6.5.5 Hospital Waste Management Plan

(1) Present Conditions

1) Quantity of Solid Waste Generate by Hospitals and Collected by URENCO

There are 14 hospitals in Hanoi, and many private clinics. According to the report "Overview of Medical Waste Management in Vietnam" prepared by Ms. Nguyen Huy Nga, Ministry of Health, the hospitals generate about 600 m³/month of solid waste, of which URENCO collects about 502 m³/month. (This collection amount does not agree with the total of collection amounts shown in the table though.) Bulk density of the hospital waste is 0.5 kg/liter according to the report. Therefore, hospital waste generation and collection amounts in the 14 hospitals in Hanoi are estimated to be 20 m³ (10 ton) per day, and 16.7 m³ (8.4 ton) per day.

Solid Waste Generation and Collection Amount of Hospitals in Hanoi in 1996

Name of Hospitals	Number of Patient Beds	Solid Waste Generation (m³/month)	Solid Waste Collection (m³/month)	Collection Rate (%)
a	ь	С	d	e = d/c
1. Bach Mai	1,000	126	83	66
2. Saint Paul	500	60	32	53
3. Dong Da Hospital	300	22	7	33
4. Hanoi Traditional Medicine Hospital	250	30	30	100
5. K Hospital	150	13	11	85
6. Huu Nghi Hospital	359	22	15	68
7. Vietnam-Sweden Hospital for Children	450	40	30	75
8. Hanoi Phu San Hospital	200	30	21	70
9. Central Eyesight Hospital	220	30	30	100
10. 108 Military Hospital	200	55	45	82
11. T.B. and Lung-related Hospital	375	50	21	42
12. Hai Ba Trung Hospital	600	40	21	53
13. Viet Duc Hospital	600	63	40	64
14. Railways Hospitals	300	20	. 11	56
Total	5,504	601	397	66

2) Types of Solid Waste Generated in Hospitals

According to the report, about 23% of the solid waste generated in hospitals are considered hazardous as shown in the table below.

Waste composition of 5 Hospitals in Different Regions in Victnam

Hospital Waste Composition	Weight (kg)	Ratio (%)	Contain Hazardous Materials
1. Organic waste	146.7	52.9	
2. PP, PE, PVC bottles and bags	27.9	10.1	*
3. Bandage, plaster	24.3	8.8	*
4. Metal, cans	8.0	2.9	
5. Glass, syringes, medicine tubes	6.5	2.3	*
6. syringes and syringe needles	2.4	0.9	*
7. Waste paper, cartons, paper	2.1	0.8	
8. Human parts for lab analysis	1.6	0.6	*
9. Soil, cobble, china, and other solid matters	58.0	20.9	
Total	277.5	100.0	
Total of Hazardous items only	62.7	22.6	

According to the report, bulk density of the hospital waste is 149 kg/m³ on average; water content is 42 %; calorific value is 2,150 kcal/kg.

2) Current Treatment

In December 1998, HPC installed a hospital waste incinerator with capacity of incinerating 3.2 ton/day. Test operation has been done from January – August 1999. The incinerator is not equipped with an appropriate gas treatment facility, and emission of black smoke was observed.

3) Current Problems

The following problems exist:

- a. No sorting at sources or measures to minimize the generation volume of waste
- b. Insufficient equipment for appropriate collection and sorting of waste
- c. Inadequate training of hospital staff and waste collectors concerning management of hospital waste
- d. Backward treatment technology
- e. Inadequate regulations and non-enforcement system, no inspection
- f. Inadequate fund

(2) Estimation of Future Hospital Waste Quantity

Future quantity of hospital waste in Hanoi is estimated as shown in the table below based on the current quantity, and assuming that 1) hazardous waste content contained in total solid waste generated in hospital is 25 %, and 2) hospital waste generation quantity will increase by 6% each year.

Hazardous waste content contained in hospital waste in Hanoi is estimated to be 3.2 ton/day in 2000, 5.7 ton/day in 2010, and 10.1 ton/day in 2020.

Estimated Quantity of Hospital Waste in Hanoi

	Daninated	Anguittà of Hoshitat a	raste in Hand	/4
Year	Generation (ton/day)	Hazardous Content (ton/day)	Rate of Collection	Collection of Hazardous Hospital Waste (ton/day)
a	b	c = 25% of b	đ	c
1996	10.0	2.5		
1997	10.6	2.7		
1998	11.2	2.8		
1999	11.9	3.0		
2000	12.6	3.2	100%	3.2
2001	13.4	3.3	100%	3.3
2002	14.2	3.5	100%	3.5
2003	15.0	3.8	100%	3.8
2004	15.9	4.0	100%	4.0
2005	16.9	4.2	100%	4.2
2006	17.9	4.5	100%	4.5
2007	19.0	4.7	100%	4.7
2008	20.1	5.0	100%	5.0
2009	21.3	5.3	100%	5.3
2010	22.6	5.7	100%	5.7
2011	24.0	6.0	100%	6.0
2012	25.4	6.4	100%	6.4
2013	26.9	6.7	100%	6.7
2014	28.5	7.1	100%	7.1
2015	30.3	7.6	100%	7.6
2016	32.1	8.0	100%	8.0
2017	34.0	8.5	100%	8.5
2018	36.0	9.0	100%	9.0
2019	38.2	9.5	100%	9.5
2020	40.5	10.1	100%	10.1

(3) Proposed Measures and Actions

There are three actors that are involved in hospital waste management and administration.

- Central government
- HPC
- · Each hospital

The following measures and actions are proposed for each level.

a. At central government level

- 1. Enactment and enforcement of specific regulation on hospital waste management
- 2. Dissemination of guidelines (Ministry of Health issued a document No. 2575/QD-BYT dated on 27 August 1999 that serves as guidelines.)
- 3. Training of those involved in hospital waste management

b. At HPC level

- 1. Enactment and enforcement of city regulation on the hospital waste management (that should clarify responsibility of hospital waste generators.)
- 2. Preparation and diffusion of guidelines (Section 6.5.10 presents a proposed Guidelines for Hanoi prepared by the JICA Study Team.)
- 3. Establishment of system of collection of hospital waste
- 4. Provision and operation of central hospital waste incinerator(s) with adequate capacity serving for all the hospitals in Hanoi (See technical note below.)
- c. Generators of hospital waste (hospitals and clinics)

Each hospital should establish an in-hospital waste management system and practice that include:

- a. Appointment of a hospital staff responsible for management of hospital waste within each hospital
- b. Separation of hazardous waste from non-hazardous one
- c. Provision of hazardous waste containers with clear label indicating hazardous waste
- d. In-hospital staff training

Technical Note on Capacity of Incinerator Needed

HPC should provide incinerators of adequate capacity to receive all hospital waste (excluding non-hazardous content). Estimated future quantity is indicated in the above table. In deciding on the capacity of incinerator, the following factors should be considered:

- 1. An incinerator needs at least 45 days of maintenance period per year during which incinerators stop operation.
- 2. It is extremely difficult to always maintain 100% rate of operation. Experience of other cities in the world show that actual incineration quantity may ranges from 60% to 100% with an average of 80%.

6.5.6 Industrial Waste Management

(1) Disposal Policy

Principle

- Industrial waste that consists of both hazardous and non-hazardous substances generated from industries in Hanoi should be managed on each waste generator's own responsibility.
- Industrial hazardous waste management should follow the national regulation on hazardous waste management.

1) General Outlines on Industrial Waste Management

In all countries worldwide, even in those where the industry is highly developed, there still remain hazardous substances in industrial waste. Such heavily polluting industries like metallurgy, fertilizer production, leather processing and fabric production, etc., are expanding in developing countries. The management and control of hazardous industrial waste comprises the following steps:

- Minimizing the generation of the hazardous waste by modifying the production process and applying less-waste generating technology;
- Reproducing and recycling waste as there are useful components/substances in the waste, which are recyclable or reusable;
- Use of materials discharged as waste by one industry as input materials for another industry;
- Separating hazardous waste from industrial waste for biological, chemical and physical treatment;
- · Disposal of hazardous waste at a well controlled sanitary landfill.

In several developing countries, the industrial waste management/control system for environment protection has been established and developed. Nevertheless, the management of hazardous industrial waste in developing countries is facing certain obstacles as follows:

- Limited budget leading to lack of capital for the management task;
- Lack of skillful and professional technicians and staff for the management, operation and maintenance of the hazardous waste treatment facilities;
- Shortage of infrastructure and staff for monitoring and law-enforcement.

At present, in developing countries, the dominant industrial hazardous waste treatment method is to burying in the ground together with urban waste. However, the prevention and minimization of the waste at its generation source proves an effective measure.

Many developing countries face difficulties in the drafting, application and enforcement of regulations on industrial waste management. Some countries prepared legal documents with reference to those of other countries, thus leading to the fact that the enacted regulations cannot be effectively applied to these countries. Victnam just established "Regulation on Hazardous Waste Management" approved by the Prime Minister in July 1999.

The experience in the reduction of waste and industrial pollution in developed countries has shown that the following methods have yielded good results in the management of industrial waste:

- Reduction of raw materials and product losses caused by leakage and over-flowing;
- Examination of the components prior to treatment in order to cut down the quantity of unqualified products;
- Uniform in the equipment or chemicals in order to reduce the quantity and the varieties of waste;
- Improvement of the cleaning process with cleaning and drying methods in order to reduce the generation of soluble waste mixture;
- Separation /sorting of the waste for recycling purposes;
- Optimization of such parameters like temperature, pressure, reaction time and concentration, etc. in order to reduce by-products and waste generation;
- Emphasis on staff training for the reduction of waste;
- Cutting down of unnecessary steps;
- · Collection of leakage materials.

2) Regulation on Hazardous Waste Management

Vietnamese government has established the regulation on hazardous waste management. This regulation applies to organizations, individuals working in Vietnam who are involved in such activities as generation, collection, transport, transfer, storing, treatment and disposal of hazardous waste. The regulation also applies to foreign organizations, individuals working in Vietnam who are involved in the above activities with the exception that international treaty signed or joined by The Socialist Republic of Vietnam stipulates otherwise.

The regulation includes a list of hazardous waste, responsibilities of hazardous waste generators, collectors and transporters, and treatment and disposal organizations. Role of the government is also stipulated in the regulation.

3) Basic Disposal Policy

Fundamentally polluter pay principle (PPP) should be applied for industrial waste management.

In developing countries it makes a sense for local governments to construct industrial waste treatment facilities because there do not exist strong initiatives on the part of the private sector to do this kind of business.

In Hanoi, URENCO and a foreign company have been planning to establish a joint venture company for industrial waste management. However treatment capacity of its first phase is not enough to treat all generated hazardous waste. In future the private companies can enter the waste management business.

(2) Definition and Classification of Industrial Waste

Principle

- Definition and classification of industrial waste should follow the national regulations of hazardous waste management.
- Waste discharged from factories contain non-industrial ordinary waste such as kitchen waste. It is necessary to determine who should be responsible for disposal of this type of waste. (non-industrial waste generated from industry)

1) Definition of Industrial Waste

According to Article 3 of "Regulation on Hazardous Waste Management", "Waste" is defined in "Law on Environmental Protection" which says "Wastes means substances discharged from daily life, production processes or other activities. Waste may take solid, gaseous, liquid or other forms". Thus, industrial waste can be defined as the waste discharged from industrial activities. In the broad sense, there are two types of the waste generated from industries, one is process waste from production processes and the other is domestic waste from office and kitchen. Major hazardous substances are contaminated process wastes and it is called industrial hazardous waste.

"Hazardous waste" is also defined in the regulation as follows: "Hazardous waste is waste having as constituents or compounds with direct hazardous characteristics (flammable, explosive, poisonous, corrosive, contagious and other hazardous characteristics), or when reacting with other substance it can do harm to environment and human health".

2) Classification of Industrial Hazardous waste

The following types of industrial waste are identified as hazardous waste under the regulation.

- Class No.1 (Code H1) Explosive
- Class No.2 (Code H3) Flammable liquids
- Class No.3 (Code H6.1) Poisonous (Acute)
- Class No.4 (Code H8) Corrosives

The code is referred from the Annex III, List of Hazardous Characteristics, of Basel Convention Text.

Description of each code is as follow.

H1 Explosive

An explosive substance or waste is a solid or liquid substance or waste (or mixture of substances or wastes) which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings.

H3 Flammable liquids

Flammable liquids are liquids, or mixtures of liquids, or liquids containing solids in solution or suspension (for example, paints, varnishes, lacquers, etc., but not including substances or wastes otherwise classified on account of their dangerous characteristics) which give off a flammable vapor at temperatures of not more than 60.5°C, closed-cup test, or not more than 65.6°C, open-cup test. (Since the results of open-cup tests and of closed-cup tests are not strictly comparable and even individual results by the same test are often variable, regulations varying from the above figures to make allowance for such differences would be within the spirit of this definition.)

• H6.1 Poisonous (Acute)

Substances or wastes liable either to cause death or serious injury or to harm human health if swallowed or inhaled or by skin contact.

H8 Corrosives

Substances or wastes which, by chemical action, will cause severe damage when in contact with living tissue, or, in the case of leakage, will materially damage, or even destroy, other goods or the means of transport; they may also cause other hazards.

(3) Current Industrial Waste Generated in Hanoi

Principle

- It is estimated that approximately 51,000 tons of the industrial wastes were generated in 1997 from industrial sectors in Hanoi including domestic waste such as kitchen waste or office waste from industries.
- In which, quantity of the hazardous industrial wastes generated was about 53.6 tons in 1997.
- Various type of hazardous industrial wastes that need to be appropriately treated are generated such as toxic liquid waste, waste acid & waste alkali, sludge contaminated heavy metals, waste oil & combustible oily waste, and waste plastics.

1) Current Status of Industrial Waste Generation

URENCO and CEETIA carried out current industrial waste management survey in Hanoi including the composition survey in 1998. The current status of waste management of several industrial areas was evaluated through the interviewing, collecting, and surveying the generation of wastes from industrial activities.

The brief conclusion of survey on each industry is as follow.

(a) Mechanical industries

This group is one of the most important industrial groups in Hanoi. The waste from many factories and enterprises contain toxic and hazardous substances. Especially in mechanical industries, the metal plating process (Chromium, Nickel, and Copper) has high concentration of heavy metal. More than 50% of total wastes generated from the whole mechanical industry are either hazardous waste (corrosive or toxic or flammable waste.

(b) Textile, garments and leather industries:

The major processes of this group are starching, taking out of starch, bleaching, polishing, dying, and printing. The waste from this field is generated from many sources and mainly come from packing of raw materials, sludge from wastewater treatment plant, sludge from dying process etc. Approximately 44.6% of total wastes from these industries are hazardous waste, toxic or biological reactively.

(c) Electrical and electronic industries:

Basic types of technologies used in these industries are similar to the ones

used in mechanical industries such as plating, painting of spare parts or welding which cause heavy pollution on environment. A lot of heavy metal sludge is generated. More than 70% of total waste from the electrical and electronic industries are toxic.

(d) Chemical group:

This group is the biggest industrial sector, which generate a large amount of toxic and hazardous wastes of many kinds as the industry uses so many kinds of materials. The wastes from the industry contain high chemicals, dissolved metals that cause very negative impact on human health. Approximately 62.5 % of total waste from this sector are toxic.

(e) Food processing industries

This is a big scale industrial group in Hanoi at present and future. Current major food processing industries are beverage, canning and confectionery industries. Most wastes from these industries are fermented residues, organic matters, peels and food flavorings. These substances are very good circumstance for growing up of bacteria including of pathogenic.

About 20% of total waste from food industry are biodegradable waste.

(f) Other industries:

The other industries such as leather tanning, detergent/soap, pulp/paper/paper product, printing and drug/medicines also generate some hazardous waste.

2) Current Industrial Waste Generation Quantity

The industrial waste management survey report, prepared by a Japanese firm that plans to establish a joint venture company with URENCO, figured out the generation quantity of industrial waste based on each industrial sector and industrial waste characteristics in Hanoi in 1997.

Approximately 51,000 tons of industrial waste was generated in 1997 equal to about 140 tons per day, of which approximately 20,000 tons, about 40%, was hazardous waste. There are 19 types of hazardous waste categorized in the report such as heavy metal sludge, halogen solvents, organic chemical residues, acid & alkali, oil waste, etc. Heavy metal sludge is large portion, about 22%, of hazardous waste and 70% of sludge is generated from mechanical industries. Mechanical industries and chemical industries are large hazardous waste generators, which discharge more than half of total

industrial waste.

Although cinder which is almost coal residual ash is not categorized as hazardous waste, the generation quantity is very large about 16.2 tons per day.

Tables 6.5.19 - 6.5.22 show the summary of industrial waste generation quantity.

(4) Future Industrial Waste Generation

Principle

It is estimated that the hazardous industrial waste will increase to approximately 78,500 tons per year in 2020, or about 215 tons per day on average.

1) Industrial Zone Development Plan

It is assumed that the generation quantity of industrial hazardous waste will increase in proportion to increases in area of industrial zones demanded.

According to Hanoi Urban Master Plan for 2020, total area of industrial zones will be 1,242.7 ha by 2005 including existing industrial zones as well as those planned in North & South Thang Long, Dong Anh and Soc Son. It will be 1,682.7 ha by 2010 and 2,537.7 ha by 2020.

2) Estimation of Hazardous Industrial Waste Quantity

It is estimated that 105.4 tons per day of hazardous industrial waste will be collected in 2005 and 215.2 tons per day (approximately 78,500 ton/year) in 2020. Table 6.5.21 and 6.5.22 shows the result of waste quantity estimation.

For this estimation, it is assumed that the whole industrial zone will be occupied by the industries as soon as the area planned in Hanoi Urban Master Plan are developed. And also it is assume that current waste collection ratio of industrial hazardous waste is 70 %, and the collection amount will increase in proportion to increase in industrial zone area.

6.5.7 Recycling

(1) Recycling Policy for Hanoi

Principle

- It is desirable that recycling activity will be carried out by the private sectors on a market basis, not on a mandatory basis as far as the recyclable has enough value for recycling.
- A common problem with recycling activities by the public sector is that
 collected materials are not used due to insufficient demand. Therefore, the
 demand development is very important for promotion of recycling in case
 public sector is involved in the recycling activities.

As next section describes, recycling of recyclable materials from municipal solid waste stream is currently almost perfectly carried out in Hanoi by the private sectors as business, not by URENCO or other public sectors except municipal composting activity in Cau Dien by URENCO.

As far as the current private recycling system can work on a market basis, municipality does not have to intervene in that system and to construct its own recycling facility.

As the experiences of developed countries such as USA, Japan, and European countries demonstrate, the current recycling system in Hanoi would collapse in future because the current recycling industries will face the difficulties in continuing their business. Values of recyclable materials may become lower.

In Europe such as France and Germany recently, recyclable materials are collected, transported, and sorted by the private company or municipality under the responsibility of material producer or users.

In Japan, residents or waste generators are held responsible for source separating, municipalities are responsible for collecting, and manufacturer has responsibility for utilizing collected recyclable materials. This system poses a financial burden on municipalities because cost of collection of recyclable materials is very high.

In the US, some municipalities have mandatory recycling ordinances and have recyclables collected either by municipal public works departments or by contractors.

In Vietnam, it is recommended to establish its own proper recycling system not repeating the same government failure as experienced by many developed countries. In case the natural recycling market shrinks, it is advisable that the government takes such policy as to strengthen the manufacturers' responsibility for recycling certain items, and provide incentives to increase reuse or recycling.

(2) Current Recycling Activities in Hanoi

Principle

- More than 200 tons of recyclable materials such as metal, paper and plastics are currently collected by private collectors from the generation sources. Compared to this amount, materials recovered from waste dumping sites are not significant in terms of amount.
- Collected recyclable are mostly processed to make other goods in the craft villages adjacent to Hanoi city.

Recyclable materials are currently collected by private collectors, private buyers or scavengers at the generation sources like households, hotels, restaurants and market, at the streets during waste collection by URENCO, and at the landfill site.

There is the strong monetary incentive for people at the waste generation sources to separate recyclable materials from other ordinary waste because they can earn the money by selling them to recycling buyer.

According to the survey report in 1997 "City and Countryside in the Red River Delta, Notes on Hanoi's Recycling Industry" by Center for Natural Resources and Environmental Studies (CRES), there are more than 6,000 junk buyers in Hanoi city, and a junk buyer collected 35.5 kilograms of recyclable materials per day on average in 1996. The total amount collected by the junk buyers in Hanoi is estimated to be 213 ton/day. On the other hand, total amount of materials collected by scavengers in the landfill site is estimated to be 5.5 ton/day including those recovered at Cau Dien compost plant in 1996. The total amount is therefore 218.5 ton/day, which is about 20% of the waste generation amount of about 1,100 ton in 1996.

The same report also shows composition of recycled materials in Hanoi surveyed in 1996; 37.2% was metal, 30.7% was paper, 20.0% was bottles and glass, 9.4% was plastics, and 2.8% was bone and feathers. This means that about 81 tons of metal, 67 tons of paper, 44 tons of glass bottles, and 21 tons of plastics were recycled in 1996 from Hanoi.

There are about 400 scavengers collecting the recyclable such as metal, paper, plastics, and some organic matters at Nam Son Landfill site since it started the operation in May 1999. About 30 to 40 % of them are those who moved from Tay Mo landfill site and the rest of them are local residents living in surrounding area.

Buyers visit and buy organic waste or kitchen waste from mainly markets or restaurants, and sell it to farmers.

Adjacent to Hanoi, there are some small craft villages where people are engaged in recycling industries, for example, plastic recycling village of Minh Khai, located 22 km east from Hanoi, the metal recycling village of Da Hoi, 32 km east, and the paper recycling village of Duong O, 64 km east. These industries have been developed during the past 20 years with mechanical technology as main one. People have diversified types of products.

These recycling industries are facing difficulties to continue their business because of financial, health, and environmental problems. They do not have suitable pollution control equipment and do not have enough landfill area for disposal of residues generated from their recycling process. If they reflect such environmental costs in their product price, they might lose in the tough competition against other producers.

(3) Prediction of the change of waste composition

Principle

- Amount of recyclable materials collected by junk buyers will reduce as prices fall. The quantity of the waste discharged will increase by the same amount as the reduction.
- With the upgrading of the economic standard, such waste as paper and
 plastics will increase. To control the increase in such types of waste, the
 government must strengthen manufacturers' responsibility for recycling
 and waste disposal.
- In Hanoi, the ratio of the coal residual ash from cooking activity will decrease as people change the fuel for cooking from coal to gas.
- As the result of above change, waste composition will change. The bulk density will become lighter and calorific value will become bigger. The plastic for packaging content ratio will increase like developed countries.

Although it is very difficult to predict the waste composition change in future in Hanoi practically, there is an indicator, which shows the typical waste composition in different-income countries. According to the table below, composition ratio of food waste and dirt & ash will become smaller and the ratio of paper and plastics will become larger as the country develops. One of notable features of the waste composition in Hanoi is the residual ash from coal cooker. Although usage ratio of gas cooker has been increased gradually in place of coal cooker, there is still large portion of Hanoi people using coal cooker. However, in coming two decades, as people will change certainly their cooking style from coal to gas, amount of coal ash will decrease.

Typical distribution of components in Residential MSW for low-, middle-, and upper-income countries excluding recycled materials1

Component	Low-income Countries	Middle-income countries	Upper-income Countries ²
Organic Food waste	40-85 ³	20-65	6-30
Paper Cardboard	1-10	8-30	20-45 5-15
Plastics	1-5	2-6	2-8
Textiles	1-5	2-10	2-6
Rubber Leather	1-5	1-4	0-2 0-2
Yard wastes Wood	1-5	1-10	10-20 1-4
Misc. organic	-	-	-
Inorganic			
Glass	1-10	1-10	4-12
Tin cans			2-8
Alumiaum	1-5	1-5	0-1
Other metal	·		1-4
Dirt, ash, etc	1-40	1-30	0-10

1: Low-income countries: per capita income of less than U.S. \$750 in 1990.

Middle-income countries: per capita income of more than U.S. \$750 and less than U.S. \$5000 in 1990.

Upper-income countries: per capita income of more than U.S. \$5000 in 1990.

2: Upper-income countries are more highly industrialized.

3: Food waste composed predominantly of waste from the preparation of food (cornhusks, melon rinds, banana leaves, etc.).

Source: Integrated Solid Waste Management, p50

(4) Role of Hanoi City for Promoting the recycling

Principle

- Hanoi City has to monitor the private recycling situation and change of the composition of the waste to be disposed of at landfills.
- Hanoi City has to keep trying to support the current recycling activities that are helpful for avoiding increases in waste generation amount.
- Hanoi City can use private collectors practically as manual sorting system at the landfill site in sanitary condition.

It is not widely known that recycling activities has been carried out by private sector in Hanoi. Almost of all kind of recyclable materials such as organic matters, plastic, metals, papers that corresponds about 20% of total waste generation quantity are collected. As the result of such private recycling activity, large amount of the municipal cost for waste management could have been saved in Hanoi.

However, there is the risk that those recyclable will be back into the waste stream

by the reason of recycling failure in future and Hanoi will have to pay large cost for handling such waste.

Thus, it is highly recommended that Hanoi should carry out the recycling survey in order to monitor the latest recycling market situation including types and quantity of recyclable, and prices, etc.

In principle, recycling activity should be done on market base by the private sector. It is not possible for HPC to replace the role of the private sector. A thing HPC can do is to allow recycling people dump sorting residue at the municipal landfill sites. Another assistance could be the provision of subsidies to support the prices of recyclable material though this needs further careful discussion. Also Hanoi can organize and manage activities of scavengers at landfill sites to make their activities more efficient and safer.

Many developed countries such as USA, Japan, and EU are now promoting to establish the resource circulating economy society after the recycling market failure. It is advisable for HPC to learn lessons from the experiences of some countries about the way in which recycling is promoted.

6.5.8 Implementation Schedule

A proposed schedule for the implementation of the planned investment projects is shown in Figure 6.5.6.

Procurement of waste collection trucks should be made year by year. Upgrading of the existing garages will be made in 2002, and construction of new garages will be 2004. Design and construction of the proposed transfer system and Nam Son Phase 2 landfill is scheduled so that they can start operation in the beginning of 2004.

6.5.9 Costs of Solid Waste Management

It is estimated that total investment expenditures needed for solid waste management for the urban Hanoi during 2000 – 2005 is \$70 million. Of the \$70 million, \$47 million is for the new transfer system and Nam Son Phase 2 landfill, and the remaining \$23 million for collection and transport up to the transfer station and water sprinkling for streets.

In addition, total operation and maintenance (O&M) cost during the same period is estimated to be \$47 million. Therefore, the total expenditure during the same period including both investment and O/M is estimated to be \$117 million.

Estimated investment expenditures, operation and maintenance costs and

aggregate expenditures are shown in Tables 6.5.23, 6.5.24, and 6.5.25, respectively. These tables show annual expenditures from 2000-2020.

Proposed URENCO's Collection Target in the Urban Districts of Hanoi Unit: ton/day Table 6.5.1 Projection of Waste Generation and

9 % 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 82% 84% 86% 89% 94% 95% 95% 95% 95% Coverage Target i/h*100 Total Solid Waste Collection 1.536 3,815 URENCO 1,129 1,792 2,090 2,396 2,513 2,635 2,763 2,864 2,968 3,189 3,305 3,426 3,954 1,317 1,422 1,935 2,257 3,077 3,551 3,681 c+t Generatio 4.016 1,548 1,626 1,708 1,979 2,079 2,405 2,522 2,645 2.773 2,908 3,014 3,479 3,606 3,738 3,874 4,162 1,884 3.124 3,238 2,294 3,357 2,184 89% 91% 94% 95% 95% 95% 95% 95% 95% 95% 95% Coverage 84% 86% 95% 95% 95% g f/e*100 Target Other solid waste Collection URENCO 2,376 2.645 2,946 872 1.098 1,384 1,614 1.743 1,940 2,035 2,133 2.292 2,462 2,742 2.842 3.053 942 1,017 1,186 1,850 1,281 1,494 2,211 Generatio 2,328 1,319 1,605 2,246 2,592 2.785 2,886 3,214 1,195 1,256 1,385 1,455 ,528 1,686 1.771 1.948 2.042 2.142 2,501 2.992 1.857 3,101 75% 77% 79% 82% 84% 86% 89% 91% 94% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 73% coverage Target c/b*100 Demolition waste & soil waste URENCO Collection 278 324 378 476 514 546 572 909 629 652 676 726 753 88 838 869 50 350 441 901 Generatio 474 548 575 765 915 523 602 632 662 712 738 793 883 948 353 370 389 409 429 687 821 851 ۵ Year 2016 2004 2005 2006 2010 2014 2018 2019 1998 1999 2000 2002 2003 2008 2009 2012 2013 2015 2011 2017 1997 ø

Table 6.5.2 Target Waste Collection Amount by Urban Districts of Hanoi

					Dellostos Maste	ð	SOII WASTE				CERTON COL MASSIC	
	7 Urban	Districts	Total			ŭ	Each District	ار			7 Urban Districts	Districts
	Estimated	Target				Target C	Collection (ton/day,	on/day)			닒	Collection
Year	Generation	Collection			Unit 1			Unit 2			Unit 4	Unit 3
	1.7 -2.			ı		Enterprise	Enterprise			Enterprise	& Soil	Night Soil
	t/d	t/d		Enterprise	rise 1	2	3	Enterprise	rise 4	5	Waste	& Watering
						;	Hai Ba	,	Thanh		7 Urba	7 Urban
e	q	υ	ъ	Ba Dinh	Cau Giay	Hoan Kiem	Trung	Dong Da	Xuan	Тау Но	Districts	Districts
	1,312,102		Populatio n in 1997	181.350	104,196	181,800	337.211	289,552	133,339	84,654		
Growth Rate												
1998	5.04%	6.00%		5.00%	တ	5	5			9.07%		8.00%
1999-2005	5.04%	8.00%		5.00%	9.07%	5.00%	5.00%	5.00%	6			8.00%
2006	4.86%	8.00%		5.00%	6	5	5				~	8.00%
2007-2010	4.86%	See	Coverage	2.90%		2.90%	2				- }	8.00%
2011-2020	3.65%	Note 1	ж	2.20%	5	2.20%	2	İ		5.28%	Note 1	8.00%
Year												
1998	1.333	1.000	75%	138	79	139	257	221	102	65	300	5
1999	1.401	1.060	76%	145	87	145	270	232	111	5	318	108
2000	1.471	1.145	78%	152	101	153	283	243	130	82	343	117
2001	1.545	1,236	80%	160	117	160	298	255	150	95	371	126
2002	1,623	1,335	82%	168	135	168	312	268	173	110	401	136
2003	1,705	1,442	85%	176	155	177	328	282	198	126	433	147
2004	1.791	1.557	87%	185	177	186	344	296	226	144	467	159
2005	1,881	1,682	89%	194	201	195	362	311	257	163	505	171
2006	1,973	1.817	92%	204	227	205	380	326	291	184	545	185
2007	2,068	1.962	95%	210	264	211	391	335	337	214	589	200
2008	2,169	2,061	95%	216	285	217	402	345	364	231	618	216
2009	2,274	2,161	95%	222	306	223	414	355	392	249	648	233
2010	2,385	2,266	95%	229	329	230	426	366	420	267	680	252
2011	2,472	2,348	95%	234	346	235	435	374	443	281	705	272
2012	2,562	2,434	95%	239	365	240	445	382	467	297	730	294
2013	2,656	2,523	95%	244	384	245	454	390	492	312	757	317
2014	2,753	2.615	95%	250	405	250	464	399	518	329	785	343
2015	2,853	2,710	95%	255	426	256	475	408	545	346	813	370
2016	2,957	2.809	95%	261	448	262	485	417	573	364	843	400
2017	3,065	2.912	95%	267	471	267	496	426	603	383	874	432
2018	3,177	3,018	95%	272	495	273	507	435	634	402	905	466
2019	3,293	3,128	95%	278	520	279	518	445	999	423	939	503
2020	3,413	3.243	95%	285	546	285	529	454	669	444	973	544

Table 6.5.3 Solid Waste Generation and Collection Amount in the 5 Sub Urban Districts

Unit: ton/day

		200			Dong Anh			Gie Lam			Tu Liem			Thanh Tri			lotel	
		300			9			-										
Annual	Generation	Generation Collection	Rate	Generation Collection	Collection	Rate	Generation Collection	Collection	Rate	Generation Collection	Collection	Rate	Generation	Collection	Rate	Generation	Collection	Rate
1998-							è	ě		90	7 0%		30 S	*0				
2010	2.0%	6.0%		9.00 0.00	\$0.01		4.0.4 	RO.		8.0.0	80,							
2011-	o c	ď		90 61	ð o		3.0%	7.0%		3.0%	6.0%		3,0%	7.0%				
2222	6.V.3	200	ļ	20.5	22.		-			_		ε	c	٥	a	ט		s
•	۵	U		b		\ **] <u>.</u>			*/-			٥/٥			۲/۹
			3			196	122	45	37%								124	
000	0			0		300	107	48	388								_	
288	ก็					300	133	5.5	398									į
2007	C C					23%	138	55	40%									Į
200	0.00					24%	143	59	418									Ì
7007	6					26%	149	63	42%									ļ
300						27.6	155	67	44%									İ
4000	200		3.26			29%		72	45%									-
300	3 6					30%		77	46%									ļ
200						32%		82	47%									ļ
2002	So.			4.28		34%		88	49%									,
2000						366		94	50%									
2007	2					388		101	52%									
200	-					A04		108	54%						ľ			
2010	130			162	68	47%	208	116	56%	100	49	49%	122	53	44%	712	337	478
2012	193		44%			44%		124	58%									
2010	195					46%		132	60%									
100	200							142	62%									
2010	200				96			152	65%									.]
200	2					534		162	67%									ļ
200	200							174	70%	120								Ì
2010	3 00		395		124	588		186	73%								546	62%
2000	2					618		199	76%	-								
Note																5,201,313	2,440,485	

1. Generation amounts were estimated using per capita generation rate survey of the JICA Study conducted in August 1999, and

assumptions on growth rates.
2. Waste collection amounts were estimated based on interview of each Urenco of sub urban districts, and by setting targets.

Table 6.5.4 Projection of Waste Quantity to be Received at the Planned Transfer Stations and Nam Son Landfill Sites

	Waste Receive at	Nam Son Landfill	Phase 2 Site		Cummulative	Quantity	ç	0	0	٥	٥	•	٥	535,766	1,115,307	1,731,996	2,389,702	3,084,044	3,812,942	4,580,089	5,365,539	6,185,120	7.035,579	7,920,430	8,840,999	9,788,844	10,772,630	11,796,441	12,861,830	13.973,452
	Waste	Nam	P. Pha		Annuai	Quantity	·	0	-	_	0	•	•	535,766	579,541	616,689	657,706	694,343	728,898	767,147	785,450	819,581	850,459	884,851	920,568	947,845	983,787	1,023,811	1,065,389	1,111,621
)FILL	Total				(d+0+u)	ø	0	0	47	2	72	75	1,464	1,588	069'1	1,802	1,897	1,997	2,102	2,152	2,239	2,330	2,424	2,522	2,590	2,695	2,805	2.919	3,037
	RECEIVED AT NAM SON LANDFILL	Residue	ě	Industrial	Waste	Treatment	c.	٥	0	٥	20	20	20	20	20	5	\$	9	54	\$	99	9	9	99	09	80	80	80	80	8
	'ED AT NAN	Collected	à	Soc Son	District		٥	0	٥	47	20	52	55	57	9	63	99	2	22	77	81	85	89	94	86	103	108	114	119	125
	RECEIV	Sub total	(+i+i+q)	•			c	286	1,058	1,142	1,107	1,205	1,274	1.386	1,507	1.586	1.695	1,787	1,884	1,985	2.011	2001	2,181	2,271	2,364	2,407	2.507	2.611	2.719	2.832
		Received	at Dong	Ngac	(h+1+j+k+1)		٤	0	0	0	٥	0	0	1,386	1,507	1,586	1,695	1,787	1,884	1,985	2,011	2,094	2,181	2,271	2,364	2,407	2,507	2,611	2,719	2,832
	TATIONS	Collected Collected	ģ	Tu Liem &	Enterpises Thanh Tri (h+1+j+k+1)	Districts	}	29	္က	32	33	35	0	0	0	0	٥	•	0	0	0	0	0	٥	0	0	0	0	0	•
	WASTE RECEIVED AT TRANSFER STATIONS	Collected	À	Private	Enterpises		¥	11	<u>.</u>	14	15	16	81	19	5	13	な	ጸ	89	ಜ	33	32	38	4	45	84	S	Š	61	99
	/ED AT TR	Residue	ģ	Hospita	Waste			0	-	-	-			,		7	~	7	۲۷	7	₹	₹	4	4	4	9	w	ဖ	9	ø
	TE RECEN	Residue	ğ	Compost				0	0	0	62	62	62	62	62	62	62	62	62	62	23	62	62	62	62	23	62	62	62	62
Area	Ļ	Directly		Transfer	Stations	(c-e-f-g)	£	942	1,014	1,095	986	1.091	1,194	1,304	1,424	1,500	1,607	1,697	1,792	1,890	1,912	1,993	2.077	2,163	2.253	2,290	2,387	2.487	2,591	2,698
Districts,	D by URENC	Nam Son	Industria	Treatment	Facility		BC.	0	Φ	0	8	ទ្ធ	20	20	80	8	90	8	9	8	150	150	150	150	150	200	200	200	200	200
7 Urban Districts /	WASTE TRANSPORTED by URENC	Cau Dien	Hospital	Waste	Treatment	Facility	1 6.	0	က	က	က	က	ന	ო	က	မှ	9	ø	9	و	2	12	12	12	12	35	∞_	<u>∞</u>	18	82
	WASTE T	Cau Dien	No.	Compost	Plant		•	0	0	0	137	137	137	137	137	137	137	137	137	137	137	137	137	137	13.7	137	137	137	137	137
	Collection	Coverage	(£3)	•	•			75%	77	797	82.	845	86%	89%		346	95%	954	326	956	358	95%	958	95%	35%	92%	95%	35%	95%	95%
	WASTE	COLLECTED	TY URENCO	at Beginning	of the Year	(hecedec)		942	1017	1098	1186	1281	1384	1494	1614	1743	1850	1940	2035	2133	2211	2232	2376	2462	2552	2645	2742	2842	2946	3053
	WASTE	GENERATED COLLECTED	at Beginning by URENCO	of the Year			q	1256	13.19	1385	1455	1528	1605	1686	1771	1857	1948	2042	2142	2246	2328	2413	2501.	2592	2687	2785	2886	2992	3101	3214
		YEAR		,			15	1.998	1.999	0007	1007	2002	2.003	7,007	2,005	2.006	7,007	2005	2,000	2.010	101	1101	2,013	7107	2.015	910:1	2:012	2.018	2,019	2,020

1. It is assumed that waste amount collected by Tu Liem, Thanh Tri, and Soc Son districts will increase by 5 % per year.

2. It is assumed that waste amount collected by private companies will increase by 8 % per year.

3. It is assumed that Tu Liem and Thanh Tri districts will open their own landfill sites in 2003 respectively.

4. Cumulative solid waste amount to be disposed at Nam Son Phase 2 Landfill site during 14 years from beginning of 2004 - beginning of 2018 will be 10.852.554 ton.

Table 6.5.5 Comparison of Handcart/truck collection and Direct Collection with Truck

(Case 1: Salary of Worker: \$40 and & Driver \$50/month)

(Case 1: Salary of Worl	Handcart col				1
	Handcart	Transport	1	Collection	
	Collection	by Truck	Total	Conection	
	а	by track	a+b≃c	d	
1. Waste Amount Collected				<u> </u>	1
(ton/day)	800	800	800	800	
2. Amount of waste			ì		
collected			•		l
a. Handcart (ton/worker/day)	0.4	0.0	ļ.	0.0	
b. Truck (ton/trip)	0.0	3.5		3.5	ĺ
c. Truck (ton/day)	0.0	10.5		7.0	j
3. Other Assumptions]
a. Number of drivers per					
truck (driver/truck)		1		1	
b. Number of truck collection					
worker (worker/truck)		1		2	
c. Spare truck (%)		15%	l	15%	
d. Running distance for					
collection (km)		0		10	i
e. Distance from last					
collection point to transfer		13		13	
f. Fuel milage (km/liter)		5		5	
4. Number of workers &					Difference
eguipment					(c – d)
a. Number of drivers	0	88	88	131	
b. Number of other workers					
(persons)	2,000	88	2,088	263	·
c. Total (a + b)	2,000	175	2,175	394	1,781
d. Handcart (units)	2,000	0	2,000	0	·
e. Truck (incl. Spare:15%)	0	88	88	131	
5. Unit Price (\$)					
a. Salary of driver (\$/month)	50	50		50	
b. Salary for others (\$/month)	40	40		40	
c. Handcart (\$/unit)	122	122		122	
d. Truck (\$/unit)	70,000	70,000		70,000	
e. Fuel (\$/liter)	0.26	0.26		0.26	
6. Usful period (years)					
a. handcart	0.5			·	
b. Trucks		10.0		10.0	
					Difference
7. Annual cost (\$/year)					(c - d)
a. Salary of driver & others					
(\$/month)	960,000	94,629	1,054,629	205,029	849,600
b. Handcart	488,000	0	488,000	0	488,000
c. Tručk	0	613,333		920,000	-306,667
d. Fuel	o	37,598		78,089	-40,491
e. Annual maintenance cost					
(4% of equipment purchase)	19,520	245,333	264,853	368,000	-103,147
f. Administrative cost	98,440	70,796		112,503	56,733
g. Total (a+b+c+d+e+f)	1,565,960	1,061,690	2,627,650		
h. Cost Index	1,505,800	1,001,090		1,683,621	944,029
n. Cost Muex			100	64	

Note: Annual administrative cost is estimated to be 10% of labor cost plus 1% of equipment purchase.

Table 6.5.6 Comparison of Handcart/truck collection and Direct Collection with Truck

(Case 2: Salaries are doubled)

	Handcart coll	ection & Truc	ck transport	Direct	
	Handcart	Transport		Collection	
	Collection	by Truck	·Total		
	a	b	a+b=c	d	
1. Waste Amount Collected		******			
(ton/day)	800	800	800	800	
2. Amount of waste					
collected					
a. Handcart (ton/worker/day)	0.4	0.0	ľ	0.0	
b. Truck (ton/trip)	0.0	3.5		3.5	
c. Truck (ton/day)	0.0	10.5		7.0	
3. Other Assumptions					
a. Number of drivers per					
truck (driver/truck)		1		1	
b. Number of truck collection					
worker (worker/truck)		1		2	
c. Spare truck (%)		15%		15%	
d. Running distance for					
collection (km)		0		10	
e. Distance from last	·				
collection point to transfer				:	
station (km)	•	13		13	
f. Fuel milage (km/liter)		5		5	
4. Number of workers &					Difference
equipment					(c - d)
a. Number of drivers	0	88	88	131	
b. Number of other workers					
(persons)	2,000	88	2,088	263	
c. Total (a + b)	2,000	175	2,175	394	1,781
d. Handcart (units)	2,000	0	2,000	0	
e. Truck (incl. Spare:15%)	0	88	88	131	
5. Unit Price (\$)					
a. Salary of driver (\$/month)	100	100		10 0	
b. Salary for others	80	80		80	
c. Handcart (\$/unit)	122	. 122		122	
d. Truck (\$/unit)	70,000	70,000		70,000	
e. Fuel (\$/liter)	0.26	0.26		0.26	
6. Usful period (years)					
a. handcart	0.5		•		
b. Trucks		10.0		10.0	
					Difference
7. Annual cost (\$/year)					(c - d)
a. Salary of driver & others					:
(\$/month)	1,920,000	189,257	2,109,257	410,057	1,699,200
b. Handcart	488,000	0	488,000		488,000
c. Truck	0	613,333			
d. Fuel	0	37,598	37,598	78,089	-40,491
e. Annual maintenance cost		1			1 2
(4% of equipment purchase)	19,520	245,333	264,853	368,000	-103,147
f. Administrative cost	194,440	80,259	274,699	133,006	141,693
g. Total (a+b+c+d+e+f)	2,621,960	1,165,781	3,787,741	1,909,152	1,878,589
h. Cost Index	2,027,000	-,,,,,	100	50	•
II. OUST IIIUEX	<u> </u>		(lab 4 a a 4	- 00	I

Note: Annual administrative cost is estimated to be 10% of labor cost plus 1% of equipment purchase.

Table 6.5.7 Comparison of Handcart/truck collection and Direct Collection by Trucks

Case 3: Salaries & Waste collection amount are doubled.

Case 3: Salaries & Wast	Handcart col			Direct	Ī
	Handcart	Transport		Collection	
	Collection	by Truck	Total	Concolion	1
	а	<u>ь, наск</u>	a + b = c	d	
1. Waste Amount Collected			<u> </u>	~	
(ton/day)	1,600	1,600	1,600	1,600	
(com day)	1,000	1,000	1,000	1,000	1
2. Amount of waste collected					
a. Handcart (ton/worker/day)	0.4	0.0		0.0	
b. Truck (ton/trip)	0.0	3.5		3.5	
c. Truck (ton/day)	0.0	10.5		7.0	*
3. Other Assumptions	0.0	70.0			1
a. Number of drivers per truck					ł
(driver/truck)		1		. 1	
b. Number of truck collection		•	·	•	
worker (worker/truck)		1		2	
c. Spare truck (%)		15%		15%	
d. Running distance for		10%		10%	
collection (km)		0		10	
e. Distance from last		. ~		·	
collection point to transfer		13		13	
f. Fuel milage (km/liter)		5		5	
4. Number of workers &					Difference
equipment					(c ~ d)
a. Number of drivers (persons)	0	175	175	263	
b. Number of other workers	ľ			200	
(persons)	4.000	175	4,175	526	ļ
c. Total (a + b)	4,000	350		789	
d. Handcart (units)	4,000	0	4,000	0	,,,,,,
e. Truck (incl. Spare:15%)	o	175	175	263	
5. Unit Price (\$)					
a. Salary of driver (\$/month)	100	100		100	
b. Salary for others (\$/month)	80	80		80	\$
c. Handcart (\$/unit)	122	122	* .	122	
d. Truck (\$/unit)	70,000	70,000		70,000	
e. Fuel (\$/liter)	0.26	0.26		0.26	
6. Usful period (years)					
a. handcart	0.5				
b. Trucks	;	10.0		10.0	
					Difference
7. Annual cost (\$/year)					(c - d)
a, Salary of driver & others					
(\$/month)	3,840,000	378,514	4,218,514	820,114	3,398,400
b. Handcart	976,000	Ó	976,000		976,000
c. Truck	0	1,226,667	1,226,667	1,840,000	
d. Fuel	0	75,197	75,197	156,178	
e. Annual maintenance cost					
(4% of equipment purchase)	39,040	490,667	529,707	736,000	-206,293
f. Administrative cost	388,880	160,518		266,011	283,387
g. Total (a+b+c+d+e+f)	5,243,920	2,331,563		3,818,304	3,757,179
h. Cost Index	0,240,320	د,٥٥١,٥٥٥			0,737,179
n. Cost moex			100	50	i .

Note: Annual administrative cost is estimated to be 10% of labor cost plus 1% of equipment purchase.

Table 6.5.8 Estimated Number of Trucks including Spare trucks by Districts

								Units1,2&	4 8	Enterpris	6 2	149	157	172	183	198	215	231	249	269	288	304	317	333	346	357	371	385	398	413	427	444	458	475
								1,2		Enterpris E	e 5	139	146	160	170	184	200	215	232	250	268	283	295	310	322	332	345	358	370	384	397	413	426	442
								Units1,2		erpris	-	129	135	148	157	170	185	199	215	231	248	262	273	287	298	307	319	331	342	355	367	382	394	409
									-	Unit 2	Total	74	77	84	68	96	103	110	118	126	134	141	146	153	158	163	168	174	180	186	192	199	205	212
							:			Cariet Cariet	Total	46	49	53	56	9	99	71	76	81	87	92	95	100	104	106	111	115	118	123	127	132	136	141
7Districts	Target	Unit 4	Demolitio	n & Soil Waste	7 Urba	Districts				•		9	11	12	13	14	15	16	17	19	20	21	22	23	24	25	26	27	28	29	တ္တ	31	32	33
4				Enterpris e 5		Tay Ho	84,654	-				6	6	11	12	14	16	18	21	24	27	29	32	34	36	38	40	42	44	46	48	51	53	56
				ise 4	Thanh	Xuan	133,339					13	14	17	19	22	25	29	33	37	43	46	4	53	56	59	62	65	69	72	76	08	84	88
	n/day)	Unit 2		Enterprise		Dong Da	289,552		-		-	28	29	31	32	34	36	37	39	41	42	44	45	46	47	48	49	50	51	53	54	55	56	57
Each District	• • •			Enterpris e 3		Ę	337,211					33	34	36	38	40	42	44	46	48	49	51	52	54	55	56	57	59	09	61	62	84	65	67
Ea	Target Colle		_	Enterpris e 2		Kiem	181,800					100	19	20	21	22	23	24	25	26	27	28	28	29	30	30	31	32	32	33	34	35	35	36
		Unit 1		rise 1		Cau Giay	104,196					10	11	13	15	17	20	23	26	29	33	36	39	42	44	46	49	51	54	57	59	62	99	69
				Enterprise		Ba Dinh	181,350					18	19	20	20	21	23	24	25	26.	27	28	28	29	30	30	31	32	32	33	34	35	35	36
							Population				Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020

Table 6.5.9 Required Vehicles and Replacement Schedule

	Waste	Waste Collection Trucks	Trucks	Water 5	Water Sprinkling Vehicles	/ehicles	Contain	Containers (350-700 liter)	00 liter)
	Quantity		New	Quantity		New	Quantity		New
Year	required	Discarded	Discarded Purchase		Discarded	Discarded Purchase		Discarded	Discarded Purchase
1999	146	Ó	0	43	0	0	0	0	0
2000	160	တ္ထ	44	46	ഗ	ω	200	0	200
2001	170	30	40	52	S	11	400	0	200
2002	184	30	44	55	S	ω	909	0	200
2003	200	20	36	28	S	8	800	0	200
2004	215	20	35	61	വ	ထ	1,000	٥	200
2005	232	16	33	62	သ	9	1,200	0	200
2006	250	0	18	63	5	9	1,400	0	200
2007	268	0	18	64	9	9	1,600	0	200
2008	283	0	15	65	က	4	1,800	0	200
2009	295	O	12	99	0	1	2,000	0	0
2010	310	44	59	99	ø	œ	2,000	200	200
2011	322	40	52	99	11	+	2,000	200	200
2012	332	44	54	99	œ	8	2.000	200	200
2013	345	36	49	99	ω	σ	2,000	200	200
2014	358	35	48	99	∞	ω	2,000	200	200
2015	370	33	45	99	9	9	2,000	200	200
2016	384	18	32	99	9	9	2.000	200	200
2017	397	38	31	99	9	9	2.000	200	200
2018	413	15	31	99	4	4	2,000	200	200
2019	426	12	25	99	-	-	2.000	0	0
2020	- 442	59	75	99	8	8	2.000	200	200
a. Sub Total									
2000-2005		146	232		30	49		0	1,200
b. Sub Total									
2006-2010		44	122		21	25		200	800
c. Sub Total	:	310	443		99	99		1 000	000
7.04.7		,	7		3	2		200	200
e. l otal (a+b+c+d)				 					
20002020		200	796		117	140		2.000	3,800

Table 6.5.10 New Vehicle Purchase Schedule

	Quant	uantity of Vehicles to be Purchased	s to be Purch	lased		Purchase Costs	(SUS in	1999 price)
	Waste	Water		Containers	Waste	Water	Containers	
	Collection	Sprinkling	Vehicles	(350 – 700	Collection	Sprinkling	(350 – 700	
Year	Truck	truck	Total	irter)	Track	truck	liter)	lotal
					70.000	40,000	100	
1999	0	0	0	0	0	0	0	0
2000	44	œ	52	200		320,000	20,000	3,420,000
2001	40		51	200		440,000	20,000	3,260,000
2002	44	8	52	200		320,000	20,000	3,420,000
2003	36		44	200		320,000	20,000	2,860,000
2004	35	8	43	200	2,450,000		20.000	2,790,000
2005	33		39	200			20,000	2,570,000
2006	18		24	200		240,000	20,000	1,520,000
2007	18		24	200	1,260,000	240,000	20,000	1,520,000
2008	15		19	200	1,050,000	160,000	20,000	1,230,000
2009	12	-	13	0	840,000	40,000	0	880,000
2010	59	8	67	200		320,000	20.000	4,470,000
2011	52	11	63	200		440,000	20,000	4,100,000
2012	54		62					4,120,000
2013	49	Ø	57		3,430,000		20,000	3,770,000
2014	48		56					3.700.000
2015	45		51				20.000	3,410,000
2016	32	9	38	200				2,500,000
2017	31	9	37		2,170,000	240,000	20,000	2.430,000
2018	31		35					2,350,000
2019	25	1	26	0	1,750,000		0	1,790,000
2020	75	8	83	200	5,250,000	320,000	20,000	5,590,000
a. Sub Total								
2000-2005	232	49	281	1,200	16.240,000	1,960,000	120,000	18,320,000
b. Sub Total								
2006-2010	122	25	147	300	8.540.000	1,000,000	80.000	9.620.000
c. Sub Total								
2011-2020	442	99	208	1.300	30,940,000	2,640,000	180,000	33,760,000
e. Total (a+b+c+d)								
2000-2020	964	140	936	3.800	55,720,000	5,600,000	380,000	61,700,000

Table 6.5.11 - Assumptions regarding number of street washing vehicles

Year	Incremental no. of vehicles	Total number of vehicles required	Planning Assumptions
1999	existing	43	
2000	3	46	
2001	3	49	- 3 new vehicles per year until 2005, required
2002	3	52	to improve service levels and match urban- growth
2003	3	55	
2004	3	58	
2005	3	61	
2006	1	62	
2007	1	63	Implemention of direct collection of waste after 2005 and improved demolition waste
2008	1	64	collection will result in cleaner streets. Street cleaning service levels can therefore be
2009	1	65	reduced. Increase fleet by 1 vehicle per year to match expanding urban area.
2010	1	66	

Table 6.5.12 - Septage collection vehicles for Hanoi City (Nhue River Basin)(1)

Year	Qty of septage m3/d		Septage collection	i .
		m3/d	% of total	No. of trucks (2)
1999	356	75	21%	17
2000	345	80	23%	10
2001	335	85	25%	11
2002	320	90	28%	11
2003	305	95	31%	12
2004	290	95	33%	12
2005	274	95	35%	12
2006	250	100	40%	13
2007	225	105	47%	13
2008	200	110	55%	14
2009	175	115	66%	14
2010	148	110	74%	14

⁽¹⁾ Sub-urban areas of Thanh Tri and Nhue West are excluded

⁽²⁾ Assumed collection capacity per vehicle

¹ truck = 5 m3 x 2 trips/day x 80% availability = 8 m3/day

Table 6.5.13 - Garage Workshop Tools and Equipment

No Desc	pription	Qly	Units	Unit cost (\$)	Extensions
1 Tyre Service Shop					
air compressor		1	each	45	45
tire service tool set		1	each	18	18
air chuck		1	each	51	51
tire changing mach	nine	1	each	380	380
wheel balancing m	achine	<u> </u>	each	1,620	1,620
pressure gauge		2	each	1,870	3,740
				Sub-total	5,854
2 Repair Shop					
hydraulic jack 10 ton	·	1	each	2,200	2,200
portablé lubricator (o	i)	- 1	each	5,100	5,100
portable lubricator (g	rease)	1	each	4,200	4,20
mobile work bench		1	each	1,600	1,600
oil drain		1	each	2,800	2,800
grease gun		_2	each	91	182
mech, tool set		1	each	3,500	3,500
tool cabinet		<u> </u>	each	2,200	2,200
battery charger		1	each	4,300	4,30
battery caddy		1	each	600	600
electronic tool set		1	each	320	32
multimeter		<u>1</u>	each	1,010	1,01
soldering iron		1	each	59	5
bench electric grinde	<u>r</u>	11	each	1,200	1,20
work bench		1	each	1,270	1,27
bench drill press	<u> </u>	1	each	3,000	3,00
drill press vise		. 1	each	100	10
highg pressure wash	ier	2	each	11,900	23,80
steam cleaner		1	each	7,100	7,10
arc welding set		1	each	2,200	2,20
gas welding set		1	each	1,290	1,296
tips for welding		1	each	560	560
tips for cutting		11	each	530	530
				Sub-total	69,12
				Total	74,97

Table 6.5.14 - Cost Estimate for a New Garage Facility

No	Description	Qty	Units	Unit Cost (\$)	Extensions
1 Land		10,000	m2	25	250,000
	ngs (steel with concrete block walls,				
	metal roof)				
a) Mtd finishi	ce Garage c/w vehicle wash without	500	m2	250	125,000
	ice & personnel building with	000	1112		120,000
finishi	~ .	350	m2	400	140,000
c) M&	E services	1	L.S.	25,000	25,000
3 Fence	•	425	m	50	21,250
4 Septio	Tank (75,000 l)	1	each	25,000	25,000
5 Tools	and equipment	1	L.s.	75,000	75,000
6 Bulk f	uel	1	each	30,000	30,000
7 Water	filling station	1	each	50,000	50,000
8 Site w	rork				
a Gra		1	ha	3,500	3,500
	avation	1,000	m3	3	3,000
c Bac		4,000	m3	2	8,000
	ing & lines	5,000	m2	10	50,000
e draii f lands	nage scaping	1	ha L.S.	9,000 5,000	9,000 5,000
, with	oomping	'	£.0.	0,000	0,000
	Total	. :			819,750

Table 6.5.15 - Cost to Upgrade Existing Garage Sites

No	Description	Qty	Units	Unit Cost (\$)	Extensions
Garage No.1					
	(steel with concrete block walls,				
1 sheet me					
a) Mtce (Garage c/w vehicle wash without				İ
finishings	•	. 500	m2	250	125,000
2 Tools an	d equipment	1	L.s.	50,000	50,000
3 Bulk fuel		1	each	30,000	30,000
4 Site worl	(
a Gradin	g	0.30	ha	3,500	1,050
b Excava	ation	500	m3	3	1,500
c Backfill		2,000	m3	2	4,000
d Paving	& lines	1,250	m2	10	12,500
e drainag	je	0.30	ha	2,500	750
	Total				224,800
Garage No.2				1	
	(steel with concrete block walls,				
1 sheet me	•				·
-	Garage c/w vehicle wash without				
finishings	•	500	m2	250	125,000
	d equipment	1	L.s.	50,000	50,000
3 Bulk fuel	·	1	each	30,000	30,000
4 Water fill		1	each	50,000	50,000
5 Site work					
a Gradin	~	0.30	ha	3,500	1,050
b Excava		500	m3	3	1,500
c Backfill		2,000	m3	2	4,000
d Paving		1,250	m2	10	12,500
e drainag		0.30	ha	2,500	750
	Total	L		<u> </u>	274,800

Table 6.5.16 · Equipment and tools for central maintenance workshop (10f3)

Item	Description	Quantity	Unit Price (JPY)	Anwunt (JPY)	Amount (USD)
1	ENGINE SERVICE SHOP				
1.01	Mobile Hoor Crane, 1,100kg with Hydraulic Hand Pump	1	570,000	570,000	5.182
1.02	Hydraulic Shop Press, 60 ton with Hydraulic Hand Pump	1	800,000	800,000	7,273
1.03	Work Bench with Cabinet and Locker	2	330,000	660,000	6.000
1.04	Machinists Vise (Swivel Base Type)	2	56,000	112.000	1.018
1.05	Bench Electric Grinder	1	117,000	117.000	1,064
1.06	Hand Truck Load Cap. 300kg	1	90,000	90,000	818
1.07	Parts Rack	2	127,000	254,000	2,309
1.08	Parts Wagon	1	540,000	540,000	4.909
1.09	Cylinder Head Work Bench	1	480,000	480,000	4,364
1.10	Air Hose Real	2	129,000	258,000	2,345
1.11	Air Blow Gun	2	2.090	4.180	38
1.12	Engine Cleaning Gun	2	24,000	48,000	436
1.13	Eccentric Valve Seat Grinder	<u>-</u> -	840,000	840,000	7,636
1.14	Valve Refacer	1	720,000	720,000	6,545
1.15	Valve Spring Tester	i	170,000	170,000	1,545
1.16	Cylinder Gauge (Bore Gauge)		43,000	43,000	391
1.10	Piston Feeler Gauge	2	2,860	5,720	52
		2	3.950	7,900	72
1.18	Piston Ring Tool Piston Ring Compressor	2	3,240	6,480	59
1.19				360,000	
1.20	Piston Heater (Bearing Heater)	<u> </u>	360,000		3,273
1.21	Connecting Rod Aligner	<u> </u>	125,000	125,000	1.136
1.22	Mechanic Tool Set	- 2	350,000	700,000	6,364
1.23	Cytinder Head Hydraulic Test Stand		300,000	300,000	2,727
1.24	Engine Hanger	1	290,000	290,000	2,636
1.25	Valve Spring Tool	2	47,000	94,000	855
1.26	Diesel Compression Gauge	1	71,000	71,000	645
1.27	Cylinder Liner Puller (Manual Type)	1	125,000	125,000	1,136
1.28	Piston Vise	1	21,000	21,000	191
1.29	Portable Engine Dynamometer set	1	10,790,000	10,790,000	98,091
1.30	Fuel injection pump test stand	11	11,430,000	11,430,000	103,909
			Sub-total	30.032.280	273.021
2	HYDRAULIC & POWER TRAIN SERVICE EQUIPMENT			L	
2.01	Mechanic Tool Set	2	350,000	700,000	6,364
2.02	Tool Cabinet	2	220,000	440.000	4,000
2.03	Work Bench	2	127,000	254,000	2,309
2.04	Engineers Vise	2	66,000	132,000	1,200
2.05	Air Hose Reel	1	129,000	129,000	1,173
2.06	Air Blow Gun	1	2,090	2,090	19
2.07	Portable Hydraulic Tester	1	580,000	580,000	5,273
2.08	Hydraulic Cylinder checker & Emergency Power Unit	1	1,510,000	1,510,000	13,727
2.09	Engine Positioner	1	290,000	290,000	2,636
2.10	Overhead crane	l l	3,330,000	3,330,000	30.273
		-	Sub-total	7.367.090	66.974
3	TIRE SERVICE SHOP				
3.01	Tire Pressure Gauge, Bar Type	3	4,460	13,380	122
3.02	Air Chuck	2	1.780	3,560	32
3.03	Tire Service Tool	2	51,000	102.000	927
3.04	Tube Vulcanizer Set	1	74,000	74,000	673
3.05	Cold Patch for Tube Repair Various Sizes	2	4.110	8,220	75
3.06	Tool Locker with Sliding Door	i	105,000	105,000	955
3.07	Air Compressor		380,000	380,000	3,455
	rui compressor				
	Tire changes	1 1	1 630 (44)	1 (20) (188)	1 1 7 7 7
3.08	Tire changer Portable Wheel Balancer	1 1	1,620,000	1,620,000	14,727 17,000

Table 6.5.16 · Equipment and tools for central maintenance workshop (20f3)

Item	Description	Quantity	Unit Price (JPY)	Aniount (JPY)	Amount (USD)
4	CHASSIS REPAIR SHOP			<u> </u>	
4.01	Overhead Travelling Crane, 3 ton, Double Girder Type, 12m span	1	6,670,000	6,670,000	60,636
4.02	Hand Truck, Load Cap.: 300kg	<u> </u>	90,000	90,000	818
4.03	Pallet Truck	1	155,000	155,000	1,409
4.04	Sling Chain Kit	1_1_	690,000	690,000	6,273
4.05	Portable Hydraulic Jack, Capacity: 10 ton	1	53,000	53,000	482
4.06	Parts Rack	4	127,000	508,000	4,618
4.07	Parts Wagon	1	540,000	540,000	4,909
4.08	Mechanic Tool Set	2	350,000	700,000	6,364
4.09	Hydraulic Garage Jack	2	220,000	410,000	4,000
4.10_	Hydraulic Garage Jack	2	126,000	252,000	2,291
4.11	Air Operated Lubricator	1	510,000	510,000	1,636
4.12	Portable Chassis Lubricator (Grease)	1	420,000	420,000	3,818
4.13	Transmission Jack (standard)	1	240,000	240,000	2,182
4.14	Air Hose Reel	2	129,000	258,000	2,345
4.15	Air Blow Gun	2	1,730	3,460	31
4.16	Mobile Work Beach (Wood Cover)	3	160,000	480,000	4,364
4.17	Engineers Vise	3	52,000	156,000	1,418
4.18	Oil Drain	1	280,000	280.000	2,545
4.19	Diaphragm Pump with Suction	1	158,000	158,000	1,436
4.20	Grease Gun, Cap. 300cc	2	9,140	18,280	166
4.21	4-Post Car Lift (scissors type), Capacity: 20 ton	1	3,990,000	3,990,000	36,273
1.22	Frame lift, X type, Max. capacity: 12 ton	1	1,670,000	1,670,000	15,182
4.23	Jib Crane with Chain Block, Capacity: 1 ton	1	270,000	270,000	2,455
			Sub-tota	18,551.740	168,652
5	ELECTRIC COMPONENTS REPAIR SHOP			<u> </u>	
5.01	Starter Generator Test Bench	1	3,590,000	3,590,000	32,636
5.02	Circuit Tester	i	13,120	13,120	119
5.03	Armature Tester	1	220,000	220,000	2,000
5.04	Regulator Tester	1	126,000	126,000	1,145
5.05	Insulation Tester	1	58,000	58,000	527
5.06	Motor Puller Set	2	290,000	580,000	5,273
5.07	Work Bench	2	127,000	254,000	2,309
5.08	Engineers Vise	2	52,000	104,000	945
5.09	Tool Cabinet	2	144,000	288,000	2.618
5.10	Multi-meter	1	101,000	101,000	918
5.11	Silicon Quick Charger	2	430,000	860,000	7,818
5.12	Battery Tester	2	37,000	74,000	673
5.13	Water Purifier	1	420,000	420,000	3,818
5.14	Battery Caddy	1	000,00	60,000	545
5.15	Electric tool set	2	32,000	64,000	582
			Sub-tota	6.812.120	61.928
6	MACHINE SHOP	Ī			
6.01	Crankshaft grinding machine	i	11,110,000	11,110,000	101,000
6.02	Cylinder boring machine	1	5,550.000	5,550,000	50,455
6.03	Cylinder honing machine	1	5,690,000	5,690,000	51,727
6.04	Valve Seat boring machine	1	3,840,000		31.909
6.05	Liner boring machine	ì	5,680,000		51,636
6.06	Surface grinding	J	6,080,000		55,273
6.07	Cam-Rod boring machine	1	2,600,000		23,636
6.08	Cement Carbide Tipped Bits	2	350,000		6,364
6.09	High-Speed Steel Tool Bits	2	190,000		3,455
6.10	Bench Electric Grinder	ī	170,000	+	1,545
6.11	Work Bench	1	127,000	- 1	1,155
6.12	Tool Locker & Cabinet	<u>-</u>	147,000		1,336
6.13		i	290.000		2,636
	Taper Shank Twist Drill Set	 	220,000		2,000
() 1.4	1.51		12,300,000		111.818
6.14	Milling Machine	1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
6.15	Milling Machine Cutting Toyle for Milling Machine	1 1	1		· · · · · · · · · · · · · · · · · · ·
	Milling Machine Cutting Tools for Milling Machine Universal Press	1 1	390,000 2,470,000	390,000	3,545 22,455

Table 6.5.16 · Equipment and tools for central maintenance workshop (30f3)

ltem	Description	Quantity	Unit Price (JPY)	Amount (JPY)	Amount (USD)
7	CLEANING AND PAINTING AREA	i			
7.01	Hot Water High Pressure Wahser		1,190,000	1,190,000	10.818
7.02	Steam Cleaner		710,000	710,000	6,455
7.03	Water Hose Reel		110,000	110,000	
7.04	Spray Gun, Suction Type	2	23,000	46.000	418
7.05	Infrared Drying Stand	4	350,000	1,400,000	12.727
			Sub-total	3,456,000	31.418
8	WELDING AND FABRICATION SHOP				
8.01	AC Are Welder	1	270,000	270,000	2,455
8.02	Gas Welder Set	11	129,000	129,000	1,173
8.03	Portable Spot Welder Set	1	1,350,000	1,350,000	12,273
8.04	Hydraulic Shop Press, 60 ton	1	760,000	760,000	6,909
8.05	Hand Lever Shear	1	250,000	250,000	2,273
8.06	Clamp for Sheet Metal, Capacity: 2 ton	2	130,000	260,000	2,364
			Sub-total	3,019,000	27,445
9	TOOLS				
9.01	Torque Wrench, 100-1200 kgf.cm	2	32,000	64,000	582
9.02	Torque Wrench, 600-3200 kgf.cm	2	43,000	86,000	782
9.03	Torque Wrench, 1000-7000 kgf.cm	2	133,000	266,000	2,418
9.04	Bearing & Gear Puller Set for Construction Machinery	1	710,000	710,000	6,455
9.05	Adjustable Reamer with Pilot Set	2	137,000	274,000	2,491
9.06	Portable Hydraulic Jack, Capacity: 50 ton	2	120,000	240,000	2.182
9.07	Portable Hydraulic Jack, Capacity: 30 ton	2	69,000	138,000	1,255
9.08	Air Impact Wrench (1/2'Sq.), Capacity (Bolt dia.): M16	- 4	63,000	252,000	2,291
9.09	Air Impact Wrench (3/4' Sq.), Capacity (Bolt dia.): M20	2	100,000	200,000	1.818
9.10	Electric Drill, Drilling Cap.: 13mm dia.	2	66,000	132,000	1,200
9.11	Electric Drill, Drilling Cap.: 25mm dia.	1	260,000	260,000	2,361
9.12	Electro-Magnetic Drill Press	1	480,000	480,000	4,364
9.13	Straight Shank Twist Drill Set	4	23,000	92,000	836
9.14	Taper Shank Drill Set	2	143,000	286,000	2,600
9.15	Electric Portable Grinder	1	124,000	124,000	1,127
9.16	Electric Hand Grinder	1	108,000	108,000	982
9.17	Mechanic Tool Set	6	350,000	2,100,000	19,091
9.18	Tap & Die	1	200,000	200,000	1.818
9.19	Diesel Timing and Tacho	1	280,000	280,000	2,545
9.20	Diesel Engine Vacuum Tester	2	30,000	60,000	545
			Sub-tota	6,352,000	57.745
10	PARTS WAREHOUSE		<u> </u>	<u> </u>	
10.01	Rack for Medium Sized Parts, 5 Shelves, 240kg/shelf	20	104,000	2,080,000	18,909
	Rack for Medium and Large Parts, 5 shelves, 480 kg/shelf	20	145,000		26,364
10.03	Rack for Small Parts, 5 shelf, 100kg/shelf	20	160,000	3,200,000	29,091
	Pallet Rack	3	142,000	426,000	3,873
10.05	Rack for Long Heavy Items	3	117,000	351,000	3,191
		-	Sub-tota	8.957,000	81,427
11	AUXILIARY EQUIPMENT				
	Fork lift, Capacity: 2 ton	1	3,790,000	3,790,000	34,455
	Air compressor	1	910,000	910,000	8,273
			Sub-tota	4,700,000	42,727
			Tota		1.374.249
				Engineering 5%	68,712.45
					41.227.47
			•	Admin 3%	
				Contingency 10% Grand-total	1.621.614

Table 6.5.17 Comparison of waste management in some countries

				•					
Nation	Population	Arca	Pop.	GDP	Waste	Landfill	Incincration	Composting	Recycling
	Million	Kkm2	Density	USD	Kg/y	%	%	%	%
Japan	125.4	378	332	41,080	400	22.5	72.8	•	3.1
USA	269.4	682,6	53	27,590	701	29	16	2	15
Germany	81.9	356	230	28,860	417	68.9	15.5	3.1	12.5
France	58.3	055	106	26,280	348	50	40	10	0
UK	58.1	244	238	19,800	347	83	13	•	4
Netherlands	15.6	40.9	387	25.850	484	52	27	8	13
Sweden	8.8	440	20	25,770	314	38	55	7	
Spain	39.7	205	62	14,200	323	75	5	20	•
Swiss	7.2	41	175	43,420	406	11	76	13	
Denmark	5.2	43	122	32,250	351	16	71	13	ť
Canada	29.7	9,971	ĸ	19,200	646	82	&		10
Vietnam	77	331	233	t	ı	t	•	•	
		. 000							

* Waste data is based on around 1990.

Table 6.5.18 Required area estimation for sanitary landfill

<u></u>	WASTE	14	laste Receive a	
VEAD	1	¥1		ונ
YEAR	GENERATED		Landfill site	
	at Beginning	Annual	Cumulative	Required
	of the Year	Quantity	Volume	Area
[t/d	t/y	m3/d	ha
2,000	1,385	435,229	497,287	2.4
2,001	1,455	430,811	989,527	4.7
2,002	1,528	467,501	1,523,688	7.3
2,003	1,605	493,735	2,087,824	9.9
2,004	1,686	535,766	2,699,983	12.9
2,005	1,771	579,541	3,362,160	16.0
2,006	1,857	616,689	4,066,782	19.4
2,007	1,948	657,706	4,818,268	22.9
2,008	2,042	694,343	5,611,616	26.7
2,009	2,142	728,898	6,444,446	30.7
2,010	2,246	767,147	7,320,979	34.9
2,011	2,328	785,450	8,218,425	39.1
2,012	2,413	819,581	9,154,869	43.6
2,013	2,501	850,459	10,126,594	48.2
2,014	2,592	884,851	11,137,614	53.0
2,015	2,687	920,568	12,189,445	58.0
2,016	2,785	947,845	13,272,441	63.2
2,017	2,886	983,787	14,396,504	68.6
2,018	2,992	1,023,811	15,566,299	74.1

Table 6.5.19 Daily Generation Quantity of Industrial Waste in Hanoi

									UMI: Tas di	<u>* </u>
		Characteristics			Texitle and	Destrical and				
	1	defined by	Mechanical	Cheraical	Dying	Dectruise	Processing		Other	
No.	Components	UKENCO	Industries	lixiusines	bidustries	Extustries	Pakistnes	Sub TOTAL	anaismes	TOTAL
1	PCBs wastes	Toxic	0.0	0.0	0.0	0.3	9.9	0.3		
2	Heav roetal sludges	Toxic	6.9	1.0	2.0	0.8	0.0	10.7	j	
3	Halogensolvents	loxic	0.0	0.0	2.4	0.0	0.0	2.4) 1	ĺ
	Non halogen solvents	Toxic	0.0	43	0.0	0.0	0.0	43	1	
5	Biocide wastes	Toxic	0.0	3.2	0.0	0.0	0.0	3.2		
6	Organic chemical residues	1exic	0.0	5.0	0.0	0.0	0.0	5.0		
. 7	Colouring and flavourings	Texic	0.0	0.0	0.0	0.0	0.0	0.0	j	ĺ
	Paints and resins	Texic	0.0	1.9	0.0	0.0	0.0	1.9]	
9	Plastics	Toric	0.0	0.0	0.0	2.1	0.0	2.1	J i	
10	Solvents and Ag	Texic	0.0	0.0	0.0	0.0	0.0	0.0		
		Sub-total	6.9	15.3	4,4	3.2	0.0	29.8)	ĺ
11	Agid and alkali	Conceives	2.5	0.0	0.0	0.0	0.0	2.5	1	
12	Detergents	Conceives	0.0	0.0	0.0	0.0	0.0	0.0		ĺ
		Sub-total	2.5	0.0	0.0	0.0	0.0	2.6	3	
13	Organic wastes	Biological	0.0	9.0	0.0	0.0	4.1	4.1	!	ĺ
14	Putrescible organic wastes	Biological	0.0	0.0	3.7	0.0	0.0	3.7	! I	
_	<u> </u>	Sub total	0.0	0.0	3.7	0.0	4.1	7.8		ĺ
15	Raigs, textile	Combustion	1.0	0.0	0.0	0.0	0.0	1.0		ĺ
16	Feathers	Combustion	0.0	0.0	0.0	0.0	0.3	0.3	·	ĺ
17	Oil and greases	Combustion	0.0	0.0	0.0	0.0	0.7	0.7		
	Oil wastes	Combustion	2.0	0.0	0.0	0.0	0.0	2.0		ĺ
19	Waste oil	Combustion	0.0	0.4	0.2	0.4	0.2	1.2		
		Sub-total	3.0	0.4	0.2	0.4	1.2	5.2		
	Hazardous Sub-rotal		12.1	15.7	K.J	3.6	3.4	45.5	***************************************	
20	Dusts and sand	{	0.0	0.0	0.0	0.0	6.9	6.9		
21	Rubbers		0.0	0.0	0.0	0.0	0.0	0.0		Í
. 22	Cinder		5.0	0.0	6.4	0.3	4.6	16.2		
23	Others	I	6.3	8.5	3.9	0.6	3.0	22.2		
		Sub-total	11.3	8.5	10.3	0.8	14.5	45,4	40.5	85
	ੀ ਹੋਈ	1	23,6	34.1	18.5	4.4	19.9	90.7	48,8	139

Table 6.5.20 Annual Generation Quantity of Industrial Waste in Hanoi

	, 	,							UMT: Tots ve	ar .
			!		levitle and	Destrical and	Food]		
	_		Medianical	Chemical	Dying	Deceme	Processing	i	Other	
No.	Competents	Characteristics	Industries	Industries	biaisties	linustries	bidistries	Sub-TOTAL	Industries	TOTAL
1	PCB's wastes	Toxic	0.0	0.0	0.0	100.4	0.0	100.1	l	
_:	Heavy roetal studges	Toric	2511.9	348.2	744.2	296.5	0.0	3900.8	l	
	Halogen solvents	Toxic	0.0	0.0	865.9	0.0	0.0	865.9	Į	
	Non halogen solvents	Texic	0.0	1571.5	0.0	0.0	0.0	1571.5		
_	Hickide wastes	Toxic	0.0	1151.8	0.0	0.0	0.0	1151.8	ļ	
	Organic chemical residues	Texic	0.0	1812.6	0.0	0.0	0.0	1812.6		
	Colouring and flavourings	Totic	0.0	0.0	6.0	0.0	145	145	l	
	Paints and resins	Toxic	0.0	696.5	0.0	0.0	0.0	646.5		
-	Plastics	Texic	0.0	0.0	0.0	751.7	0.0	751.7	ı	
10	Solvents and Ag	Toric	0.0	0.0	6.0	14.6	0.0	[4.6	l	
	L	Sub-rotal	2511.9	5580.6	1610.1	1163.2	14.5	10880.3	1	
LI	Acid and alkali	Соповіче	923.6	0.0	0.0	0.0	0.0	923.6	1	
12	Deter gents	Corrosive	0.0	0.0	6.0	0.0	7.3	7.3	ì	
		Sub total	923.6	0.0	0.0	0.0	7.3	930.9	1	
13	Originale wastes	Biological	0.0	0.0	0.0	0.0	1503.6	1503.6	i	
1.1	Potrescible organic wastes	Bolonical	0.0	0.0	1332.7	0.0	0.0	1332.7	1	
		Subtetal	0.0	0.0	1332.7	0.0	1503.6	2836.4	1	
15	Kays, textile	Corobastica	362.5	0.0	0.0	0.0	0.0	362.5	1	
	Featiers	Combustion	0.0	0.0	0.0	0.0	94,4	21.1	l	
17	Oil and greases	Constantion	0.0	0.0	0.0	0.0	261.5	261.5	1	
	Oil wastes	Combustion	725.1	0.0	0.0	0.0	0.0	725.1	i '	
	Waste oil	Combustion	0.0	133.9	74.4	149.0	87.2	411.6		
		Subskeal	1087.6	133.9	74.4	149.0	413.1	1888.1		
*****	Hyardone Sub-total		4523.3	57146	30172	1312.2	1968.3	16333.7	******************************	19565
	Dusts and sand		0.0	0.0	0.0	0.0	2535.1	2535.1	***	
	Kulders		0.0	0.0	0.0	8.1	0.0	8.1		
	Cinder		[812.7]	0.0	2333.9	94.0	1670.7	5911.3		
23	Others		2296.1	3098.4	1413.9	205.7	1089.6	8103.7	i :	
		Subtotal	4.901E	30/98.4	3747.8	307.8	5295.5	16558.3	14782.5	31340.
	Total		8,632.0	8,812.9	6,765,0	1,620,0	7,264.0	33,(93.9	17812	50.05.

Source: Evaluation of current industrial waste management in Hand City - by CEETIA

Table 6.5.21 Daily Future Quantity Estimation of Industrial Hazardous Waste

								UNIF: Tons da	y
No.	Ceraposents	Characteristics defined by URENCO	1997 (not including other industries)	1997 (from all Industries)	1997 (collection rate = 70%)	1999 (=1997)	2005	2010	טביב
	Industrial Zone Area (m2)	-				441.3	1242.7	1682.7	2537.7
l	PCB's wastes	Toxic	0.3	0.3	0.2	0.2	0.6	0.9	. 1
:	Heavy metal sludges	Toxic	10.7	12.6	8.8	8.8	24,9	33.7	50
3	Halogen solvents	Toxic	2.4	2.8	2.0	2.0	5.5	7.5	11
1	Non halogen solvents	Toxic	4.3	5.1	3.6	3.6	10.0	13.6	.50
5	Bioride wastes	Toxic	3.2	3.7	2.6	2.6	7.3	9,9	15.
6	Organic chemical residues	Toxic	5.0	5.9	4.1	4.1	11.6	15.6	_23
7	Colouring and flavourings	Toxic	0.0	0.0	0.0	0.0	0.1	0.1	U
×	Paints and resins	Texic	1.9	2.3	1.6	1.6	4.4	6.0	9
ý	Plastics	Toxic	2.1	2.4	1.7	1.7	4.8	6.5	9
10	Solvents and Ag	Toxic	0.0	0.0	0.0	0.0	0.1	0.1	0
		Subtotal	29.8	35.2	24.6	24.6	69.3	93.9	141
11	Acid and alkali	Corresives	2.5	3.0	2.1	2.1	5.9	8.0	12
12	Detergents	Corrosives	0.0	0.0	0.0	0.0	0.0	0.1	0
		Subtotal	2.6	3.0	2.1	2.1	5.9	8.0	12
13	Organic wastes	Biological	4.1	4.9	3.4	3,4	9.6	13.0	19
14	Putrescible organic wastes	Biological	3.7	4.3	3.0	3.0	8.5	11.5	17
		Subtotal	7.8	9.2	6.4	6.4	18.1	24.5	36
15	Rags, textile	Combustion	1.0	1.2	0.8	0.8	2.3	3.1	4
36	Feathers	Combustion	0.3	0.3	0.2	0.2	0.6	8.0	}
17	Oil and preases	Combustion	0.7	0.8	0.6	0.6	1.7	2.3	3
18	Oil wastes	Combustion	2.0	2.3	1.6	1.6	4.6	6.3	9
19	Waste oil	Combustion	1.2	1.4	1.0	1.0	2.8	3.8	5
		Subtotal	5.2	6.1	4.3	4.3	12.0	16.3	24
	Hazandous Sotrictal		45.3	\$1.5	37.4	37.4	105.4	142.7	215

Table 6.5.22 Annual Future Quantity Estimation of Industrial Hazardous Waste

								UNIT: Tons ye	บ
		1	1997(not		1997				
			including other	1997 (from all	(collection rate	1			
No.	Components	Characteristics	industries)	Industries)	= 70%)	1999 (=1997)	2005	2010	2020
						441.3	1242.7	1682.7	2537.7
J,	PCB's wastes	Toxic	100	119	83	83	234	316	477
2	Heavy metal sludges	Toxic	3.901	4,603	3,222	3,222	9,073	12,286	18,528
3	Halogen solvents	Toxic	866	1,022	715	715	2.014	2,727	4.113
4	Non halogen solvents	Toxic	1.572	1.854	1,298	1,298	3,655	1,950	7,465
.5	Biocide wastes	Toxic	1.152	1,359	951	951	2,679	3,628	5,471
6	Organic chemical residues	Toxic	1,813	2,139	1,497	1,497	4.216	5,709	8,610
7	Colouring and flavourings	Toxic	15	17	12	12	31	46	69
8	Paints and resins	Toxic	696	822	575	575	1,620	2.194	3,308
9	Plastics	Toxic	752	887	621	621	1,748	2,367	3,570
10	Solvents and Ag	Toxic	15	17	12	12	34	46	69
		Subtotal	10,880	12.839	8.987	8.957	25.308	34,268	51.681
11	Arid and alkali	Corrosive	924	1,090	763	763	2.148	2,909	4,387
12	Detergents	Corresive	7	y	5	6	17	73	35
		Subtotal	931	1.098	769	769	2165	2,932	4,422
13	Organic wastes	Biological	1,504	1,774	1,242	1,242	3,498	4,736	7,142
14	Putrescible espanie wastes	Biological	1,333	1,573	1,101	1,101	3,100	4,197	6,330
		Subtotal	2,836	3,347	2,343	2,343	6,597	8,933	13,472
15	Rags, textile	Combustion	363	428	2/9	399	5-13	1,142	1,722
16	Feathers	Combustion	94	131	78	78	220	297	449
37	Oil and greases	Combustion	262	309	216	216	8/33	824	1,242
	Oil wastes	Combustion	725	856	.599	599	1,687	2.24	3,444
19	Waste oil	Combustion	445	525	367	367	1,034	1,400	2112
		Subtotal	1.888	2,228	1.560	1,560	4.392	5,947	8,968
2.42	Hazardous Schrotal		16,538	19,512	13,646	13658	35,462	52,080	78,543

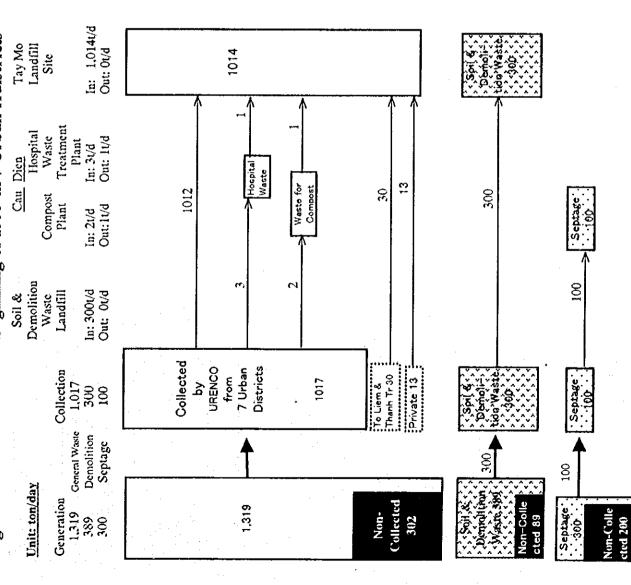
Table 6.5.23 Proposed Aggregate Investment for Solid Waste Mangement for Urban Hanoi

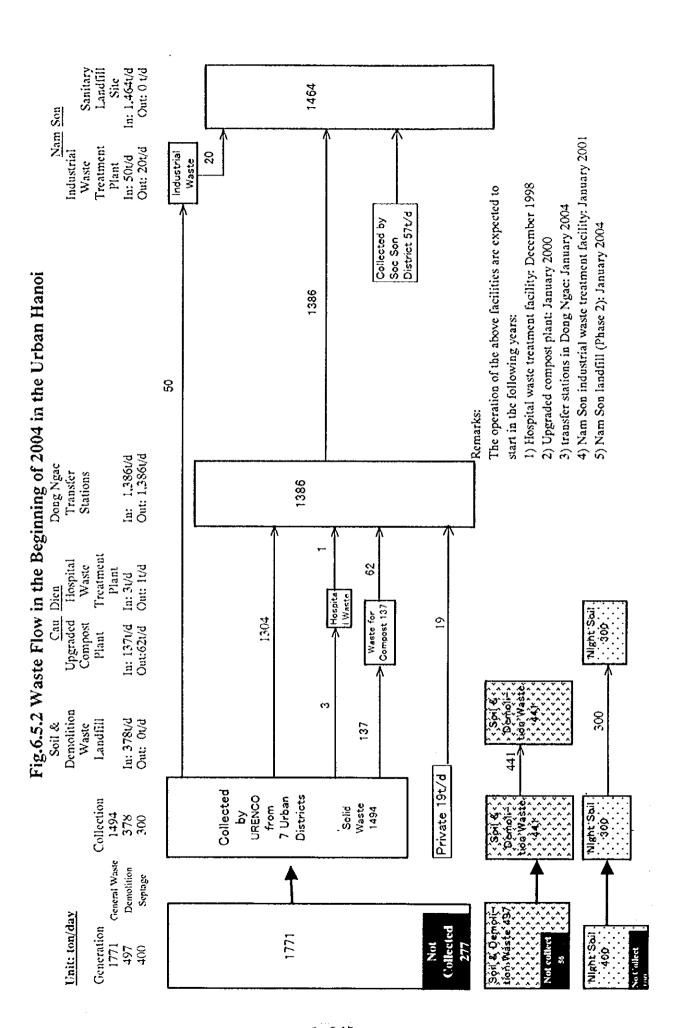
Unit: US Dollar in 1999 price including contingency and administration cost

	Waste	+colld Macta Collact	Collection 9	Drings, T	10000	Tuesday 9 M	Man Can Diag			
	Collection	Purchase of	, {	19	3 3 3 3	네.		la constant		
	Amount	New	& Upgra	for Central		Phase 2	Transfer	Opgrading of Roads &		
Year	(ton/year)	Vehicles	of Garages	Workshop	Sub total	Landfill	System	Bridges	Sub Total	Total
е		υ	ס	Đ	4-	B		£	-	
1					(c + d +e)				(g + h)	(4 + b)
2000	520,584	3,420,000			3,420,000	0		0	0	3,420,000
2001	560.694	3,260,000		1.622,000	4,882,000	0		0	0	4,882,000
2002	605,550	3,420,000	1,389,000		4,809,000	3,480,000	886,963	339,000	4,705,636	9,514,636
2003	653,994	2,860,000			2,860,000	14.576,000	12.552,683	3,137,000	30,265,630	33,125,630
2004	708.248	2.790,000	2,029,000		4,819,000	4,706,000	0	000	4,706,000	9.525,000
2005	762,818	2.570,000			2,570,000	6.847.000	300,300	000	7,147,300	9,717,300
2006	823,844	1,520,000			1,520,000	250,000	431,200	000	681,200	2,201,200
2007	874,621	1.520,000			1,520,000	1.547,000	300,300	000	1,847,300	3,367,300
2008	919,640	1,230,000			1,230,000	000'68	500,500	000	589.500	1,819,500
2009	961,700	880,000			880,000	250.000	0	000	250,000	1,130,000
2010	1,008,439	4.470,000			4,470,000	1,547,000	300,300	000	1,847,300	6,317,300
2011	1.045,247	4,100,000			4,100,000	0	200,200	000.	200,200	4,300,200
2012	1,086,366	4,120,000			4,120,000	0	200,200	000	200,200	4,320,200
2013	1,122,942	3,770,000			3,770,000	3,727,000	300,300	000'	4.027.300	7.797.300
2014	1,163,930	3,700,000			3.700.000	0	5,336,100	000	5,336,100	9,036,100
2015	1.206.413	3,410,000			3,410,000	0	500,500	000'	500,500	3,910,500
2016	1,253,873	2,500,000			2.500.000	1,797,000	600,600	000.	2.397.600	4,897,600
2017	1.296.088	2,430,000			2.430,000	250,000	731,500	000.	981,500	3,411,500
2018	1,343,396	2,350,000			2,350,000	0	600,600	000.	600,600	
2019	1,392,430	1,790,000				0	800,800	000	800,800	2,590,800
2020	1.447.207	5.590.000			5.590,000	0	300,300	000	300,300	5.890.300
a. Sub Total 2000-2005		18 320 000	2 4 1 8 000	1 622 000	23 360 000	000 000	19 720 046	000	000 000	20 40 404
b. Sub Total		200.020.01	5	200,230.1	22,000,000	000,600,62	07.03.340	0.470,020	40,624,300	006,401,01
2006-2010		9.620.000	0	0	9.620.000	3.683.000	1,532,300	C	5 2 1 5 3 0 0	14 835 300
c. Sub Total 2011-2020		33.760.000	0	o	33 760 000	5 774 000	9 571 100	C	15.345.100	49 105 100
e. Total								·	2010	2222
(a+b+c+d) 2000-2020	20758024	61.700.000	3.418.000	1.622.000	66.740.000	39.066.000	24.843.346	3 475 620	67 384 966	134 124 966
		J					21.21.21	232.01.0	22.5	2001-11-11

Table 6.5.24 Estimated Operation & Maintenance Costs of Solid Waste Management for Urban hanoi

	Unit: US Dollar in	1999	ding contingency	price including contingency and administration	on cost
	Exporarated	Transfer & Nam	am Son Phase 2		
	Operation &				
	Maintenance	Nam Son			
>	Costs of	Fhase 2	ranster	- - - (- -
Year	Ş	Langtii	System	oub otal	lota
æ	Δ	v	ъ	Ð	ų.
				(c + d)	(p + e)
2000	6,625,152	0	0	0	6,625,152
2001	6,655,164	0	0	0	6,655,164
2002	6,727,577	0	0	O	6,727,577
2003	7,265,783	0	0	0	7,265,783
2004	7,847,046	1,22	726,768	1,951,777	9,798,823
2005	8,474,810	•	782,623	2,068,740	10,543,550
2006	9,152,795		819,090	2,341,608	11,494,402
2007	9,691,936	•	869,405	2,461,226	12,153,162
2008	10,116,827	-	911,873	2,550,619	12,667,446
5003	10,587,821	-	956,649	2,649,814	13,237,635
2010	11,102,389	1,758,729	1,003,272	2,762,001	13,864,390
2011	11,486,251	l	1,015,274	2,798,726	284
2012	11,883,085	1,826,531	1,053,587	2,880,118	14,763,203
2013	316	1,871,264	1,093,747	2,965,012	15,281,829
2014	12,766,381	1,944,352	1,135,292	3,079,644	15,846,025
2015	13,232,354	1,992,598	1,178,222	3,170,820	8
2016	33	2,025,944	1,198,071	3,224,015	16,939,350
2017	14,215,945	2,077,991	1,244,232	3,322,223	17,538,168
2018	734	944,939	~	2,237,178	16,972,005
2019	15,272,648	832,726	1,342,093	2,174,819	17,447,467
2020	830	832,726	110	2,226,981	18,057,081
a, Sub Total					
2000-2005	43,595,533	2,511,126	1,509,390	4,020,516	47,616,049
b. Sub Total					
2006-2010	50,651,767	8,204,978	4,560,289	12,765,268	63,417,035
c. Sub Total	105 650 741	16 100 500	7		S
	3	136,36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20,0/3,330	100,000,270
e. lotal					
(a+o+c+d)				1	
2000-2020	229,701,041	26,848,628	18,016,693	44,865,320	274,566,362


Table 6.5.25 Estimated Future Costs of SWM Expenditures


Total

Total SWM 0 & M Investment 3,420,000 (b+e) Unit: US Dollar in 1999 price including contingency and administration cost Primary Collection & Transport, Street | Waste Transfer System & Nam Son Total Phase 2 Landfill ြ 0 & M 0 Investment Ð Total σ Sweeping \ 8 8 o Investment Ω 2000 Year æ

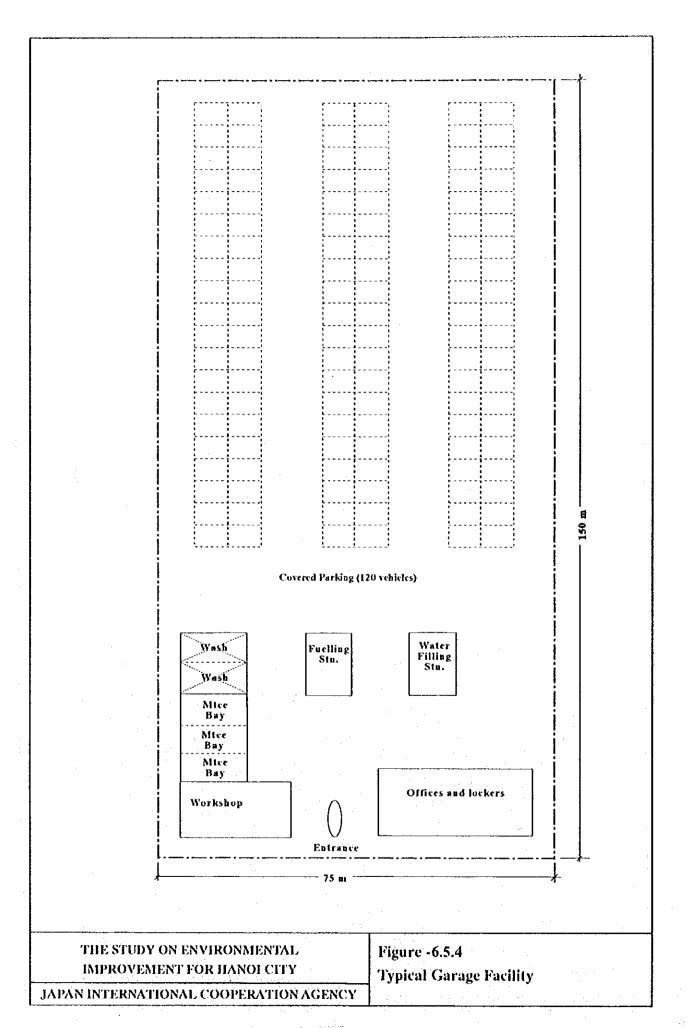

2007	3.420,000		10-0-	>	>	,		10.10.10.10.10.10.10.10.10.10.10.10.10.1	
2001	4,882,000	6,655,164	11.537.164	0	0	0	4.882,000	6,655,164	11.537,164
2	4,809,000	6,727,577	11,536,577	4,705,636	0	4,705,636	9,514,636	6,727,577	16,242,214
2003	2,860,000	7,265,783	10.125,783	30,265,630	0	30,265,630	33,125,630	7,265,783	40,391,413
2004	4.819.000	7,847,046	12,666,046	4,706,000	1,951,777	6.657,777	9.525,000	9,798,823	19,323,823
2005	2.570.000	8,474,810	11,044,810	7,147,300	2,068,740	9,216,040	9,717,300	10,543,550	20,260,850
60	1,520,000	9,152,795	10,672,795	681,200	2,341,608	3,022,808	2,201,200	11,494,402	13,695,602
2007	1,520,000	9,691,936	11,211,936	1,847,300	2,461,226	4,308,526	3,367,300	12,153,162	15.520,462
2008	1,230,000	10,116,827	11,346,827	589,500	2,550,619	3,140,119	1,819,500	12,667,446	14,486,946
2009	880,000	10,587,821	11,467,821	250,000	2,649,814	2,899,814	1,130,000	13,237,635	14.367,635
2010	4.470,000	11,102,389	15,572,389	1.847,300	2,762,001	4,609,301	6,317,300	13,864,390	20,181,690
2011	4,100,000	11,486,251	15,586,251	200,200	2,798,726	2,998,926	4,300.200	14.284.977	18,585,177
2012	4,120,000	11,883,085	16,003,085	200,200	2,880,118	3,080,318	4,320,200	14,763,203	19,083,403
2013	3,770,000	12,316,817	16,086,817	4.027,300	2,965,012	6,992,312	7,797,300	15,281,829	23,079,129
2014	3,700,000	12,766,381	16,466,381	5,336,100	3,079,644	8,415,744	9,036,100	15,846,025	24,882,125
2015	3,410,000	13,232,354	16,642,354	500,500	3,170,820	3,671,320	3,910,500	16,403,174	20,313,674
2016	2,500,000	13,715,335	16,215,335	2,397,600	3,224,015	5,621,615	4,897,600	16.939,350	21,836,950
2017	2,430,000	14,215,945	16,645,945	981,500	3,322,223	4,303,723	3,411,500	17,538,168	20,949,668
2018	2,350,000	14.734,827	17,084,827	600,600	2,237,178	2,837,778	2.950,600	16.972.005	19,922,605
2019	1,790,000	15,272,648	17,062,648	800,800	2,174,819	2.975,619	2,590,800	17,447,467	20,038,267
2020	5.590,000	15,830,099	21.420.099	300,300	2,226,981	2,527,281	5.890,300	18,057,081	23,947,381
Sub Total 00-2005	23.360,000	43.595.533	66,955,533	46.824,566	4,020,516	50,845,083	70,184,566	47,616,049	117,800,615
Sub Total 106-2010	9.620,000	50,651,767	60,271,767	5.215.300	12,765,268	17,980,568	14,835,300	63,417,035	78.252.335
Sub Total 11-2020	33,760.000	135,453,741	169.213.741	15,345,100	28,079,536	43,424,636	49,105,100	163,533,278	212,638,378
Total +b+c+d) 300-2020	66.740.000	229,701.041	296,441,041	67,384,966	44.865,320	112.250.286	134,124,966	274.566.362	408,691,328

Fig.6.5.1 Waste Flow in the Beginning of 1999 in 7 Urban Hdistricts

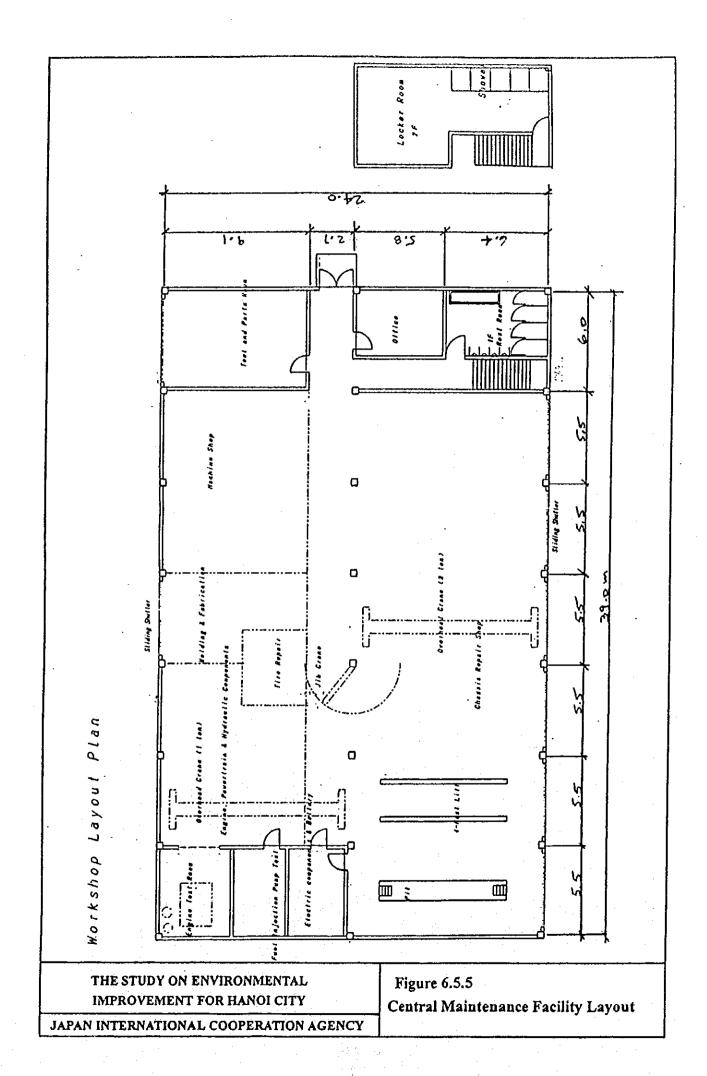


Figure 6.5.6 Overall Implementation Schedule for Solid Waste Management Improvement Projects

	Proposed Project	ő	Š																	D. C. Walter
		USSmil	USSmit USS mil on or		00 00	ē	20	2	8	ě	02 100 180	11 11111		1,5	1	01 31	1, 0,	5	1,	Tr
 		2000 - 2006 -	2006 -			5	ŝ	3	3			!		:			1	1	1	1
4	Improvement of Waste Collection and Primary Transport	23.5						<u> </u>									\vdash	<u> </u>	<u> </u>	
.i.		18.3	43.4	-	_				E		L		\vdash	L		-	┝		-	L
	1 Phase 1 (2000 - 2005)	18.3	0.0						L	L	L	F	\vdash			-	┢		L	
	2 Phase 2 (2006 - 2010)	0.0	9.6		_							F	\vdash			F	\vdash			
\vdash	3 Phase 3 (2011 - 2015)	0.0	19.1		F	F	L	H			F					F	\vdash		L	
	4 Phase 4 (2016 - 2020)	0.0	14.7		F	F	F	F	L	\vdash			-				L	L		_
र		3.4	0.0		F	F	F	-	L	L	F	F	+				┟			L
	1 Upgrading and expansion of the existing 3 garages	7.	0'0		27777							-	ļ			ļ	ļ			
H	2 Construction of New Garages	0,1	0'0		-		<u> </u>		L	E	L		-			F	┞		L	L
-							-	Ë	L			-	-	L	E	-	┝		L	<u> </u>
१	central workshop	1.8	0.0					_				_			_					
\dashv								H					H	\exists		\Box	H			
E	Trunsfer System & Nam Son Phase 2 Landfill	46.8	2.4.5															·		
B1		29.6	11.1						L				L				-			_
В.		13.7	13.7		- A	Z			E			F				Γ	┝		ļ.,	
3.		3.5	0'0		300	7			L			F	-	L		ļ.	├			
Ŧ	ı							386	000 NOV	**************************************		380	W. W. C.			<u>8</u> .	H			
-				_				H				П			_					_
1	Total of A. & B	70,4	8.4.3	4			\exists	-				\dashv					Н	_		
-																	L			
ပ	Institutional Arrangement				_				L			L		_			\vdash			_
·	Step 1: Devolution of SWM responsibility to districts													<u> </u>		-	-			
	Step 2: Fee collection responsibility goes to Districts								<u> </u>							_	 			
	Step 3: District will transport waste to Dong Ngac transfer station																 		<u> </u>	<u> </u>
	Step 4: Districts will start contracting out a part of SWM services								L				<u> </u>	<u> </u>			-			
	Step S URENCO will become a private enterprise					-								<u> </u>						
	Step 6. Participation of multiple companies in SWM services													<u> </u>						
	STEEL Study Design	`-		Finan	Finapeins/Tender-Contract	Pder	ontrac				Š	Construction		1			o di seration	.5		
		,)				i		,		;							

William Operation Cost: 1999 Base Price (excl. price contingency) UIIIIIII Financing/Tender-Contract Design) Approx. Estimate

6.6 Strategies for Achieving Quiet City Environment

It is sure that the quiet environment will be rather achieved by reducing the noise and vibration originated from the vehicles, factories, and commercial activities. It is clear that traffic is the main source of noise and vibration, therefore, the establishment of traffic management system in Hanoi City is recommended to achieve quiet environment. Traffic management system is the system expected to decrease the necessity of use of horns by making the smooth traffic flow. For reducing the noise and vibration pollution problems, attaining the proposed standards and the targets, the following strategies are recommended.

6.6.1 Proposed Regulations and Education

(1) Education for drivers:

As the horns of the vehicles are used frequently, it is estimated that the degree of influence of horns on the noise pollution is rather high. The Assessment Law prohibits the use of horn in the densely populated residential areas from 11:30 and 13:00, and after 22:00. It is necessary to let the drivers know the law and educate them not to use horns so frequently.

In Hanoi City, cars often drive in the middle of the roads. This situation is caused by slow moving motorbikes and bicycles, which fully occupy the edge of the roads. As a result, automobiles are squeezed towards the centerlines. It makes drivers difficult to make the turns and causes the noise pollution by the horns. The discipline for drivers to drive in a line and have "give way" manner is strongly recommended.

(2) Polluter Pay Principle:

Even if the government set the strong regulations and standards on noise and vibration, sometimes they do not work in ease they do not have the legal force. The application of Polluter Pay Principle is considered to be effective for reducing the noise and vibration level. Under this principle, those who generate the noise or vibration, e.g. the owner of the factory, the producer of motorized vehicles or the drivers, should pay some penalty when they generate the noise or vibration, which go over the standards. The way of checking the noise and vibration level and deciding the amount of the penalty should be further studied.

(3) Licensing

To obtain a drivers license in Vietnam, the applicants must be 18 years of age or older, physically and mentally fit to drive a motor vehicle and literate. License process in Hanoi City has been undertaken at several centers, which test the driving skill and knowledge of traffic regulation of applicants. Thinking their ways of drive, it is hard to believe that they know driving regulation as they drive at will. Proper knowledge of traffic regulations and driving manners should be taught before getting the drivers license.

There are considerable drivers who drive without getting drivers license and do not know the traffic regulations, traffic signs much. By punishing these drivers severely, improvement of the driving manners will be established.

(4) Introduction of Traffic Information System

In Japan, we can get traffic information such as traffic congestion and car accidents through the radio program, which is broadcast by the police. The information is renewed very frequently (every 5 or 10 minutes at rush hours) and we can try to avoid traffic congestion by changing the route or delaying the departure. To introduce such kind of radio program to Hanoi City is recommended as the volume of cars is expected to increase rapidly in the near future. If cars can avoid the traffic jam, the traffic flow will be rather smooth.

6.6.2 Improvement of Traffic Management System

(1) Signals, markings and crosswalks

In order to attain safe, smooth and efficient traffic flow through the maintenance of traffic signals as well as traffic signs and markings are essential tools. The installation of signals generally shows that they have been highly effective not only to reduce the number of accidents but to improve the flow of the traffic in Hanoi. Without installation of signals, there is the chaotic situation at intersections where motorbikes, cars and bicycles are passing from different direction. There are some signals installed in the city area of Hanoi City. But some of them are hard to see because of poor visibility and low height. The signals for pedestrians sometimes do not work at all and in case they work, duration of green light is too short to cross the street. More study should be conducted to improve this situation.

The proper establishment of crosswalks is good for pedestrians to cross the streets safe. At present, people seem to ignore crosswalks and cross the street anywhere they want, as drivers do not make the speed slow before the crosswalks. The improvement of manners of the drivers as well as establishment of crosswalks should be done immediately.

The lane marking and guide markings (arrows) are necessary especially for intersections, which is usually the source of confusion and noise. Cleaning of the roads is also needed to keep the marking clear.

(2) Sidewalks and trees:

By building the sidewalks or planting the trees on main roads, the noise and vibration levels at the houses on roadsides will be mitigated. Generally, broadleaf trees are good at absorbing the noise and providing good quality air.

(3) Porous asphalt pavement:

Though the road surface is often ill-maintained in Hanoi, asphalt pavement using the porous materials can reduce the reflected noise and vibration produced by tires and pavement from the road surface. It is expected that the noise level will be reduced by 3 dB by porous asphalt pavement.

(4) Maintenance of lights:

The noise survey done by JICA Study Team found that noise pollution is serious even at nighttime in the city center. The percentage of the vehicles including bicycles, which do not or can not use the headlight, is considerably high. It is really dangerous for drivers and pedestrians and causes the use of horns or accidents. The good maintenance of the vehicles is strongly required. Setting up the light at roadsides can be supposed to have the power to reduce the noise at night.

(5) Barriers:

Barriers between the sound source and receiver can be used effectively to reduce noise. In case of the elevated road such as highway, establishment of a 5 m-high barrier can reduce the noise level by 5-10 dB at the height of 1-3 m behind it. For the normal road in the city, establishment of high barriers is not recommendable from the functional point of view. Establishment of the low

barriers, which are about 1m-high, can reduce the noise level by 2-3 dB in the area of 2-3 m high behind the barrier. To have the medians also contributes not only to decrease the noise and vibration level but to form the appropriate traffic flow. As it costs much to build the barriers for all roads, it is also effective to make traffic flow smooth by marking the centerlines very clearly. There are nine national highways, some of which are under construction, are passing Hanoi City. For these highways, which a large number of traffic is passing, the barriers are considered to be valuable enough to be established.

6.6.3 Other Strategies for Quiet City Environment

(1) Campaign and workshop

Generally, people who live in Hanoi City do not know much about the condition of current environmental pollution. To have the campaigns and workshops to let the public be aware of seriously polluted environment including water pollution and air pollution in the city can be good opportunities to reduce the environmental pollution inside city.

(2) Regulations for commercial activities and factories:

In the alleys, many open stores are on roadsides disturbing the flow of traffic and people, and it causes the noise by the horn. Any regulations for opening the stores on roadsides are required. The regulations to limit the operation or working time should also be established for factories and shops, which produce big noise or vibration.

(3) Walls for factories and nightclubs

To construct the walls thicker as a role of silencer for factories and nightclubs such as Karaoke and Disco seems effective to reduce noise pollution caused by music at midnight. Using the materials which absorb noise and vibration for interior of factories and nightclubs are also desirable.

6.7 Strategies for Co-existing with Nature and Provision of Amenity

In Hanoi, it is said that natural environment such as green area and water zone is good considering the fact that many beautiful parks, trees along the roads and big lakes are seen in the center of the city. But green and water area per capita is still not enough compared with that of developed countries. The population of urban area of Hanoi city is expected to be almost doubled in the year of 2020. Strategies for co-existing with nature should be discussed as far as possible to avoid being inorganic city.

Concerning the amenity in the city, modern-enjoying facilities such as disco, bowling are getting popular recently and mainly young people are enthusiastic for them. In Hanoi, they will experience larger scale of amusement facilities in the near future as there are some plans of building big amusement parks by foreign capitals.

The following strategies are proposed for co-existing with nature and provision of amenity as written hereunder.

6.7.1 General Strategies for whole Hanoi City

- (1) Basic Strategies
- ① Restrict diversion of nature type land use including agriculture, forestry and water surface into urban type land use including industrial and residential uses.
- ② Increase park and green areas.
- (3) Improve the quality of surface water of lakes, ponds and rivers upgrade the access to their waterfronts.
- 4 Construct green and water friendly amenities facility.
- (2) Proposed Plan, Institution and Education
 - 1) Increase of green area target described in urban master plan

It is highly appreciated that HPC has published the Hanoi Urban Master Plan for 2020 in 1999, because it means they have the clear perspective of their urban planning. The master plan says that the land for green trees and parks shall be raised from 0.83 m²/capita to 7 m²/capita including

entertainment spots in 2020. But the proposed figure seems to be too small even it is the area only for green trees and parks. To co-exist with nature, the area of green trees and parks per capita should be at least 20 m²/capita. It is more realistic to set the target figure of green and water zone for each district. The expected green area of each district in 2020 is described in the table below. In Old City Center, which has dense population, green area is expected to be about 45% of total area. The zone is the restricted area for development and population will decrease, therefore it will be possible to attain the target.

Expected Green Area by Each Environmental Zone

Environmental Zones	Expected Green Area in 2020 (ha)
1. Old City Center	1,600
2. Red River Right Bank North – West	766
3. Red River Right Bank South	570
4. Dong Anh urban area	1,344
5. Gia Lam urban area	656
6. Suburban Arca	2,015
7. Ho Tay Area	64
Total	7,015

2) Environmental education

The people living in Hanoi City seem to be have the minds to love trees and water environment as many of them like to plant trees in their backyards or veranda and be in the parks arranged near the lakes. To have the rich natural environment in Hanoi, it is effective to educate them not only on the beauty of trees and water area, but the roles of them as the purifier of the air, reservoir when floods happen, foundation of the ground etc. They will understand the importance of the trees and water in urban area easily if they have chances to be educated.

(3) Establishment of Infrastructures and Improvement of the Growing Environment

1) Infrastructures for friendly natural environment

Around some big lakes, there are promenades constructed, and they make it easy to access the water safely. But concerning the small open canals, they

are cared very poorly and the sources of the nasty smell. They should be treated appropriately first, and the creation of the biotope is preferable.

Some of the trees in the parks and roadsides are covered with concrete frames to prevent the invasion of humanbeings, but the sizes of frames are not always precise ones and prevent the growth of the trees. These frame should be well designed depending on the kinds of planted trees.

2) Establishment of the amenity facilities

Since October of 1999, Vietnam Government and related organizations have started to take two days off per week and the chances to spend time at old or modern enjoying facilities will increase.

There are big projects planned to build the amusement facilities in Hanoi City, e.g. Ho Tay Amusement Center, which will be opened in May 2000. But it is the key to know the fact that Hanoian are not so generous and apt to tired soon. To attract their attention continuously, these facilities should keep providing them with new events and equipment.

In the suburban area, a rich natural environment is seen. There are chances to start new enjoying facilities in that area such as camping, birds watching and fishing parks for people who are in the urban area and tourists who want to enjoy the natural atmosphere easily.

3) Care of trees and soil improvement

Green Trees and Parks Company, which is under TUPWS is in charge of taking care of trees. They use an insecticide around November every year especially for trees planted close to the roads, because the color of the insecticide is vivid white and makes it easy for drivers to know the lines of the roads at night. Therefore, there is the fact that the trees planted far from the roads are not treated carefully. It is because of the limited budget for the care of trees.

It will be more practical to improve the soil for the care of trees, while it is thought not so important. Without enough supply of nutrition from the soil, trees can not live healthy lives. Soil improvement should be considered, as it is not needed to be done every year and is more economical than the use of the insecticides.

4) Introduction of the flower gardens

Though about 30 major kinds of trees are seen in the parks and roadsides, many of them do not have the flowers because the trees with flowers are prohibited to plant under the French era. The diversion of the trees, namely planting the trees with flowers will give fresh accent to the green environment in Hanoi. Building the small flower gardens, which are rarely seen now, is also needed.

6.7.2 Proposed Strategies for Each Environmental Zones

To attain the targets, which have been set by the JICA Study Team, the strategies are proposed by each environmental zone also as shown in the Table 6.7.1.

Table 6.7.1 Strategies for Co-existing with Nature and Provision of Amenity by each Environmental Zone

	by each Environmental Zone
Environmental Zones	Proposed Strategies
1. Old City Center	For the preservation of water surface area and water quality of Hoan Kiem Lake, restriction of the development around the lake and direct inflow of waste water is recommended. The trees around the lake should be preserved also to give recreational space to the people living in the urban area. The number of the lakes in this zone should also be kept by establishing the regulation because they are used for relaxation area for many people including tourists.
	Main City Lakes (14 lakes) located in this zone should be improved by dredging, construction of lakeshore roads, environmental revetments, provision for parks and promenades, and other environmental measures in order to restore functions for storm-water retarding ponds and waterfront resort.
2. Red River Right Bank	The preservation of the natural area and turning out the new natural zone should be considered as well as the development of commercial area.
2. Red River Right Bank North - West	Thang Long South Highway is the key road in this area and development along the road should be done carefully so that some green area can be preserved there.
3. Red River Right Bank South	There is a plan to construct the park of 60 ha around Yen So Lake. The project should be carried out for keeping natural area in this zone and the wastewater from the dwellings should be purified before the discharge into the lake.
4. Dong Anh urban area	There is a plan to construct the Cau Doi park, which is about 300 ha including the botanical garden, in this area spending 103 billion VND. It will be the second botanical garden in Hanoi. The diversity of the trees and flowers there should be of great attention, because in Hanoi, there are limited kinds of trees and flowers seen.
5. Gia Lam urban arca	The clear zoning for each land use category, such as residential area, commercial area, industrial area should be done especially for this area because this area will be the main industrial area in Hanoi. The zoning will be useful for keeping the water and green area.
	About 3,000 ha of agricultural area is planned to be changed into urban land use by the year of 2020.
6. Sub-urban Area	Agricultural area can be considered as one form of the green area, and the conversion of farmland should be restricted as far as possible for coexistence with nature.

Environmental Zones	Proposed Strategies
	A big amusement center will be constructed near Ho Tay in 2000 spending 130 billion VND.
	The coexistence among people, nature and enjoying amenity is expected to realize in this zone. For the preservation of rich water space of Ho Tay, establishment of promenade around whole lake should be done. The promenade makes it easier to access to water and give people more opportunities to commune with nature by fishing, boating etc.
7. Ho Tay Area	Projects should be implemented to enhance the water environment, such as sewerage development project and lake sediment dredging project.
	At present, HPC is undertaking the Phase I: Intrastructure Project of the West Lake Conservation Project including lakeshore road/park and small-scale sewerage developments.
	The preservation of the trees along the streets constructed in French period should be maintained properly because these streets have unique atmosphere with wide sidewalk and quiet living environment.

6.8 Strategies for Preserving Cultural and Historical Assets

6.8.1 General Strategies

- (1) Basic Strategies
- a) Concentrate efforts in preserving the two environmental zones of Old City Center and Ho Tay where most of the valuable cultural assets and historical assets are located.
- b) Prepare the inventory of the assets with the records of their conditions, needs for preservation, relative values for preservation and others.
- c) Rehabilitate the aged assets and renew the preservation facility.
- d) Continue to utilize the assets including building and bridge by allowing particular and appropriate manners of use.
- e) Secure the appropriate living conditions for the residents living within the assets as well as living in their vicinities.
- f) Enact new regulation for restricting heights, setback, color and others of the buildings and urban landscape worth preserving.

(2) Proposed Institution and Education

1) Listing and grading of assets

There should be the institution that grades the cultural and historical assets to clarify the priority of the preservation. For grading, making out the list of assets comes first. Listing and grading will lead to the careful preservation of the assets. The height of the assets, color of the wall, renovation of the building etc. shall be determined by the grades.

2) Holding the workshop and tours

Although there are so many cultural and historical relics in Hanoi, some of which are affected by Chinese or French culture, the others originate from Vietnamese culture, it is hard to say that these relics are recognized by the public to be valuable for Hanoi City. To hold the workshops by the experts of Vietnamese culture, history and architecture, which are open to anybody, on the value of the assets will be good opportunities for the public to feel or rediscover the importance of their heritages.

Touring the assets such as old pagodas, buildings or museums with the

experts is also considered important not only to realize their value but to draw attention of Vietnamese or foreign investor, who can contribute to the preservation of the relies. For the preservation, finding the source of fund is the big problem. The workshops and tours work as one of the campaigns to get donors.

(3) Proposed preservation and reuse of the assets

1) Selection of appropriate manners for the preservation

It is quite natural that the ways of the preservation of the cultural and historical assets change by their importance and characteristics. The following ways are taken as example.

- Preserve the whole building both outside and inside and do not permit renovation
- Preserve only the outside of the building and it is permitted to modernize the interior
- Preserve the symbolic parts of the building, e.g. gate, window, front wall, roof etc. and renovate the other parts of the building
- Reconstruct the old assets without losing the image of the former building
- Move the assets that are located in the dense population area and hard to preserve appropriately

The precise way of the preservation should be chosen according to the condition, importance and location of the assets.

2) Reuse and coexistence with assets

Opera House and Long Bien Bridge are good examples of the reuse of the cultural and historical assets. Opera House was renewed in 1998 with remaining the image of the French architecture, and having the performance inviting the famous opera singers or performer from Vietnam and foreign countries. Long Bien Bridge is almost 100 years old, and now used only for trains, walkers and bicycles. Now, motorbikes and cars are prohibited completely to cross the bridge as it is too old enough for them to cross, though 15 years ago it was opened to the motorized vehicles also.

Regarding the coexistence with assets, the relationship between Hanoi

Tower and Hoa Lo Prison, Horizon Hotel and Big Chimney are seen. Hanoi tower is the one of the biggest complex of business office and apartment in Hanoi. It was built in the site of Hoa Lo Prison, which was used for a long time during Vietnam war. The front gate of prison and a part of the building were left, and used as a museum. Horison Hotel is a modern hotel built in 1997, in which site there is a big chimney of about 25m high. Originally, the brick factory was there some decades ago and the big chimney was the symbol of the development of Hanoi City. Only the chimney was preserved after the repair, and now used as a symbol of the hotel.

As seen above, there are good cases of reuse and coexistence with assets in Hanoi and these kinds of reuse and coexistence should be done continuously because it is impossible to keep all the assets as they were especially in the urban area. Coexistence of living environment and preservation of the relics should be focused especially on Ancient Quarters, which is considered to be valuable relics used routinely. Reuse of an old French style building as a museum, library or restaurant is also proposed.

6.8.2 Proposed Strategies for Each Environmental Zones

To attain the targets, which have been set by the JICA Study Team, strategies are proposed by each environmental zone as shown in the Table 6.8.1.

Table 6.8.1 Strategies for Preserving Cultural and Historical Assets by Environmental Zone

Environmental Zones	Proposed Strategies
1. Old City Center	In Hanoi, they have made the list of cultural and historical relics such as pagodas and old houses only for Ancient Quarters last year. The grades are divided into two categories depending how old the assets are. Ancient Quarter itself is the historical asset and it is meaningful to list the assets there, to be sure, but it is proposed to widen the area for registering the assets at least for two environmental zones, namely Old City Center and Ho Tay Area. Making more categories for grading depend on the age and value of the relics is also essential.
	In Ancient Quarter, which is one of the cultural relics itself, improvement of living environment by building drainage system and sanitary facilities as well as preservation of the old buildings an pagodas is strongly recommended.
	For precious pagodas, museums and architectures, regular maintenance such as reinforcement of the wall, painting and introduction of new technology for the preservation of the exhibitions (for museums) are required.
7. Ho Tay Area	Specially, concerning the Van Mieu, Chua Mot Cot and Ho Chi Minh mausoleum, it costs much for maintenance, which is a skilled job. For precious old pagodas and mausoleum, it may be better to apply for UNESCO to be admitted as one of the world cultural heritages to get the fund for rehabilitation or introduction of modern technology.
	Regulation on construction density, height of the buildings and land use zoning should be established for the area of many French-style houses and buildings to preserve historical relics, as there are no regulation at present.