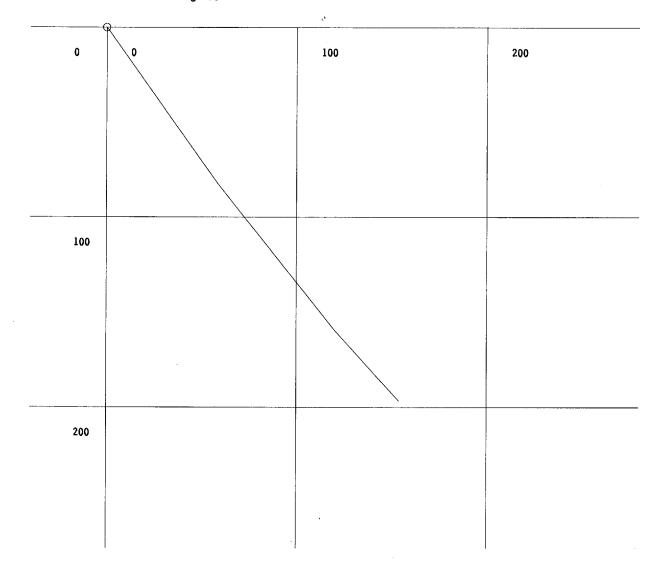
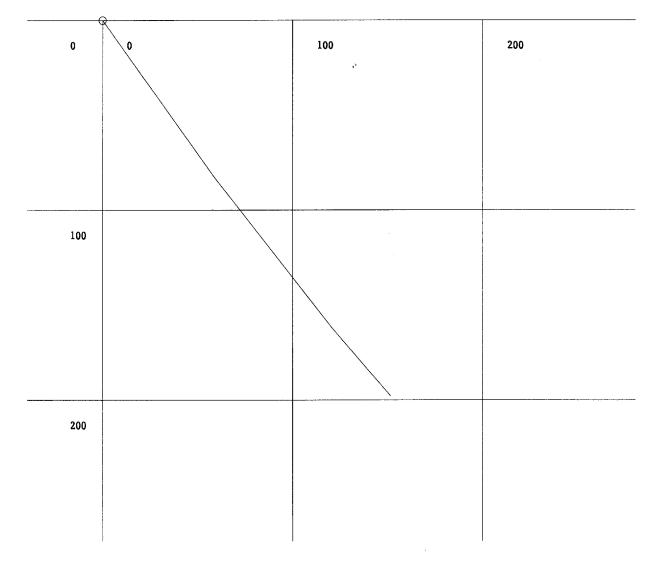
Appendix 1-28 Borehole Deviations of MJSU-1 to MJSU-8


e.

,

#### PLAN at 1/2000 grid 100m interval

|      | 155° |     |      |
|------|------|-----|------|
| -100 | 0    | 100 | 200  |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     | 245° |
|      |      |     |      |
| 0    |      |     |      |
| v    |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |
|      |      |     |      |

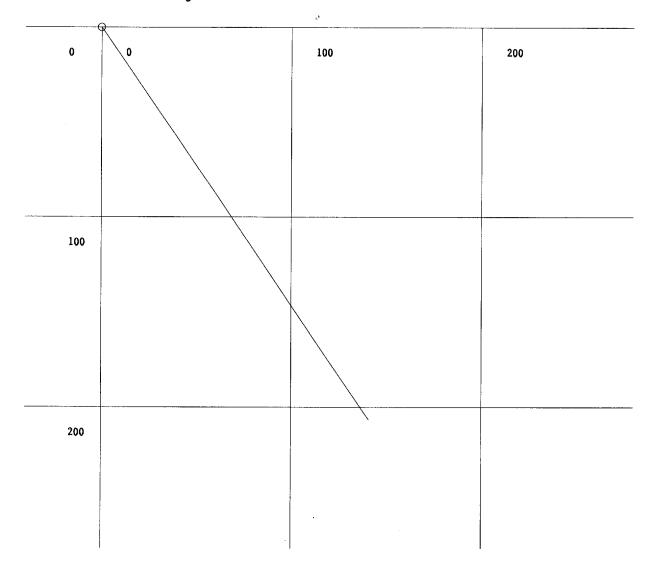

SECTION Looking 155°



| -100 | 155°<br>0 | 100 | 200  |
|------|-----------|-----|------|
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      | •         |     | 245° |
| 0    |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |

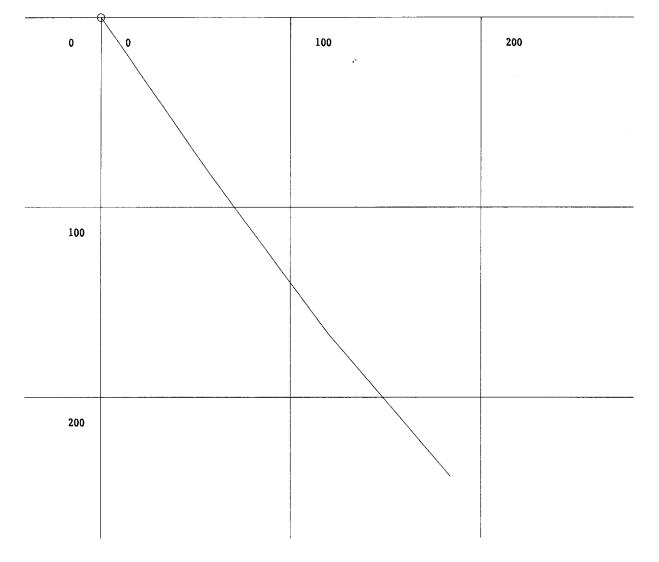
100

SECTION Looking 155°




#### PLAN at 1/2000 grid 100m interval

MJSU-3

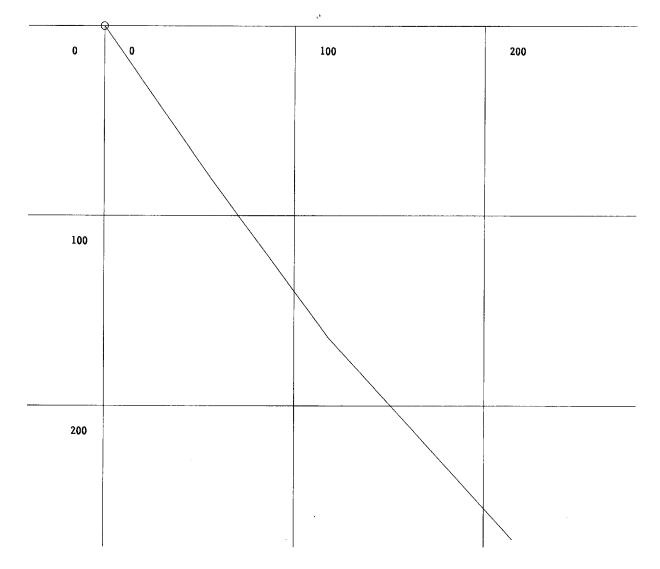

|      | 135° |     |     |      |
|------|------|-----|-----|------|
| -100 | 0    | 100 | 200 |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     | 225° |
|      | •    |     |     |      |
| 0    |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |
|      |      |     |     |      |





| -100 | 260°<br>0 | 100                                   | 200  |
|------|-----------|---------------------------------------|------|
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       | 170° |
|      | - 0       | · · · · · · · · · · · · · · · · · · · |      |
| 0    |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       |      |
|      |           |                                       | L    |

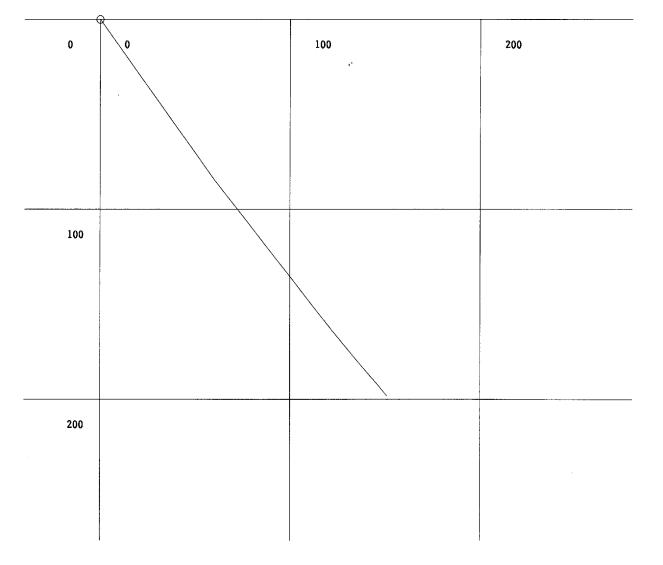
SECTION Looking 170°

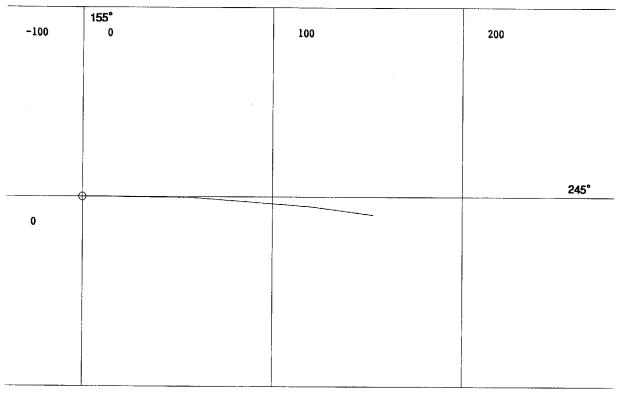


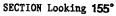

#### PLAN at 1/2000 grid 100m interval

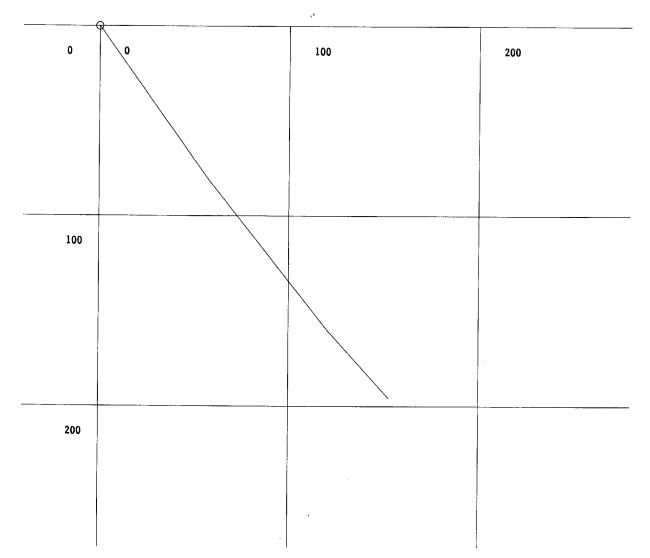
MJSU-5

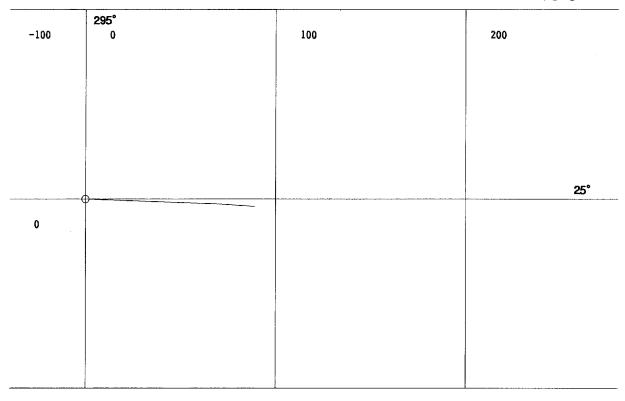
| -100 | 170°<br>0 | 100 | 200  |
|------|-----------|-----|------|
|      |           |     |      |
|      |           |     |      |
|      |           |     | 260° |
| 0    |           |     |      |
|      |           |     |      |
|      |           |     |      |
|      |           |     |      |


SECTION Looking 170°





|      | 155°       |         |      |
|------|------------|---------|------|
| -100 | 0          | 100     | 200  |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         | 245° |
|      | - <b>P</b> |         |      |
| 0    |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            |         |      |
|      |            | <u></u> |      |


100


SECTION Looking 155°











100

SECTION Looking 295°



| Drill Hole No. | Depth | Direction | Inclination |
|----------------|-------|-----------|-------------|
|                | 0.0   | 245.0     | -55.0       |
|                | 102.0 | 245.5     | -54.0       |
| MJSU-1         | 200.0 | 242.0     | -49.0       |
|                | 250.0 | 247.0     | -46.0       |
|                | 0.0   | 245.0     | -55.0       |
|                | 102.0 | 245.0     | -54.0       |
| MJSU-2         | 202.0 | 247.0     | -50.0       |
|                | 249.5 | 249.0     | -49.0       |
|                | 0.0   | 225.0     | -55.0       |
|                | 105.0 | 224.0     | -56.0       |
| MJSU-3         | 200.0 | 226.0     | -56.0       |
|                | 250.0 | 226.0     | -55.0       |
|                | 0.0   | 260.0     | -55.0       |
| MIGUA          | 102.0 | 262.0     | -55.0       |
| MJSU-4         | 205.0 | 259.0     | -52.0       |
|                | 304.0 | 258.5     | -47.0       |
|                | 0.0   | 260.0     | - 55.0      |
| MJSU-5         | 102.0 | 264.0     | -55.0       |
| 1000-0         | 202.0 | 260.0     | -52.0       |
|                | 346.0 | 258.0     | -43.0       |
|                | 0.0   | 245.0     | -55.0       |
| MJSU-6         | 104.0 | 245.0     | -54.0       |
| 1000-0         | 205.0 | 245.0     | -50.0       |
|                | 249.5 | 245.0     | -50.0       |
|                | 0.0   | 245.0     | -55.0       |
| MJSU-7         | 100.0 | 246.0     | -54.0       |
| 11030-7        | 200.0 | 252.0     | -49.0       |
|                | 249.0 | 253.0     | -46.0       |
|                | 0.0   | 25.0      | - 70.0      |
| MJSU-8         | 105.0 | 29.0      | -69.0       |
| 1910-0         | 200.0 | 29.0      | -69.0       |
|                | 250.0 | 29.0      | -68.0       |

· · .\_

Borehole Deviations

| Drill Hole<br>No. | Sample<br>No. |        | pth<br>n) | Width<br>(m) | Au<br>(g/t) | Ag<br>(g∕t) | Си<br>(%) | Zn<br>(%) | Pb<br>(%) | S<br>(%) |
|-------------------|---------------|--------|-----------|--------------|-------------|-------------|-----------|-----------|-----------|----------|
| MJSU-1            | 1             | 6.30   | 7.95      | 1.65         | <0.05       | 0.6         | 0.00      | 0.00      | 0.00      | 0.14     |
|                   | 2             | 13.50  | 14.55     | 1.05         | <0.05       | 0.6         | 0.00      | 0.00      | 0.00      | < 0.05   |
|                   | 3             | 14.55  | 15.00     | 0.45         | <0.05       | 0.7         | 0.00      | 0.01      | 0.00      | <0.05    |
|                   | 4             | 15.00  | 15.75     | 0.75         | <0.05       | 0.6         | 0.00      | 0.00      | 0.00      | < 0.05   |
|                   | 5             | 15.75  | 17.40     | 1.65         | <0.05       | 0.7         | 0.01      | 0.01      | 0.00      | < 0.05   |
|                   | 6             | 17.40  | 18.65     | 1.25         | <0.05       | 0.6         | 0.00      | 0.01      | 0.00      | < 0.05   |
|                   | 7             | 23.05  | 24.20     | 1.15         | <0.05       | 0.5         | 0.00      | 0.01      | 0.00      | 0.32     |
|                   | 8             | 24.20  | 25.75     | 1.55         | <0.05       | 0.6         | 0.00      | 0.01      | 0.00      | 1.05     |
|                   | 9             | 25,75  | 26.65     | 0.90         | <0.05       | 0.5         | 0.00      | 0.01      | 0.00      | 0.43     |
|                   | 10            | 26.65  | 27.30     | 0.65         | <0.05       | 0.6         | 0.01      | 0.01      | 0.00      | 1.45     |
|                   | 11            | 31.00  | 32.75     | 1.75         | <0.05       | 0.6         | 0.00      | 0.00      | 0.00      | 1.95     |
|                   | 12            | 32.75  | 33.75     | 1.00         | <0.05       | 0.6         | 0.00      | 0.01      | 0.00      | 1.40     |
|                   | 13            | 46.90  | 47.90     | 1.00         | <0.05       | 1.0         | 0.01      | 0.01      | 0.00      | <0.05    |
|                   | 14            | 47.90  | 48.90     | 1.00         | <0.05       | 1.2         | 0.04      | 0.01      | 0.00      | 1.50     |
|                   | 15            | 48.90  | 49.90     | 1.00         | <0.05       | 1.1         | 0.01      | 0.01      | 0.00      | 0.26     |
|                   | 16            | 55.85  | 56.85     | 1.00         | <0.05       | 0.7         | 0.00      | 0.01      | 0.00      | 0.40     |
|                   | 17            | 91.05  | 92.20     | 1.15         | <0.05       | 2.7         | 0.01      | 0.51      | 0.01      | 10.50    |
|                   | 18            | 96.35  | 96.50     | 0.15         | <0.05       | 13.2        | 2.19      | 0.01      | 0.01      | 5.92     |
|                   | 19            | 96.50  | 97,50     | 1.00         | <0.05       | 0.9         | 0.02      | 0.01      | 0.00      | 3.10     |
|                   | 20            | 97.50  | 98.50     | 1.00         | <0.05       | 1.3         | 0.01      | 0.01      | 0.00      | 5.20     |
|                   | 21            | 98.50  | 99.50     | 1.00         | <0.05       | 1.5         | 0.02      | 0.01      | 0.00      | 3.80     |
|                   | 22            | 99.50  | 100.50    | 1.00         | <0.05       | 1.1         | 0.03      | 0.01      | 0.00      | 1.26     |
|                   | 23            | 100.50 | 101.50    | 1.00         | <0.05       | 1.1         | 0.06      | 0.01      | 0.00      | 3.10     |
|                   | 24            | 101.50 | 102.50    | 1.00         | <0.05       | 1.0         | 0.02      | 0.00      | 0.00      | 4.30     |
|                   | 25            | 102.50 | 103.50    | 1.00         | <0.05       | 0.7         | 0.03      | 0.00      | 0.00      | 2.80     |
|                   | 26            | 103.50 | 104.20    | 0.70         | <0.05       | 1.0         | 0.11      | 0.00      | 0.00      | 7.05     |
|                   | 27            | 120.85 | 121.50    | 0.65         | <0.05       | 2.5         | 0.04      | 0.01      | 0.01      | 1.51     |
|                   | 28            | 122.50 | 123.00    | 0.50         | <0.05       | 9.4         | 0.47      | 0.17      | 0.05      | 2.00     |
|                   | 29            | 123.00 | 123.10    | 0.10         | <0.05       | 5.8         | 0.70      | 0.76      | 0.06      | 1.94     |
|                   | 30            | 150.70 | 151.60    | 0.90         | <0.05       | 2.1         | 0.02      | 0.01      | 0.01      | 1.43     |
|                   | 31            | 151.60 | 152.30    | 0.70         | <0.05       | 1.0         | 0.00      | 0.01      | 0.00      | 1.57     |
|                   | 32            | 152.70 | 153.40    | 0.70         | <0.05       | 3.4         | 0.02      | 0.02      | 0.01      | 2.80     |
|                   | 33            | 153.40 | 154.10    | 0.70         | 0.05        | 8.3         | 0.09      | 0.26      | 0.11      | 4.42     |
|                   | 34            | 154.10 | 155.30    | 1.20         | <0.05       | 0.7         | 0.00      | 0.01      | 0.00      | 3.15     |
|                   | 35            | 208.90 | 209.05    | 0.15         | <0.05       | 4.1         | 0.37      | 0.16      | 0.01      | 1.30     |
| ļ                 | 36            | 212.75 | 212.85    | 0.10         | 0.33        | 213.0       | 0.90      | 2.98      | 1.09      | 7.70     |
|                   | 37            | 215.45 | 215.60    | 0.15         | 0.48        | 150.0       | 0.95      | 1.91      | 0.48      | 4.66     |
| MJSU-2            | 1             | 41,45  | 41.85     | 0.40         | <0.05       | <0.5        | 0.01      | 0.04      | 0.00      | 0.48     |
|                   | 2             | 41.85  | 43.35     | 1.50         | <0.05       | <0.5        | 0.08      | 0.03      | 0.00      | 1.72     |
|                   | 3             | 43.35  | 43.60     | 0.25         | 0.05        | 1.3         | 0.36      | 0.04      | 0.00      | 1.00     |
|                   | 4             | 64.20  | 64.40     | 0.20         | <0.05       | 4.6         | 0.16      | 0.06      | 0.00      | 0,95     |
| ļ                 | 5             | 106.25 | 107.25    | 1.00         | <0.05       | 3.0         | 0.00      | 0.02      | 0.00      | 10.67    |
| ļ                 | 6             | 107.25 | 108.25    | 1.00         | <0.05       | 1.3         | 0.01      | 0.04      | 0.00      | 5.70     |
|                   | 7             | 108.25 | 109.05    | 0.80         | <0.05       | 1.0         | 0.00      | 0.02      | 0.00      | 4.04     |
|                   | 8             | 121.15 | 121.60    | 0.45         | 0.12        | 14.9        | 1.70      | 0.18      | 0.02      | 18.05    |
|                   | 9             | 121.60 | 122.30    | 0.70         | 0.14        | 18.6        | 0.17      | 0.03      | 0.01      | 1.32     |
|                   | 10            | 122.30 | 122.90    | 0.60         | 0.28        | 10.7        | 2.71      | 0.08      | 0.00      | 11.04    |
|                   | 11            | 122.90 | 123.90    | 1.00         | 0.12        | 7.0         | 0.07      | 0.02      | 0.00      | 3.95     |
|                   | 12            | 123.90 | 124,25    | 0.35         | 0.06        | 3.4         | 0.09      | 0.08      | 0.01      | 1.75     |
|                   | 13            | 124.25 | 124.75    | 0.50         | 0.65        | 55.4        | 1.66      | 9.81      | 0.45      | 14.00    |
|                   | 14            | 124.75 | 125.10    | 0.35         | 1.00        | 63.1        | 1.03      | 5.90      | 1.30      | 7.96     |
|                   | 15            | 125.10 | 125.40    | 0.30         | 1.40        | 44.9        | 0.99      | 6.81      | 0.68      | 10.34    |
| Γ                 | 16            | 125.40 | 126.20    | 0.80         | 0.10        | 3.9         | 0.03      | 1.21      | 0.16      | 3.34     |
|                   | 17            | 126.20 | 127.15    | 0.95         | <0.05       | 2.3         | 0.01      | 0.04      | 0.00      | 2.15     |
| Γ                 | 18            | 127.15 | 128.10    | 0.95         | <0.05       | 1.9         | 0.01      | 0.02      | 0.00      | 1.08     |
| Γ                 | 19            | 128.10 | 128.20    | 0.10         | 0.30        | 12.6        | 0.96      | 0.19      | 0.00      | 23.30    |

Appendix 1-29 Results of Ore Assay (Core Samples)

.

## Appendix 1-29 Results of Ore Assay (Core Samples)

| Drill Hole | Sample   | Dep              | oth                                            | Width        |                | Ag                | Cu           | Zn           | Pb           | S                    |
|------------|----------|------------------|------------------------------------------------|--------------|----------------|-------------------|--------------|--------------|--------------|----------------------|
| No.        | No.      | (m               | <u>ı)                                     </u> | (m)          | (g/t)          | (g/t)             | (%)          | (%)          | (%)          | (%)                  |
| MJSU-2     | 20       | 128,20           | 129.05                                         | 0.85         | <0.05          | 0.8               | 0.00         | 0.03         | 0.00         | 0.65                 |
|            | 21       | 129.05           | 130.10                                         | 1.05         | <0.05          | 0.5               | 0.01         | 0.04         | 0.00         | 0.20                 |
|            | 22       | 130.10           | 130.40                                         | 0.30         | 0.56           | 13.3              | 0.89         | 3.65         | 0.02         | 11.75                |
|            | 23       | 130.40           | 130.50                                         | 0.10         | 0.74           | 1.5               | 0.23         | 0.03         | 0.00         | 2.00                 |
|            | 24       | 130.50           | 131.15                                         | 0.65         | 0.67           | 28.8              | 0.68         | 9.55         | 0.03         | 21.70                |
|            | 25       | 131.15           | 132,10                                         | 0.95         | 0.13           | 37.6              | 1.46         | 24.68        | 0.09         | 28.50                |
|            | 26       | 132.10           | 133.10                                         | 1.00         | 0.21           | 21.7              | 1.78         | 4.41         | 0.57         | 6.40                 |
|            | 27       | 133.10           | 133.90                                         | 0.80         | 0.21           | 9.7               | 1.23         | 3.95         | 0.01         | 7.10                 |
|            | 28       | 133.90           | 134.15                                         | 0.25         | < 0.05         | 7.6               | 0.48         | 1.97         | 0.02         | 23.00                |
|            | 29       | 134.15           | 134.90                                         | 0.75         | 0.18           | 9.9               | 0.29         | 4.13         | 0.62         | 3.25                 |
|            | 30       | 134.90           | 136.20                                         | 1.30         | <0.05          | 12.5              | 0.67         | 0.81         | 0.00         | 26.55                |
|            | 31       | 136.20           | 137.20                                         | 1.00         | < 0.05         | 2.8               | 0.20         | 0.10<br>0.24 | 0.00         | <u>1.20</u><br>23.60 |
|            | 32       | 137.20           | 137.40                                         | 0.20         | 0.70           | 51.6              | 4.79         |              | 0.01         | 1.20                 |
|            | 33       | 137.40           | 138.00                                         | 0.60         | <0.05<br>0.14  | 2.8<br>12.9       | 0.20<br>0.50 | 0.09<br>0.22 | 0.00         | 11.25                |
|            | 34<br>35 | 138.00<br>138.90 | 138.90<br>139.10                               | 0.90         | 0.14           | 8.0               | 0.30         | 0.22         | 0.00         | 4.65                 |
|            | 36       | 139.10           | 140.30                                         | 1.20         | 0.08           | 11.1              | 1.17         | 0.12         | 0.00         | 5.50                 |
|            | 37       | 140.30           | 141.15                                         | 0.85         | 0.35           | 6.1               | 0.32         | 0.55         | 0.00         | 13.83                |
|            | 38       | 141.15           | 141.55                                         | 0.40         | 5.83           | 15.8              | 4.58         | 0.08         | 0.00         | 33.83                |
|            | 39       | 141.55           | 142.25                                         | 0.70         | <0.05          | 4.5               | 1.05         | 0.00         | 0.00         | 18.70                |
|            | 40       | 221.85           | 222.00                                         | 0.15         | <0.05          | 9.0               | 0.03         | 0.71         | 0.00         | 3.90                 |
|            | 41       | 224.05           | 224.15                                         | 0.10         | <0.05          | 1.5               | 0.10         | 0.51         | 0.00         | 0.85                 |
|            | 42       | 229.05           | 229.20                                         | 0.15         | <0.05          | 5.3               | 0.02         | 0.46         | 0.00         | 2.50                 |
| MJSU-3     | 1        | 50.00            | 51.90                                          | 1.90         | <0.05          | 1.6               | 0.00         | 0.01         | 0.00         | 1.30                 |
|            | 2        | 51.90            | 53.30                                          | 1.40         | <0.05          | 1.0               | 0.01         | 0.02         | 0.00         | 1.53                 |
|            | 3        | 55.90            | 56,15                                          | 0.25         | <0.05          | 1.7               | 0.07         | 0.05         | 0.00         | 5.75                 |
|            | 4        | 56.15            | 57.10                                          | 0.95         | 0.06           | 1.4               | 0.02         | 0.02         | 0.00         | 2.50                 |
|            | 5        | 57.10            | 59.05                                          | 1.95         | <0.05          | 0.8               | 0.01         | 0.01         | 0.00         | 2.65                 |
|            | 6        | 59.05            | 59.90                                          | 0.85         | <0.05          | 1.2               | 0.01         | 0.01         | 0.00         | 1.40                 |
|            | 7        | 68.85            | 71.85                                          | 3.00         | <0.05          | 1.3               | 0.02         | 0.01         | 0.00         | 2.55                 |
|            | 8        | 71.85            | 72.60                                          | 0.75         | <0.05          | <sup>-</sup> 1.3  | 0.02         | 0.01         | 0.00         | 1.70                 |
|            | 9        | 81.55            | 83,55                                          | 2.00         | <0.05          | 0.9               | 0.02         | 0.02         | 0.00         | 2.20                 |
|            | 10       | 83.55            | 85.60                                          | 2.05         | <0.05          | 1.1               | 0.04         | 0.02         | 0.00         | 2.60                 |
|            | 11       | 95.65            | 97.75                                          | 2.10         | <0.05          | 1.3               | 0.19         | 0.09         | 0.00         | 7.00                 |
|            | 12       | 104.60           | 106.20                                         | 1.60         | 0.09           | 0.8               | 0.01         | 0.01         | 0.00         | 2.00                 |
|            | 13       | 106.20           | 107.80                                         | 1.60         | 0.07           | 1.0               | 0.01         | 0.02         | 0.00         | 1.70                 |
|            | 14       | 107.80           | 110.00                                         | 2.20         | <0.05          | 1.0               | 0.02         | 0.01         | 0.00         | 1.80                 |
|            | 15       | 114.80           | 116.25                                         | 1.45         | <0.05          | 1.1               | 0.01         | 0.01         | 0.00         | 2.10                 |
|            | 16       | 116.25           | 117.70                                         | 1.45         | <0.05          | 1.1               | 0.00         | 0.01         | 0.00         | 0.35                 |
|            | 17       | 117.70           | 119.20                                         | 1.50         | <0.05          | 1.0               | 0.02         | 0.00         | 0.00         | 1.50                 |
|            | 18       | 119.20           | 120.75                                         | 1.55         | <0.05          | 0.6               | 0.03         | 0.00         | 0.00         | 1.25                 |
|            | 19       | 153.15           | 154.50                                         | 1.35         | <0.05          | 0.5               | 0.01         | 0.01         | 0.00         | 2,10                 |
|            | 20       | 154.50           | 157.40                                         | 2.90         | <0.05          | 0.6               | 0.01         | 0.01         | 0.00         | 9.50                 |
|            | 21       | 157.40           | 159.00                                         | 1.60         | <0.05          | 2.8               | 0.37         | 0.02         | 0.00         | 2.80                 |
|            | 22       | 159.00           | 160.55                                         | 1.55         | <0.05          | 2.3               | 0.19         | 0.01         | 0.00         | 0.60                 |
|            | 23       | 160.55           | 162.85                                         | 2.30         | <0.05          | 0.9               | 0.09         | 0.01         | 0.00         | 1.30                 |
|            | 24       | 162.85<br>164.45 | 164.45                                         | 1.60         | <0.05          | <u>1.1</u><br>1.5 | 0.01<br>0.09 | 0.01<br>0.01 | 0.00<br>0.00 | 0.90<br>1.70         |
|            | 25<br>26 |                  | 164.75<br>178.50                               | 0.30<br>0.90 | <0.05<br><0.05 | 1.5               | 0.09         | 0.01         | 0.00         | 1.50                 |
|            | 20       | 177.60<br>188.20 | 188.75                                         | 0.90         | <0.05          | 3.9               | 1.57         | 0.02         | 0.00         | 8.45                 |
|            |          | 188.20           | 189.45                                         | 0.55         | <0.05          | <u>3.9</u><br>0.9 | 0.02         | 0.02         | 0.00         | 0.40                 |
|            | 28<br>29 | 189.45           | 192.15                                         | 2.70         | < 0.05         | 1.1               | 0.02         | 0.01         | 0.00         | 1.20                 |
|            | 30       | 204.25           | 206.70                                         | 2.70         | <0.05          | 1.8               | 0.03         | 0.01         | 0.00         | <0.05                |
|            | 31       | 204.25           | 208.60                                         | 1.90         | <0.05          | 1.0               | 0.23         | 0.01         | 0.00         | <0.05                |
|            | 32       | 208.60           | 210.60                                         | 2.00         | <0.05          | 0.9               | 0.03         | 0.01         | 0.00         | <0.05                |
|            |          |                  | E10.00                                         |              |                | V.7               | 0.00         | 0.01         | 0.001        | VU.U3                |

| Appendix 1-29 | Results of Ore Assay (Core Samples) |  |
|---------------|-------------------------------------|--|
|               |                                     |  |

| Drill Hole | Sample   | De               | pth                     | Width        | Au             | Ag                 | Cu            | Zn           | Pb           | s            |
|------------|----------|------------------|-------------------------|--------------|----------------|--------------------|---------------|--------------|--------------|--------------|
| No.        | No.      |                  | n)                      | (m)          | (g/t)          | (g/t)              | (%)           | (%)          | (%)          | (%)          |
| MJSU-3     | 34       | 212.45           | 214.70                  | 2.25         | <0.05          | 1.0                | 0.09          | 0.01         | 0.00         | 1.20         |
|            | 35       | 214.70           | 215.05                  | 0.35         | < 0.05         | 13.3               | 5.05          | 0.06         | 0.00         | 5.10         |
|            | 36       | 215.05           | 217.05                  | 2.00         | <0.05          | 0.8                | 0.01          | 0.00         | 0.00         | 0.26         |
|            | 37       | 217.05           | 218.90                  | 1.85         | <0.05          | 1.2                | 0.08          | 0.01         | 0.00         | 1.60         |
|            | 38       | 218.90           | 220.10                  | 1.20         | <0.05          | 0.8                | 0.02          | 0.01         | 0.00         | 8.45         |
|            | 39       | 220.10           | 220.90                  | 0.80         | < 0.05         | 6.6                | 2.48          | 0.03         | 0.00         | 3.00         |
|            | 40       | 220.90           | 223.50                  | 2.60         | <0.05          | 0.7                | 0.03          | 0.01         | 0.00         | 1.25         |
|            | 41       | 223.50           | 226.30                  | 2.80         | <0.05          | 0.8                | 0.01          | 0.00         | 0.00         | 4.00         |
|            | 42       | 241.85           | 243.25                  | 1.40         | < 0.05         | <0.5               | 0.06          | 0.01         | 0.00         | 4.38         |
| MJSU-4     | 1        | 31.50            | 32.50                   | 1.00         | <0.05          | <0.5               | 0.00          | 0.01         | 0.00         | 0.73         |
|            | 2        | 32.50            | 33.30                   | 0.80         | <0.05          | <0.5               | 0.01          | 0.01         | 0.00         | 0.40         |
|            | 3        | 33.30            | 34.20                   | 0.90         | <0.05          | <0.5               | 0.00          | 0.01         | 0.00         | 0.64         |
|            | 4        | 55.30            | 56.30                   | 1.00         | <0.05          | <0.5               | 0.02          | 0.00         | 0.00         | 0.47         |
|            | 5        | 56.30            | 57.70                   | 1.40         | <0.05          | <0.5               | 0.01          | 0.00         | 0.00         | 0.48         |
|            | 6        | 60.25            | 61.25                   | 1.00         | <0.05          | <0.5               | 0.00          | 0.00         | 0.00         | 0.08         |
|            | 7        | 61.25            | 62.25                   | 1.00         | <0.05          | <0.5               | 0.00          | 0.00         | 0.00         | 0.18         |
|            | 8        | 62.25            | 63.15                   | 0.90         | <0.05          | <0.5               | 0.05          | 0.01         | 0.00         | 1.20         |
|            | 9        | 63.15            | 64.30                   | 1.15         | <0.05          | <0.5               | 0.01          | 0.01         | 0.00         | 0.65         |
|            | 10       | 64.30            | 65.15                   | 0.85         | <0.05          | <0.5               | 0.02          | 0.01         | 0.00         | 3.15         |
|            | 11       | 65.15            | 66.15                   | 1.00         | <0.05          | <0.5               | 0.02          | 0.01         | 0.00         | 1.40         |
|            | 12       | 66.15            | 67.20                   | 1.05         | <0.05          | <0.5               | 0.02          | 0.00         | 0.00         | 0.25         |
|            | 13       | 67.20            | 67.60                   | 0.40         | <0.05          | <0.5               | 0.01          | 0.01         | 0.00         | 0.43         |
|            | 14<br>15 | 67.60<br>111.40  | 67.85                   | 0.25         | 0.06           | <0.5               | 0.01          | 0.00         | 0.00         | 0.22         |
|            | 16       | 133.15           | <u>111.65</u><br>133.30 | 0.25<br>0.15 | 0.07           | 12.0               | 1.82          | 0.10         | 0.00         | 5.40         |
|            | 17       | 140.50           | 141.00                  | 0.15         | 0.07<br><0.05  | <u>1.8</u><br>15.1 | 0,24          | 0.02         | 0.00         | 13.80        |
|            | 18       | 141.00           | 142.00                  | 1.00         | 0.12           | 20.8               | 1.31<br>7.65  | 0.05<br>0.02 | 0.00<br>0.00 | 3.30<br>5.66 |
|            | 19       | 142.00           | 143.10                  | 1.10         | <0.05          | 0.5                | 0.10          | 0.02         | 0.00         | 0.53         |
|            | 20       | 143.10           | 143.40                  | 0.30         | 0.28           | 24.7               | 10.40         | 0.02         | 0.00         | 12.20        |
|            | 21       | 143.40           | 144.85                  | 1.45         | < 0.05         | 4.0                | 0.20          | 0.03         | 0.00         | 0.83         |
|            | 22       | 144.85           | 145.00                  | 0.15         | 0.14           | 27.3               | 4.77          | 0.02         | 0.00         | 6.53         |
| [ [        | 23       | 145.00           | 146.40                  | 1.40         | <0.05          | 2.4                | 0.15          | 0.01         | 0.00         | 0.32         |
|            | 24       | 146.40           | 146.60                  | 0.20         | 0.15           | 38.6               | 4.60          | 0.03         | 0.00         | 5.77         |
|            | 25       | 146.60           | 147.30                  | 0.70         | <0.05          | 0.7                | 0.09          | 0.01         | 0.00         | 0.40         |
|            | 26       | 147.30           | 147.80                  | 0.50         | <0.05          | 16.7               | 1.37          | 0.01         | 0.00         | 2.10         |
|            | 27       | 147.80           | 148.80                  | 1.00         | <0.05          | 4.4                | 0.18          | 0.01         | 0.00         | 0.82         |
|            | 28       | 148.80           | 149.80                  | 1.00         | <0.05          | 0.6                | 0.09          | 0.01         | 0.00         | 0.43         |
|            | 29       | 149.80           | 149.90                  | 0.10         | <0.05          | 4.0                | 0.32          | 0.03         | 0.00         | 0.95         |
| ł - F      | 30       | 149.90           | 151.50                  | 1.60         | <0.05          | 1.4                | 0.13          | 0.02         | 0.00         | 0.54         |
| -          | 31<br>32 | 151.50           | 153.00                  | 1.50         | <0.05          | 0.8                | 0.07          | 0.02         | 0.00         | 1.54         |
|            |          | 153.00           | 154.50                  | 1.50         | <0.05          | <0.5               | 0.07          | 0.03         | 0.00         | 2.80         |
|            | 33<br>34 | 154.50<br>155.50 | 155.50<br>156.05        | 1.00<br>0.55 | <0.05          | <0.5               | 0.02          | 0.01         | 0.00         | 2.10         |
|            | 35       | 156.05           | 156.05                  | 0.55         | <0.05          | 5.1                | 2,54          | 0.07         | 0.00         | 3.40         |
|            | 36       | 156.05           | 156.20                  | 1.25         | <0.05<br><0.05 | 12.0<br>2.3        | 18.95<br>0.38 | 0.87         | 0.04         | 12.94        |
|            | 37       | 157.45           | 157.45                  | 0.80         | <0.05          | 9.9                | 1.82          | 0.02         | 0.00         | 1.41         |
|            | 38       | 158.25           | 158.55                  | 0.30         | <0.05          | <u>9.9</u><br>1.2  | 0.29          | 0.02         | 0.00         | 2.50<br>1.30 |
|            | 39       | 158.55           | 158.85                  | 0.30         | 0.07           | 17.7               | 3.64          | 0.03         | 0.00         | 4.00         |
|            | 40       | 158.85           | 160.50                  | 1.65         | <0.07          | <0.5               | 0.05          | 0.07         | 0.00         | 0.70         |
|            | 41       | 160.50           | 162.00                  | 1.50         | <0.05          | 0.6                | 0.09          | 0.02         | 0.00         | 1.02         |
|            | 42       | 162.00           | 162.85                  | 0.85         | <0.05          | 0.7                | 0.06          | 0.04         | 0.00         | 0.07         |
|            | 43       | 162.85           | 163.00                  | 0.15         | <0.05          | 20.9               | 2.72          | 0.03         | 0.00         | 2.80         |
|            | 44       | 163.00           | 163.30                  | 0.30         | <0.05          | 1.0                | 0.04          | 0.02         | 0.00         | 0.83         |
|            | 45       | 163.30           | 163.40                  | 0.10         | <0.05          | 7.4                | 1.82          | 0.05         | 0.00         | 2.40         |
|            | 46       | 213.10           | 213.20                  | 0.10         | <0.05          | 4.0                | 1.36          | 0.03         | 0.00         | 2.28         |
|            | 47       | 213.65           | 213.85                  | 0.20         | 0.09           | 7.8                | 1.34          | 0.02         | 0.00         | 3.90         |

3/8

## Appendix 1-29 Results of Ore Assay (Core Samples)

| Drill Hole<br>No. | Sample<br>No. | Dep<br>(m        |                         | Width<br>(m) | Au<br>(g/t)   | Ag<br>(g/t)        | Cu<br>(%)           | Zn<br>(%)    | Рb<br>(%)    | 8<br>8       |
|-------------------|---------------|------------------|-------------------------|--------------|---------------|--------------------|---------------------|--------------|--------------|--------------|
| MJSU-4            | 48            | 215.00           | 215.15                  | 0.15         | <0.05         | 4.3                | 0.64                | 0.02         | 0.00         | 3.33         |
|                   | 49            | 217.00           | 217.10                  | 0.10         | <0.05         | 4.9                | 0.76                | 0.02         | 0.00         | 3.42         |
|                   | 50            | 226.75           | 226.85                  | 0.10         | <0.05         | 13.0               | 3.28                | 0.03         | 0.00         | 3.33         |
|                   | 51            | 227.25           | 228.05                  | 0.80         | <0.05         | 2.0                | 0.35                | 0.01         | 0.00         | 1.06         |
|                   | 52            | 241.20           | 242.05                  | 0.85         | <0.05         | <0.5               | 0.05                | 0.01         | 0.00         | 0.75         |
|                   | 53            | 242.05           | 242.80                  | 0.75         | <0.05         | 0.7                | 0.05                | 0.03         | 0.00         | 0.80         |
|                   | 54            | 263.50           | 263.75                  | 0.25         | <0.05         | 0.8                | 0.09                | 0.06         | 0.00         | 2.62         |
|                   | 55            | 263.75           | 265.10                  | 1.35         | <0.05         | <0.5               | 0.09                | 0.01         | 0.00         | 0.78         |
|                   | 56            | 265.10           | 267.05                  | 1.95         | <0.05         | <0.5               | 0.17                | 0.01         | 0.00         | 0.92         |
|                   | 57            | 272.70           | 273.25                  | 0.55         | 0.07          | 1.1                | 1.11                | 0.01         | 0.00         | 1.42         |
|                   | 58            | 278.95           | 279.35                  | 0.40         | <0.05         | 6.9                | 2.72                | 0.03         | 0.00         | 4.63         |
|                   | 59            | 285.70           | 286.75                  | 1.05         | <0.05         | 0.7                | 0.04                | 0.01         | 0.00         | 4.40         |
|                   | 60            | 292.30           | 292.60                  | 0.30         | <0.05         | <0.5               | 0.00                | 0.01         | 0.00         | 4.60         |
|                   | 61            | 292.60           | 293.00                  | 0.40         | <0.05         | <0.5               | 0.01                | 0.02         | 0.00         | 17.34        |
|                   | 62            | 293.00           | 294.25                  | 1.25         | <0.05         | <0.5               | 0.01                | 0.01         | 0.00         | 2.20         |
| N IOU E           | 63            | 294.25           | 295.30                  | 1.05         | <0.05         | <0.5<br>2.8        | <u>0.01</u><br>0.19 | 0.01         | 0.00         | 2.00<br>5.67 |
| MJSU-5            |               | 77.70            | <u>79.40</u><br>79.90   | 1.70<br>0.50 | 0.05<br><0.05 | 11.0               | 1.86                | 0.03         | 0.00         | 3.71         |
|                   | 2             | 79.40<br>79.90   | 80.55                   | 0.50         | <0.05         | 5.4                | 0.83                | 0.05         | 0.00         | 2.90         |
|                   | 4             | 80.55            | 80.95                   | 0.05         | 0.13          | 35.9               | 4.62                | 0.00         | 0.00         | 7.88         |
|                   | 5             | 80.95            | 81.70                   | 0.75         | 0.07          | 2.1                | 0.16                | 0.02         | 0.00         | <0.05        |
|                   | 6             | 81.70            | 82.55                   | 0.85         | 0.12          | 27.8               | 4.28                | 0.07         | 0.00         | 11.07        |
|                   | 7             | 82.55            | 84.00                   | 1.45         | < 0.05        | 2.2                | 0.36                | 0.02         | 0.00         | 16.03        |
|                   | 8             | 84.00            | 85.50                   | 1.50         | < 0.05        | 0.8                | 0.09                | 0.01         | 0.00         | 7.29         |
|                   | 9             | 85.50            | 87.00                   | 1.50         | < 0.05        | 2.2                | 0.19                | 0.01         | 0.00         | 9.61         |
|                   | 10            | 87.00            | 88.90                   | 1.90         | < 0.05        | 1.9                | 0.15                | 0.01         | 0.00         | 7.42         |
|                   | 11            | 88.90            | 89.90                   | 1.00         | <0.05         | 10.5               | 1.42                | 0.04         | 0.00         | 3.45         |
|                   | 12            | 89.90            | 90,90                   | 1.00         | 0.11          | 12.0               | 0.95                | 0.03         | 0.00         | 8.83         |
|                   | 13            | 90.90            | 91.90                   | 1.00         | 0.08          | 15.8               | 1.59                | 0.03         | 0.00         | 8.39         |
|                   | 14            | 91.90            | 93.20                   | 1.30         | <0.05         | 15.7               | 3.33                | 0.03         | 0.00         | 4.90         |
|                   | 15            | 93.20            | 94.70                   | 1.50         | <0.05         | 1.4                | 0.17                | 0.01         | 0.00         | 0.70         |
|                   | 16            | 94.70            | 95.50                   | 0.80         | <0.05         | 1.5                | 0.41                | 0.02         | 0.00         | 1.15         |
|                   | 17            | 95.50            | 96.50                   | 1.00         | 0.10          | 15.3               | 4.25                | 0.01         | 0.00         | 6.44         |
|                   | 18            | 96.50            | 97,50                   | 1.00         | <0.05         | 12.4               | 4.21                | 0.01         | 0.00         | 4.79         |
|                   | 19            | 97.50            | 98.50                   | 1.00         | <0.05         | 12.1               | 4.10                | 0.02         | 0.00         | 3.86         |
|                   | 20            | 98.50            | 99.50                   | 1.00         | <0.05         | 12.9               | 2.85                | 0.02         | 0.00         | 2.45         |
|                   | 21            | 99.50            | 99.90                   | 0.40         | 0.36          | 5.8                | 2.12                | 0.02         | 0.00         | 2,58         |
|                   | 22            | 99.90            | 101.00                  | 1.10         |               | <u>2.6</u><br><0.5 | 0.35<br>0.13        | 0.02<br>0.01 | 0.00<br>0.00 | 1.50<br>0.08 |
|                   | 23            | 109.65           | <u>111.00</u><br>112.50 | 1.35<br>1.50 | 0.05<br>0.10  | <u>(0.5</u><br>0.6 | 0.13                | 0.01         | 0.00         | 0.08         |
|                   | 24<br>25      | 111.00<br>112.50 | 112.50                  | 1.50         | <0.10         | 0.0                | 0.13                | 0.01         | 0.00         | 1,20         |
|                   | 25            | 112.50           | 114.00                  | 0.50         | <0.05         | 3.8                | 1.38                | 0.01         | 0.00         | 1.15         |
|                   | 20            | 151.30           | 151.65                  | 0.35         | <0.05         | 0.6                | 0.29                | 0.01         | 0.00         | 3.20         |
|                   | 27            | 229.80           | 231.30                  | 1.50         | <0.05         | 0.6                | 0.20                | 0.02         | 0.00         | 0.75         |
|                   | 20            | 231.30           | 232.80                  | 1.50         | 0.05          | <0.5               | 0.29                | 0.00         | 0.00         | 1.30         |
|                   | 30            | 232.80           | 233.90                  | 1.10         | <0.05         | <0.5               | 0.13                | 0.00         | 0.00         | 0.63         |
|                   | 31            | 233.90           | 234.50                  | 0.60         | <0.05         | 0.5                | 0.50                | 0.01         | 0.00         | 3.82         |
|                   | 32            | 234.50           | 235.30                  | 0.80         | <0.05         | 0.5                | 0.41                | 0.01         | 0.00         | 14.11        |
|                   | 33            | 235.30           | 235.65                  | 0.35         | < 0.05        | 2.9                | 3.24                | 0.01         | 0.00         | 6.56         |
|                   | 34            | 235.65           | 236.05                  | 0.40         | < 0.05        | <0.5               | 0.44                | 0.01         | 0.00         | 1.42         |
|                   | 35            | 236.05           | 236.20                  | 0.15         | < 0.05        | 3.0                | 1.06                | 0.01         | 0.00         | 4.88         |
|                   | 36            | 236.20           | 237.30                  | 1.10         | <0.05         | <0.5               | 0.05                | 0.02         | 0.00         | 1.06         |
|                   | 37            | 237.30           | 238.55                  | 1.25         | 0.10          | 6.6                | 0.66                | 0.02         | 0.00         | 11.64        |
|                   | 38            | 238.55           | 239.20                  | 0.65         | <0.05         | 1.5                | 0.39                | 0.01         | 0.00         | 6.37         |
|                   | 39            | 239.20           | 239.35                  | 0.15         | <0.05         | 2.1                | 0.93                | 0.01         | 0.00         | 6.11         |
| 1                 | 40            | 239.35           | 239.55                  | 0.20         | <0.05         | 0.7                | 0.51                | 0.02         | 0.00         | 6.91         |

| Appendix 1- | 29 Resu | lts of C | ore Assa | y (Core : | Samples) | ł  |
|-------------|---------|----------|----------|-----------|----------|----|
|             |         |          |          |           |          |    |
| Donth       | Wishel  | ۸.,      | ۸        | <u> </u>  | 7-       | DL |

| Drill Hole | Sample | De     | pth    | Width | Au     | Ag    | Cu   | Zn    | Pb   | S     |
|------------|--------|--------|--------|-------|--------|-------|------|-------|------|-------|
| No.        | No.    | (n     | n)     | (m)   | (g/t)  | (g/t) | (%)  | (%)   | (%)  | (%)   |
| MJSU-5     | 41     | 239.55 | 239.75 | 0.20  | 0.06   | 0.9   | 0.51 | 0.02  | 0.00 | 20.50 |
|            | 42     | 239.75 | 239.95 | 0.20  | 0.60   | <0.5  | 0.18 | 0.01  | 0.00 | 5.93  |
|            | 43     | 239.95 | 240.45 | 0.50  | 0.13   | 3.5   | 0.54 | 0.02  | 0.00 | 17.26 |
|            | 44     | 240.45 | 241.80 | 1.35  | <0.05  | <0.5  | 0.03 | 0.00  | 0.00 | 1.00  |
|            | 45     | 241.80 | 242.60 | 0.80  | 0.08   | <0.5  | 0.07 | 0.01  | 0.00 | 2.90  |
|            | 46     | 242.60 | 243.90 | 1.30  | 0.05   | <0.5  | 0.07 | 0.01  | 0.00 | 1.60  |
|            | 47     | 243.90 | 245.65 | 1.75  | <0.05  | <0.5  | 0.07 | 0.01  | 0.00 | 0.70  |
|            | 48     | 245.65 | 247.70 | 2.05  | <0.05  | 2.0   | 1.02 | 0.02  | 0.00 | 6.34  |
|            | 49     | 247.70 | 249.80 | 2.10  | <0.05  | <0.5  | 0.05 | 0.01  | 0.00 | 1.05  |
|            | 50     | 249.80 | 250.20 | 0.40  | < 0.05 | 1.0   | 0.21 | 0.03  | 0.00 | 4.50  |
|            | 51     | 250.35 | 251.70 | 1.35  | <0.05  | 2,2   | 0.62 | 0.02  | 0.00 | 3.90  |
|            | 52     | 252.15 | 253.80 | 1.65  | 0.09   | 1.0   | 0.34 | 0.01  | 0.00 | 1.91  |
|            | 53     | 253.90 | 255.45 | 1.55  | <0.05  | 1.4   | 0.81 | 0.01  | 0.00 | 5.13  |
|            | 54     | 255.45 | 256.30 | 0.85  | 0.12   | 21.9  | 2.58 | 0.02  | 0.00 | 9.30  |
|            | 55     | 268.90 | 269.75 | 0.85  | <0.05  | 1.8   | 0.95 | 0.01  | 0.00 | 9.20  |
|            | 56     | 269.75 | 270.20 | 0.45  | <0.05  | <0.5  | 0.04 | 0.01  | 0.00 | 0.99  |
|            | 57     | 270.20 | 271.10 | 0.90  | <0.05  | 0.9   | 0.23 | 0.01  | 0.00 | 16.30 |
|            | 58     | 271.10 | 271.55 | 0.45  | <0.05  | 2.0   | 1.06 | 0.01  | 0.00 | 32.30 |
|            | 59     | 271.55 | 271.85 | 0.30  | 0.09   | 8.6   | 2.49 | 0.02  | 0.00 | 6.32  |
|            | 60     | 271.85 | 273.45 | 1.60  | <0.05  | 3.3   | 1.48 | 0.01  | 0.00 | 1.95  |
|            | 61     | 273.45 | 274.20 | 0.75  | 0.10   | 2.1   | 2.01 | 0.01  | 0.00 | 5.20  |
|            | 62     | 274.20 | 275.40 | 1.20  | <0.05  | 1.0   | 0.27 | 1.01  | 0.00 | 8.73  |
|            | 63     | 275.40 | 276.35 | 0.95  | 0.06   | <0.5  | 0.11 | 0.02  | 0.00 | 0.80  |
|            | 64     | 276.35 | 277.15 | 0.80  | 0.27   | 2.6   | 0.70 | 0.01  | 0.00 | 2.16  |
|            | 65     | 277.15 | 277.80 | 0.65  | <0.05  | <0.5  | 0.04 | 0.01  | 0.00 | 0.45  |
|            | 66     | 277.80 | 278,15 | 0.35  | <0.05  | 1.7   | 1.06 | 0.01  | 0.00 | 3.36  |
|            | 67     | 278.15 | 280.00 | 1.85  | <0.05  | 1.1   | 0.34 | 0.01  | 0.00 | 1.40  |
|            | 68     | 280.00 | 280.35 | 0.35  | <0.05  | <0.5  | 0.28 | 0.01  | 0.00 | 1.54  |
|            | 69     | 285.25 | 285.50 | 0.25  | <0.05  | 6.4   | 1.96 | 0.01  | 0.00 | 4.33  |
|            | 70     | 285.50 | 287.40 | 1.90  | <0.05  | <0.5  | 0.03 | 0.02  | 0.00 | 2.83  |
|            | 71     | 298.95 | 299.90 | 0.95  | 0.18   | <0.5  | 0.24 | 0.01  | 0.00 | 2.00  |
|            | 72     | 299.90 | 301.60 | 1.70  | <0.05  | 1.3   | 0.31 | 0.01  | 0.00 | 0.90  |
|            | 73     | 303.55 | 303.85 | 0.30  | <0.05  | <0.5  | 0.17 | 0.01  | 0.00 | 1.36  |
|            | 74     | 306.90 | 308.35 | 1.45  | <0.05  | <0.5  | 0.04 | 0.01  | 0.00 | 1.25  |
|            | 75     | 308.35 | 310.30 | 1.95  | <0.05  | <0.5  | 0.12 | 0.01  | 0.00 | 0.30  |
|            | 76     | 314.95 | 315.05 | 0.10  | <0.05  | <0.5  | 0.36 | 0.02  | 0.00 | 1.00  |
|            | 77     | 318.90 | 319.05 | 0.15  | <0.05  | <0.5  | 0.19 | 0.01  | 0.00 | 0.50  |
|            | 78     | 328.90 | 329.90 | 1.00  | <0.05  | 8.6   | 7.04 | 0.02  | 0.00 | 5.00  |
|            | 79     | 329.90 | 330.40 | 0.50  | 0.33   | 5.2   | 7.32 | 0.01  | 0.00 | 3.30  |
|            | 80     | 330.50 | 331.20 | 0.70  | <0.05  | 7.4   | 6.10 | 0.02  | 0.00 | 5.10  |
|            | 81     | 331.20 | 331.65 | 0.45  | 0.05   | < 0.5 | 0.33 | 0.02  | 0.00 | 2.25  |
| MIOUR      | 82     | 342.20 | 342.50 | 0.30  | 0.09   | 0.8   | 0.47 | 0.02  | 0.00 | 2.60  |
| MJSU-6     | 1      | 64.15  | 65.20  | 1.05  | <0.05  | 0.7   | 0.02 | 0.02  | 0.00 | 1.15  |
|            | 2      | 65.20  | 66.15  | 0.95  | <0.05  | <0.5  | 0.01 | 0.02  | 0.00 | 1.10  |
|            | 3      | 66.15  | 66.90  | 0.75  | <0.05  | <0.5  | 0.03 | 0.03  | 0.00 | 2.25  |
|            | 4      | 83.05  | 85.00  | 1.95  | <0.05  | <0.5  | 0.00 | 0.01  | 0.00 | 1.15  |
|            | 5      | 98.70  | 99.90  | 1.20  | <0.05  | <0.5  | 0.00 | 0.03  | 0.00 | 2.20  |
|            | 6      | 133.20 | 133.85 | 0.65  | <0.05  | 4.6   | 0.28 | 0.24  | 0.01 | 6.50  |
|            | 7      | 133.85 | 134.75 | 0.90  | < 0.05 | 1.9   | 0.16 | 0.48  | 0.02 | 1.75  |
|            | 8      | 134.75 | 135.35 | 0.60  | <0.05  | 71.6  | 1.71 | 16.20 | 0.36 | 10.00 |
|            | 9      | 135.35 | 135.75 | 0.40  | <0.05  | 1.1   | 0.06 | 0.47  | 0.02 | 1.10  |
|            | 10     | 135.75 | 136.20 | 0.45  | < 0.05 | 15.0  | 0.17 | 0.04  | 0.02 | 4.60  |
|            | 11     | 136.20 | 136.45 | 0.25  | 0.06   | 3.7   | 0.25 | 0.02  | 0.01 | 1.24  |
|            | 12     | 136.45 | 136.90 | 0.45  | <0.05  | 15.4  | 0.61 | 0.04  | 0.01 | 3.70  |
|            | 13     | 136.90 | 137.20 | 0.30  | <0.05  | 2.7   | 0.03 | 0.02  | 0.00 | 0.64  |
|            | 14     | 137.20 | 138.00 | 0.80  | <0.05  | 40.3  | 0.97 | 3.17  | 0.06 | 10.70 |

5/8

# Appendix 1-29 Results of Ore Assay (Core Samples)

| Drill Hole | Sample | Dep    | oth    | Width | Au     | Ag    | Cu   | Zn   | Pb   | S     |
|------------|--------|--------|--------|-------|--------|-------|------|------|------|-------|
| No.        | No.    | (n     |        | (m)   | (g/t)  | (g/t) | (%)  | (%)  | (%)  | (%)   |
| MJSU-6     | 15     | 138.00 | 138.85 | 0.85  | <0.05  | <0.5  | 0.03 | 0.04 | 0.00 | 0.47  |
|            | 16     | 138.85 | 139.30 | 0.45  | <0.05  | 3.2   | 0.23 | 0.06 | 0.01 | 2.90  |
|            | 17     | 139.30 | 140.10 | 0.80  | <0.05  | <0.5  | 0.02 | 0.03 | 0.00 | 2.85  |
|            | 18     | 140.10 | 140.40 | 0.30  | <0.05  | <0.5  | 0.03 | 0.03 | 0.00 | 2.10  |
|            | 19     | 140.40 | 141.50 | 1.10  | <0.05  | <0.5  | 0.04 | 0.03 | 0.00 | 2.60  |
|            | 20     | 154.05 | 154.25 | 0.20  | <0.05  | 1.5   | 0.05 | 0.22 | 0.00 | 5.40  |
|            | 21     | 154.25 | 154.60 | 0.35  | <0.05  | 0.7   | 0.01 | 0.02 | 0.00 | 10.60 |
|            | 22     | 154.60 | 154.85 | 0.25  | <0.05  | 3.2   | 0.12 | 0.03 | 0.00 | 2.14  |
|            | 23     | 166.80 | 167.05 | 0.25  | <0.05  | <0.5  | 0.00 | 0.01 | 0.00 | 2.68  |
|            | 24     | 174.20 | 174.35 | 0.15  | <0.05  | 1.4   | 0.00 | 0.00 | 0.00 | 3.10  |
|            | 25     | 182.15 | 182.90 | 0.75  | <0.05  | 2.1   | 0.10 | 0.01 | 0.00 | 5.57  |
|            | 26     | 213.55 | 214.30 | 0.75  | <0.05  | <0.5  | 0.00 | 0.00 | 0.00 | 8.36  |
|            | 27     | 214.30 | 215.10 | 0.80  | 0.05   | <0.5  | 0.00 | 0.01 | 0.00 | 1.30  |
|            | 28     | 215.10 | 215.95 | 0.85  | <0.05  | <0.5  | 0.00 | 0.01 | 0.00 | 2.70  |
|            | 29     | 215.95 | 218.00 | 2.05  | <0.05  | <0.5  | 0.00 | 0.01 | 0.00 | 0.80  |
|            | 30     | 218.00 | 219.90 | 1.90  | <0.05  | 0.5   | 0.00 | 0.01 | 0.00 | 6.16  |
|            | 31     | 219.90 | 220.70 | 0.80  | 0.07   | <0.5  | 0.00 | 0.01 | 0.00 | 2.00  |
|            | 32     | 220.70 | 220.90 | 0.20  | <0.05  | 4.0   | 0.03 | 0.00 | 0.00 | 26.15 |
|            | 33     | 220.90 | 223.00 | 2.10  | <0.05  | <0.5  | 0.01 | 0.00 | 0.00 | 7.35  |
|            | 34     | 223.00 | 225,65 | 2.65  | <0.05  | <0.5  | 0.00 | 0.01 | 0.00 | 4.00  |
|            | 35     | 225,65 | 227.25 | 1.60  | <0.05  | <0.5  | 0.00 | 0.00 | 0.00 | 13.40 |
|            | 36     | 227,25 | 228.90 | 1.65  | <0.05  | 0.6   | 0.00 | 0.00 | 0.00 | 20.00 |
|            | 37     | 241.55 | 243.65 | 2.10  | <0.05  | 1.2   | 0.01 | 0.02 | 0.00 | 2.30  |
|            | 38     | 243.65 | 244.95 | 1.30  | <0.05  | 1.4   | 0.06 | 0.01 | 0.00 | 1.75  |
| MJSU-7     | 1      | 18.25  | 20.50  | 2.25  | <0.05  | <0.5  | 0.02 | 0.01 | 0.00 | 0.62  |
|            | 2      | 25.10  | 26.75  | 1.65  | <0.05  | 0.8   | 0.06 | 0.04 | 0.00 | 0.57  |
|            | 3      | 28.45  | 30.00  | 1.55  | <0.05  | 0.7   | 0.05 | 0.21 | 0.00 | 0.65  |
|            | 4      | 34.15  | 35.85  | 1.70  | <0.05  | 0.6   | 0.03 | 0.02 | 0.00 | 1.00  |
|            | 5      | 49.25  | 49.85  | 0.60  | <0.05  | 2.4   | 0.10 | 0.01 | 0.00 | 3.80  |
|            | 6      | 60.00  | 60.20  | 0.20  | <0.05  | , 9.1 | 0.91 | 0.03 | 0.00 | 4.88  |
|            | 7      | 62.85  | 63.50  | 0.65  | <0.05  | 29.0  | 2.05 | 0.08 | 0.00 | 6.60  |
|            | 8      | 63.50  | 64.85  | 1.35  | <0.05  | 3.8   | 0.33 | 0.04 | 0.00 | 2.75  |
|            | 9      | 70.15  | 72.65  | 2.50  | <0.05  | 1.3   | 0.03 | 0.03 | 0.00 | 4.88  |
|            | 10     | 72.65  | 73.45  | 0.80  | <0.05  | 1.8   | 0.09 | 0.03 | 0.00 | 2.64  |
|            | 11     | 73.45  | 74.30  | 0.85  | <0.05  | 1.3   | 0.08 | 0.02 | 0.00 | 4.50  |
|            | 12     | 74.30  | 76.55  | 2.25  | <0.05  | 1.9   | 0.07 | 0.05 | 0.00 | 10.80 |
|            | 13     | 76.55  | 76.70  | 0.15  | <0.05  | 4.3   | 0.38 | 0.45 | 0.00 | 20.32 |
|            | 14     | 76.70  | 78.05  | 1.35  | <0.05  | 0.6   | 0.05 | 0.03 | 0.00 | 5.38  |
|            | 15     | 79.90  | 80.15  | 0.25  | <0.05  | <0.5  | 0.05 | 0.02 | 0.00 | 2.60  |
|            | 16     | 87.20  | 87.40  | 0.20  | <0.05  | 1.0   | 0.04 | 0.04 | 0.00 | 2.84  |
|            | 17     | 108.25 | 108.75 | 0.50  | <0.05  | 3.6   | 0.10 | 0.01 | 0.00 | 2.28  |
|            | 18     | 173.85 | 174.55 | 0.70  | <0.05  | 1.1   | 0.04 | 0.09 | 0.01 | 3.00  |
|            | 19     | 174.55 | 176.00 | 1.45  | <0.05  | 2.2   | 0.07 | 0.22 | 0.03 | 2.95  |
|            | 20     | 176.00 | 178.00 | 2.00  | <0.05  | 0.9   | 0.02 | 0.11 | 0.01 | 2.50  |
|            | 21     | 192.65 | 193.55 | 0.90  | <0.05  | 3.4   | 0.04 | 0.09 | 0.05 | 3.20  |
|            | 22     | 193.55 | 194.55 | 1.00  | <0.05  | 1.5   | 0.01 | 0.33 | 0.03 | 3.00  |
|            | 23     | 197.90 | 198.30 | 0.40  | <0.05  | 1.0   | 0.08 | 0.21 | 0.00 | 2.65  |
|            | 24     | 227.85 | 228.80 | 0.95  | <0.05  | <0.5  | 0.03 | 0.18 | 0.00 | 2.80  |
| MJSU-8     | 1      | 14.20  | 15.00  | 0.80  | <0.05  | <0.5  | 0.00 | 0.01 | 0.00 | 0.33  |
|            | 2      | 30.30  | 30.70  | 0.40  | <0.05  | 1.2   | 0.01 | 0.01 | 0.00 | 0.60  |
|            | 3      | 30.70  | 31.25  | 0.55  | 0.07   | 1.2   | 0.01 | 0.02 | 0.00 | 0.90  |
|            | 4      | 31.25  | 33.30  | 2.05  | < 0.05 | <0.5  | 0.01 | 0.01 | 0.00 | 4.00  |
|            | 5      | 33.70  | 35.70  | 2.00  | 0.06   | 0.6   | 0.01 | 0.01 | 0.00 | 4.50  |
|            | 6      | 35.70  | 37.70  | 2.00  | <0.05  | 0.6   | 0.02 | 0.01 | 0.00 | 4.10  |
|            | 7      | 37.70  | 39.70  | 2.00  | <0.05  | 0.7   | 0.03 | 0.01 | 0.00 | 4.35  |
|            | 8      | 39.70  | 41.70  | 2.00  | <0.05  | 0.7   | 0.02 | 0.01 | 0.00 | 4.42  |

| Drill Hole | Sample   |                  | pth              | Width        |                | Ag                | Cu        | Zn           | Pb           | S             |
|------------|----------|------------------|------------------|--------------|----------------|-------------------|-----------|--------------|--------------|---------------|
| No.        | No.      |                  | n)               | (m)          | (g/t)          | (g/t)             | (%)       | (%)          | (%)          | (%)           |
| MJSU-8     | 9<br>10  | 41.70<br>43.70   | 43.70<br>45.65   | 2.00         | 0.09           | 1.2               | 0.01      | 0.03         | 0.00         | 4.30          |
|            | 11       | 69.55            | 45.05<br>71.95   | 2.40         | 0.08<br><0.05  | <0.5<br><0.5      | 0.01      | 0.02<br>0.05 | 0.00         | 3.69          |
|            | 12       | 71.95            | 73.25            | 1.30         | 0.06           | 0.9               | 0.01      | 0.05         | 0.00         | 3.30<br>5.37  |
|            | 13       | 73.25            | 73.55            | 0.30         | <0.05          | 3.9               | 0.02      | 12.74        | 0.01         | 14.00         |
|            | 14       | 73.55            | 75.50            | 1.95         | 0.06           | 0.8               | 0.03      | 0.06         | 0.01         | 10.66         |
|            | 15       | 75.50            | 77.20            | 1.70         | 0.14           | 1.0               | 0.02      | 0.00         | 0.01         | 11.35         |
|            | 16       | 77.20            | 77.40            | 0.20         | 2.52           | 6.1               | 0.08      | 0.02         | 0.03         | 28.90         |
|            | 17       | 77.40            | 79.20            | 1.80         | 0.07           | 0.8               | 0.02      | 0.01         | 0.01         | 12.10         |
|            | 18       | 79.20            | 81.00            | 1.80         | 0.08           | 0.9               | 0.02      | 0.01         | 0.01         | 12.64         |
|            | 19       | 81.00            | 82.65            | 1.65         | 0.08           | 1.1               | 0.02      | 0.00         | 0.01         | 11.48         |
|            | 20       | 82.65            | 83.35            | 0.70         | 0.24           | 19.5              | 1.57      | 0.01         | 0.02         | 25.00         |
|            | 21       | 83.35            | 85.10            | 1.75         | 0.10           | 6.2               | 0.11      | 0.25         | 0.01         | 7.00          |
|            | 22       | 85.10            | 85.85            | 0.75         | 0.51           | 35.3              | 0.15      | 0.24         | 0.02         | 13.36         |
|            | 23       | 85.85            | 87.85            | 2.00         | 0.05           | 4.0               | 0.01      | 0.02         | 0.03         | 5.62          |
|            | 24       | 87.85            | 90.75            | 2.90         | <0.05          | 0,5               | 0.01      | 0.01         | 0.00         | 5.55          |
|            | 25       | 90.75            | 91.95            | 1.20         | <0.05          | 0.8               | 0.02      | 0.02         | 0.00         | 9.00          |
|            | 26       | 91.95            | 95.00            | 3.05         | <0.05          | 0.6               | 0.01      | 0.01         | 0.00         | 4.07          |
|            | 27<br>28 | 95.00<br>97.90   | 96.95            | 1.95         | <0.05          | 0.9               | 0.01      | 0.01         | 0.00         | 4.80          |
|            | 20<br>29 | 101.80           | 101.10<br>104.65 | 3.20<br>2.85 | 0.17<br><0.05  | 2.0               | 0.02      | 0.01         | 0.00         | 8.79          |
|            | 30       | 104.65           | 107.55           | 2.05         | <0.05          | <u>1.0</u><br>1.3 | 0.01 0.02 | 0.03         | 0.00<br>0.00 | 6.70          |
|            | 31       | 107.55           | 110.00           | 2.30         | <0.05          | 1.5               | 0.02      | 0.01         | 0.00         | 9.60<br>10.00 |
|            | 32       | 110.00           | 113.00           | 3.00         | <0.05          | <0.5              | 0.04      | 0.02         | 0.00         | 5.60          |
|            | 33       | 113.00           | 114.05           | 1.05         | <0.05          | 0.8               | 0.02      | 0.10         | 0.00         | 7.95          |
|            | 34       | 114.05           | 117.00           | 2.95         | <0.05          | <0.5              | 0.01      | 0.01         | 0.00         | 4.75          |
|            | 35       | 117.00           | 120.00           | 3.00         | < 0.05         | 0.8               | 0.01      | 0.01         | 0.00         | 6.10          |
|            | 36       | 120.00           | 123.00           | 3.00         | 0.07           | 0.9               | 0.01      | 0.01         | 0.00         | 5,15          |
|            | 37       | 123.00           | 124,45           | 1.45         | <0.05          | 0.5               | 0.01      | 0.01         | 0.00         | 5.75          |
|            | 38       | 124.45           | 125.80           | 1.35         | <0.05          | 0.5               | 0.01      | 0.01         | 0.00         | 4.00          |
|            | 39       | 125.80           | 128.05           | 2.25         | <0.05          | 0.7               | 0.01      | 0.01         | 0.00         | 6.80          |
|            | 40       | 128.05           | 129.55           | 1.50         | <0.05          | 1.0               | 0.04      | 0.01         | 0.01         | 10.40         |
|            | 41       | 129.55           | 132,15           | 2.60         | <0.05          | 1.0               | 0.02      | 0.03         | 0.00         | 6.00          |
|            | 42       | 132.15           | 133.00           | 0.85         | <0.05          | 1.0               | 0.03      | 0.01         | 0.00         | 9.73          |
|            | 43       | 133.00           | 134.75           | 1.75         | 0.07           | 1.0               | 0.02      | 0.01         | 0.00         | 5,15          |
|            | 44       | 134.75           | 137.70           | 2.95         | < 0.05         | <0.5              | 0.01      | 0.01         | 0.00         | 3.70          |
|            | 45<br>46 | 137.70           | 138.85           | 1.15         | <0.05          | 0.5               | 0.01      | 0.00         | 0.00         | 4.80          |
|            | 40       | 138.85<br>139.35 | 139,35           | 0.50         | <0.05          | <0.5              | 0.00      | 0.01         | 0.00         | 3.55          |
|            | 47       | 142.00           | 142.00<br>143.40 | 2.65<br>1.40 | <0.05<br><0.05 | <0.5<br><0.5      | 0.01      | 0.02         | 0.00<br>0.00 | 5.55<br>5.20  |
| ŗ          | 49       | 143.40           | 143.40           | 0.95         | <0.05          | <0.5              | 0.01      | 0.00         | 0.00         | 5.20<br>4.60  |
|            | 50       | 144.35           | 146.00           | 1.65         | <0.05          | <0.5              | 0.01      | 0.00         | 0.00         | 6.10          |
|            | 51       | 146.00           | 147.50           | 1.50         | <0.05          | 0.7               | 0.01      | 0.00         | 0.00         | 4.30          |
|            | 52       | 147.50           | 149.00           | 1.50         | <0.05          | 0.6               | 0.01      | 0.02         | 0.00         | 4.55          |
| ľ          | 53       | 149.00           | 150.50           | 1.50         | <0.05          | <0.5              | 0.01      | 0.00         | 0.00         | 4.14          |
|            | 54       | 150.50           | 152.00           | 1.50         | <0.05          | 0.7               | 0.01      | 0.01         | 0.00         | 5.50          |
|            | 55       | 152.00           | 153.50           | 1.50         | <0.05          | 0.6               | 0.01      | 0.01         | 0.00         | 4.00          |
|            | 56       | 153.50           | 154.20           | 0.70         | <0.05          | 0.6               | 0.01      | 0.03         | 0.01         | 5.10          |
|            | 57       | 154.20           | 155,45           | 1.25         | <0.05          | 0.6               | 0.02      | 0.04         | 0.00         | 8.80          |
| ļ          | 58       | 155.45           | 157.00           | 1.55         | <0.05          | <0.5              | 0.01      | 0.03         | 0.01         | 4.02          |
| -          | 59       | 157.00           | 158,75           | 1.75         | <0.05          | 0.8               | 0.01      | 0.01         | 0.00         | 5.52          |
| ŀ          | 60       | 158.75           | 159.95           | 1.20         | <0.05          | 1.0               | 0.01      | 0.04         | 0.00         | 6.45          |
| ŀ          | 61       | 159.95           | 161.50           | 1.55         | <0.05          | 1.8               | 0.02      | 0.04         | 0.01         | 7.26          |
| -          | 62       | 161.50           | 163.00           | 1.50         | <0.05          | 2.5               | 0.01      | 0.02         | 0.01         | 6.90          |
| ł          | 63       | 163.00           | 164.50           | 1.50         | <0.05          | 2.6               | 0.01      | 0.02         | 0.01         | 10.12         |
|            | 64       | 164.50           | 166.00           | 1.50         | <0.05          | 1.0               | 0.02      | 0.04         | 0.01         | 6.18          |

Appendix 1-29 Results of Ore Assay (Core Samples)

# Appendix 1-29 Results of Ore Assay (Core Samples)

| Drill Hole | Sample | Dep    | oth    | Width | Au    | Ag    | Cu   | Zn   | Pb   | S    |
|------------|--------|--------|--------|-------|-------|-------|------|------|------|------|
| No.        | No.    | (m     | n)     | (m)   | (g/t) | (g/t) | (%)  | (%)  | (%)  | (%)  |
| MJSU-8     | 65     | 166.00 | 167.50 | 1.50  | <0.05 | 0.7   | 0.01 | 0.02 | 0.00 | 4.27 |
|            | 66     | 167.50 | 169.00 | 1.50  | <0.05 | 0.5   | 0.01 | 0.03 | 0.00 | 4.06 |
|            | 67     | 169.00 | 170.50 | 1.50  | <0.05 | 0.6   | 0.01 | 0.01 | 0.00 | 5.35 |
|            | 68     | 170.50 | 172.00 | 1.50  | <0.05 | 0.7   | 0.00 | 0.02 | 0.00 | 3.90 |
|            | 69     | 172.00 | 173.50 | 1.50  | <0.05 | <0.5  | 0.01 | 0.03 | 0.00 | 3.12 |
|            | 70     | 173.50 | 175.00 | 1.50  | <0.05 | 1.0   | 0.01 | 0.02 | 0.00 | 4.25 |
|            | 71     | 175.00 | 176.50 | 1.50  | <0.05 | 0.8   | 0.01 | 0.01 | 0.00 | 3.90 |
|            | 72     | 176.50 | 178.00 | 1.50  | <0.05 | 1.0   | 0.01 | 0.01 | 0.00 | 3.95 |
| · ·        | 73     | 178.00 | 179.50 | 1.50  | <0.05 | 0.6   | 0.00 | 0.01 | 0.00 | 3.00 |
|            | 74     | 179.50 | 181.00 | 1.50  | <0.05 | 0.6   | 0.01 | 0.01 | 0.00 | 3.78 |
|            | 75     | 181.00 | 182.60 | 1.60  | <0.05 | <0.5  | 0.01 | 0.01 | 0.00 | 3.39 |
|            | 76     | 183.50 | 185.00 | 1.50  | <0.05 | 1.0   | 0.01 | 0.01 | 0.00 | 4.22 |
|            | 77     | 185.00 | 186.05 | 1.05  | <0.05 | 1.5   | 0.00 | 0.01 | 0.00 | 5.66 |
|            | 78     | 199.00 | 200.50 | 1.50  | <0.05 | <0.5  | 0.00 | 0.00 | 0.00 | 2.25 |
|            | 79     | 200.50 | 202.00 | 1.50  | <0.05 | <0.5  | 0.00 | 0.00 | 0.00 | 2.50 |
|            | 80     | 202.00 | 203.50 | 1.50  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 2.42 |
|            | 81     | 203.50 | 205.00 | 1.50  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 1.85 |
|            | 82     | 205.00 | 206.50 | 1.50  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 3.35 |
|            | 83     | 206.50 | 208.00 | 1.50  | <0.05 | <0.5  | 0.00 | 0.00 | 0.00 | 1.65 |
|            | 84     | 208.00 | 209.50 | 1.50  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 2.25 |
|            | 85     | 209.50 | 211.15 | 1.65  | <0.05 | <0.5  | 0.01 | 0.01 | 0.00 | 2.90 |
|            | 86     | 228.45 | 230.00 | 1.55  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 1.15 |
|            | 87     | 230.00 | 231.45 | 1.45  | <0.05 | <0.5  | 0.01 | 0.01 | 0.00 | 3.00 |
|            | 88     | 231.45 | 232.95 | 1.50  | <0.05 | 0.9   | 0.01 | 0.00 | 0.00 | 1.00 |
|            | 89     | 232.95 | 233.85 | 0.90  | <0.05 | <0.5  | 0.01 | 0.00 | 0.00 | 0.85 |
|            | 90     | 233.85 | 235.35 | 1.50  | <0.05 | <0.5  | 0.00 | 0.00 | 0.00 | 3.10 |
|            | 91     | 235.35 | 236.70 | 1.35  | <0.05 | 0.7   | 0.01 | 0.00 | 0.00 | 4.45 |

e.

| Drill s | Sample | a Rock type                | Texture          | phenocryst or fragment groundmass or matrix metamorphic or alteration                                                 |
|---------|--------|----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|
|         | Ś      |                            |                  | others MP hb qz pl Kf gi op others ep                                                                                 |
| NJSU-1  | 12     | 12 Rhyodacite              | porphyritic      |                                                                                                                       |
| ]       |        | weakly meta                |                  | Sericite develops stongly along cracks and partly replace plagioclase. Devitrified glass partly into chlorite.        |
|         | 75     | 75 Rhyodacite lapilli tuff | clastic          |                                                                                                                       |
| I       |        | weakly meta                |                  | Sericite occurs widely as a layer. Carbonate occurs in a matrix and as a vein.                                        |
|         | 129    | 129 Rhyodacite coarse tuff | clastic to       |                                                                                                                       |
| 1       |        |                            | porphyritic      | Sericite widely develops with a mesh-like structure.                                                                  |
|         | 199    |                            | clastic          |                                                                                                                       |
|         |        | weakly meta                |                  | Carbonate vein is common. Chlorite and sericite replace devitrified glass.                                            |
|         | 248    | 248 Volcanic breccia       | clastic          |                                                                                                                       |
|         |        | weakly meta                |                  | Sericite occurs as a layer replacing matrix. Chlorite replaces devitrified glass.                                     |
| MJSU-2  | 45     | 45 Basalt                  | partly trachytic |                                                                                                                       |
|         |        | weakly meta                |                  | Most of the minerals and glass are carbonatized and chloritized. Sericite occurs along a crack.                       |
|         | 83     | 63 Basalt                  | originally       |                                                                                                                       |
| 1       |        | neta                       | aphyric          | Mafic minerals are totally replace by chlorite, sericite and carbonate. Carbonate vein.                               |
|         | 65     | 65 Microdiorite            | micro-ophitic    |                                                                                                                       |
|         |        | weakly meta                |                  | <u>Glassy part and mafic minerals are totally replaced by chlorite and carbonate.</u>                                 |
|         | 75     | 75 Basalt                  | porphyritic      |                                                                                                                       |
| 1       |        | weakly meta                |                  | <u>Glassy part is totally replaced by chlorite and sericite. Sericite occurs along cracks.</u>                        |
|         | 106    | 106 Basaltic tuff          | clastic to       |                                                                                                                       |
| 1       |        | eta                        | sub-trachytic    | Matic minerals are totally replaced by chlorite and carbonate. Amygdule is filled by quartz and carbonate.            |
|         | 120    |                            | clastic          |                                                                                                                       |
|         |        | weakly meta                |                  | <u>Glassy part is totally replaced by chlorite, sericite and carbonate.</u> carbonate vein.                           |
| MJSU-3  | 9      | 10 Dacite                  | porphyritic      |                                                                                                                       |
| 1       |        | weakly meta                |                  | Glass and mafic minerals is into chlorite and sericite. Plagioclase is strongly replaced by sericite.                 |
|         | S      | Silicified volcanic rock   | porphyritic      |                                                                                                                       |
| 1       |        | weakly meta                |                  | <u>Matrix is strongly silicified.</u>                                                                                 |
|         | 41     | Silicified volcanic rock   | porphyritic      |                                                                                                                       |
| ł       |        | weakly meta                |                  | <u>Matrix and feldspar are strongly silicified and sericitized.</u> Carbonate vein.                                   |
|         | 83     |                            | clastic          |                                                                                                                       |
| 4       |        | weakly meta                |                  | <u>Mafic minerals and matrix are replaced by chlorite and sericite.</u> Plagioclase strongly by epidote and sericite. |
|         | 89     | 89 Dacite                  | porphyritic      |                                                                                                                       |
|         |        | weakly meta                |                  | Mafic minerals are replaced by chlorite. Plagioclase strongly by epidote and sericite.                                |
|         | 131    | 131 Porphyritic dacite     | porphyritic      |                                                                                                                       |
| 1       |        | weakly meta                |                  | <u>Matic minerals is replaced by chlorite.</u> plagioclase by epidote. Carbonate vein.                                |
|         | 150    | 150 Microdiorite           | sub-trachytic    |                                                                                                                       |
| 1       |        |                            |                  | <u>Mafic minerals is replaced totally by chlorite. plagioclase by sericite. Carbonate vein.</u>                       |
|         | 171    | 171 Dacite coarse tuff     | clastic          | 〈△〉   〇 〇  ・                                                                                                          |
|         |        | WEANLY INCLA               |                  |                                                                                                                       |

1/4

| II           | No.                               | alaatia ta    | MP cpx hb gz pi Kf op others MP hb gz pi Kf gi op others ep chi amp ser tit cb others                            |
|--------------|-----------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|
|              | Thursday and a second read        | alatia ta     |                                                                                                                  |
|              | I I KINYODACITE COARSE TUTT       | CIASTIC 10    |                                                                                                                  |
|              | weakly meta                       | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite. Carbonate vein.           |
|              | 232 Dacite                        | porphyritic   |                                                                                                                  |
| 24<br>MJSU-4 | weakly meta                       |               | Mafic minerals are replaced by epidote and chlorite. Plagioclase is replaced mainly by sericite. Carbonate vein  |
|              | 243 Porphyritic dacite            | porphyritic   |                                                                                                                  |
|              | weakiy meta                       |               | Mafic minerals are replaced by epidote and chlorite. Plagioclase is replaced mainly by sericite. Carbonate vein. |
|              | 15 Diorite                        | ophitic       | (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                          |
|              | weakly meta                       |               | Mafic minerals are by epidote and chlorite. Plagioclase is locally by epidote. Graphic texture develops.         |
| e            | 30 Dolerite                       | micro-ophitic |                                                                                                                  |
|              | weakly meta                       |               | Mafic minerals except for hormblende are replaced by chlorite. Plagioclase is partly by epidote. carbonate vein  |
| 4            | 40 Diorite                        | equigranular  | O  <@>    Δ   apa (•)                              0     @                                                       |
|              | weakly meta                       |               | Plagioclase and mafic minerals are replaced totally by chlorite and sericite. Carbonate vein.                    |
| 4            | 45 Silicified volcanics           | porphyritic?  | 1                                                                                                                |
|              | weakly meta                       |               | Mafic minerals are replaced by chlorite. Carbonate vein is common.                                               |
| ŝ            | 52 Rhyodacite coarse tuff         | clastic to    | (∆)   O (∆)   ·       O   O   (O   (O   C   O   O   O   O   O   O   O   O                                        |
|              | weakly meta                       | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase is replaced by sericite.                                    |
| 80           | 80 Porphyritic andesite           | porphyritic   |                                                                                                                  |
|              | weakly meta                       |               | Hornblende is partly by chlorite, carbonate and actinolite. plagioclase by epidote. Carbonate vein.              |
| ອ<br>        | 95 Porphyritic andesite           | porphyritic   |                                                                                                                  |
|              | weakly meta                       |               | Mafic minerals are replaced by chlorite, epidote and carbonate. Plagioclase by sericite and carbonate.           |
| 12           | 121 Rhyodacite lapilli tuff       | clastic to    |                                                                                                                  |
|              | weakiy meta                       | porphyritic   | ic minerals and matrix are by chlorite, carbor                                                                   |
| 13           | 136 Dacite coarse tuff            | clastic to    |                                                                                                                  |
|              | weakly meta                       | porphyritic   | <u>Mafic minerals are by chlorite and carbonate. Plagioclase is by sericite and carbonate.</u>                   |
| 11           | 175 Andesite                      | porphyritic   |                                                                                                                  |
|              | weakly meta                       |               | Matic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite.                           |
| 61           | 193 Andesite lapilli tuff         | clastic to    | O   ⟨@⟩   Δ     <c< th=""></c<>                                                                                  |
|              | weakly meta                       | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite. Carbonate vein.           |
| - 22         | 222 Andesite lapilli tuff         | clastic to    |                                                                                                                  |
|              | weakly meta                       | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite. Carbonate vein.           |
| 23           | 238 Andesite lapilli tuff         | clastic to    | )> · · · · · · · · · · · · · · · · · · ·                                                                         |
|              | weakly meta                       | porphyritic   | Mafic minerals by chlorite and carbonate. Plagioclase by sericite and epidote. Carbonate and sericite veins.     |
| 25           | 259 Dacitic lapilli tuff          | clastic to    |                                                                                                                  |
|              | strongly by carbonate porphyritic | porphyritic   | Plagioclase and matrix are strongly replaced by carbonate. Sericite occurs as a layer. Chlorite vein.            |
| 28           | 282 Rhyodacite coarse tuff        | clastic to    |                                                                                                                  |
|              | silicified                        | porphyritic   | ongly silicified. Sericitization and chloritization are widespread. Co                                           |
|              | 288 Dacite                        | porphyritic   |                                                                                                                  |
|              | weakly meta                       |               | Matic minerals are replaced by chlorite. Plagioclase is by sericite. Carbonate vein.                             |

2/4

| Drill  | Sample | e Rock type                 | Texture       |                                                                                                                   |
|--------|--------|-----------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|
|        |        |                             |               | pi Kf op others MPI hb az bi Kf                                                                                   |
| MJSU-4 | 296    | 296 Rhyodacite tuff         | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Mafic minerals are replaced by chlorite and sericite. Plagioclase phenocryst totally by sericite.                 |
| 9-USLM | ধ্য    | 25 Diorite                  | porphyritic   |                                                                                                                   |
|        |        | weakly meta                 |               | Hornblende is partly replaced by chlorite. Plagioclase is strongly by epidote and sericite.                       |
|        | 8      | 63 Diorite                  | ophitic       |                                                                                                                   |
|        |        | weakly meta                 |               | Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite. Carbonate vein.             |
|        | 115    | 115 Dacitic lapilli tuff    | clastic to    | 0                                                                                                                 |
|        |        | weakly meta                 | porphyritic   |                                                                                                                   |
|        | 124    | 124 Andesite lapilli tuff   | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Mafic minerals are by chlorite. Plagioclase phenocryst strongly by epidote and sericite. Carbonate vein           |
|        | 138    | 138 Dolerite                | ophitic       |                                                                                                                   |
|        |        | weakly meta                 |               | Clinopyroxene is strongly by chlorite and carbonate. Orthopyroxene(?) is totally by chlorite.                     |
|        | 165    | 165 Andesite lapilli tuff   | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Matic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite. Carbonate vein              |
|        | 194    | 194 Andesite coarse tuff    | clastic to    |                                                                                                                   |
| 1      |        | weakly meta                 | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite.                             |
|        | 210    | 210 Andesite lapilli tuff   | clastic to    |                                                                                                                   |
| 1      |        | weakiy meta                 | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite. Carbonate vein              |
|        | 264    | 264 Rhyodacite              | porphyritic   |                                                                                                                   |
|        |        | weakly meta                 |               | Matic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite and epidote. Carbonate vein  |
|        | 249    | 249 Rhyodacite lapilli tuff | clastic to    | 0                                                                                                                 |
|        |        | weakly meta                 | porphyritic   | Mafic minerals by chlorite. Matrix strongly by sericite and chlorite. sericite occurs as a layer. Carbonate vein. |
|        | 283    | 283 Rhyodacite lapilli tuff | clastic to    | 0     0 0   (@) ·   apa (·)   0   0                                                                               |
|        |        | weakly meta                 | porphyritic   |                                                                                                                   |
|        | 315    | 315 Dacitic lapilli tuff    | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite and epidote. Carbonate vein  |
|        | 337    | 337 Dacitic lapilli tuff    | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Matic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite.                             |
| 9-NSCM | 47     | 47 Basaltic tuff            | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Mafic minerals and matrix are replaced totally by chlorite. Carbonate vein.                                       |
|        | 58     | 58 Basaltic fine tuff       | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Mafic minerals and matrix are replaced by chlorite. plagioclase partly by sericite. Carbonate vein.               |
|        | 74     | 74 Dolerite                 | micro-ophitic |                                                                                                                   |
| k      |        | weakly meta                 |               |                                                                                                                   |
|        | 132    | 132 Dacitic tuff            | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Matrix is replaced by chlorite and sericite. Plagioclase phenocryst is highly by sericite.                        |
|        | 145    | 145 Basaltic fine tuff      | clastic to    |                                                                                                                   |
|        |        | weakly meta                 | porphyritic   | Most of the minerals and matrix are replaced by chlorite and carbonate.                                           |
|        |        |                             |               |                                                                                                                   |

3/4

|           |            |                                | exture      | i phenocryst of fragment i groundmass or matrix i metamorphic                                          | Dhic of alteration      |
|-----------|------------|--------------------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------|
| TIOLO NO. | No.        |                                |             | MPI cnv/ hb   a7   n  Kf   nn   nthere MP  hb   a7   n  Kf   a1   nn   othere an                       | cort tit ob other       |
| 2-USLM    | 72         | 72 Basaltic fine tuff          | clastic to  |                                                                                                        |                         |
|           |            | weakiy meta                    | porphyritic | sericite. Matrix by chlorite and                                                                       | sericite. Oz vein.      |
| L         | 202        | 202 Rhyodacite tuff            | clastic to  | 0 0 · aba (·) 0                                                                                        |                         |
|           |            | weakiy meta                    | porphyritic | Matrix is replaced highly by chlorite, sericite and carbonate. Pleochroic carbonate: ankerite          | te                      |
| <u> </u>  | 210        |                                | porphyritic |                                                                                                        |                         |
|           |            | weakly meta                    |             | Plagioclase is replaced highly by chlorite, sericite and carbonate. Matrix strongly by carbonate       | nate and chlorite.      |
|           | 240        | 240 Rhyodacite                 | porphyritic | O   △   △       ◎   O     ·   apa (·)                                                                  | •                       |
|           |            | weakly meta                    |             | Matic mineral (biotite?) is replaced by sericite. Sericite occurs commonly as a layer.                 |                         |
| 8-USLM    | 10         | 10 Basalt                      | porphyritic |                                                                                                        |                         |
|           |            | weakly meta                    |             | Mafic minerals are replaced totally by chlorite. Matrix is by carbonate and chlorite. Carbo            | 1                       |
|           | 20         | 20 Porphyritic basalt          | porphyritic |                                                                                                        | 0                       |
|           |            | weakly meta                    |             | Mafic phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is by carbonate and              | d epidote.              |
|           | 39         | 39 Rhyodacite tuff?            | clastic to  |                                                                                                        |                         |
|           |            | highly silicified              | porphyritic | Mafic minerals are by chlorite. Devirified glass is by chlorite(or clay minerals)                      |                         |
|           | 57         | 57 Rhyodacite coarse tuff      | clastic to  |                                                                                                        | 0 0 0                   |
|           |            | weakly meta                    | porphyritic | Mafic minerals are replaced by carbonate. Carbonate vein.                                              |                         |
|           | 5          | 91 Volcanic breccia            | clastic     |                                                                                                        | 0                       |
|           |            | weakly meta                    |             | <u>Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Quartz vein.</u>             |                         |
|           | <b>8</b> 6 | 98 Volcanic breccia            | clastic     |                                                                                                        | 0                       |
|           |            | weakly meta                    |             | Mafic minerals(?) are replaced mainly of aggregates o opaque minerals.                                 |                         |
|           | 183        | 183 Sandstone?                 | clastic     |                                                                                                        |                         |
|           |            | weakly meta                    |             | Grain boundaries and glassy materials are highly replaced by sericite.                                 |                         |
|           | 192        | 192 Porphyritic andesite       | porphyritic |                                                                                                        | ∆   O   prh(∆)          |
|           |            | weakly meta                    |             | Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic minerals are by chi          | chlorite and carbonate. |
|           | 207        | 207 Pumiceous volcanic breccia | clastic     |                                                                                                        | 0                       |
|           |            | weakly meta                    |             | Fragment of qz aggregate is common. Glassy part is replaced by sericite.                               |                         |
|           | 226        | 226 Andesite                   | porphyritic |                                                                                                        |                         |
|           |            | weakly meta                    |             | Plagioclase, totally sussurite, is replaced partly by epidote. Mafic minerals are by chlorite          | and epidote.            |
|           | 233        |                                | clastic     | ê<br>                                                                                                  | O ·   goe(∆)            |
|           |            | weakly meta                    |             | Matic minerals are replaced by chlorite. Sericite occurs at the grain boundaries among fra             | fragments.              |
|           | 244        | 244 Volcanic breccia           | clastic     |                                                                                                        | ∆   O   prh(∆)          |
|           |            | weakly meta                    |             | Matic minerals by chlorite and epidote. Placioclase strongly by epidote. Prehnite and carbonate veins. | bonate veins.           |

abbrev. MP=pseudomorphs of mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar epi=epidote, gl=glass or microcrystalline aggregate, amp=green amphibole, cb.=carbonate, ser=sericite, tit=titanite, apa=apatite, cly=clay minerals, prh=prehnite <> shows almost totally decomposed @abundant, Ocommon, ∆small, -rare

| Loca               | alities | Sample<br>No. | Depth<br>(m) | Rock Name                                            | Pyrite | Chalcopyrite | Covellite | Chalcocite | Tetrahedrite | Sphalerite | Galena | Cłausthalite<br>(PbSe) | Altaite<br>(PbTe) | Hessite<br>(Ag, Te) | Naumannite<br>(Ag <sub>2</sub> Se) | Magnetite | Hematite | Anatase |
|--------------------|---------|---------------|--------------|------------------------------------------------------|--------|--------------|-----------|------------|--------------|------------|--------|------------------------|-------------------|---------------------|------------------------------------|-----------|----------|---------|
| 4/6                | MJSU-1  | 153P          | 153.5        | cp-py-sph stringers                                  | 0      | 0            |           |            |              | 0          | 0      |                        | Ι                 |                     |                                    |           |          |         |
| Gossan             | WN30-1  | 215P          | 215.5        | cp-py-sph vein                                       | 0      | 0            |           |            |              | 0          | Δ      |                        |                   | Δ                   |                                    |           |          |         |
|                    |         | 122P          | 122.4        | cp-py breccia ore                                    | 0      | 0            |           |            |              | Δ          |        |                        |                   | Γ                   |                                    |           |          |         |
|                    |         | 124P          | 124.3        | py-cp-sph breccia ore                                | 0      | 0            |           |            |              | 0          | Δ      |                        | Δ                 |                     |                                    |           |          |         |
| 4/6                | MJSU-2  | 131P          | 131.2        | py-sph-cp <b>massive</b> ore                         | 0      | 0            | Δ         |            |              | 0          | Δ      |                        |                   |                     |                                    |           |          |         |
| Gossan             | NU30-2  | 132P          | 132.1        | py-cp-sph massive ore                                | 0      | 0            | Δ         |            |              | 0          | Δ      |                        |                   |                     |                                    |           |          |         |
|                    |         | 135P          | 135.7        | py breccia ore                                       | 0      | Δ            |           |            |              | Δ          | Δ      |                        |                   |                     |                                    |           |          |         |
|                    |         | 141P          | 141.2        | py-cp massive ore                                    | 0      | 0            | Δ         |            | 1            | Δ          |        |                        |                   |                     |                                    |           |          |         |
| Umm ad<br>Damar    | MJSU-3  | 214P          | 214.9        | cp-py network vein                                   | 0      | 0            |           |            |              | 0          | Δ      |                        |                   |                     |                                    |           |          |         |
| North              | WJ30-3  | 220P          | 220.6        | py-cp network vein                                   | 0      | 0            |           |            |              |            |        |                        |                   |                     |                                    | 0         | Δ        |         |
|                    |         | 1 <b>43</b> P | 143.3        | py-cp vein, 4cm wide                                 | 0      | 0            |           |            |              | 0          |        |                        |                   |                     |                                    |           |          | Δ       |
| Umm ad<br>Damar    | MJSU-4  | 1 <b>49P</b>  | 149.9        | py-cp veinlets                                       | 0      | 0            |           |            |              | Δ          |        |                        |                   |                     |                                    |           |          | 0       |
| Damar<br>North     | MJ50-4  | 156P          | 156.1        | py-cp vein, 15cm wide                                | 0      | 0            |           |            |              | 0          | Δ      | Δ                      |                   |                     |                                    |           |          | Δ       |
|                    |         | 279P          | 279.1        | py-cp veinlets                                       | 0      | 0            |           |            |              | Δ          |        |                        |                   |                     |                                    |           |          |         |
|                    |         | 81P           |              | disseminated & layered<br>cp-py                      | 0      | 0            |           |            |              | Δ          |        |                        |                   |                     |                                    |           |          | Δ       |
|                    |         | 96P           |              | cp-py veinlets                                       | Δ      | 0            |           |            |              | Δ          |        |                        |                   |                     |                                    |           |          |         |
| Umm ad<br>Damar    | MIDUE   | 236P          | 236.1        | cp veinlets, 15cm wide                               | Δ      | 0            |           |            |              |            |        |                        |                   | -                   |                                    |           |          | Δ       |
| Damar<br>North     | MJSU-5  | 271P          | 271.2        | massive py                                           | 0      | 0            |           |            |              | Δ          |        |                        |                   |                     |                                    |           |          |         |
|                    |         | 273P          | 273.1        | layered py-cp-sph                                    | Δ      | 0            |           |            |              | 0          |        |                        |                   |                     |                                    |           |          | 0       |
|                    |         | 329P          | 329.6        | cp veinlets, 1.5m wide                               | 0      | Ø            |           |            |              |            |        | Δ                      |                   |                     |                                    |           |          | Δ       |
| 4/6<br>Gossan      | MJSU-6  | 135P          |              | thinly banded breccia ore<br>consisting of sph-py-cp | Δ      | Δ            | Δ         | Δ          |              | 0          | Δ      |                        | Δ                 |                     |                                    |           |          |         |
|                    |         | 60P           |              | cp-qtz vein, 20cm <del>wide</del>                    | Δ      | 0            |           |            | Δ            | Δ          |        |                        |                   |                     |                                    |           |          |         |
| ortheast<br>of 4/6 | MJSU-7  | 63P           |              | cp-qtz veinlets, 1-2cm<br>wide                       | 0      | 0            |           |            |              | Δ          |        | Δ                      |                   |                     | Δ                                  |           |          | Δ       |
| Gossan             |         | 76P           | 76.6         | cp-qtz veinlets, 15cm<br>wide                        | 0      | Δ            |           |            |              | Δ          |        | Δ                      |                   |                     |                                    |           |          | Δ       |
|                    |         | <b>73</b> P1  | 73 3         | py-cp massive ore<br>fragment, 4×4cm                 | 0      | 0            |           |            |              | Δ          |        | Δ                      |                   |                     |                                    |           |          |         |
| Jabal<br>Sujarah   | MJSU-8  | 73P2          | 735          | sph massive ore<br>fragment, 7×7cm                   | 0      | 0            |           |            |              | Ø          |        |                        |                   |                     |                                    |           |          |         |
|                    |         | 83P ·         |              | py-cp massive ore                                    | 0      | Δ            |           |            |              |            |        |                        |                   |                     |                                    |           |          | Δ       |

| Appendix 1-31 | 1 Results of Microscopic Observation of Polished Section | ons (Core Samples) |
|---------------|----------------------------------------------------------|--------------------|
|---------------|----------------------------------------------------------|--------------------|

©abundant, Ocommon, ∆small

| Localities (Dr             | rill Hoie No.) | Sample<br>No. | Depth(m) | Rock Name                                              | Quartz | Calcite | Chlorite | Sericite | Plagioclase | Pyrite | Chalcopyrite |
|----------------------------|----------------|---------------|----------|--------------------------------------------------------|--------|---------|----------|----------|-------------|--------|--------------|
|                            |                | 98X           | 98.6     | Rhyodacitic lapilli tuff                               | 0      |         | Δ        | 0        | 0           |        |              |
|                            |                | 11 <b>7X</b>  | 117.4    | Basaltic tuff                                          | 0      | 0       | 0        |          | Δ           |        |              |
| 4/6 Gossan                 | MJSU-2         | 125X          | 125.7    | Rhyodacitic lapilli tuff                               | Δ      |         | 0        |          |             | 0      |              |
| 4/0 00858/1                | MJ30-2         | 1 <b>29X</b>  | 129.0    | Rhyodacitic lapilli tuff                               | 0      |         | Δ        | Δ        |             |        |              |
|                            |                | 142X          | 142.2    | Rhyodacitic tuff                                       | 0      |         | 0        |          |             |        |              |
|                            |                | 144X          | 144.7    | Rhyodacitic tuff                                       | 0      |         | Δ        | Δ        | Δ           |        |              |
|                            |                | 211X          | 211.5    | Porphyritic dacite                                     | 0      |         | 0        | Δ        |             |        |              |
| Umm ad Damar               | MJSU-3         | 217X          | 217.5    | Rhyodacitic coarse tuff                                | 0      |         | Δ        | Δ        |             |        |              |
| North                      |                | 224X          | 224.5    | hvodacitic?                                            | 0      |         | Δ        |          | Δ           |        |              |
|                            | mar MJSU-4     | 56X           | 56.3     | Strongly silicified<br>rhyodacitic? rock               | 0      | Δ       | 0        | 0        |             | Δ      |              |
|                            |                | 61X           | 61.5     | Silicified rhyodacitic rock                            | 0      | Δ       |          | 0        |             |        |              |
| Umm ad Damar               |                | 131X          | 131.6    | Rhyodacitic coarse tuff                                | 0      | 0       | 0        | Δ        |             |        |              |
| North                      | MJSU-4         | 138X          | 138.0    | Dacitic coarse tuff                                    | 0      | Δ       | 0        | 0        |             |        |              |
|                            |                | 14 <b>3</b> X | 143.1    | Chloritized part                                       | 0      | Δ       | 0        | 0        |             | Δ      |              |
|                            |                | 145X          | 145.3    | Dacitic coarse tuff                                    | 0      | Δ       | 0        | 0        |             | 0      |              |
|                            |                | 285X          | 285.8    | Pyritized part                                         | 0      | Δ       | 0        | 0        |             | 0      |              |
|                            |                | 79X           | 79.6     | Strongly chloritized part                              | 0      | 0       | 0        | 0        |             | Δ      |              |
|                            |                | 96X           | 96.3     | Strongly chloritized part                              | 0      | 0       | 0        |          |             |        |              |
|                            |                | 236X          | 236.1    | Chloritized part                                       | 0      |         | 0        |          |             | Δ      | 0            |
| Umm ad Damar               | MJSU-5         | 246X          | 246.6    | Chloritized part                                       |        |         | 0        |          |             | Δ      |              |
| North                      |                | 270X          | 270.6    | Chlorite & siliceous layer in thinly banded pyrite ore | 0      | Δ       | 0        | Δ        |             |        |              |
| }                          |                | 274X          | 274.3    | Chlorite & siliceous layer in<br>banded pyrite ore     | Δ      |         | 0        |          |             | Δ      | Δ            |
|                            |                | 331X          | 331.1    | Strongly chloritized part                              |        |         | 0        |          |             |        | Δ            |
| northeast of<br>4/6 Gossan | MJSU-6         | 134X          |          | Qtz-vein in graphite                                   | ٢      |         | 0        | Δ        |             |        |              |
|                            |                | 41X           | 41.7     | Brecciated silicified rock,<br>rhyodacitic tuff?       | ٢      | 0       |          | 0        |             |        |              |
| Jabal Sujarah              | MJSU-8         | 74X           | 74.6     | Clayey fine tuff 💦                                     | Δ      |         | Δ        | 0        |             | 0      |              |
| -                          |                | 141X          | 141.8    | Pumiceous volcanic breccia                             | 0      |         | Δ        | Δ        |             | Δ      |              |
|                            |                | 184X          | 184.9    | Pumiceous lapilli tuff                                 |        |         | Δ        | 0        |             | 0      |              |

# Appendix 1-32 Results of X-ray Diffraction Analysis (Core Samples)

| Samples)     |
|--------------|
| Outcrop      |
| and          |
| (Core        |
| Assay        |
| Ore          |
| Results of   |
| Appendix 2-1 |

| Drill Hole | Sample   | Del                    | Depth                              | Width          | ٩n    | Ag    | υ    | Zu   | 94<br>4 | S     | 9<br>L |
|------------|----------|------------------------|------------------------------------|----------------|-------|-------|------|------|---------|-------|--------|
| No.        | No.      | (m)                    | (                                  | (m)            | (g/t) | (g/t) | (%)  | (%)  | R       | (%)   | (%)    |
|            | -        | 105.95                 | 107.95                             | 2.00           | 0:30  | 21.2  | 1.88 | 0.05 | 0.00    | 4.98  | 3      |
|            | 2        | 107.95                 | 109.95                             | 2.00           | 0.35  | 26.8  | 2.37 | 0.07 | 0.00    | 6.98  | 1      |
| UAD-4      | 3        | 109.95                 | 112.05                             | 2.10           | 0.36  | 20.8  | 1.67 | 0.56 | 0.00    | 8.75  |        |
|            | 4        | 112.05                 | 114.05                             | 2.00           | 1.00  | 38.4  | 3.56 | 3.60 | 0.00    | 15.50 | 4      |
|            | 5        | 114.05                 | 115.00                             | 0.95           | 1.44  | 40.8  | 4.06 | 1.96 | 0.00    | 8.25  | E      |
| K0013101   | 3101     | 4/6 Gossan Prospect    | Prospect                           |                | <0.05 | <1.0  | 0.01 | 0.01 | 0.01    | ı     | 31.09  |
| K002       | K0020503 | B-12 Charge            | B-12 Chargeability Anomaly         | ıly            | <0.05 | 3.2   | 0.04 | 0.02 | 0.11    | ſ     | 2.30   |
| K0020603   | 0603     | O-21 Chargeability Ano | ability Anomaly                    | ylı            | <0.05 | 1.8   | 0.09 | 0.01 | 0.00    | ŧ     | 14.91  |
| K0020604   | 0604     | 0-21 charge            | 0-21 chargeability Anomaly         | y <sup>l</sup> | <0.05 | <1.0  | 0.06 | 0.02 | 0.00    | B     | 19.77  |
| K0021401   | 1401     | West of J-16           | West of J-18 Chargeability Anomaly | y Anomaly      | <0.05 | <1.0  | 0.02 | 0.01 | 0.00    | 9     | 14.44  |
| K0021402   | 1402     | West of J-16           | West of J-18 Chargeability Anomaly | y Anomaly      | 0.08  | 6.2   | 0.02 | 0.01 | 0.00    | I     | 8.86   |
| K0021403   | 1403     | West of J-18           | West of J-18 Chargeability Anomaly | y Anomaly      | <0.05 | <1.0  | 0.02 | 0.01 | 0.00    | ı     | 8.33   |
| K0021404   | 1404     | 4/6 Gossan Prospect    | Prospect                           |                | 0.05  | 1,4   | 0.01 | 0.01 | 0.01    | 4     | 3.31   |

| Sample S  | Symbol     | Locality             | Rock type              | Texture                                                                                           |                                                                                                                                      | Pher                                                                                                                                           | locrys      | sts or   | Phenocrysts or fragmnets | nets      |                                              |                       |           | Gro      | mbnu       | ass 0     | Groundmass or matrix           | XiX                |                   |            | Me                                                                                                | Metamorphic or alteration                    | phic (    | or alt    | eratio                          | E       |
|-----------|------------|----------------------|------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------------------|-----------|----------------------------------------------|-----------------------|-----------|----------|------------|-----------|--------------------------------|--------------------|-------------------|------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|-----------|---------------------------------|---------|
| No.       |            |                      |                        |                                                                                                   | МР                                                                                                                                   | clp                                                                                                                                            | h d         | q z p    | pl Kf                    | f op      | others                                       | * MP                  | clp       | qų       | zb         | ٦         |                                | Kf 6               | op <sup>oth</sup> | others Epi | pi<br>chl                                                                                         | amp                                          | ser       | tit       | ę                               | others  |
| KONDAFAF  |            | B-12                 | Rhyodacite glomero-    | glomero-                                                                                          |                                                                                                                                      |                                                                                                                                                |             | <b>.</b> | *                        |           |                                              |                       |           |          | 0          | 0         |                                | $\left  - \right $ |                   | 0          | <b>V</b>                                                                                          |                                              | *         |           | Δ                               |         |
| 000000    | -          | Anomaly              | weakly meta            | weakly meta porphyritic Feldspars                                                                 | Feldsp                                                                                                                               | are                                                                                                                                            | nodera      | tely alt | ered to                  | epidate   | moderately altered to epidote and carbonate. | arbona                |           | e micr   | ofractu    | ires arc  | filled r                       | mainly             | by qua.           | rtz and    | Late microfractures are filled mainly by quartz and minor epidote, chlorite and carbonate.        | spidote,                                     | chlori    | ite and   | carbon                          | nate.   |
| KUNDAEND  | 446        | B-12                 | Rhyodacite porphyritic | porphyritic                                                                                       |                                                                                                                                      |                                                                                                                                                |             | 7 *      | * \                      |           |                                              |                       |           |          | 0          | *         |                                |                    | *                 | 0          | 0                                                                                                 |                                              |           |           | 0                               |         |
| 20002004  |            | Anomaly              | weakly meta            |                                                                                                   | Rock is                                                                                                                              |                                                                                                                                                | affected by |          | opyliti                  | c alte    | propylitic alteration where feldspars        | wher                  | e feld    | spara    | are        | most      | mostly altered to              | red tu             | ) epid            | ote a      | epidote and carbonate.                                                                            | bonat                                        | e.        |           |                                 |         |
|           |            | B-12                 | Dacite                 | porphyritic                                                                                       |                                                                                                                                      |                                                                                                                                                |             | 0<br>▼   | 0                        | *         |                                              |                       |           |          | 0          | ⊲         | \$                             |                    |                   | 0          | 0                                                                                                 |                                              | *         |           | 0                               |         |
|           | •          | Anomaly              | weakiy meta            |                                                                                                   | Feldspan                                                                                                                             | idepars are moderately altered to epidote, carbonate and chlorite. Glassy material is mostly altered to chlorite. Late fractures are filled by | derately    | altered  | ta epidc                 | ıte, carb | onate al                                     | nd chlori             | ite. Glas | ay mat   | ariai is n | rostly al | tered to                       | chlorit            | v. Late f         | racture.   | s are fille                                                                                       | d by que                                     | urtz, cau | rbonate   | quartz, carbonate, and spidote. | idote.  |
| KOD34106  | ۰,<br>۲    | Southeast            | Rhyodacite glomero-    | glomero-                                                                                          |                                                                                                                                      |                                                                                                                                                | -           | 0        | 0                        |           |                                              |                       |           |          | 0          | 0         |                                |                    | *                 | *          | ⊲                                                                                                 |                                              |           |           | ⊲                               |         |
|           |            | of J-18              | weakly meta            | weakly meta porphyritic                                                                           |                                                                                                                                      | Matrix is weakly chloritized and carbonatized.                                                                                                 | chlorit     | ized an  | d carbo.                 | natized.  |                                              | mate fo               | rms pal   | tchy all | teration   | . Local   | y mild ir                      | ron sta            | ining alt         | ang mic    | Carbonate forms patchy alteration. Locally mild iron staining along microfracture is              | tre is du                                    | ie to o   | xidatio   | due to oxidation of sulfides.   | ides.   |
|           |            | Southeast            | Rhyodacite porphyritic | porphyritic                                                                                       |                                                                                                                                      |                                                                                                                                                | -           | 0        | *                        |           |                                              |                       |           |          | 0          | ⊲         |                                |                    | *                 |            | 0                                                                                                 |                                              | *         |           | ⊲                               |         |
| 00412000  | _          | of J-18              | weakly meta            |                                                                                                   | Weekly (                                                                                                                             | Weakly schistosed, some quartz phenocrysts show                                                                                                | d, some     | quartz   | phenoci                  | rysts sh  | ow rotat                                     | rotational effect and | fect and  | pressu   | rre shad   | lows. La  | te micro                       | ufractur.          | es paral          | lei to st  | pressure shadows. Late microfractures parallel to shear plane are filled by quartz and carbonate. | e are fill                                   | ed by q   | uertz e   | nd carbo                        | onate.  |
| K001 2001 | H PV       | East of 4/6          | Dacite                 | glomero-                                                                                          |                                                                                                                                      |                                                                                                                                                |             |          | * 0                      |           |                                              |                       |           |          | 0          | ⊲         |                                |                    | *                 | *          | ©<br>                                                                                             |                                              |           |           | ⊲                               |         |
| 10001000  | 2          | Gossan               | weakly meta            | porphyritic                                                                                       | Feldsp                                                                                                                               | Feldspars phenocrysts are mostly altered to carbonate, chlorite and epidote.                                                                   | ocrysta     | s are m  | lostly a.                | Itered t  | o carbo                                      | onate, c              | shlorite  | ande     | pidote.    | Matrix    | is mod                         | ieratel            | y chlori          | tized.     | Matrix is moderately chloritized. Late microfractures filled                                      | srofract                                     | iures fi  | illed w   | with carbonate.                 | onate.  |
| CUBUCUUN  | <u>م</u> ۔ | South                | Rhyodacite glomero-    | glomero-                                                                                          |                                                                                                                                      |                                                                                                                                                |             | <b>∇</b> | *                        | *         |                                              |                       |           |          | 0          | ⊲         |                                |                    |                   | *          | 0                                                                                                 |                                              | *         |           | ⊲                               | goe *   |
|           |            | of J-18              | weakly meta            | weakly meta porphyritic Qz phenocrysts rimmed by slikce. Feldspars phenocrysts are altered to cb. | Qz pher                                                                                                                              | tocrysts                                                                                                                                       | rimmed      | by slik  | a. Felds                 | ipers ph  | enocrys                                      | sts are (             | altered   | to cb, c | shi, & el  | oi. Two   | types ch                       | b noted            | (iron-r           | ich & Ir   | chi, & epi. Two types cb noted (iron-rich & iron-poor). Matrix is moderately chloritized          | ). Matrix                                    | is mod    | deratel   | y chloriti                      | ized.   |
|           | ;<br>rv    | South                | Andesite               | porphyritic                                                                                       |                                                                                                                                      |                                                                                                                                                |             |          | 0                        |           |                                              |                       |           |          | ⊲          | 0         |                                |                    | *                 | *          | 0                                                                                                 |                                              |           |           | ⊲                               |         |
| 10671004  |            | of J-18              | weakly meta            | & vesicular                                                                                       | Andes                                                                                                                                | ndesite or                                                                                                                                     | dacite.     |          | fics to                  | otally    | Mafics totally altered to ch                 | d to c                | -/+ lực   | - epi.   |            | vgdule    | Amygdules (?) filled with chl, | filled             | with              | chl, cb,   | epi                                                                                               | & qz.                                        |           |           |                                 |         |
| K0013009  | L<br>A     | East of 4/6 Andesite | Andesite               | porphyritic                                                                                       |                                                                                                                                      |                                                                                                                                                |             | -        | 0                        |           |                                              |                       |           |          |            | 0         | $\hat{\mathbf{x}}$             |                    | *                 | 4          | 0                                                                                                 |                                              |           |           | ⊲                               |         |
| 2000-0001 | 2          | Gossan               | weakly meta            | & vesicular                                                                                       | Basalt                                                                                                                               | asaltic andesite.                                                                                                                              | lesite      |          | Mafics totally           |           | altered                                      | d to chl,             | hl, epi,  | ంర       | cb. An     | nygdr     | Amygdules filled with chl      | led v              | ith ch            | låk qz.    | <b>N</b>                                                                                          |                                              |           |           |                                 |         |
| K0091405  | 5          | South of             | Andesite               | intersertal                                                                                       |                                                                                                                                      |                                                                                                                                                |             |          |                          |           |                                              |                       |           |          |            | 0         |                                | Ē                  | 0                 | 0          | 0                                                                                                 |                                              |           |           | ⊲                               |         |
|           | 2          | J-18                 | weakiy meta            | & vesicular                                                                                       | Mafics totally altered to chl +/- spi. Plagioclase mostly altered to spi, chl & cb. Locally amygdules filled with chl, epi, cb & qz. | otally alt                                                                                                                                     | ared to     | -/+ lha  | epi. Pla                 | gioclase  | mostly                                       | altered               | to epi, c | ihl & ch | , Local    | ly emyg   | lules fille                    | 9d with            | chi, epi.         | cb & q     | t. Micro                                                                                          | Microfractures with epi, cb and qz fillinga. | s with e  | api, cb i | and qz fii                      | llings. |

Abbrev. MP=pseudomorphs of mafic minerals, cpx=clinopyroxene, pl≃plagioclase, op≕opaque minerals, qz=quartz, hb=hornblend, Kf=K-feldspar, epi≕epidote, gl=glass or microcrystalline aggreagte, amp=green amphibole, cb=carbonate, ser=sericite, tit=titanite, apa=apatite, cly=clay minerals.

<> shows totally decomposed

© abundant O common ∆ small

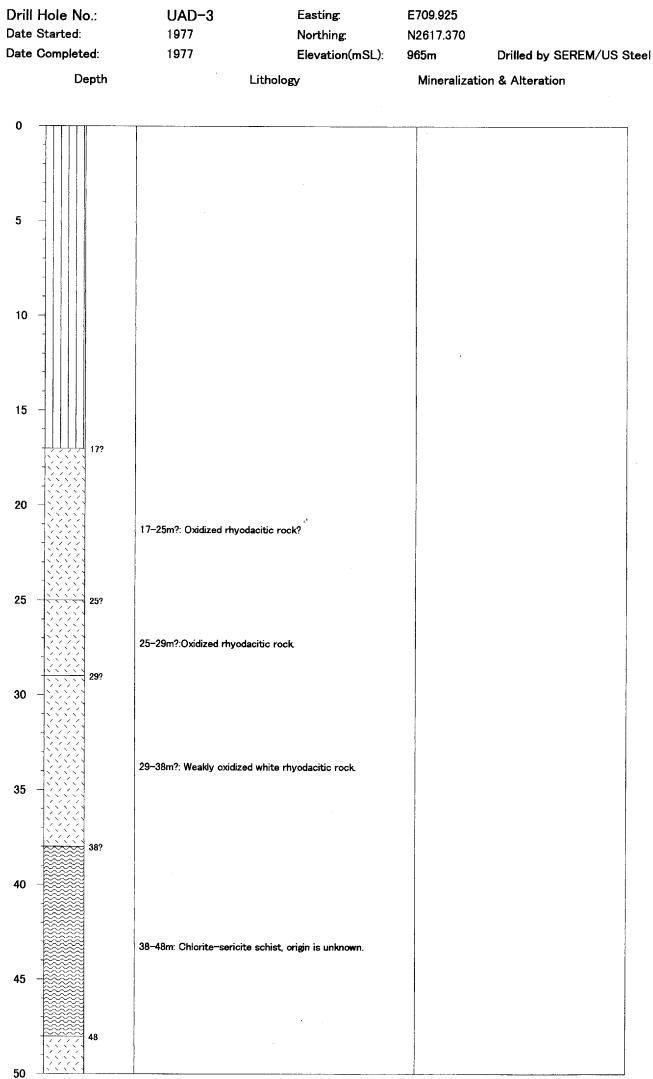
\* rare

Appendix 2-3 Results of Microscopic Observation of Polished Sections (Outcrop and Core Samples)

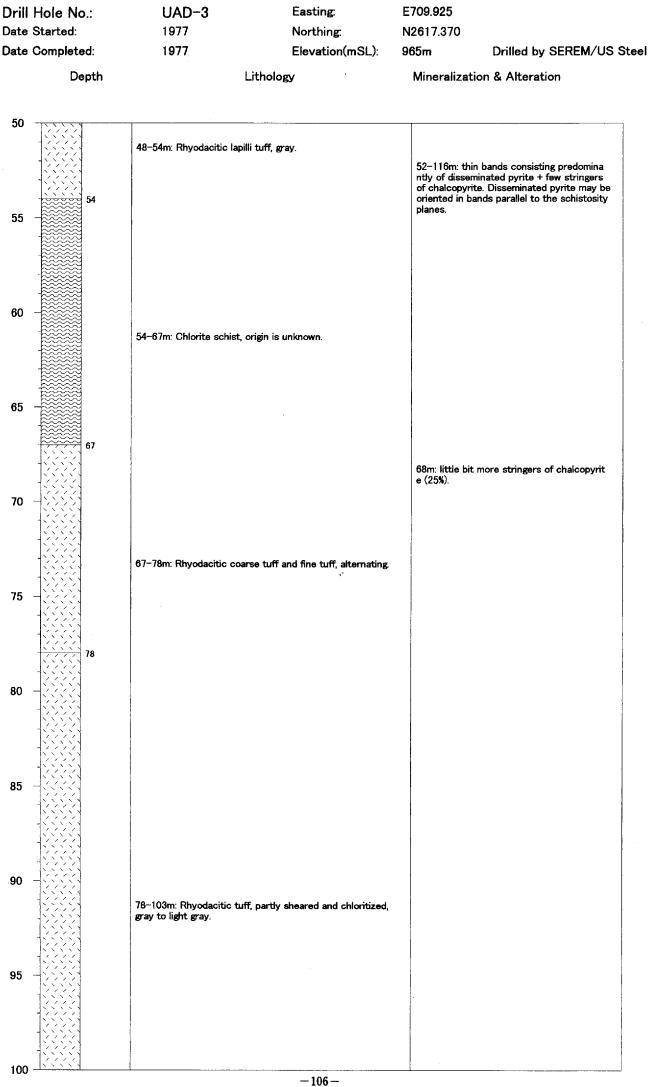
| əsstanA                            |                      |                      |                              |                                     | 4                    |                                         |                       |                                         |                              | <u> </u>                        |
|------------------------------------|----------------------|----------------------|------------------------------|-------------------------------------|----------------------|-----------------------------------------|-----------------------|-----------------------------------------|------------------------------|---------------------------------|
| Geothite                           |                      |                      |                              |                                     | ⊲                    | 4                                       | ٩                     | 4                                       | 0                            | 4                               |
| Hematite                           |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| etitengeM                          |                      | 4                    | ⊲                            | ٩                                   |                      |                                         |                       |                                         |                              |                                 |
| Pyrrhotite                         |                      |                      |                              |                                     | ⊲                    | 4                                       |                       |                                         | 1                            |                                 |
| Naumannite<br>(Ag <sub>2</sub> 3e) |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| essite<br>(Ag∑SA)                  |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| Altaite<br>(9Td9)                  |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| Clausthalite<br>(PbSe)             |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| ensleb                             |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| Sphalerite                         | 4                    | 0                    | 0                            | 0                                   | ⊲                    | ⊲                                       | 4                     |                                         |                              |                                 |
| Tetrahedrite                       |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| Chalcocite                         |                      |                      |                              |                                     |                      |                                         |                       |                                         |                              |                                 |
| Sovellite                          |                      |                      | 4                            |                                     | Þ                    | ٩                                       | ٩                     |                                         |                              |                                 |
| Chalcopyrite                       | ٩                    | 0                    | 0                            | Ø                                   | Ø                    | 0                                       | 0                     | 0                                       |                              | ⊲                               |
| Pyrite                             | Ø                    | Ø                    | Ø                            | 0                                   | 0                    | 0                                       | Ø                     | Ø                                       |                              |                                 |
| Rock Name                          | 108.1 Py-cp-qtz vein | 111.5 Py-cp-qtz vein | 112.2 Disseminated sp-py ore | 112.6 Disseminated sph-cp-py<br>ore | 99.1 Cp-py stringers | 104.7 Cp-py stringers,<br>dissemination | 111.1 Cp-py stringers | 243.6 Cp-py stringers,<br>dissemination | Siliceous Fe-oxides          | Quartz vein? with Cu-<br>oxides |
| Depth<br>(m)                       | 108.1                | 111.5                | 112.2                        | 112.6                               | 99.1                 | 104.7                                   | 111.1                 | 243.6                                   |                              |                                 |
| Sample<br>No.                      | 108P                 | 111P                 | 112P1                        | 112P2                               | <b>466</b>           | 104P                                    | 111P                  | 243P                                    | K0013101                     | K0022403                        |
| Localities                         |                      |                      |                              |                                     |                      | 9-UA11                                  |                       |                                         | South of 4/6 Gossan K0013101 |                                 |
|                                    |                      | Umm ad<br>Damar      | South                        |                                     |                      | Umm ad<br>Damar                         | North                 |                                         | South of 4                   | Northeast of M-27<br>Anomaly    |

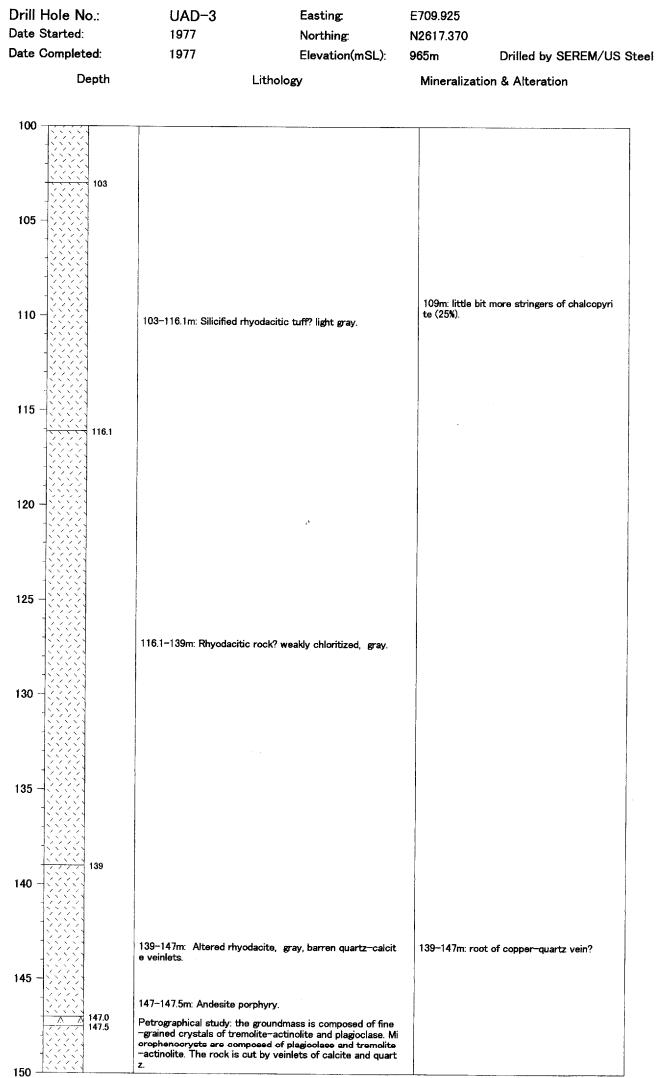
©abundant, Ocommon, ∆small

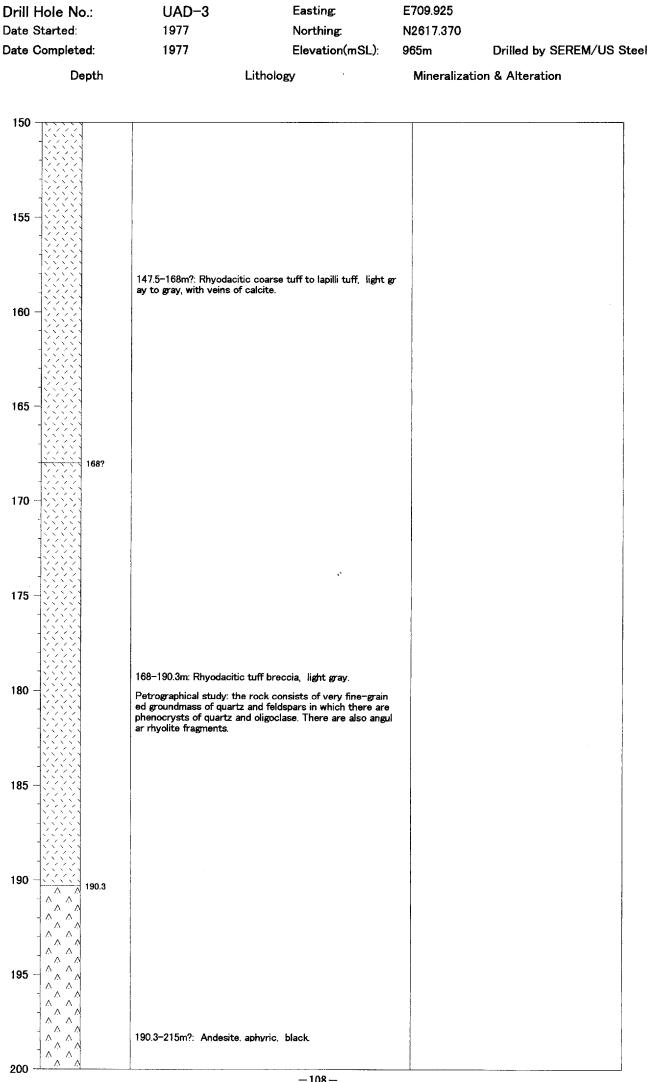
.


Appendix 2-4 Results of X-ray Diffraction Analysis (Outcrop and Core Samples)

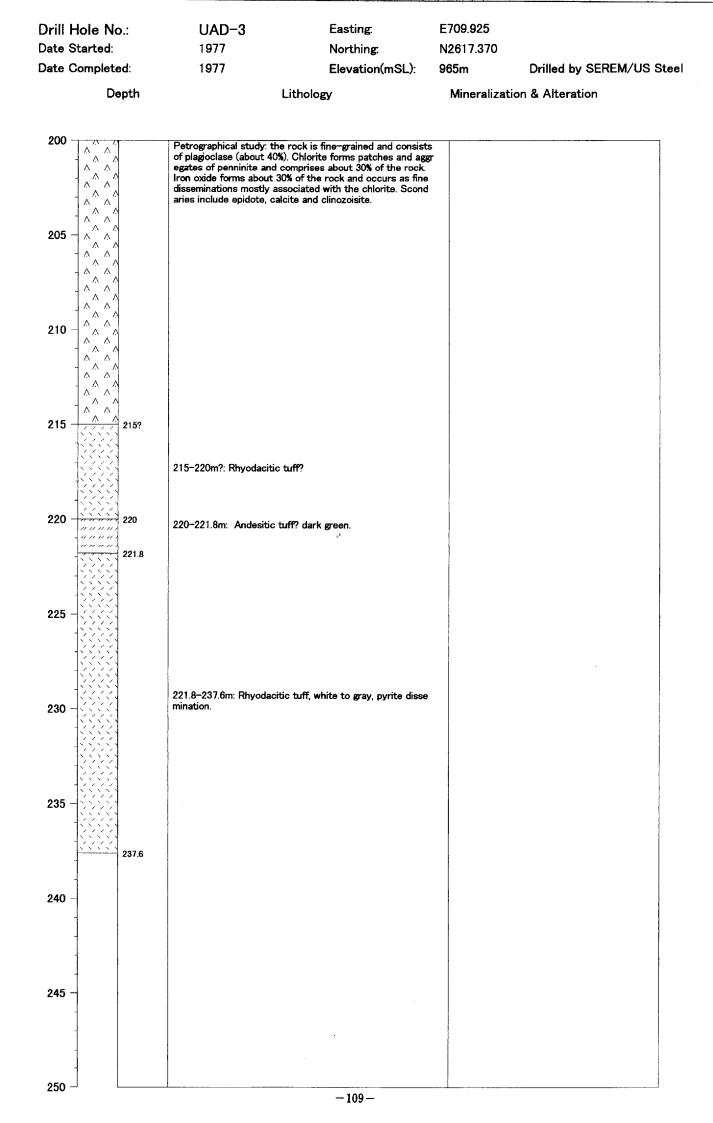
| Hematite                    |                        | l                      |                                        | 4                                     | 4                                                |                                  | 4                            |                                        |                                                   |                                   |
|-----------------------------|------------------------|------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------|----------------------------------|------------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------|
| Chalcopyrite                | 4                      |                        |                                        |                                       |                                                  |                                  |                              |                                        |                                                   |                                   |
| Pyrite                      | 4                      | 4                      |                                        |                                       |                                                  |                                  |                              |                                        |                                                   |                                   |
| ၂အ၊င                        | 0                      |                        |                                        |                                       |                                                  | 1                                |                              |                                        |                                                   |                                   |
| Epidote                     |                        |                        | 0                                      |                                       |                                                  |                                  |                              |                                        |                                                   |                                   |
| Plagioclase                 |                        |                        |                                        |                                       |                                                  |                                  |                              |                                        |                                                   |                                   |
| Sericite                    |                        |                        |                                        | 4                                     |                                                  | 4                                |                              |                                        | 4                                                 | Δ                                 |
| Chlorite                    | ٩                      | 4                      | ⊲                                      |                                       |                                                  | 4                                |                              |                                        | ⊲                                                 | 4                                 |
| Calcite                     | 0                      | 0                      | ⊲                                      |                                       |                                                  | 4                                |                              |                                        |                                                   |                                   |
| Tremolite                   |                        |                        | 0                                      |                                       |                                                  |                                  |                              |                                        |                                                   |                                   |
| Guartz                      | 4                      | 0                      | ⊲                                      | 0                                     | 0                                                | 0                                | 0                            | Ø                                      | 0                                                 | 0                                 |
| Rock Name                   | 112.9 Chloritized rock | 114.5 Chloritized rock | Strongly epidotized andesitic rock     | Silicified dacitic rock with hematite | Silicified and clayey dacitic rock with hematite | Carbonatized rhyodacitic<br>rock | Ferruginous rhyodacitic rock | Silicified rock with hematite, jasper? | Strongly silicified dacitic rock<br>with hematite | Rhyodacitic rock with<br>hematite |
| Depth(m)                    | 112.9                  | 114.5                  |                                        |                                       |                                                  |                                  |                              | •                                      |                                                   |                                   |
| Sample<br>No.               | 112X                   | 114X                   | K0020801                               | K0021402                              | K0021403                                         | K0020602                         | K0020601                     | K0020504                               | K0022401                                          | K0022408                          |
| Localities (Drill Hole No.) | Umm ad                 | Damar South UAU-4      | West of Umm ad Damar<br>South Prospect | West of J-18 Anomaly                  | West of J-18 Anomaly                             | North of MJSU-7                  | Northeast of MJSU-7          | North of Jabal Sujarah                 | North of M-27 Anomaly                             | J-18 Anomaly                      |

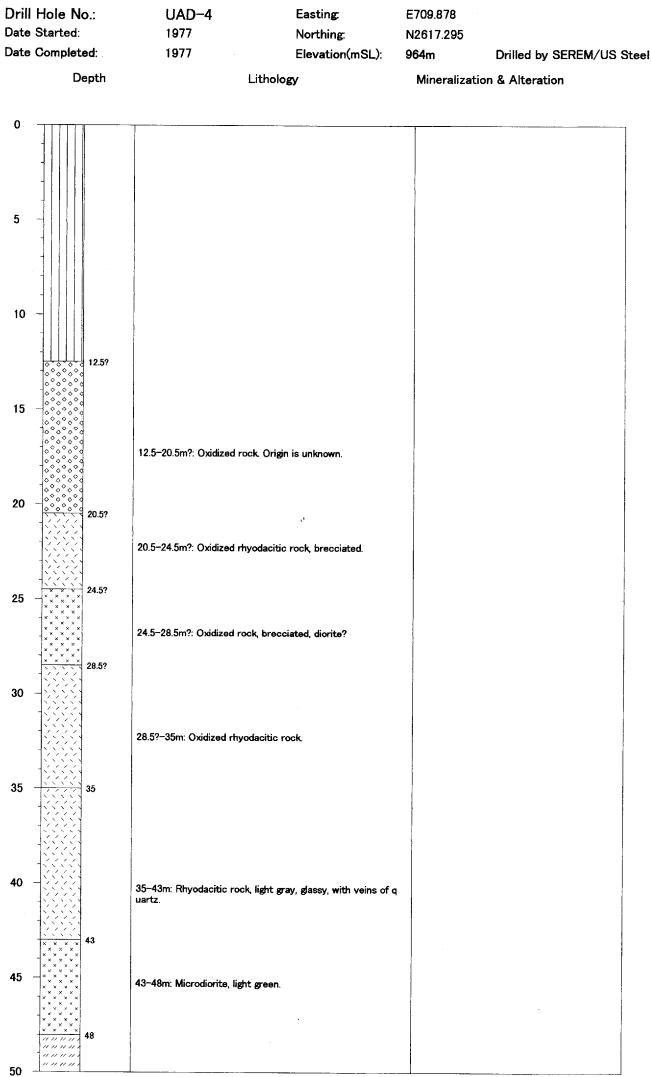

\_


Appendix 2-5 Geological Logs of UAD-3, UAD-4, UAD-6 and UAD-10


e.




-105 -

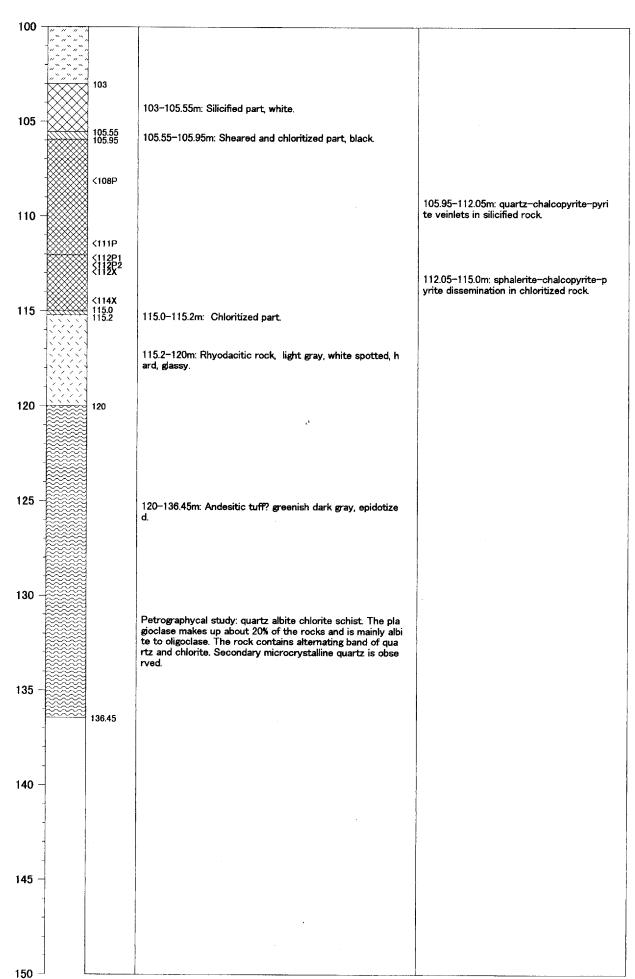




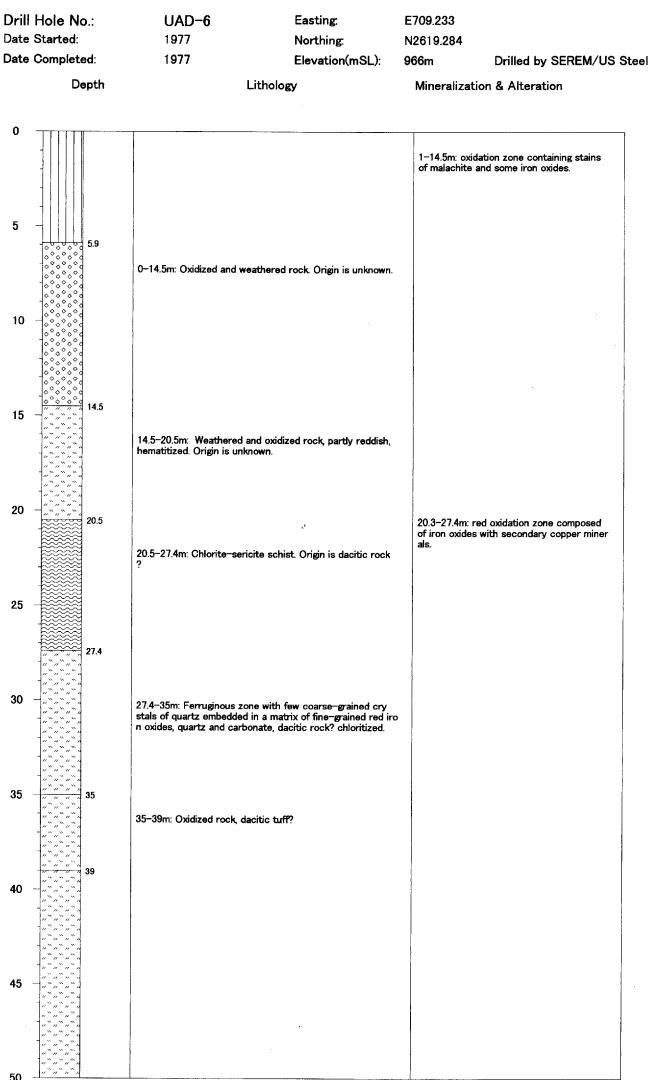



-108-






-111 -


| Drill Hole No.:<br>Date Started: | UAD-4<br>1977 | Easting:<br>Northing: | E709.878<br>N2617.295 |                           |
|----------------------------------|---------------|-----------------------|-----------------------|---------------------------|
| Date Completed:                  | 1977          | Elevation(mSL):       | 964m                  | Drilled by SEREM/US Steel |
| Depth                            | Li            | thology               | Mineralizatio         | n & Alteration            |

| 0   |                                         |                                                                                          |  |
|-----|-----------------------------------------|------------------------------------------------------------------------------------------|--|
| ·   |                                         | 48-75m: Andesitic tuff, greenish gray.                                                   |  |
|     | 1111111                                 |                                                                                          |  |
|     | 11 11 11 11 1                           | Petrographycal study: the rock shows development of fine                                 |  |
|     |                                         | -grained chlorite, sericite, epidote and tremolite-actinolite                            |  |
|     | 11 11 11 11                             | There are fragments composed mostly of glassy material.                                  |  |
|     | 1.1.1.1.1.                              |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 11 11 11 11                             |                                                                                          |  |
| 5   |                                         |                                                                                          |  |
| ·   | a a a a d                               |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 1111111                                 |                                                                                          |  |
|     | 11 11 11 11 11                          |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 11 11 11 11                             |                                                                                          |  |
| )   | - 11 11 11 11 1                         |                                                                                          |  |
|     | 10 10 10 10 1                           |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 1111111                                 |                                                                                          |  |
|     | 11 11 11 11 1                           |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 11 11 11 11 1                           |                                                                                          |  |
| 5   |                                         |                                                                                          |  |
|     | 11 11 11 11 1                           |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 111111                                  |                                                                                          |  |
|     | 1                                       |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 11 11 11 11                             |                                                                                          |  |
| ) · |                                         |                                                                                          |  |
|     | 11 11 11 11 1                           |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 11/11/11/1                              |                                                                                          |  |
|     | 11 11 11 11                             |                                                                                          |  |
|     | 1 11 11 11                              |                                                                                          |  |
|     | 11 11 11 11 1                           |                                                                                          |  |
|     | 1111111                                 | e e                                                                                      |  |
|     | a a a a a                               |                                                                                          |  |
| 5 · | 75                                      |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | -2222                                   | 75 01 Em. Disconducibie? much white the light energy transmission                        |  |
|     |                                         | 75-81.5m: Rhyodacitic? rock, white to light gray, traversed<br>by numerous quartz veins. |  |
|     | 1/2/2                                   | by numerous quartz veins.                                                                |  |
|     |                                         |                                                                                          |  |
| ) - | コンシンショー                                 |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | 81.5                                    |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | <i>\″,∾″,</i> ∾″,∾∬                     |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | ]"""""""                                |                                                                                          |  |
| -   |                                         |                                                                                          |  |
|     | 11 11 11 11                             | 81.5-90.7m: Dacitic? tuff, greenish gray.                                                |  |
|     | <u>_</u> /~``^``^                       |                                                                                          |  |
|     | <i>"""""</i> """                        |                                                                                          |  |
|     | -"."."."                                |                                                                                          |  |
|     | " " " " " "                             |                                                                                          |  |
|     | 1, *, *, *, *,                          |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | ] « » « » « » «                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     | " <u>"</u> """                          |                                                                                          |  |
|     | 90.7                                    |                                                                                          |  |
|     | " <i>"</i> """""                        |                                                                                          |  |
|     | 1                                       |                                                                                          |  |
|     | <u>"</u> """"""                         |                                                                                          |  |
|     | 7″``″``″``^                             |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
|     |                                         |                                                                                          |  |
| -   |                                         | 90.7-103m: Dacitic? tuff, gray, weakly chloritized.                                      |  |
| -   |                                         |                                                                                          |  |
| -   | TE E M M                                |                                                                                          |  |
| -   | 11° 11° 11° 11                          |                                                                                          |  |
| -   |                                         |                                                                                          |  |
| -   |                                         |                                                                                          |  |
| -   |                                         |                                                                                          |  |
| -   |                                         |                                                                                          |  |
| -   | 1 · · · · · · · · · · · · · · · · · · · |                                                                                          |  |

| Drill Hole No.: | UAD-4 | Easting.        | E709.878    |                           |
|-----------------|-------|-----------------|-------------|---------------------------|
| Date Started:   | 1977  | Northing:       | N2617.295   |                           |
| Date Completed: | 1977  | Elevation(mSL): | 964m        | Drilled by SEREM/US Steel |
| Depth           |       | Lithology       | Mineralizat | ion & Alteration          |

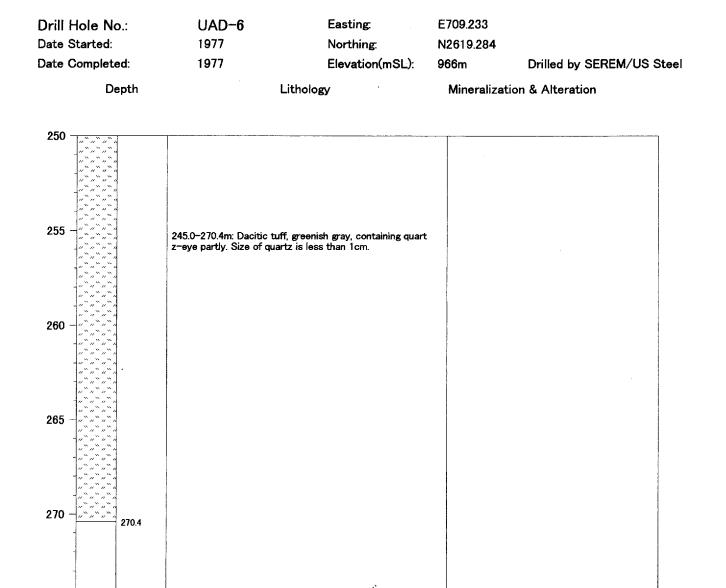


-113-

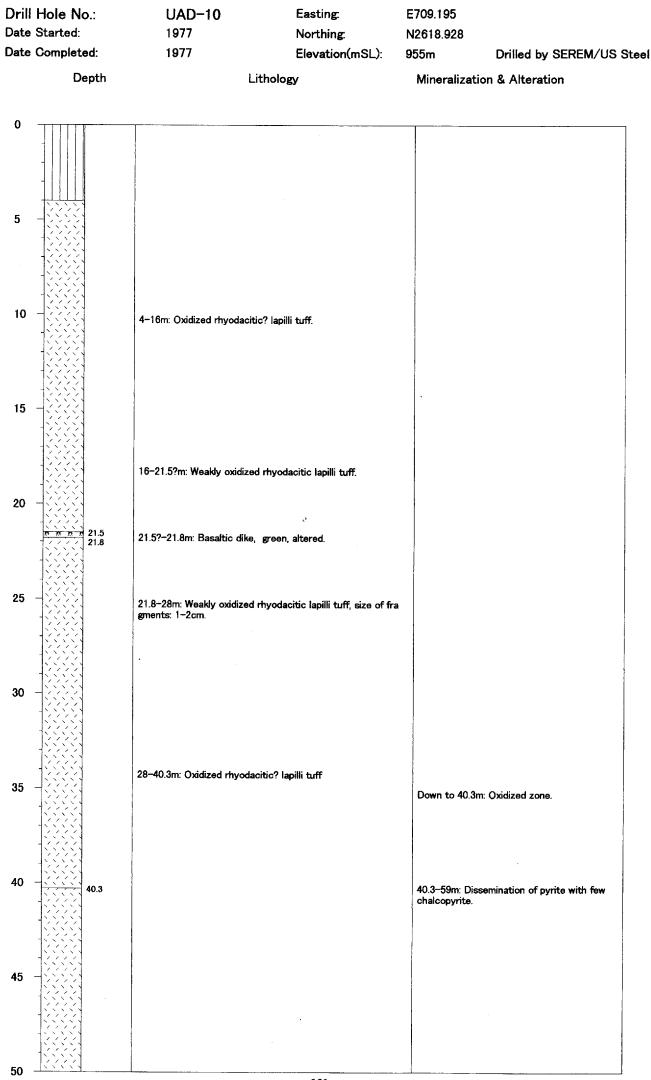


| Drill Hole No.: | UAD-6 | Easting:        | E709.233      |                           |
|-----------------|-------|-----------------|---------------|---------------------------|
| Date Started:   | 1977  | Northing:       | N2619.284     |                           |
| Date Completed: | 1977  | Elevation(mSL): | 966m          | Drilled by SEREM/US Steel |
| Depth           | Litho | logy            | Mineralizatio | n & Alteration            |

| - 0  |                                                                                                                                              |              |                                                            |                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 50 - |                                                                                                                                              |              | 39-64m: Chloritized and brecciated dacitic rock, green, pa |                                                                                          |
|      | -"`"""""                                                                                                                                     |              | rtly hematitized                                           |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | <i>""</i> """"»»»                                                                                                                            |              |                                                            |                                                                                          |
|      | - <i>"" "" "" "</i> " "                                                                                                                      |              |                                                            |                                                                                          |
| 55 - | """""                                                                                                                                        |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | <i>"""""""</i>                                                                                                                               |              |                                                            |                                                                                          |
|      | 11 11 11 11 11                                                                                                                               |              |                                                            |                                                                                          |
|      | <i>"""""</i>                                                                                                                                 |              |                                                            |                                                                                          |
|      | - <i></i>                                                                                                                                    |              |                                                            |                                                                                          |
| 60 - | <i>"""""""</i> ""                                                                                                                            |              |                                                            |                                                                                          |
|      | "" " " " "<br>" " " " "                                                                                                                      |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              | 24           |                                                            |                                                                                          |
|      | " <i>"</i> """""                                                                                                                             | 54           |                                                            |                                                                                          |
| 65 - |                                                                                                                                              |              |                                                            |                                                                                          |
|      | - <i>"" "" "</i> " "                                                                                                                         |              |                                                            |                                                                                          |
|      | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                |              |                                                            |                                                                                          |
|      | <i>"""</i> """"""                                                                                                                            |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
| 70 - |                                                                                                                                              |              | 64–76m: Moderately chloritized, dacitic rock, greenish gra |                                                                                          |
|      | <i></i>                                                                                                                                      |              | y, brecciated, with quartz veins.                          |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | ",",",","                                                                                                                                    |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              | , <sup>1</sup>                                             |                                                                                          |
| 75 - |                                                                                                                                              |              |                                                            |                                                                                          |
| 10 - | """"""""""""""""""""""""""""""""""""""                                                                                                       |              |                                                            |                                                                                          |
|      |                                                                                                                                              | 76           |                                                            |                                                                                          |
|      | - V V V V V<br>- V V V V V V<br>- V V V V V V                                                                                                |              |                                                            |                                                                                          |
|      | v v v v v                                                                                                                                    |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | ****                                                                                                                                         |              |                                                            |                                                                                          |
| 30 - |                                                                                                                                              |              |                                                            | 80–99.2m: local concentration of pyrite an                                               |
|      | - V V V V V<br>- V V V V V                                                                                                                   |              |                                                            | 80-99.2m: local concentration of pyrite an<br>d chalcopyrite with some secondary carbo   |
|      | <u> </u>                                                                                                                                     |              |                                                            | nates (calcite). The mineralization is of the stringer type and contains minor amount of |
|      | V V V V V<br>V V V V V                                                                                                                       |              |                                                            | magnetite.                                                                               |
|      | - V V V V V<br>V V V V V                                                                                                                     |              |                                                            |                                                                                          |
|      | <u> </u>                                                                                                                                     |              |                                                            |                                                                                          |
| 15 - | V V V V V<br>V V V V V                                                                                                                       |              |                                                            |                                                                                          |
|      | <u><u>v</u>vvvv</u>                                                                                                                          |              | 76-98m: Porphyritic dacite.                                |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | <u> </u>                                                                                                                                     |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | <sup>™</sup> *****<br>*****                                                                                                                  |              |                                                            |                                                                                          |
| 0 ~  | - V V V V V<br>V V V V V                                                                                                                     |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | V V V V V<br>V V V V V                                                                                                                       |              |                                                            |                                                                                          |
|      | *****<br>*****                                                                                                                               |              |                                                            |                                                                                          |
|      | *****<br>*****                                                                                                                               |              |                                                            |                                                                                          |
|      | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |              |                                                            |                                                                                          |
| 5 -  |                                                                                                                                              |              |                                                            |                                                                                          |
| -    |                                                                                                                                              |              |                                                            |                                                                                          |
|      |                                                                                                                                              |              |                                                            |                                                                                          |
|      | V V V V<br>  V V V V                                                                                                                         |              |                                                            |                                                                                          |
| -    | <u><u>v</u>vvvv</u>                                                                                                                          | 8.0          |                                                            |                                                                                          |
|      |                                                                                                                                              |              | 98–100m: Chloritized rock.                                 | 98-100m: interval for chemical analysis. py rite-chalcopyrite dissemination and veinlet  |
| -    |                                                                                                                                              | 000          |                                                            |                                                                                          |
| - 00 | MAXAAAAAA                                                                                                                                    | (99P<br>00.0 |                                                            | S.                                                                                       |

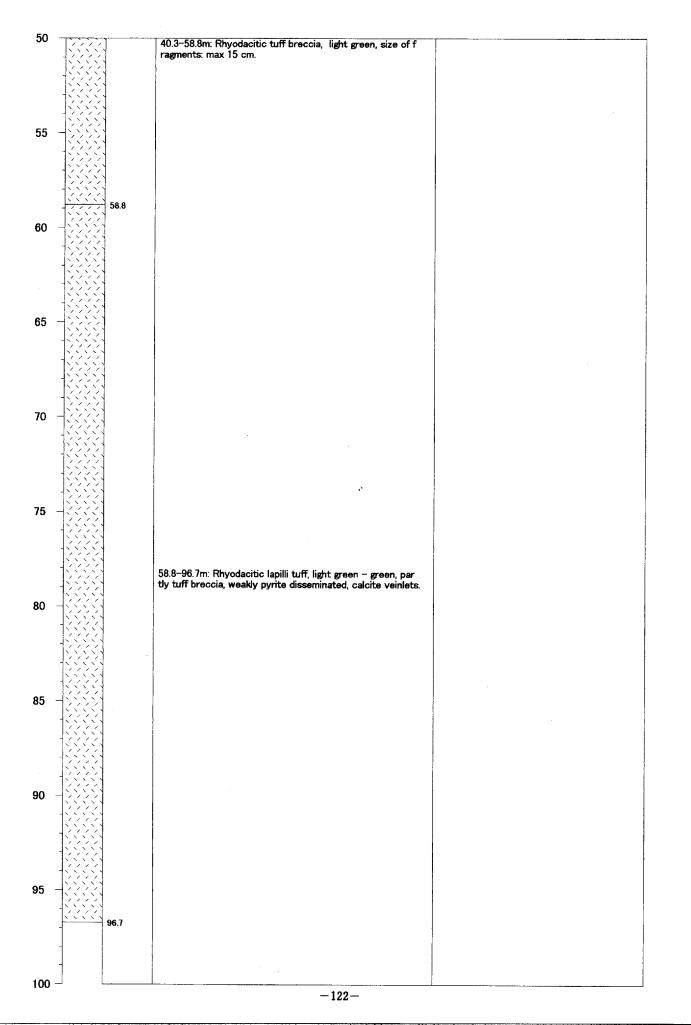

| Drill Hole No.: | UAD-6 | Easting:       | E709.233      |                           |
|-----------------|-------|----------------|---------------|---------------------------|
| Date Started:   | 1977  | Northing:      | N2619.284     |                           |
| Date Completed: | 1977  | Elevation(mSL) | 966m          | Drilled by SEREM/US Steel |
| Depth           |       | Lithology      | Mineralizatio | n & Alteration            |

| 100            |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 100 -          | ****                                                                                                                              |                                                                                          | 100-104m: Porphyritic dacite? greenish gray.                                                                            |                                             |
|                | - <u>v</u> v v v v<br>v v v v v                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\                                       |                                                                                          |                                                                                                                         |                                             |
|                | 00000                                                                                                                             | r                                                                                        |                                                                                                                         |                                             |
|                |                                                                                                                                   | 104                                                                                      |                                                                                                                         |                                             |
| 105 -          |                                                                                                                                   | 8                                                                                        |                                                                                                                         |                                             |
| 100            |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          | 104–113m: Altered zone composed mainly of chlorite and                                                                  |                                             |
|                |                                                                                                                                   |                                                                                          | quartz.                                                                                                                 |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         | 104–113m: interval for chemical analysis, p |
|                |                                                                                                                                   | <k903030< td=""><td></td><td>yrite-chalcopyrite dissemination and veinle</td></k903030<> |                                                                                                                         | yrite-chalcopyrite dissemination and veinle |
| 10 -           |                                                                                                                                   | 1(109.1m)                                                                                |                                                                                                                         | ts.                                         |
| 110 -          |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   | <111P                                                                                    |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   | 113                                                                                      |                                                                                                                         |                                             |
|                | v v v v v                                                                                                                         |                                                                                          |                                                                                                                         |                                             |
| 15             | * * * * * *<br>* * * * * *                                                                                                        |                                                                                          |                                                                                                                         |                                             |
| 15 -           | - * * * * * *<br>* * * * * *                                                                                                      |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | V V V V V                                                                                                                         |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | _ V V V V V<br>V V V V V V                                                                                                        |                                                                                          |                                                                                                                         |                                             |
|                | v v v v v<br>  v v v v v                                                                                                          |                                                                                          |                                                                                                                         |                                             |
| ••             | *****                                                                                                                             |                                                                                          |                                                                                                                         |                                             |
| 20 -           | <br>  <sup>v</sup> v v v v                                                                                                        |                                                                                          | 113-130m: Porphyritic dacite, greenish gray, size of plago                                                              |                                             |
|                | <sup>1</sup> |                                                                                          | clase 2-5mm. Maific minerals are chloritized.                                                                           |                                             |
|                | <u> </u>                                                                                                                          |                                                                                          |                                                                                                                         |                                             |
|                | v v v v v                                                                                                                         |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | - * * * * * *<br>- * * * * *                                                                                                      |                                                                                          |                                                                                                                         |                                             |
| <b></b>        | <u> </u>                                                                                                                          |                                                                                          |                                                                                                                         |                                             |
| 25 -           | <br>                                                                                                                              |                                                                                          |                                                                                                                         |                                             |
|                | - v v v v v                                                                                                                       |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | V V V V V<br>V V V V V                                                                                                            |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                | ****                                                                                                                              |                                                                                          |                                                                                                                         |                                             |
| 20             | \                                                                                                                                 | 100                                                                                      |                                                                                                                         |                                             |
| 30 -           | <u> </u>                                                                                                                          | 130                                                                                      | 130–135m: Porphyritic dacite, size of plagioclase 2–5mm,                                                                |                                             |
|                |                                                                                                                                   |                                                                                          | partly contains quartz-eye.                                                                                             |                                             |
|                | <u> </u>                                                                                                                          |                                                                                          |                                                                                                                         |                                             |
|                | V V V V V<br>V V V V V                                                                                                            |                                                                                          | Petrograhical study: meta-dacite porphyry composed of c                                                                 |                                             |
|                | *****<br>****                                                                                                                     |                                                                                          | hlorite and sericite, and small crystal of plagioclase. There are phenocrysts of plagioclase and quartz. The phenocryst |                                             |
| -              | <u> </u>                                                                                                                          |                                                                                          | s of plagioclase are partly altered to sericite. The size of p                                                          |                                             |
| 9E             | *****<br>****                                                                                                                     | 4.95                                                                                     | henocrysts may reach up to 1mm in diameter.                                                                             |                                             |
| 35 -           |                                                                                                                                   | 135                                                                                      |                                                                                                                         |                                             |
|                | ****                                                                                                                              |                                                                                          |                                                                                                                         |                                             |
| -              |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          | 135–142.3m: Dacite, greenish gray.                                                                                      | }                                           |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
|                |                                                                                                                                   |                                                                                          |                                                                                                                         | · · ·                                       |
|                | VVVVV                                                                                                                             |                                                                                          |                                                                                                                         |                                             |
| - 01           |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
| -              | *****                                                                                                                             |                                                                                          |                                                                                                                         | )                                           |
|                | × × × × × ×                                                                                                                       |                                                                                          |                                                                                                                         |                                             |
| -              | V V V V V                                                                                                                         | 142.3                                                                                    |                                                                                                                         | 142.3-186m: local dissemination of pyrite ( |
| -              | ****                                                                                                                              |                                                                                          |                                                                                                                         | 50%).                                       |
| -              |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
| 45             |                                                                                                                                   |                                                                                          |                                                                                                                         |                                             |
| 45 -           | ] v v v v v [                                                                                                                     |                                                                                          | 142.3–152.53m: Dacite, greenish gray, quartz~eye. Size of                                                               |                                             |
|                |                                                                                                                                   |                                                                                          | quartz is 5-8mm in diameter.                                                                                            |                                             |
|                | *****                                                                                                                             |                                                                                          |                                                                                                                         |                                             |
| -              |                                                                                                                                   |                                                                                          | · ·                                                                                                                     |                                             |
|                | v v v v v v                                                                                                                       |                                                                                          |                                                                                                                         |                                             |
| -              |                                                                                                                                   | 1                                                                                        |                                                                                                                         |                                             |
| -              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                           |                                                                                          |                                                                                                                         |                                             |
| -<br>-<br>50 - | ~~~~                                                                                                                              |                                                                                          |                                                                                                                         |                                             |


| rill Hole N<br>te Started                                                                   |         | UAD-6<br>1977                                             | Eastir<br>North     |                  | E709.233<br>N2619.284 |                         |
|---------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|---------------------|------------------|-----------------------|-------------------------|
| te Comple                                                                                   |         | 1977                                                      |                     | tion(mSL):       | 966m                  | Drilled by SEREM/US Ste |
| •                                                                                           | Depth   |                                                           | ithology            |                  |                       | on & Alteration         |
|                                                                                             |         |                                                           |                     |                  |                       |                         |
| 50                                                                                          | V<br>V  |                                                           |                     |                  |                       |                         |
|                                                                                             | V       |                                                           |                     |                  |                       |                         |
|                                                                                             |         |                                                           |                     |                  |                       |                         |
| <u> </u>                                                                                    | Ý.      |                                                           |                     |                  | 2                     |                         |
| v v v v<br>  v v v v                                                                        | Ϋ́      |                                                           |                     |                  |                       |                         |
| V V V V                                                                                     | v       |                                                           |                     |                  |                       |                         |
| 55 - ****                                                                                   | V.      |                                                           |                     |                  |                       |                         |
| * * * *<br>  * * * *                                                                        | Ý       |                                                           |                     |                  |                       |                         |
| - * * * * *                                                                                 | ν.      |                                                           |                     |                  |                       |                         |
| ****<br>****                                                                                |         |                                                           |                     |                  |                       |                         |
| * * * * *<br>  * * * *                                                                      |         |                                                           |                     |                  |                       |                         |
| - V V V V<br>V V V V                                                                        |         |                                                           |                     |                  |                       |                         |
| 60 - ****                                                                                   | v       | 152.53-197.1m: Porphyriti                                 | o quartz-ava da     | ito lava? moo    |                       |                         |
| V V V V<br>V V V V                                                                          | Ý.      | nish gray.                                                | ∼ quaitz∵aya (Ja)   | ALE, IGVA: BIEE  |                       |                         |
| v v v v<br>v v v v                                                                          | Ϋ́      |                                                           |                     |                  |                       |                         |
|                                                                                             | Ŷ       | Previous petrographical s                                 | tudy: Rock is con   | nposed of fine-g | .                     |                         |
| - vvvv                                                                                      | Ý       | rained quartz and feldspare<br>ered to clay minerals, mai | rs that are partly  | to completely al | lt                    |                         |
|                                                                                             | Ý.      | ved in the rock are compo                                 | osed of chlorite, a | pidote and opa   |                       |                         |
| AF                                                                                          | v v     | que iron oxides, and pyrite                               | Э.                  |                  |                       |                         |
| -<br>  v v v v                                                                              | v       |                                                           |                     |                  |                       |                         |
| - * * * * *<br>  * * * *                                                                    | V.      |                                                           |                     |                  |                       |                         |
| <sup>V</sup> <sup>V</sup> <sup>V</sup><br>  <sup>V</sup> <sup>V</sup> <sup>V</sup>          |         |                                                           |                     |                  |                       |                         |
| - V V V V<br>- V V V V                                                                      |         |                                                           |                     |                  |                       |                         |
| <u> </u>                                                                                    | V.      |                                                           |                     |                  |                       |                         |
|                                                                                             | v       |                                                           |                     |                  |                       |                         |
| 70 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                    | v       |                                                           |                     |                  |                       |                         |
| V V V V<br>V V V V                                                                          | Ý.      |                                                           |                     |                  |                       |                         |
| V V V V                                                                                     | v)      |                                                           |                     |                  |                       |                         |
| - * * * *<br>* * * *                                                                        | Ý       |                                                           |                     |                  |                       |                         |
| _ \` \` \` \<br>  \` \` \` \`                                                               | v[      |                                                           |                     |                  |                       |                         |
| V V V V<br>  V V V V                                                                        | v       |                                                           |                     | 17               |                       |                         |
| 75 -                                                                                        | v<br>v  |                                                           |                     |                  |                       |                         |
|                                                                                             |         |                                                           |                     |                  |                       |                         |
| - v v v v<br>  v v v v                                                                      | ν.      |                                                           |                     |                  |                       |                         |
|                                                                                             | v       |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý       |                                                           |                     |                  |                       |                         |
| 0000                                                                                        | v       |                                                           |                     |                  |                       |                         |
| - V V V V<br>V V V V                                                                        | Ý.      |                                                           |                     |                  |                       |                         |
| 80 - ****                                                                                   | v       |                                                           |                     |                  |                       |                         |
|                                                                                             | v       |                                                           |                     |                  |                       |                         |
|                                                                                             | v.      |                                                           |                     |                  |                       |                         |
|                                                                                             | V V     |                                                           |                     |                  |                       |                         |
| - * * * *<br>  * * * *                                                                      | v       |                                                           |                     |                  |                       |                         |
| - * * * * *<br>* * * * *                                                                    | v       |                                                           |                     |                  |                       |                         |
| 85 - ****                                                                                   | v       |                                                           |                     |                  |                       |                         |
|                                                                                             | v<br>v  |                                                           |                     |                  |                       |                         |
| \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | ¥.      |                                                           |                     |                  |                       |                         |
| - vvvv<br>vvvv                                                                              | v.      |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý.      |                                                           |                     |                  |                       |                         |
| v v v v<br>  v v v v                                                                        | Ý       |                                                           |                     |                  |                       |                         |
| V V V V                                                                                     | Ý       |                                                           |                     |                  |                       |                         |
| 90 - 00000                                                                                  | Ý.      |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý       |                                                           |                     |                  |                       |                         |
| _ v v v v                                                                                   | Ý       |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý       |                                                           |                     |                  |                       |                         |
| - V V V V<br>V V V V                                                                        | v.      |                                                           |                     |                  |                       |                         |
| - * * * * *<br>* * * *                                                                      | Ψ.      |                                                           |                     |                  |                       |                         |
| 95 -                                                                                        | ν.      |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý.      |                                                           |                     |                  |                       |                         |
|                                                                                             | Ý       |                                                           |                     |                  |                       |                         |
| 70000                                                                                       | ☆ 197.1 |                                                           |                     |                  |                       |                         |
|                                                                                             | V       |                                                           |                     |                  |                       |                         |
|                                                                                             | v       |                                                           |                     |                  |                       |                         |
| v                                                                                           | v<br>v  |                                                           |                     |                  |                       |                         |

| Depth |                 |              | Lithology       | Mineralization & Alteration |                           |
|-------|-----------------|--------------|-----------------|-----------------------------|---------------------------|
|       | Date Completed: | 1977         | Elevation(mSL): | 966m                        | Drilled by SEREM/US Steel |
|       | Date Started:   | 1 <b>977</b> | Northing:       | N2619.284                   |                           |
|       | Drill Hole No.: | UAD-6        | Easting:        | E709.233                    |                           |
|       |                 |              |                 |                             |                           |

| )0 - | V V V V V                                 |        | 197.1–212.54m: Porphyritic dacite, greenish gray, chloritiz<br>ed and epidotized. Size of plagioclase is 2–8mm in diameter |                                                     |
|------|-------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|      |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        | •                                                                                                                          |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      | 1                                         |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| )5 - |                                           |        |                                                                                                                            |                                                     |
|      |                                           | 1      |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      | ]~~~~~                                    |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| 0 -  | lvvvvv                                    |        |                                                                                                                            |                                                     |
| · ·  |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      | 11 11 11 1                                | 212.54 |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| 5 -  | <i></i>                                   |        |                                                                                                                            |                                                     |
| -    | 1                                         |        |                                                                                                                            |                                                     |
|      | ] <i>#``,#``,#``</i> ,                    |        |                                                                                                                            |                                                     |
|      | //////////////////////////////////////    |        |                                                                                                                            |                                                     |
|      | u», "», "»,                               | ļ      |                                                                                                                            |                                                     |
|      | 1                                         |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| 20 - | <i></i>                                   |        |                                                                                                                            |                                                     |
|      | 11 11 11 11 11<br>11 11 11 11 11 11       |        | 212.54-227.70m: Dacite? greenish gray.                                                                                     |                                                     |
|      | "" " " " " "                              |        | C.                                                                                                                         |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
|      | <i></i>                                   |        |                                                                                                                            |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| 5 -  | <i>""""</i> ""                            |        |                                                                                                                            |                                                     |
|      | """"                                      |        |                                                                                                                            |                                                     |
| -    | <i></i>                                   |        |                                                                                                                            |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| _    |                                           | 227.70 |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| -    | <i>"`"`"</i>                              |        |                                                                                                                            |                                                     |
| 0 -  |                                           |        | 207 70-227 OFm Desition to ff amount of a state of a                                                                       |                                                     |
|      | <i>"</i> `""                              |        | 227.70-237.05m: Dacitic tuff, greenish gray, chloritized, c<br>ontaining angular silic fragments (size <1cm).              |                                                     |
| -    | <i>""""</i> "                             |        |                                                                                                                            |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| -    | <i>"</i> ", ", ", "                       |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| 5 -  | """"""""""""""""""""""""""""""""""""""    |        |                                                                                                                            |                                                     |
|      |                                           |        |                                                                                                                            |                                                     |
| -    | <i>""""</i> """                           |        |                                                                                                                            |                                                     |
| -    | innin in                                  | 237.05 |                                                                                                                            | 237.05-239.75m: Interval for chemical anal          |
| -    | (IIIIIA)                                  |        |                                                                                                                            | ysis.                                               |
|      |                                           |        | 237.05-239.75m: Chloritized part.                                                                                          | -                                                   |
| -    |                                           |        |                                                                                                                            |                                                     |
| 0    |                                           | 239.75 | 239.75-242.35m: Dacitic tuff.                                                                                              |                                                     |
|      | <i></i>                                   |        | 209.1J=242.00m, Dacrae Witt.                                                                                               |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| -    | ··· ·· ·· ··                              | 242.35 |                                                                                                                            |                                                     |
| _    | (IIIII)                                   | 272.03 |                                                                                                                            |                                                     |
|      |                                           | <243P  | 242.35-245.0m: Chloritized part.                                                                                           | 242.35-245.0m: Interval for chemical analy          |
| -    |                                           |        |                                                                                                                            | sis. Pyrite-chalcopyrite dissemination and einlets. |
| 5 -  |                                           | 245.0  |                                                                                                                            |                                                     |
|      | <i></i>                                   |        |                                                                                                                            |                                                     |
|      | """"""""""""""""""""""""""""""""""""""    |        |                                                                                                                            |                                                     |
| -    | """"                                      |        |                                                                                                                            |                                                     |
|      | <i>"" "</i> " " "                         |        |                                                                                                                            |                                                     |
| -    |                                           |        |                                                                                                                            |                                                     |
| -    | """""""<br>"""""                          |        |                                                                                                                            |                                                     |
| -    | """"""""<br>""""""""""""""""""""""""""""" |        |                                                                                                                            |                                                     |








-121-

| Drill Hole No.: | UAD-10 | Easting:        | E709.195      |                           |
|-----------------|--------|-----------------|---------------|---------------------------|
| Date Started:   | 1977   | Northing:       | N2618.928     |                           |
| Date Completed: | 1977   | Elevation(mSL): | 955m          | Drilled by SEREM/US Steel |
| Depth           |        | Lithology       | Mineralizatio | n & Alteration            |

