PART III CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 1 CONCLUSIONS

The conclusions of the study are as follows:

(Hydrological Investigation)

- Rivers in the Ghuzayn District belong to the drainage system of Wadi al Hawasinah River.
- Sampling points of water for the hydrological investigation consist of 5 points, 3 points of surface water survey (GS-1, GS-4 and GS-3) and 2 points of well survey (GW-1 and GW-2).
- Discharge of GS-1 (Falaj) is 2.70 m³/min, GS-4 (upper stream) is 0.30 m³/min, and GS-3 (lower stream) is 0.084 m³/min.
- Water wells (GW-1 and GW-2) in the district are shallow well for irrigation. Depth of groundwater table is about -7.50, -6.70 m below GL, respectively.
- Approximately same volume of ground water as surface current water is assumed to exist near the Ghuzayn District by the water balance.
- Surface water of 2.70 m³/min is taken from the mother well near Ghuzayn Village and supplied through Falaj system for irrigation.
- The surface water and well water range in pH from 8.00 to 8.60 (weak alkalinity).
- All concentration of Cu, Zn, Pb, Ni, Cr, Mn are <0.01 mg/l. All concentration of Hg are less than detection limit.
- The average concentration of Fe is 0.03 mg/l, Maximum is 0.07 mg/l in GW-1, Minimum is <0.01 mg/l in GS-3. Those of GW-1 (Ghuzayn village) and GS-3 (river water) are relatively higher.
- The average concentration of SO_4 is 131 mg/l, Maximum is 145 mg/l, and Minimum is 114 mg/l.
- The technical transfers for the establishment of organization for the periodical hydrological investigation was carried out.

(Water Investigation of Bore Wells)

- Five bore wells (one in the upstream and four in the down stream) are drilled by the method of preventing from the drilling mud affect, and casing and screen pipes are placed to protect the bore well wall for preparing the ground water observation.
- The recovery test, water sampling, water quality measurement and water quality analysis are conducted on each bore well.

- The permeability coefficient of bore well ranges with 10^{-5} cm/s.
- MJOB-EW-3 has the little water flow of 1 1/s.
- Average gradient of groundwater table is 1/100 (=0.6°).
- The groundwater ranges in pH from 8.00 to 8.60 (weak alkalinity).
- The electric conductivity is around 100 μ S/cm. Water temperature ranges in centigrade from 31.5 to 34.8.
- The maximum concentration of Fe, Cr, Ni and Mn are recorded in MJOB-EW-2. The maximum concentration of Cu, Zn and Pb are recorded in MJOB-EW-1. And, the relatively high concentration of Fe and Zn are recorded in MJOB-EW-4. These things suggest that each bore well would be under the some influence of mineralization.
- Although the concentration of SO₄ ranges wider than that of the surface water and well water, the average is almost same. The minimum of SO₄ of 80 mg/l is recorded in MJOB-EW-2 where Fe is maximum value.
- It is desirable to continue the monitoring work of water quality after the study.

(Weather observation)

- The weather observation devices are installed in Ghuzayn Village and data collection was started to prepare the continual weather data. The observation items consist of temperature, humidity, wind velocity and direction and rainfall.
- The technical transfers for the establishment of organization for the periodical weather observation was conducted.

CHAPTER 2 RECOMMENDATIONS

The recommendation of the study is as follows:

- Five bore wells with no affect of the drilling mud are constructed in the upper and down stream area of ore bodies. It is necessary to collect the data on the ground water quality together with the weather and the ground water level.
- It is necessary to carry out the more detailed environmental study in the Ghuzayn District for the conceptual design of the mine development.
- The items of environmental investigation consist of air quality, water quality, groundwater, soil, noise and vibration, and social environment.
- It is desirable to continue the monitoring work of water after the study.

References

- 1. JICA and MMAJ (1996): Report on the Cooperative Mineral Exploration in the Central Batinah Coast Area (Phase I), Sultanate of Oman, Bishimetal Exploration Co., Ltd.
- 2. JICA and MMAJ (1997): Report on the Cooperative Mineral Exploration in the Central Batinah Coast Area (Phase II), Sultanate of Oman, Bishimetal Exploration Co., Ltd.
- 3. JICA and MMAJ (1998): Report on the Cooperative Mineral Exploration in the South Batinah Coast Area (Phase I), Sultanate of Oman, Bishimetal Exploration Co., Ltd.
- 4. Ministry of Agriculture and Fisheries (1992): Groundwater Recharge Schemes for Al Khaburah Bani Khalid Al Bu Qurayn Area, Feasibility Report, Hydrology and Hydrogeology (Final), Sultanate of Oman
- 5. Ministry of Electricity and Water (1983): Wadi Dayqah and Batinah (Khaburah) Water Resources, Comparison Study, Sultanate of Oman
- 6. Ministry of Regional Municipalities and Environment (1993): Ministerial Decision 145/93 dated 13 June 1993 Regulations for Wastewater Re-use and Discharge, Sultanate of Oman
- 7. Ministry of Commerce and Industry (1978): Omani Standard No. 8 Drinking Water, Sultanate of Oman
- 9. Ministry of Petroleum and Minerals (1987): Geological Map of Wadi Bani Umar, Sheet NG40-14E-II, Scale 1:50,000, Bishimetal Exploration Co., Ltd.
- 9. Ministry of Regional Municipalities and Environment (1993): Interim Guideline on Environmental Impact Assessment (Draft Version No. 2), Sultanate of Oman
- 10. Overseas Mineral Resources Development Co., Ltd. (1998): Report on the Mineral Exploration Follow-up Survey Aftercare in the Rakah Area, Sultanate of Oman, Bishimetal Exploration Co., Ltd.
- 11. Japan International Cooperation Agency, Metal Mining Agency of Japan (1999):
 Report on the Cooperation Mineral Exploration in the South Batinah Coast Area
 Sultanate of Oman, (Environmental Study), (Phase II)

APPENDICES

- 1. Measurement Card for Discharge
- 2. Investigation Card of Bore Wells
- 3. Weather Observation Data

1. Measurement Card for Discharge

Measurement of Discharge (GS-1)

(16,02,2000)

1. Location : Falaj system, Ghuzayn

2. Number of measurement point : _GS-1

3. Measurement of stream bed

width
$$\underline{63}$$
 (cm)

Depth $\underline{10}$ (cm)

NOR¹

(60%) $\underline{5.33}$ (r/s)

4. Calculation

$$V = 0.132 \times N + 0.004$$
 (m/s)

V : Flow speed (m/s)
N : Number of rotation

FS²
$$0.71$$
 (m/s) Area 0.063 (m/s)

Vo =
$$(0.71 \times 0.063)$$

= $\frac{0.045}{2.70}$ (m^3/s)
= $\frac{0.045}{2.70}$ (m^3/min)

¹ NOR: Number of rotation
² FS: Flow speed (m/s)

(16,02, 2000)

1. Location

: Lower stream of Wadi Hawasina, Ghuzayn

(Near to Ghuzayn Elementary School.)

2. Number of measurement point: GS-3

3. Measurement of stream bed

width $\frac{16}{8}$ (cm) Depth $\frac{8}{10}$ (cm) NOR³

(60%) 0.83 (r/s)

4. Calculation

 $V = 0.132 \times N + 0.004 \quad (m/s)$

V : Flow speed (m/s)
N : Number of rotation

 FS^4 0.11 (m/s) Area 0.0128 (m²)

 $Vo = (0.11 \ x0.0128)$

 $^{^{3}}$ NOR : Number of rotation

⁴ FS : Flow speed (m/s)

1. Location

: Upper stream of Wadi Hawasina, Ghuzayn

2. Number of measurement point: GS-4

3. Measurement of stream bed

width 28 (cm)
Depth 13.5 (cm)
NOR⁵
(60%) 1.0 (r/s)

4. Calculation

$$V = 0.132 \times N + 0.004$$
 (m/s)

V : Flow speed (m/s)
N : Number of rotation

 $\begin{array}{ccc} FS^6 & \underline{0.136} & (\text{m/s}) \\ \text{Area} & \underline{0.0378} & (\text{m}^2) \end{array}$

Vo = (0.136×0.0378) = $\underbrace{0.005}_{0.3}$ (m^3/min)

⁵ NOR: Number of rotation

⁶ FS : Flow speed (m/s)

2. Investigation Card of Bore Wells

	Investigation (Card (No	.GS-1)	(Date	e : 16 /	02 /20	000)		
1.	Purpose of inves	tigation :	(1)	Surface v	water	······································	·			
		_	(2)							
			(3)							
2.	Name of Location	•	Ghuza	yn,Wadi I	Hawasina					
	Location number		: GS-1							
	Number of water	sample :G	S-1							
		_								
3.	Content of inves	tigation								
	3-1. Surface water	er (S)								
	Hq	:	:8.30							
•	EC	:_	167.5	µS/cr	n					
	Temperat	ure :_	28.5	<u>°C</u>						
	Discharg	e :_	2.7	m ³ /min						
	Remarks	:	The w	ater take	en from the F	alaj Sya	stem			
(Irrigation canal).										
	0.0 W.((7.7)								
	3-2. Water wells	(W)								
	рН	: _								
Í	EC	: <u> </u>	μS/cm							
	Temperati			- • , c	1 1	1 \				
	Water le				ground leve	1)				
	Ground le Remarks	evei :_		n						
	Remarks	•								
	3-3. Drilling ho	lac (D)								
	pH									
	EC	:-		μS/cm						
	Temperati	ire :		/ 1.67 CIII						
1	Water lev			 m (from	ground leve	1)				
	Ground le			m (110m m	ground leve	• /				
	Remarks	:								
	Water lev	vel (m)								
1	2	3		4	5		6			
7	. 8	9		10	15		20			
30	40	50	ļ	60	75		90			
105	120	150		180	210		240			
270	300	360		420	480		540			
600	660	720		780	840		900	· · · · · · · · · · · · · · · · · · ·		
960	1020	1080		1140	1200		1260	ļ <u>. </u>		
1320	1380	1440		1500	1560		1620			
1680	1740	1800		1860	1920		1980	**		
2040	2100	2160		2220	2280		2340			
2400										

I	nvestigation Card (M	Vo.GS-3))	(Dat	e :16 /02/2	000)			
1.	Purpose of investigatio	n: (1)	Surface v	water	***************************************				
		(2)							
		(3)							
2.	Name of Location	: Ghuza	yn,Wadi H	Hawasina					
	Location number	: GS-3	: GS-3						
	Number of water sample	:GS-3							
		<u> </u>	•						
3.	Content of investigation	n							
	3-1. Surface water (S)								
	рН	:8.0	0_						
	EC	: 172.0	$\frac{172.0}{\mu \text{S/cm}}$						
	Temperature	: 29.1	<u> </u>						
	Discharge		<u>84 m³/min</u>						
	Remarks	: The s	tream wat	er of Wadi Ha	awasina nea	r to the			
		Eleme	ntary Sch	nool.					
	0.0 M () 11 (**)								
	3-2. Water wells (W)								
	pН	:							
	EC	·	:µS/cm						
	Temperature	<u>:</u>	—· , ,	1 1	1.\				
	Water level	<u>:</u>		ground leve	:1)				
	Ground level	<u>:</u>	n						
	Remarks	:							
	3-3. Drilling holes (D)								
	pH	•							
	EC	•	_ μS/cm						
	Temperature	•							
	Water level	: <u>-</u>	 m (from	ground leve	1)				
	Ground level	•	m \110m	. ground 10ve	1,				
	Remarks	:							
	Water level (m)								
1		3	4	5	6				
7	8	9	10	15	20				
30	40	50	60	75	90				
105	120	150	180	210	240)			
270	300	360	420	480	540)			
600	660	720	780	840	900				
960	1020	1080	1140	1200	126	0			
1320	1380	1440	1500	1560	162	0			
1680	1740	1800	1860	1920	198	0			
2040	2100	2160	2220	2280	234	.0			
2400									

	Investigation	on Card	(No.	GS-4)	(Dat	e : 19 /02	/2000)			
1. P	urpose of inve	estigation								
			(2)							
				Drilling		-				
	ame of Location			zayn,Wadi I	<u>Hawasina</u>					
	ocation number		: <u>GS</u> -							
N.	umber of water	sample	: GS-	4						
3. C	ontent of inve	estigation	n	· · · · · · · · · · · · · · · · · · ·	7					
	-1. Surface wa		••							
	рН	2001 (5)	. 8	.60						
	EC			$\frac{1}{2}$ μ S/cm						
	Tempera	ture		.1 °C						
	Dischar			$\frac{1}{3}$ m ³ /min						
	Remarks	_			ter of Wadi H	awasina.up	stream			
					llage and GS-					
		(
3	-2. Water well	ls (W)								
	pН		:							
	EC	4	:	μS/c m						
	Tempera		:	·		• •				
	Water 1		: <u>-</u>		ground leve	1)				
	Ground		·	m						
	Remarks	j	:							
3.	-3. Drilling h	oles (D)								
	рН	(,,	:							
	EC		:	$\mu S/cm$						
	Tempera	ture	:							
	Water 1		:-	m (from	ground leve	1)				
	Ground	level	:	m ·	J	,				
	Remarks	1	:							
	Water 1	evel (m)								
1	2	3	3	4	5	6				
7	8	9)	10	15	20				
30	40		50	60	75	90				
105	120		150	180	210	240				
270	300		360	420	480	540				
600	660		720	780	840	900				
960	1020	1	080	1140	1200	126	0			
1320	1380	1	440	1500	1560	162	0			
1680	1740	1	.800	1860	1920	198	0			
2040	2100	2	2160	2220	2280	234	0			
2400										

Investigation Card (No.GW-1) (Date: 17 /02/2000) 1. Purpose of investigation: (1) (2) Water wells (3) 2. Name of Location : Ghuzayn Location number : GW-1 : GW-1 Number of water sample 3. Content of investigation 3-1. Surface water (S) Hq EC μS/cm Temperature m³/min Discharge Remarks 3-2. Water wells (W) Hq : 8.30 : 177.8 μS/cm EC : 25.6 °C Temperature Water level m (Depth from GL: -7.50m) Ground level Remarks : Water well located on the low terrace in Ghuzayn village. 3-3. Drilling holes (D) На EC $\mu S/cm$ Temperature Water level m (from ground level) Ground level Remarks Water level (m) 1 5 2 7 9 8 10 15 20 75 30 40 50 60 90 105 120 150 180 210 240 270 300 360 420 480 540 900 600 660 720 780 840 960 1020 1080 1140 1200 1260 1500 1620 1320 1380 1440 1560 1860 1980 1680 1740 1800 1920 2040 2100 2220 2280 2340 2160 2400

Investigation Card (No.GW-2) (Date :17/02/2000)

1.	1. Purpose of investigation : (1) (2) Water wells										
			((3)							
2.	Name of Loc	ation	:_0	huzayn			_				
	Location nu	ımber	:_0	: <u>GW-2</u>							
	Number of w	water sample	: [: GW-2							
3.	Content of	investigatio	on		*****						
	3-1. Surfac	e water (S)									
	pН		:_	:							
	EC		:	:μS/c m							
		perature	:		•						
		scharge	:]	n³/min						
	Ren	arks	:								
	3-2. Water wells (W)										
pH : 7.96											
	EC		: 1	12.6	μS/cm						
	Ten	perature	:	: 32.0 °C							
	Wat	er level	:-		n (Dept	h from	GL : -	6.70m $)$			
	Gro	ound level	:		n						
	Rem	arks	: W	later w	ell loc	cated in	the w	adi al	luviu	n	
			C	of smal	l tribu	itary of	Wadi	Hawasi	na.		
		ng holes (D)								
	pH		:								
	EC		:		μS/c m						
		perature	:					`			
		er level	:		n (from	ground	level)			
		ound level	:_]	n						
		narks er level (mj	` :								
1	wat 2	er level (m	3		4	T	5		6		
7	8		9		10		15		20		
30	40		50		60		75		90		
105	12		150		180		210		240		
270	30		360		420		480		540		
600	66		720		780		840		900		
960		20	1080		1140		1200		1260		
1320		80	1440		1500		1560		1620		
1680		40	1800		1860		1920		1980		
2040		00	2160		2220		2280		2340		
2400		00	2100		2220		2200		2040		
2400											

Investigation Card (No.1)

(Date :25 /02 /2000)

1.	Purpose	of inv	estigati	ion:	(3) Dr	rilling	holes						
2.	Name of	Locati	on	: (Ghuzayn	1		*************					
	Location	numbe	r	:_1	MJOB-EW	l-1							
	Number o	of wate	r sample	e : [EW-1								
	•			•	······································								
3.	Content	of inv	estigati	ion									
	3-1. Sur	rface w	ater (S))									
		pН		:_		_							
		EC		:_	:µS/cm								
Temperature				:_		_•							
	Discharge					m ³ /min							
Remarks				:									
	3-2. Wat	er wel	ls (W)										
		рН	()	:									
		EC		:		μS/cm							
		Temper	ature	:		•							
		Water	level	:-		m (fro	m groun	d leve	1)				
		Ground	level	:_		m.							
		Remark	S	:									
	3-3. Dri		holes (l))	0.40								
		pН		:_	8.10	- 0 /							
		EC	. 4	:		μS/cm							
		Temper Water		:-	: <u>33.3 °C</u> :-14.95 m (from ground level)								
			level	: <u>-</u>	:-14.95 m (from ground level)								
		Remark				-	e bodie	a and	alang t	ha Wa	4:		
		nemark	.5				e boure ral bac		_				
				110	awasiiia	(uene	iai bac	n grou	nu or u	ips cre	аш)		
		Water	level (m	1)			-	-		_	_		
1	45.93	2	45.35	3	45.00	4	44.56	5	44.20	6	43.78		
7	43.38	8	42.95	9	42.36	10	42.13	15	40.08	20	38.15		
30	34.70	40	30.70	50	27.60	60	22.50	75	20.29	90	19.29		
105	17.51	120	16.35	150	15.58	180	15.32	210	15.22	240	15.16		
270 600	15.17	300	15.15	360	15.15	420		480		540			
960		1020	1	720 1080		780 1140		840 1200	-	900 1260			
1320	1	1380		1440		1500	-	1560	ļ	1620			
1680		1740		1800		1860		1920	ļ	1980			
2040		.1	1					1	ļ	1			
L		2100		2160		2220	-	2280		2340			
2400													

Investigation Card (No. 2) (Date: 3/3/2000) 1. Purpose of investigation: (3) Drilling holes 2. Name of Location : Ghuzayn Location number : MJOB-EW-2 Number of water sample : EW-2 3. Content of investigation 3-1. Surface water (S) Hq EC μS/cm Temperature m³/min Discharge Remarks 3-2. Water wells (W) рН EC ___ μS/cm Temperature Water level m (from ground level) Ground level Remarks 3-3. Drilling holes (D) рΗ : 8.25 EC : 93.9 $\mu S/cm$ Temperature : 34.8 $^{\circ}$ C Water level :-26.83 m (from ground level) Ground level Remarks :Downstream of No.2 Ore body Water level (m) 45.80 45.50 45.15 44.87 4 44.53 44.25 7 43.90 8 43.61 9 43.28 10 42.97 15 41.40 20 39.84 30 36.81 40 34.00 50 31.58 60 30.03 28.67 75 90 27.43 105 27.10 120 26.97 150 26.93 180 26.88 210 26.88 240 26.88 270 26.88 300 26.88 360 26.88 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980

2040

2400

2100

2160

2220

2280

	Investi	gation	Card	(No.	(No. 3)				(Date : / /2000)			
1.	Purpose	of inv	estigati	on:	(3) D	rilling	holes					
2.	Name of	Locati	on	: (Ghuzay	'n						
	Location	numbe	r	:]	MJOB-E	W-3						
ļ	Number o	f wate	r sample	:]	EW-3							
	•											
3.	Content	of inv	estigati	on			· '					
	3-1. Sur	face w	ater (S)	+								
		pН		:								
		EC		:		_μS/cm						
		Temper	ature	:		_•						
		Discha	_	•		_m³/min						
		Remark	S	•								
	3-2. Wat	er wel	ls (W)									
		pН		:								
		EC		:		$-\mu S/cm$						
Temperature : .												
Water level :- m (from ground level)								1)				
Ground level : m												
		Remark	s	:								
	3-3. Dri	lling	holes (D)								
		рH		:_	8.27	_						
		EC		:_:		$_{\mu}S/cm$						
		Temper		:_	: 34.4 °C :- 19.23 m (from ground level)							
		Water		: <u>-</u>	19.23	<u>m</u> (from	a groun	d leve	1)			
		Ground		:_		n						
		Remark	S	: I)ownst	ream of	No.2 0	re bod	у			
		Water	level (m	1)								
1	26.28	2	25.92	3	25.64	4	25.38	5	25.06	6	24.75	
7	24.51	8	24.25	9	23.82	10	23.54	15	21.60	20	20.88	
30	20.47	40	20.37	50	20.34	60	20.31	75	20.26	90	20.20	
105	20.16	120	20.13	150	20.08	180	20.04	210	20.01	240	19.96	
270	19.94	300	19.90	360	19.87	420	19.81	480		540		
600		660		720		780		840		900		
960		1020		1080		1140		1200		1260		
1320		1380		1440		1500		1560		1620		
1680		1740		1800		1860		1920		1980		
2040		2100		2160		2220		2280		2340		
2400		1										

Investigation Card (No.4)(Date: 28/02 /2000) 1. Purpose of investigation: (3) Drilling holes 2. Name of Location : Ghuzayn : MJOB-EW-4 Location number Number of water sample : EW-4 3. Content of investigation 3-1. Surface water (S) Нq EC $\mu S/cm$ Temperature m³/min Discharge Remarks 3-2. Water wells (W) рΗ EC $\mu S/cm$ Temperature Water level m (from ground level) Ground level Remarks 3-3. Drilling holes (D) рН : 8.05 EC : 92.1 $\mu S/cm$ Temperature : 32.6 $^{\circ}$ C Water level :-14.54 m (from ground level) Ground level Remarks : Downstream of No.3 Ore body and on the flood plain on the left bank of Wadi Hawasina Water level (m) 45.83 45.33 44.90 44.41 44.00 6 43.51 2 4 43.07 42.61 42.17 41.73 39.57 37.51 8 10 15 20 9 30,20 75 17.52 33.65 40 50 27.21 60 24.46 20.71 90 14.76 105 15.72 120 14.87 150 14.81 180 14.77 210 14.75 240 270 14.75 300 14.74 360 14.74 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980

2040

2400

2100

2160

2220

2280

Investigation Card (No.5)(Date: / /2000) 1. Purpose of investigation: (3) Drilling holes 2. Name of Location : Ghuzayn : MJOB-EW-5 Location number Number of water sample : EW-5 3. Content of investigation 3-1. Surface water (S) рΗ EC $\mu S/cm$ Temperature m³/min Discharge Remarks 3-2. Water wells (W) Hq $\mu S/cm$ EC Temperature Water level m (from ground level) Ground level Remarks 3-3. Drilling holes (D) На : 8.29 EC : 107.2 μ S/cm Temperature : 31.5 °C Water level :- 11.50 m (from ground level) Ground level Remarks : Downstream of Ore bodies and on the flood plain on the right bank of Wadi Hawasina (General back ground of Downstream) Water level (m) 45.12 44.77 44.50 44.23 45.67 45.37 4 6 2 43.93 8 43.65 43.40 10 43.15 15 41.94 20 40.50 30 38.30 40 35.90 50 34.50 60 32.20 75 29.42 90 27.24 105 25.51 120 23.58 150 20.89 180 210 17.28 240 16.30 18.88 270 360 420 14.95 480 540 15.74 300 15.45 14.96 600 660 720 780 840 900 960 1020 1080 1140 1200 1260

1320

1680

2040

2400

1380

1740

2100

1440

1800

2160

1500

1860

2220

1560

1920

2280

1620

1980

3. Weather Observation Data

Date/Time	WndDirec	${\tt WndSpeed}$	AirTmep	Humidity	Rainfall	
	deg	m/s	deg	%RH	mm	

2000/02/14 10:00 2000/02/14 11:00 2000/02/14 12:00 2000/02/14 13:00 2000/02/14 14:00	deg 244.4 359.2 353.5 58.3 27.7	m/s 0.5 0.4 1.2 1.0	deg 23.5 24.8 25.5 26.5 26.5	%RH 40.6 35.6 38.0 34.4 40.3	mm 0.0 0.0 0.0 0.0
2000/02/14 15:00 2000/02/14 16:00 2000/02/14 17:00 2000/02/14 18:00 2000/02/14 19:00 2000/02/14 20:00 2000/02/14 21:00 2000/02/14 22:00	39.5 98.2 30.9 71.2 51.1 84.2 216.3 217.7	1.2 0.6 1.3 0.6 0.4 0.4 0.1	26.2 26.0 25.0 23.7 22.4 21.5 20.9 19.0	42.5 35.0 41.6 38.7 52.6 57.0 60.3 67.1	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/14 23:00 2000/02/15 00:00 2000/02/15 01:00 2000/02/15 02:00 2000/02/15 03:00 2000/02/15 04:00 2000/02/15 05:00	243.3 265.3 135.7 215.2 196.2 268.9 84.6	0.0 0.1 0.0 0.3 0.0 0.0	18.1 17.7 17.1 18.0 18.3 17.2 18.0	70.1 70.6 76.0 76.5 74.3 74.5 65.3	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/15 06:00 2000/02/15 07:00 2000/02/15 08:00 2000/02/15 09:00 2000/02/15 10:00 2000/02/15 11:00 2000/02/15 12:00 2000/02/15 13:00	147.9 214.5 141.4 284.7 52.9 345.2 148.6 132.4	0.2 0.2 0.3 0.2 0.4 1.2 0.4 0.7	17.5 15.7 18.8 21.5 23.3 24.3 26.0 27.1	64.0 70.5 56.7 60.1 58.0 50.3 41.8 36.5	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/15 14:00 2000/02/15 15:00 2000/02/15 16:00 2000/02/15 17:00 2000/02/15 18:00 2000/02/15 19:00 2000/02/15 20:00	77.0 36.7 28.4 87.4 29.1 47.5 28.0	0.6 0.8 0.6 0.7 0.4 0.4	28.0 27.8 27.2 25.8 24.1 23.3 22.2	37.5 40.2 33.0 37.7 45.5 46.2 51.1	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/15 21:00 2000/02/15 22:00 2000/02/15 23:00 2000/02/16 00:00 2000/02/16 01:00 2000/02/16 02:00 2000/02/16 03:00 2000/02/16 04:00	192.6 267.8 176.0 203.0 121.3 237.9 148.6 170.2	0.0 0.4 0.1 0.0 0.0 0.1 0.2 0.1	20.5 20.1 19.1 18.3 17.8 17.3 18.2 17.3	58.5 59.0 66.8 68.8 73.5 81.2 82.0 84.1	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/16 04:00 2000/02/16 05:00 2000/02/16 06:00	161.2 156.9	0.1 0.2 0.3	17.4 17.1	81.0 82.7	0.0

Date/Time	${\tt WndDirec}$	WndSpeed	AirTmep	Humidity	Rainfall
			•	0/577	

2000/02/16 07:00 2000/02/16 08:00 2000/02/16 10:00 2000/02/16 11:00 2000/02/16 12:00 2000/02/16 13:00 2000/02/16 13:00 2000/02/16 15:00 2000/02/16 15:00 2000/02/16 16:00 2000/02/16 17:00 2000/02/16 18:00 2000/02/16 19:00 2000/02/16 20:00 2000/02/16 21:00 2000/02/16 22:00 2000/02/16 23:00 2000/02/17 01:00 2000/02/17 01:00 2000/02/17 02:00 2000/02/17 03:00 2000/02/17 04:00 2000/02/17 05:00 2000/02/17 06:00 2000/02/17 07:00 2000/02/17 07:00 2000/02/17 10:00 2000/02/17 10:00 2000/02/17 10:00 2000/02/17 11:00 2000/02/17 11:00 2000/02/17 11:00 2000/02/17 11:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 13:00 2000/02/17 12:00 2000/02/17 13:00 2000/02/17 12:00 2000/02/17 13:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00 2000/02/17 12:00	deg 171.1 229.5 30.5 30.5 342.0 356.9 36.0 45.3 65.7 161.6 282.1 47.5 61.2 180.7 61.3 356.3 185.7 180.7 61.3 356.3 185.7 180.7 356.3 185.3	m/s 0.3 0.1 0.6 2.8 0.1 0.6 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	deg 16.5 0 5 8 3 7 5 6 6 6 9 7 1 8 1 8 0 3 2 6 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	%RH 50.53 0.52 6.55 0.33 1.01 1.38 88.30 5.30 62.05 1.55 3.75 7.61 23 88.30 5.30 5.23 6.20 22 22 22 22 22 22 22 22 22 22 22 22 2	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

Date/Time	WndDirec	WndSpeed	AirTmep	Humidity	Rainfall
·	deg	m/s	deg	%RH	mm
2000/02/18 04:00 2000/02/18 05:00 2000/02/18 06:00 2000/02/18 07:00 2000/02/18 09:00 2000/02/18 10:00 2000/02/18 11:00 2000/02/18 12:00 2000/02/18 13:00 2000/02/18 13:00 2000/02/18 15:00 2000/02/18 16:00 2000/02/18 17:00 2000/02/18 17:00 2000/02/18 19:00 2000/02/18 20:00 2000/02/18 21:00 2000/02/18 23:00 2000/02/18 23:00 2000/02/19 00:00 2000/02/19 00:00 2000/02/19 00:00 2000/02/19 03:00 2000/02/19 03:00 2000/02/19 04:00 2000/02/19 05:00 2000/02/19 06:00 2000/02/19 07:00 2000/02/19 07:00 2000/02/19 10:00 2000/02/19 10:00 2000/02/19 10:00 2000/02/19 10:00 2000/02/19 11:00 2000/02/19 11:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 13:00 2000/02/19 17:00 2000/02/19 17:00 2000/02/19 18:00 2000/02/19 19:00 2000/02/19 19:00 2000/02/19 20:00 2000/02/19 20:00 2000/02/19 21:00	deg 177.4 163.7 191.5 285.7 192.3 292.3 23	0.3 0.5 0.1 0.0 0.7 1.1 1.6 2.4 2.7 0.3 0.1 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	24.8 25.0 24.4 20.9 22.8 26.3 30.9 32.7 33.9 31.0 28.0 26.1 24.6 22.9 22.1 24.1	25.0 25.0 26.5 31.5 37.2 23.5 15.6 13.1 12.0 9.5 14.0 9.5 14.7 15.1 25.5 31.5 34.4 41.8 39.7 13.6	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2000/02/19 22:00 2000/02/19 23:00 2000/02/20 00:00	182.5 206.6 158.0	0.0	18.9 18.6 18.7	$66.0 \\ 66.8 \\ 64.5$	0.0 0.0 0.0

Date/Time	WndDirec V	VndSpeed	AirTmep	Humidity	Rainfall
	deg	m/s	deg	%RH	mm
2000/02/21 22:00 2000/02/22 00:00 2000/02/22 01:00 2000/02/22 02:00 2000/02/22 03:00 2000/02/22 04:00 2000/02/22 05:00 2000/02/22 06:00 2000/02/22 07:00 2000/02/22 07:00 2000/02/22 08:00 2000/02/22 10:00 2000/02/22 11:00 2000/02/22 13:00 2000/02/23 03:00 2000/02/23 01:00 2000/02/23 01:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 03:00 2000/02/23 1:00	205.2 178.2 128.8 185.7 180.3 155.1 152.6 148.3 317.8 163.7 163.7 163.7 17.6 320.4 61.5 139.6 329.5 128.7 12.0 128.3 100.0 63.3 58.6 235.7 128.3 218.3	0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1	18.3 2 1.7 4.5 2 4.9 3 0 0 6 4.5 8 6 0 2 4 0 7 4 2 7 5 2 6 9 5 9 7 3 2 9 7 9 0 7 5 6 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64.1 67.0 67.0 67.0 66.6 67.0 60.6 66.5 66.5 67.0 66.6 65.1 66.5 67.0 67.0 68.0 68.0 68.0 68.0 68.0 68.0 68.0 68	
_ 100,02,20 11100	10.1	0.0	20.0	00.0	0.0

Date/Time WndDirec WndSpeed AirTmep Humidity Rainfall

2000/02/23 2000/02/23 2000/02/23 2000/02/23	20:00 21:00 22:00	deg 29.8 32.7 40.6 68.7 222.1	m/s 1.1 0.9 0.0 0.0	deg 23.2 22.1 21.3 20.0 19.8	%RH 49.6 60.1 64.8 70.8 72.6	mm 0.0 0.0 0.0 0.0
2000/02/24 2000/02/24 2000/02/24 2000/02/24 2000/02/24 2000/02/24	02:00 03:00 04:00 05:00	16.5 193.3 140.7 192.6 141.4 164.1 148.6	0.0 0.0 0.1 0.1 0.0 0.1	18.9 18.4 18.1 17.9 18.3 17.7	77.0 80.0 79.6 80.0 75.6 78.0 78.1	0.0 0.0 0.0 0.0 0.0
2000/02/24	07:00 08:00 09:00	157.6 154.7 139.3 31.6 179.6 132.8 357.1 26.6	0.1 0.0 0.1 0.0 0.6 0.1 0.3 0.7	17.1 16.8 20.7 23.1 25.2 26.2 28.0 27.0	78.3 79.5 63.0 49.6 33.2 32.9 31.0	0.0 0.0 0.0 0.0 0.0
2000/02/24 2000/02/24 2000/02/24 2000/02/24 2000/02/24	14:00 15:00 16:00 17:00 18:00 19:00	116.2 66.9 67.3 8.2 30.5 43.5 112.6	0.6 0.7 1.1 0.7 1.0 0.3 0.5	27.0 27.1 27.1 26.2 24.6 22.8 21.9	43.7 44.5 39.6 39.3 39.5 43.6 59.1 69.3	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/24 2000/02/24 2000/02/24 2000/02/25 2000/02/25 2000/02/25 2000/02/25	21:00 22:00 23:00 00:00 01:00 02:00	104.7 240.8 193.3 156.9 163.7 213.4 140.7	0.0 0.0 0.0 0.1 0.0 0.0	21.3 20.3 19.3 19.3 18.9 18.6 18.7	74.5 79.0 84.3 83.0 83.1 82.1 80.5	0.0 0.0 0.0 0.0 0.0
2000/02/25 2000/02/25 2000/02/25 2000/02/25 2000/02/25 2000/02/25 2000/02/25	04:00 05:00 06:00 07:00 08:00 09:00	184.6 141.4 203.7 131.3 139.6 50.7 328.6	0.1 0.3 0.2 0.0 0.0 0.1	18.4 18.2 18.0 17.6 22.0 23.2 25.2	76.8 74.3 71.8 74.0 60.7 57.5 48.5	0.0 0.0 0.0 0.0 0.0 0.0
2000/02/25 2000/02/25 2000/02/25 2000/02/25	11:00 12:00 13:00	156.6 68.0 44.2 24.1	0.3 0.8 0.7 1.8	27.6 29.1 30.8 29.3	36.5 30.5 25.5 39.0	0.0 0.0 0.0 0.0

Date/Time	WndDirec WndSpeedAirTmep			Humidity Rainfall		
	\deg	m/s	deg	%RH	mm	
2000/02/25 15:00	21.2	2.2	29.1	31.0	0.0	
2000/02/25 16:00 2000/02/25 17:00	$\begin{array}{c} 3.5 \\ 265.3 \end{array}$	$\begin{array}{c} 1.5 \\ 0.3 \end{array}$	$\begin{array}{c} 28.0 \\ 27.0 \end{array}$	$28.1 \\ 30.5$	0.0 0.0	
2000/02/25 18:00	66.6	0.4	24.9	38.7	0.0	
2000/02/25 19:00	191.5	0.3	24.0	46.0	0.0	
2000/02/25 20:00 2000/02/25 21:00	$102.6 \\ 180.7$	$0.2 \\ 0.0$	23.1 22.4	$\begin{array}{c} 57.5 \\ 61.7 \end{array}$	0.0 0.0	
2000/02/25 22:00	151.9	0.3	22.5	60.3	0.0	
2000/02/25 23:00 2000/02/26 00:00	270.0 187.5	$0.0 \\ 0.0$	$\begin{array}{c} 21.4 \\ 19.9 \end{array}$	$\begin{array}{c} 61.0 \\ 66.5 \end{array}$	$0.0 \\ 0.0$	
2000/02/26 01:00	291.2	0.3	19.3	74.0	0.0	
2000/02/26 02:00	147.9	0.0	18.6	82.0	0.0	
2000/02/26 03:00 2000/02/26 04:00	$\begin{array}{c} 167.3 \\ 207.3 \end{array}$	$0.1 \\ 0.3$	$\begin{array}{c} 18.5 \\ 20.0 \end{array}$	$\begin{array}{c} 71.3 \\ 56.0 \end{array}$	0.0 0.0	
2000/02/26 05:00	174.9	0.3	19.5	54.7	0.0	
2000/02/26 06:00 2000/02/26 07:00	$\begin{array}{c} 221.3 \\ 9.3 \end{array}$	$0.4 \\ 0.3$	$\begin{array}{c} 19.5 \\ 20.9 \end{array}$	51.6 33.7	$0.0 \\ 0.0$	
2000/02/26 08:00	360.0	0.0	24.2	25.1	0.0	
2000/02/26 09:00	27.7	0.0	27.8	20.0	0.0	
2000/02/26 10:00 2000/02/26 11:00	303.8 20.8	$0.2 \\ 0.3$	31.1 32.3	13.5 12.6	0.0 0.0	
2000/02/26 12:00	42.4	0.7	32.9	13.0	0.0	