THE GOVERNMENT OF MALAYSIA PRIME MINISTER'S DEPARTMENT ECONOMIC PLANNING UNIT

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA

FINAL REPORT

VOL. 5: TECHNICAL GUIDELINE

AUGUST 2000

CTI ENGINEERING INTERNATIONAL CO., LTD. IN ASSOCIATION WITH PASCO INTERNATIONAL, INC. JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE GOVERNMENT OF MALAYSIA PRIME MINISTER'S DEPARTMENT ECONOMIC PLANNING UNIT

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA

FINAL REPORT

VOL. 5: TECHNICAL GUIDELINE

JULY 2000

CTI ENGINEERING INTERNATIONAL CO., LTD. IN ASSOCIATION WITH PASCO INTERNATIONAL, INC.

ESTIMATE OF PROJECT COST

Price Level	:	As of May 1999
Currency Conversion Rate	:	US\$1.00 = RM 3.8 = 121.4 Yen

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA

LIST OF REPORTS

VOLUME 1	:	SUMMARY
VOLUME 2	:	MAIN REPORT
PART 1	:	DRAINAGE STRUCTURE PLAN
PART 2	:	FEASIBILITY STUDY
VOLUME 3	:	SUPPORTING REPORT (DRAINAGE STRUCTURE PLAN)
SECTOR I	:	HYDROLOGY
SECTOR II	:	REGIONAL DEVELOPMENT FRAMEWORK AND LAND USE
SECTOR III	:	SOIL AND GEOLOGY
SECTOR IV	:	URBAN DRAINAGE IMPROVEMENT PLAN
SECTOR V	:	RIVER CHANNEL IMPROVEMENT PLAN
SECTOR VI	:	DESIGN, CONSTRUCTION PLAN AND COST ESTIMATE OF PROPOSED FACILITIES
SECTOR VII	:	INSTITUTIONAL ASPECTS OF URBAN DRAINAGE
SECTOR VIII	:	ECONOMIC EVALUATION
SECTOR IX	:	ENVIRONMENTAL EVALUATION
VOLUME 4	:	SUPPORTING REPORT (FEASIBILITY STUDY)
SECTOR I	:	HYDROLOGY
SECTOR II	:	LAND USE
SECTOR III	:	SOIL AND GEOLOGY
SECTOR IV	:	URBAN DRAINAGE IMPROVEMENT PLAN
SECTOR V	:	RIVER CHANNEL IMPROVEMENT PLAN
SECTOR VI	:	DESIGN, CONSTRUCTION PLAN AND COST ESTIMATE OF PROPOSED FACILITIES
SECTOR VII	:	INSTITUTIONAL SETUP PLAN
SECTOR VIII	:	ECONOMIC EVALUATION
SECTOR IX	:	ENVIRONMENTAL EVALUATION
VOLUME 5	:	TECHNICAL GUIDELINE
VOLUME 6	:	DATA BOOK

TABLE OF CONTENTS

GLOSSARY

CHAPTER 1. INTRODUCTION

1.1	Purpose 1-1
1.2	Scope
1.3	Objectives and Design Scale of Urban Drainage Improvement 1-4
Bibli	iography 1-6

CHAPTER 2. SURVEY

2.1	Genera	1	2-1
2.2	Topogr	aphic and Land Use Survey	2-1
2.3	Survey	on Drainage Channels	
2.4	Survey	on Drainage Facilities	
2.5	Survey	on Infiltration Capacity of Ground Surface	
	2.5.1	Procedure	
	2.5.2	Field Reconnaissance on Topographic Conditions	
	2.5.3	Field Test on Soil and Ground Water	
	2.5.4	Field Test on Infiltration Capacity	
	2.5.5	Estimation on Design Infiltration Capacity	
Bibli	ography		2-11

CHAPTER 3. HYDROLOGICAL AND HYDRAULIC ANALYSIS

3.1	Genera	l
3.2	Storm 1	Rainfall Analysis
	3.2.1	Purpose of Analysis
	3.2.2	Collection of Rainfall Gauging Data 3-3
	3.2.3	Estimation of Probable Rainfall Intensity
	3.2.4	Development of Rainfall Intensity-Duration Curves
	3.2.5	Conversion of Point Rainfall Intensity to
		Areal Average Rainfall Intensity
	3.2.6	Development of Design Hyetograph
3.3	Flood I	Runoff Analysis
	3.3.1	Purpose of Analysis
	3.3.2	Division to Sub-drainage Basins and
		Sub-drainage Channel Sections
	3.3.3	Estimation of Effective Rainfall Intensity 3-12
	3.3.4	Estimation of Flood Concentration Time
	3.3.5	Estimation of Basin Run-off Discharge 3-14
	3.3.6	Estimation of Channel Flow Discharge 3-16

	3.4	•	is on Regulation Effect by Flood Detention and ion Facilities	3-17
		3.4.1	Purpose of Analysis	3-17
		3.4.2	Classification of Flood Detention and Retention Facilities	3-18
		3.4.3	Hydraulic Design for On-site Storage Type of Detention Facility	3-19
		3.4.4	Hydraulic Design for Off-site Storage Type of Detention Facility	3-21
		3.4.5	Hydraulic Design for Infiltration Type of Retention Facility	3-22
		3.4.6	Estimation of Design Flood Discharge	3-22
	Bibl	iography	,	3-24
CHAPTER 4.	PLA	NNING		
	4.1	Planni	ng Concept	4-1
	4.2	Planni	ng Procedures	4-5
		4.2.1	Overall Planning Procedures	4-5
		4.2.2	Drainage System Layout	4-6
		4.2.3	Configuration of Alternatives	4-7
	4.3	Alterna	ative Measures	4-8
		4.3.1	Channel Improvement	4-8
		4.3.2	Flood Detention/Retention	4-10
		4.3.3	Flood Retarding Basin	4-19
		4.3.4	Particular Structural Measures for Drainage in Low-lying Area	4-20
		4.3.5	Erosion and Sediment Control	4-21
		4.3.6	Non-structural Measures	4-30
	4.4	Optim	um Combination of Drainage Improvement Measures	4-32
	4.5	Rehabi	ilitation of Existing Drainage Facilities	4-33
	Bibl	iography	7	4-36
CHAPTER 5.	DES	IGNIN	G	
	5.1	Genera	1	5-1
	5.2	Draina	ge Channel	5-1
	5.3	Flood	Detention Ponds and Flood Retarding Basin	5-4
	5.4	Storage	e Facility in Public Open Space	5-13
	5.5	Storage	e Tank in an Individual House Lot	5-17
	5.6	Draina	ge Pump	5-24
	5.7	Gate		5-30

(ii)

CHAPTER 6. MAINTENANCE

	6.1	General	. 6-1
	6.2	Required Maintenance Works	. 6-1
	Bibli	iography	. 6-4
CHAPTER 7	INS	FITUTIONAL AND LEGAL ASPECTS	
	7.1	Functional Responsibility for Urban Drainage Works	. 7-1
	7.2	Funding and Cost Recovery Measures	. 7-4
	7.3	Enforcement Capacity	. 7-5
APPENDIX :	FLO	OD DETENTION AND RETENTION POND IN JAPAN	

LIST OF TABLES

Table 2.1	Assessment by Topographic Classification and Infiltration Capacity 2-9
Table 2.2	Calculation Formula of Specific Capacity for Various Type of Infiltration Facility
Table 3.1	Probable Rainfall Intensities Estimated by Formula of Gumbel
	Distribution (at Bayan Lepas, Penang) 3-5
Table 3.2	Constants Develop for Rainfall Intensity-duration Curves
	(at Bayan Lepas, Penang)
Table 3.3	Conformity of Rainfall Intensity-duration Curves
	(at Bayan Lepas, Penang) 3-5
Table 3.4	Conversion Factors of Point Rainfall to Areal Average Rainfall 3-7
Table 3.5	Standard Values of Factors for Rainfall Loss
Table 3.6	Coefficient of "C" Value
Table 3.7	Classification of Flood Detention Facility
Table 4.1	Natural Hydrological Function in River System 4-2
Table 4.2	Alternative Measures for Urban Drainage Improvement 4-7
Table 4.3	Structural Type of Detention Pond
Table 4.4	Storage Potential of On-Site Storage
Table 4.5	Typical Retention Facilities of Water Spreading
Table 4.6	Possibility of Facility Installation for Multiple Use of Detention Pond 4-16
Table 4.7	Comparison of Typical Values for Stormwater Discharges
Table 4.8	Temporary Structural Measures for Control of Raindrop Erosion,
	Sheet Erosion and Rill Erosion
Table 4.9	Permanent Structural Measures for Control of Raindrop Erosion,
	Sheet Erosion and Rill Erosion
Table 4.10	Results of Actual Measurement of Sediment Runoff Volume
Table 4.11 Table 4.12	Possible Non-Structural Measures

Table 5.1	Cross-sectional Design Standards 5	5-3
Table 5.2	Applicable Design for Rehabilitation of Existing Flood Detention Pond 5	5-5
Table 5.3	Summary of Characteristics by Type of Detention Pond 5	5-7
Table 5.4	Down Pipe's Diameter and Corresponding Roof Area 5-	23
Table 5.5	Connecting Pipe's Diameter and Corresponding Roof Area5-	23
Table 5.6	General Comparison on Pump Type5-	26
Table 5.7	General Characteristics of Typical Gates	31
Table 6.1	Maintenance Items of Detention Pond	5-3
Table 7.1	Drainage Policy and Programme7-	2
Table 7.2	Functional Responsibility for Drainage Facility7-	3
Table 7.3	Sources of Funding and Cost Recovery Measures7-	4
Table 7.4	Enabling Low and Relevant Enforcement Agency7-	6

LIST OF FIGURES

Fig. 2.1	Procedure of Assessment for Infiltration Capacity	2-4
Fig. 2.2	Testing Facility of Brothel	2-6
Fig. 2.3	Curve of Infiltration Rate	2-7
Fig. 3.1	Process of Hydraulic and Hydrological Analysis	3-1
Fig. 3.2	Procedure to Develop Design Hyetograph	3-2
Fig. 3.3	Gumbel Distribution of Annual Maximum Rainfall at Bayan Lepas,	
	Penang	3-6
Fig. 3.4	Procedure to Estimate Design Flood Hydrograph	3-9
Fig. 3.5	Example of Division of A Drainage Basin to Sub-drainage Basins	
	(Sungai Petani Drainage Area)	3-10
Fig. 3.6	Example of Flood Runoff Simulation Model	
	(Sungai Petani Drainage Area)	3-11
Fig. 3.7	Relationship between Concentration Time and Catchment Area	3-14
Fig. 3.8	Relationship between Concentration Time and Effective Rainfall Intensity	3-14
Fig. 3.9	Runoff Mechanism	3-15
Fig. 3.10	Results of Experiment on Relationship between Storage Coefficient and	nd
	Flood Lag Time in Japan	3-15
Fig. 3.11	Flood Lag Time "T1" and Concentration Time "tc"	3-16
Fig. 3.12	Conceptual Procedures for Estimation of Design Flood Discharge and	l
	Hydraulic Design for Flood Detention and Retention Facilities	3-18
Fig. 3.13	Concept of Storage Tank in a House Lot	3-19
Fig. 3.14	Concept of Storage Facility in Public Open Space	3-20
Fig. 3.15	Concept of Flood Detention Pond	3-21
Fig. 3.16 Fig. 3.17	Outflow and Infiltration Discharge form an Infiltration Facility Conceptual Diagram for Estimation of Design Flood Discharge	

Fig. 4.1	Planning Concept for Allowable Design Discharge out if Drainage Area 4-3
Fig. 4.2	Step-wise Planning and Advantage of Detention / Retention Strategy 4-4
Fig. 4.3	Overall Planning Procedures 4-5
Fig. 4.4	Conceptual Layout of Drainage System 4-6
Fig. 4.5	Conceptual Configuration of Alternative Measures for
	Drainage Improvement 4-8
Fig. 4.6	Stormwater Detention / Retention Facilities 4-10
Fig. 4.7	Relationship between Storage Depth and Ponding Area / Catchment Area,
	Based on Existing Detention Ponds in Yokohama City, Japan 4-12
Fig. 4.8	Resident's Request for Multiple Usage of Detention Pond 4-15
Fig. 4.9	Typical Drainage Conditions of Low-lying Area
Fig. 4.10	Typical Measures for Erosion and Sediment Control 4-22
Fig. 4.11	Sketch of Temporary Drainage Control Facilities
Fig. 4.12	Disaster Management Cycle
Fig. 4.13	Conceptual Layout for Rehabilitation of Existing Detention Pond 4-34
Fig. 5.1	Procedure for Formulating Channel Plan 5-1
Fig. 5.2	General Layout of Natural Pond 5-8
Fig. 5.3	General Layout of Surface Lining Pond 5-9
Fig. 5.4	General Layout of Multistage Lining Pond
Fig. 5.5	Typical In / Outlet Structure of Detention Pond
Fig. 5.6	Side Overflow Weir
Fig. 5.7	General Layout of Storage System in Public Open Space
Fig. 5.8	Typical Infiltration / Permeable System
Fig. 5.9	Typical Pipe Arrangement for Heavy Rainfall
Fig. 5.10	Device to Separate First Flash Rainwater
Fig. 5.11	Location of Storage Tank
Fig. 5.12	Storage Tank with Multifunction
Fig. 5.13	Storage Tank with Infiltration Function
Fig. 5.14	Drainage Capacity Allocation between Pump and Regulation Pond 5-24
Fig. 5.15	General Layout of Stationary Type Pumping System
Fig. 5.16	General Layout of Movable Type Pumping System
Fig. 5.17	General Layout of Unit Type Pumping System
Fig. 5.18	General Profiles of Typical Gate

GLOSSARY (1/4)

1.	Combined Sewer Overflow (CSO)	The CSO is a flow from a combined sewer in excess of the interceptor capacity that is discharged into a receiving water.
2.	Combined Sewage	The combined sewerage contains both domestic sewage and surface water or stormwater, with or without industrial wastes. It includes flow in heavily infiltrated sanitary sewer systems as well as combined sewer systems.
3.	Combined Sewer	The combined sewer is a sewer to receive both intercepted surface runoff and municipal sewage.
4.	Design Flood	The design flood is the probable flood runoff discharge which has a recurrence probability of the adopted design scale and is subject to regulation effect by the proposed drainage facilities.
5.	Design Hyetograph	The design hyetograph is the hyetograph of probable storm rainfall which corresponds to the design scale.
6.	Design Scale	The design scale is expressed in a term of recurrence probability of storm rainfall and used as a standard for designing of the proposed drainage structures.
7.	Diversion Channel	The diversion channel is a ditch or conduit designed to bypass floodwaters around or away from a specific area.
8.	Domestic Sewage	The domestic sewerage is derived principally from dwellings, business buildings, institutions, and the like. It may or may not contain groundwater.
9.	Drainage Pumping Station	The drainage pumping station is placed at or near the line-of-protection in order to discharge interior flows over or through the levees or flood-walls (or through pressure lines) when free outflow through gravity outlets is hindered by exterior stages.
10.	Exterior Stage	The exterior stage is a water surface level on the unprotected (exterior) side of the line-of-protection.
11.	First Flush Flood	The first flush flood is a storm sewer discharge or combined sewer overflow at beginning of a flood which tends to contain a disproportionately high pollutant load.
12.	Flood Detention	The flood detention is to store storm runoff and gradually release it toward the downstream through a control structure or other release mechanism
13.	Flood Retention	The flood retention is to store storm runoff but not release it toward the downstream. The stormwater stored is released only via evaporation and infiltration. When the stormwater stored is slowly released over an extended period of several days or more, such storing and releasing mechanism is also referred to as extended flood retention.

GLOSSARY (2/4)

14.	Flood Storage Pond:	The flood detention pond is the off-site storage facility to store the flood runoff discharge from a rather extensive catchment area and reduce its peak discharge. The flood discharge stored is release by the mechanism of flood detention, flood retention or their combination.
15.	Gabion	The gabion is a rock-filled wire cage used on stream for erosion control and construction of dams and other structures.
16.	Gravity Outlet	The gravity outlet is such as a culvert, conduit, or other similar conveyance opening through the line-of-protection that permit discharge of interior floodwaters through the line-of-protection by gravity when the exterior stages are lower than interior stages. It is usually equipped with a gate to prevent river flows from entering the protected area during time of high exterior stages.
17.	Gully Erosion	The soil on a slope is eroded by rainfall or flood stream. This soil erosion brings about numerous rills on the slope at beginning (called as rill erosion). These rills are gradually developed to be a deeper V shape gully in progress of the soil erosion. This soil erosion developed from the rill erosion is called as the gully erosion. The gully erosion tends to occur on a slope which contains a large quantity of clay particularly in a collapsed land or bare land.
18.	Infiltration Facility	The function of infiltration facility is to make stormwater to disperse and/or infiltrate from the surface and/or shallow portion of the ground into the unsaturated stratum.
<i>19</i> .	Interceptor	The interceptor is a sewer that receives dry-weather flow from a number of transverse combined sewers and additional predetermined quantities of intercepted surface runoff and conveys such waters to a point for treatment.
20.	Interior Stage	Water level on the protected side of the line-of-protection.
21.	Municipal Sewage	Sewage from a community which may be composed of domestic sewage, industrial wastes, or both.
22.	Non-point Source	The non-point source is any unconfined and non-discrete source from which pollutants are or may be discharged.
23.	Non-sewered urban runoff	The non-sewered urban runoff is a part of surface runoff in an urban drainage area reaching a stream or other body of water without passing through a sewer system.
24.	Off-site Storage	The function of the off-site storage is to store stormwater runoff from a rather extensive catchment area and reduce the peak runoff discharge.

25.	On-site Storage	The function of on-site storage is to store the storm rainfall within a limited compound and reduce the peak runoff of the storm rainfall.
26.	Oxidation Pond	The oxidation pond is a basin (generally 0.6 to 1.8 m deep) used for detention of wastewater before final disposal effecting biological oxidation of organic matter by natural or artificially accelerated transfer of oxygen to the water from air.
27.	Point Source	The point source is any discernible, confined, and discrete source from which pollutants are or may be discharged.
28.	Quick Disposal of Flood	Quick disposal of flood is a concept on urban drainage improvement that aims at draining the stormwater out of the objective drainage area as soon as possible.
29.	Regulation Pond	The regulation pond is to temporarily storage interior floodwater which is drained through the line-of-protection when the exterior water level drops below the storage water level of the pond. The regulation pond is usually placed near the gravity outlets, pumping stations, or pressure conduits in low-lying area.
30.	Rill Erosion	The soil on a slope is eroded by rainfall or flood stream. This soil erosion brings about numerous rills on the slope at beginning. This type of soil erosion is called as rill erosion.
31.	Sanitary Sewer	The sanitary sewer is a sewer that carries liquid and water-carried wastes disposed from residences, commercial buildings, industrial plants, and institutions, together with relatively low quantities of surface flow.
32.	Sheet Erosion	The sheet erosion is a type of soil erosion such that almost same soil depth of an entire slope surface is eroded by flood flow.
33.	Sediment Basin	The sediment basin is a facility to collect and store the sediment runoff.
34.	Sediment Detention	The sediment detention is one of functions by sediment basin. The function of sediment detention is to store sediment runoff and gradually release it toward the downstream through a control structure or other release mechanism
35.	Sediment Retention	The sediment detention is one of functions by sediment basin. The function of the sediment retention is to store sediment runoff but not release it toward the downstream.
36.	Sewer	The sewer is a pipe or conduit to carry sewage or other waste liquids.

GLOSSARY (4/4)

37.	Sewerage	The sewerage is a piping system with appurtenances to collect and convey wastewater.
38.	Source Control of Flood	Source control of flood is a concept on urban drainage improvement that aims at detaining and/or retaining the stormwater within the objective drainage area.
39.	Standard Project Flood	The standard project flood is the probable flood runoff discharge which has a recurrence probability of the adopted design scale and is subject to no regulation effect by any proposed basin flood control facility.
40.	Storage Facility in Public open Space	A public open space such as a sport ground and a car parking space is enclosed by a low wall to collect the rainfall from the public compound and reduce the peak runoff of the storm rainfall. The stormwater stored is release by the mechanism of flood detention, flood retention or their combination.
41.	Storage Tank in an Individual House Lot	A storage tank is installed in an individual house lot to collect the rainfall from house rooftop to reduce the peak runoff of the storm rainfall. The stormwater stored is released by the mechanism of flood detention, flood retention or their combination.
42.	Storm Sewer	The storm sewer is a sewer that carries intercepted surface runoff, street wash and other wash waters, or drainage, but excludes domestic sewage and industrial wastes.
43	Sump	The sump is to trap coarse sediment contained in drainage channel flow. The sump is a temporary facility made available during a land development work and usually placed at the inflection points of the channel where the sediment in the drainage channel flow is hardly transported by gravity flow.
44.	Sediment Trap	The sediment trap aims at storing and settling sediment-laden water at the land development site of less than 2ha. The sediment trap is temporarily constructed by direct excavation of the ground and used as a temporary facility during a land development work.
45.	Sediment Basin	The sediment basin aims at storing and settling laden water at the land development site of more than 2ha. The sediment basin is used as a temporary or permanent structure which is constructed by direct excavation or embankment equipped with spillway and outlet facility.