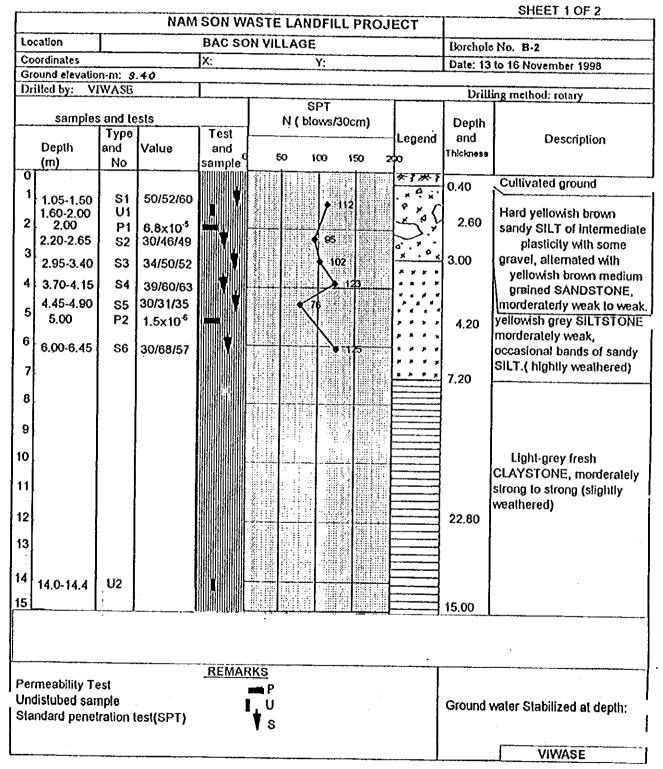
F. Topographic and Geological Survey at Nam Son

۲

.

BOREHOLE LOG

SHEET 1 OF 2


			001111				SHEET 1 OF 2
1		MAN		ASTE LANDFILL PROJE	ECT		
Location	<u> </u>			Y VILLAGE		Borchole	No. B-1
Coordinates			X:	Y:	······	Date: 7 t	o 10 November 1998
Ground elevation	in-m: IWASE	9.37					
Difficulty, Y	UUNOB	<u> </u>	L	SPT	r	Drilli	ing method: rolary
sample	s and te Type		Tesl		Legend	Depth and	Description
Depth (m)	and No	Value	and sample	0 50 100 150 20	σ	Thickness	Description
1 0.80-1.25	SI	28/29/31		7.80	· · · ·		
2 1.40-2.00 2.00 2.20-2.65 3 0.05 0.40	U1 P1 S2	8.54x10 ⁻⁵ 22/23/25					Layer 1: Hard reddisd brov sandy CLAY of low/ Intermediate plasticity
³ 2.95-3.40 4 3.70-4.15	S3 S4	20/59/61 22/60/72			<u> </u>	8.30	with some angula gravel, alternated with purplish
5 4.45-4.90 5.20-5.65	S5	15/42/48 30/68/57			· · · · · · · · · · · · · · · · · · ·		brown medium grained SANDSTONE, moderater weak to weak.
6 5.95-6.40	S6 S7	28/66/69			~		· · · · · ·
7 6.70-7.15 7.45-7.90	S8 S9	23/50/50 40/68/72			<u> </u>		
8 8.00 8.20-8.65 9	P2 S10	5.07x10 ⁻⁶ 52/75/85		140 160	· (8.30	
9.00-9.40	U2				· · · · ·		<u>Layer 2</u> Purplish brown, medium
11					· · · ·		grained SANDSTONE, morderaterly weak to moderaterly strong.
12 13					• • • • •	1	(Core very fracture, moderaterly weathered)
4					· · · ·		- ,
15					· · · ·	15.00	
Permeability Te			REMAR	KS Β Ρ		<u> </u>	
Undislubed san Slandard penet	nple ration t	esl(SPT)		U ♥ s		Ground v	vater Stabilized at depth: 4.80m
							VIWASE

BOREHOLE LOG

							.	SHEET 2/2		
		NAM			NDFILL PROJ	ECT				
Location	<u> </u>			Y VILLA			Borehole No. B-1			
Coordinates Ground elevation			X:		Y:		Date: 7 to 10 November 1998			
	on-m: IWASE	9.37	· · · · · · · · · · · · · · · · · · ·	·····						
Dillica of. 1	IIIASIS	, ,,			SPT	·I · · · · · · · · · · · · · · · · · ·	Drill	ing method: rotary		
sample	s and to	ests		N	blows/30cm)		Depth			
	Type		Test			Legend		Description		
Depth	and	Value	and	50	100 150	200	Thickness			
(m)	No		sample	ter staare		<u> </u>				
16	1)		
						•••				
17										
						 • • • •				
18	1									
19]									
181							13.20			
20 .						• • • •				
		-								
21	1				1 19 404 m	$ \cdot \cdot \cdot \cdot $				
						· · · ·	21.50			
22										
23										
·								•		
24										
25								Layer 3		
23							8.50	greyish- blue fine grained		
26								CLAYSTONE, morderaterly weak to		
								moderaterly strong.		
27								(Core very fracture,		
28 28.001	P3	A						moderaterly weathered)		
20,001		3.73x10 [€]								
29										
								•		
30							30.00			
					····		··			
				····						
Permeability T	act		REMAR							
Undistubed sa	osi mole		-	wr P				· · ·		
Slandard pene	Iration	test(SPT)					Ground	water Stabilized at depth:		
•		- (-, -,)		s		-		4.80m		
•		·····						VIWASE		

BOREHOLE LOG

BOREHOLE LOG

0

[NAM	SONIM	ASTE LANDFILL PROJEC			SHEET 2 OF 2			
Looption	·1									
Location Coordinates		• -		ON VILLAGE		Borehole No. B-2				
Ground elevation	<u>່</u> ກ.ຫ'	9.40	X:	<u> </u>	[[Date: 13	to 16 November 1998			
Drilled by: V			T		<u>`</u>	D-:0:	ng method: rotary			
				SPT			ng memou: rolary			
sample	samples and lesis			N (blows/30cm)		Depth	i			
Depth	Type		Test	L	Legend a		Description			
(m)	and No	Value	and sample	50 100 150 200	IT C	hickness				
16 17 18 19 20 21 22 22.00 23 24 25 26	P3	4.9x10 ⁶					Light-grey fresh CLAYSTONE, morderately strong to strong (slightly weathered)			
27. 28 29 30					3	0.00				
Permeability T Undistubed sa Standard pene	mple		<u>REMA</u>				water Stabilized at depth:			

IN-SITU PERMEAB: IY TEST

BOREHOLE : B-1

r - radius of casing(cm):6.35cm H- Water head from bottom of the ...ole up to the constant water level: 366cm Q- Rate of water supply (cm3/min):

Date	Time	Q]
		(cm3/min)	
8 .	15h15	112.0	
November	15h16	110.0	
1998	15h17	107.0	
	15h18	100.0	Formula for borehole permeabbility tests:
· ·	15h19	95.0	
	15h20	92.0	<u> </u>
ł	15h21	90.0	
	15h22	85.0	5.5 r H x 60
[15h23	80.0	
[15h24	72.0	Where
(15h25	67.0	k is Coefficient of permeability (cm/s)
	15h26	67.0	
· ·	15h27	67.0	65.5
(15h28	67.0	•
	15h29	67.0	k=== 0.0000854cm/s 5.5 x 6.35x 366 x 60
	15h30	67.0	0.0 x 0.00x 000 x 00
	15h31	67.0	
	15h32	67.0	
	15h33	67.0	
	15h34	66.5	
	15h35	66.5	
[]	15h36	66.5	
	15h37	66.0	
	15h38	66.0	
Į Į.	15h39	66.0	
j . j .	15h40	66.0	
.	15h41	66.0	
[.	15h42	65.5	
.	15h43	65.5	
.	15h44	65.5	
.	15h45	65.5	
ļ.	15h46	65.5	
.	15h47	65.5	
	15h48	65.5	

IN-SITU PERMEABILITY TEST

BOREHOLE : B-1

Depth of the borehole: 8.00m

Depth of the ground water level:4.80m

r - radius of casing(cm):6.35cm

H- Water head from the ground water level up to the constant water level: 640cm Q- Rate of water supply (cm3/min):

Date	Time	Q	
		(cm3/min)	
9	8h10	8.0	
November	8h11	8.0	· •
1998	8h12	8.0	
	8h13	8.0	Formula for borehole permeabbility tests:
	8h14	8.0 7.7	
	8h15	7.7	
	8h16	7.7	k=
	8h17	7.5	5.5 r H x 60
	8h18	7.5	
[]	8h19		Where
i	8h20	7.5	k is Coefficient of permeability (cm/s)
	8h21	7.3	
	8h22	7.3	6.8
	8h23	7.3	k=
	8h24	7.3	5.5 x 6 35x 640 x 60
· .	8h24	7.0	
	8h26	7.0	
	8h27	7.0	
	8h28	7.0	
1]	8h29	7.0	
	8h30	7.0	
	8h31	7.0	
	<u>8h32</u>	6.8	
	8h33	6.8	
	8h34	6.8	
	8h35	6.8	
	8h36	6.8	
	8h37	6,8	
	8h38	6.8	
	8h39	6.8	
	8h40	6.8	
	8h41	6.8	
	8h42	6.8	
L	8h43	6.8	

IN-SITU PERMEABILITY TEST

BOREHOLE : B-1

Depth of the borehole:28,00m Depth of the ground water level:4.80m

r - radius of casing(cm):6.35cm

H- Water head from the ground water level up to the constant water level; 640cm Q- Rate of water supply (cm3/min):

Date	Time	Q	1
24(0	THE	(cm3/min)	•
.11	10h30	5.5	· ·
November	10h31	5.5	
1998	10h32	5.5	
1990	10h33		
	10h34	5.2	Formula for borehole permeabbility tests:
	10h35	5.2	Q
	10h36	5.0	k=
	10h37		5.5 r H x 60
	10h38	5.0 5.0	
	10h39		Where
}	10h39		k is Coefficient of permeability (cm/s)
	10h41	5.0	k is coefficient of permeability (cm/s)
	10h42	5.0	
}	10h43	5.0	5.0
	10h44	5.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	10h45	5.0	5.5 x 6.35x 640 x 60
	10h46	5.0	
	10h47	5.0	
	10h48	5.0	
	10h49	5.0	•
	10h50	5.0	
	10h51	5.0	
	10h52	5.0	
	10h53	5.0	
	10h54	5.0	
	10h55	5.0	
	10h56	5.0	
	10h57	5.0	
	10h58	5.0	
	10h59	5.0	
	11h00	5.0	
	11h01	5.0	
	11h02	5.0	
	11h03	5.0	

IN-SITU PERMEABILITY TEST

BOREHOLE : B-2

Depth of the borehole: 2.00m Depth of the ground water level:

r - radius of casing(cm):6.35cm

H- Water head from the ground water level up to the constant water level:393cm Q- Rate of water supply (cm3/min):

Date	Time	Q	
		(cm3/min)	
13	13h00	75.0	
November	13h01	72.0	
1998	13h02	67.5	•
	13h03	66.0	Formula for borehole permeabbility tests:
	13h04	64.0	
1	13h05	62.0	
	13h06	57,5	k=
	13h07	57.0	5.5 r H x 60
	13h08	56.5	
	13h09	56.0	Where
	13h10	56.0	k is Coefficient of permeability (cm/s)
	13h11	56.0	
	13h12	56.0	56
	13h13	56.0	k== 0.000068cm/s
	13h14	56.0	
	13h15	56.0	
	13h16	56.0	
	13h17	56.0	
	13h18	56.0	
	13h19	56.0	
	13h20	56.0	
	13h21	56.0	
	13h22	56.0	
	13h23	56.0	
•	13h24	56.0	
	13h25	56.0	
ł	13h26	56.0	
	13h27	56.0	
	13h28	56.0	
•	13h29	56.0	
	13h30	56.0	
	13h31	56.0	
	13h32	56,0	
	13h33	56.0	
· · · · · · · · · · · · · · · · · · ·			

IN-SITU PERMEABILITY TEST

BOREHOLE : 8-2

Depth of the borehole: 5.00m

Depth of the ground water level:4.70m

r - radius of casing(cm):6.35cm

H- Water head from the ground water level up to the constant water level; 631cm Q- Rate of water supply (cm3/min);

Date	Time	Q	
		(cm3/min)	
14	8h10	2.4	
November	8h11	2.4	
1998	8h12	2.2	
	8h13	2.2	Formula for borehole permeabbility tests:
	8h14	2.2 2.0	
	8h15	2.0	Q
	8h16	2.0	K=
	8h17	2.0 2.0	5.5 r H x 60
	8h18	2.0	
	8h19	2.0	Where
	8h20		k is Coefficient of permeability (cm/s)
	8h21	2.0	
	8h22	2.0	2.0
	8h23	2.0	k== 0.0000015cm/s
	8h24	2.0 2.0 2.0 2.0 2.0	5.5 x 6.35x 631 x 60
	8h24	2.0	
	8h26	2.0	
	8h27	2.0	
	8h28	2.0	
· · ·	8h29	2.0	
	8h30	2.0	
	8h31	2.0	
	8h32	2.0	
	8h33	2.0	
	8h34	2.0	
	8h35 8h36	2.0	
	8h37	2.0	
	8h38	2.0 2.0 2.0 2.0	
	8h39	2,0	
	8h40	2.0 2.0	
	8h41	2.0	
	8h42	2.0 2.0	
- · · ·	8h43	2.0	
L		L	· · ·

IN-SITU PERMEABILITY TEST

BOREHOLE : B-2

Depth of the borehole: 22.0m

Depth of the ground water level: 5.20m

r - radius of casing(cm):6.35cm

H- Water head from the ground water level up to the constant water level: 730cm

Q- Rate of water supply (cm3/min):

(cm3/min) 16 16h10 31.0	Date	Time	Q
16 16h10 31.0 November 16h11 31.0 1998 16h12 31.0 16h13 31.0 16h13 31.0 16h13 31.0 16h13 31.0 16h13 31.0 16h14 20.5 16h14 20.5 16h16 20.5 16h16 20.5 16h17 20.0 16h18 20.0 16h18 20.0 16h19 20.0 16h20 15.0 16h20 15.0 16h21 15.0 16h21 15.0 16h23 12.0 16h22 15.0 16h23 12.0 16h23 12.0 16h26 12.0 16h28 12.0 16h26 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h29 10.0 16h30 10.0 16h31 10.0 16h33 9.0 16h33 <	_		(cm3/min)
November 16h11 31.0 1998 16h12 31.0 16h13 31.0 16h14 20.5 16h15 20.5 16h16 20.5 16h16 20.5 16h17 20.0 16h18 20.0 16h18 20.0 16h19 20.0 16h19 20.0 16h19 20.0 16h20 15.0 16h20 15.0 16h23 12.0 16h21 15.0 16h23 12.0 16h23 12.0 16h26 12.0 16h24 12.0 16h26 12.0 16h28 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h28 12.0 16h29 10.0 16h28 12.0 16h29 10.0 16h29 10.0 16h30 10.0 16h33 9.0 16h33 9.0 16h34 9.0 <	16	16h10	31.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	November	16h11	31.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998	16h12	31.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16h14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
16h17 20.0 16h18 20.0 16h19 20.0 16h19 20.0 16h19 20.0 16h20 15.0 16h21 15.0 16h23 12.0 16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h33 9.0 16h33 9.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h41 8.0 16h41 7.5 16h44 7.5 16h45 7.5 16h46 7.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16h17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16h18	
16h20 15.0 16h21 15.0 16h22 15.0 16h23 12.0 16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		16h19	
16h21 15.0 16h22 15.0 16h23 12.0 16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h33 9.0 16h33 9.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5			15.0
16h22 15.0 16h23 12.0 16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		************	15.0
16h23 12.0 16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h27 11.5 16h28 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5			
16h24 12.0 16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h38 8.0 16h39 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	1		
16h25 12.0 16h26 12.0 16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h44 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	ĺ	**********************	12.0
16h26 12.0 16h27 11.5 16h28 12.0 16h28 12.0 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h40 8.0 16h41 8.0 16h44 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		16h25	12.0
16h27 11.5 16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h39 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h45 7.5 16h46 7.5			12.0
16h28 12.0 16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h39 8.0 16h41 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		***************************************	11.5
16h29 10.0 16h30 10.0 16h31 10.0 16h32 10.0 16h33 9.0 16h33 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h40 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h45 7.5 16h46 7.5		16h28	
16h30 10.0 16h31 10.0 16h32 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5			10.0
16h31 10.0 16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		16h30	
16h32 10.0 16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h44 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		*****************************	********************************
16h33 9.0 16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	Ì	16h32	10.0
16h34 9.0 16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	Í	16h33	
16h35 9.0 16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5		16h34	***********
16h36 8.0 16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	ļ	16h35	**********************
16h37 8.0 16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	[**********************	**************
16h38 8.0 16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	Í	16h37	
16h39 8.0 16h40 8.0 16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	ĺ	16h38	8.0
16h41 8.0 16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5			8.0
16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.5 16h46 7.5	[16h40	8.0
16h42 7.5 16h43 7.5 16h44 7.5 16h45 7.6 16h46 7.5		16h41	8.0
16h44 7.5 16h45 7.5 16h46 7.5	[7.5
16h44 7.5 16h45 7.5 16h46 7.5	ļ		7.5
16h46 7.5	ļ.	***********************	7.5
······································	ļ		
	ļ		
	l	16h47	7.5

[]		
Date	Time	Q
		(cm3/min)
19	16h48	7.5
November	16h49	8.0
1998	16h50	7.5
	16h51	7.5
	16h52	7.5
	16h53	7.5
	16h54	7.5
	16h55	7.5
	16h56	7.5
	16h57	7.5
	16h58	7.5
	16h59	7.5
	16h60	7.5
	16h61	7.5

Formula for borehole permeabbility tests:

Where k is Coefficient of permeability (cm/s)

7.5

k= -----= 0.0000049cm/s

5.5 x 6.35x 730 x 60

NAM SON WASTE LANDFILL PROJECT INVENTORY OF WELL

			1		<u>т</u>		—			÷	- -											
ELECTRIC	CONDUCTIVITY	(ITS/CM)	45	2	128	2	57	5	221	2	40) F	105	2	S.C.	2	Prc	r J	208	2	78	2
WATER	TEMPERATURE	(C)	8	-	30		26	}	27	i	77	ì	26		27	ì	ac	à	яс	2	28	2
Hd			7.37		6.79	•	6.52		6.26		5.33	3	5 90		6 05		6 14		6 20	}	622	ļ
USAGE OF	WATER		DRINKING		DRINKING		DRINKING		DRINKING		DRINKING		DRINKING		DRINKINK		DRINKING	-	DRINKING		DRINKING)
GROUND	WATER	ELEVATION (M)	10.54		8.00		5.05		8.95		7.65		9.56		9.40		9.70		9.35		9.60	
GROUND WATER	DEPTH	(W)	6.10		5.70	-	4.45		3.10	<u> </u>	8.20		4.10		5.10		3.80		6.15		6.90	
GROUND	ELEVATION	Ø	16.64		13.70		9.50		12.05		15.85		13.66		14.50		13.50		15.50		16.50	
DATE OF	INSPECTION		12H30	17.11.98	13H	17.11.98	13H30	17.11.98	15H20	17.11.98	16H10	17.11.98	17H00	17.11.98	17H30	17.11.98	0EH9	18.11.98	12H	18.11.98	12H30	18.11.98
Ó	ů Ö	WELLS	NGOC	TÂN	MOHT		LÂM HOA		THƯỞNG		THANH		HUGNG		VÂN		TĂN		ΥË		Tưởng	:
MEL MEL	ģ			•	2		с		4		S	·	ω		7		æ		σ		1 0	-

SUMMARY OF TEST RESULTS

Project: Nam Son Waste Landfill Borehole N_0 : B. 1 Description: Hard purplish brown sandy CLAY of Intermediate plasticity (Weathered soll from Sanstones)

ORDER	NORM	SYMBOL	UNIT		VALUES O	FNORM	
No			•	SAMPLE 1	SMPLE 2	SAMPLE 3	SAMPLE 4
1	Depth of sample (m)			1.40-2.00			
2	Gradation-Particle size: 20.000mm	Р	*	100			
	6.000			95			
	2.000			88			
	0.600 •		%	80			
	0.200 +		%	70			
	0.060 •		% .	42			
	0.020 -		%	26			
	0.006 -		%	18			
	0.002 -		%	14		<u> </u>	
3	Moisture content	W	%	18		ļ	
4	Unit weight -Wet	<u></u> Үж	G/Cm3	2.01			
5	-Dry	Ϋ́c	G/Cm ³	1.70		ļ	
6	Specific gravity	Gś	G/Cm ³	2.68		<u> </u>	
7	Void ratio	e,	·	0.573		I	
8	Porosity	n	☆.	36		<u> </u>	
9	Degree of saturation	S	%	84			
10	Atterberg limits: -Liquit	WI	%	35			
11	•Plastic	Wp	%	19			
12	Index of plasticity	lp	%	16			
13	Index of consitency	ts		-0.06			
14	Triaxial tests(U-U):	Cu	KG/Cm ²	0.81			
15	·	φu°	Degree	12020			
16	Triaxial tests(C-U):	Ccu),55	l <u> </u>		
• 17		¢ cu °		19°32		<u> </u>	
18		C'		0.72		ļ	
19		¢10		24 ⁰ 26 [.]			
20	Permeability coefficient	к	Cm/s	8.75 x 10 ⁻⁸		<u> </u>	
21	Coefficient of Consolidation: (x 10 ⁻³)	Cy	Cm²/KG		•	ļ	
	Pressures:0-0.5 KG/Cm2	Cv005	Cm²/KG			ļ	
	0.5-1 -	CV0.5-1.0	Cm²/KG		<u> </u>	<u> </u>	
	1-2 -	CV1020	Cm ² /KG		ļ	 	ļ
	2-4 -	Cv2.0-4.0	e - 1	7.84 x 10 ⁴	· · · · ·	 	
22	Permeability coefficient	Kv	Cm/s			 	
	Pressures:0-0.5 KG/Cm2	Kv0.0-0.5				 	
	.0.5-1 -	Kv0.5-1.0		1.79 x 10°	ļ		ļ
	1.2 .	Kvi-2	Cm/s	7.42 x 10 ⁹		 	
	2-	Kv2-4	Cm/s	3.05 x 10°		 	
23	Uni-axial compressive strength	Qu	KG/Cm ²				
	Cation avalance and raits	E	KG/Cm ²				
24	Cation exchange capacity	me/100g		4.5			
25	Hydrated compound ratio		%	0.08		 	[
26	Ignition loss	+	· · *	5	<u> </u>		
27	Total organic matters	+	%	0			
28	Classification: BS	<u> </u>		CIS		1	I

SUMMARY OF TEST RESULTS

Project: Nam Son Waste Landfill

Borehole No: B-2

Description: Hard yellowish grey sandy SiLT of intermediate plasticity (Weathered soil from Aleurolite and claystone)

ORDER	NORM	SYMBOL	UNIT		VALUES O	NORM	
Na				SAMPLE 1	SMPLE 2	SAMPLE 3	SAMPLE 4
1	Depth of sample (m)			1.20-1.40		f	
<u>1</u> 2	Gradation-Particle size: 20.000mm	Р	*				
	6.000			100			
	2.000			90			
	0.600 -		Å	80		<u> </u>	
	0.200 -		%	66			
	0.060 -		%	50			
	0.020 -		%	30		 	
	0.006 •		%	15			
3	0.002 -		% %	10		 	
4	Moisture content Unit weight -Wet	W		25	· · · · · · ·		
4 5		<u> </u>	G/Cm3	1.89		<u> </u>	
6	-Dry Specific gravity	<u> </u>	G/Cm ³	1.51	···· ··· ···	<u> </u>	
7	Vold ratio	Gs	G/Cm ³	2.70		<u> </u>	
8	Porosity	<u>e</u>	%	0.786 44		<u> </u>	
8	Degree of saturation	n S	70 %	86		[
10	Atterberg limits; -Liquit	Wi	 %	45			
11	-Plastic	Wp	%	28			
12	Index of plasticity	lp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17		<u> </u>	
13	Index of consitency	ls		-0.18		<u> </u>	·····
14	Triaxial tests(U-U):	Cu	KG/Cm ²	0.79			
15		¢u°	Degree	10º42		+	
16	Triaxial tests(C-U):	Ccu		0.55			
17		¢ cu °		18°39			
18		C'		0.77		1	
19		¢'°		23 ⁰ 18		1	
20	Permeability coefficient	K	Cm∕s	3.84 x 10 ⁻⁸		1	·
-21	Coefficient of Consolidation: (x 10 ⁻³)	Cy	Cm ² /KG				
	Pressures:0-0.5 KG/Cm2	Cv0.05	Cm ² /KG			1	· · ·
	0.5-1 -	CV0.5-1.0	Cm²/KG	1.47 x 10 ³		T	
	1-2 -	CV1020	Cm ² /KG				
	2-4 -	Cv2.0-4.0		8.20 x 10 ⁴			
22	Permeability coefficient	Kv	Cm/s		·	· · · · · · · · · · · · · · · · · · ·	
	Pressures:0-0.5 KG/Cm2	Kv0.0-0.5	Cm/s			<u> </u>	
	0.5.1 -	Kv0.5-1.0		3.04 x 10 ⁸		· · · ·	
	<u> </u>	Kv1-2	Crtvis	8.29 x 10 ⁹		 	
23	Uni-axial compressive strength	Kv2-4	Cm/s	3.20x 10*	<u> </u>	<u> </u>	
23	omeanal compressive strength	Qu E	KG/Cm ²	1.65		<u> · · · · · · · · · · · · · · · · · · ·</u>	
24	Cation exchange capacity	me/100g	KG/Cm ²	<u>130</u> 6	·	<u>}</u>	
25	Hydrated compound ratio		\$011 %	0.12			
26	Ignition loss	1	*	7			
27	Total organic matters	+	%	0		 	
28	Classification: BS	- 	~	MIS			
		<u> </u>	L	GIII	L	<u> </u>	

SUMMARY OF ROCK TEST RESULTS

Project: Nam Son Waste Landfill Borehole No: B1 Description:

Weathered sandstone

	• • • • • •	DL UNIT		VALUES O	FNORM	
			SAMPLE 1	SMPLE 2	SAMPLE 3	SAMPLE
Depth of sample (m)			 	9.0-9.4	1	
Moisture content	W	%	†	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Unit weight -V	Vet Ym	G/Cm3			{	i
-D		G/Cm ³				
Specific gravity	Gs	G/Cm ³				
Porosity	n	%				
Uni axial Compressive strer		KG/Cm2	·			
Drawn strength		KG/Cm2			 	
Cohesion			<u> </u>			
Internal friction angle	¢°	Degree		35°00'		
	Moisture content Unit weight -V -D Specific gravity Porosity Unit axial Compressive stren Drawn strength Cohesion	Moisture content W Unit weight -Wet Ym -Dry Yc Specific gravity Gs Porosity n Unit axial Compressive strength on Drawn strength ok Cohesion C	Moisture content W % Unit weight ·Wet Ym G/Cm3 -Dry Yc G/Cm3 Specific gravity Gs G/Cm3 Porosity n % Unit axial Compressive strength on KG/Cm2 Drawn strength ok KG/Cm2 Cohesion C KG/Cm2	Depth of sample (m) W % Moisture content W % Unit weight -Wet Ym G/Cm3 -Dry Yc G/Cm3 Specific gravity Gs G/Cm3 Porosity n % Unit axial Compressive strength on KG/Cm2 Drawn strength ok KG/Cm2 Cohesion C KG/Cm2	Depth of sample (m)9.0-9.4Moisture contentW%13Unit weight-Wet γ_m G/Cm32.16-Dry γ_c G/Cm31.91Specific gravityGsG/Cm32.71Porosityn%29.5Unit axial Compressive strengthonKG/Cm211.8Drawn strengthokKG/Cm20.8CohesionCKG/Cm24.3	Depth of sample (m)9.0.9.4Moisture contentW%13Unit weight-Wet γ_m G/Cm32.16-Dry γ_c G/Cm31.91Specific gravityGsQ/Cm32.71Porosityn%29.5Unit axial Compressive strength σn KG/Cm211.8Drawn strength σk KG/Cm20.8CohesionCKG/Cm24.3

Project: Nam Son Waste Landfill Borehole N_o: B2 Description:

Weathered aleurolite and claystone

ORDER	NOR	M	SYMBOL	UNIT	IIT VALUES OF NORM			
No					SAMPLE 1	SMPLE 2	SAMPLE 3	SAMPLE 4
1	Depth of sample (m)				14.0-14.4		
2	Molsture content		W	%		12	· · · · · · · · · · · · · · · · · · ·	
3	Unit weight	-Wet	Υ _{**}	G/Cm3		2.41		
4		-Dry	Ϋ́c	G/Cm ³		2.32		
5	Specific gravity		Ğs	G/Cm ³		2.79		
6	Porosity		n	%		16.8		
7	Uni axial Compress	ive strength	σn	KG/Cm2		49.6		
8	Drawn strength		σk	KG/Cm2		10		·····
9	Cohesion	•	С	KG/Cm ²		15.6		
10	Internal friction ang	le	φ°	Degree		24°30'		
						· .		

UNCONFINED COMPRESSION TEST

Project: Location: Description: Nam Son Waste Landfill Soc Son Hanoi

.

Boring No: Sample No: Depth: B1 1 1.40-2.00 m Date of test 19/11/98

.

Tested by: Eng.Nguyen Viet Tinh Checked by: Dr.Do Minh Toan

		SF	ECI	MEN	I DA	TA	
-	_	_		_			

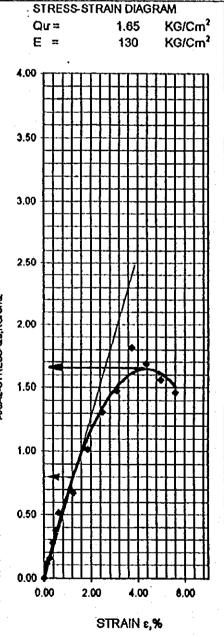
Moisture content of	determination	Density determination				
Contener No:		Wt Specimen Wet				
Wt Contener wet soll		Wt Specimen dry				
Wt Contener dry soil		Wet Density G/Cm3	2.01			
Wtwater		Dry density	1.70			
Wt Contener	-	Proving ring No				
Wt dry soil		Diameter,Cm	3.90			
Moisture content average ,%	18	Hight,Cm	8.00			

To	otat	Strain	Average	Dial rea-	Equiv.	Axial		S	FRE	ss	-S	ŤR	AIN	D	AG	R/	M			
	ain	. 0	Corr.Area	ding	load	Stress		Q	u ≃				1	.8	8		KC	SIC	m	2
	10.2	%	A',Cm ²	div	Р,ко	QU, KOCM2		Ε	=					15	D		KC	SIC	m	2
	ŏ	0.00	11.94	0.726	0.0	0.00									-					
	0	0.13	11.95		2.6	0.16		4.00 1		_			Ŧī	-				П		
	20	0.25	11.97		5.0	0.30				-	┝	╂╉	+	+		┝╌┝╴	┢╂	$\left\{ \cdot \right\}$	+	
	30	0.38	11.98		7.0	0.42					H	╂╉	††	+		┞╂╴	łł	†	+	
	40	0.50	12.00		9.9	0.60		į			Ħ		Ħ	T		Ħ	Π	П	T	
	50	0.63	12.02		12.6	0.76		3.50	╏╻┨╺┥	┦	↓	11	44	-		 	μ		-	
	00	1.25	12.09		29.0	1.74		-	┝╫┥		H	╂╀	╂╂	╉		╀╊	ŧ∔	+	+	
	50	1.88	12.17		35.0	2.09			H		H	$^{++}$	++	╈	┢╋	H	tt	\mathbf{H}	-	
	00	2.50	12.25		26.0	1.54						11	11	1	T		Ħ	П		
	50	3.13	12.33		15.0	0.88		3.00	П			П		T	L.					
3	80	3,75	12.41							┢╍┟╸	1	+	•	╇	┝╄	┢╋	╢	╉┥	+	
3	50	4.38	12.49						\mathbb{H}	┝╉╸	╂╂	╂╂	╂┨	╀	┝╊	╂╂	H	╉	╋	
4	00	5.00	12.57				}			┝┨╸	╊╊	╉╋		╋		Ħ	Ħ	\dagger	Ť	
4	50	5.63	12.65]	2.50	Ш		Π	Π		T	Π		Π	Π		
5	00	6.25	12.74				J	2.00			Ц	44	\mathbf{A}	4	11	#	Н	╉	4	
5	50	6.88	12.82]		H	╟┼	₽	╍╂╌╂	H- I	╉	╟	₽₽	╢	+		{
6	00	7.50	12.91				<u> </u>		┝╊╸	┝╋╴	┢┢	Ĥ	+	-	╂╂	╂╂	╂┨	╋		1
6	50	8.13	13.00				l S	2.00		H	Ħ	11	+	╞	Ħ	Ħ	†1	\uparrow		1
	00	8.75	13.08				Ì¥	2.00		II	Π	И	T	1	Π	Π	П	T		
7	60	9.38	13.18		[·	J Ö		F	TT.	П	Π	Z	4	L	H	Н	+		Į
8	00	10.00	13.27						╟╋	╟╊	H	M	4	╉	R	╂╂	Н	╉		{
8	350	10.63	13.36		1		AXIAL-STRESS Qu,KG/Cm2		┝╊╴	┢╋	ł۴	XI		+	H	+	+	╉		1
5	00	11.25	13.45			1	1 3	1.50	Ħ	11	Ħ	11	+	T	Ħ	M	11	1	T	1
5	950	11.88	13.55				l \$		Π		N				Π	П			1	
1	000	12.50	13.65	*			_		14	4	Д	Ш		4	₩	H	H	-	$\left \cdot \right $	ł
	050	13.13	13.74	1			1		╟┼	H	\mathbb{H}	╶╂┨		- -	H	╂╂	H	- -	⊢	ł
1	100	13.75	13.84	· ·				1.00	╂╋	H	Ħ	+	+	H	Ħ	Ħ	Ν		h	1
	150	14.38	13.94				ľ		Ш	I	Π		T		Π	Π			Т	1
1	200	15.00	14.05						11	n	11				μ.	╀╂	+	1	μ	ł
	250	15.63	14.15						H	┢┤	+				 +	╂╂	╉┥	╉	╟╢	1.
	300	18.25	14.28			<u> </u>	[0.50	H		†	+	-		Ħ	╂╂	╉	╉	H	1
	350	16.88	14.36	<u> </u>			1		Ħ	Ħ				T	Ħ	П			Π	1
	400	17.50	14.47			<u> </u>			Π	П	\prod			1	П	44	4	-	\prod	1
	450	18.13	14.58			<u> </u>	. ·		1	₩	H		┢╋┥	┝╋	₩	╂╂	+		ℍ	ł
[1	500	18.75	14.70				1	0.00		11	11	ļ		Ч		Ц	+-	1	Ĺ	4
					ļ	<u> </u>]	0	.00		1.0	00		2.0	Q.	3	.00	l	14	.00
												S	STF	A	N	e,%	•			
		1				<u> </u>	L													

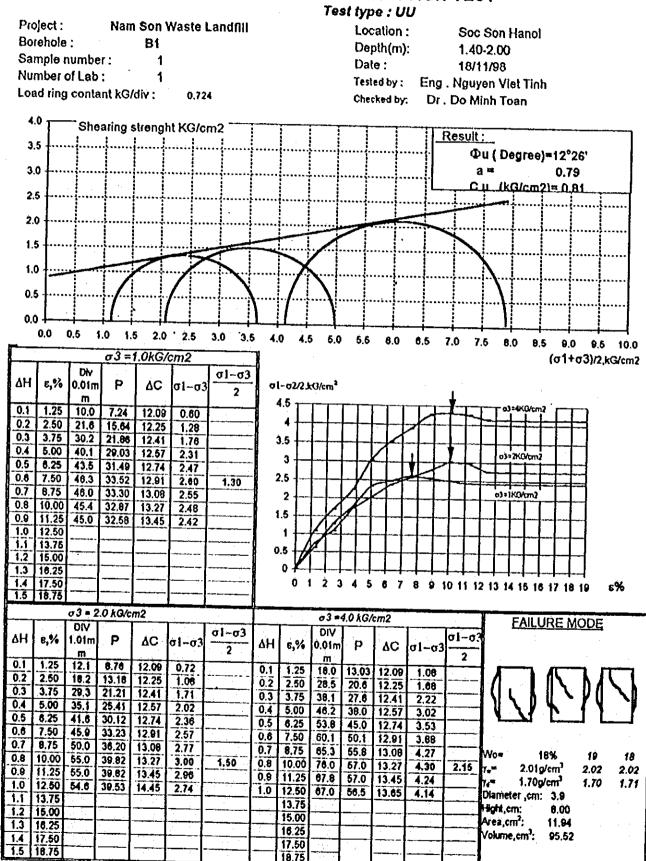
i

UNCONFINED COMPRESSION TEST

Project: Na Location: So Description: Tested by: Eng.N

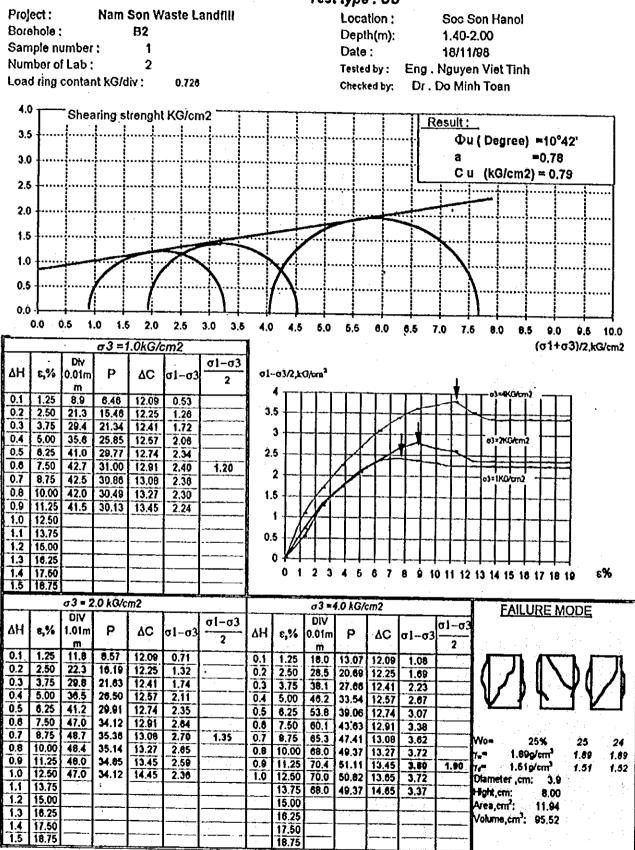

Nam Son Waste Landfill Soc Son Hanoi

Tested by: Eng.Nguyen Viet Tinh Checked by: Dr.Do Minh Toan Boring No:B2Sample No:2Depth:1.60-2.00 mDate of test19/11/98


SPECIMEN DATA

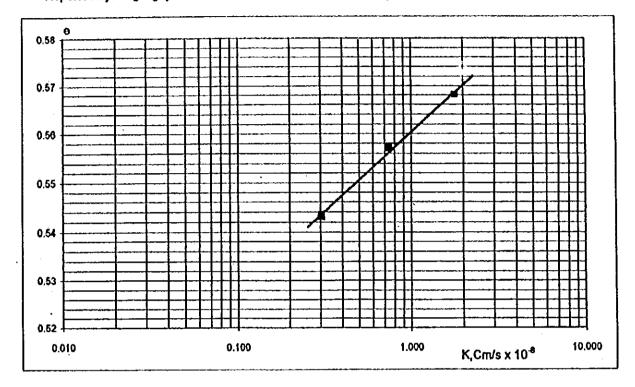
Moisture content	determination	Density determination			
Contener No:		Wt Specimen Wet			
Wt Contener wet soil		Wt Specimen dry	·····		
Wt Contener dry soil		Wet Density G/Cm3	1.89		
Wt water	· ·	Dry density	1.51		
Wt Contener		Proving ring No	· · · · · · · · · · · · · · · · · · ·		
Wt dry soil		Diameter,Cm	3.90		
Moisture content average ,%	25	Hight Cm	8.00		

Total	Strain	Average	Dial rea-	Equiv.	Axial		. STF
strain	θ.	Corr.Area	ding	load	Stress		Qu
x 10 ⁻²	%	A',Cm ²	div	Рко	QU,KGCm2		E
0	0.00	11.94	0.724	0.0	0.00		
10	0.13	11.85		1.8	0.11		4.00
20	0.25	11.97		2.5	0,15		H
30	0.38	11.98		4.5	0.27		Ы
40	0.50	12.00		6.2	0.38		- D
50	0.63	12.02		8.5	0.51		3.50
100	1.25	12.09		11.2	0.67		-
150	1.88	12.17		17.0	1.01		Н
200	2.50	12.25		22.0	1.30		H
250	3.13	12.33		25.0	1.47		3.00
	3.75	12.41		31.0	1.81		0.00 L
350	4.38	12.49		29.0	1.69		-
400	5.00	12.57		27.0	1.66		H
450	5.63	12.65		25.5	1.48		2.50
500	6.25	12.74					*.
550	6.88	12.82					H
600	7.50	12.91				AXIAL-STRESS Cu,KG/Cm2	H
650	8.13	13.00				g	2.00
700	8.75	13.08	·			x a	2.00
750	9.38	13.18	· ·			S S	
800	10.00	13.27			· ·	Su	
850	10.63	13.36				Ĕ	4 60 -
900	11.25	13.45				ž	1.50
950	11.88	13.55				R	
1000	12.50	13.65				•	
1050	13.13	13.74					-
1100	13.75	13.84					1.00
1150	14.38	13.94					E E
1200	15.00	14.05					
1250	15.63	14.15					H
1300	16.25	14.26					0.50
1350	16.88	14.36					
1400	17.50	14.47					3
1450	18.13	14.68			· · · · · ·	· · .	
1500	18.75	14.70		· ·		1 :	0.00
						ĺ	0.00
						.	


TRIAXIAL COMPRESSION TEST

TRIAXIAL COMPRESSION TEST

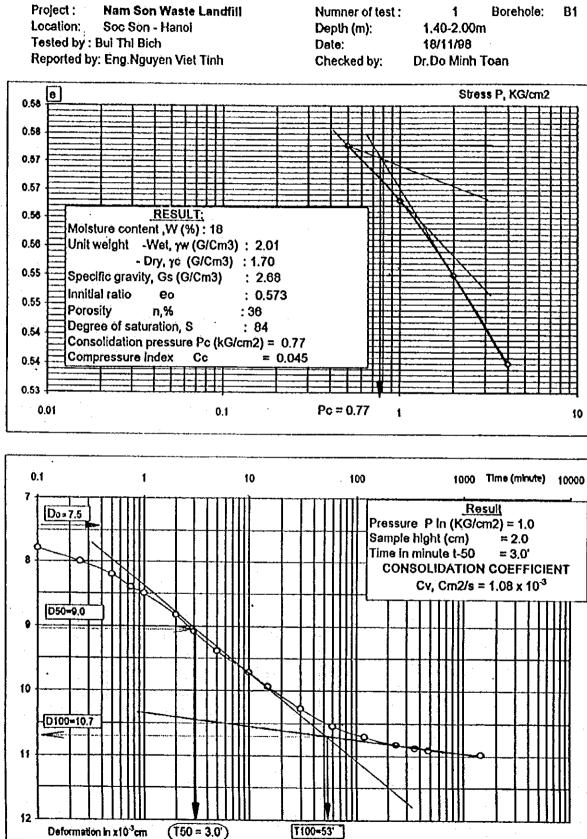
Test type : UU



CONSOLIDATION TEST

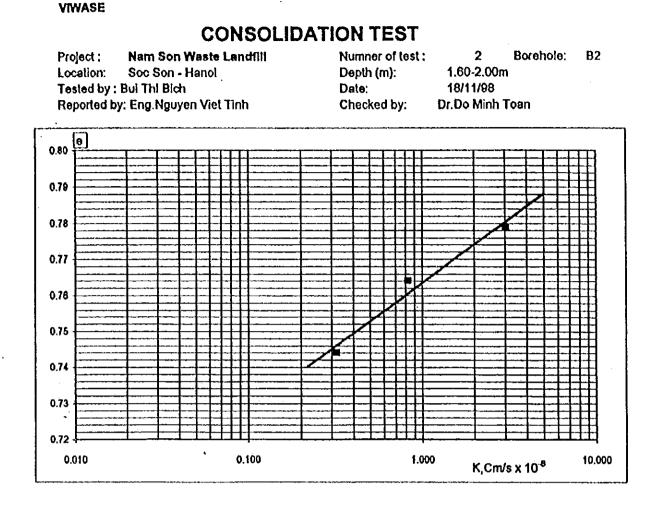
Project : Nam Son Waste Landfill Location: Soc Son - Hanoi Tested by : Bui Thi Bich Reported by: Eng.Nguyen Viet Tinh

Nummer of test : Depth (m): Date: Checked by:


1 Borehole: B1 1.40-2.00m 18/11/98 Dr.Do Minh Toan

P = KG/Cm ²	1 + e _{ev}	a _v = Cm²/KG	Ćv = Cm²/S	K = Cm/S
0.0-0.5				
0.5-1.0	0.568	0,026	1.08 x 10 ⁻³	1.79 x 10 ⁻⁸
1.0-2.0	0.557	0.013	8.89 x 10 ⁻⁴	7.42 x 10 ⁹
2.0-4.0	0.543	0.008	7.84 x 10 ⁻⁴	3.05 x 10 ⁻⁹

Note : Deformations of soil are very small at P=0.25 and P=0.5 KG/Cm²



CONSOLIDATION TEST

VIWASE

Nam Son Waste Landfill **B1** Numner of test ; Borehole: Project : 1 Localion: Soc Son - Hanoi Depth (m): 1.40-2.00m Date: Tested by : Bui Thi Bich 18/11/98 Checked by: Reported by: Eng Nguyen Viet Tinh Dr.Do Minh Toan 0.1 ţ 10 100 1000 Time (minute) 10000 22 Result D0 =22.2 Pressure P in (KG/cm2) = 2.0 Sample hight (cm) = 2.0 23 Time in minute t-50 = 3.6' **CONSOLIDATION COEFFICIENT** 24 $Cv_{1} Cm2/s = 8.89 \times 10^{-4}$ D50 = 25.2 25 26 27 D100 = 28.2 28 29 30 T50 = 3.6' T100=60' Deformation in x10⁻³cm 0.1 10 100 1000 Time (minute) 10000 1 43 Result $D_0 = 43.5$ Pressure P in (KG/cm2) = 4.0 Sample hight (cm) = 2.0 Time in minute t-50 = 4.0' 44 (CONSOLIDATION COEFFICIENT Cv, $Cm2/s = 7.84 \times 10^{-4}$ 45 D50-45.7 46 47 48 D100= 48.0 49 (150 = 4.0')T100=170' Deformation in x10⁻³cm

CONSOLIDATION TEST

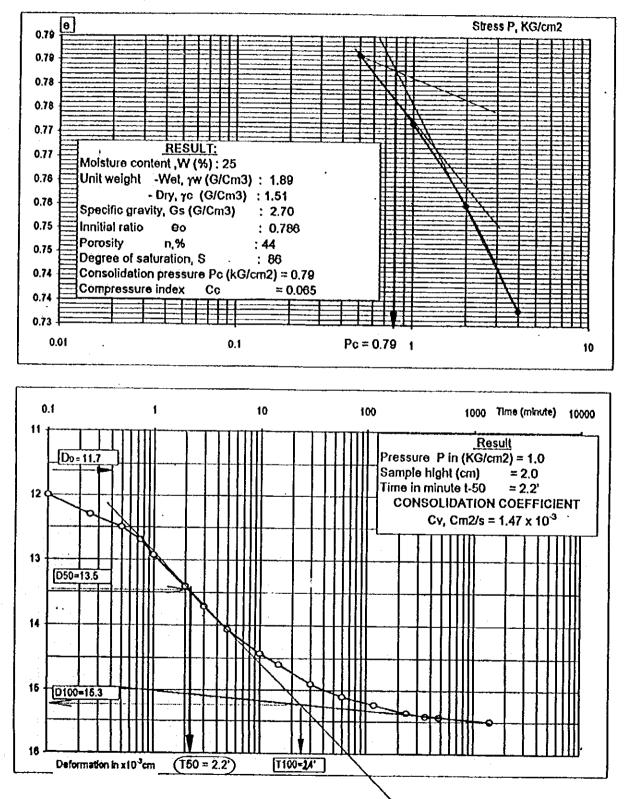
COEFFICIENT OF PERMEABILITY	
a _y x C _y x ywaler	
K=	

1+	0.v
----	-----

$P = KG/Cm^2$	1 + e _{av}	$a_{y} = Cm^{2}/KG$	$Cv = Cm^2/S$	K = Cm/S
0.0-0.5				
0.5-1.0	0.779	0.037	1.47 x 10 ⁻³	3.04 x 10 ⁻⁸
1.0-2.0	0.764	0.018	7.95 x 10 ⁻⁴	8.29 x 10 ⁻⁹
2.0-4.0	0.744	0.009	8.20x 10 ⁻⁴	3.20x 10 ⁻⁹

Note : Deformations of soil are very small at P=0.25 and P=0.5 KG/Cm²

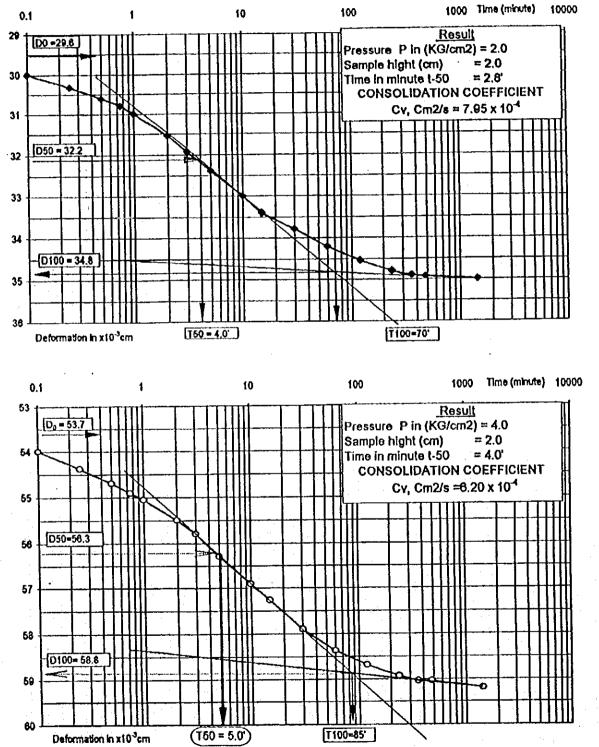
Teste


Reported by: Eng.Nguyen Viet Tinh

CONSOLIDATION TEST Nam Son Waste Landfill Project : Numner of test : 2 Location: Soc Son - Hanol Depth (m); 1.60-2.00m : Bul Thi Bich Date:

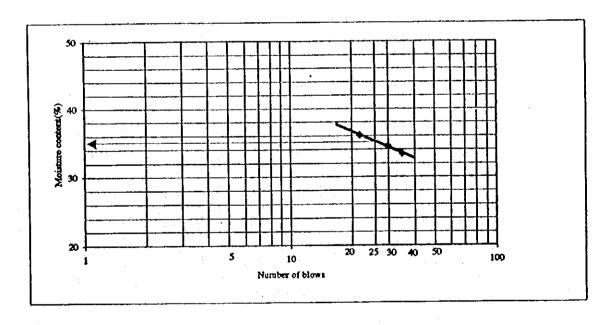
18/11/98 Checked by:

Borehole: **B2**


Dr.Do Minh Toan

VIWASE **CONSOLIDATION TEST** 2 Nam Son Waste Landfill Numner of test : Project : 1.60-2.00m Depth (m): Soc Son - Hanol Location: 18/11/98 Date: Tested by : Bul Thi Bich Dr.Do Minh Toan Checked by: Reported by: Eng.Nguyen Viet Tinh

B2

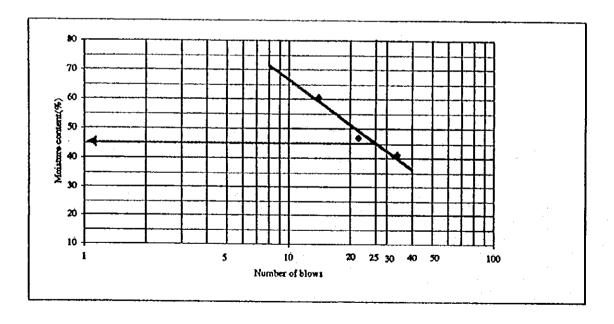

Borehole:

MOISTURE CONTENT AND ATTERBERG LIMITS

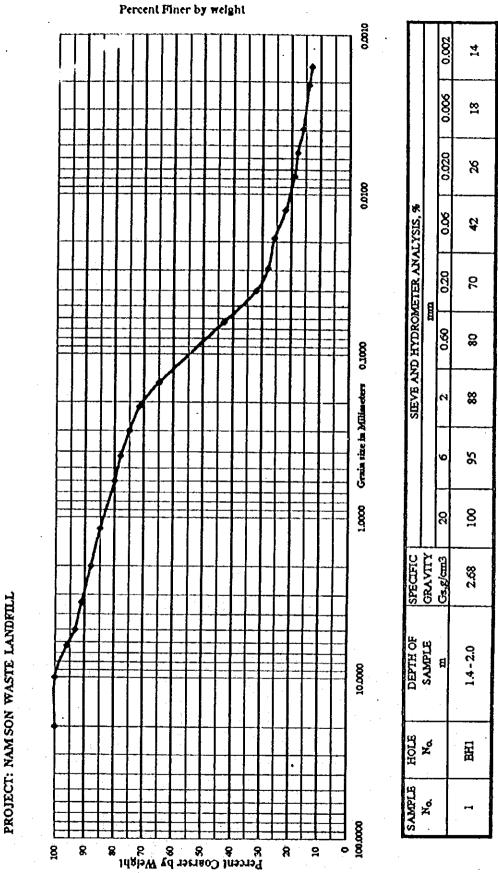
Project: Nam Son wast	e landfill	Date:	18/11/98
Location:		Test number:	1
Borehole number:	BHI	Tested by:	Bui Thi Bich
Sample number:		Checked by:	Nguyen Viet Tinh
Sample depth:	1.40-2.00M	Sample sand by:	

Moisture content	Moistur		Plastic Limit					
Determination	V	V,%		W	<u> </u>	/p,%		
Container number	18	49-1	10	21	58	1		
Number of blows			35	30 .	22			
Weight of wet soil container(g)	42.00	49.50	31.80	34.80	34.60	19.20	43.40	
Weight of dry soil container(g)		43.10	25.80	27.90	27.50	17.40	37.70	
Weight of container (g)		7.873	7.815	7.875	7.832	8.080	7.590	
Weight of water (g)		6,40	6,00	6.90	7.10	1.80	5.70	
Weight of dry soil (g	60.00	35.23	17.99	20.03	19.67	9.32	30.11	
Moisture content %	18	18	33	34	36	19	19	
Average moisture content %	W=			WL=	Wp=	Wp= 19		

Plasticity Index % Ip=WL-WP= 16

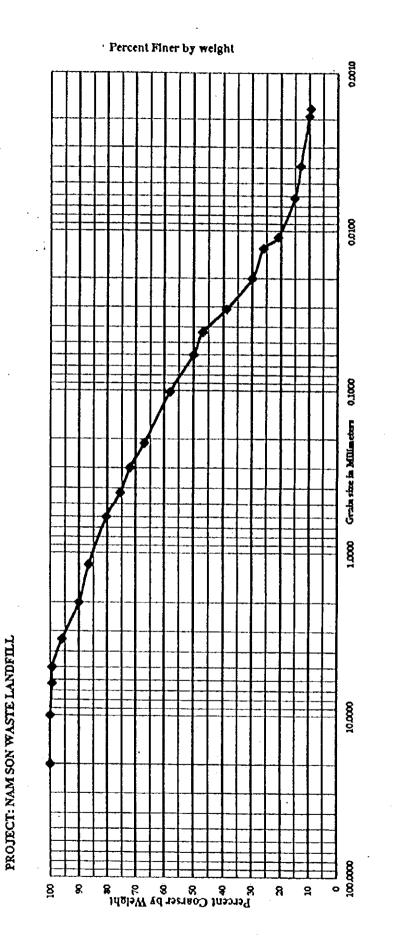

3

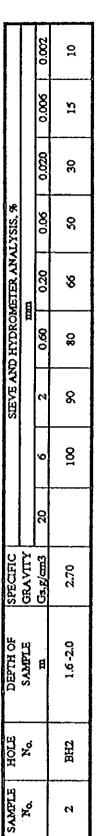
Liquidity Index Is=W-Wp/Ip = -0.06


MOISTURE CONTENT AND ATTERBERG LIMITS

Project: Nam Son wast	e landfill	Date:	18/11/1998	
Location:		Test number:	2	
Borchole number:	BH2	Tested by:	Bui Thi Bich	
Sample number:		Checked by:	Nguyen Viet Tinh	
Sample depth:	1.60-2.00M	Sample sand by:		

Moisture content		e content		Liquid		Plastic Limit		
Determination	<u> </u>	Y,%		<u> </u>	Л,%		Wp,%	
Container number	17-1	13-1	57	14	16	5	2	
Number of blows			34	22	14			
Weight of wet soil container(g	45.00	42.40	30.80	32.50	34.90	18.50	16.6	
Weight of dry soil container(g	37.30	35.50	24.10	24.50	24.60	16.10		
Weight of container (g	7.700	7.725	7.800	7.460	7.567	7.77		
Weight of water (g	7.70	6.90	6.70	8.00	10.30	2.40		
Weight of dry soil ((29.60	27.78	16.30	17.04	17.03	8.33	6.51	
Moisture content %	26	25	41	47	60	29	28	
Average moisture content %	W=	25		WL=		$W_{p=28}$		


RESULTS


Plasticity Index % Ip=WL-WP= 17 Liquidity Index Is=W-Wp/Ip = -0.18

Tested by:Eng. Nguyen Met Tinh Checked by : Dr. De Minh Toen

GRADATION CURVES

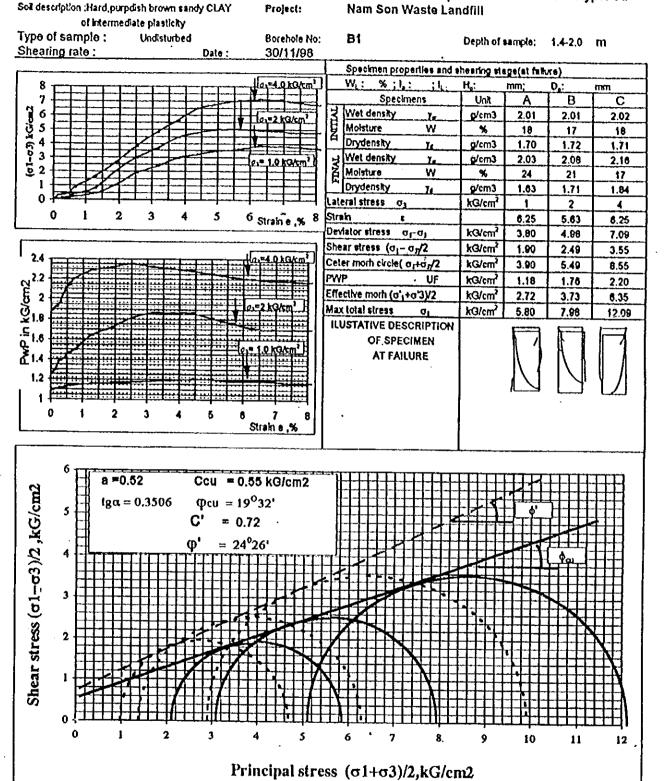
GRADATION CURVES

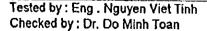
ы

Tested by:Eng. Nguyan Viat Tinh Chocked by ; Dr. Do Minh Tosh

0

0




۲

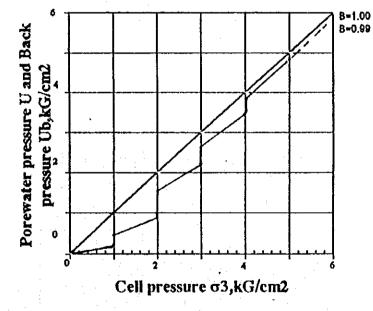
TRIAXIAL COMPRESSION TEST (SUMMARY AND REPORT DATA SHEET)

Test No: 1 Test type: Cu

Sol description :Hard, purplish brown sandy CLAY

Project :	Nam So	n Waste La	Testhurst		011 51UD			
Borehole ;	B1		anunn	Test type: Test No :		CU-PWP		
Depth :	1.4-2.0 n	n		Date started		1		
Soil description :			n sandvi	CLAY of intermediate plasticity		20/11/199		
,		priori profi	an sanuy	CEAT of intermediate plasticity				
Specimen preparation								
INITIAL CO	ONDITIONS	\$		PHISIAL PROPERTIES	SPE	CIMEN		
				FROPERTIES	Initial			
Height of specimen	Hi =	80	mm	Specific gravity		After test 2.68		
Diameter of specimen	di =	39	វា៣	Wet mass of specimen (g)	. 2.00	¥.00		
Area of specimen	Ai =	1194	mm²	Dry mass of specimen (g)				
Volume of specimen	<u>VI =</u>	95520	mm ³	Mass of Water (g)		[
STAGE PRIOR TO CONS	SOLIDATIO	N or SHEA	RING	Moisture content (%)	18'	24		
Change in height	∆Hu =	•	mm	Wet density (g/cm ³)	2.01	2.03		
change in volume	∆Vu =		mm ³	Dry density (g/cm ³)	1.70	1.63		
Height at end of stage	Hps =		mm	Void rataio	0.573	0.641		
Volume at end of stage	Vps =		mm ³	Degree of saturation (%)	84	100		
Area at end of stage	Aps =		<u>mm²</u>	DATA OF TES				
CONSOLIDAT	TION STAG	E		Test type : Cu	<u> </u>			
Change in height	∆Ho =		mm	With Dorn processor	mannum			
change in volume	∆Vc =		mm ³	Without	11092719116	nuş		
Height at end of stage	Hps =	75.65	mm	-Wittr Side drains				
Volume at end of stage	Vps =	80492	mm ³	Without				
Area at end of stage	Aps =	1064	<u>mm²</u>	With Saturation				
AFTER TEST	NG			Without-				
·								
Change in volume	∆V =		mm ³	Cell pressure	σ ₃ = 2.00	kG/cm ²		
Volume at end of stage	Vi		നന³	Vetical stress	σ ₁ =	kG/cm ²		
Height of specimen	Н		mm	Back pressure	Ub= 1.00	kG/cm ²		
Dlameter of specimen	di		mm	Intial effec.cell pressure	σ ₃ '= 1.00	kG/cm ²		
·			·	Intial effec.Vertical pressure	σ ₁ '=	kG/cm ²		
				MODE OF FAILURE	· • •			

Tested by: Eng. Nguyen Viet Tinh


Checked: Dr. Do Minh Toan

TRIAXIAL COMPRESSION TEST Test type :

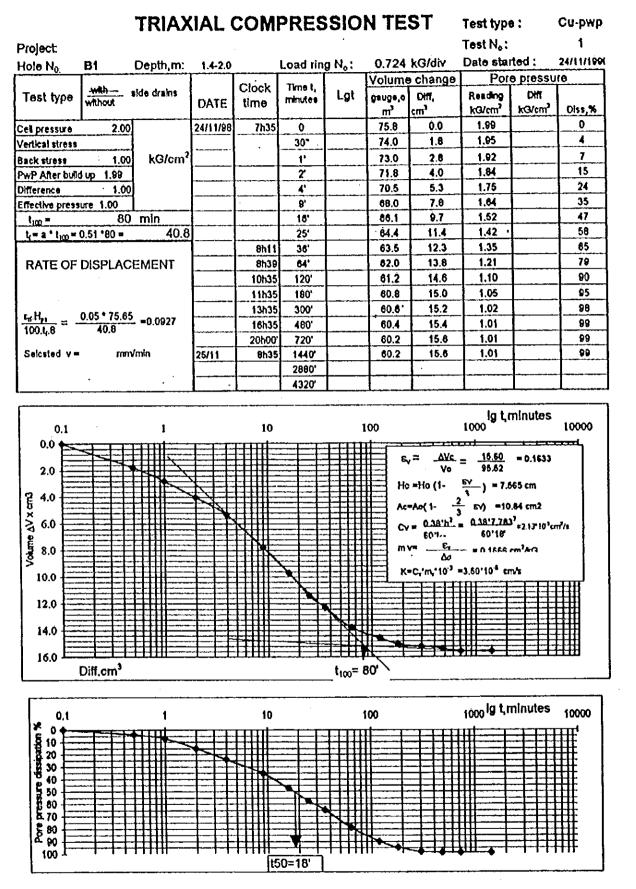
Test type :Cu-pwpTest No:1

Hole No	Bt	Depth:		1.4-2.0	m Load			rinh N₀:	0.724kG	VDiv		Date started :		20/11/1996	
						SATUR	ATIO	NPROCE	DURE :						
Test type : <u></u>								load ri	ng con	stant		Piston area			
Cell pre	ssure :	1.0 ,2.0	,3.0, 4.0,	5.0		kG/cm ²		Back pre	ssura inc	rements :	0.9;1	.9 ; 2.9 ;3	.9.	kQ/cm	
Final cell pressure : 5.00 kg/cm²							Final b	ack pre	ssure :		3.6)	k@/em		
PWP af	ter satu	iration :			4.89	kG/cm ²		Value o	of B ac	hieved :		0.99)		
Effect pressure after saturation :						kG/cm ²				uration re	ached	<u>.</u>	89	%	
Date	P	ressure	(kG/cm	1 ²)	В	Strain div	Bac	k pressure(v	Cell	volume					
lime	Cell	Back	PWP	APWP	Value	0.01mm	Belo	change mm re After	Diff	Before	After	Diff	Console	- exp	
20/11/98	0	0	0	0	0		58	.8							
	1.00		0.20		0.20										
	1.00	0.90	0.42					<u> </u>							
21/11	2.00		0.90		0.48										
-	2.00	1.90	1.60								<u> </u>				
22/11	3.00		2.25		0.85										
	3.00	2.90	2.65								<u> </u>				
23/11	4.00		3.52		0.87			1							
	4.00	3.90	3.90												
	5.00	}	4.09		0.99			75.8				1			

F-31

Porepressure respose to cell pressure increment

Slope=


Pore pressure change due to increase back pressure

B = 0.99 <u>PWP- PWPo</u> Δσ

Tested by : Eng . Nguyen Viet Tinh Checked by : Dr . Do Minh Toan

Project:

Sheef 3

Tested by : Eng . Nguyen Viet Tinh

0

(

Checked by : Dr . Do Minh Toan

Nam Son Waste Lendfill

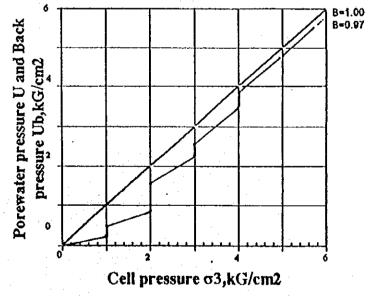
Project :

TRIXIAL COMPRESSION TEST

TEST TYPE Cu-PwP Test N_o 1

Cell N_o Load ring N_o 0.724															
Cell No		T			Load r		the second s	0.724		Date started : 25/1					/98
Test type (ເບ ່	Load	ing con	stant		Without Side drains			5	Cell pressure σ₃≖ 2.00				kG/cm²	
Rate :			CR =	0.724	kG/Div	3/Div Membranes			Vertical stress $\sigma_1 =$				kG/cm ²		
		Specim	nen prio	r to she	aring							e Po=	1.0		
Height H= mn	n 75.85	Area A		1064		Volum	e V=	80402		Eff.cel					cm ²
Stain	Loa		U	A		sress }				Stresses			1.0	Volun	
Dły	Dłv	<u> </u>		¹¹	000000			<u> </u>	Г		the second s			VOIUII	
0.01 ε,%	0.01	kG	kG/cm ²	¢m²	Stress	mem	01-03	σ_{1}	σ3	$\frac{\sigma_1 \cdot \sigma_3}{\sigma_1 \cdot \sigma_3}$		$\sigma_1^{i+\sigma_3}$	σ_1/σ_3	v	Δ٧
mm	៣៣			L		pcoul			.,	2	2	2		•	
0 0.0			1.09	10.64	0.00	0	0.00	0.91	0.91	0.00	2.00	0.91	1.00		
10 0.1			1.10	10.65	0.04		0.04	0.94	.0.90	0.02	2.02	0.92	1.05		
20 0.2				10.67	0.07		0.07	0.96	0.89	0.03	2.03	0.92	1.08		
<u> 30 · 0.3</u>			1.12	10.68	0.09		0.09	0.97	0.88	0.05	2.05	0.93	1.11		
40 0.5			1.13	10.69	0.12		0.12	0.99	0.87	0.06	2.06	0.93	1.14		
50 0.6			1.14	10.71	0.20	<u> </u>	0.20	1.06	0,88	0.10	2,10	0.96	1.24		
100 1.2			1.15	10.77	0.41	L	0.41	1.28	0.85	0.20	2.20	1.05	1.48		
150 1.6			1.16	10.84	1.00	<u> </u>	1.00	1.84	0.84	0.50	2.50	1.34	2.19		
200 2.5			1.17	10.91	1.86	L	1.86	2.69	0.83	0.93	2.93	1.76	3.24		
250 3.1			1.18	10.98	2.11	ļ,	2.11	2.93	0.82	1.05	3.05	1.07	3.57		
300 3.7			1.19	11.05	2.95		2.95	3.78	0.81	1.47	3.47	2.28	4.64		
350 4,3			1.20	11.13	3.20		3.20	4.00	0.80	1.60	3.60	2.40	5.00		
400 5.0			1.20	11.20	3.45		3.45	4.25	0.80	1.73	3,73	2.53	5.31		
450 5.6			1.18	11.27	3.55		3.55	4.37	0.82	1.78	3.78	2.60	5.33		l
500 8 2		43,150		11:35	3.80		2.89	4.82	0.82	1.98	3.90	2.72	514		
550 8.8				11.43	3.78		3.78	4.60	0.82	1.89	3.89	2.71	5.61		
600 7.5			1.18	11.50	3.75		3.75	4.58	0.84	1.87	3.87	2.71	5.48		
850 8.1			1.18	11.58	3.83		3.63	4.47	0.84	1.81	3.81	2.65	5.32		
700 8.7			1.18	11.68	3.48		3.48	4.32	0.84	1.74	3.74	2.58	5.14		
750 9.3	_	and the second second	1.15	11.74	3.39		3.39	4.24	0.85	1.70	3.70	2.55	4.99		
800 10.0		39.458	1.15	11.82	3.34		3.34	4.19	0.85	1.67	3.67	2.52	4.93		
850 10.0				11.90											
900 11.2				11.99										•	
950 11.6				12.07											
1000 12.5				12.18											· <u> </u>
1050 13.1				12.25											
1100 13.7				12.34		· · ·			•						
1150 14.3				12.43					•						
1200 15.0	0			12.52											
1250 15.6	13			12.61]									
1300 16.2	5			12.70											
1350 16.8				12.80										· · · · · ·	
1400 17.5	0	}		12.90		[

Tested by : Checked by



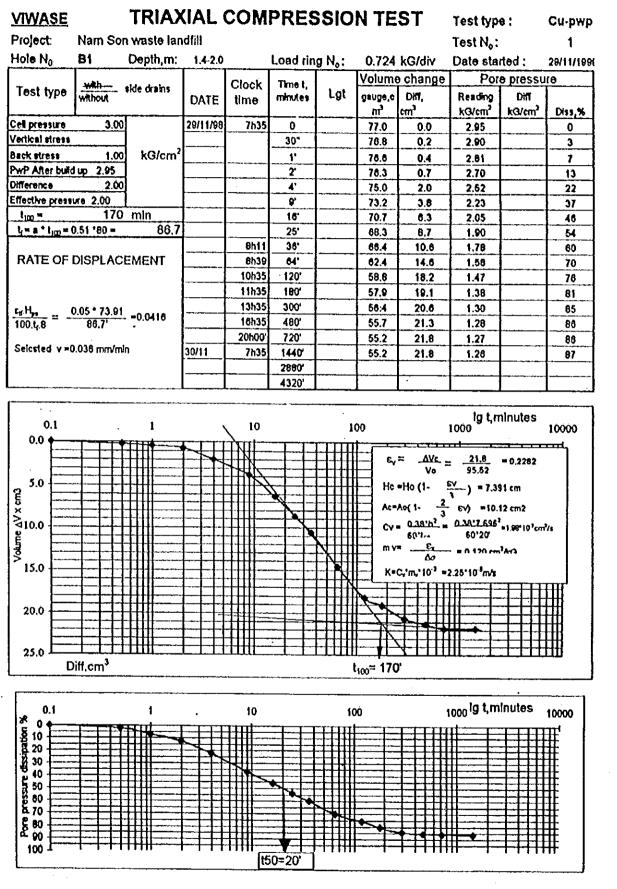
VIWASE	TRIA	XIAL	COM	PRESSION TEST	i		
Project :	Nam Son	Waste La	ndAll	Test type:		CU-PWP	
Borehole :	B1			Test No :		1	
Depth :	1.4-2.0 m			Date started :		28/11/98	
Soil description :	Hard purp	nish brow	n sandy (CLAY of intermediate plasticity			
Specimen preparation		•					
INITIAL CO	ONDITIONS		PHISIAL PROPERTIES	SPEC			
				· · · · · · · · · · · · · · · · · · ·	Intial	After test	
Height of specimen	Hi =	80	mm	Specific gravity	2.68	2.68	
Diameter of specimen	di =	39	mm	Wet mass of specimen (g)			
Area of specimen	Ai =	1194	mm²	Dry mass of specimen (g)			
Volume of specimen	<u>Vi =</u>	95520	mm³	Mass of Water (g)			
STAGE PRIOR TO CON	SOLIDATION	or SHEA	Moisture content (%)	18	21		
Change in height	∆Hu =		mm	2.01	2.08		
change in volume	∆Vu ≃		mm ³	Dry density (g/cm³)	1.70	1.71	
Height at end of stage	Hps =		mm	Void rataio	0.573	0.563	
Volume at end of stage	Vps =		mm ³	Degree of saturation (%)	84	1'00	
Area at end of stage	Aps =			DATA OF TEST		•	
CONSOLIDA	TION STAGE	E		Test type : Cu			
Change in height	ΔHc =		mm	With Pore pressure r	neasureme	nts	
change in volume	∆Vc =		mm ³	Without			
Height at end of stage	Hps =	73.91	mm	-Wittr Side drains			
Volume at end of stage	Vps =	74797	mm ³	Without			
Area at end of stage	Aps =	1012	mm²	With Saturation			
AFTER TEST	ING			Without-			
	· .			With-Back pressure		· · · · ·	
Change in volume	ΔV =		mm ³	Cell pressure	σ₃= 3.00	kG/cm ²	
Volume at end of stage	Vi		mm ³	Vetical stress	σ₁=	kG/cm ²	
Height of specimen	Hi		mm	Back pressure	Ub= 1.00	kG/cm ²	
Diameter of specimen	di		mm	Intial effec.cell pressure	σ ₃ '= 2.00	kQ/cm ²	
				Intial effec. Vertical pressure	σ ₁ '=	kG/cm ²	
				MODE OF FAILURE	· •		

Tested by : Eng. Nguyen Viet Tinh Checked : Dr. Do Minh Toan

,

VIWA				TRI/	۹XIA	L CO	MPR	ESS	ION	TES'	Г	-	/pe:	Си-рур
Project												Test N	-	1 26/11/99
Hole N _o	BI	Depth:		1.4-2.0	m		Load ri	nh N _o :	0.724kG	/Dh/		Date s	tarted :	
						SATUR	ATION	PROCEL	OURE :					
Test type : <u>Cu-pwp</u> With Side drains						drains		load rir	ng cons	slant			Piston ar	ea
Cell pre		1.0 ,2.0		5.0		kG/cm ²		Back pres	sure inc	: ememai	0.9 ; 1	.9 ; 2.9 ;3	.9.	kG/cn
Final ce					5.00	kQ/em ²		Final ba				3.90)	kG/cn
PWP af	ter satu	ration :			4.87	kG/cm²		Value o	f B act	nieved :		0.97	2	
Effect p	iessure	after sa	turation	۱:		kG/cm ²		Degree	of satu	unation re	ached		97	ę
Date	P	iessure i	(kG/cm) ²)	В	Strain		ack pressure (volume Cell volum					e (mm ³)	
time	Cell	Back	PWP	ΔPWP	Value	div 0.01mm	Before	ance mm After	Diff	Before	After	Diff	Console	• ex
26/11/98	0	0	0	0	0		50.8						1	1
	1.00		0.22		0.22									1
	1.00	0.90	0.43						•					
	2.00	•	0.87		0.44									1
27/11	2.00	1.90	1.84											1
	3.00		2.33		0.69							1		
	3,00	2.90	2.68							[1	1	1
28/11	4.00		3.55		0.87							1		1
	4.00	3.90	3.90											
	5.00		4.87		0.97			77.0		[1			1

Porepressure respose to cell pressure increment


Slope=

Pore pressure change due to increase back pressure

0.97 8 = PWP-PWPo Δσ

Tested by : Eng , Nguyen Viet Tinh Checked by : Dr , Do Minh Toan

Seel 3pr

Tested by : Eng . Nguyen Viet Tinh

Checked by : Dr . Do Minh Toan

TRIXIAL COMPRESSION TEST

TEST TYPE Cu-PwP

į

Projec Cell N		FAMILE C										Test N	•	20/44	юø	
	ype Cl	J	Load	ing con	stant			With S			Cell p	nuzzelo		3.00	30/11. kG	/98 /cm²
Rate :				CR =		kG/Div	L'		branes		Vadia					
			Cnesim					1110111	Vianos		1	al stres				cm ²
La la la la		73.64	Specim Area A				<u> </u>	- \/-				ressur		1.0	kG/	
Heloht I Stra	_	Loa		υ	1012		Volum		<u>74797</u>	mm ³			<u>ire σ3'=</u>	2.0		′cm²
		Dr		<u>v</u>	<u>A</u>	Deviato	r stress	KG/em		<u>`</u>	Stresses				Volun	<u>ne</u>
0.01 mm	ε,%	0.01 mm	kG	kQ/cm²	em²	Stress	mem bcorr	$\sigma_1 - \sigma_3$	$\alpha_{l'}$	σ _{3'}	$\frac{\sigma_1 \cdot \sigma_3}{2}$	$\frac{\sigma_1,\sigma_3}{2}$	$\frac{\sigma_1'+\sigma_3}{2}$	σ1/σ3	۷	۵۷
0	0.00	0.0	0.000	1.26	10.12	0.00	0	0.00	1.74	1.74	0.00	3.00	1.74	1.00		·
10	0.13	0.7	0.507	1.29	10.13	0.05		0.05	1.76	1.71	0.03	3.03	1.74	1.03		
20	0.25	1.5	1.088	1.38	10.15	0.11		0.11	1.73	. 1.62	0.05	3.05	1.67	1.07		
30	0.38	2.0	1.449	1.41	10.16	0.14		0.14	1.73	1.59	0.07	3.07	1.66	1.09		
40	0.50	2.9	2.100	1.48	10.17	0.21		0.21	1.75	1.54	0.10	3.10	1.04	1.13		
50	0.63	4.0	2.896	1.49	10.18	0.28		0.28	1.79	1.51	0.14	3.14	1.65	1.19		[
100	1.25	11.0	7.964	1.58	10.25	0.78		0.78	2.22	1.44	0.39	3.39	1.83	1.54		
150	1.88	28.0	20.272	1.71	10.31	1.97		1.97	3.28	1.29	0.98	3.99	2.27	2.52		
200	2.50	42.5	30.770	1.81	10.38	2.96		2.95	4.15	1.19	1.48	4.48	2.87	3.49		
250	3.13	52.0	37.648	1.86	10.45	3.60		3.60	4.74	1.14	1.80	4.80	2.94	4.18		
_ 300	3.75	65.0	47.060	1.86	10.51	4.4B		4.48	5.82	1.14	2.24	5.24	3.38	4.93		
350	4.38	72.0	52.128	1.86	10.58	4.93		4.93	6.07	1.14	2.40	5.46	3.80	5.32		(-
400	5.00	73.0	52.852	1.81	10.65	4.98		4.96	8.15	1.19	2.48	5.48	3.67	5.17		
450	5,63	73.8	53.431	1.76	10.72	4.98		4.98	6.22	1.24	2.49	6.49		5.02		[
500	6.25	73.5	53.214	1.71	10.79	4.93		4.93	8.22	1.29	2.46	5.48	3.75	4.82		
550	6.88	73.0	52.852	1.70	10.87	4.86		4.86	6.16	1.30	2.43	5.43	3.73	4.74		[
600	7.50	72.0	52.128	1.70	10.94	4.76		4.78	6.06	1.30	2.38	5.38	3.68	4.67		
650	8.13				11.01		·									
700	8.75				11.09											
750	9.38				11.17											
800	10.00				11.24			•								·
850	10.63				11.32				_							
900	11.25				11.40							_				
950	11.88				11.48											
1000	12.60				11.57											
1050	13.13				11.65											
1100 1150	13.75				11.73									ĺ.		
1200	14.35				11.82											
	15.63				<u>11.91</u> 11.99									.		
1300					12.08											<u> </u>
_	18.88			——												
	17.50	{			12.17											
Tester			1		12.21	L								l		

Tested by: Checked by

VIWASE

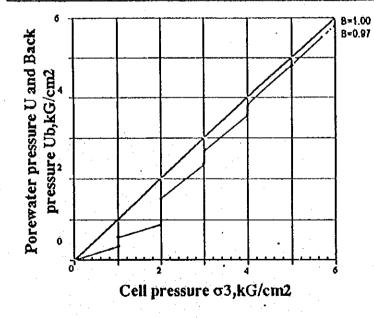
.

. .

F-37

-

.

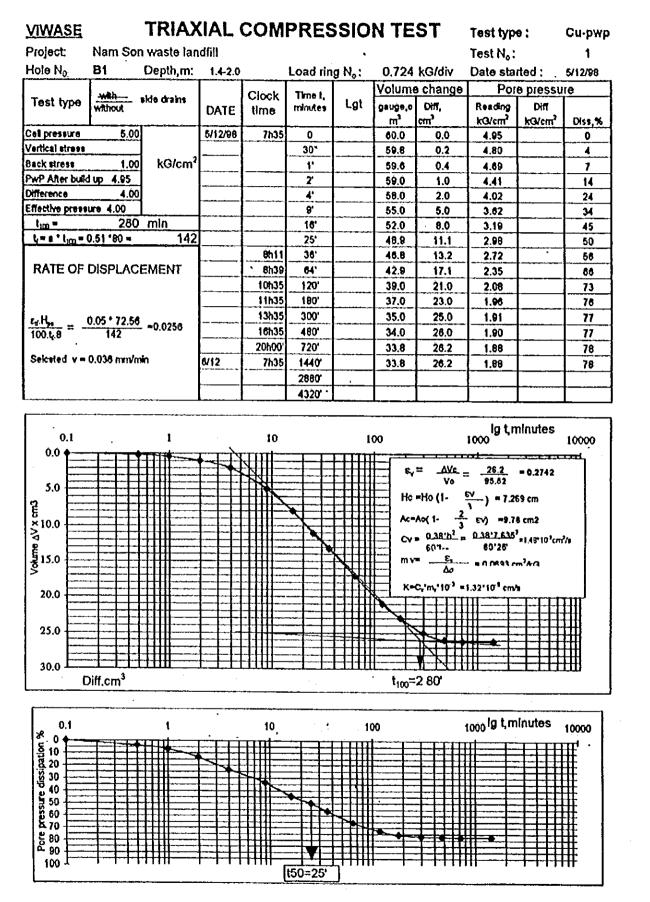

.

VIWASE	TRIA	XIAL	COM	PRESSION TEST		
Project :	Nam Son	Waste La	ndfill	Test type:		CU-PWP
Borehole :	B1			Test No :		1
Depth :	1.4-2.0 m	L _		Date started :		1/12/98
Soll description :	Hard purp	onish brown	n sandy C	LAY of intermediate plasticity	•	
Specimen preparation						
				PHISIAL	SPEC	
INITIAL CO	ONDITIONS			PROPERTIES		
	· · · ·				Intial	After test
Height of specimen	Hi =	80	mm	Specific gravity	2.68	2.68
Diameter of specimen	di =	39	mm	Wet mass of specimen (g)		
Area of specimen	Ai =	1194	mm² :	Dry mass of specimen (g)		
Volume of specimen	<u>Vi =</u>	95520	<u></u>	Mass of Water (g)		
STAGE PRIOR TO CON	SOLIDATIO	N or SHEA	RING	Moisture content (%)	18	17
Change in height	∆Hu =	•	mm	Wet density (g/cm ³)	2.01	2.16
change in volume	∆Vu ≂		നന ³	Dry density (g/cm ³)	1.70	1.84
Height at end of stage	Hps =		mm	Void rataio	0.573	0.455
Volume at end of stage	Vps =		mm ³	Degree of saturation (%)	84	100
Area at end of stage	Aps =		mm ²	DATA OF TEST		
CONSOLIDA	TION STAG	E		Test type : Cu	1 A.	
Change in height	∆Hc =	_	mm	With Pore pressure r	neasureme	nts
change in volume	∆Vc =		mm ³	Without		
Height at end of stage	Hps ≕	72.69	mm	-Wittr Side drains		
Volume at end of stage	Vps ≃	70945	mm3	Without		
Area at end of stage	Aps =	976	mm²	With Saturation		
AFTER TEST	ING			Without-		
•						
Change in volume	ΔV =		mm ³	Cell pressure	σ ₃ = 5.00	kG/cm ²
Volume at end of stage	Vi			Vetical stress	σ ₁ =	kG/cm ²
Height of specimen	Hi		mm	Back pressure	Ub= 1.00	kG/cm ²
Dlameter of specimen	di j		mm	Intial effec.cell pressure	$\sigma_{3}'=4.00$	kG/cm ²
-				Intial effec.Vertical pressure	σ ₁ '≐	kG/cm ²
	•			MODE OF FAILURE		.*

Tested by :Eng . Nguyen Viet TinhChecked :Dr . Do Minh Toan

VIWA	SE			TRI/	۸XIA	L CO	MPF	RESS	ION	TES	r	Test ty	/pe ;	c u∙pwp
Project :		Nam So	on Was	te Land	fill							Test N	•:	1
Hole No:		Depth:		1.4-2.0	m		Load ri	nh N₀:	0.724kG	/DN		Date s	tarted :	1/12/98
						SATUR	лпон	PROCEL	URE :					
Test type	9:	Cu-pwp	1 .	-With Vithout	Side	drains		load rir	ng con	stant			Piston ar	ea
Cell pres	ssure :	1.0 ,2.0		5.0		kG/cm		Back pres	isure inc	rements :	0.9;1	.9;2.9;3	.9	kG/cm
Final ce					5.00	kG/cm ²		Final ba	ack pre	ssure :		3.90)	kG/cm
PWP af					4.87	kG/cm ²		Value c	f B ac	hieved :		0.99)	
Effect p	essure	after sa	turation	n:		kG/cm				uration re	eached		97	%
Date	P	ressure	(<u>kG/cn</u>	1 ²)	В	Strain dtv		pressure(v		Cell	volume	change	<u>(mm³)</u>	
time	Cell	Back	PWP	ΔΡ₩Ρ	Value		Before	hange mm After	Dirt	Belore	After	Diff	Console	ext
1/12/98	0	0	Q	Ó	0		28.0				<u> </u>	<u> </u>		
	1.00		b.31		0.31	İ		. ·						
	1.00	0.90	0.45							<u> </u>				
2/12/98	2.00		0,89		0.44					<u> </u>	<u> </u>			
	2.00	1.90	1.83								 			l
3/12/99	3.00	r	2.35		0.72									
-	3.00	2.90	2.69											
4/12/98	4.00	:	3.68		0.89					_	ļ		<u> </u>	<u> </u>
	4.00	3.90	3.88				<u> </u>			ļ	ļ	ļ		
	5.00		4.87		0.99		1	60.0		1				

Porepressure respose to cell pressure increment


Slope=

Pore pressure change due to increase back pressure

Δσ

B = 0.99 PWP-PWPo

Tested by : Eng . Nguyen Viet Tinh Checked by : Dr . Do Minh Toan

Tested by : Eng . Nguyen Viet Tinh

- F-40

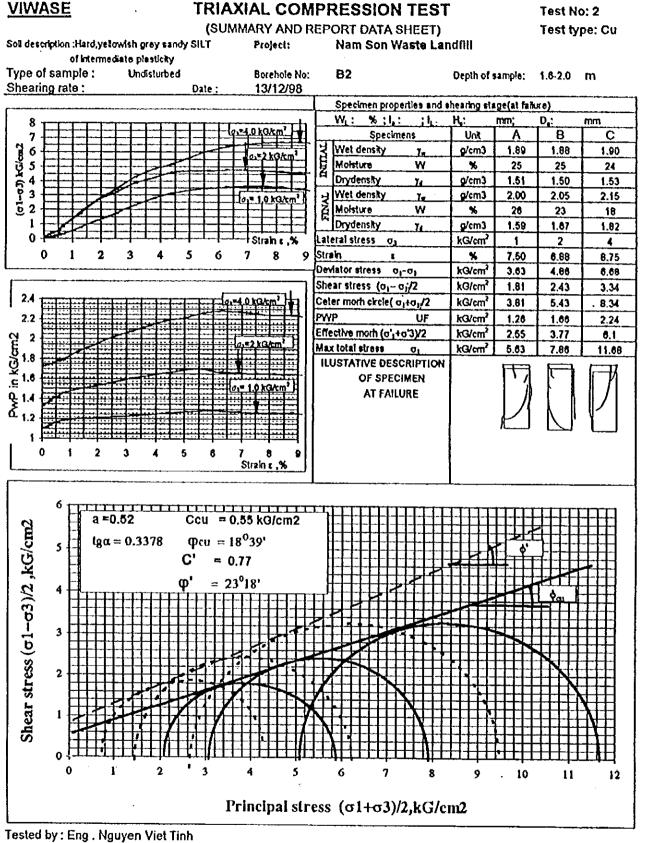
Checked by : Dr . Do Minh Toan

TRIXIAL COMPRESSION TEST

TEST TYPE Cu-PwP Test N₂ 1

Projec	nt i	Nam 9	Son Was	talan	461								Tankhi		4	-
-		Main C	2011 4443	SUO LAIN		Load ri	ina M						Test N	-	1	
Cell N	<u> </u>		<u></u>			Load I			0.724		r				6/12/9	8
Test t	ype Cl	J	Load (ing con	stant		v	Vithout S	ide drain	\$	Cell	oressure	e σ3≓	5.00	kG/	cm²
Rate :				CR =	0.724	kG/DN		Mem	branes		Vertic	al stres	sσ ₁ =		kG/	cm²
			Specim	ien prio	r to she	aring					Back r	ressure	Po=	1.0		
Height I	te mm	72.69	Area A		976	mm²	Volum	e V≍	70945	mm ³		pressu			kG/	
Stal		Loa		υ	Α		visitess à				Stresses			; <u>,</u>	Volun	
Div		Dłv					mem			[σ1-σ1	σ1+σ3	_		Torut	ľ
0.01 mm	s,%	0.01 mm	kQ	kG/cm²	¢m²	Stress	pcoll	$\sigma_1 - \sigma_3$	σμ	α 3.	2	2	2	σ_1/σ_3	V	۵۱
0	0.00	0.0	0.000	1.89	9.76	0.00	0	0.00	3.12	3.12	0.00	5.00	3.12	1.00		
10	0.13	3.5	2.534	1.90	9.77	0.26		0.28	3.36	3.10	0.13	5.13	3.23	1.08		
20	0.25	4.2	3.041	1.95	9.78	0.31		0.31	3.38	3.05	0.18	5.18	3.21	1.10		
30	0.38	5.0	3.620		9.80	0.37		0.37	3.20.	2.92	0.18	5.18	3.10	1.13		
40	0.50	0.0		2.15	9.81	0.44		0.44	3.29	2.85	0.22	5.22	3.07	1.16		
50	0.63	6.8	6.371	2.20	9.82	0.65		0.65	3.45	2.80	0.32	5.32	3.12	1.23		
100	1.25	20.0	14.460		9.89	1.47		1.47	4.23	2.76	0.73	5.73	3.49	1.53		
150	1.88	38.0	26.064	2.30	9.95	2.62		2.62	5.32	2.70	1.31	6.31	4.01	1.97		
200	2.50	47.0		2.35	10.01	3.40		3.40	8.05	2.65	1.70	6.70	4.35	2.28		
250	3.13	55.2	39.965		10.07	3.97		3.97	8.85	2.00	1.98	6.98	4.00	2.48		
300	3.75	72.5			10.14	5,18		5.18	7.89	2.70	2.59	7.59	6.29	2.92	 	
350	4.38	95.0		2.28	10.21	0.74		6.74	9.46	2.72	3.37	8.37	6.09	3.49		
400	5.00	100.0	72.400	2.25	10.27	7.05		7.05	9.80	2.75	3.52	8.52	6.27	3.58		L
450	5.83	100.0		2.22	10.34	7.00		7.00	9.78	2.78	3.50	8.50	6.28	3.52		
500	0,26		73.846		10.41	7.09		7.08	1.89	2.80	3.65	6.55	8.35	3.53		
550	6.88	102.0			10.48	7.05	L	7.05	9.87	2.82	3.52	8.52	6.34	3.50		
600	7.50	100.0	72.400		10.55	6.86		6.86	9.68	2.82	3.43	8.43	8.25	3.43		
850	8.13	98.0	70.952	2.17	10.62	0 .68		6.69	9.51	2.83	3.34	8.34	8.17	3.38		
700	8.75	· -	••		10.70										-	<u> </u>
750	9.38		·		10.77											
<u> </u>	10.00				10.84											
850	10.63				10.92	- .										
900	11.25				11.00		 									I
950	11.88				11.08									 		
1000	12.60				11.15											.
1050	13.13				11.23					ļ				L		
1100		·			11.32	·				·					<u></u>	
	14.38				11.40							·				L
1200		· · · -	<u> </u>		11.48		. <u> </u>								<u> </u>	
1250					11.57								i			
1300	·····				11.65						 					
	16.88				11.74											
	17.50 d hv 1		L	L	11.83	l			L	l		l				

Tested by : Checked by


•

.

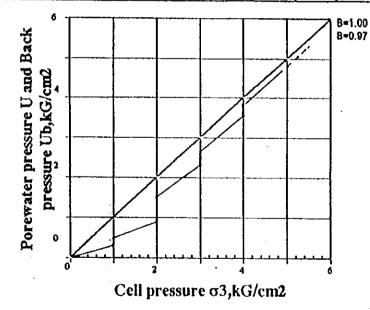
VIWASE

各书

F-41

Tested by : Eng , Nguyen Viet Tir Checked by : Dr. Do Minh Toan

VIWASE


TRIAXIAL COMPRESSION TEST

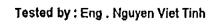
Project :	Nam Son V	Naste La	ndfill	Test type:		CU-PWP
Borehole :	82			Test No :		2
Depth :	1.6-2.0 m			Date started :		28/11/199
Soil description :	Hard yellow	wish grey	sandy Sl	LT of intermediate plasticity	*	
Specimen preparation						
. INITIAL CO	NDITIONS			PHISIAL PROPERTIES	SPEC	CIMEN
					Intial	After test
Height of specimen	· Hi =	80	mm	Specific gravity	2.70	2.70
Diameter of specimen	dì ≈	39	mm	Wet mass of specimen (g)		
Area of specimen	Ai =	1194	mm²	Dry mass of specimen (g)		
Volume of specimen	VI =	95520	mm ³	Mass of Water (g)		
STAGE PRIOR TO CONS	SOLIDATION	or SHEA	RING	Moisture content (%)	25	26
Change in height	∆Hu =		mm	Wet density (g/cm ³)	1.89	2.00
change in volume	∆Vu≍		mm ³	Dry density (g/cm ³)	1.51	1.59
Height at end of stage	Hps =		mm	Void rataio	0.786	0.701
Volume at end of stage	Vps =		mm ³	Degree of saturation (%)	84	100
Area at end of stage	Aps =		mm²	DATA OF TEST		
CONSOLIDA	TION STAGE			Test type : Cu		
Change in height	∆Hc =		mm	With Pore pressure r	neasureme	nts
change in volume	∆Vc ≖		mm3	Without		
Height at end of stage	Hps =	76.09	mm	-With Side drains		
Volume at end of stage	Vps =	81949	mm ³	Without		
Ves at end of stage	Aps =	1077	2	With Saturation		
AFTER TEST	ING			Without-		
				Without Back pressure		
Change in volume	ΔV =		mm ³	Cell pressure	σ ₃ ≈ 2.00	kG/cm²
Volume at end of stage	Vi		mm ³	Vetical stress	σ ₁ =	kG/cm²
Height of specimen	Hi		mm	Back pressure	Ub= 1.00	kG/cm ²
Diameter of specimen	đi		mm	Intial effec.cell pressure	σ ₃ '= 1.00	kG/cm²
-				Intial effec.Vertical pressure	σ ₁ '=	kG/cm ²
				MODE OF FAILURE	- 1	

Texted by : Eng . Nguyen Viet Tinh Checked : Dr . Do Minh Toan

F-43

				TRI/	AXIA	L CO	MPF	RESS	ION	TES'	Γ	Test ty	/pe:	Cu-p	wp
Project	:											Test N	o:	2	ż
Hole No	B2	Depth:		1.6-2.0	m		Load ri	inh N _o :	0.72 å kG	VDN	•	Date s	tarted :	28/11/	/1998
						SATUR	ATION	PROCE	DURE :						·
Test typ	e:	Cu-pwp		- With_ Nithout		drains		load ri	ng con	stant			Piston ar	ea	
Cell pre	ssure :	1.0 ,2.0	,3.0, 4.0	5.0		kG/cm ²		Back pre	ssure inc	rements :	0.9 ; 1.	.9 ; 2.9 ;3.	.9.	k	3/cm²
Final ce	ll press	: eru			5.00	kQ/cm ²				ssule :		3.9		k	3/cm ²
PWP af	ter satu	<u>iration :</u>			4.85	kG/em²		Value o	of B ac	hleved :		0.97	•		
Effect p	ressure	after sa	aturatio	n :		kG/cm²		Degree	of sat	uration re	ached		97		%
Date						Strain div		pressure(v	olume	1		change	(mm ³)		
time	Cell [:]	Back	PWP	APWP	Value	0.01mm	Before	hange mm After	Diff	Before	After	Diff	Console	•	exp
26/11/98	0	0	0	0	0		54.0								
<u></u>	1.00		0.25		0.25									-	
	1.00	0.90	0.40											1	
27/11	2.00		0.90		0.50									1	
	2.00	1.90	1.63			· · ·							·		
28/11	3.00		2.30		0.87	[
	3.00	2.90	2.70												
29/11	4.00		3.62		0.92			1				1	· · ·	<u> </u>	
	4.00	3.90	3.08	[1		1	<u> </u>		
	5.00		4.85		0.99			70.0		1		·		<u> </u> -	

Tested by : Eng . Nguyen Viet Tinh Checked by : Dr . Do Minh Toan Porepressure respose to cell pressure increment


Slope=

Pore pressure change due to increase back pressure

B = 0.97 <u>PWP- PWPo</u> Δσ

F-44

<u>VIWASE</u>					• • • • • •			ST			Си•ржј
Project:		Nam Son							Test N _o :		2
Hole N ₀	B2	Depth:	1.8-2.0	m	Load rin	g N _o :		kG/div	Date sta		30/11/19
	with	alda dealea		Clock	Time I,			change	and the second sec	e pressu	(0
Test type	without	side drains	DATE	time	minutes	Lgt	02008,0		Reading	•	
Cell pressure	2.00	1	30/11/98	8h35	0	·	m³ 70.0	em ³	kG/cm ²	kG/cm²	Dist,%
Vertical stress	2.00		20411190	01155	30*		69.2	0.0	<u>1.95</u> 1.95		<u>4</u> 5
	1.00	kG/cm ²			1		68.5	1.5	1.92		
PwP After build	up 1.99	1			2'		67.5	2.5	1.88		13
Difference	1.00				4'		68.4	3.6	1.78		23
Effective press		<u>L</u>			9'		64.3	5.7	1.83		38
l ₁₀₀ =	110				16'		82.5	7.5	1.54		45
<u>t= a * t₁₀₀ = 1</u>	<u>).51 '110 =</u>	56.1			25'		61.0	9.0	1.48		52
RATE OF		EMENT		8h11 8h39	<u> </u>		59.9 58.5	10.1	1.41	 	59
		• • • • • • • • • • • • • • • • • • •		10h35			57.1	<u>11.5</u> 12.9	1.30		70 82
				11h35			56.6	13.4	1.13		87
ыH.	0.05 * 78 09			13h35			50.2	13.8	1.12		88
$\frac{\epsilon_{\rm st}{\rm H}_{\rm ps}}{100.4.8}=-$	56.1	- ≈0.0 8 78		16h35			56.1	13.9	1.10		90
Selested v =	0.020	t_		20h35'			56.0	14.0	1.10		90
Seicsted V=	0.030 mm/		1/12	8h35	1440'		56.0	14.0	1.10		90
					2880' 4320'						
2.0 4.0 500 × 6.0 8.0 10.0 12.0 14.0 16.0							Hic Ac= CV = m v	$= Ho (1 - \frac{2}{3})$ $= \frac{0.38 \cdot h^2}{607 \cdot a} = \frac{507 \cdot a}{607}$ $= \frac{507 \cdot a}{607}$ $= \frac{507 \cdot a}{607}$	$= \frac{14.00}{95.52}$ $= 7.6$ $= 8v) = 10.$ $= 0.1726 c$ $= 2.90'10^4 cm$	09 cm 77 cm2 =1.69*10*cm m ³ /kG /s	
C	iff.cm ³					t ₁₀₀ = 1	10'				
0.1		1		10		10	ю	. <u> </u>	1000 lg t,m	Inutes	10000
Ben bergen and a set of the set o											

F-45

<u>VIWASE</u>

TRIXIAL COMPRESSION TEST

TEST TYPE Cu-PwP

Proje	ct:	Nam S	Son Wa	ste Lan	dfill								Test N		2	•
Cell N	10					Load r	ing No		0.728	•				•	: 1/12/9	98
Test	уре С		Load	ring con	istant		<u> </u>	With Vithout	Side drain	\$	Cell	oressur		2.00		/cm²
Rate		•		CR =	0.728	kG/Dh		Mem	branes		Vertic	al stres	S σ1 =		kG/	cm²
			Specin	oirg ner	r to she	aring					1		e Po=	1.0		
Height	H= mm	78,09	Area A	=	1077	mm ²	Volum	le V≃	81949	mm ³	Eff.cel					cm²
Stra	in	Loa		υ	Α	_		kG/cm ²			Stresses			1.0	Volun	
Div		DN						1		<u> </u>			$\sigma_1 + \sigma_3$		YOIUI	
0.01 mm	ε,%	0.01 mm	kG	kG/cm²	¢m²	Stress	mem bcorr	$\sigma_1 - \sigma_3$	σι	σ3	2	2	2	σ1/σ3	v	۵۷
0	0.00		0.000		10.77	0.00	0	0.00	0.90	0.90	0.00	2.00	0.90	1.00		
10	0.13		0.728		10.78	0.07	I	0.07	0.96	0.89	0.03	2.03	0.92	1.08		1
20	0.25	1.3	0.944	1.13	10.80	0.09		0.09	0.96	0.87	0.04	2.04	0.91	1.10		
	0.38	1.8	1.307	1.15	10.81	0.12		0.12	0.97	0.85	0.06	2.08	0.91	1.14		1
40	0.50	2.8	2.033	1.10	10.82	0.19		0.19	1.03	0.84	0.09	2.09	0.93	1.22		1
50	0.63	4.2	3.049	1.18	10.84	0.28		0.28	1.10	0.82	0.14	2.14	0.96	1.34		
100	1.25	8.1	5.891	1.20	10.91	0.54		0.54	1.34	0.80	0.27	2.27 '	1.07	1.87		
150 200	1.68	14.5	10.527	1.21	10.98	0.96		0.98	1.75	0.79	0.48	2.48	1.27	2.21		
200	2.50 3.13	26.0 35.0	18.876	1.22	11.05	1.71		1.71	2.49	0.78	0.85	2.85	1.63	3.19		<u> </u>
300	3.75	42.1	25.410 30.565	1.23	<u>11.12</u> 11.19	2.29		2.29	3.08	0.77	1.14	3.14	1.91	3.97		
350	4.38	48.2	34.993	1.24	11.20	2.73		2.73	3.49	0.76	1,37	3.37	2.13	4.59		
400	5.00	51.5	37.389	1.27	11.34	3.30		3.11 3.30	3.85	0.74	1.55	3.55	2.29	5.20		·
450	5.63	54.3	39.422	1.28	11.41	3.45		3.45	4.03	0.73	1.65	3.65	2.38	5.52		
500	6.25	56.0	40.656	1.20	11.49	3.54		3.54	4.17	0.72	1.73	3.73	2.45	5.80		ļ
550	8.88	57.5	41.745	1.27	11.57	3.61		3.61	4.34	0.72	<u>1.77</u> 1.80	3.77	2.49	5.92	- <u></u>	·
910bd		13:58.2	42.259	126	31.14	3.63	25 85 87 8/5 75 8 45 8 2	3.83	4.37	0.73	1.60 SA 83 S	3.80	2.53 12.55 (5.94 35.902		
650	8.13	58.0	42.108	1.28	11.72	3.59	APREAR AND	3.59	4.33	0.74	<u>989478</u> 1.80	3.80	12.35.; 2.64	3 3.90 () 5.85		
700	8.75	56.0	40.656	1.28	11.80	3.44		3.44	4.18	0.74	1.72	3.72	2.48	5.85		
750	9.38	55.0	39.930	1.25	11.68	3.36		3.38	4.11	0.75	1.68	3.68	2.40			
600	10.00	54.5	39.587	1.24	11.97	3,31		3.31	4.07	0.78	1.65	3.65	2.43	5.48 5.35		
850	10.63				12.05								¥I	0.00		
900	11.25				12.14											
950	11.89				12,22											
1000	12.50				12.31			•								
1050	13.13				12.40										·	·
1100	13.75				12.49											_
1150	14.39				12.58							<u> </u>				
1200	15.00				12.67						f					
1250	15.63				12.78											<u> </u>
1300	18.25				12.88				·							
1350	18.88				12.96						[·				
1400	17.50		1		13.05											

Tested by : Checked by

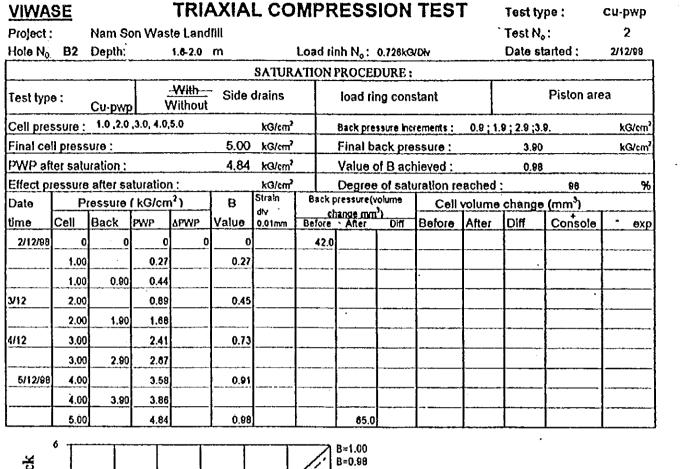
.

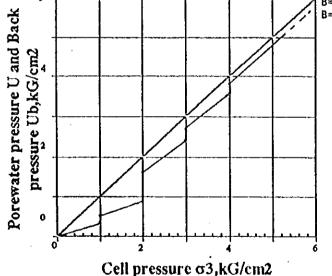
F-46

•

VIWASE

TRIAXIAL COMPRESSION TEST

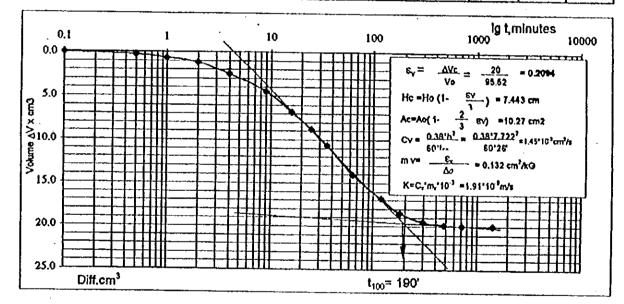

.

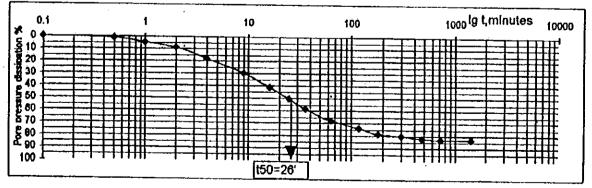

Project :		n Waste La	Indfill	Test type:		CU-PWP
Borehole :	B2			Test No :		2
Depth :	1.8-2.0 n			Date started		2/12/98
Soll description :	Hard yel	lowish grey	' sandy S	ILT of intermediate plasticity		
Specimen preparation						
INITIAL CO	NOITIONS	6		PHISIAL PROPERTIES	SPE	CIMEN
•					Intial	After test
Height of specimen	Hi =	80 ·	́ mm	Specific gravity	2.70	2.70
Diameter of specimen	di =	39	mm	Wet mass of specimen (g)		
Area of specimen	= iA	1194	mm²	Dry mass of specimen (g)	1	
Volume of specimen	<u>Vi =</u>	95520	mm ³	_Mass of Water (g)		
STAGE PRIOR TO CON	SOLIDATIC	N or SHEA	RING	Moisture content (%)	25	23
Change in height	ΔHu =		mm	Wet density (g/cm³)	1.88	2.05
change in volume	∆Yu =	•	mm ³	Dry density (g/cm ³)	1.50	1.67
Height at end of stage	Hps =		mm	Void rataio	0.573	0.620
Volume at end of stage	Vps =		mm ³	Degree of saturation (%)	84	100
Area at end of stage	Aps =		mm ²	DATA OF TEST		
CONSOLIDA	TION STAC	θE		Test type : Cu		
Change in height	ΔHc =		mm	With Pore pressure r	nesculome	nte
change in volume	∆Vc =		mm ³	Without	neasorenie	11.5
Height at end of stage	Hps ≍	74.43	mm	-Wittr Side drains		
Volume at end of stage	Vps =	76440	നന ³	Without		
Area at end of stage	Aps =	1027	mm²	With Seturation		
AFTER TEST	ING			With Saturation		
				With-Back pressure		
Change in volume	∆V =		mm ³	Cell pressure	σ ₃ = 3.00	kG/cm²
Volume at end of stage	Vi		നന ³	Vetical stress	σ ₁ =	kG/cm ²
Height of specimen	Hi		mm	Back pressure	°⊺ Ub≈ 1.00	kG/cm ²
Diameter of specimen	di		mm	Initial effec.cell pressure	$\sigma_3'= 2.00$	kG/cm ²
·				Intial effec.Vertical pressure	σ ₃ '=	kG/cm ²
					-1	
				MODE OF FAILURE		

.

;

Tested by: Eng. Nguyen Viet Tinh Checked: Dr. Do Minh Toan


Tested by : Eng . Nguyen Viet Tinh Checked by : Dr . Do Minh Toan Porepressure respose to cell pressure increment


Slope=

Pore pressure change due to increase back pressure

B = 0.98 <u>PWP- PWPo</u> Δσ

VIWASE		TRIAX	(IAL)	сом	PRES	SSIO	N TE	ST	Test typ	9 : ·	Gu-pwp
Project	Nam Sor	n waste lan	dfill						Test No:		2
Hole No	B2	Depth:	1.6-2.0	m	Load rin	ig N _o :	0.728	kG/div	Date sta	rted :	6/12/98
_	ueb			Clock	Time t		Volume	change		e pressu	10
Test type	with	side drains	DATE	time	minutes	Lgt	gauge,c m ³	Diff, cm ³	Reading kG/cm ²	Diff kG/cm ²	Diss,%
Cell pressure	3.00		6/12/98	7h35	0		85.0	0.0	2.92		0
Vertical stress					30"		84.7	0.3	2.90		1
Back stress	1.00	kG/cm²			t'		64.3	0.7	2.63		5
PwP After build	up 2.92				2'		63.8	1.2	2.75		8
Difference	2.00				4'		62.5	2.5	2.58		18
Effective press					8,		80.5	4.5	2.35		30
t ₁₀₀ =		min			16'		58.2	6.8	2.13		41
<u> </u>	0.51 190 =	96.9			25'	·····	58.2	8.8	1.95		51
BATE OF		-		<u>8h11</u>	36'		64.3	10.7	1.80		58
RATE OF	UISPLAU	EMENI		8h39	64'		50.9	14.1	1.82		68
Í				10h35		<u>-</u>	48.2	16.8	1.50		74
				11h35 13h35	160' 300'		48.5	18.5	1.41		79
$\frac{\epsilon_{tf}H_{p1}}{100.48} = -\frac{0}{100}$	0.05 * 74.43	-0.0385		16h35	480		45.5	19.5	1.38		80
100.4.8	80.8	•		20100	720'		45.1 45.0	19.9	1.34		82
Selected v =0	.038 mm/mit	n	7/12/98	7h35	1440		45.0	20.0 20.0	1.33		83
					2880			20.0	1.33		83
			•		4320'						

Tested by : Eng . Nguyen Viet Tinh

Checked by : Dr . Do Minh Toan

VIWASE

.

TRIXIAL COMPRESSION TEST

. .

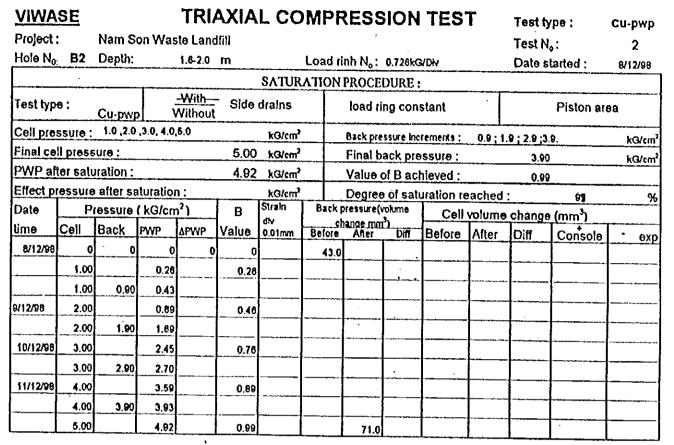
TEST TYPE Cu-PwP

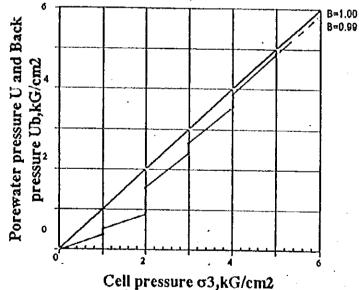
												-			Cu Pw	•
Proje		Nam S	Son Wa	ste Lan	dfill						•		Test N		2	
Cell I	10					Load r	ing N _o		0.726				Date s	larted	: 7/12/8	98
Test	type Cl	J	Load (ring cor	istant		v	With- s	ide drain	3	Cell	pressur		3.00		/cm²
Rate	:			CR =	0.728	kG/Div		Mem	branes		Vertic	al stres	\$σ; =		kG/	cm ²
			Specin	ien prio	r to she	aring	*===				· · · ·		e Po=	1.0		_
Height	H= mm	74.43	Area A		1027		Volum	e V=	78440	mm ³			re α3'=			cm ²
Stra	ain	Loa		U	Λ			kG/cm ²			Stresses			2,0	Volun	Cm⁻ Do
D∱v 0.01	8,%	Dtv 0.01	∣ ∷kG				mem				σ1.03	σ1.σ3	σ1'+σ3	[I —
mm	0,70	mm	i KG	kG/cm²	сш	Stress	nood	$a^{1}-a^{3}$	σ_{Γ}	σ_3	2	2	2	σ_1/σ_3	V	۵۱
0	0.00	0.0	0.000	1.33	10.27	0.00	0	0.00	1.67	1.67	0.00	3.00	1.67	1.00	}	
. 10		0.7	0.508	1.35	10.28	0.05		0.05	1.70	1.05	0.02	3.02	1.67	1.03		
20		1.5	1.089	1.37	10.30	0.11		0.11	1.74	1.63	0.05	3.05	1.68	1.08		
30	0.38	3.0	2.178	1.41	10.31	0.21		0.21	1.80	1.69	0.11	3.11	1.70	1.13		1
40	0.50	4.1	2.977	1.45	10.32	0.29		0.29	1.84	1.55	0.14	3.14	1.69	1.19		1
50	0.83	11.0	7.986	1.47	10.33	0.77		0.77	2.30	1.53	0.39	3.39	1.92	1.51		1
100	1.25	25.3	18.369	1.49	10.40	1.77	·	1.77	3.28	1.51	0.88	3.88	2.39	2.17		<u> </u>
150	1.88	38.1	27.661	1.52	10.47	2.64		2.64	4.12	1.48	1.32	4.32	2.80	2.79		
200	2.50	45.6	33.106	1.58	10.53	3.14		3.14	4,58	1.44	1.57	4.57	3.01	3.18		
250	3.13	58.5	42.471	1.60	10.80	4.01		4.01	5.41	1.40	2.00	5.00	3.40	3.86		
300	3.75	63.2	45.883	1.63	10.67	4.30		4.30	5.87	1.37	2.15	5.15	3.52	4.14		
350 400	4.38	67.3	48.860	1.66	10.74	4.55		4.55	5.89	1.34	2.27	5.27	3.61	4.40		
	5.00	70.5	51.183	1.69	10.81	4.73		4.73	6.04	1.31	2.37	5.37	3.68	4.61		
450 500	5.63	72.0	52.272	1.70	10.88	4.80		4.80	6.10	1.30	2.40	5.40	3.70	4.69		
500 11.550	6.25 	73.0	52.998	1.67	10.95	4.84		4.84	6.17	1.33	2.42	5.42	3.75	4.64		
			53.579		11.b3		28853642. 29953642.	X 4.86	6.20	1.34	2.45	25:45	對對於	24.01		
600 650	7.50	72.0	52.272	1.65	11.10	4.71		4.71	6.06	1.35	2.35	5.35	3.70	4.49		
700	8.13 8.75	71.5 71.0	51.909	1.65	11.18	4.84		4.64	5.99	1.35	2.32	5.32	3.67	4.44		
750	9.38	<u></u>	51.548	1.64	11.25	4.58		4.58	5.94	1.38	2.29	5.20	3.65	4.37		
800	10.00				11.33				<u> </u>							
850	10.63				11.41											
800	11.25				11.49											
850	11.88				11.57 11.65	·			·							
1000	12.60				11.05											
1050	13.13				11.82											
1100	13.75				11.91											
1150	14.38				11.99				{							
1200	15.00		f		12.08							- <u>-</u>				
1250	15.63		~		12.17											
1300	18.25				12.26				·}						i	
1350				—I	12.35		·									

Tested by : Checked by

.

.


TRIAXIAL COMPRESSION TEST


<u>VIWASE</u>	TRIA	XIAL	CON	IPRESSION TEST	r i	
Project :		n Waste La	Indfill	Test type:		CU-PWP
Borehole :	B2			Test No :	•	2
Depth :	1.8-2.0 n			Date started		8/12/9
Soil description :	Haid yel	lowish grey	sandy S	ILT of intermediate plasticity		
Specimen preparation						
INITIAL C	ONDITIONS	3		PHISIAL PROPERTIES	SPE	CIMEN
11-1-14					Intial	After tes
Height of specimen	Hi =	80	mm	Specific gravity	2.70	2.70.
Diameter of specimen Area of specimen	di =	39	mm 2	Wet mass of specimen (g)		
	Ai =	1194	mm²	Dry mass of specimen (g)		
Volume of specimen		95520	mm ³	Mass of Water (g)		
STAGE PRIOR TO CON Change in height	ΔHu =	IN OF SHEP		Moisture content (%)	25	18
change in volume	ΔHU = ΔVu =		mm 1	Wet density (g/cm ³)	1.89	2.15
Height at end of stage			mm ³	Dry density (g/cm ³)	1.51	1.82
Volume at end of stage	Hps = Vps =		mm 	Void rataio	0.573	0.485
Area at end of stage			mm ³	Degree of saturation (%)	84	100
	Aps =		mm²	DATA OF TEST	<u> </u>	
CONSOLIDA Change in height				Test type : Cu With D		
change in volume	ΔHc =		mm 1	Without Pore pressure	measureme	nts
Height at end of stage	ΔVc =	70.00	mm3	-With-		
Volume at end of stage	Hps =	72.38	mm 3	Without Side drains		
Area at end of stage	Vps = Aps =	69991	mm ³	A CAL		
AFTER TEST	Aps =	967	mm²	With Saturation		
Change in volume	۵V =		mm ³	Cell pressure	σ ₃ = 5.00	kG/cm²
Volume at end of stage	Vi		mm ³	Vetical stress	σ ₁ =	kG/cm ²
Height of specimen	Hi		·. mm	Back pressure	Ub= 1.00	kG/cm ²
Diameter of specimen	di		mm	Intial effec.cell pressure	σ ₃ '≃ 4.00	kG/cm ²
				Intial effec.Vertical pressure	σ ₁ '≃	kG/cm ²
				MODE OF FAILURE	*1	N W/VIII

Tested by : Eng . Nguyen Viet Tinh Checked : Dr. Do Minh Toan

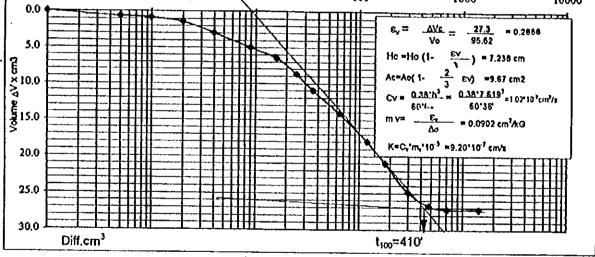
.

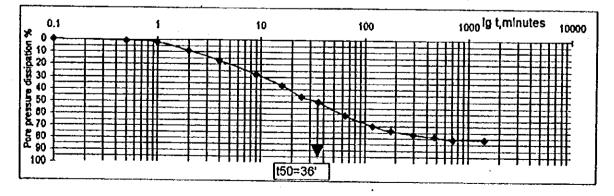
-

Tested by : Eng , Nguyen Viet Tinh Checked by : Dr , Do Minh Toan

Porepressure respose to cell pressure increment

Slope=


Pore pressure change due to increase back pressure


B = 0.99 PWP• PWPo

Δσ

VIWASE	•	TRIA	KIAL	COM	PRES	ssio	N TE	ST	Test typ	e:	Си-ржј
Project	Nam So	n waste lar	ndfill						Test N _e :		2
Hole No:	B2	Depth:	1.4-2.0	m	Load rin	gN₀:	0.726	kG/dłv	Date sta		12/12/98
Test type	uab	side drains	DATE	Clock time	Time 1, minutes	Lgt ·	Volume change				
	without						gauge,c		Reading kG/cm ²	Diff kG/cm ²	Diss,%
Cell pressure	5,00		12/12/98	7h35	0		71.0	0.0	4.89	KOPUM	0
Vertical stress		Į			30*		70.4	0.6	4.85		
Back stress	ick stress 1.00				1		70.1	0.9	4,79	* <u></u>	3
PwP After build up 4.89 Difference 4.00					2		69.6	1.4	4.53	•••••••	8
					4'		69.0	3.0	4.22		17
Effective press			8,		66.0	5.0	3.81		28		
l100 **		<u>min</u> 209			16'	•	64.5	8.5	3.45		37
<u> </u>			25'		62.3	8.7	3.10		46		
RATE OF DISPLACEMENT				<u>Bh11</u>	36'		60.0	11.0	2.93		50
				8h39	- 64'		58.8	14.2	2.52		61
				10h35	120'		53.0	18.0	2.18		70
		11h35	180'	<u>_</u>	50.0	21.0	2.02		74		
$\frac{\varepsilon_{st}H_{yy}}{100.t_{c}.8} = \frac{0.05*72.38}{209} = 0.0173$ Selected v = 0.036 mm/min				13h35	300'		46.1	24.9	1.90		77
				16h35	480'		44.3	28,7	1.82		79
				20h00'	720'		43.7	27.3	1.73		81
			13/12	7h35	1440'	.	43.7	27.3	1.72		81
				··· · ·	2880*						
					4320					-	
0.1		1					00	AVe _	1000	inutes	10000
5.0 E								Vo	95.62 		

Tested by : Eng . Nguyen Viet Tinh

۲

Checked by : Dr . Do Minh Toan

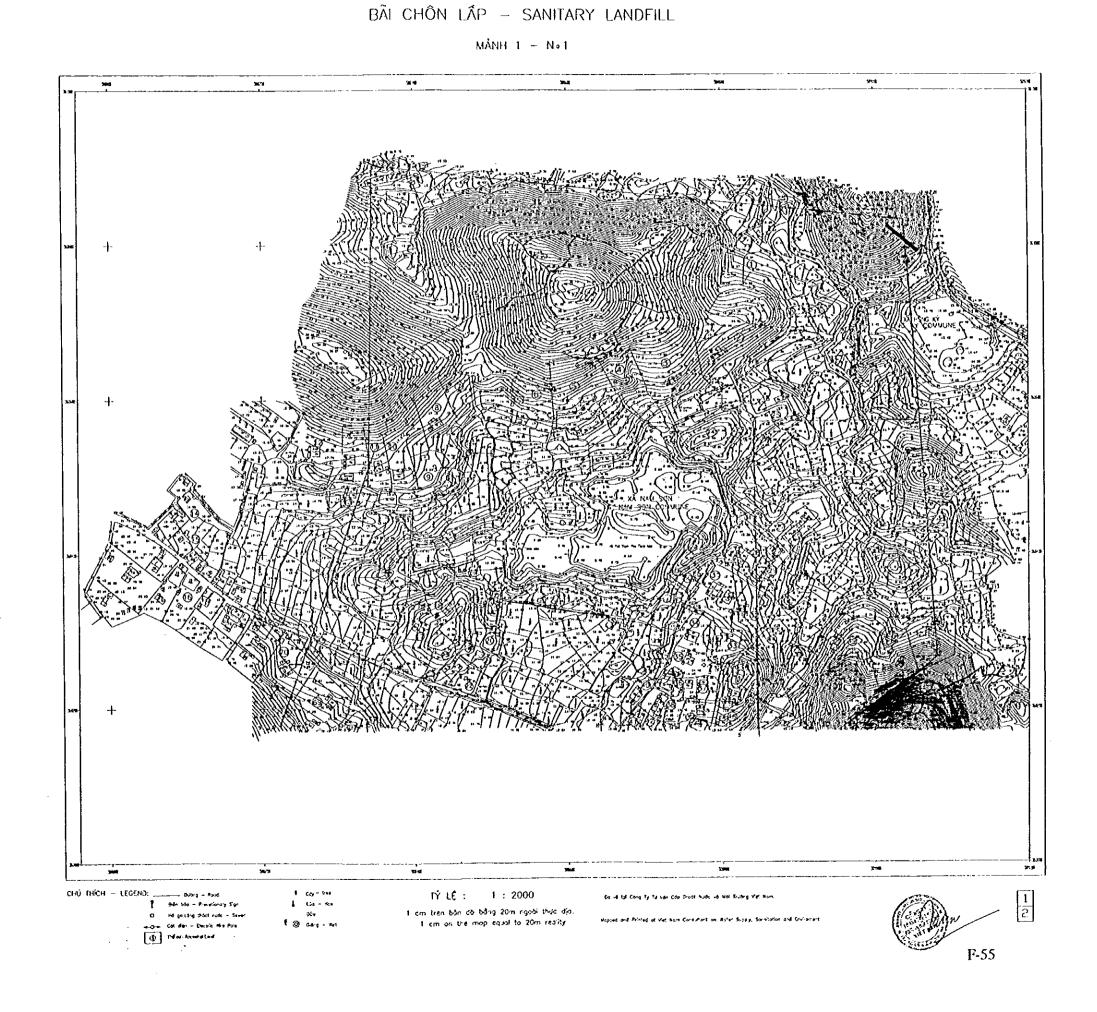
VIWASE

TRIXIAL COMPRESSION TEST

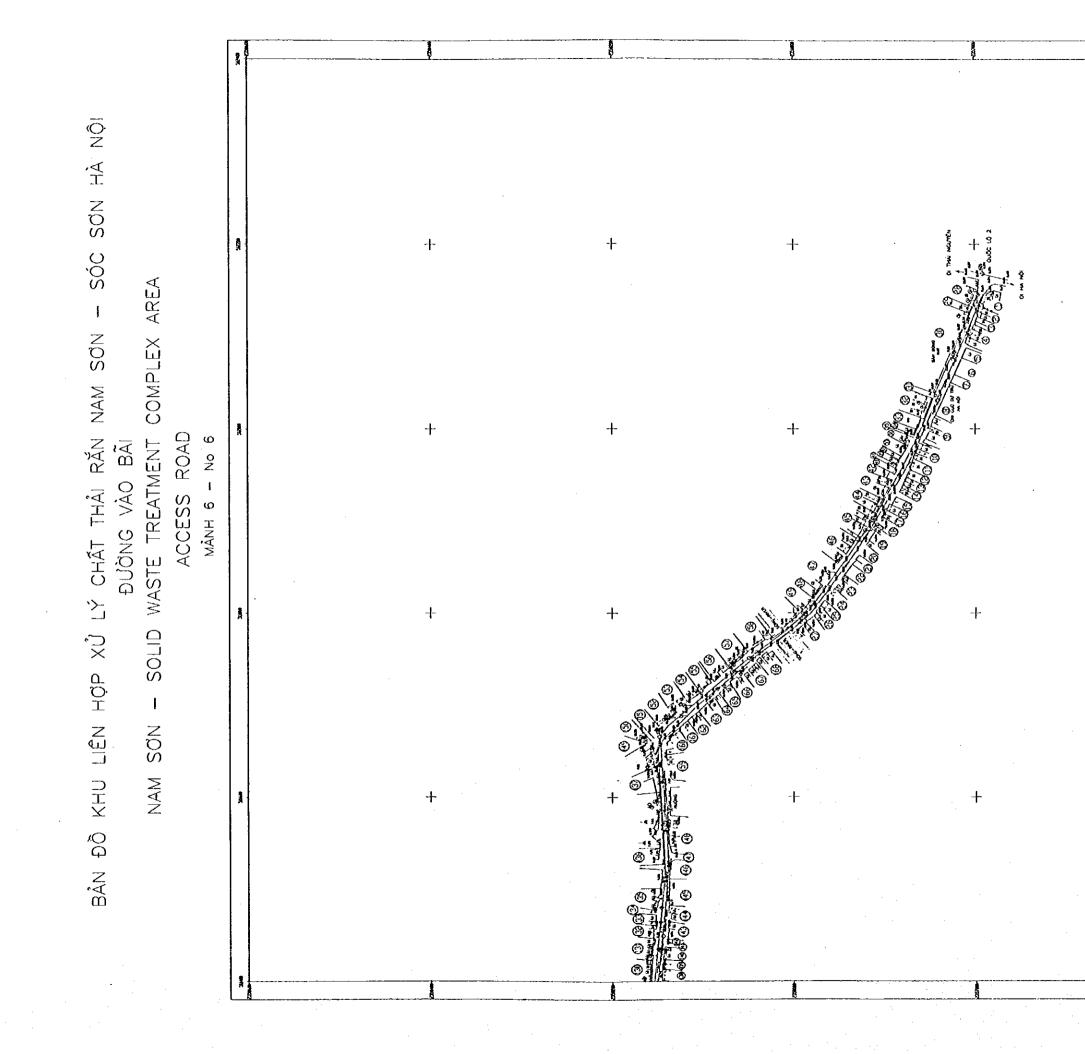
TEST TYPE Cu-PwP

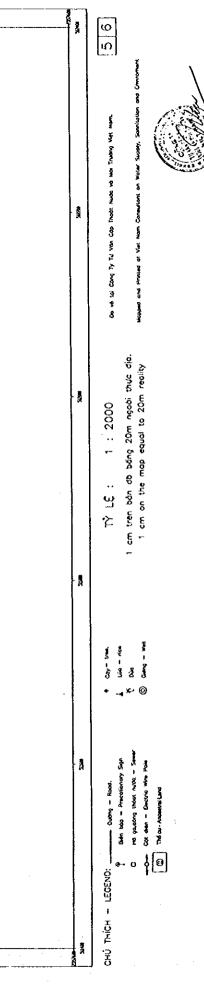
(2)

Projec		Nam S	on Was	te Land		Lood di	a N		0 100				Test N.	•	2	R
Cell N _o Load Test type CU Load ring constant					LOao ni	ing No 0.728				Date started : Cell pressure σ ₃ = ^{5.00}				kG/cm ²		
Rate ; CR =			0.728	kG/Div	<u> </u>	Mem	pranes		Vertical stress $\sigma_1 =$				kG/cm ²			
Specimen prior to shearing											Back pressure Po = 1.0				kG/cm ²	
Height H= mm 72.38 Area A = 967 mm ²						Volum	Volume V= 69991 mm ³				Eff.cell pressure o3'= 4.0				kG/cm ²	
Strain Loa				Α		ator stress kG/cm ²		5		Stresses kG/cm ²			Volume		8	
Div 0.01	s,%	0.01 mm	kQ	kG/cm²	¢m²	Stress	mem mem	α1- α 3	σ _{l'} .	Ω ^{3,}	$\frac{\sigma_1 \cdot \sigma_3}{2}$	$\frac{\sigma_{1},\sigma_{3}}{2}$	$\frac{\sigma_1' + \sigma_3}{2}$	σ1/σ3	v	۵۷
0	0.00	0.0	0.000	1.72	9.67	0.00	0.	0.00	3.28	3.28	0.00	5.00	3.28	1.00		
10	0.13	3.0	2.178	1.73	9.68	0.22		0.22	3.49	3.27	0.11	5.11	3.38	1.07		
20	0.25	4.5	3.267	1.74	9.69	0.34		0.34	3.60	3.28	0.17	5.17	3.43	1.10		
30	0.38	6.0	4.356	1.75	9.71	0.45	i	0.45	3.70	3.25	0.22	5.22	3.47	1.14		
40	0.50	7.0	5.082	1.76	9.72	0.52		0.52	3.76	3.24	0.28	5.26	3.50	1.16		
50	0.63	11.3	8.204	1.77	9.73	0.84		0.84	4.07	3.23	0.42	5.42	3.85	1.26		<u> </u>
100	1.25	19.5	14.157	1.79	9.79	1.45		1.45	4.66	3.21	0.72	5.72	3.93	1.45		
150	1.09	36.1	26,209	1.82	9.85	2.66		2.65	5.84	3.18	1.33	8.33	4.51	1.84		
200	2,50	45.0	32.670		9.92	3.29		3.29	6.34	3.05	1.65	8.65	4.70	2.08		
250	3.13	58.2	42.253	2.00	9.98	4.23		4.23	7.23	3.00	2.12	7,12	5.12	2.41		
300	· 3.75	66.1	47.999	2.08	10.05	4.78	[4.78	7.70	2.92	2.30	7.39	5.31	2.64		
350	4.38	71.5	51.909	2.15	10.11	5.13	[5.13	7.98	2.85	2.57	7.57	5.42	2.80		
400	5.00	78.2	56.773	2.21	10.18	5.58		5.58	8.37	2.79	2.79	7.79	5.58	<u>3.00</u> 3.20		
450	5.63	85.0			10.25	8.02		6.02	8.78	2.74	3.01	8.01	6.75	3.33		
500	6.25	90.0	85,340		10.31	6.33	ļ	6.33 6.59	9.05	2.72	3.17	6.17	5.89 6.01	3.42		
550	6.08	84.2	68.389		10.38	8.59	 	0.58 6.62	9.31 9.35	2.72	3.28	8.29 8.31	6.04	3.42		
600	7.50	95.3	69.189		10.45	6.62	 		9.39			8,32	6.06	3.43		
650 99700	8,13 8,76	96.4 97.5			10.53 10,60	0.65		6.65 36.68	1.9.44	2.74	3.32	6.34		10.42		
Cold and a second	9.38				10.67	6.60	MARKAGES.	6.60	9.36	2.76	3.30	8.30	6.06	3,39		
750 800	9.38	97.0 97.0			10.07	6.55		8.55	8.32	2.77	3.28	8.28	8.05	3.37		
850			10.422	1.23	10.82		·			* '				1-0.01		
900	1		I		10.90									1		ļ
950					10.97			·						1		
1000	<u> </u>	1			11.05	·]]				1	<u>}</u>		
1050				1	11.13					<u>├</u> ────				1		
1100		· · · · · · · · · · · · · · · · · · ·			11.21	1	}				-		1	·		
1150			1.	1	11.29	· [·[· · · · ·			· [1	1	[
1200			· [11.38	1	I	1		1	-		1	1		[
1250			1	1	11.46		1	1	1 <u> </u>	1	1	1	1	1	1	1
1300			·	1	11.55	1	1	1	[1	1	1	1	1		1
1350	· · · · · · · · · · · · · · · · · · ·		 		11.63		1	 		1	-	1	1	1	 	[
	17.50		1		11.72	1			[-		- 	-		
	d hv	• • • • • • • •	Eng M	uven V		·	· · · · · · · · · · · · · · · · · · ·	·	-	-						

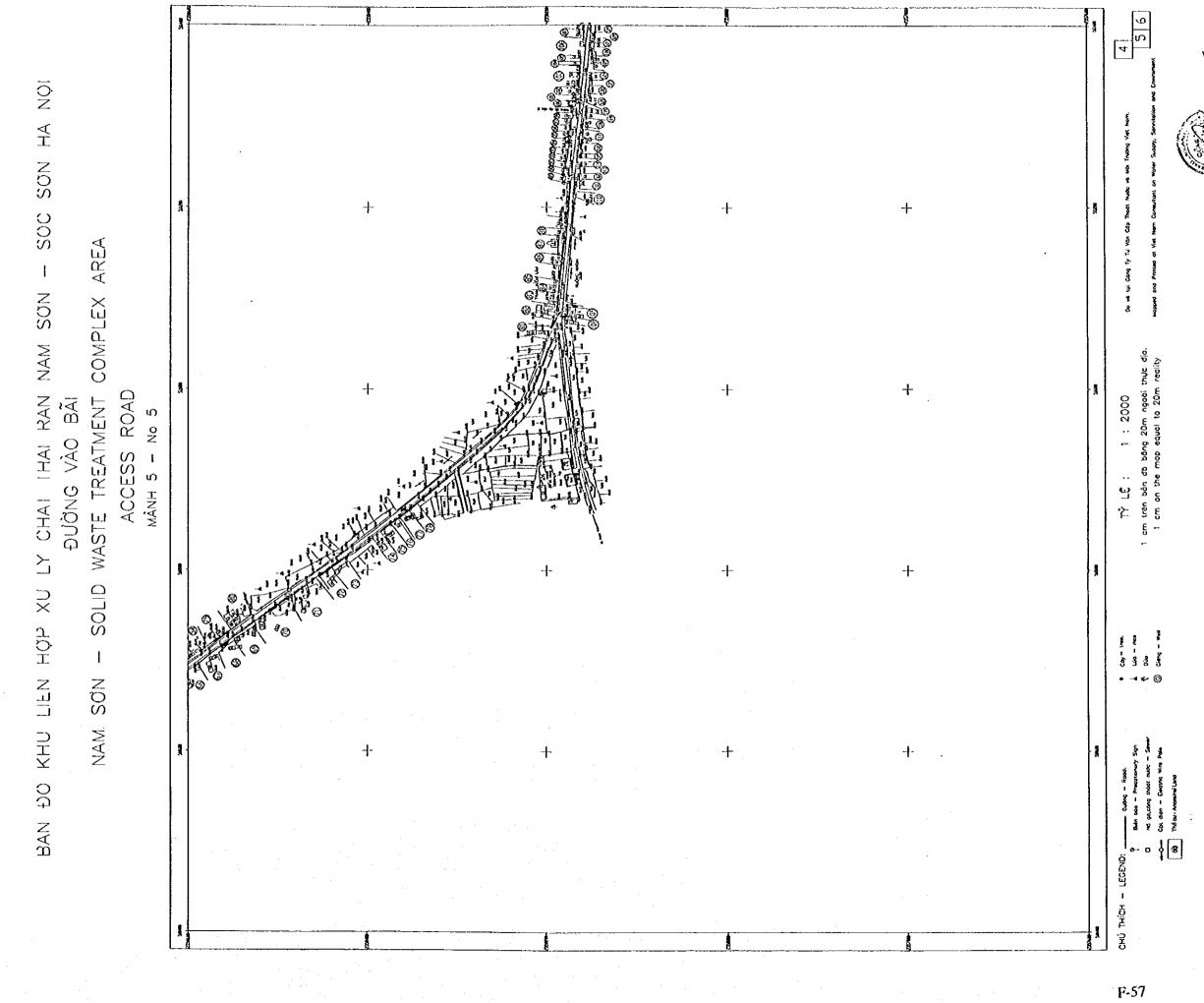

Tested by : Checked by Eng.Nguyen Viet Tinh Dr. Do Minh Toan

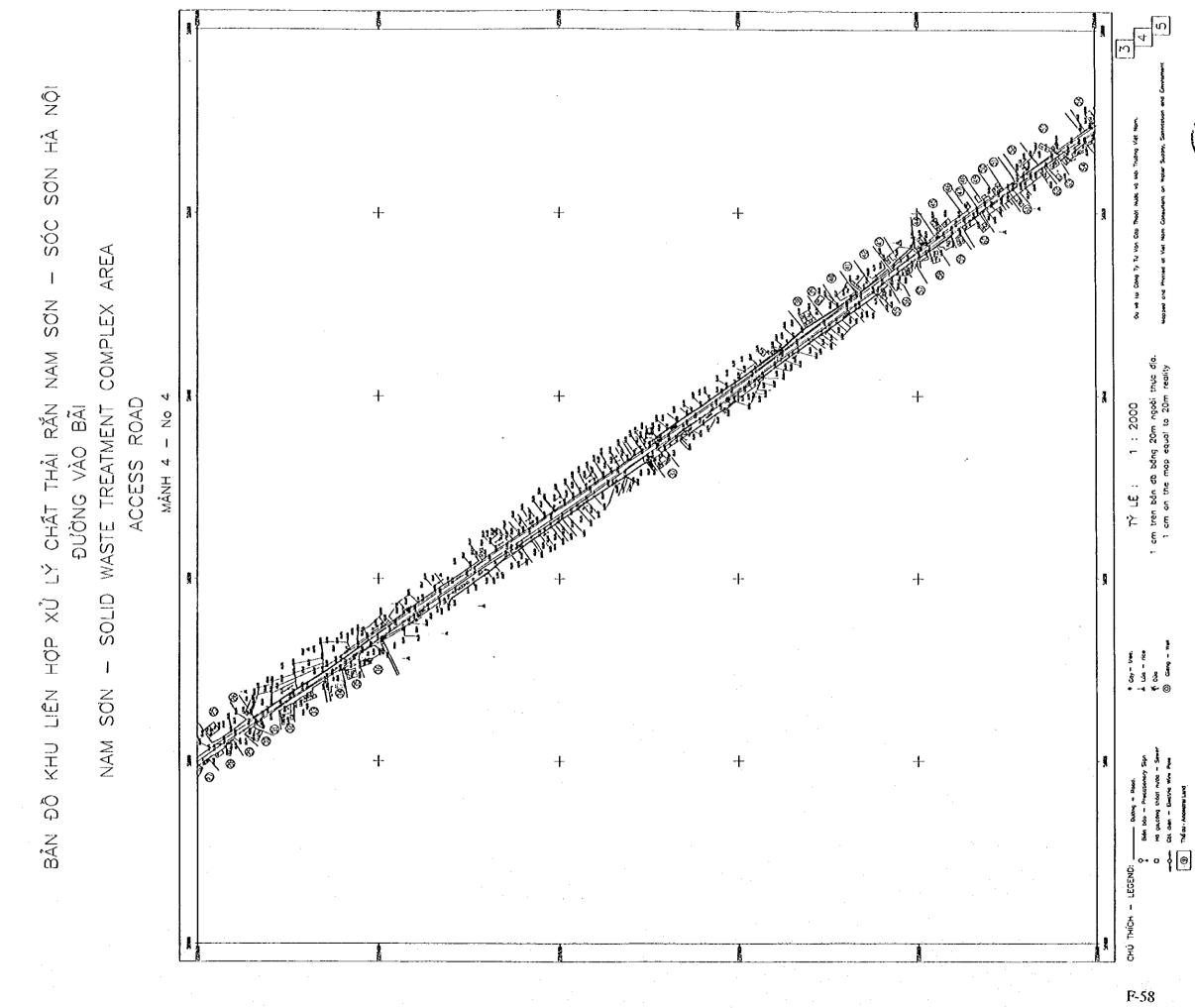
.


•

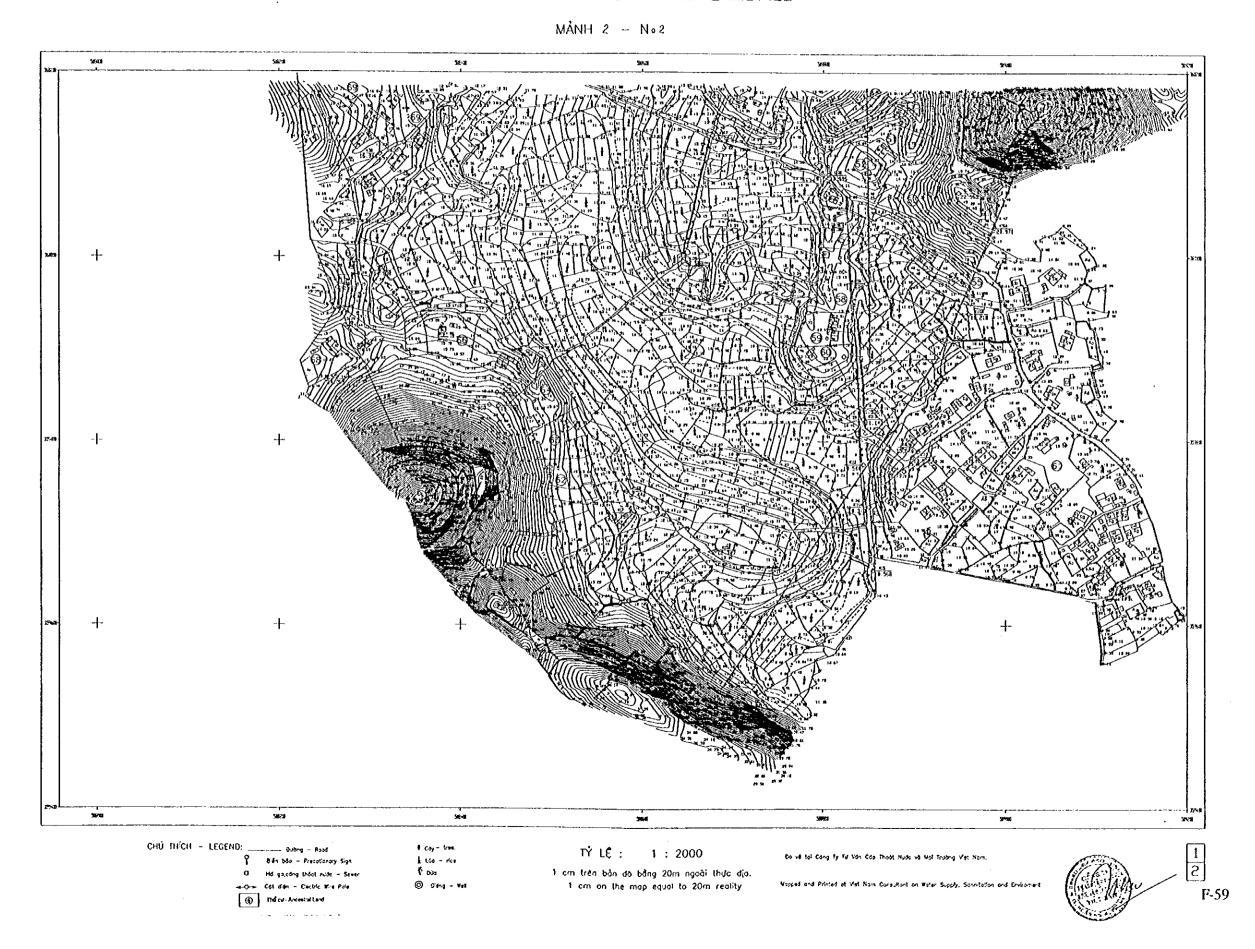

•

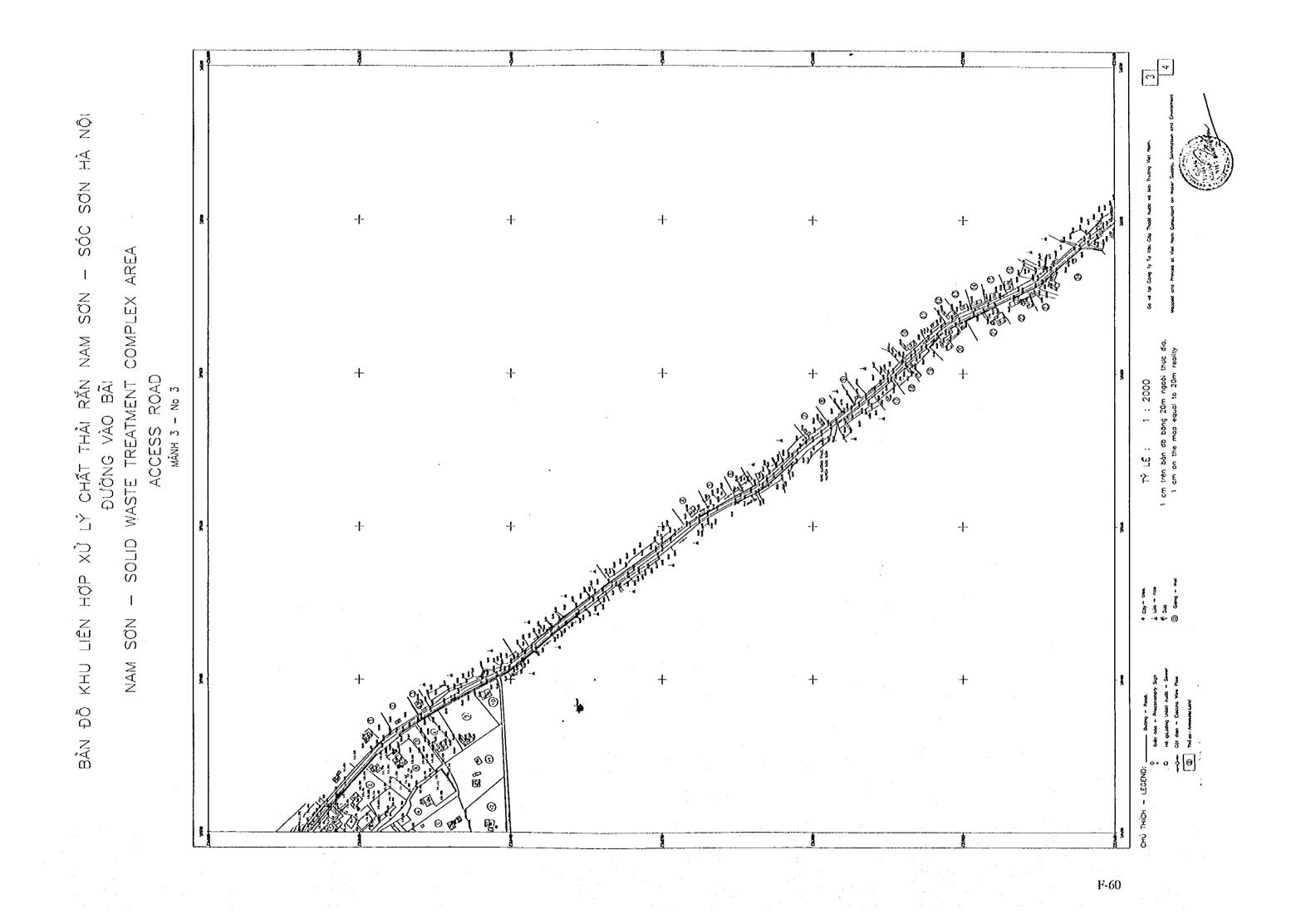
.




BẢN ĐỒ KHU LIÊN HỢP XỬ LÝ CHẤT THẢI RẮN XÃ NAM SƠN – NAM SON SOLID WASTE TREATMENT COMPLEX AREA

F-56





BẢN ĐỒ KHU LIÊN HỢP XỬ LÝ CHẤT THẢI RẮN XÃ NAM SƠN – NAM SON SOLID WASTE TREATMENT COMPLEX AREA BÃI CHÔN LẤP – SANITARY LANDFILL .

•

•

