4.758 3818.17 WF.68R 9228/94.604 4.007 9228/44/2.907 43386.244 4.758 51.39 396.98 WF.71R 9228/94.604 5.008 9228/24/2.907 43386.249 4.738 51.39 396.98 WF.71R 9228/94.3396.23.38 2.156 9228/24/2.907 43387.504 4.738 51.39 396.98 WF.74R 9228/94.3396.23.38 2.156 9228/24/2.907 43387.504 4.409 50.22	WF.62L	9228841.837 433837.015	2.707	49.93	3517.68	WF.62R		2.289	47.95	3190.57
YAZZBAZ, LOO (433846.58) 1.870 50.18 36.81.0 WF.6RR 9228746.016 (43394.467) 4.65.5 9228601 560 (433846.58) 4.362 3.016 3.668.15 WF.6SR 9228869.437 (43394.467) 4.65.5 9228601 560 (433846.58) 4.363 3.14.4 3.710.50 WF.6SR 9228849.031 (433940.901 3.058 9228640 866 (43386.134) 4.365 3.0.30 3.88.8.17 WF.6SR 9228840.05 (43390.002 4.207 9228590 2056 (43386.047) 4.656 3.0.30 3.88.8.17 WF.6SR 9228840.05 (43390.206) 4.207 922830 60 43386.120 4.994 4.99.8 3.918.46 WF.7DR 9228840.52 (43390.206) 3.740 92283 60 43387.50 4.994 4.096.88 WF.7DR 9228830.42 (43390.006) 3.006 92283.80 60 43387.50 5.244 84.92 4.18.81 WF.7DR 9228830.42 (43390.006) 3.006 92282.80 60 54 43387.50 5.244 84.92 4.18.81 WF.7DR 9228830.42 (43390.436) 4.05.8 92282.81 60 54 43387.50 5.244 84.92	WF.63L	9228791.716433840.511	3.153	50.24	3567.92	WF.63R		2.452	45.22	3235.78
22288412861 4.552 50.05 366.815 WF.66R 9228668.437 43399.062 3.553 92288401.8669 433862.543 4.368 51.44 3770.19 WF.66R 9228564.108 43399.062 3.553 9228840.2572 433862.044 4.368 50.40 4.70.8 3818.17 WF.66R 9228540.031 43394.467 4.65 4.70.8 3818.17 WF.66R 9228540.031 43394.062 3.562 9228840.2572 433860.047 4.567 50.30 3868.47 WF.66R 9228540.031 43396.266 3.562 922840.2576 433867.642 4.738 3.918.46 WF.70R 92285450.046 43396.226 3.742 9228318.747/433892.864 4.738 9.788 WF.72R 922830.221 3.742 922834.2911.874 4.33887.834 2.186 2.701 4073.00 WF.72R 9228245.33961.37 3.564 92283.42.941.477 4.409 5.0.28 WF.74R 9228245.33967.20 3.564 92281.4.6.43887.580 5.2.44 84.92 4.18.81 WF.74R 9228283.6343397.20 3.564 92281.4.	WF.64L	9228742.006433847.326	1.870	50.18	3618.10	WF.64R	9228746.918 433931.960	3.200	53.58	3289 36
9228840.889 43382.543 4.363 51.44 3719.59 WF.6RR 9228648.198 43993.062 5.553 9228840.386 47388.134 4.368 50.60 3770.19 WF.6RR 9228549.031 433940.931 3.938 9228842.576 473886.249 4.567 50.30 38.68.47 WF.6RR 9228540.056.433952.260 4.207 9228442.951 47386.249 4.567 50.30 38.68.47 WF.6RR 9228450.046.433952.260 3.762 9228442.951 473875.042 4.738 51.39 396.88 WF.7TR 9228450.046.433952.260 3.762 922843.964.42.951 473875.042 4.738 51.39 396.88 WF.7TR 9228450.046.433962.238 2.166 922843.964.42.42.42 1.84 4.02 4.046.88 WF.7TR 9228263.356.24433962.338 2.166 922824.02.42.42.42.42.42.42.42.42 4.136 50.35 4.242.34 WF.7TR 9228263.356.433962.338 4.622 922824.02.42.42.42.42.42.42 4.136 50.35 4.242.34 WF.7TR 9228263.356.43396.72 4.622 922281.92.62.43.3903.87.4 4.137	WF.65L	9228691.960 433846.581	4.592	50.05	3668.15	WF.65R	9228698.437 433944.467	4.625	50.07	3330 43
PAZESSAS 0.356 47368 50.60 3770 10 WF.6RR 9228540.031433942.961 3.538 PAZESSAS 0.376 433860.047 4.656 47.98 38.81.7 WF.6RR 9228540.05433942.961 4.207 PAZESSAS 0.56433860.047 4.656 47.99 39.84.7 WF.6RR 9228500.056.433952.868 3.562 PAZESSAS 0.56433860.243 4.694 49.98 39.84.6 WF.7RR 922840.004.43396.250 3.762 PAZESSAS 0.56433867.502 4.738 51.39 396.98 WF.7RR 9228250.004.43396.233 2.156 PAZESSAS 0.25443387.502 2.471 33.88 410.20 WF.7RR 9228265.746.43390.338 2.156 PAZESSAS 0.25443887.503 5.02 4.040.5 WF.7RR 9228265.7276.443390.338 4.628 PAZESSAS 0.2543390.266 4.136 50.23 4.242.9 WF.7RR 9228265.7276.4443397.077 4.628 PAZESSAS 0.2543390.2866 4.136 50.23 4.242.9 WF.7RR 922826.45.1389.13897.277 4.628 PAZESSAS 0.2543390.2866 4.136 50.23 4.242.9 <td>WF.66L</td> <td>9228640.869433852.543</td> <td>4,363</td> <td>51.44</td> <td>3719.59</td> <td>WF.66R</td> <td>9228648.198433939.062</td> <td>3.553</td> <td>50.53</td> <td>3389.96</td>	WF.66L	9228640.869433852.543	4,363	51.44	3719.59	WF.66R	9228648.198433939.062	3.553	50.53	3389.96
PSZ28542.572 433860.047 4.656 47.98 338.8.17 WF.68R \$228548.056 433942.061 4.207 PSZ8442.572 433866.249 4.567 50.30 3868.47 WF.69R \$228500.562 433952.866 3.562 PSZ8442.051 43387.162 4.567 50.30 3868.47 WF.60R \$228500.562 433952.866 3.562 PSZ8842.051 433887.504 4.78 51.39 396.84 WF.71R \$228303.423 433962.33 2.156 PSZ8342.941 433887.504 2.186 27.01 4073.90 WF.72R \$228303.423 433962.33 2.156 PSZ8342.941 433887.506 5.244 84.92 4128.70 WF.73R \$228265.746 433962.33 2.156 PSZ8282.01039 433897.167 4.409 50.25 424.20.7 WF.73R \$228265.746 433976.727 4.628 PSZ828.029.1039 433897.167 4.409 50.25 4242.95 WF.74R \$228246.129 433967.457 4.242 PSZ828.029.201 4.409 50.25 4242.95 WF.74R \$228246.129 433967.457 4.242 PSZ88.142.654 433903.874 4.512 50.81	WF.6/L	9228590.396433856.134	4.368	50.60	3770.19	WF.67R	9228594.031 433940.931	3.938	54.20	3444 16
9228842-951 43380.249 4-567 50.30 3868.47 WF.69R 9228850.656 433952.868 3.562 9228842-951 43381.523 4-594 4-9.98 3918.46 WF.70R 9228450.046 433952.260 3.742 9228318.747 43389.660.425 4-738 4-9.98 396.88 WF.71R 922830.423 4-3396.1.35 3.260 9228318.747 43389.660.42 4-738 7-04 4046.88 WF.72R 9228303.423 4396.1.33 2.156 9228342.941 43389.1.67 5-244 84-92 4158.81 WF.72R 922823.65.746 43395.1.37 2.501 9228240.949 43389.1.67 5-244 84-92 4158.81 WF.73R 922826.746 43397.3.46 5.08 9228140.659 43380.2.266 4-136 50.25 4242.95 WF.73R 922814.865.746 43397.47 4.27 9228140.659 43380.2.66 4-136 50.35 4242.95 WF.73R 922814.684 43437.47 4.27 9228140.659 443390.687 4-136 50.35 4243.42 WF.73R 922810.238 4.242 9228140.659 443390.687 4-151 <td>WF.68L</td> <td>9228542.572 433860.047</td> <td>4.656</td> <td>47.98</td> <td>3818.17</td> <td>WF.68R</td> <td>9228548.056433942.961</td> <td>4.207</td> <td>46.02</td> <td>3490 18</td>	WF.68L	9228542.572 433860.047	4.656	47.98	3818.17	WF.68R	9228548.056433942.961	4.207	46.02	3490 18
9228442.951 433811.523 4.994 49.98 3918.46 WF.70R 9228450.046 43360.250 3.742 9228431.5042 4.738 51.39 3969.85 WF.71R 9228399.221 43360.452 3.260 9228318.7164 4.33890.846 77.04 406.88 WF.72R 9228378.86433961.357 2.551 9228348.2541.433887.836 5.244 84.92 1.0 WF.73R 9228378.86433961.37 2.551 9228240.394 433887.530 5.244 84.92 412.81 WF.74R 922838.65.746,433973.46 5.098 9228240.399 43380.522 2.471 33.88 419.27 WF.74R 922838.65.746,433978.46 4.628 9228240.399 4380.5 4.136 50.39 4293.34 WF.74R 92283.65.746,433978.67 4.628 9228240.1876 4.136 50.39 4.293.34 WF.77R 922804.674.74 4.242 922800.1875 4.488 4.95.9 4.443.42 WF.77R 922804.65.9 4.482 9227801.170 4.339 </td <td>WF.69L</td> <td>9228492.656433866.249</td> <td>4.567</td> <td>50.30</td> <td>3868.47</td> <td>WF.69R</td> <td>9228500.562 433952.868</td> <td>3.562</td> <td>48.52</td> <td>3538 70</td>	WF.69L	9228492.656433866.249	4.567	50.30	3868.47	WF.69R	9228500.562 433952.868	3.562	48.52	3538 70
9228916891680 4.738 51.39 3969.88 WF.71R 9228399.221 433960.452 3.260 9228318.7479 433899.846 77.04 4046.88 WF.72+22R 9228337.836 433962.338 2.156 9228242.941 433887.834 2.186 27.01 4073.90 WF.72R 9228337.836 433961.357 2.501 9228242.941 433887.834 2.184 2.741 33.88 4192.70 WF.73R 9228266.129 4339373.460 5.098 9228240.9349433891.167 4.409 50.23 4292.34 WF.73R 9228246.129 433976.74 4.228 9228240.93493895.267 4.136 50.39 4292.34 WF.73R 9228197.785 4.628 922840.93493891.67 4.136 50.39 4292.34 WF.73R 9228246.129 4.628 92284142.654433903.875 4.588 4.99.31 4.443.42 WF.73R 9228093.803 4.628 92284142.654433903.875 4.688 4.99.32 4.443.42 WF.73R 92280603.803 4.433	WF.70L	9228442.951 433871.523	4.994	49.98	3918.46	WF.70R	9228450.046433962.260	3.742	5138	3590.08
9228318 747 H33899 846 77.04 4046.88 WF.72+22R 9228303.425 433962.338 2.156 9228318 747 H33887 834 2.186 27.01 4073.90 WF.72+22R 9228337.836 433961.357 2.501 922828 28.28 6.25 413887 5.202 5.244 8.492 4158.81 WF.73+33R 922826.746 43397.346 5.098 9228 291.039 433897.22 2.471 33.88 4192.70 WF.73R 922828.5126 4628 4.628 922 8240.949 433891.26 4.136 50.25 4293.34 WF.74R 9228219.7283 43397.677 4.628 922 8240.949 433891.26 4.136 50.35 4293.34 WF.74R 922819.7283 43397.677 4.628 922 8240.03 873 4.512 50.81 4393.47 WF.77R 922801.747 4.823 922 8091.875 433903.875 4.688 49.95 4443.42 WF.78R 922801.5399.674 5.448 922 8041.098 433921.677 4.341 49.95 4443.42 WF.78R 9228060.580 4309.674 5.448 922 7892.104 433921.677 4.341 49.50	WF.71L		4.738	51.39	3969.85	WF.71R	9228399.221 433960.452	3.260	50.86	3640 93
9228342.941 433887.834 2.186 27.01 4073.01 WF.72R 9228337.836 433961.357 2.501 9228258.025 433887.500 5.244 84.92 4158.81 WF.73+33R 9228265.746 433973.460 5.098 9228249.103 433887.500 5.244 84.92 4158.81 WF.73R 9228265.746 433973.460 5.098 9228249.103 433895.222 2.471 33.88 4192.70 WF.74R 9228246.129 433977.74 4.628 9228149.1059 433902.966 4.136 50.39 4242.95 WF.74R 9228146.848 433979.07 4.628 9228191.1059 433903.874 4.277 49.93 WF.74R 922804.643 4.242 9228091.875 4468 4.59 4443.42 WF.74R 922804.643 5.465 9228091.875 4468 4.95 4443.42 WF.74R 922806.551,43399.057 5.101 9228091.875 443300.87 4.573 4.673.36 4443.30 WF.80R 922806.551,43399.057 5.348 9228091.210	WF.72+22L			77.04	4046.88	WF.72+22R	9228303.423 433962.338	2.156	05.82	373675
9228258 025 433887 590 5.244 84.92 4158.81 WF.73+33R 9228255.746 433973.460 5.098 9228240.039 433895 222 2.471 33.88 4192.70 WF.73R 9228283.689 433967.270 5.098 9228240.949 433891.167 4.409 50.25 4242.95 WF.74R 9228246.129 433978.465 4.628 9228191.959 433902.966 4.136 50.39 4293.34 WF.75R 9228197.283 433976.747 4.242 9228191.959 433902.966 4.136 50.31 4942.65 WF.77R 9228146.848 433979.075 4.242 9228041.998 433903.874 4.571 49.95 4443.42 WF.77R 9228005.81 5.101 9228041.998 433901.077 4.341 49.99 4493.40 WF.77R 9228005.51 4.825 92278042.91 433901.077 4.185 49.99 4493.40 WF.78R 9227845.06 5.101 92278042.91 433901.077 4.185 49.99 4453.40 WF.83R 922794.50 4462.90 922794.50 4400.60 9227744.03 922794.70 922794.70 <th< td=""><td>WF.72L</td><td>9228342.941 433887.834</td><td>2.186</td><td>27.01</td><td>4073.90</td><td>WF.72R</td><td>9228337.836 433961.357</td><td>2.501</td><td>34 43</td><td>377118</td></th<>	WF.72L	9228342.941 433887.834	2.186	27.01	4073.90	WF.72R	9228337.836 433961.357	2.501	34 43	377118
9228291.039 413895.222 2.471 33.88 4192.70 WF.73R 9228283.689 433967.270 9228240.940 4133801.167 4.409 50.25 4242.95 WF.74R 9228246.129 433876.465 4.628 9228191.950 4133901.167 4.136 50.25 4242.95 WF.74R 9228197.283 433976.075 4.242 9228142.654 4133903.874 4.277 49.31 4342.65 WF.76R 9228146.848 433979.075 4.823 9228041.908 4135003.875 4.688 49.95 4443.42 WF.77R 9228093.803 433990.674 5.405 9228041.908 413309.375 4.688 49.95 4443.42 WF.78R 9228095.101 4333990.758 5.681 9227942.940 413921.077 4.185 49.96 4543.36 WF.80R 9227945.0597 434000.476 5.378 9227843.430 4133923.32 5.50 45.93 WF.83R 9227945.0597 434000.476 5.579 9227764.3394.32 5.523 49.34 WF.83R 9227764.13400.476 5.912 9227764.3394.	WF.73+33L	9228258.025 433887.590	5.244	84.92	4158.81	WF.73+33R	9228265.746433973.460	5.098	73.10	3844 28
9228240.949 433891.167 4.409 50.25 4242.95 WF.74R 9228246.129 433978.465 4.628 9228191.959 433802.966 4.136 50.39 4293.34 WF.75R 9228146.848 433976.747 4.242 9228142.654 433902.966 4.136 50.39 4293.34 WF.75R 9228146.848 433979.075 4.823 9228041.908 433903.874 4.512 50.81 4393.47 WF.77R 922803.803 43399.677 5.101 9228041.908 433903.875 4.688 49.95 4443.42 WF.77R 9228006.531 433991.584 5.468 9227992.710 433916.714 4.341 49.99 4493.40 WF.79R 9228006.531 433991.584 5.468 9227992.913 433923.323 4.573 50.08 4593.40 WF.81R 9227945.059 434006.242 5.579 9227892.913 433923.323 5.50 4.593.44 WF.83R 9227945.059 434013.334 5.512 9227744.037 433929.515 5.523 4.93.4 WF.83R 9227796.997 434013.734 5.938 9227744.037 433944.821 5.523 48.84 4845.14 WF.83R </td <td>WF.73L</td> <td>9228291.039433895.222</td> <td>2.471</td> <td>33.88</td> <td>4192.70</td> <td>WF.73R</td> <td>9228283.689 433967.270</td> <td></td> <td>18 98</td> <td>3863.26</td>	WF.73L	9228291.039433895.222	2.471	33.88	4192.70	WF.73R	9228283.689 433967.270		18 98	3863.26
9228191.559 433902.966 4.136 50.39 4293.34 WF.75R 9228197.283 433976.747 4.242 9228142.654 433903.874 4.277 49.31 4342.65 WF.76R 9228146.848 433979.075 4.823 9228091.875 433905.687 4.512 50.81 4393.47 WF.77R 9228093.803 433990.677 4.823 9228041.998 433905.687 4.688 49.95 4443.42 WF.77R 9228091.101 43391.584 5.465 9228041.998 433908.375 4.688 49.95 4443.42 WF.77R 9228005.51 43390.674 5.448 9227992.710 433916.714 4.185 49.96 4543.36 WF.80R 9227045.059 434006.242 5.378 9227842.940 433923.323 4.573 50.08 4593.49 WF.83R 9227744009.476 5.579 92277843.430 433929.515 5.523 49.32 4742.81 WF.83R 9227749.015 434013.734 5.938 9227642.376 433934.821 5.659 48.84 4845.14 WF.83R 9227749.015 434013.78 5.938 9227742.376 433994.175 5.410	WF.74L	9228240.949433891.167	4.409	50.25	4242.95	WF.74R	9228246.129433978.465	4.628	39.19	3902.45
9228142.654 433903.874 4.277 49.31 4342.65 WF.76R 9228146.848 433979.075 4.823 9228091.875 433905.687 4.512 50.81 4393.47 WF.77R 9228093.803 433999.667 5.101 9228041.998 433906.375 4.688 49.95 4443.42 WF.78R 9228006.551 43399.677 5.448 9228041.998 433908.375 4.584 49.99 4493.40 WF.78R 9228006.551 433996.744 5.448 9227992.710 433916.714 4.185 49.99 4493.40 WF.8RR 9228006.551 433996.744 5.448 9227942.940,433921.077 4.185 49.96 4543.36 WF.8RR 9227945.059 434006.425 5.378 9227843.430 433929.515 5.391 49.49 4642.93 WF.83R 9227749.015 434018.734 5.938 9227642.316 433930.922 5.073 5.523 49.32 4742.81 WF.83R 9227749.015 434018.734 5.938 9227642.316 433949.175 5.659 48.83 48.45.14 WF.87R 9227694.239 434018.73 5.938 9227542.2973 433949.175 5.419 </td <td>WF.75L</td> <td>9228191.959433902.966</td> <td>4.136</td> <td>50.39</td> <td>4293.34</td> <td>WF.75R</td> <td>283</td> <td>4.242</td> <td>48.88</td> <td>3951 33</td>	WF.75L	9228191.959433902.966	4.136	50.39	4293.34	WF.75R	283	4.242	48.88	3951 33
9228091.875 (433905.687) 4.512 50.81 4393.47 WF.77R 9228093.803 433989.667 5.101 9228041.998 (433905.687) 4.688 49.95 4443.42 WF.78R 9228051.101 433991.584 5.465 9227092.710 (433916.714) 4.341 49.99 4493.40 WF.78R 9228006.551 433996.744 5.485 9227992.710 (433916.714) 4.185 49.96 4543.36 WF.80R 9227806.551 433996.744 5.486 9227892.913 (433921.077) 4.185 49.96 4543.36 WF.80R 9227806.551 433996.744 5.378 9227892.913 (433921.077) 4.185 49.96 4543.36 WF.81R 9227806.551 433996.742 5.579 9227892.120 5.391 49.49 4642.93 WF.83R 9227847.536 434013.734 5.554 9227794.333 (433929.515 5.523 49.32 4742.81 WF.83R 9227749.015 434030.880 6.030 9227592.475 (43394.821) 5.659 48.84 4845.14 WF.87R 9227547.69.14043030.880 6.030 9227542.202.476 (433940.175 5.410 <t< td=""><td>WF.76L</td><td>9228142.654433903.874</td><td>4.277</td><td>49.31</td><td>4342.65</td><td>WF.76R</td><td>9228146.848433979.075</td><td>4.823</td><td>50.49</td><td>4001.82</td></t<>	WF.76L	9228142.654433903.874	4.277	49.31	4342.65	WF.76R	9228146.848433979.075	4.823	50.49	4001.82
9228041.998 433908.375 4.688 49.95 4443.42 WF.78R 9228051.101 433991.584 5.465 9227892.710 433916.714 4.341 49.99 4493.40 WF.79R 9228006.551 433991.584 5.488 9227992.710 433910.714 4.185 49.96 4543.36 WF.80R 9227945.059 434006.242 5.378 9227892.913 433923.323 4.573 50.08 4593.4 WF.81R 9227945.059 434006.242 5.378 9227843.430 433924.120 5.391 49.49 4642.93 WF.82R 9227847.536 434013.334 5.912 9227744.037 433929.515 5.30 4642.93 WF.83R 9227749.015 434013.334 5.912 9227744.037 433929.515 5.523 49.32 4742.81 WF.84R 92277649.015 434021.781 5.938 9227744.037 433938.205 5.679 48.84 4845.14 WF.85R 9227547.31.40 434030.880 6.030 9227542.977 433949.1	WF.77L	9228091.875 433905.687	4.512	50.81	4393.47	WF.77R	9228093.803 433989.667	5.101	54.09	4055 91
9227992.710 (433916.714) 4.341 49.99 4493.40 WF.79R 9228006.551 433996.744 5.448 9227942.940 (433921.077) 4.185 49.96 459.349 WF.80R 9227945.059 434006.242 5.378 9227942.940 (433921.077) 4.185 49.96 4593.44 WF.81R 9227895.077 434009.476 5.378 9227843.430 (433924.120) 5.391 49.49 4642.93 WF.81R 9227847.536 434013.334 5.579 9227793.333 (433920.92) 5.100 50.56 4693.49 WF.83R 9227749.015 434018.734 5.912 9227744.037 (433932.95) 5.523 49.32 4796.29 WF.83R 92277691.29 5.938 9227642.376 (433938.205) 5.659 48.84 4845.14 WF.86R 9227694.293 (434031.428 6.030 9227542.27592.475 (433949.175) 5.499 50.34 4995.48 WF.88R 9227547.601 (434036.395 5.690 9227493.468 (433950.191 5.743 49.52 4994.69 WF.89R 92275497.746 (434039.015 5.743	WF.78L	9228041.998433908.375	4.688	49.95	4443.42	WF.78R		5.465	42.74	4098.65
9227942.940 433921.077 4.185 49.96 4543.36 WF.80R 9227945.059 434006.242 53.78 9227892.913 433921.077 4.573 50.08 4593.44 WF.81R 9227895.077 434009.476 5.579 9227892.913 433924.120 5.391 49.49 4642.93 WF.81R 9227847.536 434013.334 5.654 9227793.333 433930.922 5.100 50.56 4693.49 WF.83R 9227744.037 434018.734 5.912 9227744.037 433932.515 5.523 49.32 4742.81 WF.84R 9227749.015 434021.781 5.938 9227642.376 433938.205 5.659 48.84 4845.14 WF.86R 9227694.293 434031.428 6.030 9227542.973 433949.175 5.410 49.69 4945.17 WF.88R 9227547.631 434036.395 5.690 9227493.468 433950.191 5.743 49.52 4994.69 9227547.740 434035.015 5.743	WF.79L	9227992.710433916.714	4.341	49.99	4493.40	WF.79R	9228006.551 433996.744	5.448	44.85	4143.50
922/892.913 433923.323 4.573 50.08 4593.44 WF.81R 922/895.077 434009.476 5.579 922/892.913 433923.323 5.391 49.49 4642.93 WF.82R 9227847.536 434013.334 5.654 9227744.037 433929.515 5.100 50.56 4693.49 WF.83R 9227796.997 434018.734 5.912 9227744.037 433929.515 5.523 49.32 4742.81 WF.83R 9227749.015 434021.781 5.938 9227642.376 433938.205 5.659 48.84 4845.14 WF.85R 9227694.293 434031.428 6.030 9227592.475 433949.175 5.410 49.69 4945.17 WF.88R 9227547.631 434036.395 5.690 9227493.468 433950.191 5.743 49.52 4994.69 WF.89R 9227547.740 434036.395 5.690	WF.80L	9227942.940433921.077	4.185	49.96	4543.36			5.378	62.22	4205.72
922/7843.430433924.120 5.391 49.49 4642.93 WF.82R 922/7847.536 434013.334 5.654 922/793.333 433920.922 5.100 50.56 4693.49 WF.83R 922/796.997 434018.734 5.912 922/744.037 433929.515 5.523 49.32 4742.81 WF.84R 922/7749.015 434021.781 5.938 922/7691.219 433937.972 5.073 53.49 4796.29 WF.85R 922/7694.293 434021.781 5.938 922/7692.376 433938.205 5.659 48.84 4845.14 WF.86R 922/7643.140 434030.880 6.030 922/7592.475 433949.175 5.410 49.69 4945.17 WF.88R 922/7547.631 434036.395 5.690 922/7493.468 433950.191 5.743 49.52 4994.69 WF.89R 922/7547.740 434039.015 5.120	WF.81L	9227892.913433923.323	4.573	50.08	4593.44		9227895.077 434009.476	5.579	50.09	4255.81
922.7793.333 433930.922 5.100 50.56 4693.49 WF.83R 9227796.997 434018.734 5.912 9227744.037 433929.515 5.523 49.32 4742.81 WF.84R 9227749.015 434021.781 5.938 9227744.037 433938.205 5.073 53.49 4796.29 WF.85R 9227694.293 434021.781 5.938 92275642.376 433938.205 5.659 48.84 4845.14 WF.86R 9227643.140 434030.880 6.030 9227592.475 433949.175 5.410 49.69 4945.17 WF.88R 9227547.631 434036.395 5.690 9227493.468 433950.191 5.743 49.52 4994.69 WF.89R 9227547.740 434039.015 5.690	WF.82L	922/843.430433924.120	5.391	49.49	4642.93		9227847.536434013.334	5.654	47.70	4303.51
922/1/44.03/[433929.515] 5.523 49.32 4742.81 WF.84R 9227/49.015 434021.781 5.938 9227691.219 433937.972 5.073 5.349 4796.29 WF.85R 9227694.293 434026.420 6.030 9227542.376 433938.205 5.659 48.84 4845.14 WF.86R 92275643.140 434036.880 6.276 9227592.475 433944.821 5.499 50.34 4895.48 WF.87R 9227597.780 434031.428 6.032 9227542.973 468 433950.191 5.743 49.69 4945.17 WF.88R 9227547.631 434036.395 5.690 9227493.468 433950.191 5.743 49.52 4994.69 WF.89R 92277497.740 434039.015 5.120	WF.83L	922//93.333 433930.922	5.100	50.56	4693.49		9227796.997 434018.734	5.912	50.83	4354.33
922/691.219 433937.972 5.073 53.49 4796.29 WF.85R 9227694.293 434026.420 6.030 9227642.376 433938.205 5.659 48.84 4845.14 WF.86R 9227643.140 434030.880 6.276 9227592.475 433944.821 5.499 50.34 4895.48 WF.87R 9227597.780 434031.428 6.032 9227542.973 433949.175 5.410 49.69 4945.17 WF.88R 9227547.631 434036.395 5.690 9227493.468 433950.191 5.743 49.52 4994.69 WF.89R 9227497.740 434039.015 6.120	WF.84L	922/744.03/433929.515	5.523	49.32	4742.81		9227749.015 434021.781	5.938	48.08	4402.41
922/1642.376 433938 205 5.659 48.84 4845.14 WF.86R 9227643.140 434030.880 6.276 9227592.475 433949.175 5.499 50.34 4895.48 WF.87R 9227597.780 434031.428 6.032 92275493.468 433950.191 5.743 49.52 4994.69 WF.89R 9227547.740 434035.395 5.690	WF.85L	922/691.219433937.972	5.073	53.49	4796.29		9227694.293,434026,420	6.030	54.92	4457.33
922/392.475433944.821 5.499 50.34 4895.48 WF.87R 9227597.780 µ34031.428 6.032 9227542.973 µ33949.175 5.410 49.69 4945.17 WF.88R 9227547.631 µ34036.395 5.690 9227493.468 µ33950.191 5.743 49.52 4994.69 WF.89R 9227497.740 µ34039.015 6.120	WF.86L	9227642.376433938.205	5.659	48.84	4845.14		9227643.140 434030.880	6.276	51.35	4508.68
922/342.9/3 433950.191 5.410 49.69 4945.17 WF.88R 922/3547.631 434036.395 5.690 922/493.468 433950.191 5.743 49.52 4994.69 WF.89R 922/7497.740 434039.015 6.120	WF.6/L	922/392.4/3433944.821	5.499	50.34	4895.48			6.032	45.36	4554.04
722.423.400,433330.131 3.743 49.52 4994.69 WF.89R 9227497.740434039.015 6.120	WF.SOL	022742.973433949.175	5.410	49.69	4945.17		9227547.631 434036.395	5.690	50.39	4604.43
	WF.09L	722/473.408/433930.191	5.743	49.52	4994.69		.740 434039	6.120	49.96	4654.39

Table 3.1.3 (4/8) COORDINATES OF CROSS SECTION POINT

STATION	NORTHING EASTING ELEVATION	77	DISTANCE A	CCUM.DIS	STATION	NORTHING EASTING	ELEVATION DI	DISTANCE! A	ACCUM.DIS
WF.90L	9227443.775433956.295	5.707	50.07	5044.75	WF.90R	9227447.129434039.912	5.924	50.62	4705.01
WF.91L	9227393.548 433957.062	5.520	50.23	5094.98	WF.91R	9227390.783 434048.027	6.354	56.93	4761.94
WF.92L	9227343.699 433955.134		49.89	5144.87	WF.92R	9227340.082 434044.489	6.308	50.82	4812.76
WF.93L	9227293.738 433955.032		49.96	5194.83	WF.93R	9227292.959 434045.273	6.626	47.13	4859.89
WF.94+23L	9227220.568 433965.258		73.88	5268.71	WF.94+23R	9227217.118434034.987	3.871	76.54	4936.43
WF.94L	9227243.884 433955.815	6.952	25.16	5293.87	WF.94R	9227246.835 434040.306	6.597	30.19	4966.62
WF.95L	9227194.698 433947.106	6.178	49.95	5343.82	WF 95R	9227191.477434040.413	269'9	55.36	5021.98
WF.96L	9227144.917 433945.111	6.348	49.82	5393.64	WF.96R	9227147.881 434043.694	7.056	43.72	5065.70
WF.97L	9227094.991 433943.724	6.736	49.95	5443.59	WF.97R	9227096.646 434042.924	7.551	51.24	5116.94
WF.98L	9227045.034 433943.004	6.744	49.96	5493.55	WF.98R	9227042.774434043.451	8.092	53.88	5170.81
WF.99L	9226994.991 433942.468	7.504	50.05	5543.60	WF.99R	9226992.027 434044.036	8.887	50.75	5221.56
WF.99+30L	9226965.233 433944.660		29.84	5573.43	WF.99+30R	9226964.124434037.665		28.62	5250.18
GARANG RIVER	VER								
WF.100L	9226945.269433949.563	8.634	20.56	5593.99	WF.100R	9226939.702434036.468	8.602	24.45	5274.63
WF.101L	9226895.318 433950.427	9.442	49.96	5643.95	WF.101R	9226890.365 434027.203	7.180	50.20	5324.83
WF.102L	9226845.352 433948.253	9.305	50.01	5693.96	WF.102R	9226832.377 434023.855	7.579	58.08	5382.92
WF.103L	9226795.694 433942.422	9.638	50.00	5743.96	WF.103R	9226779.918 434027.480	7.606	52.58	5435.50
WF.104L	9226747.292 433929.819	9.160	50.05	5793.98	WF.104R	9226719.692 433997.377	7.920	67.33	5502.83
WF.105L	9226700.959 433910.965	9.279	50.05	5844.00	WF.105R	9226673.402 433975.772	8.053	51.08	5553.92
WF.106L	9226654.536 433892.355	9.176	50.01	5894.01	WF.106R	9226632.468 433957.445	9.079	44.85	5598.77
WF.107L	9226609.241 433870.899	9.711	50.12	5944.13	WF.107R	9226583.362 433935.177	7.604	53.92	5652.68
WF.108L	9226558.950 433857.251	11.033	52.11	5996.24	WF.108R	9226528.314 433925.459	11.893	55.90	5708.58
WF.109L	9226516.185 433835.840	13.222	47.83	6044.07	WF.109R	9226492.787 433910.209	12.509	38.66	5747.25
WF.110L	9226465.004 433839.899	14.000	51.34	6095.41	WF.110R	9226445.572433895.695	12.604	49.40	5796.64
WF.111L	9226422.466 433812.911	11.854	50.38	6145.79	WF.111R	9226399.590 433883.906	10.427	47.47	5844.11
WF.112L	9226400.574 433787.122	10.431	33.83	6179.62	WF.112R	9226363.460433878.550	9.972	36.52	5880.63
WF.113L	9226371.291 433772.646	10.500	32.67	6212.28	WF.113R	9226314.127433886.430	9.473	49.96	5930.59
WF.114L	9226346.152 433751.309	10.275	32.97	6245.26	WF.114R	9226269.446 433909.510	9.447	50.29	5980.88
WF.115L	9226329.473 433723.400	10.663	32.51	6277.77	WF.115R	9226225.323 433931.648	7.739	49.36	6030.25
WF.116L	9226300.127 433706.203	10.748	34.01	6311.78	WF.116R	9226175.350433936.826	10.811	50.24	6080.49
WF.117L	9226272.141 433688.828	10.896	32.94	6344.72	WF.117R	9226131.001 433914.010	11.009	49.87	6130.36
WF.118L	9226247.861 433677.072	10.797	26.98	6371.70	WF.118R	9226093.800433879.903	9.201	50.47	6180.83
WF.119L	9226224.272 433664.014	10.879	26.96	6398.66	WF.119R	9226055.795 433849.531	9.721	48.65	6229.48
WF.120L	9226200.718 433650.883	11.122	26.97	6425.63	WF.120R	9226015.528 433820.669	11.046	49.54	6279.03

Table 3.1.3 (5/8) COORDINATES OF CROSS SECTION POINT

STATION	NOPTHING BASTING	·	A GOTA A TOTA	OLOTA LATINA	S. C.	V Cryman v T Cryman Cry	Y Y C YOU A T YOU TO	- I	
TOT WILL	_[_	-1-		CCOM: DIS	SIAIION	INORTHING EASTING ELEVATION DISTANCE	LEVALION		ACCOM.DIS
WI:.121L	9226176.849433638.221		27.02	6452.65	WF.121R	9225975.401 433790.725	10.826	50.07	6329.09
WF.122L	9226153.253 433624.600		27.25	6479.89	WF.122R	9225944.413 433752.100	11.159	49.52	6378.61
WF.123L	9226129.614433612.153	11,264	26.72	6506.61	WF.123R	9225950.138 433702.533	11.333	49.90	6428.51
WF.124L	9226106.040 433599.326	11.202	26.84	6533.45	WF.124R	9225963.709 433654.434	11.253	49.98	6478.49
WF.125L	9226085.199/433582.522	11.379	26.77	6560.22	WF.125R	9225974.151 433606.475	11.203	49.08	6527.57
WF.126L	9226049.864 433539.931	11.082	55.34	6615.56	WF.126R	9225960.643 433558.088	11.344	50.24	6577.81
WF.127L	9226037.603 433491.518	11.018	40.04	6665.50	WF.127R	9225929.193 433516.764	11.008	51.93	6629.74
WF.128L	9226024.929 433443.172	11.140	49.98	6715.48	WF.128R	9225900.257 433498.914	10.889	34.00	6663.73
WF.129L	9226005.091 433397.479	11.223	49.81	6765.29	WF.129R	9225873.351 433483.732	11.120	30.89	6694.63
WF.130L	9225971.446433360.744	10.450	49.81	6815.11	WF.130R	9225865.354 433478.686	11.209	9.46	6704.08
WF.131L	9225938.804 433322.716	10.884	50.12	6865.22	WF.131R	9225828.304 433458.240	11.548	42.32	6746.40
WF.132L	9225904.348433286.442	10.592	50.03	6915.25	WF.132R	9225819.145 433451.223	11.598	11.54	6757.94
WF.133L	9225859.010433268.229	11.592	48.86	6964.11	WF.133R	9225814.568 433413.787	8.710	37.72	6795.65
WF.134L	9225810.154433257.910	11.589	49.93	7014.05	WF.134R	9225783.911 433398.651	11.232	34.19	6829.84
WF.135L	9225762.268 433242.662	11.763	50.26	7064.30	WF.135R	9225712.379 433333.556	11.396	96.72	6926.56
WF.136L	9225725.615 433208.666	12.589	49.99	7114.29	WF.136R	9225650.800433305.109	8.903	67.83	6994.39
WF.137L	9225693.570433170.229	13.351	50.04	7164.34	WF.137R	9225509.765 433296.492	11.686	141.30	7135.69
WF.138L	9225664.773 433129.818	13.576	49.62	7213.96	WF.138R	9225401.682 433289.185	12.845	108.33	7244.02
WF.139L	9225623.040 433099.117	12.231	51.81	7265.77	WF.139R	9225354.975 433233.692	8.533	72.53	7316.55
WF.140L	9225606.343 433048.607	13.213	53.20	7318.97	WF.140R	9225315.852433174.392	096.6	71.04	7387.60
WF.141L	9225572,999 433010.666	12.527	50.51	7369.48	WF.141R	9225359.922 433094.676	12.399	91.09	7478.68
WF.142L	9225563.179 432961.797	11.730	49.85	7419.32	WF.142R	9225447.430432989.209	12.767	137.04	7615.73
WF.143L	9225566.098 432911.513	10.144	50.37	7469.69	WF.143R	9225479.549 432897.636	13.089	97.04	7712.77
WF.144L	9225580.085 432863.481	11.310	50.03	7519.72	WF.144R	9225496.731 432837.600	12.983	62.45	7775.22
WF.145L	9225602.176432818.926	11.409	49.73	7569.45	WF.145R	9225501.048 432792.167	13.367	45.64	7820.85
WF.146L	9225596.673 432768.095	10.129	51.13	7620.58	WF.146R	9225500.098 432770.921	13.410	21.27	7842.12
WF.147L	9225591.498 432720.254	10.381	48.12	7668.70	WF.147R	9225505.157 432733.888	13.183	37.38	7879.50
WF.148L	9225593.188 432670.552	12.112	49.73	7718.43	WF.148R	9225509.533 432683.164	13.537	50.91	7930.41
WF.149L	9225587.550 432620.423	10.940	50.44	7768.87	WF.149R	9225511.246432617.394	13.474	65.79	7996.20
WF.150L	9225585.447 432570.587	11.190	49.88	7818.75	WF.150R	9225506.446432584.507	11.184	33.23	8029.44
WF.151L	9225557.722 432529.613	10.415	49.47	7868.23	WF.151R	9225493.524 432572.394	13.409	17.71	8047.15
WF.152L	9225530.528 432502.078	11.319	38.70	7906.93	WF.152R	9225479.956 432565.967	13.388	15.01	8062.16
WF.153L	9225491.820432471.820	11.660	49.13	7956.06	WF.153R	9225457.230432542.154	13.477	32.92	80.55.08
WF.154L	9225434.664432477.820	8.570	57.47]	8013.53	WF.154R	9225423.407 432525.404	13.604	37.74	8132.82

Table 3.1.3 (6/8) COORDINATES OF CROSS SECTION POINT

	CTATION	NORTHING BASTING IST EVATION	1	DISTANCE AC	ACCITM DIS	STATION	NORTHING		EASTING ELEVATION DISTANCE		ACCUM DIS
	WF.155L				8064.92	WF.155R	9225371.671 432516.706	432516.706	13.831		8185.29
	WF.156L	9225342.449 432443.769	8.906	46.95	8111.87	WF.156R	9225309.860 432506.024	432506.024	13.960	62.73	8248.01
	WF.157L	9225297.674 432411.266	8.971	55.33	8167.20	WF.157R	9225260.972 432476.855	432476.855	14.137	56.93	8304.94
	WF.158L	9225255.270 432381.234	9.124	51.96	8219.16	WF.158R	9225218.608 432452.983	432452.983	14.165	48.63	8353.57
	WF.159L	9225212.422 432360.570	9.650	47.57	8266.73	WF.159R	9225174.080 432431.150	432431.150	14.337	49.59	8403.16
	WF.160L	9225164.235 432336.425	9.321	53.90	8320.63	WF.160R	9225113.825	432406.006	14.482	65.29	8468.45
	WF.161L	9225131.772432315.528	11.042	38.61	8359.23	WF.161R	9225092.254 432392	432392.577	14.240	25.41	8493.86
	WF.162L	9225087.655 432280.670	14.569	56.23	8415.46	WF.162R	9225040.565 432368.008	432368.008	14.354	57.23	8551.09
	WF.163L	9225038.614432265.975	9.910	51.19	8466.66	WF.163R	9224991.895 432345.090	432345.090	14.523	53.80	8604.89
	WF.164L	9225000.911 432246.728	10.005	42.33	8508.99	WF.164R	9224960.304 432333.179	432333.179	14.301	33.76	8638.65
	WF.165L	9224952.333 432234.662	10.174	50.05	8559.04	WF.165R	9224934.337 432318.556	432318.556	14.266	29.80	8668.45
	WF.166L	9224911.142 432227.430	11.504	41.82	8600.86	WF.166R	9224928.254 432318.146	432318.146	14.246	6.10	8674.55
	WF.167L	9224865.671 432248.469	10.597	50.10	8650.97	WF.167R	9224889.390 432328.869	432328.869	14.093	40.32	8714.87
	WF.168L	9224828.219 432289.914	9.814	55.86	8706.83	WF.168R	9224861.421 432347.867	432347.867	14.073	33.81	8748.68
	WF.169L	9224784.048 432313.259	9.314	49.96	8756.79	WF.169R	9224808.773 432377.11	432377.113	14.204	60.23	8808.90
	WF.170L	9224736.620432329.047	9.475	49.99	8806.77	WF.170R	9224758.219 432403.999	432403.999	14.260	57.26	8866.16
	WF.171L	9224688.170432341.591	9.527	50.05	8856.82	WF.171R	9224700.477432420.031	432420.031	14.279	59.93	8926.09
Т-	WF.172L	9224638.461 432346.688	9.531	49.97	8906.79	WF.172R	9224652.086	432428.033	14.313	49.05	8975.14
3	WF.173L	9224588.486432348.263	10.319	50.00	8956.79	WF.173R	9224576.367	432436.979	14.340	76.24	9051.38
- 1	WF.174L	9224534.541 432338.602	10.271	54.80	9011.59	WF.174R	9224525.236 432442	432442.573	11.828	51.44	9102.82
0	WF.175L	9224492.955 432323.214	10.936	44.34	9055.94	WF.175R	9224467.371	432434.719	11.843	58.40	9161.21
	WF.176L	9224446.499 432337.080	12.210	48.48	9104.42	WF.176R	9224430.582	432410.625	10.271	43.98	9205.19
	WF.177L	9224396.832 432351.388	12.403	51.69	9156.10	WF.177R	9224383.372	432415.023	11.603	47.42	9252.60
	WF.178L	9224349.331 432336.728	13.089	49.71	9205.81	WF.178R	9224320.942	432425.755	12.327	63.34	9315.95
	WF.179L	9224302.777 432320.616	13.701	49.26	9255.08	WF.179R	9224250.062	432311.767	12.267	134.23	9450.18
	WF.180L	9224250.068 432311.727	12.149	53.45	9308.53	WF.180R	9224251.145 432405.201	432405.201	11.827	93.44	9543.62
	WF.181L	9224200.981 432320.537	12.541	49.87	9358.40	WF.181R	9224217.837 432388.190	432388.190	12.318	37.40	9581.02
	WF.182L	9224155.363 432340.911	13.004	49.96	9408.36	WF.182R	9224177.967 432389.718	432389.718	12.108	39.90	9620.92
	WF.183L	9224111.114 432380.337	11.624	59.27	9467.63	WF.183R	9224137.693 432408.575	432408.575	12.066	44.47	9665.39
	WF.184L	9224081.346432420.065	11.915	49.64	9517.27	WF.184R	9224110.205432443.72	432443.725	12.877	44.62	9710.01
	WF.185L	9224053.432 432461.402	11.738	49.88	9567.15	WF.185R	9224088.553 432481.77	432481.771	13.965	43.78	9753.78
	WF.186L	9224041.165 432510.517	10.530	50.62	9617.78	WF.186R	9224071 138 432522.69	432522.691	14.434	44.47	9798.26
	WF.186L+27	7 9224035.586 432536.461	9.850	26.54		WF.186R+27	9224060.335 432542.30	432542.301	12.188	22.39	9820.64
	WF.186L+3:	WF.186L+35 9224028.028 432550.124	14.654	15.61	9659.93	WF.186R+35	9224062.005 432559.004	432559.004	15.151	16.79	9837.43

Table 3.1.3 (7/8) COORDINATES OF CROSS SECTION POINT - CENGKEK RIVER

STATION	NORTHING	EASTING	EASTING ELEVATION	STATION	NORTHING	EASTING	ELEVATION	EASTING ELEVATION ACCUM, DIS	STATION	NORTHING	FASTING	ELEVATION DISTANCE	SONGTOR
CEOL	9225944.110 433421.945	433421.945	7.00	CEC-0	9225955 386 433423 177	433423 177	C	0		000000000	200000000000000000000000000000000000000	1011011011	2010
CEO+281	9225940 280 433449 460	732440 460		00.0	100 07 01000	100 12001	,	L	ביים	300,0060228	4334K4.408	6.33	22.69
2010	2550340.500	100410.400		CEC-0+20	355345.237	433455.382	34.76		34.76 CE.0+28R	9225944.313	433461.304	8.49	12.51
CE. 11.	9225919.372 433442.184	433442.184	7.28	CEC-1	9225917.590 433451.455	433451.455	25.02	59.78	CE.1R	9225915.808	433460 726	81.8	88
CE 2L	9225870.719 433430.669	433430.669	7.53	CEC-2	9225869.782	433436.582	50.07	109.85	CE.2B	9225868 845		0 0	14 07
CE.3L	9225820.951	433426.515	8.49	CEC-3	9225821.676	433439.430	48 19	158 04		9225822 402		2000	9.5
CE 4L	9225767.238 433438.304	433438.304	8.87	CEC-4	9225770 758 433445 044	433446 044	F1 3K	90 900	1	00005774 070	400470 700	00.11	/9.07
נו נו	010 1011000			1		200	3	203.30		3777174718	433453.783	2/.0۲	17.00
CE.SL	82272275	433450.524	9.16	CEC-5	9225728.285 433459.667	433459.667	44.60	253.99	CE.5R	9225731.513	433468.810		19.39
CE.6L	9225685.098	433479.339		CEC-6	9225689.580	433483.118	45.26	299.24	CE.6R	9225694 063	433486 808	30.8	44 70
CE.7L	9225657.461	433521.967	8.55	CEC-7	9225662.556	433525,395	50.18	349 42	CF 7B	92256R7 R51	4005000000	24.0	2/ 5
CE.8L	9225628.609 433557.367	433557.367	10.31	CEC-8	9225633.200 433565.747	433565.747	49 90	369.32	a u	0005697 701	400674 407	70.8	10.40
CE.91	9225579.645 433569.665	433569.665	10.49	CEC-9	9225581.738	433578.370	52 99	452.31	CFOR	02265031.731	100501	10.70	20 (
CE.10L	9225537.985 433596.944	433596.944	10.99	CEC-10	9225541.243 433602.754	433602.754	47.27	499.58	499.58 CE.10R	9225544.502 433608.564	433608 564	10.90	19.30
						1				1000		000	700

Table 3.1.3 (8/8) COORDINATES OF CROSS SECTION POINT - KALITO RIVER

Ţ	ij	1	O i	5	α	1.0	~	u	2	2	117	ō	œ.		ö	i C	, C
CTANIO	JANA CI	000	7	7.07	80.00	2 6	0.0	100	0	17.32	5	07.70	11	(, Z. O	i i) () (
DOMATOR INCITAVA IS	בוביאון סיאום	10.50	12.32	37.5		*000	† O.O.	10 61	2.5	10.61		10.78	10.73	000	200	4	
EASTING	DANION	433279 000	100673.000	4332/23/8	433249 634	199998 940	100220.049	433904 738	2000	433203 169	40000 ACCCCA	20224.000	433183,536	1000 001001	20108.200	433199 400	12221021
CNIHLACK	Dill like	9005379 888	200000000000000000000000000000000000000	3223312.340	9225268, 130		ż	9225178 701	- 000	3772 47.733	9205087 588		9225051.539	097 8003600	0550000.400	9004977 077	
STATION	Ţ	XA OH	ŧ		₹A:2B	KA 9R	5	KA.4R	77 50	20.5	KA 6B	100	Z	X A RI	1000	X OB	498 47 KA 10B
DISTANCE ACCUM DIST		00.0	57.64	10.	107.61	157.52		207.57	7 1 1 7 0	Z47.14 NA.3A	303 40	2000	12.000	402 63	2	445.90	498.47
DISTANCE		00.0	57 Ed	5	49.96	49.91		50.05	73 00	5.50	56.26	10 10	0.10	47.42		43.27	52.57
EASTING		433270.312	433260 899	2000	433238.736	433218.771	100,000	433196.743	433105 BBO	000.000	433214,507	310 771001	040.71.004	433162.956	20.000	433187.034	433209.837
NORTHING		7// 4/502/8	9225317 909	000	9225273.130 433238.736	9225227.386	0.1000	9225 82.440	0225142 88F 43310F FRO	2000	9225089.868	0205050	0550000	9225008.239	000 0000000	3224972.286; 433187.034	9224924.917
STATION	0 0 0 0 0 0 0	250	KAC-1	2	746-2	KACa		14C-4	KAC-5		KAC-6	KAC.7		KAC-8	0 0 0	247-3	11.12 KAC-10
ELEVATION	7 05		9.76	0 7 0 7	-0. Id	10.55	700	10.0	10.66		10.67	10 96	2	10.89	4 0 0		
EASTING	100051 601	43050 . UZ4	433248.879	720070000	433227.037	433211.194	122100 710	400 100.740	433188,190		433204.709	433172 154		433156.633	199181 RAE	100101	433200.877
NORTHING EASTING ELEVATION	109 130001 388 0863000	3253303.000	9225323,472 433248.879	700 T00001 121 8703000	3553570.131	9225230,858 433211,194	0225195 179 723190 770	3220100.170	9225138,537 433188,190	10000	9225092,447 433204,709	9225054.973 433172.154	000 20000	9ZZ5U07.998 433156.633	00004067 005 A99181 84E	555, (064,335	9224922.285 433200.877
SIATION	KA OI	10:05	₹ 1-	K 2 21	17.7.	KA.3L	K 4 41	12.7	KA:5L	10 4 /	KA.bL	KA:7L		74.8L	KAQ	10.07	KA.10L

Table 3.1.4 (1/5) LONGITUDINAL PROFILE WEST FLOODWAY/GAGANG RIVER

	ACCM.				LEFT			1	CENTE	R	r		AIGI	iT		fictat		
LINE	DIS	DIS	Elevation	۵ width	Back Land	Oike Crown	River Bank	Lowest	Water Level		River	Dike	Back	Elevation	.1	HTOW	REMARKS	
•9	-413.60	-13.70	0.64	58.10	0.63	0.63		-1.62			9ank	Crown	Land		width 361,18	780.46	97/9/30	11:45
-8	-399.90	-49.91	0.62	55.07	0.89	0.59	0.59	-1.44							361.81	778.69	*	10:48
-7	-349.99	-47.97	0.50	53.50	1.04	0.77	0.77	-1.48	-0.43	380.22					380.22	813,94		
-6	-302.02	-54.05	0.89	52.78	1.09	0.75	0.75	-1.50	-0.40	380.39					380.39	813.56	•	10:25
-5	-247.97	-47.96	0.74	50.59	1.09	0.76	0.76	-1.68	-0.35	335.38					335.38	721.35		9:37
-4	-200.01	-50.02	0.82	49.59	1.02	0.75	0.75	-1.95	-0.52	337.82					337.82	725.23		9:00
-3	-149.99	49.99	0.90	50.13	1.02	0.72	0.72	-2.02	-0.46						289.56	629.25	97/9/29	14:18
-2	-100.00	-50.01	1,12	49,92	1,07	0.75	0.75	·2.06	-0.49						274.50	598.92		13:34
-1 0	-49.99 0.00	-49.99	0.40	52.86	1.17	0.40	0.40	-2.02	-0.38	374.08					374.08	801.02	*	11:47
1	47.39	0.00 47.39	0.46	54.40	0.41	0.40	0.40	-2,17	.0.36	205.21	0.08			0.21		313,42		10:35
2	93.33	45.95	0.41	52.61 53.77	0.37	0.40	0.40	-2.26	-0.33		-0.01	0.72	0.00	0.78	52.55	287.03	97/07/28	8:20
3	144.98	51.64	0.69	50.00	1.57	0.41 1.57	0.41	-2.56 -2.86	-0.31	179.81	0.03	0.35	-0.16	0.29	59.27	292,85		9:10
4	198.25	53.27	1.05	51.48	1.71	1.89	0.81	-2.78	-0.30 -0.26	164.07 154.38	-0.03 0.01	0.63	0.02	0.70	57.51	271.58	•	10:30
5	258.96	60.71	1.16	51.41	2.69	1.78	0.91	-2.96	~		0.66	0.63	·0.22	0.69 0.83	57.90 55.95	263,76 258.38	07/07/09	40.00
6	311.85	52.89	1.27	50.00	2.96	2.08	0.93	-2.95	-0.28	121.40	1.29	1.59	0.83	1.65		223.18	97/07/28	13:26
7	357.06	45.20	1.15	50.00	2.06	1,84	0.73	-3.20			0.52	1.87	1.07	1.93		213.58		14:15
8	408.50	51.44	1.13	50.00	2.00	1.79	0.85	-3.21	-0.37		0.45	2.40	1.16	2.27		223.85	97/07/28	15:22
9	455.58	47.09	0.88	50.00	2.06	1.87	0.53	-3.22	-0.42		0.24	2.73	1.14	2.78		220.89	- SHOWED	15.22
10	506,02	50.44	0.66	50.00	2.13	1.85	0.25	-3.28	-0.33	124.66	0.15	2.47	0.62	2.57		226.45	97/07/29	8:10
11	553.89	47.87	0.46	50.00	2.16	1.89	-0.11	-3.26	-0.37	129.95	0.12	2.09	0.50	2.14	51.50	231,45		
12	605.20	51.31	0.21	50.00	1,44	1.44	0.21	-3.22	-0.32	157.77	0.41	0.72	0.16	0.71	52.34	260.11	97/07/29	
13	656.93	51.73	1.78	52.61	2.00	2.01	1.32	-3.26	-0.35		0.03	1.20	0.48	1.25	52.47	254.95		10:50
14	701.67	44.74	1.40	51.57	0.62	1.92	1.32	-3.52	-0.42	150.17	0.17	1.63	0.25	1.54		257.67	•	11:30
15 16	760.78 817.01	59.11 56.23	0.41	85.29	0.04	1.04	0.24	-4.66	-0.22	140.39	0.71	2.57	4:17	0.34	81.28	306.96	Bridge 1997/7/30	9:40
17	863.11	46.10	0.05	50.00 50.00	0.77 0.63	0.96	0.14	-3.12	-0.33	149.15	0.40	1.61	0.14	0.63	40.94	240.09		·
18	913.43	50,32	0.85	50.00	0.74	1.05	0.49	-3.24 -2.75	-0.34 -0.30	145.53	0.31	1.61	-0.08	0.93	54.73	250.26	97/07/29	14:30
19	974.54	61,11	0.24	50.00	1.00	1.65	0.22	-3.41	-0.37	145.04 138.16	0.41	1.61 1.55	0.17	1.04	59.67	254.71	07/07/00	
20	1020.98	46.44	1.27	50.00	1.01	1.54	0.13	3.03	-0.40		0.17	1.58	0.06	1.04		245.29 247.64	97/07/29 97/07/31	15:20
21	1072.80	51.83	1.32	50.00	0.97	1.50	0.54	-2.76	-0.33	150.10	0.03	1.62	0.39	1.19		258.42	97/07/30	10:10
22	1123.92	51.12	1.93	50.00	0.96	1.57	0.34	-2.75	-0.43	158,15	0.21	1.66	0.05	1.33		261,23	37,07,00	11.75
23	1174.65	50.73	1.18	50.03	0.94	1.73	0.68	-2.55	-0.37	163.65	0.17	1.72	0.17	1.12		271.57	97/08/01	9.58
24	1221,11	46.46	1.25	50.00	0.97	1.65	0.39	-2.55	-0.36	169.27	0.25	1.75	0.45	1.44		270.71	The Special Conference	
25	1265.96	44.85	1.26	51.91	1.00	1.85	0.43	-2.51	-0.41	171.00	0.46	1.83	0.17	1.44	54.85	277.76	97/07/30	13:55
26	1315.62	49.65	1:11	50.00	1.02	1.82	0,36	-2.75	-0.35	168.66	0.32	1.85	0.15	1.20	46.01	264.67	•	14:30
27 28	1369.02	53.40	1.16	50.00	0.84	1.78	0.29	-2,74	-0.10	168.21	0.41	1,84	0.07	1.51		271.64		
29	1422.31 1474.70	53.29 52.40	1.00	50.00 50.12	0.80 0.94	1.79	0.29	-2.75	-0.12	170.76	0.29	1.85	0.13	1.40		292.35	97/07/31	11:05
30	1527.12	52.42	0.61	50.00	0.55	1.98 2.25	0.70	-2.78 -2.65	-0.18 -0.21	163.22 165.26	0.16	1.90	0.30	1.48	54.99	268,33	*****	13:15
31	1582.05	54.92	0.77	55.84	0.51	2.26	0.17	-2.78	-0.28	170.75	0.64	1.88	0.03	1.07		271.96	97/08/11	14:45
32	1634.82	52.78	0.88	54.73	0.59	2.20	0.93	-2.64	-0.28	184.68	0.27	1.84	0.82	1.93	54.52 53.51	281.11 292.92	97/07/31	15:00
33	1688.29	53.47	1.23	53.48	0.73	2.24	0.50	-2.91	-0.28	180.67	0.40	2.11	0.22	1.22	55.77	289.92	97/07/31	15:45
34	1742.59	54.30	1.93	50.00	0.56	1.85	0.49	-2.27	-0.14	185.00	0.44	2.16	0.28	1.32	57.72	292,72	97/08/02	13:12
35	1786.55	43.97	1.43	51.40	0.51	1.92	0.49	-2.89	-0.10	185.62	0.47	2.20	0.50	1.32	55.03	292.05		14:00
36	1830.68			54.03				-2.95	-0.15	184.48	0.49	2,20	0.48	1.55	56.76	295.27		14:59
37	1879.83	49.15		50.00		2.17			-0.25		0.60			1.50	52.64	291.31	97/08/04	8:15
38	1928.79	48.96		50.00						192.60				2.15		286.76	• •	8:46
39 40	1983.84	55.05	1.09	50.00				-2.24						1.22		291,25		9:20
41	2029.18 2082.46	45.35 53.28	1.06 1.23	50.00	0.83			-2.47			0.52		0.98	1.13		295.45	1 1 1 1 1 1	
42	2133.69		0.93	57.68 59.47	1.08 0.98				-0.25		0.68		1.04	0.37		291.54	97/08/04	10:25
43	2181.60		1.23	53.91	1.11				-0.32 -0.32				1.12	1.19		294.18		11:30
44	2232.03		1.20		1.33					162,26		2.61	1.33	0.70 1. 1 1		268.19 247.27	•	14:30
45	2284.62				1.48				-0.32		0.49	2.62	1.45	0.31		241,14	97/08/05	15:30 8:18
46	2335.93			54.91	1.70					148.79						247.26	97/00/05	8:57
47	2383.07	47.14	1.65	39.17	1.93				-0.17			2.73				200.64		9:45
48	2434.61	51.54	2.28	41.91	1.88									2.52		196.09		
49	2486.34		2,10	50.00	1.99		0.83	-2.38	-0.40	137,42				-		202,49	97/08/05	10:12
50	2534.97		2.03	38.82	1.80									1	18.09	187.70	• • • •	11:23
51	2583.17		2.27	50.00					-0.35		0.75	· · · · · · · · · · · · · · · · · · ·				190.95		14:15
52	2632.52								-0.37						T	205.27		15:30
53	2684.54	52.02	2.33						-0.35							202.44	97/08/06	8:20
54 55	2736.95		1.81	52.66					-0.46							207,44	<u> </u>	11:45
55 56	2785.26 2835.52		1.38 1.99					-1.95						-		182.98	•	14:17
	2885.81						-						2.33			171.56		15:12
57			2.23	30.00	4.07	3.24			-0.52	94.47	1.39	3.46	2.54	1.41	52.55	197.02	•	16:00
57 58	2937.86	52.05	2.23	28.73	2.52	3.22	1.12	.2.20	-0,48	95.54	0.66	3.52	2.69	2.38	40.0-	167.92	97/08/07	8:20

Table 3.1.4 (2/5) LONGITUDINAL PROFILE WEST FLOODWAY/GAGANG RIVER

·	,	-														.,,,,		
LINE	ACCM.	DIS		Γ.	LEFT Back	Dike	River		CENTE		0		RIGI	HT		Total		
ENGL.	DIS	0.3	Elevation	width	Land	Crown	Bank	Lowest	Water Level	Width	1 Aiver Bank	Dike Crown	Back Land	Elevation	7	WIDTH	REMARKS	
60	3035.36	50.29	2.67	50.00		3,40	0.20	-2.31		87.80	0.78	3.59		2.24	width	152.01	<u> </u>	
61	3088,42		2.76		3.06	3.54	1.27	-2.64		86.13	0.52	3.62	2.91		1581	153.61	0770044	10:20
62	3137.35		2.71	50.00	3.05	3.59	0.26	-2.68	-0.49	85.06	0.99	3.66	3.17	2.04	55.51 33.41	191.64 168.47	97/08/11 97/08/07	8:30
63	3185.08		3.15		3.22	3.65	0.89	-2.64	<u> </u>	86.54	1.52	3.65	3.30		53.08	189.62	37/00/01	11:39
64	3236.94	1	1.87	50.00	3.42	3.79	1.55	-2.78	-0.51	84.78	1.55	3.84	3.79		31.28	186.06		14:01
65	3286.56	49.61	4.59	205.08	4.59	4.59	0.28	-2.11	-0.43	98.10	1.62	4.69	4.69		210.57	513.75	Rail Way	14:35
66	3337.22		4.36	50.00		4,36	0.48	-2.29	-0.46	86.83	1.63	4.20	4.28		14.94	151,77	nas way	15:30
67	3389.61	52.39	4.37	56.22	4.52	4.24	1.36	-2.41	-0.48	84.87	1.41	4.19	4.26		13.37	154.46	97/08/11	
68	3436.61	46.99	4.66	50.70	4.65	4.52	0.36	-2.27	-0.42	83.10	1.56	4,13	4.12		15.13	148.93	97/08/11	9:10
69	3485.98	· · · · · · · · · · · · · · · · · · ·	4.57	50.00	4.87	4,47	0.95	-2.67	-0.45	86.99	1.83	3.97	4.06		24.59	161.57	07/00/11	8:45
70	3536.62	50.64	4,99	50.00	4.86	4.90	1.15	-2.86	-0.50	91.01	1.84	3.96	4.05		45.17	186,18	97/08/11	10:41
71	3587.68		4.74	50.00	4.73	4.69	1.28	-3.05	-0.47	85.74	1.97	3.93	3.78	3.26	38.28	174,02		11:25
72	3643.16	i	2.19	44.69	4.98	5.51	1.80	-4.47	-0.51	73.70	1.49	4.07	4.12		40.70	159.09	97/08/12	13:22
72+22	3671.98	†		69.51	6.28	4.28	1.42	-3.22	0.28	65.38	1.85	4.24	6.24	2.16	68.01	202.90	8ridge *	8:45
72+39	3688.12	16.14		57.63	8.04	4.09	2.14	-2.82	0.26	67.28	1,42	4.09	6.10		55.58	180.49	Bridge	9:35
74	3740.58	43.97	4,41	50.00	4.14	4.36	1.73	-1.91	-0.45	87.45	1.96	4.55	4.74	4.63	14.33	151.78	- Stroger	9:55
75	3789,75	49.18	4.14	50.00	4.04	4.06	1.17	-2.08	-0.41	73.97	1.83	4.93	5.13	4.24	14.78	138.75		
76	3839.65	49.90	4.28	34.09	4.23	4,18	2.26	-2.21	-0.42	75.32	2.32	5.16	5.28		28.10	137.51		11:15
77	3891.93	52.28	4.51	50.00	4.36	4.23	1.67	-2.35	0.45	84.00	1.77	4.97	5,18	5.10	26.10	160.10		13:10
78	3938.28	46.35	4.69	50.00	4.39	4.59	2.41	-2.32	-0.48	83.71	3.03	5.35	5.38	5.47	16,14	149.85	97/06/12	14:00
79	3985.68	47.40	4.34	50.00	4.52	4.31	2.41	-2.19	-0.55	81.22	1.41	5.35	5.47	5.45	22.87	154.09	37/00/12	14:30
80	4041.74	56.06	4.19	52.13	4.84	4.08	2.52	1.94	-0.49	85.19	0.61	5.31	5.43		20.01	157.33	97/08/13	8:00
81	4091.82	50.08	4.57	50.00	4.95	4.49	2.97	-1.86	-0.48	86.18	0.64	5.44	5.54	5.58	20.86	157.04	97100 13	0.00
82	4140.38	48.56	5.39	50.00	5,33	5.35	3.14	-1.99	-0.54	89.31	0.89	5.57	5.65		10.79	150.10	97/08/13	
83	4191.07	50.69	5.10	50.00	5.43	5.07	3.19	-2.06	-0.61	87.89	1.38	5.81	5.84	5.91	24.06	161.95	3,0010	
84	4239.71	48.65	5.52	50.00	5.46	5.40	3,13	-1.90	-0.50	92.40	1.47	5.85	5.84	5.94	51.23	193.63		
85	4293.88	54.17	5.07	50.00	5.38	5.02	3.11	-1.74	-0.46	88.50	1.86	5.67	5.96	6.03	10.31	148.81		
86	4343.93	50.05	5.66	50.00	5.54	5.53	3.05	-1.90	-0.17	92.68	2.22	6.17	6.08	6.28	23.18	165.86	•	
87	4391.70	47.77	5.50	50.00	5.59	5.43	1.82	-1.90	-0.21	86.77	2.27	5.91	5.99	6.03	12.50	149.27	97/08/14	
88	4441.74	50.04	5.41	50.00	5.59	5.30	1.52	-1.81	-0.21	87.34	1.54	5.97	5.99	5.69	12.02	149,36	97/08/14	
89	4491,47	49.73	5.74	50.00	5.63	5.63	3.14	1.86	-0.22	88.93	1.60	6.07	6.14	6,12	12.39	151.32	•	
90	4541.75	50.27	5.71	50.00	5.78	5.63	2.09	-1.94	-0.28	83.68	1.51	5.84	6.25	5.92	22.95	156.63	97/08/13	11:05
91	4595.22	53.47	5.52	50.00	5.71	5.42	2.26	-2.00	-0.26	91.01	1,71	6.30	6.43	6.35	9.22	150.23		
-92	4645.57	50.35	5.78	50.00	5.73	5.65	2.94	-2.11	-0.25	89.43	1.84	621	6.41	6.31	21.00	160.43		1
93	4694.11	48.54	5.77	26.18	6.01	6.01	2.70	-1.76	-0.46	90.24	1.57	6.53	6.52	6.63	28.09	144.51		
.94	4742.15	48.03	6.95	34.51	6.94	6.96	2.79	-2.06	-0.50	84.54	1.68	6.55	6.71	6.60	17.07	136.12	97/08/13	14:00
94+23	4768.54	26.40	3.65	55.61	6.95	3.95	3.95	-2.90	-0.24	69.81	4.62	4.62	6.65	3.87	60.48	185.90	Bridge *	15:00
95	4794.59	26.05	6.18	27.31	7.39	6.08	2.85	-1.32	-0.46	93.36	6.49	6.62	6.70	5.70	11.17	131.84	97/08/16	8:10
96	4841.29	46.69	6.35	35.90	8.51	6.28	2.62	-1.12	-0.15	98.63	4.05	6.85	7.11	7.06	7.75	142.28		8:47
97	4891.88	50.59	6.74	29.55	8.73	6.63	1.79	-1.34	-0.18	99.21	3.91	7.42	7.52	7.55	14.31	143.07	•	9:45
98	4943.79	51.92	6.74	21.52	7.58	6.83	3.01	-2.80	-0.10	100,47	5.05	7.97	8.33	8.09	34.86	156.85		10:17
98+21	·					-		· F	River Se	xi H≕ 1.44			<u> </u>	- 11. <u></u>	. ·	<u> </u>	•	10:55
98+23				· · · · · ·				: 1	River Be	ed H=0.99				· · · · · · · · · · · · · · · · · · ·			• • • •	11:35
99	4994.19	50.40	7.50	41.32	8.91	7.42	5.96	1.54	1.68	101.61	5,88	9.16	9.36	8.89	41.91	184.84		13:20
99+29	5023.04	28.85	8.49	31.24	8.53	8.43	8.43	5.16		92.96	8.41	8.41	7.41	8.61	31.70	155.90	Simongan Weir *	14:00
99+29				,				WFC-9	9+29 R	ver Bed H	=-1.22						•	15:02
100	5045.21	22.17	8.63	12.21	8.54	9.37	9.37	1.10	4.94	87.08	5.94	9.42	8,60	8.60	34.23	133.52	97/08/18	8:00
101	5095.03	49.82	9,44	1.57	10.20	9.44	6.90	3.57	4.97	76.94	6.96	9.97	9.45	7.18	16.37	94.88	•	8:42
102	5149.08	54.05	9.31	16.51	9.26	10.19	6.37	3.54	4.97	76.71	6.84	10.00	9.55	7.58	29.28	122.50		9:20
103	5200.15	51.07	9.64	14.22	9.56	10.29	6,48	3.65	5.00	86.51	7.16	10.08	9.59	7.61	17.04	117.77		10:30
104	5258.51	58.36	9.16	11,35	8.59	10.28	5.71	3.77	5.01	72.98	7.42	10.19	9.63	7.92	20.63	105.46	<u> </u>	11:15
105	5309.05	50.54	9.28	17.69	8.78	10.35	8.34	4.30	5.03	70.42	7.65	10.22	9.65	8.05	77.49	165.80	•	13:10
106	5356.47	47.42	9.18	13,15	9.04	10.43	6.05	4.21	5.05	68.73	8.96	10.34	9.53	9.08	28.32	110.20	•	14:00
107	5408.49	52.02	9.71	14.38	9.50	10.47	7.01	3.96	5.12	69.29	7.00	11,42	10.78	7.60	24,93	108.60	97/08/19	8:10
108	5462,44		11.03	21.25	10.95	10.50	7.80	3.38		74.77	6,82	11.96	11.58	11.89	40.26	136.28		10:15
109	5505.67	43.23	13.22	20.01	13.52	13.12	7.67	3.20	5.13	77.96	12.04	12,46	12.04	12.51	20,77	118,74		11:10
110	5555.14	49,48	14.00	34.51	13.88	13.91	9.43	3.66	5.12	59.08	12.28	12.51	12.23	12.60	16.89	110,48		14:20
111	5603.46	48.32	11.86	13.34	12.32	11.85	7.06	2.80	5.08	74.59	10.02	10.36	10.51	10.43	43.06	130.99	97/08/20	8:30
112	5636.39	32.93	10.49	39.26	8.13	10.35	7.30	1.78	5.08	98.67	6.49	10.64	8,40	9.97	29.36	167.29		
113	5675.83 5710.76	39.45	11.11	12.30	8.19	10.46	7.10	3.45	4.99	127.34	6.90	10.65	9.32	9.47	36.61	176.25	97/08/20	
114		34.92	11.17	23.15	8.27	10.18	7.18	3.02	4.93	175.82	7.08	10,77	9.33	9.45	74.12	273.09		
			11.23	9,50	8,44	10.61	7.58	3.09	4.99	232.84	7.74	10.65	10.55	7.74	14.79	257.13		
115	5741.29	30.54				10.69	7.12	2.87	4.95	262.21	8,44	10.72	10.83	10.81	57.77	349.35		1 2 2
115 116	5741.29 5781.40	40.11	11.29	29.37	8.77						!							
115 116 117	5741.29 5781.40 5822.78	40.11 41.38	10.90	38.65	8.01	10.79	7.58	2.29	5.11	265.76	7.64	10.89	11,14	11.01	26.26	330.67	<u> </u>	
115 116 117 118	5741.29 5781.40 5822.78 5861.13	40.11 41.38 38.35	10.90 10.85	38.65 53.79	8.01 7.81	10.79	7.58 7.15	2.25	5.16	254.71	9,14	9.31	11.00	9.20	17.40	325.90		
115 116 117 118 119	5741.29 5781.40 5822.78 5861.13 5898.82	40.11 41.38 38.35 37.68	10.90 10.85 10.86	38,65 53,79 53,66	8.01 7.81 7.97	10.79 10.71 10.76	7.58 7.15 7.91	2.25 2.85	5.16 5.15	254.71 250.60	9,14 9,25	9.31 9.74	11.00 10.61	9.20 9.72	17.40 3.85	325.90 308.11	97/08/20	
115 116 117 118 119 120	5741.29 5781.40 5822.78 5861.13 5898.82 5937.01	40.11 41.38 38.35 37.68 38.20	10.90 10.85 10.86 10.34	38.65 53.79 53.66 61.85	8.01 7.81 7.97 8.04	10.79 10.71 10.76 11.00	7.58 7.15 7.91 8.87	2.25 2.85 3.96	5.16 5.15 5.12	254.71 250.60 251.24	9,14 9,25 6,94	9.74 9.74 11.01	11.00 10.61 10.01	9,20 9,72 11,05	17.40 3.85 20.85	325.90 308.11 333.94	97/08/20	
115 116 117 118 119	5741.29 5781.40 5822.78 5861.13 5898.82	40.11 41.38 38.35 37.68	10.90 10.85 10.86	38,65 53,79 53,66	8.01 7.81 7.97	10.79 10.71 10.76	7.58 7.15 7.91	2.25 2.85	5.16 5.15	254.71 250.60	9,14 9,25	9.31 9.74	11.00 10.61 10.01 9.51	9.20 9.72	17.40 3.85	325.90 308.11	97/08/20	

Table 3.1.4 (3/5) LONGITUDINAL PROFILE WEST FLOODWAY/GAGANG RIVER

	10011				LEFT				CENTER	3	Γ		RIGH	iT		Total		
UNE	ACCM. DIS	OIS	Elevation	A width	Back Land	Oike Crown	River Bank	Lowest	Water Level	Wiath	River	Dike Crown	Back	Elevation	a).	WIDTH	REMARKS	
123	6045.51	32.27	10.30	58.81	8.72	11.07	7.29	4.29	5.20	200.95	Bank 7.49	(1.26	9.82	11.33	7.76	267.52		
124	6076.38	30.87	11.27	52,70	10.13	11.10	7.83	4.36	5,17	152,63	7.83	11.18	8.32	11 25	10.20	215.53		
125	6109.17	32.80	11.38	50.00	10.50	11.19	7.31	4.45	1.94	113.60	7.35	11.13	8.67	11.20	12.32	175.92	97/08/20	
126	6160.80	51.63	11.08	32.06	10.26	11.03		3.63	4.92	31.05	7.64	11.22	9.35	11.34	11.55	134.66		-
127	6210.71	49.91	11,02	22.51	10.68	11.02	8.44	3,96	4.95	111.31	7.61	10.91	3.11	11.01	96.94	230.76	•	
128	6249.81	39.09	11.14	28.81	10.48	11,14	6.68	4.18	4.94	136.57	6.39	10.83	7.70	10.89	19.18	184.56		
129	6288.18	38.38	11.22	40.33	11.12	11.56	7.60	3.61	4.94	157.46	6.71	11.11	8.08	11.12	37.81	235.60		
130	6317.68	29.50	10,45	22.90	11.19	11.55	8.02	2.38	5.08	158.64	7.81	11,14	7.85	11.21	49.11	230.65		1
131	6363.16	45.49	10.88	53.70	11.15	11,50	7.56	2.72	5.03	174.86	6.82	11.46	8.20	11.55	48,76	277.32		
132	6393.89	30.73	10.59	52.87	10.59	11.53	7.24	4.06	5.08	185.51	7.93	11.52	7.64	11.60	33,18	271,56		9:50
133	6431.27	37.38	11.59	41.79	9.41	11.43	8.42	4.17	5.07	152.19	7.77	8.70	8.47	8.71	36.26	230.24		10:54
134	6473.01	41.74	11.59	55.42	9.12	11,47	8.10	3.73	5.14	143.17	7.57	(1.11	8.58	11.23	55.46	254.05	San Land	11:35
135	6544.98	71.97	11.76	56.25	9.18	11.61	7.84	3.95	5.05	103.69	8.84	11.25	10.06	11.40	10.58	170.52		13:30
136	6603.18	58.20	12.59	60.48	8.94	12.45	10.09	4,11	1.98	122.06	7.63	10.27	10.04	8.90	14.78	197.32		14:35
137	6692.86	89.68	13.35	59.56	9.11	13.23	10.95	4.25	5.01	222.99	10.94	11.68	12.19	7.84	54,00	336.55	97/08/28	820
138	6765.34	72.48	13.58	34.91	10,45	13.38	10.62	4.37	5.11	307.60	9.25	12.76	12.83	12.85	33.13	375.64	1 11 · ·	9:30
139	6827.08	61.75	12.23	51,14	12,61	12.03	11.67	4.40	520	299.95	9.81	11.13	10.62	12,72	25.89	376.98	97/08/28	11:15
140	688888	61.59	1321	51.15	9.86	13,12	7.40	4.80	5.22	316.55	6.73	11.30	9.72	9.96	14.70	382,40		
141	6947.75	59.07	12.53	62.86	9.87	12.42	8 8 1	4,13	5.22	229.04	8.48	12.37	8.98	12.77	44.29	336.19		
142	7034.14	86.39	11,73	48.67	10.98	11.63	7.26	4.39	5.27	118.95	8.67	12.71	9.27	12.68	50.45	218.07		
143	7107.20 7163.44	73.06	10.14	43.05	10.19	10.07	7.09	3.71	5.21	87.65	8.56	12.95	9.23	13.09	55.02	185.72		
144	7163,44	56.24 46.89	11.41	24.56	11.95	11.19	7.74	3,16	5.21	87.28	8.00	12.99	10.56	12.98	41.51	133.23	97/08/30	8:50
146	7210.33	46.89	10.13	34.56 31.34	11.61	11.33	6.19	3.89	5.19	104.61	8.10	13.22	11.38	13.37	49.27	188.44		10.40
147	7288.95	42.44	10.13	51.26	10.23	12.03	5.77	4.48 4.31	5.19	96.62	9.25	13.31	11.93	13.41	55,39	183.35		
148	7339.25	50.31	12.11	51.20	11.78	12.02	5.99 5.58	3.45	5.24	87.41 84.60	8,84	13.11	11.91	13.18	50,14	188.81		14.27
149	7397.24	57.98	10.94	48.86	11.88	12,47	8.49	3.76	5.21 5.27	76.36	8.34	13.48	11.99	13.54	53.55	189.35	97/10/07	15.50
150	7438.74	41.51	11,19	53.11	11.38	12.45	7,44	3.12	5.29	80.22	9.23 7.83	14.31	12.32	13.47	52.48 18.07	151.40	97/10/06	14:58
151	7472.17	33.43	10.42	42.76	11.50	12.50	9.80	4.63	5.26	77.15	8.45	13.28	11.78	13.41	49.14	169.05	37/10/06	10:15
152	7498.70	26.53	11.32	38.63	11.62	12.58	11.25	4.87	5.27	81.48	8.18	13.38	11.03	13.39	53.13	173.24	97/08/29	9:50
153	7539.62	40.92	11.66	69.12	11.64	12.70	10.81	4.84	5.33	78.39	8.04	13.49	11.28	13.48	50.40	197.90	37/00/23	8.25
154	7585.42	45.81	8.57	76.33	11.58	12.74	7.92	4.62	5.28	48.90	10.10	13.53	12.04	13.60	46.42	171.65	97/08/09	9:40
155	7637.18		8.56	99.00	11.74	12.72	8.51	4.36	5.30	57.17	10.35	13.81	11.28	13.83	56.88	223.05		10:15
156	7691.72	54.54	8.91	83.65	11,31	12.14	8.82	4.42	5.31	70.27	10.89	13.92	11.53	13.96	56.55	210.67	•	10:40
157	7747.79	56.07	8.97	66.92	11.92	12.79	8.12	4.57	5.32	75.16	11.03	14.15	10.89	14.14	\$4.16	196.24	* * * * * * * * * * * * * * * * * * *	12:20
158	7798.02	50.23	9.12	45.28	12.26	12.86	9.02	4.60	5.31	80.57	8.60	14.20	12.46	14.17	52.55	178.40	•	13:45
159	7846,60	48.58	9.65	26.44	13.04	13.19	9.56	4.52	5.32	80.32	7.83	14.32	12.05	14.34	40.32	147.08		- :
160	7906.16	. 59.56	9.32	41,31	13.50	13.39	10.51	5.08	5.33	85.92	11.16	14.31	10.97	14.48	49.43	176.66		***
161	7938.17	32.01	11.04	38.38	14.58	15.48	10.09	4.58	5.40	86.59	8.95	14.24	10.74	14.24	54.41	179.38	97/08/09	
162	7994.54	56.37	14.57	49,11	14,78	14.50	.10.68	4.16	5.45	99.22	11.04	14.39	10.95	14.35	38.36	186.69	97/08/26	10:10
163	8046.89	52.35	9.91	38.64	15.54	15.40	9.77	4.99	5.47	91,88	10.97	14.52	11.65	14.52	25.32	155.84		15:10
164	8084.88		10.01	34.78	15.28	14.88	9.83	5.61	5.99	95.51	9.57	14.30	11.25	14.30	26.54	156.83		
164+28	8112.88		14.92	11.48	15.10	14.91	9.77	5.48	6.04	107.87	10.10	14.12	11.15	14.13	52.12	171.47	Water Guage 1997/8/27	9:10
165	8124,47	39.59	10.17	32.06	14.98	14.98	9.90	5.17	6.09	65.80	9.97	14.20	14.20	14.25	57.35	175.21		
166	8148.41	23.94	11,50				7.99	5.23	_	92.32	1	14.25	11.03	1		177.54		
167	8193.47	-					1		 	83.83		14.03		,		1		13:45
168	8238.00 8293.09						ţ	t	1	56.79		14.07	11.38	1	·	124.03		
170	8293.09	T						·		68.47		14,14	11.71				97/08/26	14.10
171	8401.51	·					1		7	78.00 79.40		14.21	12.17	_			97/09/05	9:45
172	8451.00	1							1	82.48		14.18	12.61	1		184.84 151.62		
173	8514.07	1	1							89.54		14.19			•	200.35	97/08/27	8:55
174	8566.64	T	T			1	$\overline{}$		7	104.39		14.47	12.47		T	1	\$1100/21	14:35
174+18	8584.64	1		1	T				1	64.60		9.73	10.85			*********		10:58
175	8617.71		7						1	114.40	1	11.72	12.70				97/08/25	13:50
176	8659.64	41.94	12.21	54.94	12.18			7		75.25			13,36					13:18
177	8708.98		12.40	15.22	13.08	12.28	12.28	1		65.04	T			1	1			11:30
178	8763.96	55.00	13.09	37.83	13.00	12.97	12.97	5.81	6.78	93.44	10.77	12.27	11.87	12.01	60.90	192.17	•	11:14
179	8822.00		13.70	53.92	13.57	13.73	13.73	6.43	7.00	98.23	10.24	11.69	11.96	11.80	27.33	179.48		1111
160	8851.65			T	<u> </u>		ऻ	6.5	6.79	93.45	5	<u> </u>	11.75	11.83	51.81	200.45		15:14
181	8893.05		T			1	 	6.42	6.97	69.67	'l	ļ :	12.23	12.33	28.24	154.73		14:40
182	8937,16	1			7		<u> </u>	6.56	7.07	53.80	3	ļ	12,01	12.11	6.72	113.38		11:43
183	8988.5			1			!	6.5	7.21	50.50	-	<u> </u>	12.00	12.01	11.66	92.16		1011
184	9035.6	4	7	1		1	 -	6.78				ļ .	12.74	7				10:54
185	9082.44			 		1	↓	7.5	1	·			13.86					10:34
	9129.8	47 40	1	6.81		-		7.21	7			ļ	14.3				·1 ··· — · · · · · · · · · · · · · · · ·	10:13
186		_t																
186+27 186+35	9156.6			1	+		 -	9.4					16.9				 	9:55 9:14

٠.	٩
-	ç
=	,
•	Z
	Ada ひにない
	ű
	٦
•	μ
	700
	_
-	<
	2
	E
	Ċ
	7
	_
:	
	Ç
	7
	٧
	~
÷	٩
	Table
	F

	REMARKS																
	Total			46.58	51.00	43.66	53.43	40.27	22.03	50.90	14.00	15.49	62 02	49 15	40.75	31.66	26.30
		D width	38.98	19.78	15,02	16.82	16.19	11.61	1.28	23.19	1.92	2.36	16.92	15.60	0.67	9.90	0.42
		Elevation	6.33	8.49		6.90			9.16 3.80 6.30 19.71 11.50 10.72 11.61 10.42 6.36 6.48 15.81 10.42 6.70 6.91 1.28 10.42 6.63 6.48 15.81 10.42 10.25 10.42 23.19 6.63 6.75 11.54 9.20 8.25 1.94 6.99 7.11 12.31 9.39 9.52 2.36 7.21 7.21 7.32 19.15 10.78 10.75 10.78 16.92	10.70	10.37		10.99				
	RIGHT	Back Land		8.31	8.16	7.30	8.32			10.25	9.20	9.39	10.75	11.89	10.64	11.47	8.34
RIVER		iwn River Bank Lowest Water Level Width River Bank Dike Crown Back Land Elevation D width						11.50		10.42			10.78	10.70		11.47	
ENGKEK		River Bank															
TLE - C	CENTER	Width	22.58	12.51	18.88	11.99	25.87	16.95	19.71		ŧ.	J	l .	18.67	18.02		13.10
LONGITUDINAL PROFILE - CENGKEK RIVER		Water Level	5.15	5.30	5.65	5.71	5.91	6.24	6.30	6.48	6.75	7.11	7.32	7.33	7.50	8.07	8.11
TIOD II		Lowest	4.99	5.18	5.33	5.45	5.74	5.90	3.80	6.36	6.63	6.99	7.21	7.22	7.29	7.99	7:82
	LEFT	River Bank						1.0									
Table 3.1.4 (4/5)		Dike Crown							9.16	10.42				10.52	٠	11.11	10.92
Table		Backland		7.00	7.06	7.47	8.31	10.75	7.94	10.33	8.83	8.27	10.20	10.29	10.45	10.74	10.95
		D width	15.01	14.29	17.10	14.85	11.37	11.71	1.8	11.90	0.61	0.82	25.95	14.88	22.06	21.76	12.78
		Elevation D width	7.00	6.13	7.28	7.53	8.49	8.87	9.16	10.42	8.83	8.55	10.31	10.52	10.49	11.11	10.99
	ACCM.DIS		0.00	34.76	59.78	109.85	158.04	209.38	253.99	275.99	299.25	349.42	399.32	304.32	452.31	280.31	499 58
	LINE DISTANCE ACCM.DIS		0.00	34.76	25.02	50.07	48.19	51.35	44.60	22.00	23.26	50.18	49.90	2:00	47.99	28.00	19.27
	LINE		0	0+28	-	7	3	4	5	2+52	9	7	000	8+5	6	9+28	10

		REMARKS												
LONGITUDINAL PROFILE - KALITO RIVER	Tatal		44.52		28.60	74.23	29.50	38.15	39.14	55.13	24.60	25.59	18.87	27.97
		width	8.13	8.04		38.93	2.12	8.23	10.47	21.17	10.26	8.90	0.99	3.75
		Elevation	12.52	9.22		11.90	10.84	10.51	10.61	10.79	10.73	10.89	11.15	11.33
	RIGHT	Back Land	12.52	96.6		11.78	10.72	10.70	10.07	10.80	19.6	10.24		-
		Water Level Width River Bank Dike Crown Back Land Elevation D width		9.83			10.72	10.74	10.97	11.18	11.30	11.42	11.58	11.67
		iver Bank L				-								
FILE - 1	-	Width F	20.16	26.49	23.98	10.53	16.67	17.65	17.32	20.26	11.89	12.66	14.69	18.68
NAL PRO	CENTER	Vater Level	6.11	6.17	6.35	89.9	68.9	06'9	7.10	7.20	7.48	7.64	7.82	8.35
Table 3.1.4 (5/5) LONGITUDIN		Lowest	5.78	5.92	90.9	6.55	19.9	80.9	6.84	7.00	7.12	7.23	7.70	7.26
	LEFT	own River Bank												
		ike Crown		10.95	10.92		10.73	10.87	11.04	10.57	10.42	10.45	11.58	11.79
		Backland Dike Cro	7.92	10.24	10.11	11.78	10.48	10.50	9.74	10.65		10.75	10.67	10.92
			16.23	9.48	4.62	24.77	10.71	12.27	11.35	13.70	2.45	4.03	3.19	5.54
		Elevation D width	7.95	9.76	10.18	11.88	10.55	10.61	10.66	10.67	10.96	10.89	11.07	11.12
	CCM DIE		00.0	57.64	107.61	134.61	157.52	207.57	247.14	303.40	355.21	402.63	445.90	498.47
	INF DISTANCE ACCUMUS		0.00	57.64	49.96	27.00	22.91	50.05	39.57	56.26	51.81	47.42	43.27	52.57
	U UNI		0		7	2+27	6	4	2	9	7	80	6	10

..