Table I-5 Parameters for Land Use Categories Applied to Flood Simulation Model

|                    | Parameters of Quasi Li                                                     | Parameters of Quasi Liner Storage Type Model | Concentration Time "Tc" (min./km²) | e "Tc" (min./km²)              | Peak Discharge (m3/s/km²)                             | e (m3/s/km²)                  |
|--------------------|----------------------------------------------------------------------------|----------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------------|-------------------------------|
| Land Use Item      | Coefficient "C" of Basin<br>Characteristics Applied<br>to Kadoya's Formula | Runoff Coefficient "F"                       | Return Period of<br>1/5 year       | Return Period of<br>1/100 year | Return Period of 1/5 Return Period of 1/100 year year | Return Period of<br>1/00 year |
| Residential Area   | 120                                                                        | 0.85                                         | 0.4                                | 0.3                            | 33                                                    | 49                            |
| Commercial Area    | 06                                                                         | 06.0                                         | 0.3                                | 0.2                            | 38                                                    | 55                            |
| Industrial Area    | 120                                                                        | 0.80                                         | 0.4                                | 0.3                            | 31                                                    | 46                            |
| Institutional Area | 120                                                                        | 0.80                                         | 0.4                                | 0.3                            | 31                                                    | 46                            |
| Recreation Area    | 200                                                                        | 0.30                                         | 1.0                                | 8.0                            | 6                                                     | 15                            |
| Nature Areas       | 290                                                                        | 0.35                                         | 1.8                                | 1.4                            | 9                                                     | 12                            |
| Paddy              | 1,000                                                                      | 0.90                                         | 5.9                                | 4.5                            | 8                                                     | 16                            |
| Dry Crop           | 210                                                                        | 0.45                                         | 1.0                                | 8.0                            | 12                                                    | 20                            |
| Road               | 09                                                                         | 0.95                                         | 0.3                                | 0.2                            | 40                                                    | 58                            |

Table I-6 (1/2) Features of River Channels Applied to Flood Runoff Simulation Model (for Sungai Petani)

|            |              |                | Channel | Average          | Average        | Manning's                |      | rs of Storage | Channel    |
|------------|--------------|----------------|---------|------------------|----------------|--------------------------|------|---------------|------------|
|            | River        | Channel<br>No. | Length  | Channel<br>Width | Channel<br>Bed | Roughness<br>Coefficient |      | on Model      | Travelling |
|            |              | NO.            | _       |                  | Gradient       | "n"                      | K    | P             | Time       |
|            |              |                | (m)     | (m)              |                |                          |      |               | (hour)     |
| Lalang     | Main Stream  | CLA- 1         | 1,750.0 | 6                | 1/ 300         | 0.035                    | nil  | nil           | 0.23       |
|            |              | CLA- 2         | 2,328.0 | 6                | 1/ 700         | 0.035                    | nil  | nil           | 0.31       |
| 1          |              | CLA- 3         | 1,362.0 | 16               | 1/ 850         | 0.035                    | 1.2  | 0.6           | 0.18       |
|            |              | CLA- 4         | 1,549.0 | 40               | 1/ 850         | 0.035                    | 1.9  | 0.6           | 0.20       |
| Ì          | Line A       | CLA- 5         | 3,526.5 | 5                | 1/ 230         | 0.015                    | nil  | nil           | 0.47       |
|            | Bakap        | CLA- 6         | 1,204.5 | 14               | 1/ 300         | 0.035                    | 0.7  | 0.6           | 0.16       |
|            |              | CLA- 7         | 2,840.5 | 7                | 1/ 1300        | 0.015                    | nil  | nil           | 0.38       |
| Tukang     | Main Stream  | CTU- 1         | 1,800.0 | 12               | 1/ 800         | 0.015                    | nil  | nil           | 0.24       |
|            |              | CTU- 2         | 300.0   | 4                | 1/ 1000        | 0.035                    | nil  | nil           | 0.04       |
|            |              | CTU- 3         | 1,800.0 | 25               | 1/ 5000        | 0.035                    | 3.1  | 0.6           | 0.24       |
| Layar      | Main Stream  | CLB- 1         | 2,000.0 | 4                | 1/ 500         | 0.015                    | nil  | nil           | 0.26       |
| Besar      |              | CLB- 2         | 1,800.0 | - 16             | 1/ 800         | 0.035                    | 1.5  | 0.6           | 0.24       |
| Che Bima   | Main Stream  | CCB- 1         | 1,330.0 | 4                | 1/ 1000        | 0.015                    | nil  | nil           | 0.18       |
|            |              | CCB- 2         | 1,170.0 | 8                | 1/ 1000        | 0.015                    | nil  | nil           | 0.15       |
| Sg. Petani | Main Stream  | CPE- 1         | 500.0   | 6                | 1/ 700         | 0.035                    | nil  | nil           | 0.07       |
| Ĭ          |              | CPE- 2         | 400.0   | 6                | 1/ 700         | 0.035                    | nil  | nil           | 0.05       |
|            | į            | CPE- 3         | 1,004.0 | 9                | 1/ 700         | 0.035                    | 0.6  | 0.6           | 0.13       |
|            |              | CPE- 4         | 803.0   | 14               | 1/ 3500        | 0.035                    | 1.0  | 0.6           | 0.11       |
|            |              | CPE- 5         | 1,000.0 | 12               | 1/ 3500        | 0.035                    | 1.2  | 0.6           | 0.13       |
|            |              | CPE- 6         | 400.0   | 17               | 1/ 7500        | 0.035                    | 0.7  | 0.6           | 0.05       |
|            |              | CPE- 7         | 1,082.0 | 24               | 1/ 7500        | 0.035                    | 2.1  | 0.6           | 0.14       |
|            |              | CPE- 8         | 788.0   | 45               | 1/ 7500        | 0.035                    | 2.0  | 0.6           | 0.10       |
|            |              | CPE- 9         | 730.0   | 69               | 1/ 7500        | 0.035                    | 2.1  | 0.6           | 0.10       |
|            |              | CPE- 10        | 4,193.0 | 79               | 1/ 7500        | 0.035                    | 13.0 | 0.6           | 0.55       |
|            | Pasir Kechil | CPE- 11        | 849.2   | 5                | 1/ 270         | 0.035                    | nil  | nil           | 0.11       |
|            | Line A1      | CPE- 12        | 1,300.0 | 12               | 1/710          | 0.035                    | 0.9  | 0.6           | 0.17       |
|            |              | CPE- 13        | 900.0   | 2                | 1/610          | 0.035                    | nil  | nil           | 0.12       |
|            | Line A       | CPE- 14        | 800.0   | 3                | 1/ 220         | 0.035                    | nil  | nil           | 0.11       |
| }          | Line G       | CPE- 15        | 1,400.0 | 6                | 1/ 270         | 0.035                    | nil  | nil           | 0.19       |
|            | Air Mendideh | CPE- 16        | 1,079.0 | 6                | 1/ 380         | 0.035                    | nil  | nil           | 0.14       |
|            |              | CPE- 17        | 1,121.0 | 11               | 1/ 740         | 0.035                    | 0.8  | 0.6           | 0.15       |
|            | Gelegpr      | CPE- 18        | 1,950.0 | 11               | 1/ 1250        | 0.035                    | 1.6  | 0.6           | 0.26       |
| Pasir      | Main Stream  | CPA- 1         | 1,400.0 | 9                | 1/ 1250        | 0.035                    | nil  | nil           | 0.19       |
|            |              | CPA- 2         | 2,800.0 | 13               | 1/ 2000        | 0.035                    | 2.8  | 0.6           | 0.37       |
|            | 1            | CPA- 3         | 700.0   | 9                | 1/ 770         | 0.035                    | 0.5  | 0.6           | 0.09       |
|            |              | CPA- 4         | 1,600.0 | 7                | 1/ 770         | 0.035                    | 1.0  | 0.6           | 0.21       |
|            |              | CPA- 5         | 1,100.0 | 12               | 1/ 770         | 0.035                    | 0.8  | 0.6           | 0.15       |
|            |              | CPA- 6         | 2,354.0 | 36               | 1/ 2000        | 0.035                    | 3.6  | 0.6           | 0.31       |

Table I-6 (2/2) Features of River Channels Applied to Flood Runoff Simulation Model (for Melaka)

|        |                   |          | Channel | Average | Average   | Manning's   |         | of Storage | Channel    |
|--------|-------------------|----------|---------|---------|-----------|-------------|---------|------------|------------|
| 1      | River             | Channel  | Length  | Channel | Channel   | Roughness   | Functio | Г          | Travelling |
|        |                   | No.      |         | Width   | Bed       | Coefficient | K       | P          | Time       |
|        |                   |          | (m)     | (m)     | Gradient  | "n"         |         |            | (hour)     |
| Lereh  | Main Stream       | CLE- 1   | 3,000.0 | 18      | 1/ 3,750  | 0.035       | 4.2     | 0.6        | 0.40       |
|        | Udang             | CLE- 2   | 2,700.0 | 7       | 1/ 300    | 0.020       | 0.9     | 0.6        | 0.36       |
|        |                   | CLE- 3   | 4,300.0 | 7       | 2. 0.0    | 0.035       | 2.7     | 0.6        | 0.57       |
|        | S. Gajah          | CLE- 4   | 1,800.0 | 10      | 1/ 1,000  | 0.035       | 1.3     | 0.6        | 0.24       |
| Marim  | Main Stream       | CMA- 1   | 2,194.5 | 58      | 1/ 12,200 | 0.020       | 5.0     | 0.6        | 0.29       |
|        | Ayer Salak        | CMA- 2   | 1,200.0 | 46      | 1/ 500    | 0.020       | 1.0     | 0.6        | 0.16       |
|        |                   | CMA- 3   | 1,800.0 | 28      | 1/ 600    | 0.020       | 1.2     | 0.6        | 0.24       |
| İ      |                   | CMA- 4   | 1,800.0 | 23      | 1/ 2,000  | 0.020       | 1.6     | 0.6        | 0.24       |
|        | Bertam Ulu        | CMA- 5   | 600.0   | 8       | 1/ 240    | 0.350       | nil     | nil        | 0.08       |
|        | Ayer Hitam        | CMA- 6   | 650.0   | 20      | 1/ 240    | 0.020       | 0.3     | 0.6        | 0.09       |
| 1      |                   | CMA- 7   | 900.0   | 20      | 1/ 700    | 0.020       | 0.6     | 0.6        | 0.12       |
|        | 1                 | CMA-8    | 1,600.0 | 20      | 1/ 700    | 0.020       | 1.0     | 0.6        | 0.21       |
|        |                   | CMA- 9   | 1,500.0 | 20      | 1/ 3,800  | 0.020       | 1.6     | 0.6        | 0.20       |
| Melaka | Main Stream (1)*1 | CME- 1   | 915.2   | 100     | 1/ 2,000  | 0.020       | 1.5     | 0.6        | 0.12       |
|        | Main Stream (2)*2 | CME- 2   | 2,200.0 | 26      | 1/ 3,000  | 0.020       | 2.4     | 0.6        | 0.29       |
|        |                   | CME- 3*3 | 1,800.0 | 26      | 1/ 3,000  | 0.035       | 2.7     | 0.6        | 0.24       |
|        |                   | CME- 4   | 1,200.0 | 26      | 1/ 6,000  | 0.035       | 2.2     | 0.6        | 0.16       |
|        |                   | CME- 5   | 1,000.0 | 28      | 1/ 7,000  | 0.035       | 2.0     | 0.6        | 0.13       |
| İ      |                   | CME- 6   | 2,200.0 | 28      | 1/ 10,000 | 0.035       | 4.9     | 0.6        | 0.29       |
|        |                   | CME- 7   | 800.0   | 26      | 1/ 10,000 | 0.035       | 1.7     | 0.6        | 0.11       |
|        |                   | CME- 8   | 1,600.0 | 38      | 1/ 10,000 | 0.035       | 4.0     | 0.6        | 0.21       |
|        |                   | CME- 9   | 800.0   | 32      | 1/ 10,000 | 0.035       | 1.9     | 0.6        | 0.11       |
| ļ      |                   | CME- 10  | 2,000.0 | 40      | 1/ 10,000 | 0.035       | 5.2     | 0.6        | 0.26       |
| Cheng  | Main Stream       | CCH- 1   | 2,000.0 | 33      | 1/ 4,000  | 0.035       | 3.6     | 0.6        | 0.26       |
|        | S. Bangsal        | CCH- 2   | 2,200.0 | 5       | 1/ 1,000  | 0.035       | nil     | nil        | 0.29       |
| l      | Paya Rumput       | CCH- 3   | 1,400.0 | 6       | 1/ 530    | 0.035       | nil     | nil        | 0.19       |
|        | Arang             | CCH- 4   | 2,400.0 | 5       | 1/ 1,000  | 0.035       | nil     | nil        | 0.32       |
|        | Jeram             | CCH- 5   | 2,400.0 | 18      | 1/ 1,300  | 0.020       | 1.7     | 0.6        | 0.32       |
|        | Jenuang           | CCH- 6   | 1,800.0 | 6       | 1/ 1,000  | 0.035       | nil     | nil        | 0.24       |
| Putat  | Air Kero          | CPU- 1   | 1,400.0 | 10      | 1/ 300    | 0.035       | nil     | nil        | 0.19       |
| İ      | Main Stream       | CPU- 2   | 875.0   | 8       | 1/ 200    | 0.035       | nil     | nil        | 0.12       |
|        |                   | CPU- 3   | 1,425.0 | 13      | 1/ 900    | 0.035       | 1.1     | 0.6        | 0.19       |
| 1      |                   | CPU- 4   | 2,400.0 | 16      | 1/ 2,500  | 0.035       | 2.8     | 0.6        | 0.32       |
| 1      |                   | CPU- 5   | 1,800.0 |         | 1/ 2,000  | 0.035       | 2.4     | 0.6        | 0.24       |

Note:

<sup>\*1</sup> Upstream from diversion point up to confluence with Cheng river

<sup>\*2</sup> Downstream from diversion point

<sup>\*3</sup> The channel meets with Putat river

Table I-7 (1/2) Present and Future Basin Run-off Discharge (Sg. Petani)

| River       | Sub-basin No.    | Catchment    | 5-year ret | urn period |          | turn period |
|-------------|------------------|--------------|------------|------------|----------|-------------|
|             |                  | Area (km2)   | Present    | Future     | Present  | Future      |
| Lalang      | LA- 1            | 2.29         | 25         | 53         | 39       | 78          |
|             | LA- 2            | 2.53         | 28         | 67         | 43       | 97          |
|             | LA- 3<br>LA- 4   | 3.47<br>2.73 | 35<br>29   | 108<br>69  | 55<br>46 | 156<br>101  |
|             | LA- 4<br>LA- 5   | 1.14         | 14         | 35         | 21       | 50          |
|             | LA- 6            | 2.88         | 34         | 94         | 52       | 135         |
|             | LA- 7            | 1.18         | 5          | 7          | 6        | 11          |
|             | LA- 8            | 2.39         | 46         | 46         | 68       | 68          |
|             | LA- 9            | 3.17         | 66         | 104        | 97       | 150         |
|             | LA- 10           | 1.80         | 35         | 60         | 52       | 86          |
|             | LA- 11           | 0.95         | 14         | 25         | 20       | 36          |
| Tukang      | TU- 1            | 1.35         | 11         | 13         | 16       | 18          |
|             | TU- 2            | 1.45         | 24         | 46         | 35       | 67          |
|             | TU- 3            | 0.49         | 5 4        | 17         | 9<br>5   | 25<br>9     |
|             | TU- 4<br>TU- 5   | 0.18<br>2.09 | 61         | 7<br>61    | 89       | 89          |
|             | TU- 6            | 0.89         | 23         | 29         | 34       | 41          |
|             | TU- 7            | 1.48         | 26         | 50         | 39       | 71          |
| Layar Besar | LB- 1            | 0.66         | 20         | 22         | 29       | 32          |
| •           | LB- 2            | 1.32         | 37         | 41         | 53       | 59          |
|             | LB- 3            | 0.94         | 27         | 31         | 38       | 45          |
|             | LB- 4            | 0.85         | 10         | 30         | 15       | 42          |
| Che Bima    | CB- 1            | 1.25         | 17         | 41         | 27       | 59          |
|             | CB- 2            | 1.19         | 12         | 39         | 20       | 56          |
| S. Petani   | CB- 3<br>PE- 1   | 0.83<br>1.60 | 14<br>27   | 28<br>51   | 21<br>41 | 73          |
| S. Petani   | PE- 1<br>PE- 2   | 0.28         | 9          | 10         | 12       | 14          |
|             | PE- 3            | 1.43         | 37         | 45         | 53       | 64          |
|             | PE- 4            | 1.41         | 42         | 44         | 60       | 64          |
|             | PE- 5            | 0.41         | 6          | 14         | 10       | 21          |
|             | PE- 6            | 0.96         | 22         | 32         | 32       | 47          |
|             | PE- 7            | 1.32         | 20         | 39         | 31       | 56          |
|             | PE- 8            | 0.78         | 22         | 27         | 32       | 39          |
|             | PE- 9            | 0.48         | 6          | 16         | 10       | 23          |
|             | PE- 10           | 0.82         | 17         | 27         | 25       | 39          |
|             | PE- 11           | 0.62         | 19         | 21         | 27<br>22 | 30<br>34    |
|             | PE- 12<br>PE- 13 | 1.55<br>0.76 | 15<br>16   | 24<br>26   | 24       | 37          |
|             | PE- 13<br>PE- 14 | 1.13         | 10         | 15         | 17       | 21          |
|             | PE- 15           | 0.32         | 12         | 12         | 17       | 16          |
|             | PE- 16           | 0.90         | 29         | 31         | 42       | 44          |
|             | PE- 17           | 0.55         | 14         | 19         | 20       | 27          |
|             | PE- 18           | 0.46         | 13         | 16         | 19       | 22          |
|             | PE- 19           | 1.98         | 13         | 15         | 19       | 21          |
|             | PE- 20           | 1.21         | 17         | 30         | 26       | 43          |
|             | PE- 21           | 0.21         | 8          | 8          | 11       | 11          |
|             | PE- 22           | 0.43         | 11         | 15         | 16<br>36 | 21<br>36    |
|             | PE- 23<br>PE- 24 | 0.71<br>1.18 | 25<br>37   | 25<br>39   | 53       | 56          |
|             | PE- 24<br>PE- 25 | 1.16         | 28         | 38         | 41       | 55          |
|             | PE- 25           | 1.08         | 34         | 38         | 49       | 55          |
|             | PE- 27           | 0.45         | 16         | 16         | 22       | 23          |
|             | PE- 28           | 1.46         | 41         | 42         | 59       | 60          |
|             | PE- 29           | 1.30         | 42         | 42         | 60       | 61          |
|             | PE- 30           | 0.91         | 30         | 30         | 43       | 43          |
|             | PE- 31           | 0.39         | 13         | 14         | 19       | 20          |
|             | PE- 32           | 2.70         | 79         | 84         | 116      | 122         |
|             | PE- 33           | 1.95         | 45         | 60         | 66       | 87          |
| D:-         | PE- 34           | 4.84         | 81         | 124        | 121      | 181         |
| Pasir       | PA- 1            | 0.76         | 17         | 25         | 25<br>98 | 35<br>156   |
|             | PA- 2            | 3.61<br>1.36 | 65<br>34   | 107<br>46  | 50<br>50 | 66          |
|             | PA- 3<br>PA- 4   | 2.40         | 68         | 78         | 98       | 112         |
|             | PA- 4<br>PA- 5   | 1.05         | 9          | /8<br>9    | 12       | 112         |
|             | PA- 6            | 1.44         | 32         | 32         | 46       | 46          |
|             | PA- 7            | 3.91         | 61         | 107        | 92       | 157         |
|             | PA- 8            | 2.27         | 24         | 50         | 37       | 73          |
|             | PA- 9            | 1.76         | 51         | 56         | 74       | 82          |
|             | PA- 10           | 4.88         | 44         | 130        | 69       | 189         |

Table I-7 (2/2) Present and Future Basin Run-off Discharge (Melaka)

|              | <del></del> | I                       | Catchment    | 5-year ret | urn period | 100-year re | turn period |
|--------------|-------------|-------------------------|--------------|------------|------------|-------------|-------------|
| Ri           | ver         | Sub-basin No.           | Area (km2)   | Present    | Future     | Present     | Future      |
| Leleh        | Udang       | UD- 1                   | 3.85         | 45         | 106        | 72          | 162         |
|              |             | UD- 2                   | 7.34         | 94         | 160        | 154         | 249         |
| l            |             | UD- 3                   | 4.02         | 102        | 103        | 157         | 159         |
|              | S. Gajah    | GA- 1                   | 5.83         | 38         | 129        | 73          | 203         |
|              |             | GA- 2                   | 1.34         | 12<br>17   | 13<br>23   | 22<br>27    | 24<br>35    |
|              |             | GA- 3<br>GA- 4          | 1.02<br>0.67 | 10         | 10         | 17          | 17          |
|              | Leleh       | LE- 1                   | 10.75        | 85         | 202        | 152         | 325         |
| Malim        | Ayer Salak  | AS- 1                   | 8.48         | 91         | 210        | 155         | 328         |
|              |             | AS- 2                   | 3.37         | 33         | 80         | 56          | 122         |
|              |             | AS- 3                   | 3.15         | 27         | 72         | 49          | 112         |
|              |             | AS- 4                   | 1.68         | 20         | 45         | 34          | 68          |
|              | Ayer Hitam  | AH- 1                   | 9.53         | 58         | 240        | 111         | 377         |
|              |             | AH- 2                   | 2.62         | 31         | 71         | 52          | 108         |
|              |             | AH- 3<br>AH- 4          | 1.50<br>1.04 | 15<br>18   | 35<br>27   | 27<br>28    | 54<br>42    |
|              |             | AH- 4<br>AH- 5          | 2.24         | 28         | 68         | 47          | 103         |
|              |             | AH- 6                   | 2.10         | 18         | 21         | 33          | 37          |
|              | Malim       | MA- 1                   | 4.64         | 65         | 132        | 107         | 201         |
| ł            |             | MA- 2                   | 2.26         | 28         | 59         | 48          | 90          |
|              |             | MA- 3                   | 2.76         | 26         | 51         | 46          | 82          |
|              |             | MA- 4                   | 4.16         | 63         | 126        | 102         | 190         |
|              |             | MA- 5                   | 2.40         | 31         | 53         | 52          | 82          |
| Melaka (1)*1 | Melaka      | UM- 1                   | 4.97         | 64         | 121        | 107         | 188         |
|              |             | UM- 2                   | 3.61         | 65         | 98         | 103         | 149         |
|              |             | UM- 3                   | 0.42         | 10         | 16         | 14          | 23          |
| Melaka (2)*2 | Melaka      | ME- 1                   | 0.80         | 14         | 25         | 21          | 37          |
|              |             | ME- 2                   | 3.89         | 61<br>20   | 67<br>28   | 97<br>30    | 107<br>42   |
|              |             | ME- 3<br>ME- 4          | 2.25<br>0.86 | 44         | 64         | 69          | 96          |
|              |             | ME- 5                   | 2.36         | 54         | 69         | 83          | 104         |
|              |             | ME- 6                   | 2.40         | 53         | 68         | 83          | 103         |
|              |             | ME- 7                   | 0.45         | 14         | 15         | 21          | 22          |
|              |             | ME- 8                   | 1.83         | 38         | 56         | 60          | 84          |
|              |             | ME- 9                   | 2.25         | 36         | 68         | 59          | 103         |
|              |             | ME- 10                  | 1.43         | 34         | 45         | 52          | 66          |
|              |             | ME- 11                  | 0.52         | 13         | 17         | 19          | 25<br>16    |
|              |             | ME- 12<br>ME- 13        | 0.33<br>0.51 | 9<br>13    | 11<br>17   | 13<br>20    | 16<br>25    |
|              |             | ME- 13<br>ME- 14        | 0.31         | 13         | 17         | 20          | 22          |
|              |             | ME- 15                  | 0.45         | 27         | 29         | 40          | 43          |
|              |             | ME- 16                  | 1.00         | 24         | 30         | 36          | 44          |
|              | <u> </u>    | ME- 17                  | 1.10         | 29         | 35         | 43          | 52          |
| Cheng        | S. Bangsal  | SB- 1                   | 1.29         | 20         | 42         | 32          | 62          |
|              | .           | SB- 2                   | 1.40         | 15         | 42         | 27          | 63          |
|              | Arang       | AR-1                    | 2.89         | 23         | 33         | 44          | 58<br>100   |
|              |             | AR- 2<br>AR- 3          | 2.16<br>1.78 | 20<br>26   | 66<br>53   | 35<br>43    | 100<br>79   |
|              | Jenuang     | JN- 1                   | 6.85         | 37         | 49         | 76          | 93          |
|              | - vug       | JN- 2                   | 2.80         | 21         | 44         | 40          | 72          |
|              |             | JN- 3                   | 12.81        | 69         | 135        | 138         | 232         |
|              |             | JN- 4                   | 2.63         | 22         | 76         | 41          | 116         |
|              | Cheng       | CH- 1                   | 2.29         | 26         | 61         | 43          | 93          |
| Putat        | Putat       | PU- 1                   | 2.31         | 19         | 21         | 33          | 35          |
|              |             | PU- 2                   | 0.68         | 8          | 12         | 13          | 18          |
|              |             | PU- 3<br>PU- 4          | 0.91         | 24<br>21   | 26<br>21   | 36<br>34    | 39<br>34    |
|              |             | PU- 4<br>PU- 5          | 2.03<br>1.00 | 17         | 17         | 27          | 27          |
|              |             | PU- 6                   | 3.36         | 83         | 95         | 128         | 143         |
|              |             | PU- 7                   | 3.66         | 66         | 80         | 103         | 124         |
|              |             | PU- 8                   | 5.60         | 93         | 125        | 148         | 194         |
|              |             | PU- 9                   | 3.56         | 57         | 99         | 89          | 151         |
| Minor        |             | CD- 1                   | 0.97         | 26         | 33         | 39          | 48          |
| Basin        | ļ           | CD- 2                   | 0.44         | 14         | 16         | 20          | 23          |
|              |             | CD- 3                   | 2.14         | 43         | 69         | 68          | 103         |
|              |             | CD- 4                   | 3.71         | 54         | 111<br>29  | 89<br>27    | 168<br>43   |
|              |             | CD- 5                   | 0.87         | 17<br>13   | 19         | 19          | 28          |
|              |             | (1)-6                   |              |            |            |             |             |
|              |             | CD- 6<br>CD- 7          | 0.56<br>2.45 |            |            |             |             |
|              |             | CD- 6<br>CD- 7<br>CD- 8 | 2.45<br>0.77 | 24<br>21   | 49<br>24   | 43<br>32    | 78<br>36    |

Note: \*1 Upstream from Diversion point \*2 Downstream from Diversion point

Table I-8 (1/2) Present and Future Channel Flow Discharge (Sg. Petani)

|            | River        | Channnel | 5- year Ret | turn Period | 100- year R | eturn Period |
|------------|--------------|----------|-------------|-------------|-------------|--------------|
|            | River        | No.      | Present     | Future      | Present     | Future       |
| Lalang     | Main Stream  | CLA-1    | 44          | 100         | 70          | 149          |
|            |              | CLA-2    | 66          | 164         | 101         | 245          |
|            |              | CLA-3    | 199         | 393         | 304         | 592          |
|            |              | CLA-4    | 193         | 372         | 296         | 556          |
|            | Line A       | CLA-5    | 55          | 138         | 85          | 203          |
|            | Bakap        | CLA-6    | 50          | 51          | 72          | 74           |
|            |              | CLA-7    | 92          | 131         | 137         | 191_         |
| Tukang     | Main Stream  | CTU-1    | 32          | 56          | 47          | 80           |
|            |              | CTU-2    | 39          | 75          | 58          | 107          |
|            |              | CTU-3    | 67          | 91          | 105         | 139          |
| Laya Besar | Main Stream  | CLB-1    | 49          | 54          | 72          | 79           |
|            |              | CLB-2    | 61          | 69          | 92          | 106          |
| Che Bima   | Main Stream  | CCB-1    | 26          | 67          | 42          | 98           |
|            |              | CCB-2    | 33          | 78          | 53          | 115          |
| Petani     | Main Stream  | CPE-1    | 135         | 192         | 201         | 286          |
|            |              | CPE-2    | 154         | 222         | 233         | 330          |
|            |              | CPE-3    | 167         | 238         | 251         | 352          |
|            |              | CPE-4    | 168         | 238         | 255         | 354          |
|            |              | CPE-5    | 170         | 236         | 256         | 350          |
|            |              | CPE-6    | 185         | 249         | 282         | 373          |
|            |              | CPE-7    | 183         | 245         | 279         | 367          |
|            |              | CPE-8    | 199         | 259         | 311         | 400          |
|            |              | CPE-9    | 220         | 277         | 348         | 433          |
|            |              | CPE-10   | 196         | 239         | 325         | 390          |
|            | Pasil Kechil | CPE-11   | 31          | 51          | 46          | 74           |
| ļ          | Line A1      | CPE-12   | 61          | 68          | 91          | 102          |
|            |              | CPE-13   | 67          | 82          | 101         | 122          |
| İ          | Line A       | CPE-14   | 38          | 58          | 57          | 85           |
|            | Line G       | CPE-15   | 28          | 42          | 40          | 59           |
|            | Air Mendidih | CPE-16   | 55          | 67          | 81          | 98           |
|            |              | CPE-17   | 68          | 79          | 103         | 119          |
|            | Gelugor      | CPE-18   | 58          | 58          | 86          | 88           |
| Pasir      | Main Stream  | CPA-1    | 77          | 123         | 115         | 181          |
|            |              | CPA-2    | 103         | 133         | 159         | 206          |
|            |              | CPA-3    | 120         | 145         | 185         | 225          |
| l          |              | CPA-4    | 138         | 196         | 211         | 303          |
|            |              | CPA-5    | 149         | 202         | 233         | 313          |
|            |              | CPA-6    | 165         | 231         | 262         | 367          |

Table I-8 (2/2) Present and Future Channel Flow Discharge (Melaka)

|        | Dima            | Channnel | 5- year Ret | turn Period | 100- year Ro | eturn Period |
|--------|-----------------|----------|-------------|-------------|--------------|--------------|
|        | River           | No.      | Present     | Future      | Present      | Future       |
| Lereh  | Main Stream     | CLE-1    | 172         | 299         | 334          | 540          |
|        | Udang           | CLE-2    | 112         | 204         | 191          | 331          |
| İ      |                 | CLE-3    | 134         | 164         | 227          | 281          |
|        | S.Gajah         | CLE-4    | 47          | 119         | 93           | 195          |
| Marim  | Main Stream     | CMA-1    | 261         | 538         | 507          | 969          |
|        | Ayer Salak      | CMA-2    | 91          | 210         | 155          | 328          |
|        |                 | CMA-3    | 97          | 222         | 174          | 352          |
|        |                 | CMA-4    | 116         | 235         | 210          | 402          |
|        | Bertam ULU      | CMA-5    | 58          | 240         | 111          | 377          |
|        | Ayer Hytam      | CMA-6    | 76          | 247         | 143          | 399          |
|        |                 | CMA-7    | 81          | 248         | 153          | 402          |
|        |                 | CMA-8    | 83          | 245         | 158          | 389          |
|        |                 | CMA-9    | 92          | 252         | 174          | 405          |
| Melaka | Main Stream(1)* | CME-1    | 221         | 408         | 425          | 720          |
|        | Main Stream(2)* | CME-2    | 14          | 25          | 21           | 37           |
|        |                 | CME-3    | 82          | 108         | 141          | 180          |
|        |                 | CME-4    | 210         | 280         | 380          | 503          |
|        |                 | CME-5    | 208         | 279         | 382          | 498          |
|        |                 | CME-6    | 208         | 264         | 387          | 481          |
| İ      |                 | CME-7    | 211         | 262         | 393          | 478          |
|        |                 | CME-8    | 211         | 262         | 393          | 478          |
|        |                 | CME-9    | 206         | 253         | 384          | 466          |
|        |                 | CME-10   | 200         | 245         | 377          | 456          |
| Cheng  | Main Stream     | CCH-1    | 184         | 333         | 368          | 581          |
|        | S.Bangsal       | CCH-2    | 27          | 66          | 47           | 101          |
|        | Paya Rumput     | CCH-3    | 37          | 90          | 69           | 144          |
| ]      | Arang           | CCH-4    | 48          | 102         | 90           | 168          |
|        | Jeram           | CCH-5    | 50          | 69          | 102          | 128          |
|        | Jenuang         | CCH-6    | 121         | 217         | 245          | 375          |
| Putat  | Ayer Keroh      | CPU-1    | 22          | 27          | 39           | 44           |
|        | Main Stream     | CPU-2    | 71          | 76          | 117          | 124          |
|        |                 | CPU-3    | 171         | 192         | 294          | 329          |
|        |                 | CPU-4    | 171         | 192         | 294          | 329          |
|        |                 | CPU-5    | 163         | 193         | 283          | 346          |

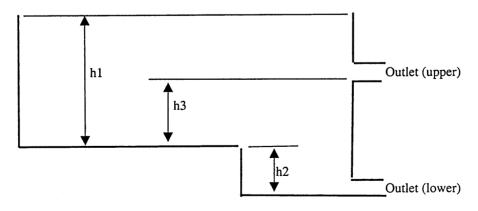

Note: \*1 Upstream from Diversion point \*2 Downstream from Diversion point

Table I-9 Structures Features of Flood Regulation Facilities

|     | Description                      | Unit              | Storage in        | Storage in    | 1           | etention          |
|-----|----------------------------------|-------------------|-------------------|---------------|-------------|-------------------|
|     |                                  |                   | House Lot         | Public Space  |             | ond               |
| (1) | Unit Lot Space                   | (m <sup>2</sup> ) | 200               | 20,000        | 4,0         | 000               |
| (2) | Catchment Area/Unit              |                   |                   |               |             | •                 |
|     | (2-1) Area                       | $(m^2)$           | 100*1             | 20,000        | 1000        | )00* <sup>3</sup> |
|     | (2-2) Land Use                   |                   | Roof in Resident- | Institutional | Projecte    | ed Built-         |
|     |                                  |                   | ial Area          | Area          | up /        | Area              |
| (3) | Design Flood Level               |                   | _                 | _             | _           |                   |
|     | (3-1) Return Period              | (year)            | 5                 | 5             | 5           | 100               |
|     | (3-2) Max. Rainfall Intensity    | (mm/hr)           | 85                | 85            | 85          | 132               |
|     | (3-3) Rainfall Volume            | $(m^3/km^2)$      | 137               | 137           | 137         | 237               |
|     | (3-4) Runoff Volume              | $(m^3/km^2)$      | 130               | 109           | 123         | 213               |
|     | (3-5) Runoff Coefficient         |                   | 0.95              | 0.80          | 0.90        | 0.90              |
|     | (3-6) Peak Inflow Discharge      | $(m^3/s/km^2)$    | 44                | 31            | 38          | 55                |
|     | (3-7) Peak Outflow Discharge     | $(m^3/s/km^2)$    | 29                | 5             | 6           | 12                |
| (4) | Storage Capacity/Unit            |                   |                   |               |             |                   |
|     | (4-1) Area                       | $(m^2)$           | 2                 | 4,000*2       | 4,00        | 00* <sup>4</sup>  |
|     | (4-2) Height (h1) *5             | (m)               | 1                 | 0.3           | 3           | .2                |
|     | (4-3) Volume                     | $(m^3)$           | 2                 | 1,200         | 12,         | 800               |
| (5) | Outlet (lower)                   |                   |                   |               |             |                   |
| l   | (5-1) Width of Outlet Hole       | (m)               | 0.04              | 0.20          | Ĭ           | 32                |
|     | (5-2) Height of Outlet Hole      | (m)               | 0.03              | 0.05          | 0.          | 50                |
|     | (5-2) Position of Outlet (h2) *5 | (m)               | 0                 | - 0.30        | - 0         | .50               |
| (6) | Outlet (upper)                   |                   |                   |               |             |                   |
| 1   | (6-1) Width of Outlet Hole       | (m)               |                   |               | 1           | 50                |
|     | (6-2) Height of Outlet Hole      | (m)               |                   |               | f           | 50                |
|     | (6-3) Position of Outlet (h2) *5 | (m)               |                   |               | <del></del> | 00                |
| (7) | Duration of Water Impounded      | (min.)            | 40                | 380           |             | 5-year)           |
| l   |                                  |                   |                   |               | 670 (for    | 100-year)         |

<sup>\* 1:</sup> Only rainfall in rooftop is collected by water tank. The rooftop is assumed to cover 50% of house lot.

<sup>\*5:</sup> h1, h2 and h3 are as below:



<sup>\* 2:</sup> Percentage of available open space for storage area to total public compound is assumed to be 20%.

<sup>\*3:</sup> The regulation pond for land development of 10ha is examined.

<sup>\*4:</sup> The land development area is assumed to contain 40% of open space, out of which 10% could be used as the area for flood detention pond.

Table I-10 Tidal Level at Tanjung Dawai

## Sungai Petani

|                        | Standard Port            | Secondary Port                       |             |  |
|------------------------|--------------------------|--------------------------------------|-------------|--|
|                        | Kedah Pier, Pulau Pinang | Tanjung                              | Dawai       |  |
| Ta                     | lat: 05 25               | lat : (                              | 05 40       |  |
| Item                   | long: 100 21             | long: 10                             | 00 21       |  |
|                        | Tidal Level              | Height Difference from Standard Port | Tidal Level |  |
| Mean High Water Spring | 1.18                     | 0.1                                  | 1.28        |  |
| Mean High Water Neaps  | 0.38                     | 0.1                                  | 0.48        |  |
| Mean Sea Level         | 0.18                     |                                      |             |  |
| Mean Low Water Neaps   | -0.12                    | 0                                    | -0.12       |  |
| Mean Low Water Springs | -0.82                    | 0                                    | -0.82       |  |

Source: Tide Tables, 1999 by Royal Malaysian Navy

Note: Tidal levels in the Tide Tables are presented on the basis of Chart Datum and conveted herein

to Land Datum with referring that the Chart Datum is 1.42m below Land Datum.

## Melaka

|                        | Standard Port  | Secondar             | y Port      |  |  |
|------------------------|----------------|----------------------|-------------|--|--|
| <b> </b>               | Tanjung Keling | Kuala Me             | elaka       |  |  |
| _                      | lat: 02 13     | lat : 02             | 2 11        |  |  |
| Item                   | long: 102 10   | long: 102 15         |             |  |  |
|                        | m:*1           | Height Difference    | Tidal Land  |  |  |
|                        | Tidal Level*1  | from Standard Port*2 | Tidal Level |  |  |
| Mean High Water Spring | 0.94           | -0.3                 | 0.64        |  |  |
| Mean High Water Neaps  | 0.35           | -0.3                 | 0.05        |  |  |
| Mean Sea Level         | Not Reported   |                      |             |  |  |
| Mean Low Water Neaps   | Not Reported   |                      |             |  |  |
| Mean Low Water Springs | Not Reported   |                      |             |  |  |

Source: \*1: Tide Table, 1999 by Department of Survey and Mapping, Malaysia

Note: Tidal levels in the Tide Tables are presented on the basis of Chart Datum and conveted herein to Land Datum with referring that the Chart Datum is 1.19m below Land Datum.

<sup>\*2:</sup> Tide Table, 1999 by Royal Malaysian Navy