

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
	l Argentina Mining Sector Review 1993	English		1993	1993 World Bank	Argentina	Mining activities report
2	Directory of Mining Investment Opportunities in the Argentina Republic	English		1993	Mining Secretary, Ministry of Economy and Public Services	Argentina	Deposits in each province, Geological maps. Climate, Topographical sections
673	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish		1994	1994 Secretaria de Mineria de la Nacion	Argentina	Location map of deposits in Chubut, Santa Cruz, Tierra del Fuego
4	4 Encuentro Intermacional de Mineria, ACTAS	Spanish		1994	1994 Secretaria de Mineria de la Nacion	Argentina	Technical papers
ų,	5 Annual Reort 1995, Eldorado Gold Corpration	English		1995	1995 Erdrado Gold Corporation	Argentina	Andes project in Catamarca
	6 Environment for mining development in Argentina	Japanese		1995	1995 MERIC, MMAJ	Argentina	Country report
	Geologia y Metalogenesis del Orogeno Andino Cenral, Republica Argentino	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	1995 SEGEMAR	Argentina	Note on geological map of 32°to 40°Central Andean area (1/400,000).
3 0	8 Argentina Mining '96, A New Frontier Opportu nity	English		1996	Engineering & Mining Journal, Latinomineria	Argentina	Investment promotion
53	9 Argentina's Mining Sector 1997	English		1997	Ministry of Economy and Public Works and Services	Argentina	Mining ativities
10	10 Estadistica de la Produccion Minera de la Republica Argentina Spanish	Spanish		1997	1997 Subsecretaria de Mineria	Argentina	Mining production statistics
=	11 Estadistica Minera de la Republica Argentina, 1994-1996	Spanish		1997	1997 Direccion de Evaluacion Minera	Argentina	Mining statistics
112	12 Sector Minero Argentina 1977	Spanish		1997	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Mining activities
13	13 Argentina's Mining Sector	Spanish/E nglish		1998	Ministrerio de Economia y Obras y Servicios / Publicos	Argentina	Outline of mining activities.
14	14 Argentina's Mining Sector 1998	Spanish		1998	1998 Ministrerio de Economia y Obras y Servicios /	Argentina	Mining activities
15	15 Mineria Argentina, La Calidad como Filosofia	Spanish		1998	1998 Subsecretaria de Mineria	Argentina	Mning policy
]	16 Mining Right Information (La Rioja, Mendoza, San Juan)	English	Lavandario, E.	1998	1998 SEGEMAR	Argentina	Letter, Mining Right Information

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

NO.	o. Title	Language	Author	Year	Organization	Category	Comments
-	X Congreso Latinoamericano de geología, VI Congreso Nacionalde Geología Ecomica	Spanish		1998	Subsecretaria de Mineria de la Nacion, 1998 Sevicio Ceologico Minero Argentina, Asociacion Argentina de Geologos Economistas	Argentina	Proceeding of the geological conference
	Compendio 1999/2000 de las Industrias de Base Mineral y de la Mineria Argentina	Spanish		1999	1999 Panorama Minero	Argentina	Mining magazine for mining activities
	19 Panorama Minero	Spanish		1999	1999 Panorama Minero	Argentina	Mining magazine in Argentina
-2	20 Geomapa, Republica Argentina, Fisico-Pplitico	Spanish				Argentina	Geographical map of Argentina (1/3,500,000)
24	2] Legal and Tax Framework	Spanish				Argentina	Mining law and Revenue law
2	22 Marco Juridico Ambient para la Actividad Minera	Spanish			Unidad de Gestion Ambient Nacional	Argentina	Environmental law
23	23 Rutas de la Argentina	Spanish		7	Automapa	Argentina	Road map of Argentina
24	Mapa Metalogenetico de la Republica Arentina (GIS etc)	Spanish/E nglish		3 8661	1998 SEGEMAR	Argentina (CD-ROM)	GIS of Metallogenic maps of Argentina etc.
25	Caracteristicas y Edad del Plutonismo en los Alrededores del Lago Puelo, Provincia del Chubut	Spanish	Lizuain, A.	3 1861	1981 Servicio Geologico Nacional	Chubut	Age of plutonic rocks of Cordillera Patagonia.
26	Investigaciones Detalladas del Cateo Huemules, Informe Final: Spanish	Spanish		1983 L	United Nations Revolving Fund for Natural Resources Exploration	Chubut	Final report of UNRF project (1977-1982)
27		Spanish	Genini, A.D., Grizinik, M. and Pezzuchi, H.D.	I S 6861	Dir. Nac. Min. y Geol. Centro Explor. Patag. 1989 Sur y Dept. Geologia - Univ. Nac. de la Patagonia San Juan Basco	Chubut	Mineralization model.
33	28 Mapa Geologico Simplificado de la Cordillera de la Provincia del Chubut	Spanish	Marquez, M.J.	S 6661	1999 Servicio Nacional Minero Geologia	Chubut	Outline geology of cordillera area of Chubut province.
32	29 Mapa de ubicacion de UNRF project	Spanish)	Chubut	Location maps of Gaste, Esquel-Corcovado, Lagos Fontana-La Plata areas
30	30 Provincia Chubut, Geochemica de Rocas/Sedimentos/Suelo	Spanish				Chubut	Geochemical survey in Chubut province
31	Metalogenesis de la region Apeleg-Alto Rio Sebguerr, Chubut	Spanish	Lanfranchini, M.E., Etcheverry, R.O. and Schlamuk, I.B.	X 6661	1999 XIV Congreso Geologico Argentino	Chubut (Apeleg)	Aloteration and mineralization in Apeleg-Alt Rio Senguerr district

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Tytle	Language	Author	Year	Organization	Category	Comments
32	Estudio de las Alteraciones en el Cerro Coihue. Provincia del Chubut. Republica Argentina	Spanish	Genini, A. and Nillni, A.	1994	Universidad nacional de la Patagonia San Juan Bosco	Chubut (Cerro Coihue)	Investigation on alteration of Cerro Coihue deposits
33	Informe Preliminar Proyect 04 HA. Epuyen. Area No 8. Cerro Goihue	Spanish	Genini, A. and Grizinic, M.	1999	1999 Delegacion Regional Patagonia, SEGEMAR	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits, vein-type, pyritization with Cu-Mo mineralization
34	Geologia y Mineralizacion del Sector Suroriental del Cerro Coihue, Provincia del Chubut	Spanish		٠.	Secretaria de Estado de Mineria y Universidad Nacional de la Patagonia San Juan Basco	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits.
35	Mapa Geologico Minero del Arroyo de los Alevinos - Lago Fontana, Provincia del Chubut.	Spanish	Marquez, M.J. y Parisi, C.	1995	SEGEMAR	Chubut (Cerro Colorado)	Geological map of the area of Cerro Colorado
36	6 El prospect aurifero Cerro Colorado, Chubut	Spanish	Perez, H.D. and Sureda. R.J.	1999	1999 XIV Congreso Geologico Argentino	Chubut (Cerro Colorado)	Discovery of high sulfidation gold deposit
37	Proyect 04 HC Area Cordon caquel, Bosquejo Geologico entre Arroyp Luque y Arroyo el Rapid.	Spanish			SEGEMAR	Chubut (Cerro Gonzalo)	Geological map of the area of Arroyo Luque - Cerro Gonzalo
~~	38 Estudio Geologico-Minero del Yacimiento Cuprifero "Condorcanqui"	Spanish	Tabacchi, M.H.	1953		Chubut (Condorcanqui)	Outline of Condorcanqui deposit, Low Cu grades.
**	39 Reconocimient Geologico Area Epuyen, Prov. Del Chubut	Spanish	Genini, A.	1976	1976 S.N.M., P.P.C.	Chubut (Condorcanqui)	Outline of Condorcanqui deposits, 4,400t reserves by FM's drillings.
40	Mineralizacion de Cobre Asociada al Plutonismo Terciario en la Zona de la Mina Condorcanqui, Provincia de Chubut	Spanish	Silva, A., Beatriz, C., Eva, D. and Norra, P.	1979	Secretaria de Estada de Minelia, Ministerio de Economia	Chubut (Condorcanqui)	Geochemical survey for Condorcanqui deposit area.
14	Geologia y Area de Alteracion en el Cerro Cororado y Alrededores. Chubut Noroccidental	Spanish	Sepulveda, E.G. and Viera, R.M.	1980	Asociacion Geologica Argentina, Revista XXXV (2) 195-202	Chubut (Esquel NW)	Technical paper, alteration with possibility of porphyry copper deposit
42	Informe Preliminar sobre la Prospeccion Reginal del Cordon de Esquel, Proyect 04 HB Esquel	Spanish	Herrero, J.C.	1985	1982 Servicio Nacional Minero Geologia	Chubut (Esquel)	Field survay report, inc. 1/100,000 geological map
43	Informe Proyect Cordon Situacion, Centro de Exploracion Patagonia Sur	Spanish	Marquez, M., Parisi, C. and Butron, F.	1987	Direccion Nacional de Mineria y Geologia. Secretaria de Mineria	Chubut (Esquel)	Field survay report, inc. 1/2,000 route map
44	Informe Proyecto 04, HB, Esquel. Plan Patagonia Comahue Geologico Minero	Spanish		1997	1997 Servicio Nacional Minero Geologico	Chubut (Esquel)	Field survey report with mineral occurrences, inc. 1/100,000 maps
45	Geologia-Reservas y Modelo Teorico de Estructuras Mineralizadas del Yacimiento de Oro Huemules	Spanish	Viera, R., Herrero, J.C. and Hughes, G.E.	1982	Direccion General de Minas y Geologia Provincia Chubut	Chubut (Huemules)	Hemules deposit, 0.02 to 815g/t Au, guide for galleries.
46	Investigaciones Detalladas del Cateo Humules, Informe Final: Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para (la Exploracion de Recursos Naturales	Chubut (Huemules)	Final report of UNRF project (1977-1982) for Huemules deposit.
47	/ Mapas anexas de Informe Final Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para la Exploracion de Recursos Naturales	Chubut (Huemules)	Plans of final report of UNRF project (1977- 1982) for Huemules deposit.

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
<u>*</u>	48 Proyect Huemules (Provincia de Chubut)	Spanish		1984	Ministrio de Economia, Servicios y Obras Publicas/Subsecretaria de Promocion y Desarollo/Provincia del Chubut	Chubut (Huemules)	Abstract of UNRF project, Huemules deposit, 2,975,000t (10.3g/t Au, <1,000,000t)
64	El Prospecto Huemules, Cordon Oriental del Futalaufquen. Chubut, Argentina	Spanish	Viera, R.L.M. and Hughes, G.	1999	SEGMAR, Direccion de Minas y Geologia del Chubut	Chubut (Huemules)	Huemules deposit, 750,000t, 9g/t Au.
50	Mineralogia del yaimiento polimetarico Huemules, Cordillera Patagonia Septentrional, Chubut	Spanish	Schalamuk, I., Bario, R.E. and Vasconcellos, M.	1999	1999 XIV Congreso Geologico Argentino	Chubut (Huemules)	Mineralogy, fluid inclusion and isotopic data
51	Annual report and Financil Statements for the year ended 31 December 1998	English		1999	1999 Brancote Holding PL.C	Chubut (Joya del Sol)	Annual report of 1998
52	52 Informe Preliminar Proyecto 04 HA "Lago Epuyen"	Spanish	Beltramone, C.A.	1978	Plan Patagonia Comahue, Subseda los Alamos	Chubut (Lago Epuyen)	Five alteration zones, geochemical survey, Cu max 320ppm.
53	53 Proyecto Lago Fontana, Chubut	Spanish	Silvia Ametrano	1885	Secretaria de Mineria	Chubut (Lago Fontana)	Detailed survey report, 700,000t reserves, 1.63% Pb, 4.49% Zn, 0.61% Cu
54	No Title (Lago Fontana y otros)	Spanish		1951	_	Chubut (Lago Fontana)	Survey for mineral occurrences of Chubut and Santa Cruz.
55	Genesis y Geoquimica de la Mineralizacion de los Yacimientos "Los Manantiales y Lago Fontana", Provincia de I Chubut	Spanish	Dominguez, E.A.	1981	Asociacion Gelogica Argentina, Revista, XXXVI (2) : 123-142.	Chubut (Lago Fontana)	Study on the genesis of Los Manantiales deposit and Lago Fontana deposit
56	Informe de Avance Programa Cordillea Patagonica Area Arroyo Canogas	Spanish	Marquez, M.J. and Parisi, C.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Arroyo Canogas area.
57	Informe de Avance Programa Cordillea Patagonica Area Katterfeld	Spanish	Marquez, M.J.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Katterfeld area.
28	Yacimientos de Oro y Plata de la Patagonia, Republica Argentina, Principales Posibilidades de Inversion	Spanish		1997	1997 SEGEMAR	Chubut (Lago Fontana)	La Ilision Propiedad(Zn,Pb,Ag,Au), Cerro Colorado propiedad (Au 7.95g/t)
59	59 Informe Preliminar de la Hoja 45a, Lago Genera l Vinter	Spanish	Pesce, A.H.	1976	1976 Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Field survey report, inc 1/200,000 geological map
09	Estratigrafia de la Cordillera Patagonica entre los de 43°30'y 44° de latitud sur y sus areas Mineralizadas	Spanish	Pesce, A.H.	1978	1978 Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Geology, a lteration and mineralization
61	61 Informe Preliminar Hoja Lago General Vintter (Hoja 45A)	Spanish	Pezzuchi, H.D.	1979		Chubut (Lago Grl. Vintter)	Geological description
62	Informe Proyecto 04, HB, Cerro Rinon y Cerro S te ffen. Plan Patagonia Comahue Geologico Minero	Spanish	Parisi, C.	1981	Servicio Nacional Minero Geologia	Chubut (Lago Vintter)	Field survey report, inc. 1/50,000 maps
63	63 Informe Proyecto 04, HB, Esquel, parque Nacional Los Alerces	Spanish	Viera, R.	1976	1976 Servicio Nacional Minero Geologia	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 geological map

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

NO.	o. Title	Language	Author	Year	Organization	Category	Comments
	64 Informe Geologico Preliminar, Proyecto 04 HB Esquel y 04 HC Trevelin	Spanish	Marquez, M.J.	1980	1980 Servicio Nacional Minero Geologia	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 alteration map
	65 Estudio de los Yacimiento de Caolin del Oeste de la Provincia del Chubut, Minas Susana, Gato y Estrella Gaucha	Spanish	Maiza, P.J.	1981	VIII Congreso Geologico Argentino, San Luis, Chubut (Sakmata) Atas IV : 471-484.	Chubut (Sakmata)	Acid hydrothermal alteration
	66 Mapeo de Semidetalle y Muestreo de las Zonas de Alteracion del Cerro Bayo (Cordillera de Sakmata) Apeleg ; Chubut	Spanish	Parisi, C. and Butron, F.	1993		Chubut (Sakmata)	Geochemical exploration by rock samples. No noticeable Au values.
	67 Geologia y Mineralizacion de la Cordillera de Sakmata, Aldea Apeleg.	Spanish	Marquez, M. and Pezzuchi, H.	i	Direccion Nacional de Mineria y Geologia	Chubut (Sakmata)	Geology and mineralization of Sakmata (Apeleg), Qz veins with sulfides.
	68 Informe sobre las Minas de Caolin, Alunita, y Minerales Metaliferos en la Promincia del Chubut	Spanish	Dr.Hayase, K.	1970	1970 Universidad Nacional del Sur	Chubut (Sakmata, Lago Fontana)	Chubut (Sakmata, Lago Geological survey for the known deposits. No Significant mineralization.
<u> </u>	69 Estructura y Mineralizacion en la Cordillera Patagonica, Tesis Doctoral	Spanish	Haller, M.J.	1981	1981 Universidad de Buenos Aires	Chubut (Trevelin∼ Lago Grl. Vintter)	Doctoral dissertation, Universidad de Buenos Aires
	70 Informe Geologico Preliminar, Proyecto 04 HC Trevelin, Sector Oriental	Spanish	Marquez, M.J.	1979	1979 Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/100,000 and 1/50,000 maps
7	71 Informe Proyect 04, HC, Trevelin. Plan Patagonia Comahue Geologico Minero	Spanish	Marquez, M.	1981	1981 Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/50,000 alteration map
7	72 Informe sobre la Prospeccion Semidetallada del Cerro Riscoso, Proyecto 04, HB, Esquel.	Spanish	Herrero, J.C. and Parisi, C.	1981	1981 Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/11,500 and 1/1,000 maps
7	73 Informe Geologico Preliminar, Lago Fontana Sur	Spanish	Marquez, M.J. and Parisi, C.	1994	J	Chubut(Lago Fontana)	Survey for mineral occurrences, Arroyo Cangan is thought to be promising.
7	Geologia y Metalogenesis del Orogeno Andino Central; 1:400,000: Direccion Nacional del Servicio Geologico (1) y (2)	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	1995 SEGEMAR	Geol. Map (Andino Central)	Geological map (1/400,000) of Andean Central area (S32° to S40°)
2	75 Mapa Geologico de la Republica Argentina, 1: 5,000,000	Spanish	Caminos, R. and Gonzalez, P.D.	1996	1996 SEGEMAR	Geol. Map (Argentina)	Geological map (1/5,000,000) of Argentina
7	Mapa Geologico de la Republica Argentina, 1:2,500,000; Secretaria de Industria, Comercio y Mineria (1) y (2)	Spanish	Mendia, J.	1997	1997 SEGEMAR	Geol. Map (Argentina)	Geological map (1/2,500,000) of Argentina
7	77 Mapa Geologico de la Provincia del Chubut, 1:750,000; Direccion Nacional del Servicio Geologico	Spanish	Page, R.	1995	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Geol. Map (Chubut)	Geological map (1/750,000) of Chubut Province
7	78 Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen, 1:500,000; Direccion Nacional del Servicio Geologico	Spanish	Delpino, D. and Deza, M.	1995	Direccion Nacional del Servicio geologico, Cescetaria de Mineria.	Geol. Map (Neuquen)	Geological map (1/500,000) of Neuquen Province
7	79 Chilena entre los 34 y 56S. (2 hojas)	Spanish	Zanettini, J.C.M., Marquez, M.J., Gonzalez, R.A., Vivallo, W.P., Gardeweg, M.C. and Tassara, A.H.	1999 (1999 SEGEMAR y SERNAGEOMIN	Geol. Map (Patagonia)	Geological maps (1/1,000,000) for the area along the border (S34" to S56")

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
ã	Mapa Geologico de la Provincia de Rio Negro, 1:750,000; Direccion Nacional del Servicio Geologico (1) y (2)	Spanish	Page, R.F.N.	1994	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Geol. Map (Rio Negro)	Geological map (1/750,000) of Rio Negro Province
8	Tehnical Specifications, Airborne Geophysical Survey in Argentina, SEGEMAR PASMA Project 1997-1998	Spanish		1997	1997 SEGEMAR	Geophysics	SEGEMAR's specification for airbone geophysics
82	Simposio Geofisica Aerea y Geoquimica en la Prospeccion Geologica-Minera	Spanish		1998	X Congreso Latinoamaricano de Geologia, VI Congreso Nacional de Geologia Economica	Geophysics	Proceedings of international geophysical conference.
83	Minerals Yearbook Volume III, 1995 International Review	English		1995	U.S. Department of the Interior/U.S. Geological Survey	Latin America	1995 Review, Mineral industries of Latin America and Canada
84	Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen	Spanish		1995	1995 Servicio Geologico Neuquino	Neuquen	Provincial geological map
86	85 Prospectos Metaliferos, Provincia del Neuquen	Spanish		1998 (1998 CORMIN S.E.P.	Neuquen	Information of CORMIN Properties of Butalon Norte, Cajon de los Chenques, Cerro Caicayen, La Voluntad, Cochico.
86	86 Airbone and Ground Instrumentation	English				Neuquen	Neuquen province, airbone mag, spec.
8.	87 Areas de Reservas Minera, Provincia Neuquen	Spanish		J	CORMIN S.E.P.	Neuquen	Information of properties of Neuquen Province
88	88 Investing for Growth, Neuquen	English		<i>S</i> 3 ⊞	Secretaria de Estado del COIPADE y Energia, Provincia del Neuquen	Neuquen	Investiment climate in Neuquen Province.
88	No.2 Campana Mahuida (Cu), No.3 Proyect disrito Aurifero Andacollo (Au)	Spanish				Neuquen	Outline of Campana Mahuida, Andacollo deposits etc.
6	Prospectos y Areas de Alteracion Hidrothermal de la Provincia del Neuquen	Spanish		1996 C	1996 CORMIN S.E.P.	Neuquen	Information of 23 alteration zones in Neuquen Province.
91	Mapa Official de la Provincia del Neuquen	Spanish		1997 P	1997 Provincia del Neuquen	Neuquen	Information map of 1/500,000 utilizing TM image
92	Prospecto y Areas de Alteracion Hidrotermal, Entre 36º46' . 38º12' L.S. y 70º01' - 71º30' L.O.	Spanish		Ь	Provincia del Neuquen	Neuquen	Geological map of 1/200,000 with distribution of hydrothermal alteration zones
93	Sector Norte Distrito Minero Andacollo	Spanish/E nglish		1998 G	1998 Gobierno de la Provincia del Neuquen	Neuquen (Andacollo)	Information of CORMIN property at North Andacollo.
94	Explotacion del distrito aurifero Andacollo en la Provincia del Neuquen	Spanish		1999 P	1999 Panorama Minero	Neuquen (Andacollo)	Exploitation at the Andacollo gold mine
95	95 Nuevo Contrato de Exploracion para Andacollo	Spanish		1999 P	1999 Panorama Minero/No232-Enero de 1999	Neuquen (Andacollo)	New contract between CORMIN and Mineral Andacollo Gold S.A.

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

o Z	Title	Language	Author	Year	Organization	Category	Comments
96	96 Longitudinal Mina Sofia	Spanish		2000	2000 Minera Andacollo Gold S.A.	Neuquen (Andacollo)	Section map of the Sofia Mine
97	Estudio Comparativo de los Distritos Mineros "Andacollo" y "Cerro Atravesada", Pcia. Del Neuquen, Argentina.	Spanish	Danieli, J.C. and Ronconi, N.	1979 I	Direccion General de Mineria de la Pcia, de Neuquen	Neuquen (Andacollo, Carreri)	Geological comparative study for Andacollo and Careri districts. Tertiary age mineralization is supposed for both districts.
98	Geoquimica de los intrusivos hallados entre los arroyos Butalon y Quebrada felix. Departamento Minas, Neuquen	Spanish	Case, A.M., Danieli, J.C. and Schlamuk, I.	1999	1999 XIV Congreso Geologico Argentino	Neuquen (Butalon)	Petrological chemistry of intrusive rocks
66	Geologia de la Comarca de Campana Mahuida (Provincia del Neuquen)	Spanish	Zanettini, J.C.M.	1979	Asociacion Gelogica Argentina, Revista. XXXVI (1) : 61-68.	Neuquen (Campana Mahuida)	Outline geology of Campana Mahuida deposit, Intrusions of Cretacaous to Ologocene.
100	Estudio Minero-Geologico del Yacimiento de Plomo "Carreri", Neuquen, Argentina.	Spanish	Aparicio, E.	1960		Neuquen (Carreri)	Description on the Carreri deposits, including ore grades and reserve (500t).
101	101 Area la Atravesada, Neuquen, Argentina.	Spanish		1993	1993 Ingeoma S.A.	Neuquen (Carreri)	Geochimical sampling report in La Atravesada area.
102	102 Fax-Area de Reserva La Atravesada, Neuquen, Argentina.	Spanish		1993 /	1993 American Resource Corpration	Neuquen (Carreri)	Memoramdum on the information of La Atravesada area.
103	Prospecto "La Atravesada", Muestreo Geoquimico, Pcia. del Neuquen, Argentina.	Spanish	Horacio, G.	1993		Neuquen (Carreri)	Stream-sediments geochemical survey results with Cu anomalies of 50 to 100ppm.
104	104 Area de Reserva Carreri.	Spanish		1995 F	1995 Provincia del Neuquen	Neuquen (Carreri)	Information on Careri properties
105	105 Area de Reserva Cochico-Carreri-Cachil, Neuquen, Argentina.	Spanish	Campbell, J.	1996 F	1996 RTZ Mining and Exploration Limited	Neuquen (Carreri)	Geochemical survey reports. RTZ withdrew to ontract with CORMINE.
106	106 Area de Reserva Carreri, Neuquen, Argentina.	Spanish		18661	1998 Direccion Pcial. de Mineria	Neuquen (Carreri)	Description for previous works in the Carreri district.
107	La Formacion Chachil (Liasico) y sus Niveles Manganesiferos en el Area del Cerro Atravesada, Neuquen, Argentina.	Spanish	Leanza, H.A., De Brodtkorb, M.K., Brodtkorb, A. and Danieli, J.C.	T	Tercer Congreso Nacional de Geologia Economica	Neuquen (Carreri)	Description for Mn mineralization in the Cerro Atravesada district (Carreri-Nireco).
108	108 Prospect Pino Andino	Spanish/E nglish		1998	1998 Gobierno de la Provincia del Neuquen	Neuquen (Pino Andacollo)	Information of CORMIN property at Pino Andino, drillings, weak Cu mineralization.
109	Programa Nacional de Cartas Geologicas de la Republica Argentina. Hoja Geologica 4169-1, Piedra del Aguila.	Spanish	Cucchi, R., Espejo, P. and Gonzalez, R.	1998 S	1998 SEGEMAR	Neuquen y Rio Negro	Geological map of 1/250,000 and note
= 1	Actualizacion Metalogenica de la Region Patagonica al Sur del Paralelo de 42º00′sur, Republica Argentina	Spanish	Giacosa, R.E., Marquez, M.J. and Pezzuchi, H.D.	1980 T	Tercer Congreso Nacional de Geologia Economica Tomo III : A1-20.	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
=	111 Report of mineral exploration in the Patagonia area (phase 2)	Japanese		1983	1983 JICAMMAJ	Patagonia	Technical cooperation project

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
112	Report of mineral exploration in the Patagonia area (consolidated)	Japanese		1984	1984 JICA/MMAJ	Patagonia	Technical cooperation project
113	113 Report of mineral exploration in the Patagonia area (phase 3)	Japanese		1984	1984 JICA/MMAJ	Patagonia	Technical cooperation project
114	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish	Marquez, M.J., Parisi, C., Covaro, M.I.F. and Jones, M.E.	1994	Actas del Encuentro Interncional de Mineria, I : 66-83	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
115	Mapa de recursos minerales del area fronteriza Argentino- Chilena entre los 34 y 56 de latitud sur	Spanish		1998	1998 SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,000)
116	Mineral resourves map of the frontier zone between Argentine and Chile, 34-56 south latitude	English		1998	1998 SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,000)
117	, Mapa de Recursos Minerales del Area Fronteriza Argentino- Chilena entre los 34 y 56S. (2 hojas)	Spanish	Zanettini, J.C.M., Marquez, M.J., Gonzalez, R.A., Vivallo, W.P., Gardeweg, M.C. and Tassara, A.H.	1999	1999 SEGEMAR y SERNAGEOMIN	Patagonia	Note on geological maps (1/1,000,000) for the area along the border
118	Region : Patagonia, Regiones mineras de la Republica Argentina	Spanish		1999	1999 Subsecretaria de Mineria	Patagonia	Data of social, infrastructure and economics
119	119 Properties map of Chubut Province (4 pc.)	Spanish		1999	1999 Com. Rivadavia, SEGEMAR	Properties (Chubut)	Properties map of Chubut Province.
120	120 Padron Minero, Provincia de Chubut	Spanish		2000	2000 Provincia de Chubut	Properties (Chubut)	Mining properties of Chubut (Auto-Cad files) without list
121	121 Expedientes, Provincia del Neuquen.	Spanish		1999	1999 CORMINE	Properties (CORMINE)	Properties (CORMINE) Informations on CORMINE's 11properties
122	Property map of Neuquen Province (A3 size)	Spanish		1998		Properties (Neuquen)	Property map
123	123 Padron Minero, Provincia de Neuquen	Spanish		2000	2000 Provincia de Neuquen	Properties (Neuquen)	Mining properties of Neuquen (map, floppy)
124	Property map of Rio Negro Province (3 pc.)	Spanish		1999		Properties (Rio Negro)	Property map
125	125 Padron Minero, Provincia de Rio Negro	Spanish		2000]	2000 Provincia de Rio Negro	Properties (Rio Negro)	Mining properties of Rio Negro (map, floppy, list)
126	Informe sobre la Prospeccion Geoquimica Realizada en Areas de la Cordillera de Rio Negro	Spanish	Giacosa, R.E	1981	1981 S.M.N. Plan Patagonia Comahue	Rio Negro	Stream sediments geochemical survey results.
127	127 Mapa Geologico de la Provincia de Rio Negro	Spanish		1994	1994 Direction Nacional del Servicio geologico	Rio Negro	Provincial geological map

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

128 Proyecto Rio Negro Geologia y Recursos Mineral Jarcobacci. Geologia y Recursos Mineral 130 Hojas 4172-IV. San Carlos d de los Andes. Geologia y Recursos Mineral Hojas 4172-IV. San Carlos d de los Andes. Inormación Gas Rio Negro. San Carlos de Barlloche. Can Rio Negro. Proyect Minero, S 133 Rio Negro. Proyect Minero, F Informe Geologico Minero, P Rio Negro Informe Geologico Minero, P Rio Negro Prospeccion y Exploracion M Cerro Granito y Cerro del M 135 Cerro Granito y Cerro del M 135 Rio Negro	es de la Hoja 4169-III, Ingeniero es del sector rionegrino de las e Bariloche y 4172-II. San Martin es del Sector Rionegrino de las e Bariloche y 4172-II. San Martin cologico Minera de la Provincia de ta Geologica de la Republica			1996	1996 SEGEMAR		Project in Rio Negro province
Geologia y Recursos Mineral Jarcobacu. Geologia y Recursos Mineral 130 Hojas 4172-1V, San Carlos d de los Andes. Geologia y Recursos Mineral Hojas 4172-1V, San Carlos d de los Andes. Geologia y Recursos Mineral Rio Negro San Carlos de Bariloche. Ca Argentina. Escala 1:250,000 Rio Negro, Proyect Minero, f Informe Geologico Minero, f Rio Negro Prospeccion y Exploracion b Prospeccion y Exploracion b Cerro Granito y Cerro del M					•	Rio Negro	
Geologia y Recursos Mineral 190 Hojas 4172-IV, San Carlos d de los Andes. Geologia y Recursos Mineral 191 Hojas 4172-IV, San Carlos d de los Andes. Informacion G Rio Negro 132 San Carlos de Bariloche, Ca: 132 Argentina, Escala 1:250,000 Argentina, Escala 1:250,000 133 Minera Digital. Informe Geologico Minero, F Rio Negro Prospeccion y Exploracion b Prospeccion y Exploracion b 134 Mosaico 4172-IV-B2, Zona d Rio Negro Prospeccion y Exploracion b Prospeccion y Exploracion b 135 Cerro Granito y Cerro del M			Gonzalez, P., Coluccia, A., Franchi, M., Caba, R. and Dalponte, M.	1999 S	1999 Direction de Mineria de Rio Negro y I	Rio Negro	Geological map of 1/250,000 and note
Geologia y Recursos Mineral Hojas 4172-IV, San Carlos d de los Andes. Informacion G Rio Negro Rio Negro San Carlos de Bariloche, Cai Argentina. Escala 1:250,000 Minera Digital. Informe Geologico Minero, F Rio Negro Prospeccion y Exploracion M Prospeccion y Exploracion M 134 Mosaico 4172-IV-B2, Zona d Rio Nogro Prospeccion y Exploracion M 135 Cerro Granito y Cerro del M	as artin ia de	Spanish (Giacosa, R., Heredia, N.C., Ceari, O., Zubia, M. and Gonzalez, R.	2 G661	Direction de Mineria de Rio Negro y JEGEMAR	Rio Negro	Geological maps of 1/250,000 and note
San Carlos de Bariloche, Can Argentina, Escala 1:250,000 133 Rio Negro, Proyect Minero, San Minera Digital. Informe Geologico Minero, Prospection y Exploracion Workio, Prospeccion y Exploracion Was Cerro Granito y Cerro del Managero.		Spanish	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	099 S	Gobierno de la Provincia Rio Negro y I999 SEGEMAR	Rio Negro	Note on geological map (1/250,000) of San Carlos de Baliloche area.
133 Rio Negro, Proyect Minero, S Minera Digital. Informe Geologico Minero, P 134 Mosaico 4172-IV-B2, Zona d Rio Negro Prospeccion y Exploracion W 135 Cerro Granito y Cerro del M		Spanish	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	0 1999 G R	Giacosa R., Heredia N., Cesari O., Zubia M. y 1999 Gonzalez R. (1999); Gobierno de la Provincia Rio Negro y SEGEMAR	Rio Negro	Geological map (1/250,001) of San Carlos de Baliloche area.
Informe Geologico Minero, P 134 Mosaico 4172-IV-B2, Zona d Rio Negro Prospeccion y Exploracion M 135 Cerro Granito y Cerro del M	Rio Negro, Proyect Minero, Sistema de Informacion Geologico Minera Digital.	Spanish		1998	Direccion de Mineria, Provincia de Rio Negro / SEGEMAR	Rio Negro (CD-ROM)	GIS of vrious kinds of exploration data in Rio Negro Proince
	Informe Geologico Minero, Proyect 15 AL-Lago Mascardi, Mosaico 4172-IV-B2, Zona del Codon Tres Morros, Provncia de S Rio Negro	Spanish	Giacosa, R.E.	1982 S	S.M.NPlan Patagonia Comahue, Saubsede	Rio Negro (Lago Mascardi)	Cordon Tres Morros district, 920ppm Cu, 2,800ppm Zn, stockwork, further survey is required.
Provincia de Rio Negro, Proyect 15 AL-Lago Mascardi Mosaicos 4172-IV-B1 y B2.	forros, gonia,	Spanish (Giacosa, R.E.	1986 _C	Dirccion Naional de Mineria y Geologia, Dept. 1986 Centro de Exploracion Patagonia Sur	Rio Negro (Lago Mascardi)	Max 88g/t Au in Cerro del medio o Alcorta district, hydrothermal mineralization.
136 Estudio Geologico de la Mina de Plomo, Zinc, F "MARIA". Dept. Norquinco. Pcia de Rio Negro	lata y Cobre	Spanish (Greco, E.A. and Bornabo de Greco, E.	1973	1	Rio Negro (Maria)	Outline of Maria deposits, 11.75% Pb, 12.70% Zn, 1.8% Cu, 45.41g/t Ag.
Estudio Geologico de la Mina de Plomo, Zinc, F "MARIA". Dept. Norquinco. Peia de Rio Negro	lata y Cobre	Spanish	Greco E.A. and Bernabo de Greco E.A.	1973	1	Rio Negro (Maria)	Outline of Maria deposits.
138 No.9 Mina Maria (Pb-Zn-Ag-	138 No.9 Mina Maria (Pb-Zn-Ag-Au-Cu), Provincia de Rio Negro	Spanish				Rio Negro (Maria)	Outline of Maria deposits, Vein 250m×1.6m, 12% Pb, 13% Zn, 45g/t Ag, 3g/t Au, 2% Cu.
Informe Geologico Minero Proyecto 15 AF-Bariloche, Mos 139 4172-IV-10a, Zona: Nacientes del Rio Foyel, Prov. De Rio Negro	aico	Spanish	Giacosa, R.E.	1982 S	1982 S.M.N. Plan Patagonia Comahue	Rio Negro (Rio Foyel)	Follow-up S.S. geochemistry for Rio Foyel, but no noticeable results.
Ubicacion de areas mineralis conjunto con la mission tecn Rio Negro y Chubut, desde N Plata.	Ubicacion de areas mineralizados a visitar y reconocer en conjunto con la mission tecnica japonesa, en las provincias de Rio Negro y Chubut, desde Norquinco hasta Lago Fontana - La Plata.	Spanish	Viera, R.L.M.	2000 S	SEGEMAR - Delegacion Regional Patagonia Sur	Rio Negro and Chubut	List of known mineralization to visit in Rio Negro and Chubut Provinces
141 Hoja Geologica 4969-II; Tres	141 Hoja Geologica 4969-II; Tres Cerros, Provincia de Santa Cruz	Spanish	Panza, J.L., Zubia, M., Genini, A. and Godeas, M.	1995 S	Direccion de Nacional del Servicio Geologico, Secretaria de Mineria da la Nacion	Santa Cruz	Note on geological map (1/250,000) inc. Cerro Vanguardia deposit.
142 Emprendimiento Minero Cerro Vanguardia		Spanish	Lasanta, M.	1998	77.5	Santa Cruz (Cerro Vanguardia)	Development of the Cerro Vanguardia mine

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

Z o	Title	Language	Author	Year	Organization	Category	Comments	
143	143 Catalogo de Publicaciones	Spanish		1998	1998 SEGEMAR	SEGEMAR	Catalogue of SEGEMAR's publications	T
144	144 Servicio Geologico Minero Argentina	Spanish/E nglish		3 6661	1999 SEGEMAR	SEGEMAR	Services of SEGEMAR	7
145	145 Index of 1:250,000 topography maps. Argentina	Spanish				Topo. Index (Argentina)	Topo. Index (Argentina) Index map of 1/250,000, Argentina	T
146	146 Index of 1:100,000 topography maps, Provincia del Chubut	Spanish				Topo. Index (Chubut)	Index map of 1/100,000, Chubut.	1
147	147 Indexof 1:100,000 topography maps, Provincia del Neuquen	Spanish				Topo. Index (Neuquen)	Index map of 1/100,000, Neuquen.	1
148	148 Indexof 1:100,000 topography maps, Provincia de Rio Negro	Spanish				Topo. Index (Rio Negro)	Topo. Index (Rio Negro) Index map of 1/100,000, Rio Negro.	1
149	Mapa topografica, Escala 1:250,000; Andacollo	Spanish				Торо. Мар	Topography map (1/250,000)	1
150	Mapa topografica, Escala 1:250,000; Barrancas	Spanish				Topo. Map	Тороgгарһу тар (1/250,000)	
151		Spanish				Topo. Map	Topography map (1/250,000)	1
152		Spanish				Topo. Map	Topography map (1/250,000)	,
153	Mapa topografica, Escala 1:250,000; Gastre	Spanish				Topo. Map	Topography map (1/250,000)	7
154		Spanish				Торо. Мар	Topography map (1/250,000)	,
155		Spanish				Topo. Map	Topography map (1/250,000)	·
156	Mapa topografica, Escala 1:250,000; Jose de San Martin	Spanish			T.	Горо. Мар	Городгарћу тар (1/250,000)	
157		Spanish			L	Торо. Мар	Topography map (1/250,000)	
158	Mapa topografica, Escala 1.250,000; Las Ovejas	Spanish			T	Topo. Map	Городгарћу map (1/250,000)	

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments	
159	Mapa topografica, Escala 1:250,000; Paso de Indios	Spanish				Торо. Мар	Тороgraphy map (1/250,000)	T
160		Spanish				Торо. Мар	Тороgraphy map (1/250,000)	T
161		Spanish				Торо. Мар	Topography map (1/250,000)	T
162	Mapa topografica, Escala 1:250,000; Piedra del Aguila 2	Spanish				Торо. Мар	Тородгарћу тар (1/250,000)	T
163	Mapa topografica, Escala 1:250,000. San Carlos de Bariloche	Spanish				Topo. Map	Тороgraphy map (1/250,000)	T
164		Spanish				Торо. Мар	Topography map (1/250,000)	T
165	Mapa topografica, Escala 1:250,000; Trevelin	Spanish				Торо. Мар	Тороgraphy map (1/250,000)	т
166	Mapa topografica, Escala 1:250,000; Zapala 3	Spanish				Торо. Мар	Topography map (1/250,000)	т

ģ	- 1	Latitude(S)	Latitude(S) Longitude(W)	W) District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
-	A00NK001		3' 70' 39' 15	37' 14' 51.3' 70' 39' 15.2' Andacollo	Sur los Maitenez	Intrusive	Andesite	Silicification / sericite /	29
7	A00NK002	36' 47'	17.3' 70' 36' 33	33.5 Varvarco	Varvarco		Qz vein		25
က	A00NK003	36' 47'	26.8' 70' 36' 34	34.6' Varvarco	Varvarco		Silicified rock	Silicification / /	25
4	A00NK004	36' 47'	32.3' 70' 36' 34	34.6' Varvarco	Varvarco	Intrusive	Granite	/ montmorillonite /	XR
2	A00NK005	36' 47'	04.4' 70' 37' 04	04.4' Varvarco	Varvarco	Intrusive	Granite	/kaolinite/	XR
9	A00NK006	36' 47'	16.6 70' 36' 31.	31.4 Varvarco	Varvarco		Rhyolite	/ pyrophyllite /	XR
7	A00NK007	37' 26'	3, 70, 26, 10	58.3' 70' 26' 10.1' Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization / /	29
80	A00NK008	37' 26'	44.4' 70' 26' 03.	03.8' Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/ sericite /	A CANADA
6	A00NK009	37' 26' 57.4'	70' 26'	16.6' Cerro Caycayen	Cerro Caycayen	Gr. Cuyo	Slate	/ sericite /	
91	A00NK010	37' 27' 01.3'	70' 26'	19.7 Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization / /	GC
=	A00NK011	37' 26' 55.7'	70' 26'	21.5 Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/ sericite /	
12	A00NK012	38' 13' 07.5'	70' 32'	37.4' Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sandstone	Phyllic / sericite /	XR
13	A00NK013	38' 13' 07.5'	70' 32'	34.5' Campana Mahuida	Campana Mahuida		Qz vein		FI
14	A00NK014	39' 13' 09.6'	70' 35'	53.1' La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Biotite granite	Chloritization // malachite	T.S.
15	A00NK015	39' 13' 15.1'	70' 35'	58.8' La Voluntad	La Voluntad		Qz vein		29
16	A00NK016	39' 03' 02.0'	70' 31'	49.5 Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	25
17	A00NK017	39' 02'	41.9' 70' 31' 58.	58.1 Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	25
18	A00NK018	39' 02'	40.1' 70' 32' 11.	11.2 Nireco	ZA027	Campos basalticos de Zapala	Rhyolite	Phyllic / sericite /	TS
19	A00NK019	41' 40' 02.0'	71' 06'	16.8' Mina Maria	Mina Maria		Ore	//gn, cp, py	PT,0A
20	A00NK020	41' 40'	71' 06' 16.	02.0° 71' 06' 16.8° Mina Maria	Mina Maria		Qz Vein		
21	A00NK021	42' 08' 43.5	43.5 71' 19' 18.	18.8' Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Tourmalinization, Limonitization / / py	CC
22	A00NK022	42' 08' 00.2'	71' 19'	10.3' Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Chloritization, Limonitization //	
23	A00NK023	42' 08'	00.2' 71' 19' 10.	10.3' Cerro Coihue	Quebrada Ferreyro		Tourmaline breccia		GC
24	A00NK024	42' 08' 00.2'	71' 19'	10.3' Cerro Coihue	Quebrada Ferreyro		Sulfide vein in granite	Limonitization / /	
22	A00NK025	42' 08' 02.2'	71' 19'	10.3' Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite		ST
56	A00NK026	42' 09' 27.5'	70' 30'	28.5' Cushamen	Cushamen	Intrusive	Pegmatite	/kaolinite/	XR
27	A00NK027	42' 09' 30.0'	70, 30,	25.1' Cushamen	Cushamen		Qz vein		၁၅
78	A00NK028	42' 09' 31.2'	70' 30'	25.9' Cusharnen	Cushamen		Qz vein		gc
29	A00NK029	42' 09' 31.2'	70' 30'	25.9' Cusharnen	Cushamen	Intrusive	Rhyolite	Silicification / /	CC
30	A00NK030	42' 09' 35.0'	70' 30' 31.	70' 30' 31.3' Cushamen	Cushamen	Cushamen Fms.	Schist	Silicification / /	XR
31	A00NK031	42' 09' 47.9'	70' 30'	24.4' Cushamen	Cushamen	Intrusive	Rhyolite	montmorillonite? //	XR

ž	Sample No.	Sample No. Latitude(S) Longitude(W)	ongitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
32	A00NK032	42' 09' 43.2' 70' 30' 19.4' Cushamen	0' 30' 19.4' Ct	ushamen	Cushamen		Flaky qz		ЭĐ
33	A00NK033	42' 09' 44.4' 70'	0' 30' 17.8' Cushamen	ushamen	Cushamen		Qz vein	Tourmalinization / /	XR,GC
34	A00NK034	43' 17'	00.0' 70' 59' 16.8' Cerro Gonzalo	erro Gonzalo	Cerro Gonzalo	Intrusive	Granodiorite porphyry	K-feld.? // cp.py,bo	XR,GC
35	A00NK035	43' 18' 46.7' 71' 02'		31.0' Cerro Gonzalo	Cerro Gonzalo		Qz vein	// zb	90
36	A00NK036	43' 18' 46.7' 71'	05,	31.0' Cerro Gonzalo	Cerro Gonzalo		Qz vein	// zb	25
37	A00NK037	43' 17' 19.7' 70'	59,	28.8' Cerro Gonzalo	Arroyo. Luques	Intrusive (Aleusco Fm.)	Granodiorite	Phyllic / sericite /	XR
38	A00NK038	42' 52' 56.9' 71' 12'		53.2' Joya del Sol	Brancote-Antonio		Qz vein		E
33	A00NK039	42' 52' 56.9' 71'	17	53.2' Joya del Sol	Brancote: Antonio	Lago La Plata Fm.	Andesite	/montmorillonite/	XR
9	A00NK039-1	1 42' 52' 56.9' 71' 12'		53.2' Joya del Sol	Brancote Antonio	Lago La Plata Fm.	Andesite		PT
4	A00NK040	43' 37'	55.5' 71' 25' 26.0' Poncho Moro	ncho Moro	Arroyo Pedregoso		Andesite? (Float)	Chloritization, Limonitization / / py	gc
42	A00NK041	43' 41' 45.6' 70'	34,	03.5' Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT,PC
43	A00NK042	43' 41' 59.0' 70'	34,	00.0' Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro ,		PC
4	A00NK043	43' 42'	0 33 07.1 G	34.0' 70' 33' 07.1' Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PC
45	A00NK044	44' 50'	20.2' 71' 08' 19.2' Mina Gato	ina Gato	Mina Gato	Divisadero Fm.	Rhyolite?	Silicification / alunite /	XR
46	A00NK045	44' 50' 18.1' 71'	.80	21.5' Mina Gato	Mina Gato	Divisadero Fm.	Andesite	Silicification //	29
47	A00NK046	44' 50'	26.9' 71' 08' 01.2' Mina Gato	ina Gato	Mina Gato	Divisadero Fm.	Porphyritic andesite	/montmorillonite/	XR
84	A00NK047	44' 50' 33.7' 71' 08'		34.3' Mina Gato	Mina Gato	Divisadero Fm.	Andesite	Silicification//	XR,GC
49	A00NK048	44' 50' 38.0' 71'	.80	36.2' Mina Gato	Mina Gato	Divisadero Fm.	Andesite		TS
20	A00NK049	45' 00' 45.8' 71' 27'	1' 27' 22.1' Ce	22.1' Cerro Blanco	Cerro Blanco	Lago La Plata Fm.	Dacite	Phyllic / sericite /	XR
51	A00NK050	42' 53' 30.0' 71' 12'	1' 12' 40.7' Jo	40.7' Joya del Sol	Brancote-Julia	Lago La Plata Fm.	Andesite		KA
52	A00HH001	37' 15' 03.8' 70'	39,	21.5' Andacello	Sur los Maitenez	Intrusive	Altered rh y olite	Limonitization / sericite /	
23	А00НН002	37' 11' 26.9' 70' 37'	0' 37' 51.0' Andacollo	ıdacollo	Mina Sofia		Qz.py.gn ore	// qz with py, gn	PT,OA
24	A00HH003	36' 58'	47.1' 70' 38' 49.6' Butalon Norte	talon Norte	Cerro Panta	Choiyoi Fm.	Tuff breccia	sericite, kaoline?/ not identified/	
22	A00HH004	37' 01' 10.8'	70' 39' 49.3' Bu	49.3' Butalon Norte	СМ010	Choiyoi Fm.	Altered rock	/sericite/	XR,GC
26	A00HH005	37' 07' 17.8' 70'	0' 37' 24.8' Andacollo	ıdacollo	CM011	Choiyoi Fm.	Altered rock	/sericite/	
57	A00HH006	37' 37'	42.5' 70' 26' 02.6' Cerro del Diablo	rro del Diablo	Barite mine	Intrusive	Altered granite	White mineral / kaolinite / barite	
28	A00HH007	37' 37' 43.0' 70'	26'	05.0' Cerro del Diablo	Barite mine		Altered rock	/montmorillonite(A), sericite(C)/	XR
29	A00HH008	37. 37. 57.8' 70' 26'		21.4' Cerro del Diablo	Barite mine	Intrusive	Felsic rock	Silicification, qz network / /	
99	A00HH009	37' 37' 57.8' 70' 26'		21.4' Cerro del Diablo	Barite mine	Intrusive	Granite	Weak //	
61	A00HH010	37' 38' 14.5' 70'	25'	59.2' Cerro del Diablo	Cu mine		Cu ore	/montmorillonite/chrysocolla, iron oxide	
62	A00HH011	37' 38' 19.2' 70'	22.	44.5' Cerro del Diablo	Cu mine		Altered rock	/kaolinite/	

12		Commission I contrade(C) I contrade (III)					
		Lattitude(S) Longitude(W) District		Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
63	- 1	37. 13. 04.9 70 40	Cerro Colo	Intrusive	Andesitic porphyry	Weak //	WR
64	A00HH013	3 37 13' 04.9' 70' 40' 32.8' Andacollo	Cerro Colo	Intrusive	Dacite		TS,XR,GC
65	A00HH014	1 38' 13' 09.6' 70' 32' 41.3' Campana Mahuida	Mahuida Campana Mahuida	Tordillo Fm.	Altered rock	qz, sericite //	
99	A00HH015	38' 12' 47.4' 70' 32' 37.1' Campana Mahuida	Aahuida Campana Mahuida		Cu oxide with diorite (Float)	// Cu oxide	
67	A00HH016	38' 12' 37.7' 70' 32' 30.7' Campana Mahuida	Aahuida Campana Mahuida		Silicified rock	Silicification //	gC gC
89	A00HH017	38' 12' 48.1' 70' 35' 28.8' Campana Mahuida	Aahuida Campana Mahuida	Tordillo Fm.	Altered sand stone	qz, white mineral //	
69	A00HH018	39' 13' 00.8' 70' 36' 01.4' La Voluntad	d La Voluntad	Intrusive (La Voluntad Complex)	Granite		
70	A00HH019	39' 04' 56.0' 70' 31' 56.4' Nireco	ZA028/029	Campos basalticos de Zapala	Silicified rock	Silicification / kaolinite /	XR,GC
11	A00HH020	39' 05' 47.6' 70' 31' 26.7' Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock	/chlorite, zeolite, calcite montmorillonite, sericite /	(e)
72	A00HH021	39' 06' 00.0' 70' 31' 29.8' Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock		
73	A00HH022	38' 57' 56.3' 70' 36' 47.4' Carreri Malal	lal Carreri Malal	Intrusive	Granite		XR
74	A00HH023	38' 58' 27.5' 70' 35' 03.7' Carreri Malal	lal Carreri Malal		Altered rock	Argillization / /	XR
75	A00HH024	41' 40' 12.0' 71' 06' 43.1' Mina Maria	Mina Maria		Qz.py.cp.malachite.ga ore	// qz, py, cp, malachite, gn	PT,OA
92	A00HH025	42' 08' 40.8' 71' 18' 27.0' Cerro Coihue	ae Quebrada Baya	Lago Puelo granitic complex	Granite with tourmaline	Weakly whitened / /	
77	A00HH026	42' 08' 40.8' 71' 18' 27.0' Cerro Coihue	ue Quebrada Baya	Intrusive	Andesite dyke	Almost fresh //	
78	A00HH027	42' 08' 35.3' 71' 18' 35.3' Cerro Coihue	ue Quebrada Baya		Altered rock	/laumontite/	XR
79	A00HH028	42' 08' 49.7' 71' 18' 36.0' Cerro Caihue	ue Quebrada Baya	Lago Puelo granitic complex	Altered granite	/calcite/	XR,GC
80	A00HH029	42' 08' 49.7' 71' 18' 36.0' Cerro Coihue	Quebrada Baya		Qz, tourmaline (Float)		
81	A00HH030	42' 08' 42.9' 71' 18' 33.0' Cerro Coihue	ie Quebrada Baya	Intrusive	Andesite		
82	A00HH031	42' 09' 07.4' 71' 24' 13.4' Condorcanqui	lui Condorcanqui		Altered rock	Argillization, white clay mineral / not identified /	
83	A00HH032	42' 09' 07.4' 71' 24' 13.4' Condorcanqui	jui Condorcanqui		Altered rock	Argillization, white clay mineral dot / /	
84	A00HH033	42' 09' 48.0' 71' 24' 03.2' Condorcanqui	ui Condorcanqui		Malachite chrysocolla py cp ore	// malachite, chrysocolla, py, cp	
88	A00HH034	42' 09' 48.0' 71' 24' 03.2' Condorcanqui	ui Condorcanqui	Ventana Fm.	Andesite	Chloritic or fresh (with cp) //	XR,GC
98	A00HH035	42' 09' 48.0' 71' 24' 03.2' Condorcanqui	ui Condorcanqui		Altered rock	qz, K·fel., cp, limonite // qz with cp	
84	А00НН036	42' 13' 10.3' 71' 25' 17.9' Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Zeolite in altered andesite	/laumontite/	
88	A00HH037	41' 58' 05.9' 71' 34' 30.0' El Bolson	Rio Lindo		Granite with py (float)		29
68	A00HH038		Rio Lindo		Silicified rock with py (float)	Silicification / /	
6	A00HH039	41' 58' 05.9' 71' 34' 30.0' El Bolson	Rio Lindo		Pyroclastics with py (float)		gc
16	A00HH040	41' 55' 33.0' 71' 33' 28.1' El Bolson	Rio Azul		Andesite with py, chl (float)	Silicification / /	
6	A00HH041	42' 47' 31.0' 71' 29' 46.3' Huemules	Huemules Sur		Ore	// malachite, cp, py	
83	A00HH042	42' 47' 25.7' 71' 29' 50.4' Huemules	Huemules Sur		Ore	// galena	

Ŀ	L							
Ž	L_	Sample No. Latitude(S) Longitude(W)	ude(W) District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
8		_	3' 50.4' Huemules	Huemules Sur	Canadon Huemules Fm.	Andesite	Relatively fresh to argillization / sericite /	XR
92	A00HH044	42' 47' 17.1' 71' 29'	3' 58.7' Huemules	Huemules Sur		Altered rock	Silicification-argillization, py / /	XR,GC
8	A00HH045	42' 47' 17.1' 71' 29'	9' 58.7' Huemules	Huemules Sur	Intrusive	Micro granodiorite	Fresh//	
97	A00HH046	42' 47' 28.9' 71' 29'	9' 42.0' Huemules	Huemules Sur		Ore	Oxidized cp //qz, cp, py	
86	A00HH047	42' 45' 37.5' 71' 06'	5' 29.3' Joya del Sol	Arroyo Cancha		Altered rock	Silicification, py / /	GC
66	A00HH048	42' 53' 46.5' 71' 12'	2' 45.8' Joya del Sol	Brancote Elena Sur		Qz vein		
100	A00HH049	42' 52' 22.4' 71' 12'	2' 08.8' Joya del Sol	Brancote-Galadriel		Qz vein		
101	A00HH050	42' 51'	49.3' 71' 11' 08.1' Joya del Sol	Near LM024	Lago La Plata Fm.	Altered rock	/ sericite /	XR
102	A00HH051	43' 57' 47.7' 71' 34'	f 09.4 Cerro Colorado	Near Cerro Riñon		Silicified rock (Float)	Silicification / pyrophyllite /	
103	A00HH052	43' 30' 23.8' 71' 06'	3' 25.6' Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Qz with white altered mineral	/ montmorillonite /	
104	A00HH053	43' 30' 19.0' 71' 06'	3' 12.1' Arroyo Cascada	Arroyo Cascada		Altered rock (Float)	/ montmorillonite /	
105	A00HH054	43' 30' 19.0' 71' 06'	3' 12.1' Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Altered rock	/ montmorillonite /	XR
106	A00HH055		44' 41' 33.1' 71' 07' 07.0' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
107	A00HH056	44' 41' 33.1' 71' 07'	" 07.0' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
108	A00HH057	44' 41' 33.1' 71' 07'	" 07.0' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	XR
109	A00HH058		44' 41' 18.8' 71' 07' 13.0' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
110	A00HH059	44' 41' 23.3' 71' 07'	" 13.4' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Kaoline/dickite/greysh kaoline	/ kaolinite /	
Ξ	A00HH060	44' 41' 25.0' 71' 05'	; 40.1' Estrella Gaucha	Estrella Gaucha	Intrusive	Andesite	Propylitic ? / /	TS,GC
112	A00HH061	44' 56'	24.0' 71' 35' 16.1' Ferrocarrilera	Ferrocarrilera		Galena ore	//galena	
113	А00НН062	44' 56' 24.0' 71' 35'	' 16.1' Ferrocarrilera	Ferrocarrilera	Lago La Plata Fm.	Andesite		XR
114	А00НН063	44' 56' 19.2' 71' 35'	' 08.3' Ferrocarrilera	Ferrocarrilera		Galena-sphalerite-qz ore	// galena, sphalerite	PT
115	A00HH064	44' 56' 18.2' 71' 35'	' 08.4' Ferrocarrilera	Ferrocarrilera		Qz.py.cp.sphalerite ore	//cp, sphalerite	
116	A00HH065	44' 56' 20.3' 71' 35'	' 11.8' Ferrocarrilera	Ferrocarrilera		Galena·sphalerite ore	// galena, sphalerite	
117	A00MZ001	37' 15' 05.0' 70' 39'	' 24.2' Andacollo	Sur los Maitenez	Intrusive	Rhyolite	Silicification / sericite /	35
118	A00MZ002	37' 14'	29.0' 70' 39' 40.7' Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite-qz network	35
119	A00MZ003	37' 11' 32.5' 70' 37'	" 54.6' Andacollo	Mina Sofia	Intrusive	Dacite	Argillization / sericite / pyrite diss.	XR,GC
120	A00MZ004	36' 58' 47.3' 70' 38'	' 49.5' Butalon Norte	Butalon Norte	Choiyoi Fm.	Pebble dyke	Silicification // magnetite	XR,GC
121	A00MZ005	36' 58' 47.7' 70' 38'	' 52.7" Butalon Norte	Butalon Norte	Choiyoi Fm.	Volcanic rock	Silicification // magnetite	35
122	A00MZ006	37' 01' 08.1' 70' 39'	' 50.5' Butalon Norte	CM010	Choiyoi Fm.	Volcanic rock	Silicification / kaolinite / limonite	29
123	A00MZ007	37' 07' 20.2' 70' 37'	23.4' Andacollo	CM011	Choiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	Э
124	A00MZ008	37' 26' 39.3' 70' 26'	35.8' Cerro Caicayen	Quebrada el Bronce	Cuyo Gr.	Mudstone	Silicification // pyrite diss.:network	gc

ź	Sample No.	No. Sample No. Latitude(S) Longitude(W)	Longitude(1	W) District	Locality	Geological unit Stratigranhy	Rock time	Alternation / BOSAN / Mi	
125	400MZ009	37' 26' 35.5'	70' 26'	59.9' Cerro Caicaven	Quebrada el Bronce	Trefrancisco (Campa 1, 1, 1, 1, 1)		ALEIGION / LOSAIM / MINEFAIIZATION	Analysis type
5		ii		no financia como a	dactiana el Dionos	incrusive (Grupo Molle)	Gramte	Potassic //	ರಿದ
126		37. 27	56	48.1 Cerro Caicayen	Mina Hierro	Ore deposit	Massive ore	//pylite-limonite	OA
127	. i	37' 11' 30.1'	37	58.5' Andacollo	Mina Sofia	Intrusive	Qz porphyry	Weak //	WR
128	A00MZ012	37' 11' 30.1'	70, 37,	58.5' Andacollo	Mina Sofia, Level 1	Ore deposit	Vein ore	//qr-calcite-py-gn	OA,DS,DO,FI
129	A00MZ013	37' 11'	25.3' 70' 37' 51.	51.2' Andacollo	Mina Sofia	Intrusive	Dacite porphyry	Fresh //	TS,WR
130	A00MZ014	37' 11' 25.3'	70' 37'	51.2' Andacollo	Mina Sofia	Huaraco Fm. (Andacollo Gr.)	Mudstone	//pyrite	DS
131	A00MZ015	37' 13' 15.8'	70' 40'	32.7 Andacollo	Cerro Colo	Intrusive (Cretaceous)	Tonalite	Fresh // py.green Cu stain	TS,WR
132	A00MZ016	37' 11'	30.1' 70' 37' 58.	58.5' Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	//qz·calcite·py·gn	PT.OA.FI
133	A00MZ017	37' 11'	30.1' 70' 37' 58.	58.5' Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	//qz·calcite·py·gn	FI
134	A00MZ018	38' 12' 48.6'	70' 32'	18.1 Campana Mahuida	Campana Mahuida	Intrusive (Tres Puntas)	Granodiorite	Fresh //	TS,WR
135	A00MZ019	38' 12' 47.2'	70' 35'	24.9' Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	//barite-Fe oxides	OA
136	A00MZ020	38' 12' 48.5'	70' 35'	30.5' Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	//barite-galena-Fe oxides	OA
137	A00MZ021	39' 12' 50.2'	70' 36'	22.1'La Voluntad	La Voluntad	Intrusive	Vein ore	//qzmalachite	OA
138	A00MZ022	39' 12' 52.1'	70' 36'	23.1' La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granite	Potassic / /	TS,GC
139	A00MZ023	39' 02' 59.8'	70' 32' 02.1' Nireco	1' Nireco	ZA027	Campos basalticos de Zapala	Volcanic rock	Silicification / montmorillonite /	25
140	A00MZ024	39' 02' 22.1'	70' 32'	10.7' Nireco	ZA027	Campos basalticos de Zapala	Volcanic rock	Silicification / sericite /	XR,GC
141	A00MZ025	39' 01' 53.3'	70' 32'	35.4' Nireco	ZA026	Campos basalticos de Zapala	Volcanic rock	Silicification / kaolinite /	OB
142	A00MZ026	38' 57'	50.5' 70' 36' 50.9	50.9' Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Argilization / / Fe Mn oxides (gossan)	CG
143	A00MZ027	38' 57' 48.3'	48.3' 70' 36' 53.9	53.9' Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Chloritization // Mn oxide	35
144	A00MZ028	38' 57' 59.1'	70' 36'	46.3" Carreri Malal	Carreri Malal	Ore deposit	Vein ore	//qzpy.gn-bornite	OA
145	A00MZ029		71' 06' 41.0	41' 40' 11.3' 71' 06' 41.0' Mina Maria	Mina Maria	Ore deposit	Vein ore	//galena	DS
146	A00MZ030	41' 40' 11.3' 71' 06'		41.0' Mina Maria	Mina Maria	Ore deposit	Vein ore	//gn·py·cp	PT,0A
147	A00MZ031	42' 08' 39.5'	71' 19'	17.3" Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite (Float)	//limonite	25
148	A00MZ032	42' 08' 29.5' 7	71' 19' 18.6	29.5' 71' 19' 18.8' Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	Fresh / /	TS,WR
149		.80	05.3' 71' 19' 28.3	28.3' Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	//chrysocolla	35
120			71' 24' 13.5	09.9' 71' 24' 13.9' Condorcanqui	Condorcanqui	Ventana Fm.	Andesitic tuff	Propylite // pyrite diss.	25
151		42' 09' 09.9' 7	71' 24' 13.5	09.9' 71' 24' 13.9' Condorcanqui	Condorcanqui	Zeolite vein	Zeolite	Propylite / laumontite /	25
152	A00MZ036	42' 09' 46.1' 71'	24.	03.8' Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // cp diss. veinlet	OA
153	A00MZ037	42' 09' 46.1' 71'	71' 24' 03.8	24' 03.8' Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // malachite	OA
154	A00MZ038	42' 09' 46.1' 7	71' 24' 03.8	46.1' 71' 24' 03.8' Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // pyrite diss.	PT
155	A00MZ039	42' 13' 51.9' 7	51.9' 71' 25' 17.7	17.7' Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Andesite (Float)	Propylite // pyrite diss.	29

Appendix-2 Samples taken for the phase-1 survey.

		H										
ž	Sample No.			Log	gitude	le(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
156	A00MZ040	42,	28' 03.8'	8' 71'	35'	53.2' La	53.2' Lago Chilila	A. Pedregoso de Lago Cholila	Gramitodes Cordilleranos	Sil., breccia (Float)	Silicification // limonite	၁၅
157	A00MZ041	42	47' 32.1'	1' 71'	71' 29' 4	45.9' Hı	45.9' Huemules	Huemules Sur	Ore deposit	Veinlet	u3.kd.zb//	OA
158	A00MZ042	42	47' 32.1'	1, 71,	71' 29' 4	45.9' Huemules	semules	Huemules Sur	Ore deposit	Veinlet	//galena mass	PT,OA,DS
159	A00MZ043	45,	47' 32.1'	71,	29.	45.9' Huemules	semules	Huemules Sur	Ore deposit	Veinlet	// kd.zb	DO,FI
160	A00MZ044	42.	47' 18.6'	71,	29	54.8' Huemules	səlnmər	Huemules Sur	Intrusive	Microdiorite	Propylite //	TS,WR
161	A00MZ045	42	47' 32.	32.1' 71' 29'		45.9' Huemules	semules	Huemules Sur	Ore deposit	Vein Ore	//galena mass	
162	A00MZ046	42'	47' 32.6	32.6' 71'	29	43.5' Huemules	semules	Huemules Sur	Ore deposit	Veinlet	// qz.cp.py.gn	OA, DO, FI
163	A00MZ047	42'	45' 39.1'	1' 71'	71' 06' 3	33.5° Jo	33.5' Joya del Sol	Arroyo Cancha	Alluvium	Qz veinlet (Float)		CC
164	A00MZ048	42.	53' 40.9	40.9' 71' 12'		32.9' Jo	32.9' Joya del Sol	Brancote Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA,DO,FI
165	A00MZ049	42.	53' 40.9	40.9' 71' 12'		32.9' Jo	32.9' Joya del Sol	Brancote-Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA
166	A00MZ050	42.	53' 20.7'	71.	12'	45.3' Jo.	45.3' Joya del Sol	Brancote-Julia	Ore deposit	Hydrothermal breccia	// Aurifeous qz vein	
167	A00MZ051	42'	52' 43.(43.0' 71' 12'		19.5' Jo	19.5' Joya del Sol	Brancote Galadriel	Ore deposit	Qz vein	// Aurifeous qz vein	DO,FI
168	A00MZ052	43' 10'		38.2' 71' 40'		51.4' Po	51.4' Poz. de Navarro	Poz. de Navarro	Qz vein	Qz vein	// pyrite diss.	25
169	A00MZ053	43.	10' 38.2'	71.	40,	51.4' Po	51.4' Poz. de Navarro	Poz. de Navarro	Lago la Plata Fm.	Andesite	Propylite // qz·cp veinlets	O.C.
170	A00MZ054		43' 11' 17.8'	8' 71'	71' 39' 5	56.7' Po.	56.7' Poz. de Navarro	Ea. el Triunfo	Intrusive	Qz porphyry	Silicification / sericite / py·cp? diss.	GC
171	A00MZ055	43	24' 09.8	09.3' 71' 32'		33.1' La	33.1' Las Mentas	Las Mentas	Qz vein	Qz ein	//qz·cp·gn·malachite	OA
172	A00MZ056	43.	37' 55.	55.1' 71'	25	30.7' Po	30.7' Poncho Moro	Arroyo Pedregoso	Alluvium	Qz vein (Float)	// Slight pyrite diss.	35
173	A00MZ057	43	30' 22.9'	9' 71'	71' 06' 2	24.7" Ar.	24.7" Arroyo Cascada	Arroyo Cascada	Qz vein	Qz vein	// pyrite diss.	39
174	A00MZ058	43' 30'		22.9' 71' 06'		24.7' Ar.	24.7' Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification / montmorillonite /	XR
175	A00MZ059	43.	30' 17.0	0' 71'	06' 1	10.1' Ar	17.0' 71' 06' 10.1' Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification // pyrite diss.	gc
176	A00MZ060	43,	30' 17.0	17.0' 71' 06'	- 1	10.1' Ar	10.1' Arroyo Cascada	Arroyo Cascada	Qz vein (F)	Cubic pyrite	// Cubic pyrite in qz vein	DS
177	A00MZ061		44' 50' 13.6' 71' 08'	6' 71'	.80	30.6' Mina Gato	na Gato	Mina Gato	Divisadero Fm.	Soft silky rock	Kaolinitization / kaolinite /	gc
178	A00MZ062	4	50' 05.0	05.0' 71' 08'		43.7" Mina Gato	na Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / alunite /	ЭĐ
179	A00MZ063	4	50' 10.2	10.2' 71'	07.	54.6' Mina Gato	na Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / sericite montmorillonite / pyrite diss.	25
180	A00MZ064		54' 11.	1' 71'	14' 4.	43.6' Ea	44' 54' 11.1' 71' 14' 43.6' Ea. Arroyo Victoria	Arroyo Huemul	Alluvium	Silicified rock	Silicification / alunite / Slight limonitic	GC
181	A00MZ065	4.	56' 21.8	21.8' 71' 35'		05.4' Fe	05.4' Ferrocarrilera	Ferrocarrilera	Lago la Plata Fm.	Andesite	Propylite // pyrite diss.	TS,GC
182	A00MZ066	44	56' 21.8'	8' 71'	35,	05.4' Fe	05.4' Ferrocarrilera	Ferrocarrilera		Vein ore	// pyrite diss.	DS,DO,FI
183	A00MZ067	44' 56'		21.8' 71' 35'		05.4' Fe	05.4' Ferrocarrilera	Ferrocarrilera		Vein ore	// gn·sp·py	
184	A00MZ068	44	56' 21.8'	71.	35'	05.4' Fe.	05.4' Ferrocarrilera	Ferrocarrilera		Vein ore	// gn·sp·py	OA
185	A00TM001	37.	15' 05.6'	70.	39, 16	16.8' Andacollo	idacollo	Sur los Maitenez	Intrusive	Dacite	Silicification / sericite / limonite	25
186	A00TM002	37'	11. 27.7	27.7' 70'	37.	45.8 Andacollo		Mina Sofia level4	Huaraco Fm. (Andacollo Gr.)	Black shale	Silicification / sericite / gn, sp, cp, py diss.	gc

	12		T (0) 1							
MONTANDO St.	į		Latitude(S)	Longitude()			Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
AUDITADIO St. 97 (19.8 1) 70 35 5.24 (Varvance) CM006 Choice Page Choi	18/	- 1	36' 47' 16.0'	70' 36' 27.	.4' Varvarco	CM005		White altered rock	Weak silicification, argillization / pyrophyllite /	XR, GC
MONTMODIS Str. Str. Str. Try Str. Str. Str. Str. Str. Str. Str. Str.	188	- 1	36' 47'	i i	4' Varvarco	CM006	Choiyoi Fm.	Rhyolitic tuff	Fresh //	35
MONTMOOR Str. Str. Str. Str. Str. Str. Str. Str.	189	- 1	36' 50' 54.5'	70' 39'	4' Varvarco	Varvarco	Intrusive	Tonalite	Weak silicification / /	36
A00TMODIS 37 - 51 - 51 - 51 - 52 - 58 Curro da Diablo (Colorado) Vera da Diablo (Colorado) Intrusive Stable A00TMODIS 57 - 58 - 58 - 70 - 25 - 50 Curro da Diablo Cerro da Diablo	130	- 1	36' 50'		4' Varvarco	Varvarco	Intrusive	Tonalite	Weak alteration / /	TS
A00TMODOS 37 37 45 47 70 25 36 Curro del Diablo C	191	- 1	37' 37'	1	8' Cerro del Diablo	Cerro del Diablo (Colorado)		Qz vein	//qz·barite	25
AOOTMODIO 37. 37. 58 Of 70. 26: 28 II Cerro del Diablo Vaca Muerta Fin. Shade AOOTMODI 37. 38 I O.3 70: 26: 20 G'Cerro del Diablo Cerro del Diablo Cerr	192	- 1	37' 37' 43.4'	70' 25'	8' Cerro del Diablo	Cerro del Diablo (Colorado)	Vaca Muerta Fm.	Shale	Argillization //	XR,GC
AOVTMOID 37. 38 10.3 70. 26 70.6 Cerro del Dabblo Vaca Minera Fin. Shale AOVTMOID 37. 38 10.3 70. 26 70.6 Cerro del Dabblo Cerro del Dabblo Intrusive Genatic? AOVTMOID 37. 38 10.5 70. 26 70.6 Cerro del Dabblo Cerro del Dabblo Intrusive Genatic? AOVTMOID 37. 38 20.7 70. 26 70.6 Cerro del Dabblo Cerro del Dabblo Intrusive Genatic? AOVTMOID 37. 38 20.7 70. 26 70.7 Cerro del Dabblo Cerro del Dabblo Intrusive Genatic? AOVTMOID 37. 31.6 70. 26 70.7 Cerro del Dabblo Cerro del Dabblo Intrusive Genatic? AOVTMOID 36. 47. 19.1 70. 27. 31.8 Varvacco CAMOOA Intrusive Genatic? AOVTMOID 36. 47. 19.1 70. 27. 31.8 Varvacco CAMOOA Intrusive Campite AOVTMOID 36. 47. 19.1 70. 27. 31.8 Varvacco CAMOOA Intrusive Campite AOVTMOID 36. 47. 19.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 40. 20.1 70. 20.1 70. 20. 20.1 70. 20. 20. 20.1 70. 20. 20. 20.	193	i i	37' 37'		1' Cerro del Diablo	Cerro del Diablo (Colorado)	Intrusive	Tonalite	Fresh / /	TS,WR.KA
A00TMO11 37. 38 10.3 70. 26 20.6 Cerro del Diablo Cerro del Diablo Cerro del Diablo Vaca Mesta Fin. Shale A00TMO12 37. 38 10.5 70. 26 30.6 Cerro del Diablo Cerro del Diablo Intrusive Granice? A00TMO14 37. 38 20.5 70. 26 34.5 Cerro del Diablo Cerro del Diablo Intrusive Granice? A00TMO17 36 47 11.31 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 37 47 13.1 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 36 47 13.1 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 36 47 13.1 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 36 47 13.1 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 36 47 13.1 70. 27 31.5 Varvanco CMO04 Intrusive Granice? A00TMO18 36 47 13.1 70. 40. 20.1 Varvanco CMO04 Intrusive Complete paralitics de Zapila A00TMO18 36 47 10.1 70. 40. 20.1 Varvanco CMO04 Intrusive Complete paralitics de Zapila <td>194</td> <td>A00TM010</td> <td>37' 38' 10.3'</td> <td>70, 26</td> <td>6' Cerro del Diablo</td> <td>Cerro del Diablo</td> <td>Vaca Muerta Fm.</td> <td>Shale</td> <td>Silicification, argillization / sericite / limonite</td> <td>GC GC</td>	194	A00TM010	37' 38' 10.3'	70, 26	6' Cerro del Diablo	Cerro del Diablo	Vaca Muerta Fm.	Shale	Silicification, argillization / sericite / limonite	GC GC
A00TMO12 37. 38 7 105 70 26 30.6 Cerro del Diablo Cerro del Diablo Diablo Intrusive Granite? A00TMO15 37. 38 7 15 70 25 48.5 Cerro del Diablo Cerro del Diablo Intrusive Granite? A00TMO15 37. 38 7 15 70 25 48.5 Cerro del Diablo Cerro del Diablo Intrusive Granite? A00TMO15 37. 38 7 10 70 25 48.5 Cerro del Diablo Cerro del Diablo Intrusive Tonalite A00TMO15 38 7 10 17 07 27 31.8 Varvarco CAGOQ4 Intrusive Tonalite A00TMO16 37 28 10 17 07 47 31.8 Varvarco CAGOQ4 Intrusive Tonalite A00TMO17 36 47 19 17 07 31.3 Varvarco CAGOQ4 Intrusive Tonalite A00TMO18 36 47 19 17 07 31.3 Varvarco CAGOQ4 Intrusive Tonalite A00TMO19 36 47 19 17 07 31.3 Varvarco CAGOQ9 Campos basalitics de Zapala Intrusive A00TMO19 37 17 18 18 Varvarco CAGOQ9 Campos basalitics de Zapala Intrusive A00TMO19 38 16 05 17 18 18 Varvarco CAGOQ9 Campos basalitics de Zapala Intrusive	195	A00TM011	38' 10.3'	26'	6' Cerro del Diablo	Cerro del Diablo	Vaca Muerta Fm.	Shale	Silicification, argillization / sericite, kaolinite /	XR
AVOTMOIL 37 38 2 15 70 25 48 5 Cerro del Diablo Intrusive Ceranie* AVOTMOIL 37 38 2 15 70 25 48 5 Cerro del Diablo Cerro del Diablo Cerro del Diablo Intrusive Ceranie* AVOTMOIL 36 47 19 1 70 27 31 6 Cerro del Diablo Intrusive Tonalite AVOTMOIL 36 47 19 1 70 27 31 6 Cerro del Diablo CAGO Intrusive Tonalite Tonalite AVOTMOIL 36 47 19 1 70 27 31 6 Cerro del Diablo CAGO Varvarco CMOO4 Intrusive Tonalite AVOTMOIL 36 47 19 1 70 27 31 6 Cerro Calvarco CMOO4 Intrusive Tonalite Tonalite AVOTMOIL 36 47 19 1 70 20 1 Varvarco CMOO4 Intrusive Campoe basalticos de Zapala Intrusive AVOTMOIL 36 10 70 70 20 1 Varvarco CMOO4 Intrusive Campoe basalticos de Zapala Intrusive AVOTMOIL 38 12 50 1 70 20 1 Varvarco ZAGOS Campoe basalticos de Zapala Intrusive	196	A00TM012			6' Cerro del Diablo	Cerro del Diablo		Qz vein	//qz·barite	GC
ADOTMOID ST 387 215 TO 25 468° Cerro del Diablo Cerro del Diablo <td>197</td> <td>A00TM014</td> <td>37' 38'</td> <td></td> <td>5' Cerro del Diablo</td> <td>Cerro del Diablo</td> <td>Intrusive</td> <td>Granite?</td> <td>Silicification, argillization // malachite, azurite, limonite</td> <td>-</td>	197	A00TM014	37' 38'		5' Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	Silicification, argillization // malachite, azurite, limonite	-
A00TMO101 37 38 20.8 70 25 37 6 Cerro del Diablo Cerro del Diablo Cerro del Diablo Intrusive Tonalite A00TMO11 36 47 19.1 70 37 31.8 Varvarco CM004 Intrusive Intrusive Tonalite A00TMO10 36 47 19.1 70 37 31.8 Varvarco CM004 Intrusive Diorite porphyry A00TMO10 36 47 19.1 70 37 31.8 Varvarco CM004 Intrusive Tonalite A00TMO10 36 48 51.0 70 31.2 Varvarco CM004 Intrusive Tonalite A00TMO20 36 48 51.0 70 31.2 Varvarco CM004 Intrusive Campoe basalticos de Zapala A00TMO20 36 48 51.0 70 31.2 Varvarco ZA028 Campoe basalticos de Zapala Andeste? A00TMO20 38 90 6 00.7 70 31.2 Sc Nireco ZA028 Campoe basalticos de Zapala Andeste? A00TMO20 38 90 6 00.7 70 31.2 Sc Nireco ZA028 Campoe basalticos de Zapala Andeste? A00TMO20 38 90 6 00.7 70 31.2 Sc Nireco ZA028 Campoe basalticos de Zapala Andeste? A00TMO20 38 90 6 00.7 70 31.2 Sc Nireco ZA028 Campoe basalticos de Zapala Intifice </td <td>198</td> <td>A00TM015</td> <td>38' 21.5'</td> <td>25'</td> <td>5' Cerro del Diablo</td> <td>Cerro del Diablo</td> <td>Intrusive</td> <td>Granite?</td> <td>Silicification, argillization/kaolinite, sericite/malachi</td> <td>XR</td>	198	A00TM015	38' 21.5'	25'	5' Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	Silicification, argillization/kaolinite, sericite/malachi	XR
A00TMO11 36 '47' 19.1 '70' 37' 31.8 'Varvarco CM004 Intrusive Tonalite A00TMO18 36 '47' 19.1 '70' 37' 31.8 'Varvarco CM004 Intrusive Diorite porphyry A00TMO19 36 '47' 19.1 '70' 37' 31.8 'Varvarco CM004 Intrusive Diorite porphyry A00TMO20 36 '49' 51.0 '70' 40' 20.1 'Varvarco Varvarco Varvarco Valvalco granite Tonalite A00TMO20 36 '49' 51.0 '70' 40' 20.1 'Varvarco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '95 '10' 70' 31' 25.5 Nireco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '96' 60' 70' 70' 31' 25.6 Nireco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '96' 60' 70' 70' 31' 25.6 Nireco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '96' 60' 70' 70' 31' 25.6 Nireco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '96' 60' 70' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Andesite? A00TMO20 38 '96' 60' 70' 70' 31' 26.8 Nireco SA029 Ca	199	A00TM016	37' 38' 20.3'	25	6' Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	Silicification, argillization/kaolinite/malachite	XR,GC
AOOTMO18 36 47 19.1 70 37 3.18 Varvanco CM004 Intrusive Tonalite AOOTMO19 36 47 19.1 70 37 3.18 Varvanco CM004 Intrusive Door te porphyry AOOTMO20 36 49 51.0 70 40 20.1 Varvanco Varvanco Valvalo granite Gampoe basalticos de Zapala Inplii tuff AOOTMO20 36 49 51.0 70 31 2.6 I.A Voluntad La Voluntad Lavoluntad Lavoluntad Lapulli tuff AOOTMO20 38 12 50.1 70 31 2.6 I.A Voluntad Lavoluntad Campoe basalticos de Zapala Inplii tuff AOOTMO20 38 06 00.7 70 31 2.6 I.A Voluntad Campoe basalticos de Zapala Inplii tuff AOOTMO20 39 06 00.7 70 31 2.6 I.A Voluntad Mina Maria Nahuel Huapi Fm. Tuff AOOTMO20 39 07 00.7 70 31 2.6 I.A Voluntad Quebrada Baya Lago Puelo granitic complex Tuff AOOTMO20 42 08 36.7 71 18 09.4 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite	200	A00TM017			8' Varvarco	CM004	Intrusive	Tonalite	Tourmalinization, qz+epidote vein //	TS,GC
A00TMO019 36' 47' 191' 70' 37' 31.8' Varvatco CMO04 Intrusive Diorite porphyry A00TMO020 36' 49' 51.0' 70' 40' 20.1' Varvatco Varvatco Valvalco granite Tonalite A00TMO021 38' 9' 51.0' 70' 40' 20.1' Varvatco La Voluntad La Voluntad Intrusive Qc vein in granitoid A00TMO022 38' 9' 5' 10' 70' 31' 26.8' Nireco ZA028 Campoe basalticos de Zapala Lapilli tuff A00TMO024 38' 9' 6' 00.7' 70' 31' 26.8' Nireco ZA029 Campoe basalticos de Zapala Andesite? A00TMO024 38' 9' 6' 00.7' 70' 31' 26.8' Nireco ZA029 Campoe basalticos de Zapala Ingilli tuff A00TMO024 38' 9' 6' 00.7' 70' 31' 26.8' Nireco ZA029 Campoe basalticos de Zapala Ingilli tuff A00TMO028 38' 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campoe basalticos de Zapala Ingilli tuff A00TMO029 41' 40' 05.2' 71' 08' 18' 8' Nireco ZA029 Campoe basalticos de Zapala Ingilli tuff A00TMO030 42' 06' 36.0' 71' 08' 18' 26' Nireco Golhue Quebrada Baya Lago Puelo granitic complex Tonalite A00TMO031 <td< td=""><td>201</td><td>A00TM018</td><td>47' 19.1'</td><td>37</td><td>8' Varvarco</td><td>CM004</td><td>Intrusive</td><td>Tonalite</td><td>Weak alteration / /</td><td>TS,WR</td></td<>	201	A00TM018	47' 19.1'	37	8' Varvarco	CM004	Intrusive	Tonalite	Weak alteration / /	TS,WR
AOOTMO22 35 49' 510° 10' 40' 20.1 'Varvarco Varvarco Valvalco granite Tonalite AOOTMO22 39' 12' 50.1' 70' 36' 26.5 La Voluntad La Voluntad La Voluntad Intrusive Qampos basalticos de Zapala Lapilli tuff AOOTMO23 39' 05' 04.4 70' 31' 26.5 Nireco ZA029 Campos basalticos de Zapala Andesite? AOOTMO24 39' 05' 06' 007' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Andesite? AOOTMO26 39' 06' 007' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Andesite? AOOTMO26 39' 06' 007' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Andesite? AOOTMO27 39' 06' 007' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Andesite? AOOTMO28 39' 06' 007' 70' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Infili tuff AOOTMO39 41' 40' 06.2 71' 10' 31' 26.8 Nireco ZA029 Campos basalticos de Zapala Infili tuff AOOTMO39 42' 06' 36.7 71' 18' 26.7 Nireco Quebrada Baya Lago Puelo granitic complex Tonalite AOOTMO31 42' 06' 38.2 7	202	A00TM019	47.	37	8' Varvarco	CM004	Intrusive	Diorite porphyry	Tourmalinization, qz+epidote vein //	TS,WR
A00TM021 39 '12 '50.1 ' 70' '36' '26.6' La Voluntad La Voluntad La Voluntad La Voluntad La Voluntad La Voluntad Campos basalticos de Zapala Lapilli tuff A00TM023 39 '05' 44.5 70' 31' 21.5' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM023 39 '05' 45.5 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM029 39 '05' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM029 39 '05' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM029 47 '06' 05.2' 70' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Antiff A00TM039 42 '06' 36.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Antiff A00TM039 42 '06' 36.7' 71' 18' 06' 16.9' Mina Maria Mina Maria Nahuel Huapi Fm. Tuff A00TM030 42 '06' 36.7' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42 '08' 42.6' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic c	203	A00TM020	49,	70' 40' 20.	1' Varvarco	Varvarco	Valvalco granite	Tonalite	Fresh//	TS,WR,KA
A00TM022 39' 05' 044' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Lapilli tuff A00TM028 39' 05' 04.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM028 39' 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM026 39' 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM027 39' 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM027 39' 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM029 41' 40' 05.2' 71' 06' 16.9' Mina Maria Mina Maria Nahuel Huapi Fm. Tuff A00TM039 42' 08' 36.0' 71' 18' 25.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 38.2' 71' 18' 30.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Argillic vein A00TM034 42' 08' 45.5' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Qravein (Float) A00TM034 42' 08' 45.6' 71' 18' 27.1' Cerro Coihue	204	A00TM021	12' 50.1'		5' La Voluntad	La Voluntad	Intrusive	Qz vein in granitoid	// malachite	GC
A00TM023 38 '05' 45.5 70' 31' 21.5' Nireco ZA029 Campos basalticos de Zapala Andesite? A00TM026 38 '06' 00.7 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM027 38 '06' 00.7 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Lapilli tuff A00TM028 41' 40' 05.2 71' 06' 16.9' Mina Maria Mina Maria Mina Maria Nahuel Huapi Fm. Tuff A00TM028 41' 40' 05.2 71' 06' 16.9' Mina Maria Quebrada Baya Lago Puelo granitic complex Porphyritic Tonalite A00TM028 42' 08' 35.7 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM032 42' 08' 38.2 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42' 08' 43.2 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM036 42' 08' 43.2 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 08' 45.6' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite	202	A00TM022	04.4	32	5' Nireco	ZA028	Campos basalticos de Zapala	Lapilli tuff	Silicification //	O.S.
A00TM026 39 06' 00.7' 70' 31' 26.8' Nireco ZA029 Campos basalticos de Zapala Tuff A00TM028 41' 40' 05.2' 71' 06' 16.9' Mina Maria Mina Maria Mina Maria Maria Iago Puelo granitic complex Tuff A00TM028 42' 08' 36.7' 71' 18' 25.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 35.7' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42' 08' 38.2' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM034 42' 08' 42.5' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM035 42' 08' 42.5' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Argillic vain A00TM034 42' 08' 42.5' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM035 42' 08' 45.6' 71' 18' 20' 70' 30' 33.2' Cushamen Quebrada Baya Lago Puelo granitic complex Granodiorite	506	A00TM023	45.5	70' 31' 21.8	5' Nireco	ZA029	Campos basalticos de Zapala	Andesite?	Fresh//	TS
A00TM027 39 06 00.7 70 31 26.8 Nireco ZA029 Campos basalticos de Zapala Lapili tuff A00TM028 41' 40' 06.2 71' 06' 16.9 Mina Maria Mina Maria Mina Maria Nahuel Huapi Fm. Tuff A00TM029 42' 08' 36.0 71' 18' 09.4" Cerro Coihue Quebrada Baya Lago Puelo granitic complex Porphyritic Tonalite A00TM030 42' 08' 38.7 71' 18' 33.9" Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 38.2 71' 18' 33.9" Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 38.2 71' 18' 30.4" Cerro Coihue Quebrada Baya Lago Puelo granitic complex Argillic vein A00TM034 42' 08' 45.6 71' 18' 30.4" Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM035 42' 08' 45.6 71' 18' 20' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 08' 45.6 71' 18' 20' 40' 70' 70' 30' 33.2 Cushamen Cushamen Intrusive Rhyolite	207	A00TM026	39' 06' 00.7' 7	70' 31' 26.8	8' Nireco	ZA029	Campos basalticos de Zapala	Tuff	Argillization, weak silicification // limonite	GC
A00TM028 41' 40' 05.2' 71' 06' 16.9' Mina Maria Mina Maria Mina Maria Mina Maria Nabuel Huapi Fm. Tuff A00TM029 42' 08' 36.0' 71' 18' 09.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Porphyritic Tonalite A00TM030 42' 08' 38.2' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 38.2' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42' 08' 38.2' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Argillic vein A00TM034 42' 08' 43.2' 71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM035 42' 08' 45.6' 71' 18' 27.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 08' 40.7' 70' 30' 33.2' Cushamen Cushamen Intrusive Rhyolite	208	A00TM027	00.7	31.	3' Nireco	ZA029	Campos basalticos de Zapala	Lapilli tuff	Argillization, weak silicification / montmorillonite / limonite	XR,GC
A00TM029 42 08' 36.0 71' 18' 08.4° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Porphyritic Tonalite A00TM030 42' 08' 35.7 71' 18' 25.1° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42' 08' 38.2 71' 18' 33.9° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42' 08' 42.5 71' 18' 30.4° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Argillic vein A00TM034 42' 08' 43.2 71' 18' 30.4° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Qranodiorite A00TM035 42' 08' 45.6° 71' 18' 27.1° Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 08' 40.7° 70' 30' 33.2° Cushamen Cushamen Intrusive Rhyolite	209	A00TM028	41' 40' 05.2'	1. 06' 16.5	3' Mina Maria	Mina Maria	Nahuel Huapi Fm.	Tuff	Silicification // limonite	20
A00TM030 42 08 38.7 71 18 28.7 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM031 42 08 38.2 71 18 33.9 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM032 42 08 38.2 71 18 33.9 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42 08 42.5 71 18 30.4 Cerro Coihue Quebrada Baya Quebrada Baya Argillic vein A00TM034 42 08 45.5 71 18 30.4 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42 08 45.6 71 18 27.1 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42 08 40.7 70 30 33.2 Cushamen Cushamen Intrusive Rhyolite	210	A00TM029		1' 18' 09.4	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Porphyritic Tonalite	Propylitic // pyrite diss.	gc
A00TM031 42 '08' 38.2 '71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM032 42 '08' 38.2 '71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM034 42 '08' 43.5 '71' 18' 30.4' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Qz vein (Float) A00TM037 42 '08' 45.6' 71' 18' 27.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42 '08' 40.7' 70' 30' 33.2' Cushamen Cushamen Intrusive Rhyolite	211	A00TM030	35.7		1' Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Potassic? //limonite stain	TS,WR
A00TM032 42 '08' 38.2' 71' 18' 33.9' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Tonalite A00TM033 42' 08' 42.5' 71' 18' 30.4' Cerro Coihue Quebrada Baya Quebrada Baya Qz vein (Float) A00TM034 42' 08' 45.6' 71' 18' 27.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 08' 40.7' 70' 30' 33.2' Cushamen Cushamen Intrusive Rhyolite		A00TM031	42' 08' 38.2' 7	1' 18' 33.5	y' Cerro Coihue	Quebrada Baya		Tonalite	Argillization, weak silicification // limonite	GC
A00TM033 42 08 43.5 71' 18' 30.4 Cerro Coihue Quebrada Baya Quebrada Baya Argillic vein A00TM034 42' 08' 43.5 71' 18' 20.1 Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 09' 40.7 70' 30' 33.2 Cushamen Cushamen Intrusive Rhyolite	- 1	A00TM032	38.2	1' 18' 33.5	9' Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Argillization / zeolite, loumontite / limonite	XR,GC
A00TM035 42' 08' 45.6' 71' 18' 27.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Qz vein (Float) A00TM037 42' 08' 45.6' 71' 18' 27.1' Cerro Coihue Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 09' 40.7' 70' 30' 33.2' Cushamen Cushamen Intrusive Rhyolite		A00TM033	08' 42.5'	1	l' Cerro Coihue	Quebrada Baya		Argillic vein	Argillization, weak silicification / sericite, montmorillonite /	XR,GC
A00TM035 42. 08' 40.7' 70' 30' 33.2' Cushamen Quebrada Baya Lago Puelo granitic complex Granodiorite A00TM037 42' 09' 40.7' 70' 30' 33.2' Cushamen Cushamen Intrusive Rhyolite	- 1	A00TM034	42' 08' 43.2' 7	1' 18' 30.4	1' Cerro Coihue	Quebrada Baya		Qz vein (Float)	// limonite	gc
A00TM037 42' 09' 40.7 70' 30' 33.2 Cushamen Cushamen Intrusive Rhyolite	- 1	A00TM035	42' 08' 45.6' 7		Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Granodiorite	Potassic // pyrite diss, limonite	39
	- 1	A00TM037	42' 09' 40.7' 7		Cushamen		Intrusive	Rhyolite	Argillization / kaolinite, sericite /	XR

Ņ.		Sample No. Latitude(S) Longitude(W) District	Locality	Geological unit Stratigranhy	Book time	Alternation / DOSAM / Mingralization	4 1
918		100	1	Circle and Carrie and Carrie		Auteration / FOSAM / Mineranzation	Analysis type
21,		60	Cushamen		Qz vein	// limonite	gc
219	A00TM039	42' 09' 43.5' 70' 30' 38.4' Cushamen	Cushamen		Qz vein	// limonite	GC,DO,FI
220	A00TM040	43' 17' 05.5' 70' 59' 06.6' Cerro Gonzalo	Arroyo Luques	Aleusco Fm.	Granodiorite	Silicification, agillization / /	GC
221	A00TM041	43' 17' 02.2' 70' 59' 17.6' Cerro Gonzalo	Arroyo Luques	Intrusive	Granodiorite	Potassic, silicification, argillization/cp vein, diss.	GC GC
222	A00TM042	43' 18' 54.4' 71' 02' 22.8' Cerro Gonzalo	Cerro Gonzalo		Qz vein	// limonite	DO,FI
223	A00TM043	43' 18' 54.4' 71' 02' 22.8' Cerro Gonzalo	Cerro Gonzalo	Aleusco Fm.	Granodiorite	Silicification, argillization // malachite, limonite stain	XR
224	A00TM044	43' 18' 25.0' 71' 01' 29.4' Cerro Gonzalo	Cerro Gonzalo		Hydrothermal breccia	Weak silicification // malachite stain	gc
225	A00TM045	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	Argillization, weak silicfication / sericite,	And the second second second second second second
226	A00TM046	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	Argilization, weak silicfication / sericite, monthnorillonite /	XR
227	A00TM047	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	Argillization / montmorillonite /	XR
228	A00TM049	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote-Galadriel		Qz vein		0 A
229	A00TM050	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.?	Andesite?	Argillization / sericite /	XR
230	A00TM051	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote-Galadriel		Qz vein		0A
231	A00TM053	43' 57' 47.1' 71' 34' 13.6' Cerro Colorado	Near Cerro Riñon		Granite (Float)	Silicification, argillization / montmorillonite, sericite/ nv diss.	35
232	A00TM054	43' 57' 52.6' 71' 33' 50.8' Cerro Colorado	Near Cerro Riñon		Granite? (Float)	Silicification / / pyrite diss.	gc
233	A00TM055	44' 41' 25.0' 71' 06' 47.2' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification, argillization / kaolinite / limonite	XR,GC
234	A00TM056	44' 41' 26.0' 71' 07' 00.9' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification / / limonite stain	gc
232	A00TM057	44' 41' 23.7' 71' 07' 05.9' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite /	XR
236	A00TM058	44' 41' 21.5' 71' 07' 10.9' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite / limonite stain	XR,GC
237	A00TM059	44' 41' 31.1' 71' 05' 47.3' Estrella Gaucha	Estrella Gaucha		Qz vein		GC,DO,FI
238	- 1	44' 41' 31.1' 71' 05' 47.3' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification, argillization / sericite, montmorillonite / limonite stain	XR,GC
239	A00TM061	44' 41' 36.8' 71' 05' 44.5' Estrella Gaucha	Estrella Gaucha		Hydrothurmal breccia	limonite stain	ည
240	A00TM062	44' 41' 20.9' 71' 05' 32.2' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / sericite, montmorillonite/ cubic pv(limonite) diss.	XR,GC
241	A00TM065	45' 00' 13.7' 71' 27' 28.2' Cerro Blanco	Cerro Blanco		Qz vein		gc
242	A00TM066	45' 00' 24.7' 71' 27' 31.8' Cerro Blanco	Cerro Blanco		Qz vein		gc
243	A00TM067	45' 00' 24.7' 71' 27' 31.8' Cerro Blanco	Cerro Blanco	Lago la Plata Fm.?	Altered rock	Argillization / sericite, montmorillonite / limonite stain	XR
244		45' 00' 32.7' 71' 27' 25.3' Cerro Blanco	Cerro Blanco		Qz vein	aonite	gc
245	A00RM001	37' 15' 06.9' 70' 39' 18.1' Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite, hematite	A CALLED THE STATE OF THE STATE
246	A00RM002	37' 14' 30.4' 70' 39' 37.5' Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / kaolinite / limonite qz network	
247	ì	37' 11' 27.0' 70' 37' 45.4' Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic//py.cp.gn.sp diss.	
248	A00RM004	37' 11' 27.0' 70' 37' 45.4' Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic //py.cp.gn.sp diss.	

Appendix-2 Samples taken for the phase-1 survey.

No.	Sample No.	Latitude(S) Longitude(W)	ngitude(W	(V) District	Locality	Geological unit Strationanhy	Rock type	Alteration / POSAM / Mineralization	Anolucie tune
	1000	1			farmour	Constraint, Strangiaphy	ad for whom	Aiter ation / L Contra / Miller alication	Analysis type
249	A00RM005	36' 58' 50.2' 70' 38' 45.3' Butalon Norte	38' 45.	3' Butalon Norte	Butalon Norte	Coiyoi Fm.	Volcaniclastic rock	Silicification // magnetite	XR
220	A00RM006	36' 58' 49.0' 70'	38,	45.0' Butalon Norte	Butalon Norte	Coiyoi Fm.	Pebble dyke	Silicification // magnetite	
251	A00RM007	37' 01' 08.5' 70'	39,	48.2' Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification // limonite	XR
252	A00RM008	37' 01' 03.1' 70'	39,	54.8' Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification / sericite / limonite	
253	A00RM009	37' 07' 21.2' 70'	37.	19.9' Andacollo	CM011	Coiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	25
254	A00RM010	37' 26' 41.3' 70' 26'	26' 45.	45.1' Cerro Caicayen	Cerro Caicayen	Cuyo Gr.	Mudstone	Silicification / montmorillonite, kaolinite / limonite	
255	A00RM011	37' 27' 11.8' 70' 26'	26' 44.	44.1' Cerro Caicayen	Cerro Caicayen	Intrusive (Grupo Molle)	Dacite porphyry	Phyllic / sericite / pyrite-limonite	O.S.
256	A00RM012	37' 11' 29.8' 70'	37.	47.0' Andacollo	Mina Sofia nivel4	Intrusive	Dacite porphyry	Weak / /	gc
257	A00RM013	37' 11' 59.0' 70'	35.	59.2' Andacollo	Arroyo Huaraco	Permian Intrusive	Granite	Weak / / qz vein py diss.	TS,WR
258	A00RM014	37' 13' 08.1' 70'	40,	31.2' Andacollo	Cerro Colo	Intrusive	Granite		
259	A00RM015	37' 13' 08.7' 70'	40,	32.0' Andacollo	Cerro Colo	Intrusive	Dacite porphyry	Potassic? / / qz vein	
260	A00RM016	38' 12' 59.2' 70'	32'	22.8' Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic / /	25
261	A00RM017	38' 12' 46.4' 70'	32,	25.6' Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic //limonite	25
262	A00RM018	38' 12' 49.7' 70'	32,	25.2' Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	// barite:gn-sp-mo	
263	A00RM019	38' 11' 50.1' 70'	35'	50.2' Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	// barite-Fe oxides	
264	A00RM020	39' 12' 49.5' 70'	36'	25.3' La Voluntad	La Voluntad	Intrusive	Qz. vein in Granodiorite	Potassic // Fe oxides, muscovite	gc
265	A00RM021	39' 12' 50.8' 70'	36'	24.2' La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granodiorite	Potassic / / Fe oxide, green Cu	gc
366	A00RM022	39' 03' 01.9' 70'	31.	51.3' Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / sericite /	XR
267	A00RM023	39' 02' 51.2' 70'	31'	58.5' Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / montmorillonite, sericite /	XR,GC
268	A00RM024	39' 01' 54.5' 70'	35,	28.9' Nireco	ZA026	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / kaolinite, pyrophyllite /	XR
569	A00RM025	39' 03' 06.5' 70'	32.	07.7' Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	/sericite/	TS
270	A00RM026	38' 57' 58.0' 70'	36,	47.5' Carreri Malal	Carreri Malal	Intrusive	Granite	Weak //	
27.1	A00RM027	38' 58' 37.0' 70'	35'	02.0' Carreri Malal	Near Carreri Malal	Campos basalticos de Zapala	Basalt		
272	A00RM028	41' 40' 02.3' 71' 06'		15.6' Mina Maria	Mina Maria	Nahuel Huapi Fm. (Fuapi?)	Andesite?	Propyritic //	XR,GC
273	A00RM029	41' 40' 10.0' 71'	.90	43.0' Mina Maria	Mina Maria		Qz vein (ore)	Silicification //gn-py-cp-green Cu	PT,OA
274	A00RM030	42' 08' 36.4' 71' 18'	18' 27.6	27.6' Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Silicification / zeolite /	XR,GC
275	A00RM031	42' 08' 37.7' 71' 18'		29.0' Cerro Coihue	Quebrada Baya		Tourmaline vein		TS
276	A00RM032	42' 08' 45.4' 71'	82	33.0' Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / montmorillonite / K-feldspar,calcite vein TS	TS
277	A00RM033	42' 08' 44.9' 71' 18'		27.3' Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / chlorite, epidote, calcite / limonite pyrite	PT,XR,GC
278	A00RM034	42' 09' 38.7' 70'	30,	32.1' Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / sericite, kaolinite /	XR
279	A00RM035	42' 09' 36.1' 70'	30,	30.6' Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / gypsum, sericite /	XR

Appendix-2 Samples taken for the phase-1 survey.

	Į.							
ž		Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
280	A00RM036	42' 09' 43.7' 70' 30' 35.9' Cushamen	amen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Silicification / sericite /	ರಿ
281	A00RM037	42' 09' 47.2' 70' 30' 31.6' Cushamen	amen	Cushamen		Qz vein	Silicification / gypsum, sericite, montmorillonite / py·limonite	35
282	A00RM038	42' 09' 42.9' 70' 30' 17.3' Cushamen	ашеп	Cushamen	Intrusive (Tertiary?)	Rhyolite	Silicification/sericite,montmorillonite/qz vein network, tourmaline veinlet	TS
283	A00RM039	43' 17' 03.0' 70' 59' 11.0' Cerro Gonzalo	Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Silicification, potassic?/ sericite/ qz vein, hematite	
284	A00RM040	43' 17' 01.0' 70' 59' 16.0' Cerro Gonzalo	Gonzalo	Arroyo Luques	Intrusive	Granodiorite/Porphyry	Silicification, potassic?//qz vein, cp-py-limonite	PT,XR,GC
285	A00RM041	43' 18' 53.2' 71' 02' 24.5' Cerro Gonzalo	Gonzalo	Cerro Gonzalo	Intrusive	Breccia pipe	Silicification, phyllic // qz vein, limonite-green Cu, tourmaline	XR, GC
286	A00RM042	43' 18' 25.2' 71' 01' 26.2' Cerro Gonzalo	Gonzalo	Arroyo Luques	Intrusive	Hydrothermal breccia	Silicification // qz, geen Cu, cp, tourmaline	PT,GC
287	A00RM043	43' 17' 35.0' 71' 00' 25.0' Cerro Gonzalo	Gonzalo	Arroyo Luques		Altered rock	Limonitization // limonite, hematite, green Cu	25
288	A00RM044	43' 17' 06.3' 71' 00' 24.9' Cerro Gonzalo	Gonzalo	Arroyo Luques		Altered rock	Limonitization // limonite, hematite, green Cu	And the state of a sta
289	A00RM045	43' 17' 28.7' 70' 59' 37.1' Cerro Gonzalo	Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Phyllic/sericite/py-cp·mo·biotite	25
290	A00RM046	42' 52' 22.1' 71' 12' 09.6' Joya del Sol	del Sol	Brancote Galadriel Norte		Banded Qz vein	Silicification // qz·white chalcedony	OA
291	A00RM047	42' 53' 28.3' 71' 12' 30.4' Joya del Sol	del Sol	Brancote Elena Sur		Banded Qz vein	Silicification // qz·black chalcedony	
292	A00RM048	42' 53' 38.7' 71' 12' 30.4' Joya del Sol	del Sol	Brancote Elena Sur	Lago la Plata Fm.	Andesitic rock	Argillization //	TS
293	A00RM049	42' 53' 24.0' 71' 12' 44.0' Joya del Sol	del Sol	Brancote Julia	Intrusive	Hydrothermal breccia	Silicification // Vuggy silica	TS
294	A00RM050	42' 51' 51.0' 71' 11' 19.5' Joya del Sol	del Sol	Brancote North of Galadriel		Qz vein	Silicification // Massive white qz	
295	A00RM051	42' 51' 51.6' 71' 11' 15.5' Joya del Sol	del Sol	Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Silicification, argillization / sericite / pyrlimonite	
296	A00RM052	42' 51' 50.1' 71' 11' 15.0' Joya del Sol	del Sol	Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Argillization / sericite / limonite	
297	A00RM053	43' 57' 42.0' 71' 34' 33.0' Cerro colorado	colorado	Near Cerro Riñon		Float	Silicification / pyrophyllite / py-limonite	
298	A00RM054	43' 41' 49.0' 70' 33' 58.0' Gabros de Tecka	s de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PC
299	A00RM055	43' 41' 58.0' 70' 34' 12.0' Gabros de Tecka	ns de Tecka	Gabros de Tecka	Osta Arena Fm. (Liasic)	Hornfels	Contact metamorphism//clinopyroxene, diopside	
300	A00RM056	43' 42' 33.0 70' 33' 56.0' Gabros de Tecka	os de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		
301	A00RM057	43' 43' 15.1' 70' 33' 32.8' Gabros de Tecka	s de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT,PC
302	A00RM058	43' 43' 12.1' 70' 37' 12.7' Gabros de Tecka	os de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PŢ
303	A00RM059	44' 41' 23.9 71' 06' 47.4' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	XR
304	A00RM060	44' 41' 24.0' 71' 06' 49.3' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Divisadero Fm.	Ignimbrite (welded tuff)	Silicification, argillization / kaolinite /	TS
305	A00RM061	44' 41' 20.7' 71' 07' 06.8' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	
306	A00RM062	44' 41' 21.7' 71' 07' 07.7' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock (Float)	Argillization //	XR
307	A00RM063	44' 41' 23.0' 71' 07' 12.5' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Argillization / kaolinite / dickite	XR
308	A00RM064	44' 41' 36.5' 71' 05' 45.2' Estrella Gaucha	lla Gaucha	Estrella Gaucha	in Apeleg Fm.	Brecciated qz vein	Silicification //	၁ဗ
309	A00RM065	44' 41' 19.3' 70' 05' 29.4' Estrella Gaucha	lla Gaucha	Estrella Gaucha	Apeleg Fm.?	white altered rock	Silicification, argillization / montmorillonite-sericite	XR
310	A00RM066	45' 00' 13.7' 71' 27' 25.2' Cerro Blanco	Blanco	Cerro Blanco	in Lago La Plata Fm.	Brecciated q2 vein (Float)	Silicification // py-limonite-hematite	gc gc

1		1 (8)	1 1 1						
ģ	Sample No.	No. Sample No. Latitude(S) Longitude(W)	gitude(W) District	rict	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis tyne
311	A00RM067	45' 00' 12.9' 71'	311 A00RM067 45' 00' 12.9' 71' 27' 28.2' Cerro Blanco	co Cerro Blanco	lanco	Lago la Plata Fm.?	white altered rock	1	XR
312	A00RM068	45' 00' 21.4' 71'	312 A00RM068 45' 00' 21.4' 71' 27' 33.6' Cerro Blanco	co Cerro Blanco	lanco	Lago la Plata Fm.	white altered rock with qz pheno.	Silicification, argilization/sericite,montmorillonite	XR
313	A00RM069	45' 00' 24.9' 71'	313 A00RM069 45' 00' 24.9' 71' 27' 30.9' Cerro Blanco	co Cerro Blanco		in Lago La Plata Fm.	Qz vein (Float)	Silicification // qz-limonite	29
314	A00RM070	45' 01' 00.2' 71'	314 A00RM070 45' 01' 00.2' 71' 27' 06.8' Cerro Blanco	c Cerro Blanco	lanco	Tres Lagunas Fm.?	Laminated Sed. Rock	Silicification // qz·chalcedony·calcite-limonite	39

Abbreviations

Geological unit, Stratigraphy	Fm.: Formation Gr.: Group ndix:6 pendix:7 ppendix:8
Analysis type	TS: Observation of thin sections Appendix: 3 PT: Observation of polished thin sections Appendix-6 KR: Powdery X:ray diffraction Appendix-6 GC: Geochemical grade analyses 27elements+Au (code127+494) Appendix-6 PC: Geochemical grade analyses 27elements+PGE (code127+615) Appendix-7 OA: Ore grade assay 24elements+Au (code A22+999) Appendix-9 WR: Whole rock analyses major & trace elements (codeA413+A390) Appendix-9 DS: Sulfer isotope composition Appendix-11 DO: Oxygen isotope composition Appendix-12 FI: Homogenization temperatures and salinities of fluid inclusions Appendix-10 KA: K: Ar radiometric dating Appendix-13

q2 quartz
y pyrite
cp chalcopyrite
gn galana
sp sphalerite
bo bornite
diss. dissemination

Mineralizations

Appendix-3 Observation results of thin sections

No. Sample No.	Rock Tyne		primary minerals	minerals			secondary minerals	minerals		Note
-		qz pl kf bt m	u ho opxcp	mu ho opxcpx ol ga sph	zi ap op	gl qz chl seriserp tc ep ca op saus clympsmec	rp tc ep ca	op saus cl	ympsmec	(others)
A00NK014	1 A00NK014 Muscovite bearing biotite granite	V 0 0 0 0				◁		4		Coarse-grained and heterogeneous
A00NK018	2 A00NK018 Aphyric rhyolite?	۵				0		4		Strongly silicified
3 A00NK025	Biotite hornblende granite(Quartz monzonite or adamellite)	0 0 0	0		4	◁	⊲	◁		
A00NK048	4 A00NK048 Rhyolitic tuff	0 0 0			٥	0	٥	0 0		Air fall deposit, lithic of rhvolite(\triangle)
A00HH013	5 A00HH013 Granite porphyry	0 0 0 0			◁	∇ 0		◁		Dyke
6 A00HH060	Aphyric basalt		0		© 4	4				Small dvke or sill
A00MZ013	7 A00MZ013 Hornblende dacite	0	0		4	00	٥	A		Dvke?
A00MZ015	8 A00MZ015 Biotite hornblende granodiorite porphyry	0 0 0	0	◁	4	0	4			Dyke or small intrusion
A00MZ018	9 A00MZ018 Hornblende granodiorite porphyry	0 0 0	0	◁	△	0	△			Dyke or small intrusion
A00MZ022	10 A00MZ022 Biotite granite(quartz monzonite or adamellite)	0000		△	\(\delta \) \(\delta \) \(\delta \)	□ □ □		0		
A00MZ032	11 A00MZ032 Biotite hornblende granodiorite	0000	0	◁	0 0	0 0	0	0		
A00MZ044	12 A00MZ044 Olivine augite basalt		0	4	, 0 ⊲	© ∇ ∇	0		0	Dyke or sill
A00MZ065	13 A00MZ065 Basaltic lapilli tuff	0				0 0 0		0	0	lithic of basalt (©)
A00TM006	14 A00TM006 Granophyre				◁			0		Dyke
A00TM009	15 A00TM009 Biotite hornblende granodiorite porphyry	0 0 0 0	0	٥	0 0	0				Dyke or small intrusion
400TM017	16 A00TM017 Porphyritic andesite	© ©					0		0	Dyke, strong metasomatic replacement
400TM018	17 A00TM018 Hornblende biotite granite (quartz monzonite or adamellite) 🔘 🔘	0	0	◁	4	© O	0	0		
A00TM019	18 A00TM019 Hornblende andesite	0	0			0	0	V	0	Highly porphyritic, 30 40% phenocryst
A00TM020	19 A00TM020 Hyperthene biotite hornblende tonalite(quartz diorite)	0000	0		0	0				
A00TM023	20 A00TM023 Olivine basalt	□ □	0	0	0					
A00TM030	21 A00TM030 Hornblende biotite tonalite(quartz diorite)	0 0 0 0	0	◁	0	0	◁	0		
400RM013	22 A00RM013 Hornblende biotite tonalite(quartz diorite)	0000	0	٥	\d	O	0	0		
400RM025	23 A00RM025 Porphyritic andesite	0	◁		4	© 0 0		0		
A00RM031	24 A00RM031 Thermally metamorphosed sandstone	0								
A00RM032	25 A00RM032 Biotite hornblende dacite	O	0		0	0	0	0		Dyke or small intrusion
A00RM038		0				0		4		Dyke, strong silicification
A00RM048	27 A00RM048 Hornblende andesite	0	0			© 0		0		
A00RM049	28 A00RM049 Aphyric rhyolite?					0				strong silicification
AOORMOGO	29 A00RM060 Lanilli tuff	۵				C				(O) 1 1 2 11 2 11 11 11 11 11 11 11 11 11 1

Legend: ©, abundant; O, common; A, minor; rare
qz'quartz, pl:plagioclase, kf.k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, ol:olivine, opx:ortho pyroxene, cpx:clino pyroxene, ga:garnet, sph:sphene, zi:zircon, ap:apatite
op:opaque minerals (mainly iron oxide), chl:chlorite, seri:sericite, serp:serpentine, tc:talc, ep:epidote, ca:carbonate mineral (mainly calcite), saus:saussnite, cly:clay mineral
amph:amphibole, smec:smectite

Appendix-4 Observation results of polished-thin sections.

Ž	No Sample No	Rock Tone		primary minerals	rals			seconda	secondary minerals	-	ore m	ore minerals	Note
		The state of the s	qz pl kf bt mu ho opxcpx	ho opxcpx ol	ga sph zi	op gl q	ap op gl qz chl seriserp tc ep ca op cly smed spha gal py c py mt	rp tc ep	ca op cly	smecsp	ha gal r	y c-py n	(others)
1 A	100NK019	A00NK019 Porhyritic andesite(dacite)	∇ () ()				0	0	0		0	4	ga=spha>pv>c.pv
2 A	100NK039-1	2 A00NK039-1 Silicified rock					0		0		,	4	pv>mt
3 A	100NK041	3 A00NK041 Olivine dolerite	\(\text{\$\times \	0		4			0		7		pv>c.pv
4 4	100HH002	4 A00HH002 Carbonate mineral quartz-ore mineral rock					0		0		0	4	py>gal>spha>c-py
5 A	100HH024	5 A00HH024 Porphyritic andesite(dacite)	0				0	0	0		0	4	py>gal>spha>c.py
6 A	100HH063	6 A00HH063 Chlorite-ore minerals quartz rock					0		0		□□□□	1	spha>ga>py
7 A	100MZ016	7 A00MZ016 Carbonate mineral ore minerals quartz rock				_	0		0		0	4	py>ga>c·py
8 A	100MZ030	8 A00MZ030 Ore minerals-quartz rock				0	0	◁	0		0 0 0	4	spha>py>ga>c.py
9 A	100MZ038	9 A00MZ038 Andestic lapilli tuff	0			0	0	0					lithic of andesite(O)
10 A	100MZ042	10 A00MZ042 Ore minerals quartz rock				_	0		0		0 ©	4	spha>ga>py
11 A	100RM029	11 A00RM029 Nearly aphyric andesite	0			0	0	0	0		0	4	spha=ga>py
12 A	100RM033	12 A00RM033 Biotite hornblende dacite	0 0	0		◁	0	0	0			□ 0	Dyke or small intrusion, similar to A00RM032
13 A	100RM040	13 A00RM040 Ore minerals-quartz rock				0	0	٥	0 7	7	4	0	c.py>spha
14 A	14 A00RM042	Pebble conglomerate				0	0 0		•				intensely altered, clast of tonalite((())
		Tonalite	0 0 0 0		۵		000						Pebble in conglomerate
15 A	15 A00RM057	Olivine dolerite	0 0 D	0		٥	0	0	0	0		7	
16 A	100RM058	16 A00RM058 Inverted pigeonite/augite dolerite	0 0 0 V	0			◁		٥			7	

Legend: O, abundant: O, common: O, minor: • rare: O, unknown
q2-quartz, pl:plagioclase, kf.k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, ol:olivine, opx:ortho pyroxene, cpx:clino pyroxene, ga:garnet, sph:sphene, zi:zircon, ap:apatite opiopaque minerals (mainly iron oxide), chlichlorite, seriisericite, serpiserpentine, toitalc, epiepidote, caicarbonate mineral (mainly calcite), sausisaussnite, clyiclay mineral amph:amphibole, smec:smectite, spha: sphalerite, gal: galena, py: pyrite, c.py: chalcopyrite, mt: magnetite

Appendix-5 Powdery X-ray diffraction results.

	Note												Alunite 13		Anatase 4			? 1				Ser/Mon 2		Prehnite 6			Andrew Comments of the Comment			The state of the s		
Others	Laumontite	Г											7		7							01		9				က			\dashv	
1	Diaspore																															
Sulfates	Barite																															
Sulf	Gypsum																															
Se	Sphalerite																															
lffd	Sphalerite Galena																															
Su	Pyrite																									-	-					П
ates	Dolomite Calcite																															
arbor	Calcita																															2
٦	Andalusite		-	-	-	-		_																		-		_			-	\dashv
	Kaolin		-			2				2			2							П					-	-	-			17		
	Montmorillonite(Smectite)	-	7											1																		
	Chlorite/Montmorillonite		-																										-			-
	Chlorite						-												-		3		1		5						2	က
ses		-	-	16																				٧								
Silicates	Pyrophylite	-	-	-	6	2	9	3	1	9	20	2		_		7	5				1		2			2		2	9		\dashv	œ
S	Sericite										-			٧					-					-		-	-				-	-
	Biotite					_													-				_	_								
	Hornblende		5			1-			2	3		2			1	9			9	10	15	3		_							80	
	K-feldspar	33							19	23				19					30	-	26 1		31	2	4			12				
	Albite	3			-				1	2				1				7	က		2		က		-	_		1				ļi
	Plagioclase	_									_	_						-								_						
sas	Tridymite	_																														
Silicas	Cristobalite	6	10	m	90	00	10	C	90	63	~		7	m	₹#	Φ.	2	0	7	₩	.0	7	_		3	T		2		m		<u></u>
<u> </u>	Quartz	29	15	33	48	38	25	20	28	22	33	26	37	13	64	29	32	10	27	24	26	37	10	31		34	76		30	43	10	23
	Rock	Granite	Granite	Rhyolite	Sandstone	Pegmatite	Schist	Rhyolite	Qz vein	Granodiorite porphyry	Granodiorite	Andesite	Rhyolite?	Porphyritic andesite	Andesite	Dacite	Altered rock	Altered rock	Dacite	Silicified rock	Granite	Altered rock	Altered rock	Altered granite	Andesite	Andesite	Altered rock	Altered rock	Altered rock	Altered rock	Andesite	Dacite
	. Sample	1 A00NK004	2 A00NK005	3 A00NK006	4 A00NK012	5 A00NK026	6 A00NK030	7 A00NK031	8 A00NK033	9 A00NK034	10 A00NK037	11 A00NK039	12 A00NK044	13 A00NK046	14 A00NK047	15 A00NK049	16 A00HH004	17 A00HH007	18 A00HH013	19 A00HH019	20 A00HH022	21 A00HH023	22 A00HH027	23 A00HH028	24 A00HH034	25 A00HH043	26 A00HH044	27 A00HH050	28 A00HH054	29 A00HH057	30 A00HH062	31 A00MZ003
	No.											-	-		-	-		-	-		2	7	27	2	27	27	2	2	2	7	3	3

Anatase 1 Alunite 1 Note Ser/Mon 3 Others Laumontite Diaspore Barite 2 Gypsum Sphalerite Sulfides Galena Pyrite Dolomite 16 Calcite Andalusite 2 2 5 17 O a Kaolin Montmorillonite(Smectite) Chlorite/Montmorillonite 7 3 Chlorite 12 Pyrophylite 2 9 က 2 Sericite Appendix-5 Powdery X-ray diffraction results. Biotite Hornblende 14 10 က 9 4 က 9 5 K-feldspar 10 2 9 24 14 35 n 22 Albite 12 Plagioclase Tridymite Cristobalite
 18

 18

 18

 18

 18

 18

 18

 18

 19

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10

 10
 </tr Quartz Rock White altered rock Volcaniclastic rock Volcaniclastic rock Volcaniclastic rock Volcaniclastic rock Andesitic dyke Silicified rock Volcanic rock Volcanic rock Pebble dyke Argillic vein Granodiorite Altered rock Altered rock Altered rock Altered rock Altered rock Altered rock Lapilli tuff Andesite? Andesite? Andesite Andesite Granite? Granite? Tonalite Rhyolite Tonalite Shale Shale 32 A00MZ004 38 A00TM015 A00RM033 35 A00TM003 36 A00TM008 37 A00TM011 39 A00TM016 44 A00TM043 47 A00TM050 48 A00TM055 50 A00TM058 51 A00TM060 A00RM034 33 A00MZ024 34 A00MZ058 41 A00TM032 42 A00TM033 45 A00TM046 46 A00TM047 52 A00TM062 54 A00RM005 40 A00TM027 43 A00TM037 49 A00TM057 55 A00RM007 56 A00RM022 58 A00RM024 59 A00RM028 60 A00RM030 53 A00TM067 57 A00RM023 Sample ŝ

Appendix-5 Powdery X-ray diffraction results.

		т-			T	_	T	_	т-	_
	Note									
ners	Laumontite									
G	Diaspore									
ates	Barite									
Sulfates Others	Gypsum									
g	Sphalerite	Γ								
Sulfides	Galena								T	
	Pyrite				T					
Carbonates	Dolomite									
Carb	Calcite									
	Andalusite	Γ							T	T
	Kaolin	П	П		19	40	89		T	
	Montmorillonite(Smectite)	T		T					T	
	Chlorite/Montmorillonite									
	Chlorite						Ī			2
Silicates	Pyrophylite	Γ			T					
Silic	Sericite	4	15		T		Г	П		2
	Biotite									
	Hornblende									
	K-feldspar	9								
	Albite							16		
	Plagioclase									
s	Tridymite									
Silicas	Cristobalite									
S	Quartz	31	43	82	22	က	6	26	58	32
	Rock	Rhyolite	64 A00RM040 Granodiorite/Porphyry	65 A00RM041 Breccia pipe	Sed. Rock	67 A00RM062 Sed. Rock (Float)	Sed. Rock	69 A00RM065 white altered rock	70 A00RM067 white altered rock	71 A00RM068 white altered rock with qz pheno.
	Sample	63 A00RM035 Rhyolite	A00RM040	A00RM041	66 A00RM059 Sed. Rock	A00RM062	68 A00RM063 Sed. Rock	A00RM065	A00RM067	A00RM068
	Ž,	63	64	65	99	67		69	70,	711.

numerical data is quartz index which is relative strength against the standard quartz sample.

Appendix-6 Bulk chemical analysis results for the geochemical survey.

4.4 50 6.02 8.9 6.90 0.05 4.9 6.00 6.05 7.0 6.05 7.0 6.05 7.2 0.08 6.00 6.0 7.0 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 7.1 7.0 6.05 6.2 0.03 6.05 6.0 6.05 6.0	Cu Fe K Mg	(mun) (%) (mun) (mun)	or (w) (w) (w)
0.2 <	270 4.47 3.19 0.38	8 0.4 6 120	32 0.08
0.2 6.0 <th>1 13 6 0.25 0.09 0.04</th> <th>1 0.03 1 50</th> <th>11 0.01 9</th>	1 13 6 0.25 0.09 0.04	1 0.03 1 50	11 0.01 9
0.4 30 40.2 0.19 50.5 <0.19 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.0 <0.5 <0.5 <	26 11 77 >25 0 0 26 0.15	3350 1 0 23 25 460 9	2 6 0.08 3 <10
0.2 1.0 0.2 1.0 0.0 <td><1 9 20 >25.0 0.08 0.09</td> <td>15 0.05 7 760</td> <td>21 0.01 88</td>	<1 9 20 >25.0 0.08 0.09	15 0.05 7 760	21 0.01 88
0.2 <10 <1.2 <1.0 <1.2 <1.0 <1.2 <1.0 <1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	<1 18 11 0.27 0.12 0.01 <1 16 18 0.06 0.64 0.04	<1 0.03 <1 40	2 7 <0.01 3 <10
CODE 10 14 0.82 70 CODE CODE 2.5 0.28 2.5 0.28 1.5 0.2 4.55 0.0	1 9 5 0.26 6 0.01	<1 0.18 <1 80	24
0.6 <10	5 17 83 0.4 0.26 0.12	<1 0.04 3 50	31
0.0.2 <10.	3 4.63 0.42 1.48	1 2.21 6 850	364
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0 36 0 07 0 01	700 004 <1 570	246
<pre><pre><pre><pre><pre><pre><pre><pre< td=""><td>20 <1 0.2 0.18 0.03</td><td>138 0.03 3 60</td><td>10.0> 6</td></pre<></pre></pre></pre></pre></pre></pre></pre>	20 <1 0.2 0.18 0.03	138 0.03 3 60	10.0> 6
12	2 8 15 364 9.59 3.51 0.8	3 <0.01 9 730	679 0.36
COL2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<0.5 2 12 37 2.99 0.77 0.16	54 0.06 <1 250	47
CO.2 <10 0.0 430 430	<0.5 <1 15 <1 0.06 0.17 0.03	194 0.19 <1 <10	15 <0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 <0.5 <1 <li< td=""><td>1 0 03 61 10</td><td>187</td></li<>	1 0 03 61 10	187
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.5 1 18 115 2.86 0.04 <0.01	41 0.03 <1 80	ם ע
	<0.5 19 124 149 6.91 0.67 3.45	4 4.54 32 620	72
	<0.5 1 41 4 0.06 0.03 0.01	<1 <0.01 <1 30	19
0.02 1.02 5.87 450 1 <2 0.01 <0.5 3 0.02 <10	5 0.05 0.04 0.01	<1 <0.01 <1 10	14
0.0 4.0 0.2 7.02 9.2 0.2 0.2 0.2 0.2 0.2 0.0	38 2.7 2.68 0.3	56 0.23 <1 90	26 0.09 17
3.4 <10 <0.2 <0.48 <0.49 <0.49 <0.49 <0.49 <0.49 <0.49 <0.49 <0.49 <0.49 <0.44 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5	239 0.9 2.38 0.39	3 3.84 1 130	76 0.09 29
CO.2 <10 CO.2 7.68 10 2 4.4 CO.5 3.4 CO.2 <10 <0.2 3.44 <0.5 <2 4.4 <0.5 <2 CO.2 <10 <0.2 <3.49 <0.6 <2 2.71 <0.5 <2 CO.2 <10 <0.2 <3.49 <0.6 <2 <2.74 <0.5 <2 CO.2 <10 <0.2 <3.49 <0.6 <0.5 <0.6 <0.6 <0.7 <0.8 <0.7 <0.8 <0.8 <0.7 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8	3 1 51 6 73 0 00	<1 2.94 <1 320	91 0.15 50
CO.2 <10	1 0.63 0.99 0.49	1 3 38 1 530	0.10
<0.02	1175 5.36 1.33 2.48	<1 3.69 5 1100	261 0.67 235
<0.2 <10 0.2 9.33 150 1.5 <2 2.66 <0.5 9 <0.2 <10 0.2 9.33 150 1.5 <2 2.66 <0.5 9 <0.2 <10 <0.2 7.34 70 <0.5 <2 0.26 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </th <th>355 2.77 1.09 1.05</th> <th><1 2.88 <1 890</th> <th>351 0.27 76</th>	355 2.77 1.09 1.05	<1 2.88 <1 890	351 0.27 76
0.6 0.7 <th><0.5 9 20 41 3.25 0.63 0.19 28</th> <th><1 5.03 3 670</th> <th>126 0.49</th>	<0.5 9 20 41 3.25 0.63 0.19 28	<1 5.03 3 670	126 0.49
0.8 < 0.8 < 0.2	19 9 87 0 63 0 14	13 0.07 2 320	16 0.13 67
1 190 0.2 6.56 450 0.5 <2 0.34 <0.5 2 0.4 120 <0.2 10.2 900 1 <2 0.24 <0.5 3 0.2 1.0 0.6 68.8 890 0 5 2 0.34 <0.5 5 3 1.2 30 0.4 6.23 370 0.5 2 3.85 <0.5 7 4.4 4.480 7.1 9.2 1.5 <2 0.04 <0.5 2 4.2 4.480 1.8 4.2 4.80 0.5 2 0.04 <0.5 2 4.2 4.480 1.8 4.2 0.0 0.5 <0.5 1.8 0.5 0.5 1.8 0.0 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 </th <th>25 6 44 1 06 9 17</th> <th>1 967 (1 9890</th> <th>258 0.52 128</th>	25 6 44 1 06 9 17	1 967 (1 9890	258 0.52 128
0.4 120 <0.2 10.2 <0.5 3.2 <0.5 3.5 <0.2	74 3.48 2.87 0.49	1 0.18 <1 360	31 0 12 88
<0.02 <10 0.8 8.06 860 0.5 <2 3.21 0.2 1.0 0.4 6.89 890 0.5 <2	117 4.17 3.4 0.34	<1 0.39 <1 310	160 0.2
0.2 1.0 0.2 6.58 890 2 2 0.4 848 0.2 <10	1.5 3.4 0.65	<1 0.22 <1 510	56 0.13 42
1.2 30 0.4 6.23 370 0.5 2 3.85 4.4 4480 71.8 4.25 480 0.5 < 2 0.04 4.4 4480 71.8 4.25 480 0.5 < 2 0.01 4.2 4480 71.8 4.25 480 0.5 < 2 0.01 4.2 4480 71.8 4.25 480 0.5 < 2 0.01 4.3 4480 71.8 4.25 480 0.5 < 2 0.01 5.2 5.0 5.0 7.0 7.0 7.0 7.0 5.3 5.0 5.0 7.0 7.0 7.0 5.4 5.0 7.0 7.0 7.0 7.0 5.5 5.0 7.0 7.0 7.0 5.5 5.0 7.0 7.0 7.0 5.5 5.0 7.0 7.0 7.0 5.5 5.0 7.0 7.0 7.0 5.5 5.0 7.0 7.0 5.5 5.0 7.0 7.0 5.5 5.0 7.0 7.0 5.5 5.0 7.0 7.0 5.5 5.0 7.0 7.0 5.5 5.0 7.0 5.5 5.0 7.0 5.5 5.0 7.0 5.5 5.0 7.0 5.5 7	4 7 83 1.91 4.33 0.07	<1 1.8 <1 150	56 0.14 34
4.4 4.60 0.4 7.71 389 1.5 <2 0.04 4.4 4.80 0.1 4.80 0.5 <2 0.01 <0.2 <10 0.8 7.03 70 1 6 1.82 <0.2 <10 0.4 10.9 120 1 6 2.56 <0.2 <10 0.4 10.9 120 1 6 2.56 <0.2 <10 0.4 10.9 120 1 6 0.5 6 0.5 0.05 <0.2 <10 <1.8 7.04 1460 0.5 <2 0.05 <th>7 6 110 4.05 2.16 0.07</th> <th><1 2.73 <1 1550</th> <th>32 0.95 105</th>	7 6 110 4.05 2.16 0.07	<1 2.73 <1 1550	32 0.95 105
4.4 420 1.1.6 4.2.0 450 0.5 2 0.0 0.2 10 0.4 10.9 120 1 6 1.82 0.2 10 0.4 10.9 120 1 6 2.56 0.2 10 0.4 10.9 120 1 2 2.56 0.2 <10 0.4 1.06 470 0.5 2 0.15 0.0 <10 0.4 7.06 4146 0.5 <2 0.03 0.2 <10 0.2 7.8 690 0.5 <2 0.03 8.6 <10 0.2 7.41 680 0.5 <2 0.03 8.6 <10 0.2 7.41 680 1.5 <2 0.04 4.0.2 <10 0.2 1.4 1.00 1.5 <2 0.16 6.0 <10 <0.2 1.0 1.0 <2 0.16 <2 <th>2 3 29 0.82 4.98 0.43</th> <th><1 0.34 <1 220</th> <th>20 0.05 12</th>	2 3 29 0.82 4.98 0.43	<1 0.34 <1 220	20 0.05 12
0.2 10 0.4 10.9 120 1 2.56 0.2 <10 1.8 7.24 310 3.5 <2.5 0.5 0.2 <10 0.4 7.04 1460 0.5 <2.0 0.15 0.2 <10 0.2 7.3 6.90 0.5 <2.0 0.03 8.6 <10 0.2 7.41 680 0.5 <2 0.08 8.0 <10 0.2 7.41 680 0.5 <2 0.03 8.6 <10 0.2 7.41 680 1.5 <2 0.04 <0.2 <10 0.2 7.41 680 1.5 <2 0.07 <0.2 <10 0.2 7.41 680 1.6 <2 0.16 <0.2 <10 <1 8.05 270 1 <2 3.9 <0.2 <10 <1 8.86 10 <2 2 9.5	18 26 23 3.53 2.56 0.15	20 1 0.12 <1 20 88	20 0.03 3
0.2 <10	5 5 41 0.56 1.99 0.18	<1 3.76 <1 620	307 0.07
0.2 10 0.4 7.06 470 0.5 <2	1.96 3.16 0.38	<1 2.32 1 580	158
0.8 <10	1.72 3.15 0.33	<1 1.46 <1 370	41
40.2 5.10 0.2 7.8 6.90 0.3 6.2 0.08 6.0 5.17 100 1.5 5.07 0.07 6.0 5.17 100 1.5 5.0 0.07 6.0 5.10 0.2 7.41 880 1.5 5.0 0.16 6.0 5.10 0.2 1.0 110 1 5.0 0.16 3.9 6.0 5.10 1.6 1.0 1.0 5.0 1.8 1.8 5.0 6.2 3.6 6.0 5.10 6.1 8.4 6.0 0.5 6.2 3.6 7.0 5.1 8.4 6.0 0.5 5.2 3.4 8.4 6.10 6.5 5.2 3.4 4.64	<0.5 1 5 <1 0.22 6.63 0.03	<1 0.7 <1 180	26
Color Colo	0.18 4.62 <0.01	<1 2.12 <1 310	40
CO.2 <10 0.2 <11 <2 <1.0 <0.2	7 4 1.06 2.26 0.25	1 0.12 <1 220 1	4 0.16
C0.2 <10 1 8.05 270 1 <2 1.05 0.2 <10	4.0.0 10.0 1.1.1 1.0.04 0.04 0.04 0.04 0	995 1 4 12 Q 1060 1	07.0
0.2 <10 1 6.86 10 <0.5 <2 9.7 <0.2	<0.5 35 27 2620 1.69 1.4 1.08	920 <1 3.55 6 530 16	2 122 0.29 R0 <10
<0.2 <10 <0.2 9.2 180 0.5 <2 9.81 3.2 <10	<0.5 75 38 1125 7.69 0.13 0.82	010 <1 0.18 22 530 1	0.39
3.2 <10 0.4 8.4 610 0.5 <2 3.4 0.8 <10	<0.5 9 21 11 1.76 1.33 0.7	345 <1 0.48 3 180 1	0.13
0.8 <10 <0.2 8.38 2700 7 <2 4.64	<0.5 21 73 54 4.85 2.02 1.49	005 1 1.67 19 590 3	0.41
1 207 200 67 207 031 21 6 6 0 017 6 0 0	8.5 62 58 2490 7.89 3.45 3.69	200 <1 2.75 38 3290 1	0.38
<0.2 <10 0.8	<0.5 120 10 76 2 99 0 58 0 05	15 <1 0.04 5 10 1	012 11 00.0 07 0
<0.2 <10 5.6	20.0	1 2 1 2 1 2 1 2 1	717 710

Appendix-6 Bulk chemical analysis results for the geochemical survey.

*				ŀ	ŀ	ŀ				-			,	1	-		,				4	-		*		
No. Sample	Rock	Au (g/t)	(maa)	(maa)	gu (qaa)	(g/t) (g/t)	mod) () (ppm)	(maa)		on (mac	(10)	om) (ppm)	- S - (∄	4 3 8 		n (mad)	(maa)	2 Z	(Black)	t) (mada)	d) (mdd	pm)	^ (%)		
58 A00MZ054	4 Qz porphyry	<0.005	_	L	1=	١.,	31 126	1	27	1.41	<0.5			92 1.	29 2.5	6 0.29	210	_	2.49	7	240	8	168	-	L_	
	6 Qz vein (Float)	0.02	84	1.6	<10	_	4.18 17(0 <0.5	7	1.64	<0.5	-		7 1.	54 1.5	6 0.19	930	. 1	0.29	1. 1	290	12	22	- 1		26
	A00MZ057 Qz vein	4.07	6640	6.4			1.22 60	0 <0.5	14	0.02	<0.5	_		34	7.6 0.4	0.03	15	7	0.04		160	2	9	-+	_	+
	9 Silicified rock		>10000	22	_	5.8 2.	2.69 9(0 <0.5	20	0.02	0.5			525 8.	94 0.5	0.05	- 1	7	0.08	1	130	2	6	-+		9
	1 Soft silky rock	0.045	77	80.0	_		9.53 410	0 <0.5	Ç7 9	90.0	<0.5			14 0.	88	5 <0.01	- 1	19	0.13		1110	20	040	-+-		0
64 ANOMZOG2	Silicified rock	0.010	17	7.0	04	0.2 8.01	8.01 DI	0.00	7 8	0.00	C.U.S			0 10	2.2	10.07	- 1	7 5	9 00		200	90	341	-	_	7 7
		<0.005	3 10	<0.2			72 43	7 <0.5	2 07	0.00	<0.5	-		√ 1. V	07		1	7	0.23		0601	19	569			<22
	5 Andesite	0.045	17	0.4	+	٠	7.46 216	0.5		0.21	<0.5	80		4	66 4.7		1	7	0.0	. I	1250	62	37	+ -	_	0 186
	1 Dacite	0.002	13	9.0	+	<0.2 4.86	36 32	0 <0.5	1	0.02	<0.5	-		12 0.	81 2.		1	2	0.13		120	4	7	+ -	1	9
68 A00TM002	2 Black shale	1.18	356	3.8	270 1	19.6	0.69	0 <0.5		19.35	14.5	13		137 4.	63 0.5		1	7	<0.01	1	130	736	223	+		0 1870
69 A00TM00	69 A00TM003 White altered rock	0.02	11	<0.2	L.	ļ	2.52 130	0 <0.5		0.3	<0.5	7		4	24 0.0				0.03	L	110	80	34	-	<u>L</u>	12
70 A00TM004	4 Rhyolitic tuff	0.005	7	<0.2	<10	0.2 6.	6.45 1410	0 <0.5		0.17	<0.5	-		1 0.	47 8		1	-	0.14		30	4	56	-	L	01
71 A00TM005	5 Tonalite	<0.005	5	<0.2	20	0.6 4.25	25 23	0		0.47	<0.5	7		4 0.	95 0.6			1	2.44		70	2	89			01 0
		<0.005	14	0.2	-		2.09 503(0 <0.5		80.0	<0.5	3		8	55 1.			√ .	90.0		300	\$	989	-		9
73 A00TM008	8 Shale	0.01	62		_	_	7.16 690	0.5		0.59	<0.5	4		17	90		- 1	4	1.54		200	4	154	+	_	2
74 A00TM010	0 Shale	0.545	0.545 >10000	c.	_		1.43 590	0 <0.5		0.08	118	15		010	75 0.		- 1	7	0.02		840 7	1400	46	+	_	3170
		0.002	273		_		0.09	0 <0.5	ľ	0.04	20.5	⊽		32 0	98		- 1	2	0.03		8	916	34	-+	_	1430
76 A00TM014		0.11	20	1.6		_1	42 11	0 0.5	"	0.22	7	40		100	27 0.			4	3.2		Intr	40	112	-+	_	0 150
77 A00TM016	6 Granite?	0.035	21			L	7.86 160	0.5	Intra	0.15	<0.5	20 0		000	21 0.5		- 1	7 7	1.09		Inti	9/1	50		\perp	168
		20.00	11	7.0	_1_		10.3 153		7	0	0.0	2 7		707	000		- 1	7 8	1.04		000	000	107	-+-		200
		1.90	\$ 4		0250	_	1 2	7 0	Intr	200	0.00	7		11 20	00		- 1	7 6	0.03		100	0,0	01	- 1-	4	96
SOUTH AND INDEED		10.0	7 5	70.7			7 5 5 100	0.0	9 4	0.00	0.0	10		2 5	77 77		- 1	7 5	3,		26	0 4	070	-+-	_	101
-		00.00	7	7.00		CO 2 607	11 156	7 2	? ?	300	0.0	0 -		- 0	61 2		- 1	7 0	1 16		28	α	145	- 1 -		1 0
83 ADDTM021	Laplin turi	0.00	7	2.0.0			9.96 556	0 0	? 0	100	2 2	1 2		333	100			7 7	0 0		140	6420	67	- 1		120
84 ANOTIMOS	84 A00TM029 Pomhymitic Tonalite	0.00	7	<0.5		-	7.32 56	- 5	10	8.47	0.0	; =		80 2	85 0 2			V	0.43		620	52	335	+-	┷	64
85 A00TM031	1 Tonalite	0.002	16	0.2			7.08	0.0	2	1.37	<0.5	15		6	63 0.2		1	2	3.41		610	20	165	+		42
		<0.005	2	<0.2	-	-	7.75 4(0.0	\$	1.5	<0.5	12		2	3.7 0.5			⊽	3.62		610	16	191	1	<u> </u>	200
87 A00TM033	3 Argillic vein	<0.005	9	<0.2		1	7.74 190	0	4	9.28	<0.5	7		40	29 2		1	⊽	0.56		230	14	128	+-	ــــ	32
88 A00TM03		<0.005		<0.2		0.4	11 <]:	0 3	~	14.8	<0.5	3		13 0.	61 0.0		li	7	0.13		40	10	31			0 10
89 A00TM035	5 Granodiorite	<0.005	32	9.0			34 20	0 0.5	\$	4.25	<0.5	17		235 3.	55 0.1		- 1	⊽	3.18		830	24	275	:-1		0 52
	8 Qz vein	0.01	=	9.0			0.36 80	0 0.5	7	0.02	<0.5	3		3	.0		ĺ	506	0.03		8	2	14	-+	_	12
91 A00TM039		0.01	6	0.5	_		06 23	0 <0.5	∞	0.01	<0.5	27		7 0	75 0.03		- 1	262	0.04		01	2	œ 8			BI
92 A001M040		000	7 5	7.0	7 017	20.2	00 00	0.1.0	7 9	0.13	C.D.	0		8 9	CI.			3	0.7		200	77	116	_	1	2 6
93 AUGUMU4	Anormodal Budanthermal bracein	0.00	7	7.00			27 99	0 -	1 2	181	200	19		100	48 9 6		- 1		1 59		In fig.	4 9	99	-+-	1	168
95 A00TM053	3 Granite (Float)	00.00		2.0	_1_		7 14 16		20	003	0.00	1 10		57 2	08 2 2		1	0.	0.22		270	36	38	+	\perp	110
96 A00TM054	4 Granite? (Float)	<0.005	9	<0.2	1	1	9.07 77	0	\$	4.22	<0.5	9		21 1.	59 1		1		2.83		066	91	470	+	1	0 40
97 A00TM05	A00TM055 Altered rock	<0.005	⊽	<0.2	<10	<0.2 8.48	48 110	0 <0.5	ç	0.04	<0.5	2		8	04	10.0> 7	1	\ 	0.13		420	8	525			2
98 A00TM05	98 A00TM056 Altered rock	0.075	D.	1.6		<0.2 5.5	.5 98	0 1.5	~	0.1	<0.5	9		147 6	0.0	0.03	- 1	10	0.02		2340	18	240		_	138
99 A00TM05	8 Altered rock	<0.005	12	46	_		. 1 39	0 0.5	₹,	0.04	V .5	8		8	21 0.1	0.0	- 1	7	0.17		999	97	26.		_	PI S
100 A001M059	O Altered rook	0.01	8 606	9.0	010	0.2	1.14 //	0 0 0	3 6	0.0	0.0	- 67	11) F	72 3 5	0.08	- 1	7	0.03	7	520	0 00	7 19	21 31	210 <10	3 6
102 A00TM061	Hydrothurmal braccia	900	204	2	\perp		58 20	0	42	0.0	000	-		33 0	43	8 0.13	1	V	0.11		8	86	23	+	↓_	28
103 A00TM062	2 Altered rock	0.01	116	9.0	1		7.5 28	0 1.5	\$	0.07	<0.5	-		1	47	90.0	1	\ <u>\</u>	3.42		70	14	97	+	_	38
104 A00TM065	5 Qz vein	1.575	3660	92	L	26 0.	0.86	0 <0.5	46	0.03	20	4		243 2.	.0 99	0.02	1 1	9	0.03	_	250	1485	23	-		296
105 A00TM066	6 Qz vein	0.795	5710				58 14	0 <0.5	<u>1</u> 9	0.0	1.5	2		244 2	51 0.	19 0.04			0.04	_	140	1230	27		\sqcup	20
106 A00TM068	106 A00TM068 Qz vein	0.02	182	16.5	_		1.4	0.5	2	800	<0.5	9		115 4	89	26 0.12	- 1		0.35	_	370	1685	92		-	344
107 AOORMOG	9 Volcanic rock	0.02	19	1.8	_	-	47 87	0.5	27	0.12	0.0	-10		9 2	91.0	0.0	- I	7	0.23		3 5	27 5	\$	47 :	7 3	2 :
108 A00RM01	A00RM011 Dacite porphyry	×0.005	2	0.2		<0.2 12.1	25	0 0	Ş7 Ç	0.33	0.0	æ ;		35	00	1.70		V 1	5.53	_	0/0	97	214	11	7 7	144
110 A00PM012	109 AUOKMUIZ Dacite porphyry	000	×0 0	4.0	010	9.00	9.19 68	0.0	9 5	20.0	0.0	11		9 6	55 9 1.	10.0	1	7	181	_	210	<u> </u>	104	11 1	7 7	2 0
111 ADORMO17	7 Sed Rock	0.00	23	9 9	1	-	473 16	0 0	? ?	0.07	0.00	1		64	52 1.	9 0.27	1	20	0.23		420	29	9 00	92	8	200
112 A00RM02	A00RM020 Qz. vein in Granodiorite	0.025	37	0.8	↓_		3.89 18	0 1.5	101	0.11	<0.5	3		68 2	29	7 0.1		22	0.09		280	8	10	07	2	0 50
	1 Granodiorite	0.01	6	0.4	\perp	-	6.68 20	0	4	0.18	<0.5	8		2000	73 2.	11 0.35	1 1	13	1.23		110	10	69	16 2	1>	0 152
114 A00RM02	A00RM023 Volcaniclastic rock	<0.005	35	3	10 <	<0.2 5.	5.85 92	0 0.5	\$	0.04	<0.5	-		12	0.3 6.	0.0	1	⊽	0.15	_	40	80	0 09	07	1 <1	4
																		ĺ								

Appendix-6 Bulk chemical analysis results for the geochemical survey.

	ة]	(mi	110	28	40	4	32	39	1	45	30	9	oc	70	74	164
																<10
	×	(pp)	3	> 9	V	6 1	6	>		2	7	V .	ν	v 00	· 0	9
			L		i			1	1	1	1		i	1	1	1
	T	3	0	0.4	0.5	0.0	<0.0	0.0	<0.0	0.27	0.0	0.15	0.0	0.01	0.01	0.01
														91		
	Pb	(mdd)	36	10	24	2	10	2	•	9	88	20	26	2770	1740	158
	Д	(mdd	300	410	370	80	100	400	Intf*	710	Intf*	120	20	780	70	9
	ž	(mdd	1	18	-	⊽	2	20	2	12	12	⊽	⊽	10	⊽	1
	Na	°	3.8	2.75	2.85	0.21	0.02	0.48	0.03	1.83	0.05	0.52	0.05	0.02	0.03	0.02
· ^	W _o	(mdd	⊽	⊽	⊽	7	164	=	14	22	28	4	⊽	18	ιΩ	6
) }]	Mn	******												30		
ב מ	Mg	$^{\prime}$	0.5	19.	.77	68.	.03	4.	20.	.05	60.	.36	.04	.03	.01	.01
3	X,															
SCOULD INTEGER DOLL VC	Fe	ı		1			- 1						- 1	- 1	- 1	- 1
	n _O		- 1	- 1	- 1	- 1	- 1								i	6
) כ	J.	DII)	1 5	89	0	7 !	7	13	10 17	28	26 25	8	14	13	17	33
~) ***		a) (w	9	14	Ξ,	٦.	- 0	20	4	15	20	7	_	216	-	2
	ر ان ان															
	Ca S			- 1	- 1	- 1	- 1	- 1	- 1			- 1	- 1	- 1	- 1	- 1
	Bi		- 1	- 1	- 1	- 1	1	- 1		- 1	- 1	- 1	- 1		- 1	
)	Be	a)	1.0	e -	1 2	0.0	0.0	0.0	<0.5	-	0.5		0.5		0.0	0.5
20 T 212 (122 - 1	Ba	Cinda Cinda	200	200	300	2 5	0 0	400				550	> ⊇ 8	8 8	3 5	2
)	Al E	0 00	0.00		71.0	07.7	_					_	0.67	0.00	0.00	77.0
 	Ag ,	000		-		7.70	-	4	_	7.7			_	-		0.0
1	Hg	-+-	017	2 0	010	017	2 5	_			İ		1	070		400
i))	S. (mun)	┛.	200	100	2.0	7 7	500	7.0	7 0	7.05	7.0	Ö.0	7.0	0 2		a
	As S	7,	68	3 2	5 7	86	2	5	70	V IV	Ω.	7 9	0000	0000	201	721
		1	2 2	2) rc	2	0	1 -	1	0	Ü n	S n	\perp		1	
	Αu (σ/t)	00 O	<0.05	×0.05	<0.00	<0.00	600	100	5	COM-O	27.0	0.00	137	0.100	0.00	5
							747			ola ola			Floor	T TOWN	دٍ	4
	Rock			Ke			Pornh		7	ar orecela		worm.	voin (1	od Ro	7
	쬬	ite?	ite	atic dv	ite	'n	diorite	0414	thomas	d mooth	diomito	atod as	ated or	n (Flos	S pote	
		Andes	Tonah	Andes	Rhvol	Qz vei	Grano	Brocei	Hudro	Altoro	Crear	Broom	Brech	Oz ver	Lamin	
	Sample	000RM028 Andesite?	A00RM030 Tonalite	00RM033 Andesitic dvke	00RM036 Rhvolite	A00RM037 Qz vein	A00RM040 Granodiorite/Pornhyry	A00RM041 Braceis nine	AOORWOAN Budrethormel	AOORWOAZ Altered rock	AOOR WOA5 Granodiorite	A00RM064 Bracciated az usin	A00RM066 Brecriated az wein (Float	A00RM069 Qz vein (Float)	A00RM070 Laminated Sed Rock	
	San	5 A001	3 A001	7 A001	3 A001	3 A001		+	1	1	_			1	AOOF	
Į	ž	Ë	116	117	118	115	120	191	199	193	194	195	126	127	128	

"Intt" stands for interference. When a sample has high Cu, their is often interference on the Bi and P. The instrument can't get a good reading of the Bi and P because the Cu "interferes" with the reading.

Appendix-7 Bulk chemical analysis results including PGM elements for the geochemical survey.

Zn	(mdc	615	94	102	48	44
<u> </u>	(m)	1		<10		ì
×	(p)	1		> 111		
Λ	(ndd)	1				
Ξ	8	ļ		0.57		
Sr	(mdd)			132		i
P	(mdd)	1		02		
Ы	(mdd)	100	80	640	120	130
ž	(mdd)	403	398	9	417	376
Na	8	1.05	1.09	2.05	1.18	1.16
Ψo	(mdd)	7	7	7	7	7
Μn	(mdd)	715	715	885	260	800
Mg	_		8.57	1.23	8.62	7.99
K	8	0.23	0.37	1.89	0.39	0.48
Fе	8	3.67	3.65	5.69	3.86	4.09
Ca	(und d)	79	40	21	34	39
$^{\mathrm{C}\mathbf{r}}$	(mdd)		1	21		
လ	(mdd)	43	45	24	47	47
PΩ	(mdd)	6.5	<0.5	<0.5	<0.5	<0.5
				4.22		
Bi	(mdd)	<2	<2	5 400 1.5 <2	<2	<2
Be	(mdd)	<0.5	<0.5	1.5	<0.5	<0.5
Ba	(mdd)	80	09	400	70	80
Ψ	(%)	10.35	10.55	8.25	10.7	10.3
Ag	(mdd)	0.2	<0.2	<0.2	0.2	<0.2
Hg	(ppb) (ppm)	<10		<10	<10	10
SP				<0.2		<0.2
As	(mdd) (mdd)	2	က	2	9	7
Rh	(g/t) (<0.03	<0.03	<0.03	<0.03	<0.03
Pd	(g/t)	<0.07	<0.07	<0.0>	<0.07	<0.07
권	(g/t)	<0.07	<0.07	<0.07	<0.07	<0.07
Au Pt Pd Rh As Sb Hg Ag	(g/t)	0.03	<0.03	<0.03	<0.03	<0.03
		appro	appro	appro	appro	abbro
 		041 G	042 G	043 G	054 G	057 G
Sample Rock		A00NK	A00NK	A00NK043 Gabbro < 0.03 < 0.07 < 0.03	A00RM	A00RM
		-	7		7	4

Appendix-8 Bulk chemical analysis results for the petrochemical study.

ž	Comple	Dooly	Alteretion		TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Cr ₂ O ₃ LOI Total	Na_2O	K_2O	P_2O_5	$C_{\mathbf{r}_2}O_3$	IOI	rotal
7		INDOM	Wite a toll	3	%	(%) (%)	%	%	%	(%) (%) (%) (%) (%)	8	%	%	%	8	%
1	A00HH012	A00HH012 Andesitic porphyry Weak	Weak	63.1	0.45	17.7	5.14	90.0	1.87	4.22	3.79	1.29	0.15 < 0.01	<0.01	1.64	99.4
2	A00MZ011	Qz porphyry	Weak	63.2	0.31	16.5	16.5 2.89	0.15	0.15 1.71	4.11	4.11 3.14	1.9	0.15 < 0.01	<0.01	4.61	98.7
က	A00MZ013	Dacite porphyry	Fresh	57.4	0.52	17.2	5.16	0.14	0.14 3.32	4.61	3.76 1.62 (1.62	0.16 < 0.01	<0.01	4.66	98.6
4	A00MZ015	Tonalite	Fresh with green Cu stain	62.6	0.46	17.7	4.01		2.02	5.44	3.52	3.52 1.53	0.12 < 0.01	<0.01	1.46	66
30	A00MZ018	Granodiorite	Fresh	9.19	0.62	16		0.1	2.41	4.51	3.3		0.17 < 0.01	<0.01	1.68	98.6
9	A00MZ032	A00MZ032 Granodiorite (Float Fresh	Fresh	67.3	0.47	15.3	3.8		0.06 1.46	3.51	3.51 3.44		2.73 0.11 < 0.01	<0.01	1.16	99.3
7	A00MZ044	A00MZ044 Microdiorite	Propylite	51.4	6.0	17.4	8.58		0.18 3.79	8.03	2.53	1.74	0.25	<0.01	4.19	66
80	A00TM009 Tonalite	Tonalite	Fresh	63.7	0.34	18.6	18.6 3.23	0.04	0.04 1.51		4.19	1.24	0.22 < 0.01	<0.01	96.0	99.1
6	A00TM018	Tonalite	Weak	62.5	69.0	16.1	4.92		0.14 2.52	4.75	5.69	2.81	0.17 < 0.01	<0.01	1.33	98.6
10	A00TM019	Diorite porphyry	Tourmalinization with qz-epidote vein	52.7	0.92	8.02	6.31		2.45	5.57			0.19 < 0.01	<0.01	1.14	98.8
11	A00TM020	Tonalite	Fresh	61.1	0.55	17.5	5.59	0.14	0.14 2.39	6.45	3.17	1.56		0.13 < 0.01	0.34	98.8
12	A00TM030	Tonalite	Potassic? with limonite stain	59.2	0.97	15.7	15.7 5.96	0.14	4.16	6.35	3.78	1.02	0.19 -	0.19 < 0.01	1.77	99.2
13	13 A00RM013 Granite	Granite	Weak, qz vein with py diss.	63.7	0.64 1	15.4	15.4 4.84	0.09	2.78	0.09 2.78 2.43 2.29 3.87 0.12 < 0.01	2.29	3.87	0.12	<0.01	3.11	99.3

	Zr	(mdd)	192	175	127	172	324	277	116	200	260	172	559	276	307
	×	(mdd)	16	14	16	14.5	21.5	18.5	20.5	10.5	14	24	17.5	33	26.5
l	Γr	(mdd)	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.2	0.3	0.3	0.3	0.5	0.4
	$\chi_{\rm p}$	(mdd)	2	1.9	2.1	1.9	2.3	23	2.3	1.3	1.3	2.4	1.9	3.5	2.3
	Tm	(mdd)	0.3	0.2	0.3	0.3	0.4	0.3	0.3	0.1	0.2	0.4	0.3	0.5	0.4
	뎦	(mdd)	1.8	1.6	7	1.9	2.4	2.1	2.5	-	1.6	2.8	2.1	4	3.1
	Но	(mdd)	9.0	0.5	9.0	9.0	8.0	0.7	8.0	0.4	0.5	6.0	9.0	1.4	1.1
	Dy	(mdd)	2.7	2.7	2.8	2.3	4.2	3.8	3.9	1.8	2.7	4.7	3.5	6.7	4.9
	Tb	(ppm)	0.4	0.5	0.5	0.5	0.8	9.0	0.7	0.4	0.5	8.0	9.0	-	0.9
	Сd	(ppm)	2.6	3	3	က	5.5	3.6	4.4	2.6	3.9	5.3	3.3	6.2	5.7
	En	(ppm)	0.7	0.9	6.0	0.9	1.2	1.1	1.3	-	1.2	1.6	1	1.5	1.2
	Sm	(ppm)	2.7	3.5	3	21		3.6	4.2		4.6	5.3		9	5.9
	PΝ	(mdd)	12.5	16		15	m	20.5			24	23.5	15	24.5	30.5
	Pr	(ppm)	3.1	4.2	3.9	3.8	8.3	5.5	4.7	5.3	6.1	5.4	3.7	6.2	7.7
	Çe	(mdd)	56	က်	30	31.5		20				41	30	51	
	La	(mdd)		18	14	15	ç	26.5	17.5	25.5	25.5	19.5	14.5		33
	Λ	(mdd)	75	20	115	8		65	230			190	110	160	115
	II)(ppm)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	_	<0.5	<0.5	0.5
	Ta	mdd)(<0.5	<0.5	_	<0.5	Ľ.	<0.5	<0.5	0.5	_		<0.5	<0.5	0.5
	NP	(ppm)	9	5	e0 	60	9 01	4	_	6 4	5	4	7 3	8	9
	Ht	ndd)(ı						80			1 8	3		18 8	18 9
	Ga	mdd)(t		91 9	L.		2 18		18		7				
	Cs	(mdd) (u	5 3.7	4 10.6	3 19.1	4 5.5	16 2.2	12 3.4	9	10 5.5	18	4 10.1	4 4.7	8 4.5	22 6.3
	Th	mdd)(t	1	2	-	2	5		1.5	2		2	1.5	2	6
	n	a) (ppm	1	3 0.5	1	3 1.5	1	1 2.5	<1 1	1	1 5.5	6 0.5	1 1.	1	9
	W	(udd)	1	-	1 <	1	1 ~	4	1 <	1	23	1	-	4	4
	$_{\rm su}$	mdd)(t	2	2	^	-	4	က	1	7		2	3	5	
	Sr	rudd) (u	4 392	2 432		8 431	6 404	4 193	L	8 737		_	2 393	8 305	_
	1 Rb	mdd)(u	0 53.4	7 77.2	5 62.8	9 55.8	4 93.6	85.4	0 50.2	5 38	0 148	4 267	7 53.2	9 32.8	5 181
	i Ba	m) (ppro	<5 250	5 727	<5 735	<5 489	5 524	<5 528	10 500	<5 1295	5 330	10 694	<5 367	35 299	15 545
	ž	mdd)(w	5	4	11	× 9	6	5.5			11	18		14.5	13
	Zn Co	mdd)(m		135	50 1	165		25 5.	65 23.5	20 3.5		140	70 10.5	85 14.	65 1
		m)(bpm	75 - 22		10 5	90 16	10 4	5	5	10 2	50 13	25 14	15	15 8	15 6
	Cu Pb	m)(mdd)(m	12		20	485	70	ಬ	40	10	70	10	30	45	40
	Ag Ch	mdd)(mdd	<1		-	<1 4	-	.	, -		- 1			. □	7
		$\overline{}$	12	-	က	Ė		_		6	90		9	9	
	Commo	Sample	A00HH01	A00MZ01	A00MZ01	A00MZ015	A00MZ018	A00MZ032	A00MZ044	A00TM00	A00TM018	A00TM019	A00TM02	A00TM030	A00RM013
	N.		1	2	8	4	2	9	7	80	6	10	11	12	13

Appendix-9 Ore grade assey result

Ž	Comple	Misson lime time	Au	Ag	Al	Au Ag Al Ba Be Bi	Be	L	Ca	Çq	ප	Cr	η	Fe	1	Mg	Mn	Mo	Na	Z	Pb	Sr	E	Δ	Zn
		Millerantauon	(g/t)	(g/t)	~ %) (mdd)) (mdd) (%)) (wdd) (mdd	(mdd)	(mdd)		%	%	(mdd)	(mdd	%	(mdd)	%	(mdd)	%	(mdd	(mdd)
	A00NK019	gn·cp·py vein	0.24	118	6.0	100	<10	L	0.25	880	30	<10	8080	5.55		0.05	670	210		<10	4.29	20	0.05	<10 <10	148500
2	A00HH002	A00HH002 qz-py-gn vein	1.71	18	0.45	0.45 <100	<10	20	3.05	10	30 <10	<10	150	7.55	0.1	0.15	1720	<10	<0.05	<10	0.7		<0.05	10	1900
က		A00HH024 qz.py.cp.malachite-gn vein	0.24	123	2.5	400	<10		0.45	750	30	<10	15720	6.7		0.2	1840			<10			<0.05	10	142000
4		A00MZ010 massive pyrite-limonite	<0.03	Ξ	0.05	<100	<10		0.35	<10	10	<10	1420	>30.0		<0.05	80			<10		20	<0.05	~10	1240
5		A00MZ012 qz·cal-py·gn vein	152.9	91	1.1	<100	<10		2.35	10	10	<10	1660			8.0	750			<10	2.18	20	0.05	40	3900
9		A00MZ016 qz·cal·py·gn vein	5.49	14	1.8	<100	<10	<20	5.6	70	10	10	320	6.95	0.7	1.75	5200	<10	<0.05		1.15	80	0.05	40	9120
7	A00MZ019	A00MZ019 barite-Fe oxides vein	0.03	31	1.05 7400	7400	<10	<20	0.65	100	10	1	220	8.55	0.4	0.05	36400	10	<0.05	>10	2.01		<0.05	750	7200
œ		A00MZ020 barite-galena-Fe oxides vein	<0.03	912	912 <0.05	2100	<10	> 02>	<0.05	30	<10		700	0.2	<0.1	<0.05	1710	<10	<0.05	<10	15.1	910	<0.05		540
6	A00MZ021	A00MZ021 qz-malachite veinlet	0.45	15	5	2000	<10	80	i	<10	<10	i	0006	4.2	2.5	0.15	230	140	9.0	<10	0.054	80	0.1		100
10	A00MZ028	10 A00MZ028 qzrpyrgnrbornite vein	0.18	321	6.0	200	<10	<20 <		96	<10	10	20	15.35	0.3	<0.05	360	<10	<0.05	<10	9.92	10	<0.05		24300
Ξ	A00MZ030	11 A00MZ030 gn.py.cp vein	0.09	74	1.35	400	<10	<20		1650	20		7270	5.4	1.3	0.05	1360	<10	<0.05	<10	15.4	80	<0.05		263000
12	A00MZ036	A00MZ036 cp veinlets and cp diss. in andesite <0.03	<0.03	13	8.4	200	<10	20		<10	20		36900	6.3	1.3	2.9	1070	<10	2	9	0.059	290	0.65		640
13	A00MZ037	13 A00MZ037 malachite with brecciated andesite <0.03	<0.03	22	9.8	100	<10	<20 9.95	1	<10	20	20	47200	6.95	0.2	1.25	1040	<10	1.1	20	0.021	620	0.7	330	120
14	14 A00MZ041	qz-py-gn vein	0.12	က	6.0	300	<10	<20	1	30	<10		310	1.55	0.1	0.15	25900	~10	<0.05	<10	0.398	120	<0.05		6500
15	15 A00MZ042 galena vein	galena vein	3.09	17	0.85	300	<10	1 .		930	<10	<10	7390	2.65	0.1	0.3	1470	<10	<0.05	<10	3.82	20	<0.05	20	199500
16	A00MZ046	16 A00MZ046 qz·cp·py·gn vein	4.11	9	1.25	200	<10	20	0.55	<10	<10	<10	4070	3.9	0.4	0.2	750	10	<0.05		0.059	40	0.05		1060
17	A00MZ048	17 A00MZ048 white and massive qz vein	2.94	2	0.4	200	<10		0.05	<10	<10	20	30	0.05	<0.1	<0.05	40	<10	<10 <0.05		<10 0.012	30	<0.05	٧	120
18	A00MZ049	18 A00MZ049 black and white banding qz vein	14.4	ဆ	0.5	<100	<10	<20	0.05	<10	<10	20	40	0.05	0.1	<0.05	20	<10	<0.05		0.003	20	<0.05		09
19	A00MZ055	19 A00MZ055 qz·cp·gn·malachite vein	0.54	18	1.75	1.75 <100	<10	<20 <	<0.05	160	<10	<10	6330	0.5	0.7	0.02	20	200	<0.05	<10	10.9	40	<0.05	10	12940
20	A00MZ068	20 A00MZ068 gn·sp·py vein	0.93	14	0.65 < 100	<100	<10	> 02		1310	<10	<10	1150	3.65		0.25	370	10	<0.05			<10	<0.05	<10	134000
21	A00TM049	21 A00TM049 black qz vein	0.12	7	3.3	100	<10	<20	0.35	<10	<10	10	10	0.85	2.6	0.05	80	<10	<0.05	<10	0.014	20	0.2	70	280
22	A00TM051	22 A00TM051 black and white qz vein	0.12	7	0.45 < 100	<100	<10	<20	0.05		<10	10	<10	0.35	0.1	<0.05	10	<10	<0.05	<10	0.004	20	<0.05		09
23	A00RM029	23 A00RM029 gnrpy.cp.green Cu vein	90.0	27	9.0	100	<10		0.05		40	<10	3510	6.75	0.4	0.02	1000	<10	<0.05	<10	6.3	30	<0.05		130000
24	A00RM046	24 A00RM046 white chalcedonic qz vein	42.72	41	0.55 < 100	<100	<10		0.05	<10	<10	20	10	0.05	0.1	<0.05	30	<10	<0.05	<10	0.023	20	<0.05	<10	300