Part III Conclusions and recommendations

Į

Chapter 1: Conclusion

1-1 Dong Noi area

Taking into consideration the results of mineral occurrence surveys and drilling survey, we reached the following conclusion:

In the area with geochemical anomalies in zinc and lead values extending in the western half of Dong Noi area where limestone was distributed, hydrothermal ore solution in temperature of 140-250°C and with high salinity rose up through joints in limestone and bedding place of fissures, formed silicificated zone on a certain horizon in relatively upper layers, caused occurrence of wide-ranged dolomitization and zinc/lead mineralization right above it, and at the same time formed quartz vein which changed joint systems and a specific horizon, precipitating galena and sphalerite.

The quartz vein in dolomitized zone was in width of 80 cm and its grade values were 7.86%Zn and 2.82%Pb. The sample extracted from 20 m section including this quartz vein also showed high values of 1.60%Zn and 1.43%Pb, and existence of zinc body was expected. However, since the structure to form quartz vein changes open joints and the part along bedding of a certain specific horizon, it is necessary to explain more in detail rock faces and the geological structure to estimate the position of its existence.

As a result of our investigation into MJTM-6 Hole excavated in a spare part of the district with IP anomalies, it was further clarified that the district with high IP anomalies might represent a mineralized zone of copper and lead overlapped with skarn. The depth of around 64 m in MJTM-6 Hole where occurrence of chalcopyrite was observed was almost in conformity with the depth of the upper limit to the anomaly zone (16 m V-sec/V or more) revealed through IP exploration. The depth of 140 m or lower where mineral showing including pyrite dissemination was intensified in general was in conformity with the district where IP anomalies (20 m V-sec/V or more) were observed. The district with IP anomalies (16 m V-sec/V or more) extended in a range of 100 m in diameter and 800 m in the total length. Based on the results of MJTM-5 Hole and MJTM-6 Hole, in view of the tendency of copper concentration to increase in a lower layer, i.e. the part where it was in contact with granite, ore shoots might possibly exist near the face which was in touch with granite. However, since copper showing in skarn zone is apt to be unevenly distributed, it is considered difficult to decide the exact position of such ore shoots.

1-2 Mae Kanai area

Resulting from our investigation on MJTM-7 Hole and past boring survey conducted by DMR, we found that the district with high IP anomalies corresponds to the mineralized zone including the silicificated zone along the fracture continuing in the NE-SW direction and accompanied predominant pyrite dissemination and chalcopyrite showing. The chalcopyrite was the most prevailing in the depth of around 129 m, but its grade was low. We may point out that this

-61--

mineralized zone might represent the passage of ore solution having formed the gossan zone where was distributed on the western side of the ridge.

Based on the result of our investigation conducted in the second year, the gossan zone with high zinc content in the Mae Kanai area had been considered to extend in a vertical direction. However, through our boring survey of this time, we confirmed that the gossan zone was distributed in thickness of a little more than 10 m and almost along the land surface and that remarkable mineral showing scarcely existed in its lower layers. This zone was distributed between argillized mudstone or sandstone. Although the gossan zone was originally a massive sulfide mineral abundant with pyrite and accompanying sphalerite, we presume that pyrite may have been oxidized and changed to limonite and sphalerite may have flown out through weathering.

The sedimentary rocks near the gossan zone were strongly influenced by argillization of talcsericite-chlorite-smectite especially on the side of lower wall. Further, we observed that silicificated zone in the form of hydrothermal breccia accompanying white argillization and quartz vein had been developed on the upper wall of the gossan zone.

The present gossan zone is distributed only along the ridge and on a slow eastern slope of the land surface of the Mae Kanai area. Taking into consideration the fact that the bedding face was a slow slope inclined to east as well as our boring results, the gossan zone is considered to have been formed a few to fifteen meters away from the border between the limestone and general sedimentary rocks toward the side of sedimentary rocks or on the border in some part, and at present its upper face is almost in conformity with the land surface. In view of the fact that gossan zones occur almost on the same level, in the district surrounded by MJTM-8 Hole, MJTM-9 Hole and DMR's MK-3 Hole, it is quite possible that the horizon of the gossan may be beneath the land surface and that the gossan zone may have been hidden under it. Moreover, we presume that IP anomalies may be distributed at the east end of profile lines E and D for geophysical exploration on a slope inclined to east right under the land surface and that massive sulfide minerals may exist under the land surface.

Chapter 2: Recommendations for the Future

2-1 Dong Noi area

It is indeed possible that zinc bodies may exist in the limestone in the northwestern part of the Mae Kanai area. However, in estimating the position of such existence, careful attention should be paid to the result of detailed surveys on the geological structures and degrees of dolomitization concerned.

We note that the area with IP anomalies - especially the part with anomalies of 16 m V-sec/V or more – located in the central part of the Dong Noi area actually accompanies copper mineralization. Resulting from the boring surveys conducted three times by now, although no adequate grade or reserve of the deposit has been discovered to be considered as object of an operation, we think there still remains some room for further investigations.

2-2 Mae Kanai area

Further investigations should be made on the eastern part of the district where existence of subsurface gossan and massive sulfide ores is quite possible.

References

DMR, 1983: Natural resources of the Mae Hong Son area. 101p.(in Thai)

Fu, M., Changkakoto, A., Krouse, H.R., Gray, J. and Kwak, T.A.P., 1991: An oxygen, hydrogen, sulfer, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, Chaina. Econ. Geol., 86, 1683-1703.

German Geological Mission in Thailand, 1981: Geological Map of Northern Thailand 1:250,000: Sheet 5 Chiang Mai. Federal Institute for Geosciences and Natural Resources, Hannovar.

- Hahn, L., Koch, K.E. and Wittekindt, H., 1986: Outline of the geology and the mineral potential of Thailand. Geologische Jahrbuch, Volume 59, p.3-49.
- Hahn,L. and Siebenhüner, M., 1982: Explanatory Notes (Paleontology) on the Geological Maps of Northern and Western Thailand 1:250,000, (Sheets Ann, Chiang Rai, Phayao, Chiang Dao, Chiang Mai, Li, Thong Pha Phum). Bundesanstalt für Geowissenschaften und Rohstoff, Hannover, 76p.

JICA and MMAJ, 1986-88: Report on the cooperative mineral exploration of the Yang Kiang area.

- Jamnongthai, M., 1984: Geochemical prospecting in the topographic map of Chiang Mai sheet. Economic Geology annual report, DMR, p16-46. (in Thai)
- Jamnongthai, M., 1988: Preliminary detailed geochemical prospecting in the Amphoe Mae Sariang, Amphoe Mae La Noi and Amphoe Khun Yuam, Changwat Mae Hong Son. DMR, Economic Geology Report, 7, 43p (in Thai).
- Naito, K., Fukahori, Y., Peiming, H., Sakurai, W., Shimazaki, H. andMatsuhisa, Y., 1995: Oxygen and carbon isotope zonations of wall rocks around the Kamioka Pb-Zn skarn deposits, central Japan: application to prospecting, Jour. Geochem. Exploration, 54, 199-211.
- Nakano, T., Murakami, H., Miyake, K. and Nakayama, K., 1997: Chemical composition of 180-depleted limestone in the Kamioka Zn-Pb mine as a potential tool for the exploration of skarn deposits. Resource Geol., 47(3), 109-119.
- Roland Blanchard (1968): Interpetation of leached outcrops. Nevada Bereau of Mines, Bulletin 66, Mackay School of Mines, University of Nevada, 196pp.

-64

Sasaki, Y., 1988: Improved two-dimensional resistivity inversion. Buturi-Tansa, 41, p.111-115.

Appendices

Appendix 1 Microscopic observation of polished thin section of rock and ore sample

J

Solution Subject <		Rock	ragment			Γ	Γ		Γ	Γ	-		Γ	Γ	Γ	
Clamble No. Stample No. Cardierite Garnet Epidote Cinopyroxene Chorit		ဗိ	Zircon	╏	┢	t	┢	┢╴	┢	F			┢	┢	t	Ή
Cordieute		ð	Sphene	Î		ſ	1-	1	1	T	1			Γ	T	П
Garnet	ſ		Tourmaline	ſ	Γ	T	1-	F	Ť	ſ	1	ſ	T	T	†-	îП
Ore minerals Cample No. Locality Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m-s8.10m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) Multh-6(05.60m) </td <td></td> <td></td> <td>Cordierite</td> <td></td> <td>┢</td> <td>┢</td> <td>1</td> <td>ŀ</td> <td>┢</td> <td>t</td> <td>╏─</td> <td>1</td> <td></td> <td>t</td> <td>t</td> <td>╏╴┨</td>			Cordierite		┢	┢	1	ŀ	┢	t	╏─	1		t	t	╏╴┨
Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Carbonate Catories Statistics Stati			Garnet	1	╞╴	1	 	-	-	┢	1-	F	1	┢	┢	Ы
Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Cample No. Carbonate Catories Statistics Stati			Epidote	∦-	┢─	t	F	┢	b		1	-	-	┢╌	┢─	
Mmrcovite ⊘ ○	ais			╂~			-	-	<u> </u>	1	\vdash					
Mmrcovite ⊘ ○	ine.	ate		╏╴	┢─		lō	╞	-	┢─	┢─	┢╾	┢┈	┢╌	┟─	╢
Mmrcovite ⊘ ○	8	ä		1	1		<u> </u>	┢╌	1	17	1	1	├.	1	┠	
Mmrcovite ⊘ ○	ang	0)		₩	• • •		1-	1		L		F		+		
Biotite O </td <td>υ</td> <td></td> <td></td> <td>-B</td> <td>••••</td> <td>+</td> <td>-</td> <td>┣</td> <td>Ĕ</td> <td>ľ</td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td><u>}-</u> </td>	υ			-B	••••	+	-	┣	Ĕ	ľ				6		<u>}-</u>
Diaglocase Diaglocase <td></td> <td></td> <td></td> <td>ð</td> <td><u> </u></td> <td></td> <td>6</td> <td>—</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>ľ</td> <td></td>				ð	<u> </u>		6	—		-	-		-		ľ	
Sample No. Locality Core minerals. Multimedia: Sample No. Locality Multimedia: Baurite Ore minerals. Multimedia: Baurite Ore minerals. Multimedia: Baurite Ore minerals. Multimedia: Baurite Ore minerals. Multimedia: Multimedia: Ore minerals.				F	F	ľ	ľ					-	-	Ĕ	⊢	\mathbb{H}
Sample No. Core minerals. Multimeticis Some 93 Jom. Loccality Multimeticis Some 93 Jom. Multimeticis Some 93 Jom. Multimeticis Some 90 Jom. Multimeticis Some 93 Jom. Multimeticis Some 90 Jom. Multimeticis Some 90 Jom. Multimeticis Some 90 Jom.				┢┈	┢─	╂──	┢	Ł	_		┝		-			
Sample No. Cacality Core minerals Multime-6(86.9.50m89.70m) Multime-6(80.9.50m89.70m) Core minerals Multime-6(86.9.50m89.70m) Multime-6(80.9.50m89.70m) Core minerals Multime-6(86.9.50m89.70m) Multime-6(20.50m89.70m) Multime-6(20.50m89.70m) Multime-6(15.6.5m) Multime-6(20.5.6m) Multime-6(20.5.6m) Multime-6(20.5.6m) Multime-6(15.8.5m) Multime-6(20.5.6.m) Multime-6(20.5.6.m) Multime-6(20.5.6.m) Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) O O Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) O O O Multime-6(15.8.5m) Multime-6(15.8.5m) Multime-6(15.8.5m) O	┟	Cillion		┢	5										╞	Н
Sample No. Locality Rock type Sample No. Locality Mu/TM-e(0.50m-89.70m) Mu/TM-e(0.50m-89.70m) Mu/TM-e(0.50m-89.70m) Mu/TM-e(0.50m/100000000000000000000000000000000000	╞			<u> </u>								_	6	_		
Sample No. Locality Rock type Sunface Ore minerals Mu/TM-6(0550m-89.70m) Mu/TM-6(050m (Noi)) Green Stamiled rock Ore de page Ore de page Mu/TM-6(0550m-89.70m) Mu/TM-6(050m (Noi)) Green Stamiled rock Ore de page Ore de page Mu/TM-6(0550m-89.70m) Mu/TM-6(050m (Noi)) Green Stamiled rock Ore de page Ore de page Mu/TM-6(0550m-89.70m) Mu/TM-6(050m (Noi)) Mu/TM-6(050m (Noi)) Green Stamiled rock Ore de page Ore de page Mu/TM-6(153.66m) Mu/TM-6(153.60m) Mu/TM-6(050m (Noi)) Amagemente stam Ore de page Ore de page Mu/TM-6(153.60m) Mu/TM-7(Mae Kana)) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Amagemente stam Ore de page Ore de page Mu/TM-7(85.80m-753.60m) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Ore de page Ore de page Ore de page Mu/TM-7(85.80m-753.60m) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Ore de page Ore de page Ore de page Mu/TM-7(85.80m) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Mu/TM-7(Mae Kana) Ore de page Ore de page Ore page Ore de page <td>ŀ</td> <td></td> <td></td> <td></td> <td></td> <td>μ</td> <td>۱©</td> <td>┢─</td> <td>μ</td> <td>μ</td> <td>\circ</td> <td>0</td> <td>©</td> <td>μ</td> <td>10</td> <td>P</td>	ŀ					μ	۱©	┢─	μ	μ	$ \circ $	0	©	μ	10	P
Sample No. Locality Rock type Ore minetals Murrhu-6(09.50m-89.70m) Murrhu-6(000K Noi) Green Stamited rock Ore diality Murrhu-6(09.50m-89.70m) Murrhu-6(000K Noi) Green Stamited rock Ore diality Murrhu-6(09.50m-89.70m) Murrhu-6(000K Noi) Green Stamited rock Ore diality Murrhu-6(129.60m) Murrhu-6(129.60m) Murrhu-6(1000K Noi) Murrhu-6(1000K Noi) Ore diality Murrhu-6(118.30m-117.800m) Murrhu-6(129.60m) Murrhu-7(000K Noi) Ore diality Ore diality Murrhu-6(118.30m-17.800m) Murrhu-7(Nate Krana) Murrhu-6(1000K Noi) Ore diality Ore diality Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Ore diality Ore diality Murrhu-7(18.30m) Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Ore diality Ore diality Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Ore diality Ore diality Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Ore diality Ore diality Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) Murrhu-7(18.30m-17.800m) <t< td=""><td>┢</td><td>Suitale</td><td></td><td>┨</td><td>╂</td><td>┞</td><td>╞╌</td><td> </td><td>┣</td><td>-</td><td><u> </u></td><td> </td><td> </td><td></td><td>┡</td><td>Ц</td></t<>	┢	Suitale		┨	╂	┞	╞╌		┣	-	<u> </u>	 	 		┡	Ц
Sample No. Locality Rock type Suffde Mu/TM-6(050m-83.70m) Mu/TM-6(050m (No)) Green Stamized rock Ore minectals Mu/TM-6(050m-83.70m) Mu/TM-6(050m (No)) Green Stamized rock Ore interesting Oxide Mu/TM-6(050m-83.70m) Mu/TM-6(050m (No)) Green Stamized rock Ore interesting Oxide Mu/TM-6(050m (No)) Mu/TM-6(050m (No)) Mu/TM-6(050m (No)) Mu/TM-6(050m (No)) Ore interesting Oxide Mu/TM-6(158.6m) Mu/TM-6(054.00m) Mu/TM-6(00m (No)) Green Stamized rock O<		Hydroxide		 	_	┞	_	 	 			L.			 	р
Sample No. Locality Rock type Suifide NuThm-6(80.50m~89.70m) MuThm-6(000 Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~89.70m) MuThm-6(100.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~89.70m) MuThm-6(100.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~98.70m) MuThm-6(10.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m) MuThm-6(10.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-7000000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Muthm-70000000 Noi) Green Stammed rock Simple Noi Muthm-70000000 Noi) Muthm-70000000 No				⊩	ŀ_	 _		Ļ	L	 	L_	L	 	L.		
Sample No. Locality Rock type Suifide NuThm-6(80.50m~89.70m) MuThm-6(000 Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~89.70m) MuThm-6(100.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~89.70m) MuThm-6(100.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m~98.70m) MuThm-6(10.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m) MuThm-6(10.0m Noi) Green Stammed rock Simple No. MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-6(13.05.0m) MuThm-6(13.05.0m) MuThm-6(13.05.0m) Simple Noi) MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-7000000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Green Stammed rock Simple Noi Simple Noi MuThm-70000000 Noi) Muthm-70000000 Noi) Green Stammed rock Simple Noi Muthm-70000000 Noi) Muthm-70000000 No	als	xide		Į			<u> </u>	ļ	_						 	
Sample No. Locality Rock type Suffa MJTM-e(83.50m~89.70m) MJTM-e(Dorg Noi) Green Skamized rock Paipage MJTM-e(126.6m) MJTM-e(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.6m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.60m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-f(18.40m~178.80m~818.80m MJTM-f(Dorg Noi) Green Skamized rock Paipage Paipage MJTM-f(18.10m~178.80m MJTM-f(Mas Kanal) Magnetite skam O P O MJTM-f(18.10m~178.90m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m~178.10m~178.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P O O O O O MJTM-f(18.13045m) MJTM-f(Mas Kanal) Magnetite skam P	ē.	0		Į.,	Ø	l©	0		L	0					L	Ц
Sample No. Locality Rock type Suffa MJTM-e(83.50m~89.70m) MJTM-e(Dorg Noi) Green Skamized rock Paipage MJTM-e(126.6m) MJTM-e(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.6m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.60m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-f(18.40m~178.80m~818.80m MJTM-f(Dorg Noi) Green Skamized rock Paipage Paipage MJTM-f(18.10m~178.80m MJTM-f(Mas Kanal) Magnetite skam O P O MJTM-f(18.10m~178.90m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m~178.10m~178.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P O O O O O MJTM-f(18.13045m) MJTM-f(Mas Kanal) Magnetite skam P	Ē	•		Ļ		ļ_									 	
Sample No. Locality Rock type Suffa MJTM-e(83.50m~89.70m) MJTM-e(Dorg Noi) Green Skamized rock Paipage MJTM-e(126.6m) MJTM-e(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.6m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-e(128.60m) MJTM-f(Dorg Noi) Green Skamized rock O Paipage MJTM-f(18.40m~178.80m~818.80m MJTM-f(Dorg Noi) Green Skamized rock Paipage Paipage MJTM-f(18.10m~178.80m MJTM-f(Mas Kanal) Magnetite skam O P O MJTM-f(18.10m~178.90m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m~178.10m~178.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P P O MJTM-f(18.10m~178.10m MJTM-f(Mas Kanal) Magnetite skam P O O O O O MJTM-f(18.13045m) MJTM-f(Mas Kanal) Magnetite skam P	g	0	Pyrrhotite	L	ļ	 	Ŀ		<u> </u>		L					Ŀ
Sample No. Locality Rock type MJTM-6(89.50m-99.70m) JOCality Rock type MJTM-6(89.50m-99.70m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(126.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Aptice fish MJTM-6(128.40m) MJTM-7(Dong Noi) Aptice fish MJTM-7(128.10m) MJTM-7(Mae Kanai) Green Stamized rock MJTM-7(128.10m) MJTM-7(Mae Kanai) <t< td=""><td>\sim</td><td>lfide</td><td>Pyrite</td><td>0</td><td>0</td><td>0</td><td>0</td><td>L</td><td></td><td>L</td><td>•</td><td></td><td>⊲</td><td></td><td>0</td><td></td></t<>	\sim	lfide	Pyrite	0	0	0	0	L		L	•		⊲		0	
Sample No. Locality Rock type MJTM-6(89.50m-99.70m) MJTM-6(Dong Noi) Freen Stamized rock MJTM-6(126.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Green Stamized rock MJTM-6(138.400m) MJTM-7(Bac Stam) MJTM-7(Bac Stam) MJTM-7(128.100m-7188.45m) MJTM-7(Mac Krani) Green Stamized rock MJTM-7(128.100m-7188.45m) MJTM-7(Mac Krani) Green Stamized rock MJTM-7(128.100m-7188.45m) MJTM-7(Mac Krani) Green Stam MJTM-7(128.100m-21.88.05m) MJTM-7(Mac Krani) Green Stam MJTM-7(128.100m-21.88.05m) MJTM-7(Mac Krani) Green Stam MJTM-7(128.100m-21.88.05m) MJTM-7(Mac Krani) Green Stam MJTM-7(128.100m-21.8.05m) MJTM-7(Mac Krani) Green Stam <td>ł</td> <td>Ŝ</td> <td>Chalcopyrite</td> <td>Ŀ</td> <td>ŀ</td> <td>ŀ</td> <td></td> <td>L</td> <td>₽</td> <td>4</td> <td>Ŀ</td> <td>0</td> <td>·</td> <td></td> <td></td> <td>•</td>	ł	Ŝ	Chalcopyrite	Ŀ	ŀ	ŀ		L	₽	4	Ŀ	0	·			•
Sample No. Locality Rock type MJTM-6(89.50m~89.70m) MJTM-6(Dong Noi) Green Starnized rock MJTM-6(126.6m) MJTM-6(Dong Noi) Green Starnized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Marmized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Marmized rock MJTM-6(128.6m) MJTM-6(Dong Noi) Marmized rock MJTM-6(128.40m) MJTM-6(Dong Noi) Green Starnized rock MJTM-6(128.40m) MJTM-6(Dong Noi) Green Starnized rock MJTM-7(123.10m-128.20m) MJTM-7(Mae Kanai) Marmized rock MJTM-7(123.10m-129.20m) MJTM-7(Mae Kanai) Marette starn MJTM-7(123.10m-129.20m) MJTM-7(Mae Kanai) Green Starnized rock MJTM-7(123.10m-129.20m) MJTM-7(Mae Kana				Ŀ		L	∣₫	L	·						L	H
Sample No. Locality Rock MJTM-6(89.50m~89.70m) MJTM-6(Dong Noi) Green Skarnized rock MJTM-6(126.6m) MJTM-6(Dong Noi) Green Skarnized rock MJTM-6(128.40m~178.80m) MJTM-6(Dong Noi) Green Skarnized rock MJTM-6(128.00m~178.80m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-7(129.10m~178.80m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-7(129.10m~129.20m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-8(21.60m~21.80m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-8(21.60m~129.20m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-8(21.60m~129.20m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-8(21.60m~129.20m) MJTM-7(Mae Kanai) Green Skarnized rock MJTM-8(2000000000m) MJTM-8(Mae Kanai) Green Skarnized rock MJTM-10(69.9m) MJTM-8(Mae Kanai) Green Skarnized rock MJTM-10(69.9m) MJTM-8(Mae Kanai) Green Skarnized rock			Sphalerite	0			ŀ		⊲		0					0
Sample No. Sample No. MJTM-6(89.50m~89.70m) MJTM-6(126.6m) MJTM-6(128.6m) MJTM-6(128.40m) MJTM-6(128.40m) MJTM-6(128.70m) MJTM-6(128.10m) MJTM-6(138.40m) MJTM-7(129.10m) MJTM			хоо У	Dong Noi) Green Skamized rock	Dong Noi) [Magnetite skarn	Dong Noi) Magnetite skarn	Dong Noi) Green Skarnized rock	Dong Noi) Apirte dike	Dong Noi) Green Skarn	Mae Kanai) [Magnetite skarn	<u>Mae Kanai)</u> [Green Skarnized rock(quartz-calcite vein)	Mae Kanai) Magnetite skarn	Mae Kanai) [altared limestone	Mae Kanai) Green Skarnized rock)(Mae Kanai) dolomitic limestone	dolomitic limestone(calcite-quartz vein)
8 - 0 00 4 10 10 00 00 00 00 00 00 00 00 00 00 00			o z	-	2	3	4	S	ώ	-	8	<u></u> б	õ	Ξ	12	-

Legend ; @:Abundant O:Common A:Minor •:Rare

A - 1

Appendix 2 Result of X-ray diffraction analysis

9

0

A-2

Appendix 4 Ore assay data of core sample

SAMPLE	Beginning		Au	Ag	Cu	Fe	Mn	Pb	Zn
	(m)	(m)	ppb	ppm	ppm	%		ppm	ppm
6-01	49.85	50.25	<5					3440	2220
6-02	69.40	70.30	<5	<1				15	85
6-03	84.70	84.80	<5	38				39100	290
6-04	88.50	89.70	<5	6				925	10830
6-05	106.80	109.60	<5	1				25	35
6-06	144.40	144.90	<5	6				180	375
6-07	147.40	148.05	<5	47				1615	780
6-08	149.20	150.90	<5	4				660	320
6-09	151.70	151.80	<5	7				3710	125
6-10	152.05	152.35	<5	29				5570	330
6-11	152.35	153.90	<5	3				325	295
6-12	153.90	· 154.40	<5	21	27(12210	240
6-13	154.40	155.25	<5	12				6990	220
6-14	155.25	157.70	<5	9				3770	255
6-15	164.00	164.45	<5	1	105			350	145
6-16	177.10	177.60	<5	4	1718			55	260
6-17	177.90	178.55	<5	3				290	360
6-18	178.55	178.85	<5	29				1680	3170
6-19	178.85	179.10	<5	3				1265	515
6-20	179.10	180.30	<5	1	2080			15	255
6-21	180.30	181.00	5	2				10	210
7-01	54.40	54.50	<5	0.4	883			6	18
7-02	55.20	55.50	<5	1	1115			68	10
7-03	70.75	70.85	<5	3.8				16	54
7-04	85.80	85.95	<5	0.6	528			28	56
7-05	94.70	94.75	10	<.2				<2	1.16%
7-06	126.00	127.00	<5	0.2				382	318
7-07	127.00	127.40	15	1.4				1105	181 5
7-08	127.40	127.70	<5	<.2				8	60
7-09	127.70	129.10	<5	<.2	110			2	70
7-10	129.10	129.20	80	41.4	18.45%			164	238
7-11	129.20	129.40	20	5.8	1.35%			10	30
7-12	129.40	129.50	10	2.4	6980			<2	16
7-13	129.50	130.70	<5	<.2	186			16	30
7-14	135.00	136.00	<5	1.4	2560			<2	76
7-15	136.00	136.70	<5	2	2180			<2	48
7-16	136.70	138.60	<5	<.2	128			<2	56
7-17	138.60	139.70	<5	<.2	37			6	32
7-18	139.70	140.90	<5	<.2	16			<2	40
7-19	177.00	177.10	10 <5	4 <1	3970			80	225
7-20 8-01	245.50 1.60	248.50 3.00	<5 <5	<1	35 60			5	20
8-02	3.00	5.00	<5 <5	1	140			145 395	14780 13580
8-03	5.00	6.00	<5 <5	3	305			255	12920
8-04	10.20	11.95	<5 <5	3	525			335	5560
8-05	14.25	14.30	<5 <5	6	350			4160	3270
8-06	25.85	25.95	<5	<1	45			135	150
8-00	27.00	27.20	<5 <5	2	45			450	145
8-08	31.65	31.85	<5	<1	35		3270	450 50	30
8-09	32.80	33.40	<5	<1	95		3860	40	50
8-10	02.00	00.40	5	12	8110		2610	<5	120
9-01	139.75	140.00	<5	<1	10		450	10	120
9-02	185.30	185.40	~5 <5	<1	5		1210	70	80
9-02 9-03	188.70	188.75	<5	<1	5		1060	80	25
9X-1	0.00	2.50	<5	1	210			385	3250
9X-2	16.50	16.55	<5	<1	<5			1635	90
9X-2 9X-3	24.80	24.90	<5	10	625		29500	1410	2490
SAMPLE	Beginning				Cu	Fe			2100 Zn
	J	•		~ .				•	•

(1)

A – 3

Annendix 3	Geochemical data of rock sample in the Northwestern of Dong Noi Area
nppenax o	deschemical data of fock sample in the Hortin store of Bong store that

D20-1 D20-2	ррb <5	ppm		OHIM	ppm	%	%	ppm	ppm	ppm
		<1	% 1.1	ppm <5	ېسر 5-	0.41	0.17	450	65	65
J2V-2	<5	<1	29.4	<5	<Š	1.52	1.81	15070	150	995
000 0				< <u>5</u>	-5 5	2.27	9.78	23400	11180	120
D20-3	<5	1	23.1			0.68	9.78 3.37	23400 6540	50	120
D20-4	<5	<1	12.8	<5	<5					
D20-5	<5	<1	>30.0	<5	<5	0.38	0.24	1430	100	125
D20-6	<5	<1	>30.0	<5	<5	0.31	0.26	1050	25	90
D20-7	<5	<1	27.9	<5	30	0.37	0.23	1090	35	75
D20-8	<5	<1	>30.0	<5	<5	0.57	0.18	1470	60	110
D20-9	<5	<1	>30.0	<5	5	0.54	0.35	1790	130	19(
D20-3	<5	<1	>30.0	<5	<5	0.27	0.15	990	25	45
				<5 <5	<5	0.28	0.26	1160	25	60
D20-11	<5	<1	>30.0				0.20	1190	5	4
D20-12	<5	<1	>30.0	<5	<5	0.42				7(
D20-13	<5	<1	0.7	<5	<5	0.42	0.30	190	20	
D20-14	<5	<1	18.9	<5	<5	0.35	0.23	950	20	4
D20-15	<5	<1	>30.0	<5	<5	0.34	0.25	910	<5	30
D20-16	<5	<1	>30.0	<5	<5	0.34	0.26	750	35	6
D20-17	<5	<1	>30.0	<5	<5	0.46	0.30	1080	50	10
D20-17 D20-18	<5 <5	<1	>30.0	-5	<5	1.67	1.81	8240	95	318
		<1 <1		ວ <5	<5 <5	0.40	0.37	920	15	15
D20-19	<5		>30.0					6080	40	76
D20-20	<5	<1	19.8	<5	<5	<.010	0.35			
D20-21	<5	<1	>30.0	<5	<5	0.42	0.82	2180	25	70
D20-22	<5	<1	23.9	<5	<5	0.28	0.17	700	95	2
D20-23	<5	<1	>30.0	<5	<5	0.24	0.21	860	<5	4
D20-24	<5	<1	11.5	<5	<5	0.31	0.19	550	<5	5
D20-25	<5	8	>30.0	75	15	0.62	1.66	4910	14270	1604
D20-26	<5	18	17.9	390	100	2.11	5.65	17180	28200	7.86%
D20-27	<5	<1	22.2	<5	<5	1.47	8.94	12400	180	33
	<5 <5	<1	13.7	<5	<5	1.01	3.95	7410	215	61
D20-28						0.89	4.14	6370	395	184
D20-29	<5	<1	28.7	<5	45				5	8
D20-30	<5	<1	>30.0	<5	<5	0.28	0.22	1100		
D20-31	<5	1	27.0	10	15	1.53	3.22	14310	970	223
D20-32	<5	<1	27.9	<5	<5	0.76	4.96	6970	55	34
D20-33	<5	<1	27.5	5	5	0.96	3.18	6060	50	186
D20-34	<5	<1	24.6	<5	<5	3.13	4.93	30700	50	82
D20-35	<5	<1	24.6	<5	5	1.42	6.05	10920	65	45
D20-36	<5	<1	0.3	<5	<5	0.36	0.06	1080	95	6
	<5	<1	10.7	<5	<Š	0.31	0.11	960	45	3
D20-37			>30.0	<5 <5	<5	0.26	0.20	1520	<5	8
D20-38	<5	<1					0.26	1880	35	13
D20-39	<5	<1	>30.0	<5	<5	0.27				
D20-40	<5	<1	>30.0	<5	75	1.64	0.27	13220	30	302
D20-41	<5	1	>30.0	<5	5	0.48	0.31	1810	210	59
D20-42	<5	<1	19.5	<5	<5	0.53	0.80	3170	5	6
D20-43	50	<1	15.1	<5	15	1.04	2.22	3880	535	16
D20-44	<5	<1	27.9	<5	<5	0.33	0.21	1080	20	8
D20-45	<5	<1	13.9	<Š	<5	0.51	1.63	2900	15	7
D20-45 D20-46	<5	<1	>30.0	<5	<5	0.15	0.15	1020	15	.7
		1	28.3	<5 <5	~5 5	0.13	0.13	1650	65	, 13
D20-47	<5						0.17	1860	105	67
D20-48	<5	<1	>30.0	20	5	0.29				
D20-49	<5	<1	25.8	<5	<5	0.31	0.13	1980	170	38
D20-50	<5	<1	23.7	5	<5	0.21	0.08	1460	125	35
D20-51	<5	<1	19.3	<5	<5	0.39	0.16	1040	85	21
D20-52	<5	<1	29.4	<5	<5	0.75	2.95	5870	15	8
D20-53	<5	<1	>30.0	5	20	0.22	0.15	1890	290	138
	<5 <5	<1	21.5	<5	<5	0.33	0.19	1530	25	g
D20-54							0.19	1370	25 <5	4
D20-55	<5	<1	14.8	<5	5	0.41				
D20-56	<5	1	19.7	<5	<5	0.23	0.12	1480	25	7
D20-57	<5	<1	11.6	<5	5	0.73	0.31	1670	30	11
D20-58	<5	<1	>30.0	<5	<5	0.98	0.54	7270	100	58
D20-59	<5	<1	22.9	5	<5	0.47	0.23	970	5	16
D20-60	<5	<1	29.7	5	<5	0.36	0.29	1350	60	18
D20-60	<5 <5	4	23.7	5	60	4.16	0.20	18890	2680	275
020-01	~ 0	-+	21.0	5	00	4.10	0.20	10000	_000	- 1 V
					A-4					

Appendix 4 Ore assay data of core sample

	(m)	(m)	ppb	ppm	ppm	n %	pp	m	ppm	ppm
10-01	25.00	• •		<5	3.2	34	2.4	2170	274	296
10-02	56.25	56.30		<5	5	605	1.2	2170	9260	530
10-03	56.40	56.50		<5	57	100	1.41	680	7.29%	2990
10-04	59.25	59.28		<5	4	20	0.45	1370	13160	180
10-05	69.80	70.20		<5	<1	10	6.61	360	100	65
10-06	76.35	76.60		<5	<1	<5	1.04	2250	250	250
10-07	77.40	77.55		<5	<1	50	1.11	3120	225	190
10-08	79.75	81.00		<5	<1	10	1.08	2550	220	280
10-09	82.00	82.50		15	1	75	2.78	3270	25	45
10-10	55.00	55.10		<5	<1	5	2.17	2900		

A – 5

Ŀ

Appendix 5 Equipment of driiling survey

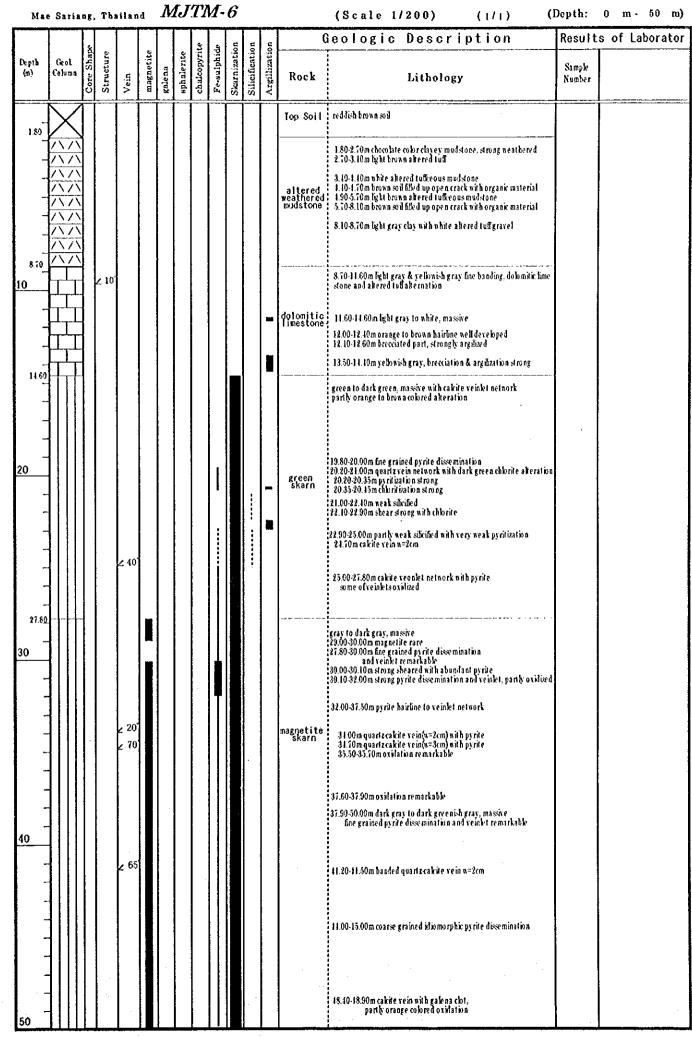
	ltem	Model/Spec.	Quantity	Remarks
Drill	ing Machine		3	
	Drill Rig	MPR-3(multi purpose)	1	made in Australia on Cat 320 Max HQ400m
N	Engine	Detoroit 671	1	Detroit(USA) diesel 250HP
	Mud Pump	Bean Royal 435	1	Rexroth(Australia) 30gal/min
щ В	Mud Mixer		1	hydraulic moter powered by MPR-3
2	Drill Rig	VK-600	1	Longyear Australia
ŝ	Engine	Detoroit 471	1	Detroit(USA) diesel 133HP
	Mud Pump	Bean Royal 435	1	Rexroth(Australia) 30gal/min
Ří Ř	Mud Mixer		1	hydraulic moter powered by VK-600
3	Drill Rig	Longyear 44	1	Longyear Australia
2 2	Engine	F5L912	1	Klockner Humbordl Deutz AG, diesel 83HP
	Mud Pump	Bean Royal 435	1	Rexroth(Australia) 30gal/min
Rig.	Mud Mixer		1	hydraulic moter powered by LY-44
		LC614	2	FMC corporation(USA)
	ing Rod	PQ	40	3.05m/rod
		HQ	115	3.05m/rod
		NQ	210	3.05m/rod
Cor	e Barrel Assembly	PQ	4	2.60m(core length 1.60m)
—		HQ	4	3.80m(core length 2.80m)
		HQ	4	2.60m(core length 1.60m)
		NQ	4	2.60m(core length 1.60m)
		NQ	4	4.20m(core length 3.50m)

0

Appendix 6 Articles of consumption during drilling survey

Item	Spec.	Total	MJTM-6	MJTM-7	MJTM-8	MJTM-9	MJTM-10
Metal Crown	5″	0					
Diamond Bit	HQ	15	3	4	2	3	3
	NQ	12	1	2	4	1	4
Reamer	HQ	6	2	1	1	1	1
	NQ	7	1	3	1	1	1
Casing Shoe	HW	5	1	1	1	1	1
	NW	4		1	1	1	1
Aus-Gel(bentonite)	Kg	4,225.0	962.5	425	2,000	387.5	450
MI-Gel(bentonite)	Kg	0					
Quick Trol	Kg	613.5	56.5	187	296	29.5	44.5
Ploymer	Liter	408	107	16	149	62	74
Liqui-Pol	Kg	0					
Aqua-Pac	Liter	0				· · · · ·	
Aus-Plug	Kg	0					
LCM	bag	40			40		
Cement	kg	125			125		
Diesel oil	Liter	9,909	1,348	1,991	2,844	1,840	1,886
Core box	Box	217	38	56	43	40	40

A - 7


Appendix 7 Core logging sheet

0

Ċ

MJTM-6 MJTM-7 MJTM-8 MJTM-9 MJTM-10

A-8

......

A'-9

T

		Τ						ې		5	E.	5		Geologic Description	Result	s of Laborat
Depila (m)	Geol Columa	Core Shape	Structure	Vein	magnetite	galena	kphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
														dark gevenisb gray, mosive fine grained dissemination and veinlet 50.70-54.60m calvie veinlet network with chlorite alteration, partly oxidized 52.80-53.80m calvie veinlet network developing with chlorite alter ation, partly oxidation observed		
														59.30 &0.00m strong coarse to fine grained pyrite dissemination wit b chlorite		
			<u>د</u> 70 ک					:						63 25-64 20m milly quarta vein develyoing with pyrite and chalcop yrite		
-			2 60°					Ť						65.00 69.30m Quartzveinkt nell develooing with strong pyritization 65.60m W=7cm milky quartzvein		
			∠ 80 [°] ∠ 70										magnetite skarn	73.80-74.20m n=4cm milky quarta vein 75.00-76.10m open cracks remarkable with strong oxidation		
						-								81.50.81.89m pyrite discomination with gale na and a litte chakopyr Te		
-														87.60.88.10m shear avne, brittle core, highly oxidized		
90														88.0091.70m quarizcakite veinkt network remarkable strong pyritizativa with chakopyrite and sphalerite		
												,		01 50 01 00m Assessment A. J. J. Sona (1)		
-														91.70.91.00m shear zone nith dark green chlorite 91.00.91.95m strong pyritization 91.95.95.60m strong pyritization nith a samll amount of chakopyrite	- -	
-														97.30-38.90m quartzeakite veinkt developing, oxidation remarkabk		
-	$\left\{ \left \right \right\}$													58.50.59.30m strong shear zone with obbrite alteration and strong		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

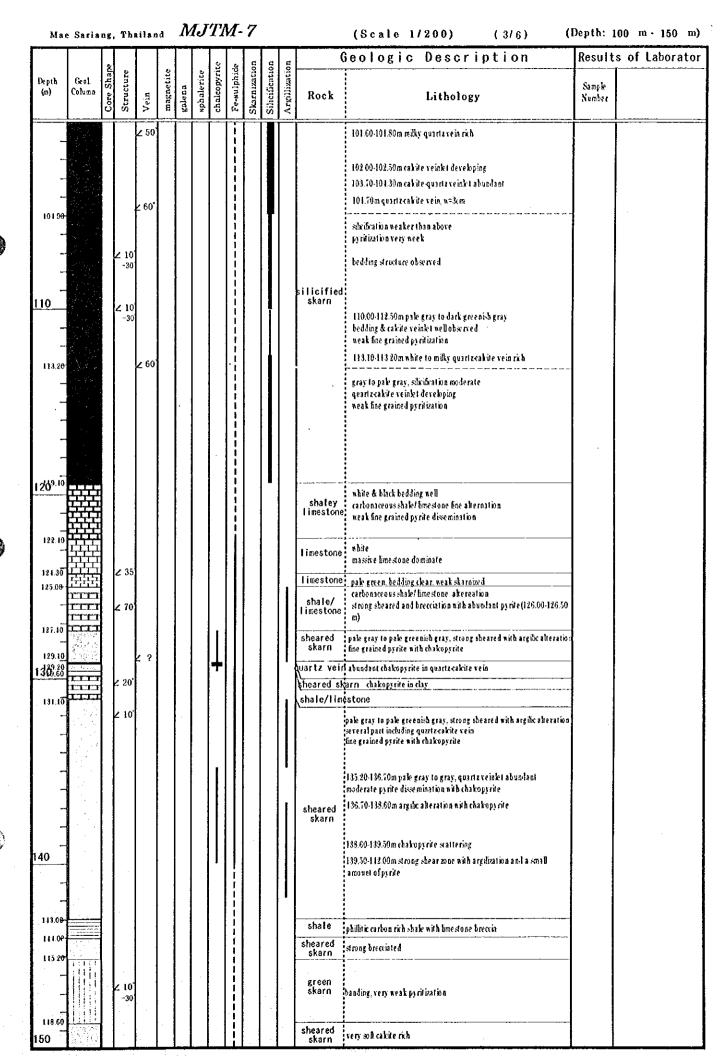
A - 10

Mae	Sari	an	g, ï	ba	ilao	đ	N	IJ	T 1	M.	6				(Scale 1/200) (3/1) (Depth: :	100 m - 150 m
			ž,	,		ų			ite	.9	íon	uor	lon		Geologic Description	Result	s of Laborato
Depth (m)	Geol Colum	1 10 110	Core on al	211 ACCM	Vein	magnetite	galena	вррагие	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
_			T							Π					100.10-100.50m cakite veinkt netvork oxilation remarkable	~	
-															102.60-101.00m shear zone në h phyllitik texture, dark green chlori te and pyrite abuntant		
-															101.00-103.00m pyrite disseminaton strong		
-									1						106.70-107.30m strong pyrite dissemination with a small arrount of chakopyrite		
 110				:					١						109.00-109.60m strong pyrite dissemination with a small amount of chakopyrite		
															dark green to dark gray, massive, pyritization strong		
-			Z	70'											111.88m m:Ry quartz vein núb pyrite, n= 1cm		
														magnetite skarn	121.70-122.70m chakopyrite spotted 122.00-125.30m garnet abundant		
130			د ا	50°					1						129.00-129.60m brecciated texture remarkable, quartzveinks abu ndaat 129.60-130.50m cakite-quartzveinks developing nüh chakopyrite and moch pyrite 131.60-131.80m müky quartzvein (n=20cm) nith abundant pyrite		
+ 					•				•						131.80-133.00m a small amount of chakopyrite spotted		
1														-	133.70-130.50m quarta veinkt network develpoing		
<u>140</u> 			44	70 50					I						140.10-140.20m quartzcalide vein n=3cm 140.60-140.80m milky quartzcalide vein n=5cm 140.80-141.80m shear zone, strong argific alteration 141.80-142.80m light gray to gray, sibilised skara nith pyrite 142.80-143.10m dark green strong chloritization 143.10-144.40m light gray to gray. Six field skara nith pyrite 143.10-144.40m light gray to gray. Six field skara nith pyrite 143.10-144.40m light gray to gray. Six field skara nith pyrite 143.10-144.40m light gray to gray.		
									-						115.98-1 16.05m quartz vein n=5cm, strong chlorite alteration around veia 147.00-1 18.50m quartz vein kt nell developing 147.30-148.05m a small amount of chakopyrite dissemination 148.30m- pyrhotite dessemination remarkal k 149.30-150.00m a small amount of chakopyrite scattered		

A-11

__. ..

Mae	Sari	ang.	ፐЪያ	ilan.	đ	1V.	IJ	11	V1 -	0						50 m - 200 m)
Depth (m)	Geol Column	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	(Rock	Beologic Description Lithology	Result: Sample Number	s of Laborato
		0	S.	A	H	7.2	44	cp		S	SI		magnetite skarn	150.60-150.80m a small amount of chakopyrite mineralization 151.70m quartz vein w= tom with gale sa 352.05-152.35m pyrrhotite, pyrite, chakopyrite, galena Ag-mineral? di Semination 153.90-153.10m pyrrhotite, pyrite, chakopyrite dissemination 253.90-153.10m pyrrhotite, pyrite, chakopyrite dissemination 451.65-151.85m galena scattered 155.00-155.80m galena scattered 155.00-155.80m galena scattered 155.00-155.80m quartz vein let nork 157.80-165.00m fine grained pyrite dissemination with a small amount of pyrrhotite partly accompanied with galena		
163.09- 				∠ 70 ∠ 20									əplite	dark gravish green, with magnetite dark gravish green, with magnetite dark green builte rich partly with pyrrboite and chabopyrite 161.10-167.90m light green chbrite alteration fine gravined, massive, itiomorphic builte rich 188.90-188.95m very fine graved at contact with chbritization dark grav to dark green, massive, abundant magnetite with a small amount of pyrrboite and pyrite 172 20-172 f0m a large amount of magnetite 173.10-175.00m a small amount of gale na scattering 176.50m milky quartzvein w=3cm 176.50-171.10m milky quartzein bit network developing sikification and chbritization with strong pyritization and a small a mount of chabopyrite 175.10-173.50m strong sikification with abundant pyrite and a small a mount of chabopyrite 176.00-178.30m milky quartzeein 188.00-178.30m milky quartzeein 188.00-178.30m milky quartzeein 188.00-178.30m milky quartzeein 198.00-178.30m milky quartzeein 198.30-178.30m milky quartzeein 198.30-178.30m milky quartzeein 199.10-180.00m strong pyritization with a small amount of gale na 199.10-180.00m strong pyritization with a small amount of gale na 199.10-180.00m pyrrhotife and chakopyrite mineralization with a small amount of gale na 199.181.80.70m pyrrhotife and chakopyrite mineralization 181.05-181.70m hgbt green aberation (montmolliconite chbrite) 181.30-181.50m coarse grained pyrite on open fracture		


()

.

	e Saria	۵¥.	1 9 2	l i i a c					И- П				0	(Scale 1/200) (1/6) Beologic Description	(Depth: 0 m· 50 m Results of Laborato
Cepth (m)	Gest Column	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number
-													Top Soil	brown to reddish brown	
3.70 125	000												granute congl.	pale gray rewurk sediment along stream	
-													fine sandstone	yellowish gray to plae brown strong weathered, with Fe oxide mineral	
8.69 8.993					1								weathered skarn	pak yellim to pak orange strong weathered	
-														dark green massive to banding structure to 18.00m Ene to coarse grained pyrite disseminated with a small a mount of magnetite	
- +				∠ 10				-						at 16.20m chakoprite film.	
- - 0				_ • •										18.00-18.20m epilote rein, n=3mm	
				∠ 60 [°]									green skarn	19.70-23.00m pyrite dissemination very neak 21.20m cakite(quart2)vein, n=1cm	
-				∠ 20'										22.75m cakite(quartz)vein, n=1cm	
-			∠ 30 ∠ 10° -30'											25.00-25.50m fine grained pyrite dissemination 25.50-26.70m pyrite dissemination neak	
				∠ 40'										26.7.0-28.20m coarse to fine grained pyrite dissemination 28.20m cakrite(quartz)vein, n=1cm 28.20-28.70m pyrite dissemination neak	
0 - -			∠ 10 [*] -30 ∠ 30 [*] -40	∠ 60`										28.10-30.00m coarse to fine grained pyrite dissemination 30.10m calcite(quartz) vein, w=1cm 31.00-33.00m fine to coarse grained pyrite disseminated w ith a small amount of magnetite	
33.0 0 31.10					1								silicified skarn		
-			∠ 60 [°]											banding structue remarkable Gen to coarse pyrite dissemination with magnetite	
-					1									33.30-38.10m magnetite rich	
0												_	green skarn	10.50-11.00m cakite-quartz veia network 11.90-12.10m argüe alteration	
-				∠ 40 [°] -50°								1		42.30-42.50m cakite veilet abundant 43.70-44.00m cakite veilet abundant	
-			∠ 20° -30'											13.00-30.00m banding structue remarkable	
-			50		1 1 1									15.00-50.00m banding structure remarkable	
-					н 12			· ·.						16.10-17.80m coarse grained pyrite disseminated with a s mall amount of magnetite	

Depth (G (m) C G	ieol olusa	Core Shap Structure	Vein	magnetite	un	erite	рут	Ř	12	BL .	121		•		1
		k 10		Ë	galena	sphal	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
		∠ 20 -3(59 20-50.60m dark green, magnetite rich 51 69-53.00m banding structure remarkable 33.60-51.10m cabite veinlet developing 54 20-51.60m dark green part with chalopyrite film 55.0-55.80m cabite quartz vein network with chalocopyrite film 36 80m cabite quartz vein, n=1cm 60.50m cabite quartz vein, n=2cm 60.20 61.80m brecciated zone 63.10-61.00m cabite veinlet developing		
-		2 5 -19 2 5 -10				-						green skarn	65.90-35.50m banding and breeciated zone		
		× 40 -60											60.3033.30m oanomg and verernied zone Bne grained pyritization and calvite veinlet remarkable 70.75m chakopyrite dissmination		
30			2 60										81.30-88 80m cabite quartz vein, n=3cm		
- - - 90													85.50.86.30m dark green to dark gray, magnetike rich zone nikh ve Ly fine chakopyrite 87.20m roarse grained pyrikization strong nikh magnetike		
91.30 - - - - - -	I I I		Z 60		-	-	-					silicified skarn	pale gray to gray strong sikitikation fine grained pyrite dissemination neak 91.15m n=2cm, quartzcakite vein nith chakopyrite, sphalerite, galena, pyrite		

A-14

A-15

- - - - -

		Ţ						ŝ	٩	Ë	r,	E C	G	eologic Description	Results	s of Laborato
Depth (m)	Geol Columa	Core Shape	Structure	Vein	magnetite	galenn	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
													sheared skarn	pale green to white, soft, shear strong with pyrite dissemination argilic alteration remarkable		
161.10 													silicified skarn	161.10-162 20m moderate pyritization 162 20-162.70m waek pyritization		
161.70													silicified	pyritization neak pale greenish gray, strong sibribration		
165.10													skarn	fine grained pyrite disemination neak		
													sheared skarn	strong sheared fine grained pyrite abundant		
70 -													green skarn	neak sexification and sheared fine grained pyrite dissemination strong		
151.70 														strong silicification fine grained pyrite dissemination moderate		
173.30													sheared skarn	strong sheared and argilization moderate pyritization		
- +				2 70										strong sikification and strong to meerate pyritizaton 176.90-177.20m Cakite and quartz vein with pyrite & chakopyrite w=2cm		
-								1					silicified skarn	178.10-178.90m milky quorta veinlet aetwork with pyrite & chokop yrite		
80				2 10 [°]				-						179.90m quartzcakite vein n=2cm, with pyrite & fine grained chak opyrite		
181.30 181.90													black shale	neak sibilities and pyrikization		
													silicified skarn	light green to yellowish gray strong sibilization, very naek pyrite dissemination cakite hairline network remarkable		
186.90														moderate pyritizaton		
188.30													green şkarn	ight greenish grav to grav neak sheibraton, veri naek pyräe dissemination rakite hairline netnork developing		
90:0:00 - -														carde nautine network developing light green to yellonish gray strong silicification, very naek pyrite dissemination		
-													sílicifie skarn	995. 10-195.60m fine grained pyritization strong with a small amoun 1 of chakopyrite		
-														193.60-201.50m gray to greenish gray strong sikibratinn, waek pyrite dissemination rakite bairline network remarkable		an th

0

- --

Ma	e Saria	ng,	The	ilao	d	N	IJ	TI	И-	7				(Scale 1/200) (5/6) (_	200 m - 250 m)
Depth (n)	Geol Colum	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chulcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	G Rock	eologic Description Lithology	Results Sample Number	s of Laborator
201 50				2 10				-					sheared skarn	pak green to white, soft, shear strong with pyrite discrimination arcific alteration remarkable, weak sibification greenish gray, strong sikrification pyrite discrimination moderate 203.00:210.00m calvite haicline abundant developing 205.20m quartz calvite vein, w=1cm, with gyrite & chakopyrite		
210													silicified skarn	212.70-213.50m shear zone, argilic alteration and strong pyirtizatio n 216.30-216.50m neak shearwith argilic alteration		
219 64 220 220.70													skarn	strong shear zone on sibilied skarn pyritization moderate greenish gray to gray strong sibiliration and moerate pyritizaton partly with shear zone cakite hairline remarkable		
230				∠ 60									skarn	226.60m quartzcakite vein, max 10cm 226,70-227.20m strong sheared with argillization		
-												1		231.00-235.50m strong shear zone on sibrified skarn neak argilization 237.0-238.00m strong shear zone on sibrified skarn neak argilization		
239.6 2 40														dark greenish grav to light grav strong shear on sikrifed skarn nith naek argillization(chbrite-smecti te-kaolineite?) fine to coarse grained pyritization strong		· · ·
213. 250		そうしん かいばんのほう ビジュウション・チャート たいたいがく											sheared skarn	213.00-218.30m coarse to fine grained pyrite dissemination very str ong Tight green to white, strong sbear on green starn strong argulization, parth with subsidiation fine to coarse grained pyritization strong	-	

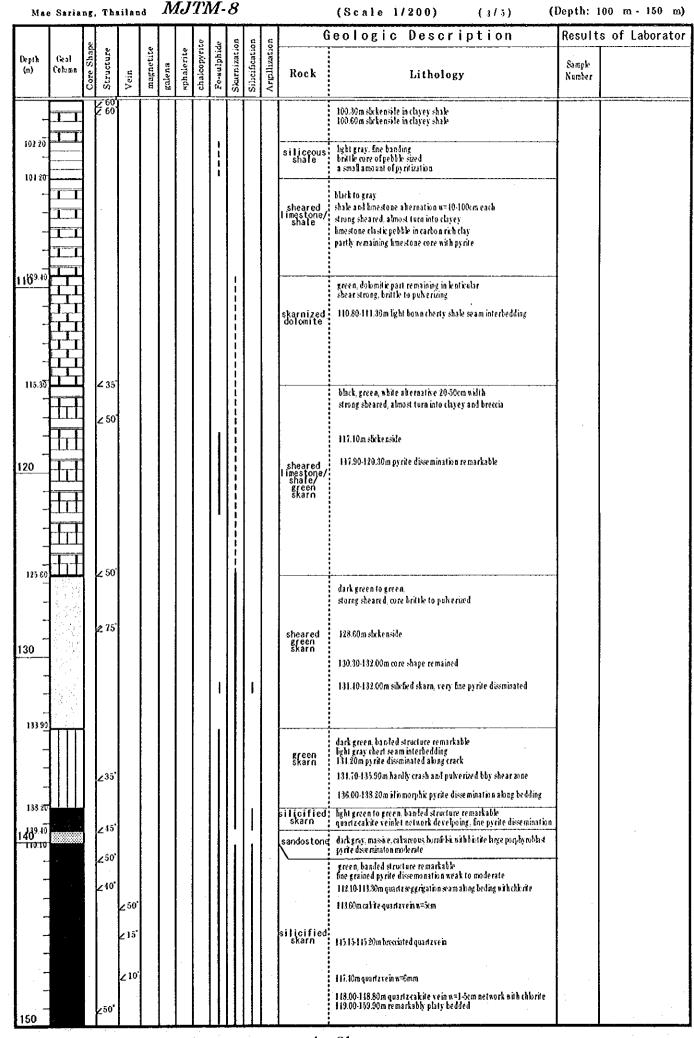
A – 17

Mae	Saria	ng.	Tba	ilar	d	N.	IJ	T	И-	7				(Scale 1/200) (6/6) (Depth:	250 m - 270 m
		36						ite	ę	uo	uo	uo	(eologic Description	Result	s of Laborato
Depth (w)	Geol Columa	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnizati	Silicification	Argillization	Rock	Lithology	Sample Number	
-														light green to nhite strong sbear, strong argidrationkhbrite-smeetike kaolme de?) nú h silkideation fine to coarse grained pyritization very strong		
251 20													sheared skarn	green to typi green strong shear, strong argilization(dorde smectite kaolineite?) with weak sikifration line to coarse grained pyritization very strong		
<u>60</u> 														green to byst green stong shear, with sticilization fine to coarse grained pyritization very strong		
261.00 261.00 													green skarn	strong sticitication Ene to coarse grained pyrilization very strong dark green to green massive, neak pyrilization		
2 ^{769.20}												.1		nhite to beht green brreciation remakable, moderate pyritization dark green, massive, iliomorybic pyrite dissemination moderate		
-									l							
-																
-																
-																
																-
1																
1																· · ·
1																
1																

A-18

	Saria	Ţ						Γ.			e	<u>а</u>	G	eologic Description	Results	of Laborato
epth (m)	Geol Column	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Samyk Number	
								Γ					Fill up Soil	wild gravel		
1.30 1.50	No.						ļ							dark reddich brown sod with gossan gravel		
-			∠ 18' ∠ 50 ∠-45										gossan	dark reddish bronn to bybt yellonish bronn navy banded texture, almost turn into bronne, parthy remaining pyrite 1 25-1.30m nhite elay 1 80m n=3cm nhite elay		
5.95_ 7.30T			Z 50'										shale	yellon'pink mixed colored argille aberation strong		
7.95~			2 15						1			L	shale/ sandstone	fice aberoation argilic alteration strong		
						ľ	1						clay	light bluish gray, hydrothermal ahered clay		
9.35						ŀ	Ł					T	sandstone	light yellow, fine grained, argulic alteration strong		
10 25			∠ 50 [°]									•	gossan	reddich brown to yellow, broneite rich, mixed with abundant clay		
11 95	<u>13 dina</u>			:									sandstone	11.95-12.13 bytt block gray clay bybt yellow, fine grained, argillic alteration atrong		
- 13.45			∠ 30'										clay	beht bluish gray, hydrothermal altered clay		
1133			2 50'	Ì		1							gossan	dark reddish bronn pyrite remaining		
-	-						1									
-													sandstone	light yellow, line grained, argillic alteration strong 16.00-16.30m altered shak interbedded		
17.80 			2 50	∠ 85 -90									shale	vellow, fine banded highly by drothermal abered vertical hairbne crack abundant developing with manganese oside film		
21.4 - - - - - - - - - - - - - - - - - - -			∠ 50' -90` ∠ 20	2 75 2 20									dologite	purple to light gray quartzcalkile chlorite bairline and veins nell developing nith a small amount of pride partly breviated tevlure remarkable 21.50m calkile vein n=3xm nith brevein 21.70m calkile vein n=3xm nith brevein 23.05-23.23m quartzcalkile vein n=1cm network 25.85-23.93m calkile-quartavein nith abundant pride 25.90-29.93m gossan below 26.30m chloritization stronger 26.93-27.10m light brown mineral vein nith calkite quartavein		
0			20	,									shale	yeBoxish brown to orange, fine bedding highly hydrothermal abered with abundant binonite		
30.9			∠15' ∠15'	2 1									dolomite	dark greenish grav, neak sharnized 33. 15-31.90m light brown cabonate mineral replacing along beddin 32.80-33.00m quartzcak ite vein network with hematite and brown mineral 33.05-33.25m brown mineratin quartzcak ite veinlet 35.10-35.60m cakite quartz vein 36.30-36.00m cakite quartz vein 36.50-31.95m well bedded structure, sikrikration strong, pyrite veir along bedding		
37.9 IÓ			ح 20							,			siliceous shale	dark grav, carbonaccous, nell banding breechated texture remarkable with eak ite quartz veinkt pyrite weak disseminated		
40.0 41.5 43.0			∠ ²⁰ ∠15										dolomite siliceous shale	10.60-10.80m green brecciation strong with chakopycide pyride disse mination dark gray brecciated texture with cakite quarte veinkt dark gray, carbonaceous, well banding pyride weak disseminated		
													1 1	ereen skarnized dolomite and shale alternation synitization moderate		
16.			220										dolomite	light green neak starnized, chluritization pyritization moderate		

A - 19

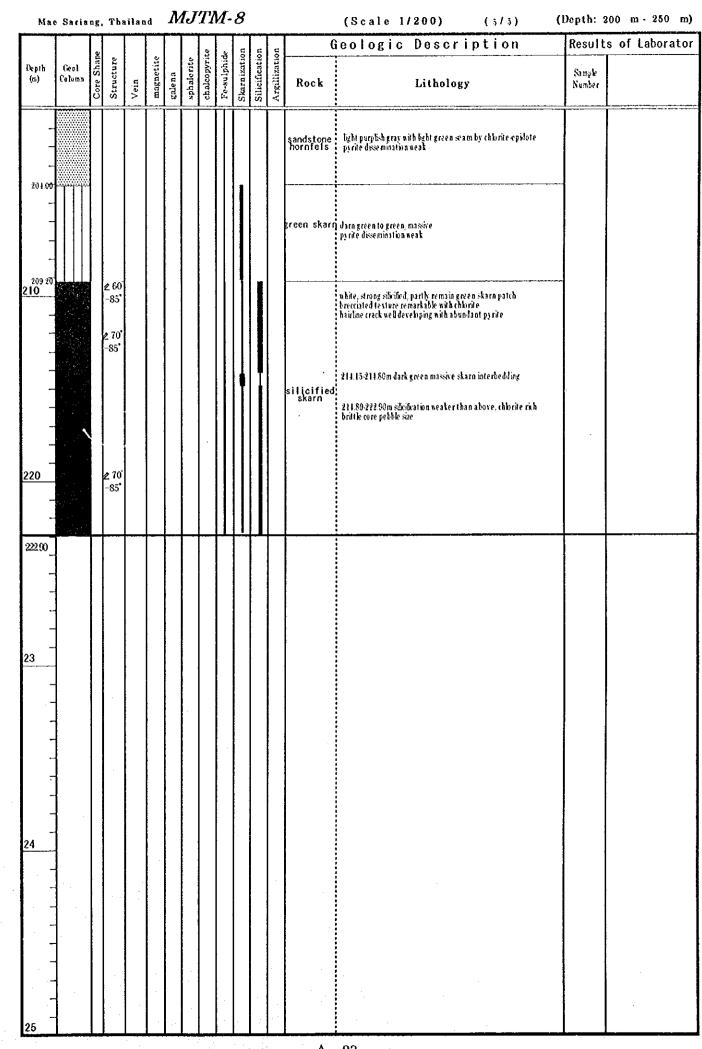

Mae	Sariang.	Thailand	MJTM-8
Mac	barraug,	1 Dallauu	

i

0

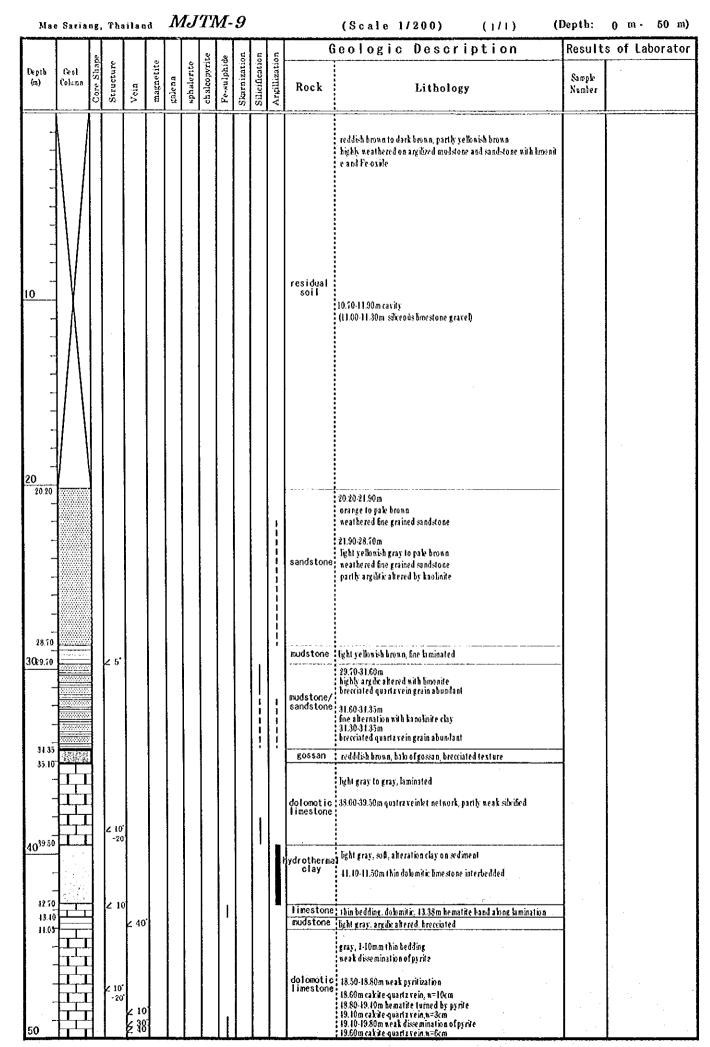
(Scale 1/200) (2/5) (Depth: 50 m · 100 m)

Depth Geol (sture		magnetite	ę	erite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization		eologic Description	Sample	s of Laborator
Depth Geol (0) (m) Column e O	Structure	Vein	magn	galena	sphalerite	chalco	Fe-su	Skarn	Silicif	Argill	Rock	Lithology	Number	
	<u>2</u> 65'	∠ 15 [°] ∠ 80°									dotomite	50.50 cabite quarta vein n=1cm 51.10-51.20m pyrite abundant 51.65m cabite vein nith pyrite 52.50m pyrite abbatt along crack 2.80-57.10m pyrite dissemination neak 53.90m cabite quarta vein n=5cm 51.10-51.70m shear strong 56.00m cabite quarta vein n=1cm		
57.10								1				56.80-57.40m shear zone, brittle core	4	
───────────────────────────	∠ ^{80°} ∠45°											bgåt grav to grav, well banded py rite dissemination weak		
		275										61.10.61.30m cakite quantz ve in w=1cm		
		∠90`									muddy dolomite	61.30m-verticalcakite vein, w=3mm 61.60m open crack with itiomorphic cakite		
67.30											dolomite	dark green, skarnized, fine-grained pyrite dissemmination		
0											siliccous shale	gray, fine bedded abundani shearcacks nith cakite hairline pyrite dissemination weak		
D19:10											chert	light brown, weak pyridization crashed bridtle core	-	
												black to gray shale and limestone alternation n=10-100cm each strong sheared, almost turn into clayey limestone clastic pebble in carbon rich clay partly remaining brestone core with pyrite		
											sheared limestone/ shale			
	∠50° ∠50°											98.60m slickenside in clayey shale 99.30m slickenside in clayey shale		


A-21

<u>н</u> –

Mae Sari				[T	1			(Scale 1/200) (1/3) eologic Description	Results	of Laborato
Depth Geol (10) Colum	L	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
	∠ 10 [°] ∠ 10 [°] ∠ 10 [°]											151 20m quarte seggini in a se am n= 2-100m		
	× 10										silicified skarn	156 20-157.00m quartzcakite hairline netnosk remarkable 158.00-159.00m quartzcakite hairline network remarkable 158.80-158.90m pyrite chakopyrite syot in quartzcakite vein		
6Ω _{3 6}	∠ 35										chert/ green skar n	byht brong & green fine alternation quartz bishige nell developing pyrite dissemination along obbrite veinkt 163.40-163.50m calcite quartz vein n=5-10mm irregular form		
165.70	∠ 40 [°]	× 20										165 20m pyrite abundant disseminated along chlorite vein dark green to green, nell banding structure pyrite dissemination not so mixh 166 20-166 23m quartz sygeriation seam 166 20 166 23m quartz sygeriation seam		
- - - - -	∠ 30	لا 10 لا 30									green skar n	165.30 m quartz seggigition seam n=1-1mm 165.10m quartz chlorite vein 160.50-173.70m pyrite moderate disseminated along bedding 171.15-171.30m quartz vein nith chlorite		
												byht bronn & green fine alternation pyrite dissemination along bedding		
	∠ 35										chert/ preen skarn	179.80m-181.30m quartzeakile vein netnork n=1-10mm		
	230 25 -15											182 30-186.90m brittle core by shaer zone 185.10-185.70m water rush out 2001/minute 185.40-187.10m sandstone hornfels seam interbedded		
155.00 190	∠40 [°] ∠ 3											lyst purplish gray nith light green seam by chlorite epidote pyrite dissemination weak		
- - -	∠40										sandstone hornfels	194.60-194.80m pyrite dissemination moderate along bedding 195.70-195.80m quartzcakite vein abondant n=3-5mm		
- - 197.60 		-30									green skar	darn green to green, massive	_	


()

A – 22

A – 23

<u>до</u>

A-24

63

()

Mae Sariang	, ТЪа	lilao	đ	N	IJ	TI	И-	9				(Scale 1/200) (3/1) (Depth:	50 m · 100 m)
	e.		te		٩	rite	ide	noi	tion	tion	(deologic Description	Result	ts of Laborator
Pepth Ceol ((m) Cedure ((m) Cedure (O)	Structure	Vein	тақпесісе	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnizat	Silicification	Argillization	Rock	Lithology	Sample Number	
		< 10 [°] ∠ 70									লভববিy dolomite	dark gray to light gray 1-10mm thin parallel bedded homaitte baod developing severel part 31.60-52.00m oxidiation remarkable 52.00m-weak pyrite discrimination 33.60m cakite vein, w=3cm 58.80-59.20m cakite vein, w=1cm 60.60-60.70m cakite vein abundant		
6100 		∠ 20 ∠ 20										dark gray to light gray 1-10mm thin paraBel bedded weak pyritization with bematite 67.90 68.10m calife vein abundant 69.90m calife vein, w=1cm 71.00-73.00m oxidation remarkable 72.50m calife vein, w=6cm		
		∠ 60 ∠ 60									uffcequs 1	72:50-73.09m bematite rich 76:20m cakite vein, w=2cm 77:00m cakite vein, w=1cm 76:20-78:00m bematite rich 79:00-79:20m oxidation remarkable Splight yellow to orange		
											dolomite uffceous uddy golor	ghght yellow to orange navy bedding gray to dark gray, thin prallel bedding weak fine grained pyrite dissemination Weakt yellow to orange navy bedding very neak pyrilization		
90 ^{83,16} - 1 1 - 1 1 92 90	∠ 19 [°] -20 [°]								•		dolomite	gray to dark gray, thin prallel bedding weak fine grained pyrite dissemination		
28.10 100										ji	tuffcepus uddy dolon e dolomite	Şedi yellon to orange havy prakel bedding, parily katicular shape vecy neak pyritization		

A - 25

Mae	Saria	ng,	Tha	ilan	đ	N	IJ	Tl	И-	9				(Scale 1/200) (3/+) (D	epth:	100 m · 150 m)
		2						ite	de de	uo	٥u	ų	(eologic Description	Results	s of Laborator
Depth (m)	Geol Columa	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fessulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
1			∠ 10' -30'											gray to dark gray, 1-10mm thin praBelbedding neak fine grained pyrite dissemination partly turned in orange to byth brown alteration		
 <u>110</u>			∠ 10 [°] -20						1 					107.60-107.80m coarse recrystal cakite vein 107.60-109.30m tybt brown to orange alteration(oxidation) 108.60-109.30m cakite veinkt abundant 110.70-111.30m orange to byht brown alteration strong oxidation of bematite and lomonice		
													dolomite	112.30-112.70m strong oxidation of hematike and lomonike		
 120 -			✓ 10 [°] -20											120.30-121 29m cakite veinkt abundant 121.20-121.80m orange to light brown akeration Strong oxidation of hematite and knowle		
-			-20	2 10										123.60m calide vein n=2cm		
130 - -			2 5 -10													
				¥ 6 ¥ 3 ¥ 1										around 135m bodding texture weaker than above 137.50-138.20m brycciated texture remarkable with argide aberati on and protization 138.55-139.10m orange to light brown akeration strong osolation of hematike and binonite 138.60m cakite vein, w=2cm 139.10m quartzeakite vein, w=10cm with strong pyritization 110.00-110.10m osolation zone 110.00-111.00m orange to light brown aberation strong osolation		
-			∠ 5* -10	r										115.10-118 20m panh osilædbandoccuered ab ne bedding 115.10-118 20m cakite veinkt ab undant	•	
- 150				2 5										149.15-149.55m cakite quarta vein abundant		

A – 26

Ma	e Saria	ag,	Th	ilao	đ	Λ	Ŋ	T	M	9				(Scale 1/200) (1/1) (Depth:	150 m · 200 m)
		2	4.					3	ę.	ü	ц	чo		Geologic Description	Result	ts of Laborator
Depth (m)	Geol Columa	Core Shap	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
(m) 			2 5' -10' 2 10° -30'	4 10 ⁻ 2 50 ⁻ 2 50 ⁻ 2 50 ⁻ 2 5 ⁻		galeba	sphale	chalco	, , , , , , , , , , , , , , , , , , ,	Skarni			dolomite	gray to dark gray, 1-10mm this prathel bedding neak fine grained pyrite dissemination light greenish gray weak argulic abered and neak pyrite dissemination 158.30-158.50m, 159.20-159.30m strong argultation 153.30m cakite quartarein, u=3cm cray, breecisted cakite veinkt abundant 161.20-162.00m strong oxidation 162.60-165.60m neak sibrification 162.60-165.60m neak sibrification		
-														199.00-199.20m cakire vein abundant with oxidation		
200			2 20 -30	н - н - н							н н н			199.10-199.70m cakite vein abundant näh osidation		

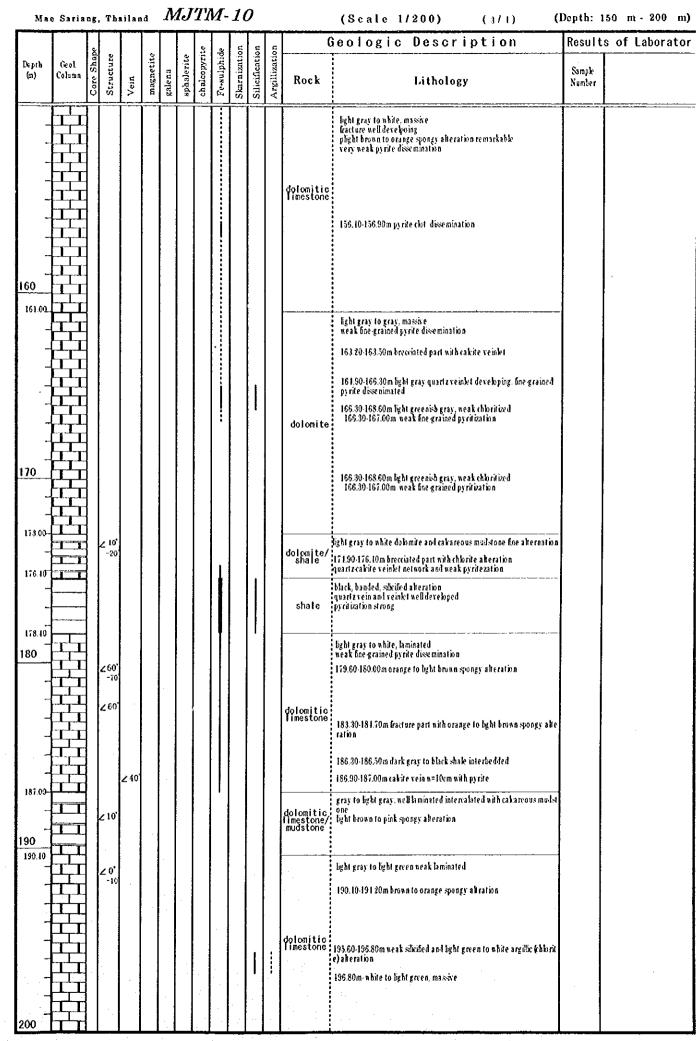
	Sariar	T						-					G	eologic Description	Result	s of Laborato
жрtћ (m)	Geol. Column	Core Shape	Structure	Vein	magnetite	galena	нррасти	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argilization	Rock	Lithology	Sample Number	
	\mathbb{N}		-										Top Soil	hght brown to orange soil white, strong subrified, partly remain green skarn patch breectated texture remarkable with chlorite hairline crack well developing with abundant pyrite		
8.20 10.00														brecciated testure ramrkable matrix; ye llow neathered sediment? brecciated part: orange to brown carbonate mineral by thrown to ye flowish white	-	
11.10 			∠ 10 -30 ∠ 10 -20	∠ 60									limestone	20.70m- light gray to gray, bedded well 23.70-21.00m light greenish gray, sibilifed alteration 24.60-25.00m brown alteration 25.00-25.70m fine grained pyrite weak dissemination		
0 30.50 			∠ 30 -40										dolomitic limestone limestone	ight green, bedded nell sightly chbritized cakite-quartz veinkt abundani		
35.00 			∠ 10 -20	∠ 40									dofomitic Timestone dolomite	light green, thin bedded nell (n=1-10mm) 35.00-36.50m partly brown to orange, sikified alteration nith a s mall amount of pyride 35.00-36.50m partly brown to orange, sikified alteration nith a s mall amount of pyride 10.00-15.00m light gray to gray, fine bedded(1-5mm) partly brown alteration band eveloping with pyride 42.50m cakite vein, n=2cm 13.10-11.80m brown carbonate mineral bands with pyrite		
15 0 0 			∠ 20' -30										limestone	light gray to gray, fine beded with weak fine grained pyritization		
 													dolomitic limestone	light gray to gray, massive cakie quarta bairline well dere bying with neak pyritization		

.

A-28

.

Ma	e Saria	ng,	The	ilan	d	N	IJ	TI	И-	10)	(Scale 1/200) (2/1) (Depth: 5	0 m - 100 m		
	Γ	5						3	ş	uo	цо	uo		eologic Description	Results	of Laborato
Depth (n)	Geol Column	Core Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrit	Fe-sulphide	Skarnizati	Silicification	Argillization	Rock	Lithology	Sample Number	
50 50 			∠ 10 [°] -20 ∠ 10 -30								1		limestone shale olomitic limestone	by ht gray to gray. Ene laminated 51 20-52 20m by ht brown to orange spongy alteration with breccia tion cakite veinkt abundant 53 20-51 00m massive without pyrite 51 00-56 20m fine laminated, parthy green alteration 55 00-35. 10m mdky quartz cakite vein max w=10cm with pyrite quartaxein developed with subsidiation, accopamied with pyrite an d galena. Ight gray to gray, massive with weak pyritization	<u>10-</u> <u>10-</u> 10-	
58.50 			∠ 5' -10'										limestone	light gray to gray, well laminated 59:25:59:28m quartz cakite vein with galena and brown mineral 60:00:65:00m strong fracture zone reddish brown to orange spongy vein including brocciated bost limestone 62:30:62:60m and 63:30:63:50m reddish brown akeration very strong	10-	
65.00 70 			∠ 10 -20 ∠ 20 -30						1				dolomitic limestone	dark gray to gray, nell laminated 65.00-66.00m reddish bronn spongy akeration veinkt abundant 67.10-68.10m yellon to light orange akeration 69.80-70 20m green banding developing with pyrite 70.00-70 20m reddish bronn spongy aberation	10	
					:								calcareous	73.50-73.80m silvified alteration 73.83-71.23m milky quartz vein network with pyrite 74.25-75.00m silvified alteration 75.00-78.00m weak silvified alteration 66.00-78.00m milky quartz veinkt abundant with reddish brown to orange spongy alteration dark gray, massive 78.60-81.40m reddish brown to orange to yellow spongy alteration	<u>10-</u>	
80 81.40				∠ 30 -€0 ∠ 50*									calcareous shale dolomite	strong Fe and Mnoxide abundant with pyrite quartzeakite vein remarkable Rht gray to kybt green, well bockled, sit úrd and pyrite diseminated 81.80-83.00m milky quartz (cakite) vein abundant 82.00-82.50m pyritization strong 81.10-81.30m milky quartzeakite vein 81.30-85.00m neak pyrite dissemination	10-	
85.00 			2 0° -5' 2 0° - 5	2 70° 2 10° 2 10°									limestone	light greenish gray, well fore laminated, partly with reddish brown to orange a pongy altered vein 86. 50.89.50m brown to orange spongy alteration strong 00.00.98.60m light brown to light yellowish gray, well humated 90.80m cakife vein wellom 92.50m milky quartzeak if e vein with oxide mineral, we2cm 93.50m milky quartzeak if e vein with oxide mineral, we2cm		
- 99 26 100														98,1099,20m strong sbeared zone lime done and shale fragment remaining in pulkerized matrix		


A-29

Ma	e Saria	υg,	The	ilan	đ	N	IJ	TI	И-	10)			(Scale 1/200) (3/1) (I	Depth: 1	00 m - 150 m)
		De -						ite	de -	ion	ion	ion	(Geologic Description	Result	s of Laborator
Depth (m)	Geol Column	Care Shape	Structure	Vein	magnetite	galena	sphalerite	chalcopyrite	Ferulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
														dark gray to blick, nellbanded		
-														100.00-100.70m milky quarta (cakite) veinket remarkable max. n= 2cm		
-														102.00-103.70m mAy quartz (cakże) veinkt remarkable max. n= Zem		
_														105.00-110.00m fractured part		
-			Z 10													
		ĺ										:				
-														109.50-109.70m quərtə bairline netnork	-	
-																
-	<u> </u>	1	2 30	<u> 2</u> 3'					١.					111.90m quartz vein n=6cm 112.00m quartz vein n=5cm		
-			2 10 [°]											112.00-112.50m fracture developing		
-			-20											112.50-120.00m partly line grained pyrite disseminated and partly fractured with orange to brox o Fe oxide		
																•
]		2 5 -10										shale			
120														120.00-125.00m nell bedding, partly pyrie dissemination		
]		2 10					ĺ						122.70-121.10m quartz(cakite) hairline nell developed and partly fractured with Feloxidation		
	}									Ì						
· ·	-													725.20m wilky quarta vein (u=2cm) nith pyrite		
			Z 30	2 60										125.20-126.30m quartz reinkt partly observed		
		1														
	-			z 30										128 20m pyrite vein n=1cm		
130		1				1								128-20-129.00m pyrite mineralization along fine bedding 129.00-130.00m fine grained pyrite dissemination		
	-												1	130.40-130.70m bematike vein replaced pyric in quarta vein		
				2 40										131.50-131.60m hematite-quartexein		
				k 40	ł									133.15-233 20m quartz vein n=3cm		
	-													135.60-137.80m maxive testure with weak pyritization		
		1											1	136.10-135.30m and 137.15-137.30m chrobioid porphyroblast ab unlant		
		1							İ					137.80m fine bedded nell with strong py ritization along bedding		
140		-		k 45										139.00-139.40m quartz vein filled up bacture		
	-			∠ 30 -80										111.60-112.10m quartz vein netnork dominate		
1				2 30										113.50-113.66m steined pyrite vein in quarta vein		
	-							ļ								
	<u></u>															
															1	
148.6 150			∠ 65 -90						['						- · ·	
100							<u> </u>	-	-							

A - 30

0

Î

A - 31

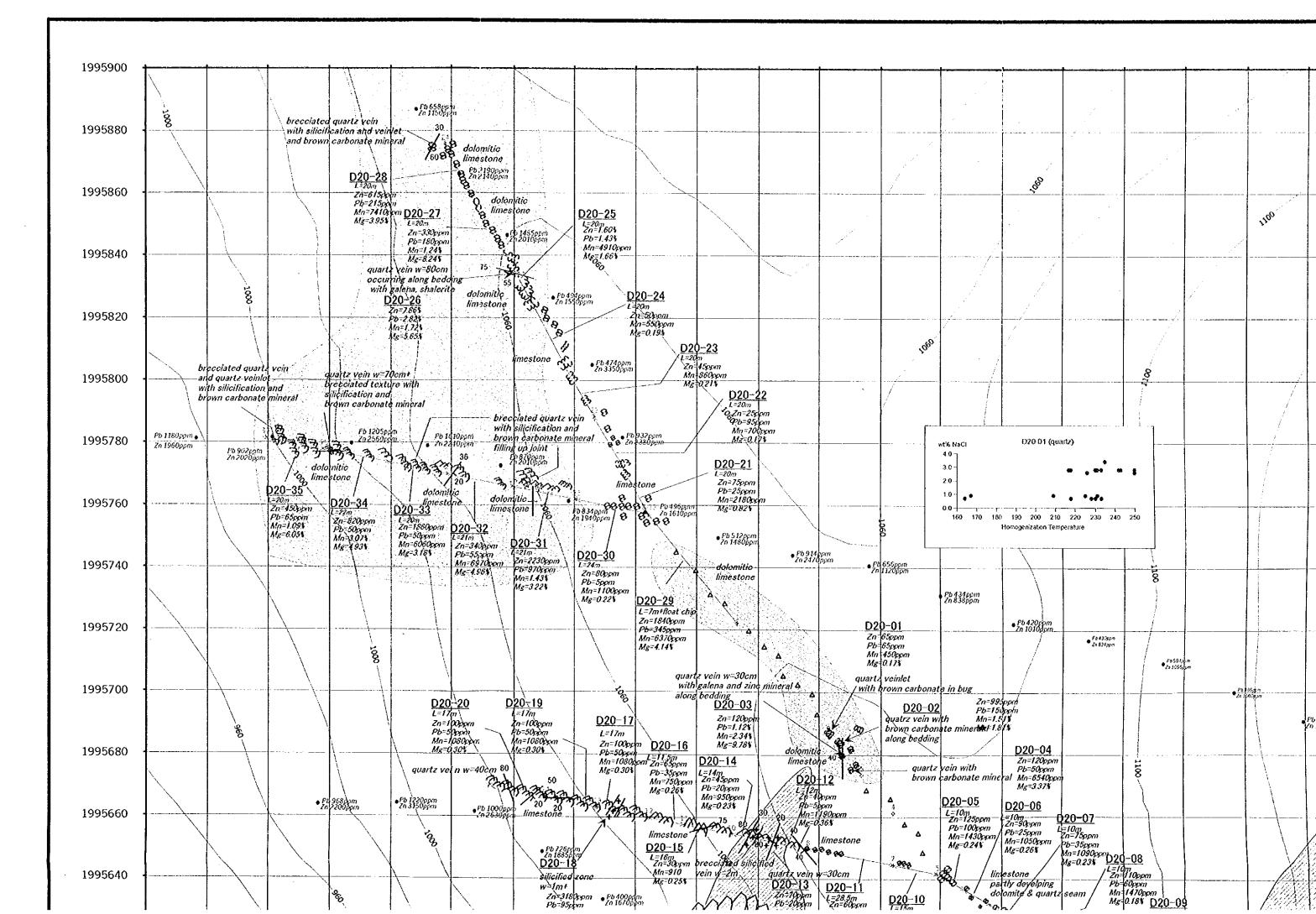
		ž						ţç	e e	ä	ц	ч	(Beologic Description	Result	s of Laborate
Depth (m)	Geol Column	Core Shap	Structure	Vein	magnetite	galena	к phalerite	chalcopyrite	Fe-sulphide	Skarnization	Silicification	Argillization	Rock	Lithology	Sample Number	
-		T											gossan	red brown to dark bronn cobbk bed of gossaa with Fe oxite		
2.50 																
-														yellynish nhite to light gray completely turned into hydrothermal aberation clay		
-														5,90-5.95m dark brown clay with so much limonite		
-		ļ	<u>;</u> 3,											1.10m gossan seam n=1cm along bedding		
		- 6	5 5											8. 10.8.50m hydrothermal breeciated silicided zone along bedding with weak limonite		
-		- 1	2 10 2 5 -10											11.10-11.50m gossan vein along beilding		
-													mudstone/ sandstone	11.90-11.95m gossan se am		
_														16.50-16.55m bematite vein W=3cm		
-		4	2 ^{0°}											16.55m Bacture nith slockeositle		
-												.				
20.40																
-														hght gray, thin bedding hydrothermal argilization moderate vertical haircracks nell developing nith manganese oxide film		
-														veri na i na uracks neu oeveroping nun manganese osore ium 20.40-28.90m hydrothermal brecciated texture nich neak sibcibcati		
			<u>2</u> 5'										mudstone	on 21.50m quart vein breccia w=1cm		
-													·	21.85-21.90m gossan vein 21.90m iliomorphic quartz growth in open crack along bedding		
-																
0			2 10													
-																
-	-															
-																
-																
-																
0	-															
-																
-																
-																
-																
-																
					1	1	1	1		1	1	1	4	1 Contract of the second se	1 1 N N	1

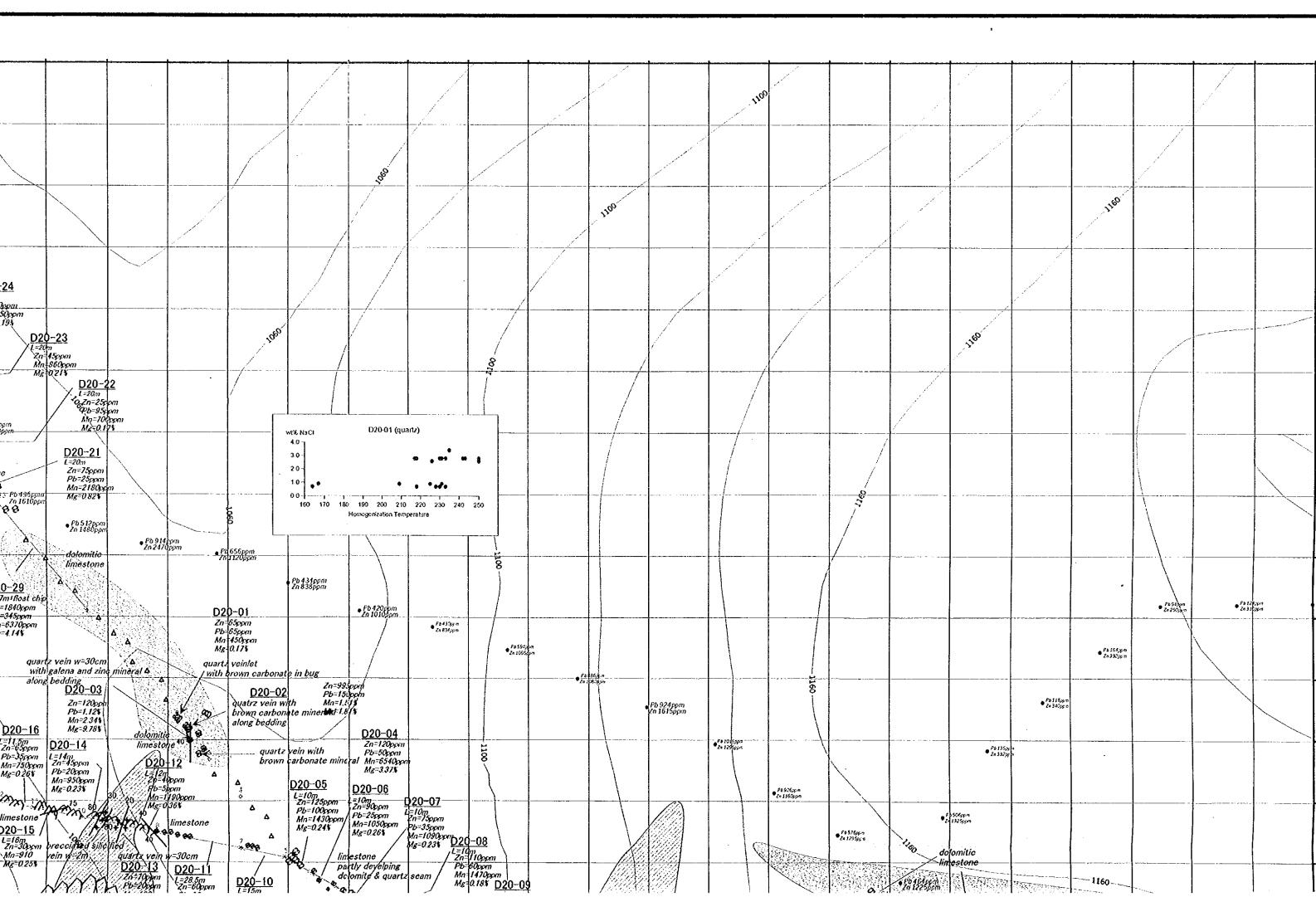
A - 32

¢.

()

Appendix 8 Homogenized temperature and salinity of fluid inclusion

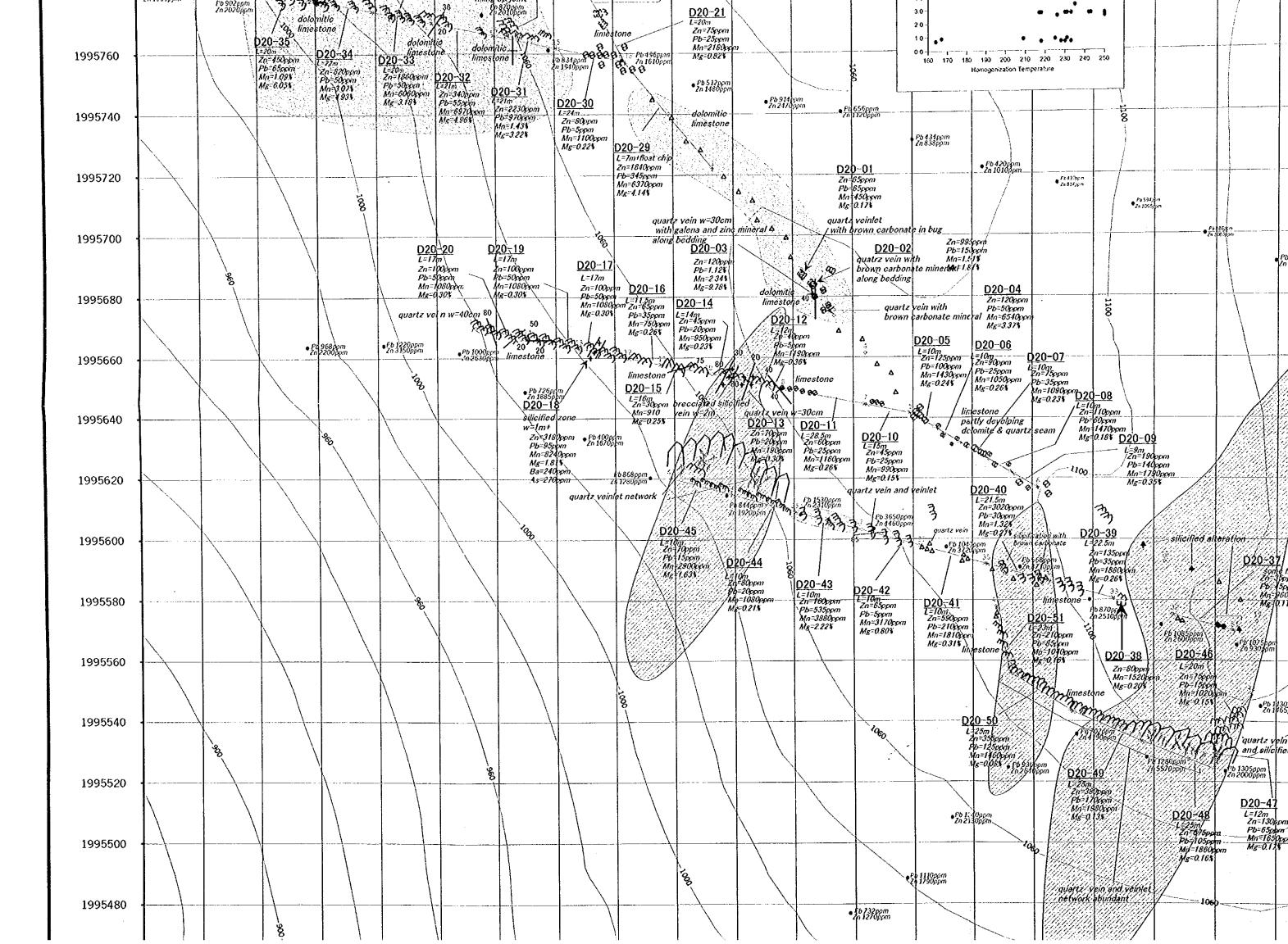

ĝ	Sample No.	Locality	Description	Mineral		2		4	5 6	6 7	8	0	<u>،</u>	7	12	13	14	5	16	17	18	19	20	21	22	23	2
	1 M.ITW-6 63 50-63 60m	Done Noi stee			288	291 2	289 2	288 33	332 28	285 262	2 292	2 291	262	262	268	331	โล	292	292	291	292	285	282	278	274	274	275
·					4.7	4.7	4.6	4.7 4.	4.7 4.	4.7 4.6	6 4.4	4.7	4.9	5.1	4.7	5.2	47	4.9	4.6	4.6	4,4	4.6	4.9	4.7	4,4	4.3	4,7
~	M.ITM-6 129.6m	Done Noi araa	secondary inclusion	, t	176	177 1	174 1	155 15	156 15	156 149	9 167	215	5 216	214	240	239	238	236	218	224	335#	334#	333#	309#	C #802	312#	
					1.6	1.6	1.4 1	1.6 1.	1.6 1.	1,4 1,4	:: •	1.4	1.60	1.4	:	4,1	1.2	1.6	1.4	1.6	1	1	,	1	1		
	M.ITM-6 1787-1788m	Done Noi area	secondary inclusion	1	186	195	149 1	189 11	174 17	171 B71	7 179	9 164	180	169	161	186	170	190	173	174	164	167	187	169	97# 1	107#	
<u>,</u>			partly multiphase		19.3	8.4	15.9 1:	13.7 11	11,7 10	10.9 10.7	7 10.3	9.1	23.3	20.6	23.1	8.4	21.4	7.8	21.7	10.8	ı	ł	ł	21.3	27.9	28.2	
.4	M TTM-7 94 90-04 95m Mars Kanai and Andrea Andrea	Mae Kensi ster		Coho la tie	222	186 1	196 2	224 21	218 239	39 208	8 209	9 208	3 217														_
,					6.8	7.9	7,8 7	7,1 6.	6.9 6.	6.9 6.6	6.8	6.6	6.6											_•			
v	M 174-7 129 (-128 2m) M - M	Mae Kani mar	acianda and access	ł	308	302	305	301 30	306 30	305 302	2 303	- S -	299	ġ	ğ	ğ	_										Γ
,					8.4	8.5	8.4 7	7.4 7.	7,2 7,4	4 7.5	8.2	7,4	7.7	8.4	8.4	8.2							•••••				
¥	M ITM-7 245 7m			ł	197	199	194		 		 					_				1	†		[Γ
<u>,</u>					7.2	7.1	6.9				<u>.</u>																
7	MJTM-8 32.80-32.85m		Mae Kanai area sacondan inclusion	0 1 1 1	148	184 1	168 1.	124 12	123 18	183 117	7 122	2 127	106	L		 										-	
				7	- 6''	2.3	2.1 2	2.3 2.	2.1 2.	2.3 8.3	3 8.1	2.1	1.9														
F	10-060	Done Noi area	Done Noi stea caccadact incine		209	230 2	231 2	233 23	230 22	226 231	1 225	5 243	3 250	242	250	231	230	233	235	217	218	164	167	228	218		
					0.9	2.8 (0.9 0	0.7 0.	0.7 2.6	6 2.8	8 0.9	2.8	2.6	2.8	2.8	0.9	0.7	2.8	3.4	2.8	2.8	0.7	0.9	0.7	0.7		
2	D20-56	Dong Noi area	Dong Noi area secondary inclusion	Duart?	204	207 2	206 2	205 21	218 224	24 204	4 201	242	: 230	242	220	218	230	321	374	373							[
		,			7.7	7.5	7 7.7	7.8 7.	7.4 7.	7.5 7.4	4 7.7	4.4	4.7	7.7	7.5	7.4	7.5	7.4	7.5	7.4							-0
																		Upper	, homo	genize	Upper: homogenized temperature	peratu	5	3	unitio		

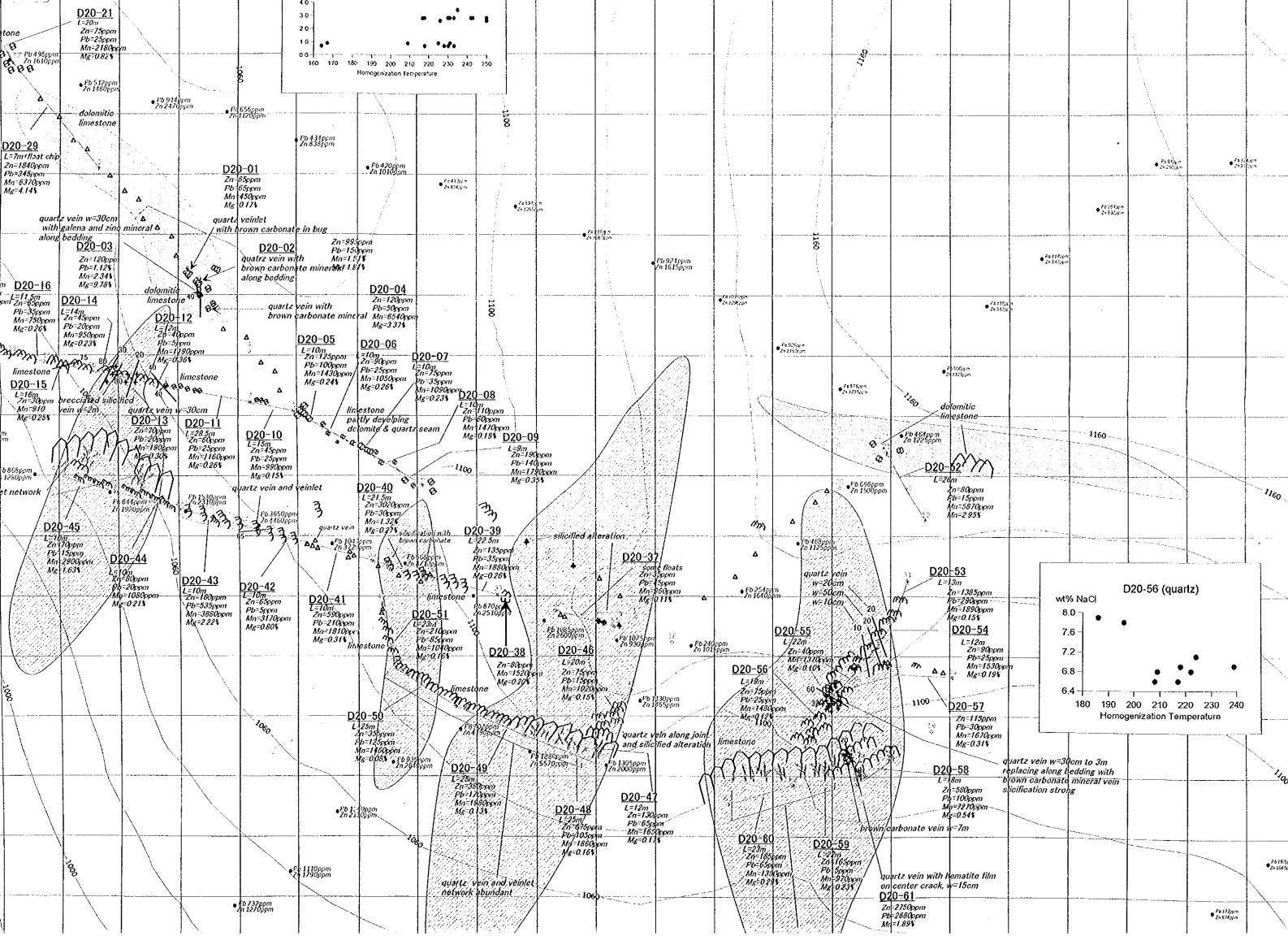

Lower: salinity unit: wt% NaCl equivalent

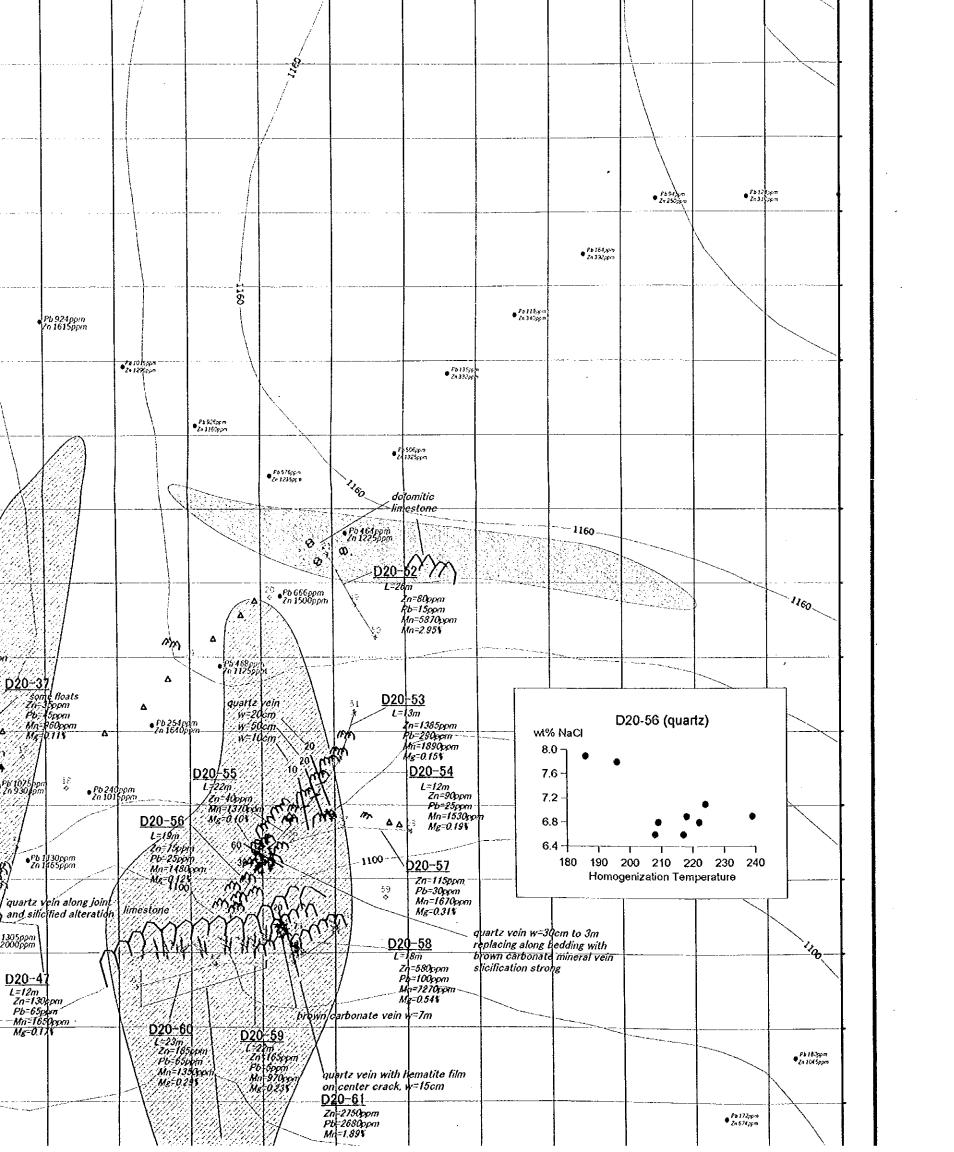
* : solid dissolution

: liquid CO₂ rich

A - 33


COOPERATIVE MINERAL EXPLORATION IN THE MAE SARIANG AREA, THAILAND

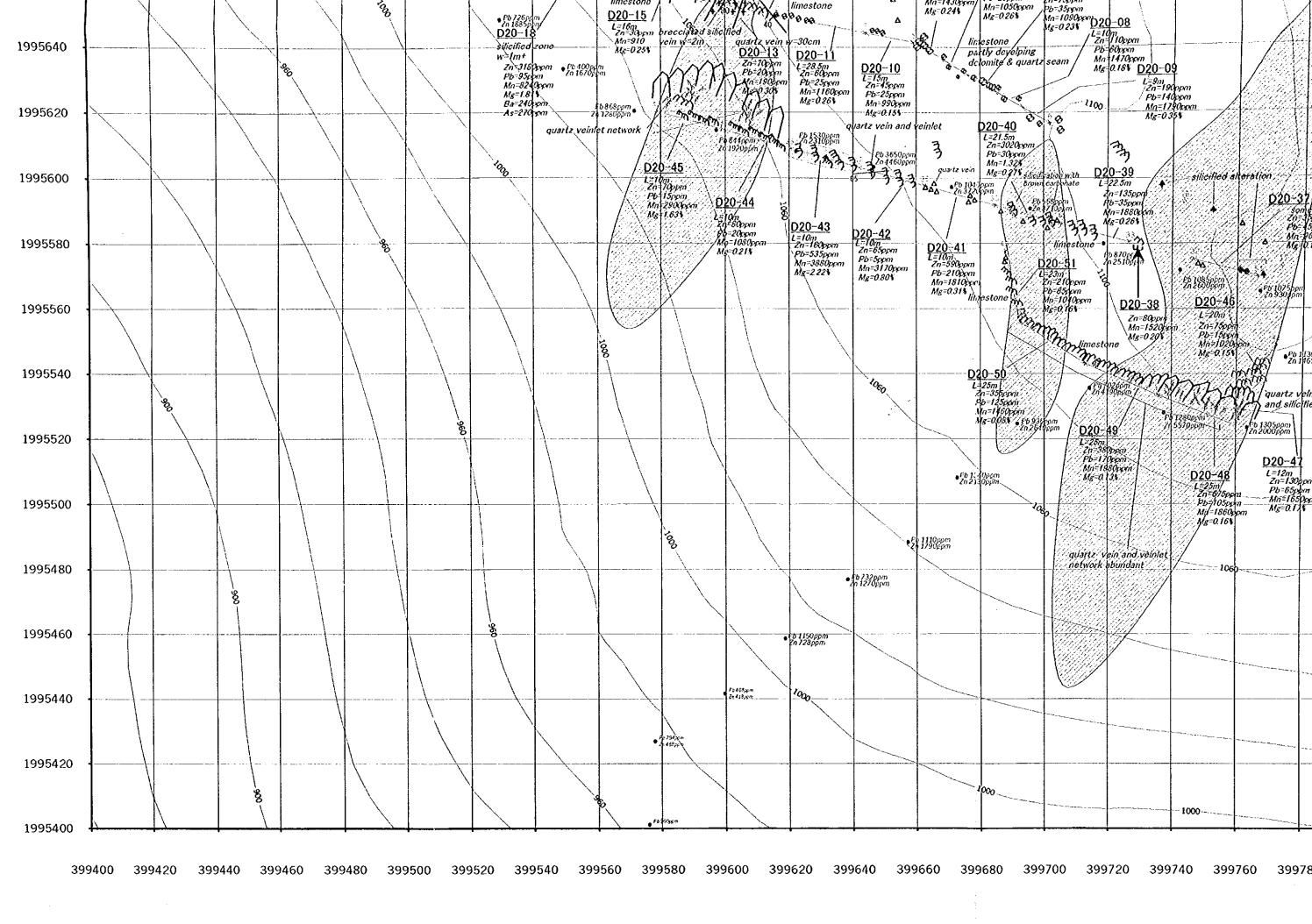

PHASE III


PLATE-1

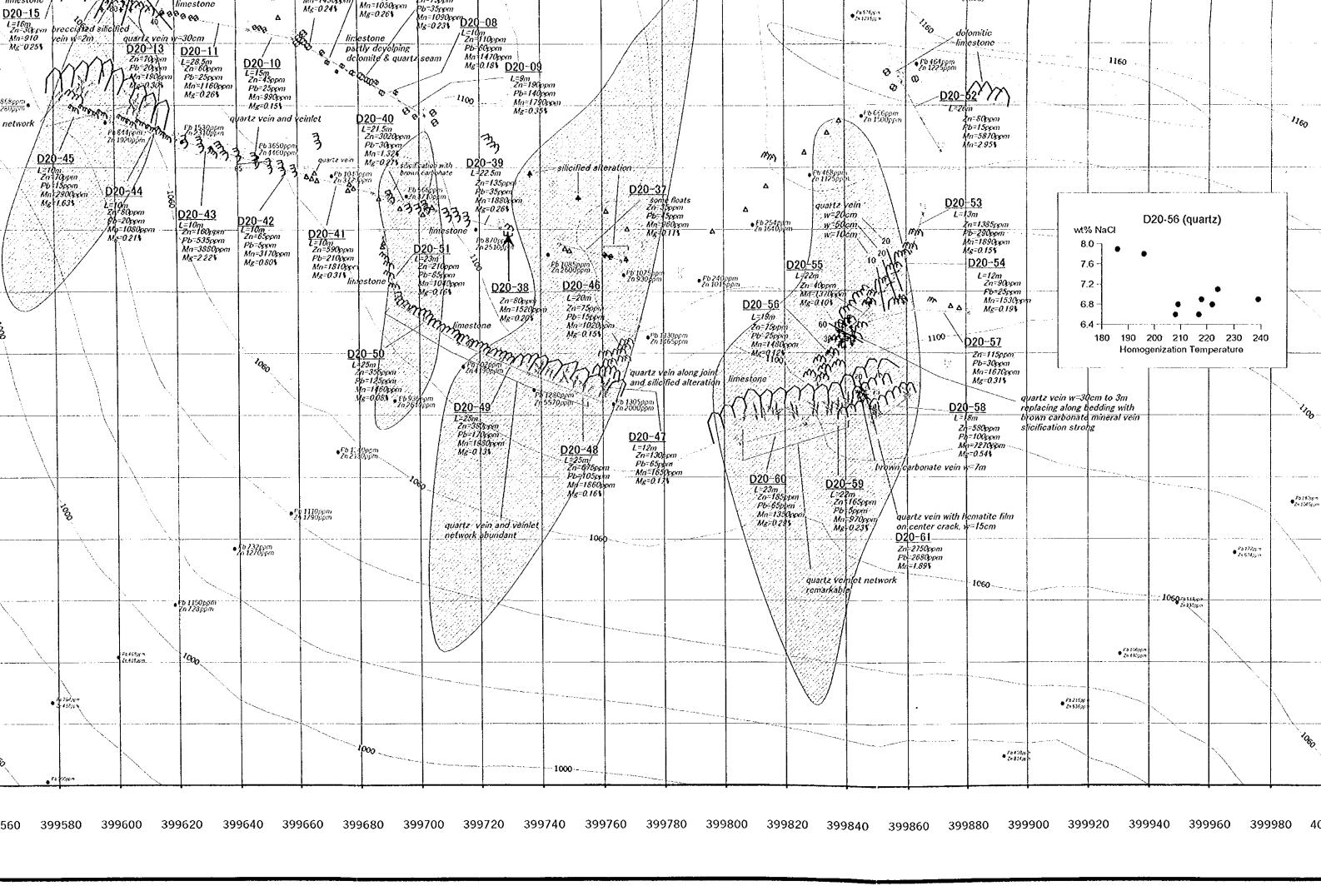
- MARCH, 2000

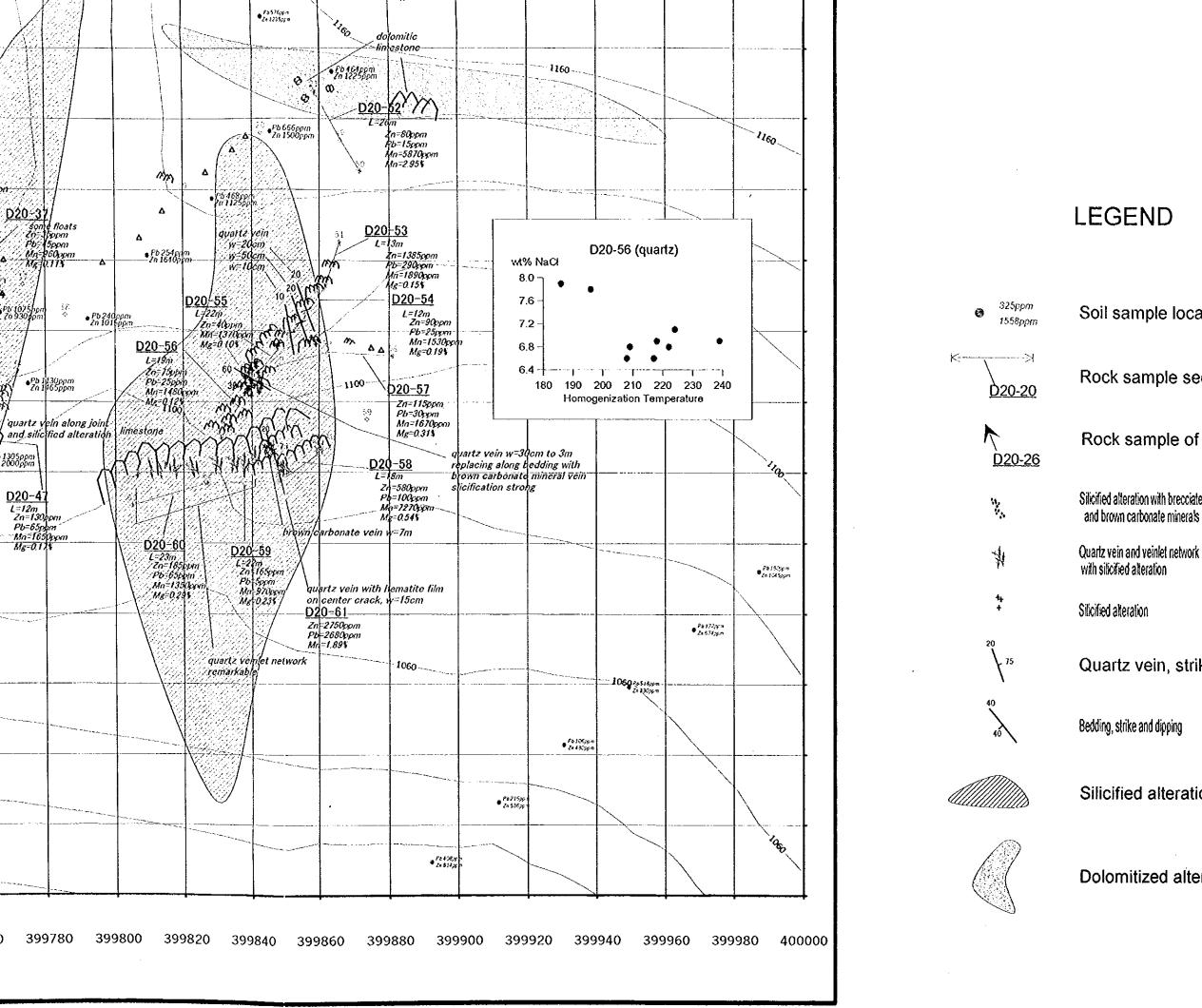
MINERAL OCCURRENCE SURVEY RESULT AT THE NORTHWESTERN PART OF THE DONG NOI AREA

LEGEND


•

325ppm Soil sample location in Second phase 1558ppm ---> Rock sample section along survey line <u>D20-20</u> Rock sample of vein and spot \land <u>D20-26</u> Silicified alteration with brecciated texture ¥, and brown carbonate minerals Quartz vein and veinlet network # with silicified alteration + Silicified alteration 20 ****


. ..


• ••

; · . .

÷

Soil sample location in Second phase

Rock sample section along survey line

Rock sample of vein and spot

Silicified alteration with brecciated lexture

Quartz vein, strike and dipping

Silicified alteration zone

Dolomitized alteration zone

.

1

.

.

۲

۲

۲

.

