Table 3-1 Probable Point Rainfall Intensities

Kepala Batas, Alor Star

|        |        |        |        |       |             |         |      |      | (Unit : m | ım/hour) |
|--------|--------|--------|--------|-------|-------------|---------|------|------|-----------|----------|
| Return |        | -      |        |       | Rainfall Di | uration |      |      |           |          |
| Period | 15 min | 30 min | 45 min | 1 hr  | 2 hr        | 3 hr    | 4 hr | 5 hr | 6 hr      | 12 hr    |
| 2      | 132.8  | 98.4   | 78.4   | 64.0  | 37.8        | 26.7    | 21.0 | 17.3 | 14.7      | 8.1      |
| 3      | 144.8  | 105.8  | 85.6   | 70.6  | 41.7        | 29.8    | 23.4 | 19.4 | 16.5      | 9.0      |
| 5      | 158.0  | 114.0  | 93.7   | 77.9  | 46.2        | 33.2    | 26.0 | 21.6 | 18.6      | 10.1     |
| 8      | 169.6  | 121.0  | 100.7  | 84.2  | 50.0        | 36.2    | 28.3 | 23.6 | 20.3      | 11.0     |
| 10     | 174.8  | 124.4  | 103.9  | 87.1  | 51.8        | 37.5    | 29.4 | 24.5 | 21.1      | 11.5     |
| 20     | 190.8  | 134.4  | 113.6  | 96.0  | 57.2        | 41.6    | 32.5 | 27.2 | 23.5      | 12.8     |
| 25     | 196.0  | 137.4  | 116.7  | 98.8  | 58.8        | 42.9    | 33.5 | 28.1 | 24.3      | 13.2     |
| 30     | 200.0  | 140.0  | 119.2  | 101.0 | 60.2        | 44.0    | 34.4 | 28.8 | 24.9      | 13.5     |
| 50     | 211.6  | 147.2  | 126.3  | 107.4 | 64.1        | 47.0    | 36.7 | 30.7 | 26.6      | 14.4     |
| 100    | 227.2  | 156.8  | 135.7  | 115.9 | 69.3        | 51.0    | 39.8 | 33.4 | 29.0      | 15.7     |
| 200    | 242.4  | 166.4  | 145.1  | 124.5 | 74.4        | 55.0    | 42.8 | 36.0 | 31.3      | 16.9     |

Bayan Lepas, Penang

|        |        |        |        |       |             |         |      |      | (Unit : m | ım/hour) |
|--------|--------|--------|--------|-------|-------------|---------|------|------|-----------|----------|
| Return |        |        |        |       | Rainfall Du | ıration |      |      |           |          |
| Period | 15 min | 30 min | 45 min | 1 hr  | 2 hr        | 3 hr    | 4 hr | 5 hr | 6 hr      | 12 hr    |
| 2      | 129.2  | 102.6  | 84.5   | 71.7  | 44.0        | 31.0    | 24.6 | 20.2 | 17.3      | 9.4      |
| 3      | 140.4  | 110.0  | 91.5   | 78.7  | 49.0        | 34.6    | 27.3 | 22.3 | 19.1      | 10.6     |
| 5      | 152.4  | 118.4  | 99.2   | 86.6  | 54.6        | 38.6    | 30.3 | 24.6 | 21.1      | 12.0     |
| 8      | 163.2  | 125.4  | 105.9  | 93.3  | 59.4        | 42.1    | 32.8 | 26.6 | 22.8      | 13.1     |
| 10     | 168.0  | 128.6  | 109.1  | 96.4  | 61.6        | 43.7    | 34.0 | 27.6 | 23.6      | 13.6     |
| 20     | 182.8  | 138.6  | 118.4  | 105.9 | 68.3        | 48.5    | 37.5 | 30.4 | 25.9      | 15.3     |
| 25     | 187.6  | 141.8  | 121.3  | 108.9 | 70.5        | 50.1    | 38.7 | 31.3 | 26.7      | 15.8     |
| 30     | 191.6  | 144.4  | 123.7  | 111.3 | 72.3        | 51.3    | 39.5 | 32.0 | 27.3      | 16.2     |
| 50     | 202.0  | 151.6  | 130.5  | 118.1 | 77.1        | 54.8    | 42.1 | 34.0 | 29.0      | 17.3     |
| 100    | 216.4  | 161.2  | 139.6  | 127.3 | 83.6        | 59.5    | 45.6 | 36.7 | 31.3      | 18.9     |
| 200    | 230.8  | 170.8  | 148.7  | 136.5 | 90.2        | 64.2    | 49.0 | 39.4 | 33.6      | 20.4     |

Lapangan Terbang, Melaka

| ·      |        |        |        |       |             |         |      |      | (Unit : m | ım/hour) |
|--------|--------|--------|--------|-------|-------------|---------|------|------|-----------|----------|
| Return |        |        |        |       | Rainfall Du | ıration |      |      |           |          |
| Period | 15 min | 30 min | 45 min | 1 hr  | 2 hr        | 3 hr    | 4 hr | 5 hr | 6 hr      | 12 hr    |
| 2      | 128.4  | 100.0  | 80.1   | 66.8  | 40.7        | 29.1    | 22.9 | 18.8 | 15.9      | 8.5      |
| 3      | 140.0  | 109.8  | 88.4   | 74.9  | 46.3        | 33.7    | 26.8 | 21.9 | 18.5      | 9.9      |
| 5      | 153.2  | 120.6  | 97.6   | 83.9  | 52.5        | 38.8    | 31.1 | 25.4 | 21.5      | 11.4     |
| 8      | 164.8  | 130.0  | 105.5  | 91.7  | 58.0        | 43.1    | 34.8 | 28.4 | 24.0      | 12.8     |
| 10     | 170.0  | 134.2  | 109.1  | 95.3  | 60.5        | 45.2    | 36.5 | 29.8 | 25.2      | 13.4     |
| 20     | 186.0  | 147.4  | 120.1  | 106.2 | 67.9        | 51.3    | 41.7 | 34.0 | 28.7      | 15.3     |
| 25     | 190.8  | 151.6  | 123.6  | 109.6 | 70.3        | 53.3    | 43.3 | 35.4 | 29.9      | 15.9     |
| 30     | 195.2  | 155.0  | 126.5  | 112.4 | 72.3        | 54.8    | 44.7 | 36.5 | 30.8      | 16.3     |
| 50     | 206.4  | 164.4  | 134.4  | 120.3 | 77.8        | 59.3    | 48.4 | 39.5 | 33.3      | 17.7     |
| 100    | 222.0  | 177.0  | 145.2  | 130.8 | 85.1        | 65.2    | 53.4 | 43.6 | 36.8      | 19.5     |
| 200    | 237.6  | 189.8  | 155.9  | 141.3 | 92.3        | 71.2    | 58.4 | 47.6 | 40.2      | 21.3     |

Table 3-2 Parameters for Land Use Categories Applied to Flood Simulation Model

|                    | Parameters of Quasi Liner Stora                                            | ner Storage Type Model | Concentration Time "Tc" (min./km²) | le "Tc" (min./km²)             | Peak Discharge (m3/s/km <sup>2</sup> )                                             | e (m3/s/km²)                  |
|--------------------|----------------------------------------------------------------------------|------------------------|------------------------------------|--------------------------------|------------------------------------------------------------------------------------|-------------------------------|
| Land Use Item      | Coefficient "C" of Basin<br>Characteristics Applied<br>to Kadoya's Formula | Runoff Coefficient "F" | Return Period of<br>1/5 year       | Return Period of<br>1/100 year | Return Period of   Return Period of 1/5   Return Period of 1/100 year   1/100 year | Return Period of<br>1/00 year |
| Residential Area   | 120                                                                        | 0.85                   | 0.4                                | 0.3                            | 33                                                                                 | 49                            |
| Commercial Area    | 06                                                                         | 06.0                   | 0.3                                | 0.2                            | 38                                                                                 | 55                            |
| Industrial Area    | 120                                                                        | 0.80                   | 0.4                                | 0.3                            | 31                                                                                 | 46                            |
| Institutional Area | 120                                                                        | 080                    | 0.4                                | 0.3                            | 31                                                                                 | 46                            |
| Recreation Area    | 200                                                                        | 0.30                   | 1.0                                | 8.0                            | 6                                                                                  | 15                            |
| Nature Areas       | 290                                                                        | 0.35                   | 1.8                                | 1.4                            | 9                                                                                  | 12                            |
| Paddy              | 1,000                                                                      | 0.90                   | 5.9                                | 4.5                            | 8                                                                                  | 16                            |
| Dry Crop           | 210                                                                        | 0.45                   | 1.0                                | 8.0                            | 12                                                                                 | 20                            |
| Road               | 09                                                                         | 0.95                   | 0.3                                | 0.2                            | 40                                                                                 | 58                            |

Table 3-3(1/2) Features of River Channels Applied to Flood Runoff Simulation Model (for Sungai Petani)

|            |                 | Channel | Channel            | Average<br>Channel | Average<br>Channel | Manning's<br>Roughness |         | rs of Storage<br>on Model | Channel        |
|------------|-----------------|---------|--------------------|--------------------|--------------------|------------------------|---------|---------------------------|----------------|
|            | River           | No.     | Length             | Width              | Bed                | Coefficient            |         | T                         | Travelling     |
|            |                 |         | (m)                | (m)                | Gradient           | "n"                    | K       | P                         | Time<br>(hour) |
| Lalang     | Main Stream     | CLA- 1  | 1,750.0            | 6                  | 1/ 300             | 0.025                  |         | -:1                       | <del></del>    |
| Latalig    | Ivialii Suealii | CLA- 1  | 2,328.0            | 6                  |                    | 0.035                  | nil     | nil<br>                   | 0.23           |
|            |                 | CLA- 2  |                    |                    | 1/ 700             | 0.035                  | nil 1.0 | nil                       | 0.31           |
|            | İ               | CLA- 4  | 1,362.0            | 16                 | 1/ 850             | 0.035                  | 1.2     | 0.6                       | 0.18           |
|            | T in a A        | CLA- 4  | 1,549.0<br>3,526.5 | 40                 | 1/ 850             | 0.035                  | 1.9     | 0.6                       | 0.20           |
|            | Line A          |         |                    | 5                  | 1/ 230             | 0.015                  | nil     | nil                       | 0.47           |
|            | Bakap           | CLA- 6  | 1,204.5            | 14                 | 1/ 300             | 0.035                  | 0.7     | 0.6                       | 0.16           |
|            |                 | CLA- 7  | 2,840.5            | 7                  | 1/ 1300            | 0.015                  | nil     | nil                       | 0.38           |
| Tukang     | Main Stream     | CTU- 1  | 1,800.0            | 12                 | 1/ 800             | 0.015                  | nil     | nil                       | 0.24           |
|            |                 | CTU- 2  | 300.0              | 4                  | 1/ 1000            | 0.035                  | nil     | nil                       | 0.04           |
|            |                 | CTU- 3  | 1,800.0            | 25                 | 1/ 5000            | 0.035                  | 3.1     | 0.6                       | 0.24           |
| Layar      | Main Stream     | CLB- 1  | 2,000.0            | 4                  | 1/ 500             | 0.015                  | nil     | nil                       | 0.26           |
| Besar      |                 | CLB- 2  | 1,800.0            | 16                 | 1/ 800             | 0.035                  | 1.5     | 0.6                       | 0.24           |
| Che Bima   | Main Stream     | CCB- 1  | 1,330.0            | 4                  | 1/ 1000            | 0.015                  | nil     | nil                       | 0.18           |
|            |                 | CCB- 2  | 1,170.0            | 8                  | 1/ 1000            | 0.015                  | nil     | nil                       | 0.15           |
| Sg. Petani | Main Stream     | CPE- 1  | 500.0              | 6                  | 1/ 700             | 0.035                  | nil     | nil                       | 0.07           |
|            | Ĭ               | CPE- 2  | 400.0              | 6                  | 1/ 700             | 0.035                  | nil     | nil                       | 0.05           |
|            |                 | CPE- 3  | 1,004.0            | 9                  | 1/ 700             | 0.035                  | 0.6     | 0.6                       | 0.13           |
|            | 1               | CPE- 4  | 803.0              | 14                 | 1/ 3500            | 0.035                  | 1.0     | 0.6                       | 0.11           |
|            | 1               | CPE- 5  | 1,000.0            | 12                 | 1/ 3500            | 0.035                  | 1.2     | 0.6                       | 0.13           |
|            |                 | CPE- 6  | 400.0              | 17                 | 1/ 7500            | 0.035                  | 0.7     | 0.6                       | 0.05           |
|            |                 | CPE- 7  | 1,082.0            | 24                 | 1/ 7500            | 0.035                  | 2.1     | 0.6                       | 0.14           |
|            | İ               | CPE- 8  | 788.0              | 45                 | 1/ 7500            | 0.035                  | 2.0     | 0.6                       | 0.10           |
|            | ļ               | CPE- 9  | 730.0              | 69                 | 1/ 7500            | 0.035                  | 2.1     | 0.6                       | 0.10           |
|            |                 | CPE- 10 | 4,193.0            | 79                 | 1/ 7500            | 0.035                  | 13.0    | 0.6                       | 0.55           |
|            | Pasir Kechil    | CPE- 11 | 849.2              | 5                  | 1/ 270             | 0.035                  | nil     | nil                       | 0.11           |
|            | Line A1         | CPE- 12 | 1,300.0            | 12                 | 1/710              | 0.035                  | 0.9     | 0.6                       | 0.17           |
|            |                 | CPE- 13 | 900.0              | 2                  | 1/610              | 0.035                  | nil     | nil                       | 0.12           |
|            | Line A          | CPE- 14 | 800.0              | 3                  | 1/ 220             | 0.035                  | nil     | nil                       | 0.11           |
|            | Line G          | CPE- 15 | 1,400.0            | 6                  | 1/ 270             | 0.035                  | nil     | nil                       | 0.19           |
|            | Air Mendideh    | CPE- 16 | 1,079.0            | 6                  | 1/ 380             | 0.035                  | nil     | nil                       | 0.14           |
|            |                 | CPE- 17 | 1,121.0            | 11                 | 1/ 740             | 0.035                  | 0.8     | 0.6                       | 0.15           |
|            | Gelegpr         | CPE- 18 | 1,950.0            | 11                 | 1/ 1250            | 0.035                  | 1.6     | 0.6                       | 0.26           |
| Pasir      | Main Stream     | CPA- 1  | 1,400.0            | 9                  | 1/ 1250            | 0.035                  | nil     | nil                       | 0.19           |
|            |                 | CPA- 2  | 2,800.0            | 13                 | 1/ 2000            | 0.035                  | 2.8     | 0.6                       | 0.37           |
|            |                 | CPA- 3  | 700.0              | 9                  | 1/ 770             | 0.035                  | 0.5     | 0.6                       | 0.09           |
|            |                 | CPA- 4  | 1,600.0            | 7                  | 1/ 770             | 0.035                  | 1.0     | 0.6                       | 0.21           |
|            |                 | CPA- 5  | 1,100.0            | 12                 | 1/ 770             | 0.035                  | 0.8     | 0.6                       | 0.15           |
|            |                 | CPA- 6  | 2,354.0            | 36                 | 1/ 2000            | 0.035                  | 3.6     | 0.6                       | 0.31           |

Table 3-3(2/2) Features of River Channels Applied to Flood Runoff Simulation Model (for Melaka)

|        |                   |          | Channel | Average | Average   | Manning's   | Parameters | of Storage | Channel    |
|--------|-------------------|----------|---------|---------|-----------|-------------|------------|------------|------------|
|        | River             | Channel  | Length  | Channel | Channel   | Roughness   | Function   | n Model    | Travelling |
| 1      | Kivei             | No.      | Lengin  | Width   | Bed       | Coefficient | K          | P          | Time       |
|        |                   |          | (m)     | (m)     | Gradient  | "n"         | 1.         | •          | (hour)     |
| Lereh  | Main Stream       | CLE- 1   | 3,000.0 |         | 1/ 3,750  | 0.035       | 4.2        | 0.6        | 0.40       |
| j      | Udang             | CLE- 2   | 2,700.0 | 7       | 1/ 300    | 0.020       | 0.9        | 0.6        | 0.36       |
| İ      |                   | CLE- 3   | 4,300.0 | 7       | 1/ 870    | 0.035       | 2.7        | 0.6        | 0.57       |
| 1      | S. Gajah          | CLE- 4   | 1,800.0 | 10      |           | 0.035       | 1.3        | 0.6        | 0.24       |
| Marim  | Main Stream       | CMA- 1   | 2,194.5 | 58      | 1/ 12,200 | 0.020       | 5.0        | 0.6        | 0.29       |
| l      | Ayer Salak        | CMA- 2   | 1,200.0 |         | 1/ 500    | 0.020       | 1.0        | 0.6        | 0.16       |
|        |                   | CMA- 3   | 1,800.0 | 28      |           | 0.020       | 1.2        | 0.6        | 0.24       |
|        |                   | CMA- 4   | 1,800.0 | 23      | 1/ 2,000  | 0.020       | 1.6        | 0.6        | 0.24       |
|        | Bertam Ulu        | CMA- 5   | 600.0   |         | 1/ 240    | 0.350       | nil        | nil        | 0.08       |
|        | Ayer Hitam        | CMA- 6   | 650.0   | 20      | 1/ 240    | 0.020       | 0.3        | 0.6        | 0.09       |
|        |                   | CMA- 7   | 900.0   | 20      | 1/ 700    | 0.020       | 0.6        | 0.6        | 0.12       |
|        |                   | CMA-8    | 1,600.0 | 20      | 1/ 700    | 0.020       | 1.0        | 0.6        | 0.21       |
|        |                   | CMA- 9   | 1,500.0 | 20      | 1/ 3,800  | 0.020       | 1.6        | 0.6        | 0.20       |
| Melaka | Main Stream (1)*1 | CME- 1   | 915.2   | 100     | 1/ 2,000  | 0.020       | 1.5        | 0.6        | 0.12       |
| ŀ      | Main Stream (2)*2 | CME- 2   | 2,200.0 | 26      | 1/ 3,000  | 0.020       | 2.4        | 0.6        | 0.29       |
| Ì      | · ·               | CME- 3*3 | 1,800.0 | 26      | 1/ 3,000  | 0.035       | 2.7        | 0.6        | 0.24       |
| l      |                   | CME- 4   | 1,200.0 | 26      | 1/ 6,000  | 0.035       | 2.2        | 0.6        | 0.16       |
| ł      |                   | CME- 5   | 1,000.0 | 28      | 1/ 7,000  | 0.035       | 2.0        | 0.6        | 0.13       |
| Ì      |                   | CME- 6   | 2,200.0 | 28      | 1/ 10,000 | 0.035       | 4.9        | 0.6        | 0.29       |
| 1      |                   | CME- 7   | 800.0   | 26      | 1/ 10,000 | 0.035       | 1.7        | 0.6        | 0.11       |
| l      | 1                 | CME- 8   | 1,600.0 |         | 1/ 10,000 | 0.035       | 4.0        | 0.6        | 0.21       |
|        |                   | CME- 9   | 800.0   | 32      | 1/ 10,000 | 0.035       | 1.9        | 0.6        | 0.11       |
|        |                   | CME- 10  | 2,000.0 | 40      | ,         | 0.035       | 5.2        | 0.6        | 0.26       |
| Cheng  | Main Stream       | CCH- 1   | 2,000.0 |         | 1/ 4,000  | 0.035       | 3.6        | 0.6        | 0.26       |
|        | S. Bangsal        | CCH- 2   | 2,200.0 |         | 1/ 1,000  | 0.035       | nil        | nil        | 0.29       |
|        | Paya Rumput       | CCH- 3   | 1,400.0 |         | 1/ 530    | 0.035       | nil        | nil        | 0.19       |
|        | Arang             | CCH- 4   | 2,400.0 |         | 1/ 1,000  | 0.035       | nil        | nil        | 0.32       |
|        | Jeram             | CCH- 5   | 2,400.0 |         | 1/ 1,300  | 0.020       | 1.7        | 0.6        | 0.32       |
|        | Jenuang           | CCH- 6   | 1,800.0 |         | 1/ 1,000  | 0.035       | nil        | nil        | 0.24       |
| Putat  | Air Kero          | CPU- 1   | 1,400.0 |         | 1/ 300    | 0.035       | nil        | nil        | 0.19       |
|        | Main Stream       | CPU- 2   | 875.0   |         | 1/ 200    | 0.035       | nil        | nil        | 0.12       |
|        |                   | CPU- 3   | 1,425.0 |         | 1/ 900    | 0.035       | 1.1        | 0.6        | 0.19       |
|        |                   | CPU- 4   | 2,400.0 |         | 1/ 2,500  | 0.035       | 2.8        | 0.6        | 0.32       |
| L      |                   | CPU- 5   | 1,800.0 | 25      | 1/ 2,000  | 0.035       | 2.4        | 0.6        | 0.24       |

Note:

<sup>\*1</sup> Upstream from diversion point up to confluence with Cheng river \*2 Downstream from diversion point

<sup>\*3</sup> The channel meets with Putat river

Table 3-4(1/2) Present and Future Basin Run-off Discharge (sg.Petani)

| River       | Sub-basin No.  | Catchment  |         | urn period | 100-year re |          |
|-------------|----------------|------------|---------|------------|-------------|----------|
|             | J              | Area (km2) | Present | Future     | Present     | Future   |
| Lalang      | LA- 1          | 2.29       | 25      | 53         | 39          | 78       |
|             | LA- 2          | 2.53       | 28      | 67         | 43          | 97       |
|             | LA- 3          | 3.47       | 35      | 108        | 55          | 156      |
|             | LA- 4          | 2.73       | 29      | 69         | 46          | 101      |
|             | LA- 5          | 1.14       | 14      | 35         | 21          | 50       |
|             | LA- 6          | 2.88       | 34      | 94         | 52          | 135      |
|             | LA- 7          | 1.18       | 5       | 7          | 6           | 11       |
|             | LA- 8          | 2.39       | 46      | 46         | 68          | 68       |
|             | LA- 9          | 3.17       | 66      | 104        | 97          | 150      |
|             | LA- 10         | 1.80       | 35      | 60         | 52          | 86       |
|             | LA- 11         | 0.95       | 14      | 25         | 20          | 36       |
| Tukang      | TU- 1          | 1.35       | 11      | 13         | 16          | 18       |
|             | TU- 2          | 1.45       | 24      | 46         | 35          | 67       |
|             | TU- 3          | 0.49       | 5       | 17         | 9           | 25       |
|             | TU- 4          | 0.18       | 4       | 7          | 5           | 9        |
|             | TU- 5          | 2.09       | 61      | 61         | 89          | 89       |
|             | TU- 6          | 0.89       | 23      | 29         | 34          | 41       |
|             | TU- 7          | 1.48       | 26      | 50         | 39          | 71       |
| Layar Besar | LB- 1          | 0.66       | 20      | 22         | 29          | 32       |
|             | LB- 2          | 1.32       | 37      | 41         | 53          | 59       |
|             | LB- 3          | 0.94       | 27      | 31         | 38          | 45       |
|             | LB- 4          | 0.85       | 10      | 30         | 15          | 42       |
| Che Bima    | CB- 1          | 1.25       | 17      | 41         | 27          | 59       |
|             | CB- 2          | 1.19       | 12      | 39         | 20          | 56       |
|             | CB- 3          | 0.83       | 14      | 28         | 21          | 40       |
| S. Petani   | PE- 1          | 1.60       | 27      | 51         | 41          | 73       |
| •           | PE- 2          | 0.28       | 9       | 10         | 12          | 14       |
|             | PE- 3          | 1.43       | 37      | 45         | 53          | 64       |
|             | PE- 4          | 1.41       | 42      | 44         | 60          | 64       |
|             | PE- 5          | 0.41       | 6       | 14         | 10          | 21       |
|             | PE- 6          | 0.96       | 22      | 32         | 32          | 47       |
|             | PE- 7          | 1.32       | 20      | 39         | 31          | 56       |
|             | PE- 8          | 0.78       | 22      | 27         | 32          | 39       |
|             | PE- 9          | 0.48       | 6       | 16         | 10          | 23       |
|             | PE- 10         | 0.82       | 17      | 27         | 25          | 39       |
|             | PE- 11         | 0.62       | 19      | 21         | 27          | 30       |
|             | PE- 12         | 1.55       | 15      | 24         | 22          | 34       |
|             | PE- 13         | 0.76       | 16      | 26         | 24          | 37       |
| 4           | PE- 14         | 1.13       | 12      | 15         | 17          | 21       |
|             | PE- 15         | 0.32       | 12      | 12         | 17          | 16       |
|             | PE- 16         | 0.90       | 29      | 31         | 42          | 44       |
|             | PE- 17         | 0.55       | 14      | 19         | 20          | 27       |
|             | PE- 18         | 0.46       | 13      | 16         | 19          | 22       |
|             | PE- 19         | 1.98       | 13      | 15         | 19          | 21       |
|             | PE- 20         | 1.21       | 17      | 30         | 26          | 43       |
|             | PE- 21         | 0.21       | 8       | 8          | 11          | 11       |
|             | PE- 22         | 0.43       | 11      | 15         | 16          | 21       |
|             | PE- 23         | 0.71       | 25      | 25         | 36          | 36       |
|             | PE- 24         | 1.18       | 37      | . 39       | 53          | 56       |
|             | PE- 25         | 1.14       | 28      | 38         | 41          | 55       |
|             | PE- 26         | 1.08       | 34      | 38         | 49          | 55       |
|             | PE- 27         | 0.45       | 16      | 16         | 22          | 23       |
|             | PE- 28         | 1.46       | 41      | 42         | 59          | 60       |
|             | PE- 29         | 1.30       | 42      | 42         | 60          | 61       |
|             | PE- 30         | 0.91       | 30      | 30         | 43          | 43       |
|             | PE- 31         | 0.39       | 13      | 14         | 19          | 20       |
|             | PE- 32         | 2.70       | 79      | 84         | 116         | 122      |
|             | PE- 33         | 1.95       | 45      | 60         | 66          | 87       |
|             | PE- 34         | 4.84       | 81      | 124        | 121         | 181      |
| Pasir       | PA- 1          | 0.76       | 17      | 25         | 25          | 35       |
|             | PA- 2          | 3.61       | 65      | 107        | 98          | 156      |
|             | PA- 3          | 1.36       | 34      | 46         | 50          | 66       |
|             | PA- 4          | 2.40       | 68      | 78         | 98          | 112      |
|             | PA- 5          | 1.05       | 9       | 9          | 12          | 12       |
|             | PA- 6          | 1.44       | 32      | 32         | 46          | 46       |
|             | PA- 7          | 3.91       | 61      | 107        | 92          | 157      |
|             |                |            |         |            |             |          |
|             | PA- 8          | 2.27       | 24      | JU 1       | 3/4         | / 3      |
|             | PA- 8<br>PA- 9 | 1.76       | 51      | 50<br>56   | 37 -<br>74  | 73<br>82 |

Table 3-4(2/2) Present and Future Basin Run-off Discharge (Melaka)

| Ri                       | ver          | Sub-basin No.                             | Catchment<br>Area (km2) | 5-year ret<br>Present | Future    | Present     | turn period<br>Future |
|--------------------------|--------------|-------------------------------------------|-------------------------|-----------------------|-----------|-------------|-----------------------|
| Leleh                    | Udang        | UD- 1                                     | 3.85                    | 45                    | 106       | 72          | 162                   |
|                          |              | UD- 2                                     | 7.34                    | 94                    | 160       | 154         | 249                   |
|                          |              | UD- 3                                     | 4.02                    | 102                   | 103       | 157         | 159                   |
|                          | S. Gajah     | GA-1                                      | 5.83                    | 38                    | 129       | 73          | 203                   |
|                          |              | GA- 2<br>GA- 3                            | 1.34<br>1.02            | 12<br>17              | 13<br>23  | 22<br>27    | 24<br>35              |
|                          |              | GA- 4                                     | 0.67                    | 10                    | 10        | 17          | 17                    |
|                          | Leleh        | LE- 1                                     | 10.75                   | 85                    | 202       | 152         | 325                   |
| Malim                    | Ayer Salak   | AS- 1                                     | 8.48                    | 91                    | 210       | 155         | 328                   |
|                          |              | AS- 2                                     | 3.37                    | 33                    | 80        | 56          | 122                   |
|                          |              | AS- 3                                     | 3.15                    | 27                    | 72        | 49          | 112                   |
|                          | Ayer Hitam   | AS- 4<br>AH- 1                            | 1.68<br>9.53            | 20<br>58              | 45<br>240 | 34<br>111   | 68<br>377             |
|                          | Ayer main    | AH- 2                                     | 2.62                    | 31                    | 71        | 52          | 108                   |
|                          |              | AH- 3                                     | 1.50                    | 15                    | 35        | 27          | 54                    |
|                          |              | AH- 4                                     | 1.04                    | 18                    | 27        | 28          | 42                    |
|                          |              | AH- 5                                     | 2.24                    | 28                    | 68        | 47          | 103                   |
|                          |              | AH- 6                                     | 2.10                    | 18                    | 21        | 33          | 37                    |
|                          | Malim        | MA- 1<br>MA- 2                            | 4.64<br>2.26            | 65<br>28              | 132<br>59 | 107  <br>48 | 201                   |
|                          |              | MA- 3                                     | 2.76                    | 26                    | 51        | 46<br>46    | 90<br>82              |
|                          |              | MA- 4                                     | 4.16                    | 63                    | 126       | 102         | 190                   |
|                          |              | MA- 5                                     | 2.40                    | 31                    | 53        | 52          | 82                    |
| Melaka (1)*1             | Melaka       | UM- 1                                     | 4.97                    | 64                    | 121       | 107         | 188                   |
|                          |              | UM- 2                                     | 3.61                    | 65                    | 98        | 103         | 149                   |
|                          |              | UM- 3                                     | 0.42                    | 10                    | 16        | 14          | 23                    |
| Melaka (2) <sup>*2</sup> | Melaka       | ME- 1                                     | 0.80                    | 14                    | 25        | 21          | 37                    |
|                          |              | ME- 2<br>ME- 3                            | 3.89                    | 61                    | 67        | 97          | 107                   |
|                          |              | ME- 3<br>ME- 4                            | 2.25<br>0.86            | 20<br>44              | 28<br>64  | 30<br>69    | 42<br>96              |
|                          |              | ME- 5                                     | 2.36                    | 54                    | 69        | 83          | 104                   |
|                          |              | ME- 6                                     | 2.40                    | 53                    | 68        | 83          | 103                   |
|                          |              | ME- 7                                     | 0.45                    | 14                    | 15        | 21          | 22                    |
|                          |              | ME- 8                                     | 1.83                    | 38                    | 56        | 60          | 84                    |
|                          | 1            | ME- 9<br>ME- 10                           | 2.25<br>1.43            | 36<br>34              | 68<br>45  | 59<br>52    | 103<br>66             |
|                          |              | ME- 11                                    | 0.52                    | 13                    | 17        | 19          | 25                    |
|                          |              | ME- 12                                    | 0.33                    | 9                     | 11        | 13          | 16                    |
|                          |              | ME- 13                                    | 0.51                    | 13                    | 17        | 20          | 25                    |
|                          |              | ME- 14                                    | 0.43                    | 14                    | 15        | 21          | 22                    |
|                          |              | ME- 15<br>ME- 16                          | 0.86<br>1.00            | 27  <br>24            | 29<br>30  | 40<br>36    | 43<br>44              |
|                          |              | ME- 17                                    | 1.10                    | 29                    | 35        | 43          | 52                    |
| Cheng                    | S. Bangsal   | SB- 1                                     | 1.29                    | 20                    | 42        | 32          | 62                    |
| _                        |              | SB- 2                                     | 1.40                    | 15                    | 42        | 27          | 63                    |
|                          | Arang        | AR- 1                                     | 2.89                    | 23                    | 33        | 44          | 58                    |
|                          |              | AR- 2<br>AR- 3                            | 2.16<br>1.78            | 20                    | 66        | 35          | 100                   |
|                          | Jenuang      | JN- 1                                     | 6.85                    | 26<br>37              | 53<br>49  | 43<br>76    | 79<br>93              |
|                          | V U I GUILLE | JN- 2                                     | 2.80                    | 21                    | 44        | 40          | 72                    |
|                          |              | JN- 3                                     | 12.81                   | 69                    | 135       | 138         | 232                   |
|                          |              | JN- 4                                     | 2.63                    | 22                    | 76        | 41          | 116                   |
| Durtat                   | Cheng        | CH- 1                                     | 2.29                    | 26                    | 61        | 43          | 93                    |
| Putat                    | Putat        | PU- 1<br>PU- 2                            | 2.31                    | 19                    | 21        | 33          | 35                    |
|                          |              | PU- 2<br>PU- 3                            | 0.68<br>0.91            | 8<br>24               | 12<br>26  | 13<br>36    | 18<br>39              |
|                          |              | PU- 4                                     | 2.03                    | 21                    | 21        | 34          | 34                    |
|                          |              | PU- 5                                     | 1.00                    | 17                    | 17        | 27          | 27                    |
|                          |              | PU- 6                                     | 3.36                    | 83                    | 95        | 128         | 143                   |
|                          |              | PU- 7                                     | 3.66                    | 66                    | 80        | 103         | 124                   |
|                          |              | PU- 8<br>PU- 9                            | 5.60                    | 93                    | 125       | 148         | 194                   |
| Minor                    |              | CD- 1                                     | 3.56<br>0.97            | 57<br>26              | 99        | 89<br>39    | 151<br>48             |
| Basin                    |              | CD- 2                                     | 0.44                    | 14                    | 16        | 20          | 23                    |
|                          | ļ            | CD- 3                                     | 2.14                    | 43                    | 69        | 68          | 103                   |
|                          |              | CD- 4                                     | 3.71                    | 54                    | 111       | 89          | 168                   |
|                          |              | CD- 5                                     | 0.87                    | 17                    | 29        | 27          | 43                    |
|                          |              | CD- 6<br>CD- 7                            | 0.56<br>2.45            | 13                    | 19        | 19          | 28                    |
|                          |              | CD- 7                                     | 0.77                    | 24<br>21              | 49<br>24  | 43.<br>32   | 78<br>36              |
|                          |              | CD- 9                                     | 0.66                    | 21                    | 21        | 31          | 30                    |
|                          |              |                                           |                         |                       |           |             |                       |
|                          |              |                                           | ·                       |                       |           |             |                       |
| Note:                    |              | from Diversion po                         |                         |                       |           |             |                       |
| Note:                    |              | a from Diversion po<br>eam from Diversion |                         |                       |           |             |                       |

Table 3-5(1/2) Present and Future Channel Flow Discharge (Sg.Petani)

| П          | liver        | Channnel | 5- year Re | turn Period | 100- year R | eturn Period |
|------------|--------------|----------|------------|-------------|-------------|--------------|
|            | LIVEI        | No.      | Present    | Future      | Present     | Future       |
| Lalang     | Main Stream  | CLA-1    | 44         | 100         | 70          | 149          |
|            |              | CLA-2    | 66         | 164         | 101         | 245          |
|            |              | CLA-3    | 199        | 393         | 304         | 592          |
|            |              | CLA-4    | 193        | 372         | 296         | 556          |
|            | Line A       | CLA-5    | 55         | 138         | 85          | 203          |
|            | Bakap        | CLA-6    | 50         | 51          | 72          | 74           |
|            |              | CLA-7    | 92         | 131         | 137         | 191          |
| Tukang     | Main Stream  | CTU-1    | 32         | 56          | 47          | 80           |
| İ          |              | CTU-2    | 39         | 75          | 58          | 107          |
|            |              | CTU-3    | 67         | 91          | 105         | 139          |
| Laya Besar | Main Stream  | CLB-1    | 49         | 54          | 72          | 79           |
|            |              | CLB-2    | 61         | 69          | 92          | 106          |
| Che Bima   | Main Stream  | CCB-1    | 26         | 67          | 42          | 98           |
|            | <u> </u>     | CCB-2    | 33         | 78          | 53          | 115          |
| Petani     | Main Stream  | CPE-1    | 135        | 192         | 201         | 286          |
|            |              | CPE-2    | 154        | 222         | 233         | 330          |
| *          |              | CPE-3    | 167        | 238         | 251         | 352          |
|            | 1            | CPE-4    | 168        | 238         | 255         | 354          |
|            |              | CPE-5    | 170        | 236         | 256         | 350          |
|            |              | CPE-6    | 185        | 249         | 282         | 373          |
|            |              | CPE-7    | 183        | 245         | 279         | 367          |
|            |              | CPE-8    | 199        | 259         | 311         | 400          |
|            |              | CPE-9    | 220        | 277         | 348         | 433          |
|            |              | CPE-10   | 196        | 239         | 325         | 390          |
|            | Pasil Kechil | CPE-11   | 31         | 51          | 46          | 74           |
|            | Line A1      | CPE-12   | 61         | 68          | 91          | 102          |
| <u> </u>   |              | CPE-13   | 67         | 82          | 101         | 122          |
|            | Line A       | CPE-14   | 38         | 58          | 57          | 85           |
|            | Line G       | CPE-15   | 28         | 42          | 40          | 59           |
|            | Air Mendidih | CPE-16   | 55         | 67          | 81          | 98           |
|            |              | CPE-17   | 68         | 79          | 103         | 119          |
|            | Gelugor      | CPE-18   | 58         | 58          | 86          | 88           |
| Pasir      | Main Stream  | CPA-1    | 77         | 123         | 115         | 181          |
|            |              | CPA-2    | 103        | 133         | 159         | 206          |
| 1.         |              | CPA-3    | 120        | 145         | 185         | 225          |
|            |              | CPA-4    | 138        | 196         | 211         | 303          |
|            |              | CPA-5    | 149        | 202         | 233         | 313          |
|            | J            | CPA-6    | 165        | 231         | 262         | 367          |

Table 3-5(2/2) Present and Future Channel Flow Discharge (Melaka)

|        | River           |        | 5- year Re | turn Period | 100- year Re | eturn Period |
|--------|-----------------|--------|------------|-------------|--------------|--------------|
|        | Kivei           | No.    | Present    | Future      | Present      | Future       |
| Lereh  | Main Stream     | CLE-1  | 172        | 299         | 334          | 540          |
|        | Udang           | CLE-2  | 112        | 204         | 191          | 331          |
|        |                 | CLE-3  | 134        | 164         | 227          | 281          |
|        | S.Gajah         | CLE-4  | 47         | 119         | 93           | 195          |
| Marim  | Main Stream     | CMA-1  | 261        | 538         | 507          | 969          |
| }      | Ayer Salak      | CMA-2  | 91         | 210         | 155          | 328          |
|        |                 | CMA-3  | 97         | 222         | 174          | 352          |
|        |                 | CMA-4  | 116        | 235         | 210          | 402          |
|        | Bertam ULU      | CMA-5  | 58         | 240         | 111          | 377          |
|        | Ayer Hytam      | CMA-6  | 76         | 247         | 143          | 399          |
|        |                 | CMA-7  | 81         | 248         | 153          | 402          |
|        |                 | CMA-8  | 83         | 245         | 158          | 389          |
|        |                 | CMA-9  | 92         | 252         | 174          | 405          |
| Melaka | Main Stream(1)* | CME-1  | 221        | 408         | 425          | 720          |
|        | Main Stream(2)* | CME-2  | 14         | 25          | 21           | 37           |
|        |                 | CME-3  | 82         | 108         | 141          | 180          |
|        |                 | CME-4  | 210        | 280         | 380          | 503          |
|        |                 | CME-5  | 208        | 279         | 382          | 498          |
|        |                 | CME-6  | 208        | 264         | 387          | 481          |
|        | Í               | CME-7  | 211        | 262         | 393          | 478          |
|        | ŀ               | CME-8  | 211        | 262         | 393          | 478          |
|        |                 | СМЕ-9  | 206        | 253         | 384          | 466          |
|        |                 | CME-10 | 200        | 245         | 377          | 456          |
| Cheng  | Main Stream     | CCH-1  | 184        | 333         | 368          | 581          |
|        | S.Bangsal       | CCH-2  | 27         | 66          | 47           | 101          |
|        | Paya Rumput     | CCH-3  | 37         | 90          | 69           | 144          |
|        | Arang           | CCH-4  | 48         | 102         | 90           | 168          |
|        | Jeram           | CCH-5  | 50         | 69          | 102          | 128          |
|        | Jenuang         | CCH-6  | 121        | 217         | 245          | 375          |
| Putat  | Ayer Keroh      | CPU-1  | 22         | 27          | 39           | 44           |
|        | Main Stream     | CPU-2  | 71         | 76          | 117          | 124          |
|        |                 | CPU-3  | 171        | 192         | 294          | 329          |
|        |                 | CPU-4  | 171        | 192         | 294          | 329          |
|        |                 | CPU-5  | 163        | 193         | 283          | 346          |

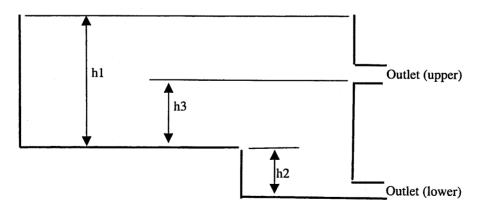

Note: \*1 Upstream from Diversion point \*2 Downstream from Diversion point

Table 3-6 Structure Features of Flood Regulation Facilities

| Description                      | Unit              | Storage in        | Storage in    | Flood D    | etention          |
|----------------------------------|-------------------|-------------------|---------------|------------|-------------------|
| Description                      | Oint              | House Lot         | Public Space  | Po         | ond               |
| (1) Unit Lot Space               | $(m^2)$           | 200               | 20,000        | 4,0        | 000               |
| (2) Catchment Area/Unit          |                   |                   |               |            |                   |
| (2-1) Area                       | (m <sup>2</sup> ) | 100*1             | 20,000        | 1000       | )00* <sup>3</sup> |
| (2-2) Land Use                   |                   | Roof in Resident- | Institutional | Projecte   | ed Built-         |
|                                  |                   | ial Area          | Area          | up A       | Area              |
| (3) Design Flood Level           |                   |                   |               |            |                   |
| (3-1) Return Period              | (year)            | 5                 | 5             | 5          | 100               |
| (3-2) Max. Rainfall Intensity    | (mm/hr)           | 85                | 85            | 85         | 132               |
| (3-3) Rainfall Volume            | $(m^3/km^2)$      | 137               | 137           | 137        | 237               |
| (3-4) Runoff Volume              | $(m^3/km^2)$      | 130               | 109           | 123        | 213               |
| (3-5) Runoff Coefficient         |                   | 0.95              | 0.80          | 0.90       | 0.90              |
| (3-6) Peak Inflow Discharge      | $(m^3/s/km^2)$    | 44                | 31            | 38         | 55                |
| (3-7) Peak Outflow Discharge     | $(m^3/s/km^2)$    | 29                | 5 '           | 6          | 12                |
| (4) Storage Capacity/Unit        | -                 |                   |               |            |                   |
| (4-1) Area                       | $(m^2)$           | 2                 | 4,000*2       | 4,00       | 00*4              |
| (4-2) Height (h1) * <sup>5</sup> | (m)               | 1                 | 0.3           | 3          | .2                |
| (4-3) Volume                     | $(m^3)$           | 2                 | 1,200         | 12,        | 800               |
| (5) Outlet (lower)               |                   |                   |               |            |                   |
| (5-1) Width of Outlet Hole       | (m)               | 0.04              | 0.20          |            | 32                |
| (5-2) Height of Outlet Hole      | (m)               | 0.03              | 0.05          | 0.         | 50                |
| (5-2) Position of Outlet (h2) *5 | (m)               | 0                 | - 0.30        | - 0        | .50               |
| (6) Outlet (upper)               |                   |                   |               |            |                   |
| (6-1) Width of Outlet Hole       | (m)               |                   |               |            | 50                |
| (6-2) Height of Outlet Hole      | (m)               |                   |               | 0.         | 50                |
| (6-3) Position of Outlet (h2) *5 | (m)               |                   |               |            | 00                |
| (7) Duration of Water Impounded  | (min.)            | 40                | 380           |            | 5-year)           |
|                                  |                   |                   |               | 670 (for 1 | 100-year)         |

<sup>\* 1:</sup> Only rainfall in rooftop is collected by water tank. The rooftop is assumed to cover 50% of house lot.

<sup>\*5:</sup> h1, h2 and h3 are as below:



<sup>\* 2:</sup> Percentage of available open space for storage area to total public compound is assumed to be 20%.

<sup>\*3:</sup> The regulation pond for land development of 10ha is examined.

<sup>\*4:</sup> The land development area is assumed to contain 40% of open space, out of which 10% could be used as the area for flood detention pond.

Table 3-7 Tidal Level at Tanjung Dawai

## Sungai Petani

|                        | Standard Port            | Seconda                              | ry Port     |
|------------------------|--------------------------|--------------------------------------|-------------|
|                        | Kedah Pier, Pulau Pinang | Tanjung                              | Dawai       |
| Item                   | lat: 05 25               | lat : (                              | 05 40       |
| item                   | long: 100 21             | long: 10                             | 00 21       |
|                        | Tidal Level              | Height Difference from Standard Port | Tidal Level |
| Mean High Water Spring | 1.18                     | 0.1                                  | 1.28        |
| Mean High Water Neaps  | 0.38                     | 0.1                                  | 0.48        |
| Mean Sea Level         | 0.18                     |                                      |             |
| Mean Low Water Neaps   | -0.12                    | 0                                    | -0.12       |
| Mean Low Water Springs | -0.82                    | 0                                    | -0.82       |

Source: Tide Tables, 1999 by Royal Malaysian Navy

Note: Tidal levels in the Tide Tables are presented on the basis of Chart Datum and conveted herein to Land Datum with referring that the Chart Datum is 1.42m below Land Datum.

## Melaka

|                        | Standard Port Secondar |                      | y Port                                |
|------------------------|------------------------|----------------------|---------------------------------------|
|                        | Tanjung Keling         | Kuala Melaka         |                                       |
| Tto                    | lat: 02 13             | lat: 0               | 2 11                                  |
| Item                   | long: 102 10           | long: 102 15         |                                       |
|                        | m:117 *1               | Height Difference    |                                       |
|                        | Tidal Level*1          | from Standard Port*2 | Tidal Level                           |
| Mean High Water Spring | 0.94                   | -0.3                 | 0.64                                  |
| Mean High Water Neaps  | 0.35                   | -0.3                 | 0.05                                  |
| Mean Sea Level         | Not Reported           |                      |                                       |
| Mean Low Water Neaps   | Not Reported           |                      | · · · · · · · · · · · · · · · · · · · |
| Mean Low Water Springs | Not Reported           |                      |                                       |

Source: \*1: Tide Table, 1999 by Department of Survey and Mapping, Malaysia

\*2: Tide Table, 1999 by Royal Malaysian Navy

Note: Tidal levels in the Tide Tables are presented on the basis of Chart Datum and conveted herein to Land Datum with referring that the Chart Datum is 1.19m below Land Datum.

Table 4-1 Flood Control Effects of Existing Dentention Pond

| Sub-basin        | Key Drainage   | Catchment | Total       | Coverage of | 5-5                           | 5-yr Flood under Present Conditions | resent Condit       | tions         | Remarks                  |
|------------------|----------------|-----------|-------------|-------------|-------------------------------|-------------------------------------|---------------------|---------------|--------------------------|
| Code             | System         | Area of   | Catchment   | Pond        | Peak                          | Peak                                | Controlled          | Flood Control | (Functioning Pond)       |
|                  |                | Sub-basin | Area of     | Catchment   | Discharge                     | Discharge                           | Discharge           | Effect        |                          |
|                  |                | (km²)     | Ponds (km²) | (%)         | without                       | with Pond                           | [01-02]             | [(Q1-Q2)/Q1]  |                          |
|                  |                |           |             |             | Fond [Q1] (m <sup>3</sup> /s) | [Qz] (m/s)                          | (m <sup>7</sup> /s) | (%)           |                          |
| Sg. Lalang Basin | sin            |           |             |             |                               |                                     |                     |               |                          |
| LA-7             | Internal Drain | 1.18      | 1.18        | 100.0       | 37                            | 5                                   | 32                  | 86.5          | Kaw. Industri LPK        |
| River-mouth      | Sg. Lalang     | 24.53     | 1.18        | 4.8         | 209                           | 199                                 | 10                  | 4.8           | 1 Pond                   |
| Sg. Tukang Basin | ısin           |           |             |             |                               |                                     |                     |               |                          |
| TU-1             | Internal Drain | 1.35      | 1.12        | 83.0        | 43                            | 11                                  | 32                  | 74.4          | Taman Ria                |
| River-mouth      | Sg. Tukang     | 7.93      | 1.12        | 14.1        | 81                            | <i>L</i> 9                          | 14                  | 17.3          | 1 Pond                   |
| Sg. Petani Basin | in             |           |             |             |                               |                                     |                     |               |                          |
| PE-12            | Line C         | 1.55      | 0.95        | 61.3        | 40                            | 15                                  | 25                  | 62.5          | Taman Ria Jaya           |
| PE-14            | Line D         | 1.13      | 0.77        | 68.1        | 35                            | 12                                  | 23                  | <i>L</i> :59  | Taman Ria Jaya           |
| PE-19            | Line G         | 1.98      | 1.50        | 75.8        | 40                            | 13                                  | 27                  | 5.73          | Taman Keladi             |
| PE-20            | Line G         | 1.21      | 0.38        | 31.4        | 28                            | 17                                  | 11                  | 39.3          | Taman Sri Wang           |
| PE-28            | Sg. Gelugor    | 1.46      | 0.16        | 11.0        | 45                            | 41                                  | 4                   | 6.8           | Taman Sri Wang           |
| River-mouth      | Sg. Petani     | 37.72     | 3.76        | 10.0        | 259                           | 220                                 | 39                  | 15.1          | 5 Ponds in Total         |
| Sg. Pasir Basin  | ı              |           |             |             |                               |                                     |                     |               |                          |
| PA-5             | Trunk Drain    | 1.05      | 0.92        | 9.78        | 35                            | 6                                   | 26                  | 74.3          | Taman Sejati Indah       |
| PA-6             | Small Drains   | 1.44      | 0.50        | 34.7        | 45                            | 32                                  | 13                  | 28.9          | Taman Kempas             |
| PA-8             | Small Drains   | 2.27      | 0.52        | 22.9        | 38                            | 24                                  | 14                  | 36.8          | 3 Ponds in Taman Semarak |
| River-mouth      | Sg. Pasir      | 23.44     | 1.94        | 8.3         | 194                           | 165                                 | 29                  | 14.9          | 5 Ponds in Total         |

 Table 4-2
 Proposed Agencies Related to Drainage Policy and Programme

| Policy/Programme                               | Agency                                                                                                                                                           |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drainage Policy                                | National River Council, DID, Ministry of Housing and Local Government (Local Govt. Dept.), State Water Management Authority, State DID, State Planning Committee |
| Drainage Development Programme                 | Economic Planning Unit, Treasury, National River<br>Council, DID, Ministry of Housing and Local<br>Government (Local Govt. Dept.)                                |
| Regulation / Guidelines                        | National Council for Local Government, DID, Ministry of Housing and Local Government (Local Govt. Depart.), SA, DOE, State Water Management Authority            |
| Drainage Master Plan                           | DID, Local Authority                                                                                                                                             |
| Research and Development                       | National Hydraulic Research Institute, Malaysia,<br>University, DID, Ministry of Housing and Local<br>Government (Local Govt. Dept.)                             |
| Public Awareness and Education                 | DID, Local Authority                                                                                                                                             |
| Emergency Response Management for Urban Floods | Local Authority, District Office                                                                                                                                 |

 Table 4-3
 Functional Responsibility for Drainage Facility

|     | Drainage and Basic Facility                                                              | Catchment<br>Area  | Planning | Design | Construction | Maintenance |
|-----|------------------------------------------------------------------------------------------|--------------------|----------|--------|--------------|-------------|
| Bas | in Wide Drainage Facility                                                                |                    |          |        |              |             |
| 1)  | River Channel Improvement                                                                | > 4km²             | DID      | DID    | DID          | DID         |
| 2)  | Flood Retardation Basin                                                                  | > 4km²             | DID      | DID    | DID          | DID         |
| 3)  | Weirs/Gates                                                                              | > 4km²             | DID      | DID    | DID          | DID         |
| 4)  | Trunk Drain (connected to flood mitigation                                               | < 4km²             | DID      | DID    | DID          | DID         |
| 5)  | Community Retention Facilitie (incorporated with multipurpose use/recreation facilities) | -                  | DID      | DID    | DID          | LA          |
| Sul | -basin Drainage Facility                                                                 |                    |          |        |              |             |
| 6)  | Infrastructure Drain / Secondary Drain                                                   | < 4km²             | D/LA     | D/LA   | D/LA         | D/LA        |
| 7)  | Roadside drain (State/Federal Roads)                                                     | -                  | JKR      | JKR    | JKR          | JKR         |
| 8)  | Roadside drain (Municipal roads)                                                         | -                  | D        | D      | D            | LA          |
| 9)  | Perimeter / Tertiary Drain                                                               | < 2km <sup>2</sup> | D        | D      | D            | LA          |
| 10) | Flood Detention Ponds                                                                    | -                  | D        | D      | D            | LA          |
| 11) | Other on site detention facilities                                                       | -                  | D        | D      | D            | LA          |
| 12) | Rehabilitation of existing detention ponds                                               | _                  | LA       | LA     | LA           | LA          |
| 13) | Construction of Storage facility in open space                                           | -                  | LA       | LA     | LA           | LA          |
| 14) | Storage tanks in new development                                                         | -                  | D        | D      | D            | LO          |
| 15) | Storage tanks in existing built-up area                                                  | -                  | LO       | LO     | LO           | LO          |

Notes:

D : Developer

LO: Landowner

LA : Local Authority

JKR : Public Work Department

Table 4-4 Proposed Sources of Funding and Cost Recovery Measures

|                                              | Work Item                                                          | Source of Funding                                           | Cost Recovery Measures                       |
|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| Formulation of Drainage Policy and Programme |                                                                    |                                                             |                                              |
| 1.                                           | Drainage Master Plan                                               | Federal/State Govt./Local<br>Authority/International Grants |                                              |
| 2.                                           | Non-Structural / Measures / Public<br>Education / Public awareness | Local Authority Fund/DID                                    |                                              |
| 3.                                           | Research and Development                                           | Research Grants (MOSTE),<br>International Grants            |                                              |
| 4.                                           | Emergency Response Management                                      | Local Authority Funds                                       |                                              |
| Ba                                           | sin Wide Drainage Facility                                         |                                                             |                                              |
| 1.                                           | River Channel Improvement                                          | Federal/State Grant                                         | Drainage Contribution                        |
| 2.                                           | Flood Retardation Basin                                            | - do -                                                      | (National Land Code)                         |
| 3.                                           | Weirs / Gate                                                       | - do -                                                      |                                              |
| 4.                                           | Trunk Drains (related to flood mitigation)                         | - do -                                                      |                                              |
| 5.                                           | Community Detention Pond                                           | - do -                                                      |                                              |
| Sul                                          | b-Basin Drainage Facility                                          |                                                             |                                              |
| 1.                                           | Infrastructure Drain / Secondary<br>Drain                          | Developer/Local Authority<br>Funding                        | Drainage Improvement Charge<br>s51<br>(SDBA) |
| 2.                                           | Perimeter / Tertiary Drain                                         | Developer                                                   | -                                            |
| 3.                                           | Flood Detention Ponds                                              | Developer                                                   |                                              |
| 4.                                           | Roadside Drain (Fed/State<br>Roads)                                | Road Development Fund                                       | State Road Grant                             |
| 5.                                           | Other Municipal road side drains                                   | - do -                                                      | - do -                                       |
| 6.                                           | Other on site detention facilities                                 | Developer                                                   | Drainage Rate<br>(LGA)                       |
| 7.                                           | Rehabilitation of Existing detention ponds                         | Local Authority Fund                                        | - do -                                       |
| 8.                                           | Construction of storage facilities in open space                   | - do -                                                      | Drainage Rate<br>(LGA)                       |
| 9.                                           | Storage tanks in new development                                   | Developer                                                   | -                                            |
| 10.                                          | Storage tank in house                                              | Land Owner                                                  | Subsidy                                      |

Table 4-5 Enabling Law and Enforcement Agency for Illegal
Activities on Urban Drainage

| Violation/Offenses/Enforcement                                         | Enabling Law                                                                            | Enforcement Agency                                                                     |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Overall custodian role on all waterways                                | Street Drainage Building Act,<br>Local Government Act, Town<br>and Country Planning Act | Local Authority                                                                        |
| Land use violation                                                     | National Land Code, Town and Country Planning Act                                       | Land Administrator, Local Planning Authority                                           |
| Litter and unauthorized garbage disposal                               | Local Government Act                                                                    | Local Authority                                                                        |
| Erosion of Hillland                                                    | Land Conservation Act 1960                                                              | District Land Administrator                                                            |
| Control of Earthworks                                                  | Earthwork By-laws,<br>Erosion and Sediment Control<br>Plan                              | Local Authority<br>DOE                                                                 |
| Diversion and abstraction of water and damage to river banks           | Waters Act, State Water<br>Management Authority<br>Enactment                            | District Office, State Water<br>Management Authority                                   |
| Sand Mining operation                                                  | National Land Code, State<br>Water Management Authority<br>Enactment                    | Director of Land and Mines,<br>Inspector of Mines, State<br>Water Management Authority |
| Discharge of waste water                                               | Environmental Quality Act,<br>State Water Management<br>Authority Enactment             | DOE, State Water<br>Management Authority, Local<br>Authority                           |
| Unlicensed blockage and diversion                                      | Street Drainage Building Act,<br>WA, State Water Management<br>Authority Enactment      | Local Authority                                                                        |
| Indiscriminate Development in Catchment<br>Area                        | State Water Management<br>Authority Enactment, National<br>Forestry Act                 | State Water Management<br>Authority, Forestry<br>Department                            |
| Enforcement of river and drain reserve                                 | National Land Code, State<br>Water Management Authority<br>Enactment                    | DID, State Water Management<br>Authority, Director of Land<br>and Mines                |
| Enforcement of Detention Pond Facilities in<br>Residential Development | Town and Country Planning<br>Act                                                        | Local Authority                                                                        |
| Enforcement of Community Detention Pond Facilities                     | Town and Country Panning<br>Act                                                         | Local Authority                                                                        |

Table 4-6 Maintenance Items of Flood Detention Pond

| Outlet Tower  Orifice  Condition of structure  Conduit Pipe  Leakage of water  Spillway  Others  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Slope  Sediment, subsidence, condition of crest drainage, damage of pavement  Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety | son: 2 times/month: 1 time/3 months |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Outlet Tower  Orifice  Clogging of screen, sedimentation  Conduit Pipe  Leakage of water  Conduit Pipe  Spillway  Others  Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding  Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin  Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Orifice  Clogging of screen, sedimentation  Rainy sear  Conduit Pipe  Leakage of water  Spillway  Others  Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding  Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin  Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Conduit Pipe  Leakage of water  Dry seson  Condition of structure, revetment, obstacle and damage  Others  Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding  Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Others  Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 1 time/3 months                   |
| Others  Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
| Slope Slope failure, crack, leakage, spring, damage, subsidence, collecting drain, clogging of box, turffing and weeding Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| Slope damage, subsidence, collecting drain, clogging of box, turffing and weeding Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Crest  Damage, settlement, subsidence, condition of crest drainage, damage of pavement  Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Sedimentation Basin Sedimentation, condition of drainage, rubbish, weeding, obstacle for releasing water  Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Others  Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| Change of ground, influence against safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Periphery of Facility  Cut Slope  Change of ground, influence against safety of facility  Cut Slope  Cut Slope  Downstream of Spillway  Downstream Channel  Change of ground, influence against safety of facility  Cut Slope  Downstream of Spillway  Condition of structure, obstacle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| Downstream of Spillway Increment of dangerous condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| Downstream Channel Condition of structure, obstacle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| Observation Facility  Conditions of water level gauge and structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| Air Supply Pipe Damage, clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Air Supply Pipe  Guard Fence  Damage, clogging  Damage, collapse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Observation Facility  Air Supply Pipe  Guard Fence  Sign Board  Damage, collapse  Sign Board  Damage, collapse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| Materials Quantity and quality, condition of custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| Materials  Quantity and quality, condition of custody  Equipment  Quantity and quality, condition of custody  Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                   |
| Others Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| Removal of Sedimetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| Weeding and Clearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| Transaction course at the L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Transaction Delicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | forecasting flooding                |
| Does water level reach High Water   Due to overflow from spillway sever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ine                                 |
| Level? influence to downstream can be expected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Does water level surge or draw down rapidly?  It might be caused by clogging of orifice/screen or crack of embankment.  Sudden fluctuation of water level might suggest some possibility to produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| Does water level surge or draw down rapidly?  Sudden fluctuation of water level might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| down rapidly? Suggest some possibility to produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |
| slope/embankment failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| Does quantity of releasing water decrease?  Clogging of orifice/screen can be considered as main cause.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| Does seepage or slope failure occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| at embankment ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Inspection same as the above After flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing                                 |

Table 5.1 Basic Unit Costs/Prices Applied for Cost Estimate in Sungai Petani and Melaka

|                                                                                    | [      | Applied      |                            |
|------------------------------------------------------------------------------------|--------|--------------|----------------------------|
| Item                                                                               | Unit   | Cost (RM)    | Remarks                    |
|                                                                                    |        | May 1999     |                            |
| 1.Civil Engineering Construction                                                   |        |              |                            |
| Excavation (common, by mechanical equipment)                                       | 2      | 2.0          |                            |
| • • • • • • • • • • • • • • • • • • • •                                            | m3     | 3.0          |                            |
| Excavation (foundation, by hand)  Excavation (foundation, by mechanical equipment) | m3     | 13.5         |                            |
| Excavation (toundation, by mechanical equipment)                                   | m3     | 8.0          |                            |
| Embankment (earthfill)                                                             | m3     | 21.0         |                            |
| Steel Round bar                                                                    | ton    | 1,200.0      |                            |
| Steel Screen                                                                       | ton    | 2,400.0      |                            |
| Sluice Gate                                                                        | ton    | 7,000.0      |                            |
| Side Guid                                                                          | 1011   | 7,000.0      |                            |
| Revetment/wall (Stone-Pitching, t=250mm)                                           | m2     | 65.0         |                            |
| Revetment/wall (One brickwall, t=250mm)                                            | m2     | 60.0         |                            |
| Revetment/wall (CHBl, t=190mm)                                                     | m2     | 52.0         |                            |
|                                                                                    |        |              |                            |
| Mass. Concrete                                                                     | m3     | 180.0        |                            |
| R.C. Concrete                                                                      | m3     | 250.0        |                            |
| Concret Pavement (t=120mm)                                                         | m2     | 30.0         |                            |
|                                                                                    |        |              |                            |
| PC pile (150mm x 150mm)                                                            | m      | 30.0         |                            |
| PC pile (200mm x 200mm)                                                            | m      | 33.0         | ·                          |
| Dina Culvart (600mm)                                                               |        | 100.0        |                            |
| Pipe Culvert (600mm) Pipe Culvert (900mm)                                          | m      | 120.0        |                            |
| ripe Curven (900mm)                                                                | m      | 190.0        |                            |
| Road Work (130mm thick crusher run w/ 50mm pavement)                               | m2     | 6.0          |                            |
|                                                                                    |        |              |                            |
| Close Turfing                                                                      | m2     | 4.0          |                            |
|                                                                                    |        |              |                            |
| Roadside Drain (300mm x 300mm)                                                     | m      | 12.5         | ,                          |
| PVC Rainwater Downpipe (100mm) w/ fixture                                          |        | 24.0         |                            |
| PVC Half Round (150mm) Rainwater Gutter w/ fixture                                 | m<br>m | 24.0<br>35.0 |                            |
| 1 VC Hall Round (130mm) Ramwater Gutter w/ Institute                               | ,      | 33.0         |                            |
| FRP Water Tank (2000l) w/ fixture                                                  | no.    | 800.0        |                            |
| ,                                                                                  |        |              | :                          |
| Chain Link Fencing (1.8m high)                                                     | m      | 45.0         |                            |
|                                                                                    |        |              |                            |
| 2. Land Prices                                                                     |        |              |                            |
|                                                                                    |        |              | Land Acquisition:          |
| Residential Area                                                                   | m2     | 1            | for drainage channel areas |
| Agricultural Land (rubber)                                                         | m2     | 6.2          | for detention pond areas   |
| 3. Labour Wages                                                                    |        |              |                            |
|                                                                                    |        |              |                            |
| Foreman                                                                            | day    | 80.0         |                            |
| Equipment Operator                                                                 | day    | 55.0         | •                          |
| Stonemason                                                                         | day    | 48.0         |                            |
| Common Labour                                                                      | day    | 33.0         |                            |