4. Geophysical Prospecting

Electric sounding at 103 exploration spots were carried out from March 1997 to April 1997. The method is Wenner alignment. The maximum electrode interval is 160 m for all the spots. The location of the spots is shown in Figure 4.1 "Location Map of Electric Sounding Spots and Geological Profiles Showing Deepest Resistivity".

The data is given in Data Book. The results of analyses are drawn in the 11 profiles shown in Attachment-1. The core drilling results are also added into the profiles.

The resistivity boundary is shown in the 11 profiles by the long broken line. The resistivity boundaries are much lower than that of the geological boundaries that were known by the core drilling. Therefore, the geological boundaries were finally decided based on the drill logs through the course of interpretation for analysis results. The main causes of the discrepancy of the resistivity boundaries are inferred as follows.

- The resistivity boundary not always reflects geological boundaries, because the geological boundaries in this area are unconformity. It is prospected that the upper portions of each geological unit such as Alluvium, Pleistocene, Pliocene formations and Bed rock is developed weathering, deteriorating and crack distributing by unconformity. Therefore, the resistivity boundary might be appeared below the geological unconformity boundary until reaching sound conditions.
- 2) The resitivity value by the analysis show an apparent value. It means that resistivity value is very much affected by the surrounding resistivity values in the shallower or neighboring zones.
- 3) Limit of analysis for similar resistivity layers and/or analysis error. An interpretation of core drilling data may be more reliable. The detail is described in Chapter 5.

5. Core Drilling for Geotechnical Investigations

Core drilling at 8 places was carried out as shown in Figure 4.1. Data of drill logs are shown in Attachment-1 for the WT1 to WT8 with the Standard Penetration Test (SPT or N value), electric logging and location of soil sampling point for test.

Geological profile of 10 places in total is arranged by referring the results of core drilling and the electric sounding. As a result, the 4 main geological units were clarified.

1) Alluvium Deposits

The layer is widely developed with the characteristic that coarse to medium sand is in the northeast area, and medium to fine sand is in the south area. Resistivity value reflects the above grain size condition with 50-3,000 ohm/m for the northeast area, and 50-1,100 ohm/m for the south area. Electric logging result of WT1 to WT8 is correlative with the electric sounding. A natural gamma logging of WT1 to WT8 shows that 4-25 cps in the north area and 4-20 cps in the south area. The thickness of the layer is 10-20 m. It becomes thin to the northward in general.

N value of the layer varies place by place. However, the value observed at WT1, WT2, WT3 and WT8 holes is rather high and widely ranging from 4 to 50. On the other hand, N value of WT4, WT5 and WT7 demonstrates rather smaller values of 2 to 22. It is inferred that the in southwestward, it might become more homogeneous deposits than the northeastward.

Figure 3.1 shows that the layer develops shallower in the north to eastward and deeper in the westward. The deepest parts can be traced near the West Baray. It is a buried valley trending from north to south direction, where the old river course of Siem Reap is located.

2) Pleistocene Deposits

The layer underlying the Alluvial deposits is coarse to medium sand (stone) with boulders in the north ward, and medium to fine sand (stone) with boulders in the south ward. Resistivities were examined by both methods of the electric sounding and logging, also reflect such contrast of the grain size distribution in the layer. Coarse to medium sand (stone) has resistivities ranging from 74 to 1,900 ohm/m. Medium to fine sand (stone) develops in the southward has resistivities of 20 to 400 ohm/m. Natural gamma measurement is 6-20 cps throughout this layer. But no distinguishable contrast is found.

N values of this layer ranges from 16 to 50 and/or more than 50 throughout the layer in all holes. Minimum value is 16 or 18 at WT4, WT7 and so on. Distribution of such small values demonstrates that the layer is composed of various materials from clay to coarse sand. Comparing with the value in alluvial deposits, this layer has 10 to 20 higher values of 10 to 20 than that.

Figure 3.2 shows the bottom of this layer. The map shows that the bottom of this layer is a distinguished hydrogeological boundary judged by pumping test in the wells.

3) Pliocene Formation

The formation is composed of homogeneous and impermeable clay stone. The drilling core sample is mostly cylindric core. Resistivity ranges from 10 to 200 ohm/m by surface sounding, and from 5 to 20 ohm/m by logging. The core sample demonstrates that physical property, mechanical property and electric resistivity value might be uniform throughout this formation, except with the uppermost parts of weathering near boundary.

4) Bed Rock

The bed rock distribution is shown in Figure 3.3 by three dimension. The followings explain each bed rock conditions.

Shale, sandstone and silt stone

The rock is dark to reddish brown color. The rock is mostly very hard in fresh condition. However, the top parts near the upper boundary is decomposed or deteriorated to soil condition by weathering. The thickness of the weathered zone ranges from 8 m at WT1 and WT6 (shale), 5 m at WT5, and 3 m at WT7 (sandstone). Resistivity is mostly less than 10 ohm/m and 5 to 20 ohm/m by logging.

Ryolitic tuff

The rock is found out by WT4 in the depth from 71.7 to 80 m (hole bottom). Light gray to green color, heavily altered tuff. The surrounding area might be affected by gronodiorite intrusion. Resistivity ranges from 11 to 40 ohm/m, and 20-30 ohm/m by logging.

<u>Tuff breccia</u>

Rock appears in the hole WT8 from the depth of 88.5 to 95 m (hole bottom). The rock is greenish to purplish brown tuff breccia with coarse matrix. Resistivity is 12-120 ohm/m, and 5-10 ohm/m by logging. It is prospected that a few zones of tuff breccia develop as shown in Figure 3.3.

Gronodiorite intrusive

Based on the facts from core sample of WT3 in the depth of 58 to 80 m (hole bottom), and extremely high resistivities of 63-540 ohm/m in the vicinity of West Baray, the wide distribution of granodiorite is estimated.

Andesite intrusive

Andesite intrusives are found from the hole WT2 in the depth of 77 to 95 m (hole bottom), and several electric sounding results. Resistivities vary from 30-3,000 ohm/m place by place.

6. Soil Laboratory Test

1) Laboratory Test for the 8 Core drilling in 1997

The result is summarized in Table 6.1 to Table 6.2 "Soil Laboratory Test in 1998-1999".

The elastic deformation coefficient from the unconfined compression result was recalculated by using the same pressure range of groundwater fluctuation. The estimated deformation coefficient is several to ten times larger value than that of the actual land reversible movements of 1.3 mm by the monitoring. The reason shall be explained as, i) the test was done under the unconfined condition, though the layer is confined, ii) the samples were released a confined stress by taking samples and loosen, and iii) the samples were disturbed in some degree, through the course of hydraulic pressing for sampling purpose.

The actual field records from the monitoring was used for the evaluation of land movement.

Dorehole	Sample	Depth	(m)	Water	Unit	Liquid	Plasticity	Specific		Grain	n Size A	nalysis	(%)		Undrained	Modulus	Colour	USCS	Soil Desciption
Dorenoie	Jampie	From	to	Content	-Weight-	-I-imit-	_Index_	-Gravity-		Grave	el	Sand	Silt	Clay	Strength(ton/m2)	50% Cy			
NO	INU	110111	.0	(%)	(ton/m3)	(%)	(%)	Gs		Coa.	Med.	Fine		· ·	UC	(ton/m2)			
WT 2	DD 1	18.20	10.00	(70)	22	348	27.5	2.57	0	0	7	36	57		21.7	987	Pale yellowish Brown	CL	Sandy CLAY
W1-3	DB-1	18.30	18.80	11.5	2.2	45.6	30.8	2.52	1		2	11	85		13.0	549	Pale yellowish Brown	CL	Sandy CLAY
WT.3	DB-2	24.00	27.50	10.0	2.2	35.9	22.1	2.63	0	0	16	47	36		6.7	1464	Pale yellowish Brown	CL	Clayey SAND
WT 2	00.5	20.00	20.60		22	38.2	25.0	2.59	0	0	10	30	60		21.1	6012	Pale yellowish Brown	CL	Sandy CLAY
W1-5	1)8-4	29.00	29.30	11.4	2.5	50.2		2.60		0	11	42	47		11.7	472	Pale yellowish Brown	SC	Clayey SAND
W1-3	DB-5	33.00	33.45	14.0	2.2	31.0	10 3	2.19				30	67		19.8	1083	Grayish Brown	CL	Sandy CLAY
WT-3	DB-6	36.10	36.60	15.1	2.2	40.0	27.2	2.54			2	30			62	579	Gravish Brown	CL	Sandy CLAY
WT-4	DB-I	9.40	9.60	16.5	2.1	40.6	21.2	2.63	3		10	29	51		0.2	1390	Grouisch Brown	CL	Sandy CLAY
WT-4	DB-2	18.40	18.80	12.0	2.2	31.1	18.1	2.56	1	0	9	40	51		9,0	786	Gravish Brown	CL	Sandy CLAY
WT-4	DB-3	29.20	29.50	15.0	2.2	36.9	22.4	2.61	0	0		10			0.8		Courich Brown	CI	Sandy CLAY
WT-4	DB-4	32.50	32.95	11.4	2.3	29.4	173	2,54	0	0		33	60		17.8	0340	Grayish Brown		Sendy CLAV
WT-4	DB-5	36.75	37.00	14.9	2.1	49.3	35.0	2.59	0	0		. 17	80		47.4	7498	Grayish Brown		Sandy CLAY
WT-4	DB-6	54.60	55.00	10.9	2.2	31.2	17.8	2.62	1	4		26	65	<u> </u>	8.6	1809	Yellowish Gray		Clavey SAND
WT-4	DB-7	57.10	\$7.45	i 15.0	5 2.2	38.3	19.3	2.55	0	0		2 22	75	<u> </u>	6.5	1284	Very light Gray		Chayley SAND
WT-6	DB-1	7.20	7.50	11.3	2 2.3	24.9	11.3	2.65	0	0	1	7 42	41		3.9	297	Pale yellowish Brown	SC	Clayey SAND
WT-6	DB-2	16.20	16.60	10.9	9 2.3	24.2	14.5	2.58	1	0	19	38	42		8.9	728	Pale yellowish Brown	SC	Clayey SAND
WT-6	DB-3	42.60	42.90	7.	0 2.1	33.7	20.6	2.55	1	0		35	55		39.0	9253	Pale yellowish Brown	CL	Sandy CLAY
WT-6	DB-4	56 50	56.88	3 26.	7 20	58.0	27.6	2.66	0	0		<u> </u>	98	ļ	8.	902	Grayish Brown	Сн	Sandy CLAT
WT-7	DB-1	13.60	14.00	D 12.	2.3	27.3	16.5	2.56	0	0	<u> </u>	8 43	38	ļ	7.0	744	Very light Gray	SC	Clayey SAND
WT-7	DB-2	19.00	19.6	D 12.	8 2.3	27.8	17.0	2.56	1	0	1	2 42	45	ļ	13.3	2 305	Very light Gray	SC	Clayey SAND
WT-7	DB-3	23.00	23.4	0 14.	0 2.2	33.3	18.8	2.62	0	0	1	1 41	3 41	ļ	10.1	B 346	Very light Gray	SC	Clayey SAND
WT-7	DB-4	27.15	5 27.5	0 11.	1 2.2	29.7	19.9	2.58	0	0	1	0 40	50		11.	3 2911	Very light Gray	SC	Clayey SAND
WT-7	DB-5	35.5	35.8	0 13.	.1 2.2	40.9	27.	5 2.63	1	<u> </u>		y 20	5 63		21.	2 438	Pale yellowish Brown		Sandy CLAT
WT-7	DB-6	40.2	0 46.7	5 11	.5 2.3	35.5	22	2 2.00	0	0		9 3.	5 50		38	6 66	Pale yellowish Brown		Sandy CLAT
WT.7	D9.7	48.2	5 48 5	0 10	8 23	33.7	20.	8 2.60	1 1	0	1	9 3	2 59		45.	2 890	Pale yellowish Brown		Sandy CEAT

Table 6.1 Summary of Physical Properties (1/2)

A3.3.1-13

Borehole	Sample	Dept	n(m)	Water	Unit	Liquid	Plasticity	Specific		Grain	Size A	Analys	is(%)	Undrained	Modulus	Colour	USCS	Soil Desciption
No	No	from	10	Content	Weight	Limlt	Index	Gravity		Grave	el 👘	Sand	Silt	Clay	Strength(ton/m2)	50% Cv			
				(%)	(10n/m3)	(%)	(%)	Gs		Coa	Med	Fine			UC	$(100/m^2)$			
WT.1	DBJ	21.70	22.00	77	2.02	ND	ND	2.57	0	000.	101001.	46				((0101112)	Dala Vallauriah Daarum	C14	Cilles Ca-J
WT-1	00-1	22.00	22.00	4.0	1.02	ND	ND	2.57				40		<u> </u>	T	*	Pale Tellowish Brown	SM	Suly Sand
WEI	DD-2	23.00	44.70	4.0	1.91	INF	Nr	2.03	0		<u> </u>	31			1.3	3.33	Pale Yellowish Brown	SM	Sury Sand
WIT	DB-J	44.40	44.70	8.0			-	2.03	0			33	01		•	•	Pale Yellowish Brown	C	Sandy Clay
WT	DB-4	40.00	40.30	9.4	2.20	40.5	27.9	2.64	1		8	33	36		4.3	772	Pale Yellowish Brown	CL	Sandy Clay
WT-I	DB-J	49.30	50.00	1.1	2.28	39.0	29.0	2.63	0	0		34	>9		4.9	1477	Grayish Pink	CL	Sandy Clay
WT-1	DB-0	62.00	62.30	8.4	2.21	27.6	170	2.02	- 0	0	3	43			0.7	.387	Pale Yellowish Brown		Sandy Clay
WT-2	DB-1	6.85	7.00	13.1	215	33.4	20.2	2.03	0	1	15	38	45		+		Grayish Brown	80	Claver Sand
WT-2	DB-2	15.85	16.00	12		21.8	13.0	2.57			15	51				•	Dala vollowith Proum		Clayey Sailu
WT-2	DB-3	25.50	25.85	89	213	26.7	15.0	2.55			10	42	45		- 10	-	Vary light Grov	8C	Clayey Sand
WT-2	DB-4	36.70	37.00	8.5	2.15	28.0	16.7	2.05	0	0	12	42	45		1.0	317	Very light Gray	sc sc	Clayey Sand
WT-2	DB-1	41 70	41.90	65	2.18	27.8	17.5	2.60	0	0			60		5.5	517	Pala Vallawish Drawn		Clayby Salid
WT-2	DB-6	48.15	48 60	79	2.10	33.7	17.5	2.05	0			18	77		4.9	994	Pale Yellowish Brown		Salidy Clay
WT-2	DB-7	50.20	50.55	9.4	2.28	34.9	21.6	2.58	0	0	7	34	59		72	1218	Gravish Brown		Sandy CLAY
WT-2	DB-8	53.10	53.40	13.3		42.2	23.3	2.65	49	10	7	9	25				Gravish Brown	60	Clavey Gravel With Sand
WT-2	DB-9	63.10	63.55	11.8	2.04	40.5	21.6	2.54	0	0	1	11	88		4.8	457	Yellowish Gray	CL	Silty CLAY
WT-2	DB-10	70.70	70.90	7.9	2.18	29.1	15.1	2.58	0	0	24	47	28		+	• +	Pale Yellowish Brown	SC	Clavey SAND
WT-2	DB-11	75.00	75.40	11.6	1.99	66.3	42.8	2.53	36	3	3	5	52		2.6	466	Grayish Brown	СН	Silty CLAY
WT-5	DB-1	14.00	14.50	9.6	2.19	35.9	23.6	2.59	0	2	11	35	51		3.1	447	Pale Yellowish Brown	CL	Sandy CLAY
WT-5	DB-2	35.60	35.80	11.7	•	35.9	22.0	2.62	0	0	14	41	46		•	-	Grayish Brown	SC	Sandy CLAY
WT-3	DB-3	46.70	47.00	6.4	2.22	38.5	27.6	2.64	0	0	2	38	60		7.6	1142	Pale Yellowish Brown	CL	Sandy CLAY
WT-5	DB-4	53.60	53.90	9.3	2.27	21.8	13.4	2.61	L.	3	7	36	53		+	+	Very light Gray	CL	Sandy CLAY
W1-5	DB-3	58-50	59.00	8.0	2.28	36.4	25.8	2.61	0	0		29	67		7.0	1392	Pale Yellowish Brown	CL	Sandy CLAY
WLS	DB-0	78.40	78.80	3.3		40.3	28.0	2 61		0	2	28	71			-	Pale Yellowish Brown	CL	Sandy CLAY
WT.9	DBJ	0.40	0.00	0.0	2.13	27.5	15.5	2.08	0	0	12	50	31		+	+	Pale Brown	CL	Clayey SAND
WT-8	DB-1	18.40	9.60	9.0	2.13	30.9	17.3	2.03	0	2	18	43	.38		+	+	Pale Yellowish Brown	SC	Clayey SAND
WT 9	00-2	10.40	45.00	9.0	0.02		21.6	2.02	0			48	39		•	•	Pale Yellowish Brown	SM	Silty CLAY
WT.8	DB-4	53.05	\$3.35	8.0	2.23	33.3	21.3	2.04	0	0	10	39	43		5.9	923	Pale Yellowish Brown	SC	Clayey SAND
WT-8	DB-5	59.60	59.90	8.2	4.17	45.5	27.7	2.62	4	2	8	25	62		5.8	1106	Dark Vellourish Brown		Sundy CLAY WILL Sand
WT-8	DB-6	80.00	80.40	10.7	2 26	36.3	21.6	2.65	0			10	79			-	Data Vallouish Broum		Ciller CLAV With Cond
WT-8	DB-7	84.50	84 75	50	2.10	NP	NP	2.05			36	20	10		J./	1000	Crucich Deeper	CL	SULY CLAT WILL SAND
L		0.1.50	04.75		2.10	141	I	2.01	0	1	30	29	32		Ŧ	+	Otayish Brown	SM	Sury SAND

Table 6.1 Summary of Physical Properties (2/2)

Note

.

:(*)

:(+)

; Insufficient Soil for testing

; Sample Highly Disturbed

A3.3.1-14

Hole	Sample	Depth	E50	E50	Poisson's	Coefficient	Thickness	Drawdown	Specific	Settlement
No	No	(m)	including	in	Ratio	of	(m)	(m)	Weight	(mm)
			plasticity	Elastic area		Volume			of	
			creep area			Compressibility	,		Water	
			(ton/m2)	(ton/m2)		(m2/kg)			(kg/m3)	
WT-3	DB-2B	20.40-20.50	489	1525	0.3	4.87E-07	5	2.300	1000	5.60
WT-3	DB-3	27.20-27.50	1464	3250	0.3	2.29E-07	5	2.300	1000	2.63
WT-3	DB-4A	29.00-29.50	174	5700	0.3	1.30E-07	5	2.300	1000	1.50
WT-3	DB-4B	29.00-29.50	8177	11450	0.3	6.49E-08	5	2.300	1000	0.75
WT-3	DB-5A	33.00-33.45	472	850	0.3	8.74E-07	5	2.300	1000	10.05
WT-3	DB-5B	33.00-33.45	396	867	0.3	8.57E-07	5	2.300	1000	9.85
WT-3	DB-6A	36.10-36.60	1015	1577	0.3	4.71E-07	5	2.300	1000	5.42
WT-3	DB-6B	36.10-36.60	1150	19400	0.3	3.83E-08	5	2.300	1000	0.44
WT-4	DB-1	9.40-9.60	579	1367	0.3	5.43E-07	5	2.300	1000	6.25
WT-4	DB-2A	18.40-18.80	1463	2225	0.3	3.34E-07	5	2.300	1000	3.84
. WT-4	DB-2B	18.40-18.80	1314	2308	0.3	3.22E-07	5	2.300	1000	3.70
WT-4	DB-3	29.20-29.50	786	1427	0.3	5.21E-07	5	2.300	1000	5.99
WT-4	DB-4A	32.50-32.95	8138	16250	0.3	4.57E-08	5	2.300	1000	0.53
WT-4	DB-4B	32.50-32.95	4553	7619	0.3	9.75E-08	5	2.300	1000	1.12
WT-4	DB-5	36.75-37.00	7498	23095	0.3	3.22E-08	5	2.300	1000	0.37
WT-4	DB-6A	54.60-55.00	2224	3926	0.3	1.89E-07	5	2.300	1000	2.18
WT-4	DB-6B	54.60-55.00	1393	1675	0.3	4.43E-07	5	2.300	1000	5.10
WT-4	DB-7A	57.10-57.45	1154	1541	0.3	4.82E-07	5	2.300	1000	5.54
WT-4	DB-7B	57.10-57.45	1414	1414	0.3	5.25E-07	5	2.300	1000	6.04
WT-5	DB-1	14.00-14.50	447	618	0.3	1.20E-06	5	2.300	1000	13.82
WT-5	DB-3A	46.70-47.00	1225	2286	0.3	3.25E-07	5	2.300	1000	3.74
WT-5	DB-3B	46.70-47.00	1059	1259	0.3	5.90E-07	5	2.300	1000	6.79
WT-5	DB-4	53.60-53.90	156	1864	0.3	3.99E-07	5	2.300	1000	4.58
WT-5	DB-5A	58.50-59.00	1819	1921	0.3	3.87E-07	5	2.300	1000	4.45

Table 6.2 Soil Laboratory Test in 1998-1999(1/2)

Uole	Sample	 Depth	E50	 E50	Poisson's	Coefficient	Thickness	Drawdown	Specific	Settlement
No	No	(m)	including	in	Ratio	of	(m)	(m)	Weight	(mm)
110		(/	plasticity	Elastic area		Volume			of	
			creep area			Compressibility			Water	
		2	(ton/m2)	(ton/m2)		(m2/kg)			(kg/m3)	
WT-7	DB-2B	19.00-19.60	428	1625	0.3	4.57E-07	5	2.300	1000	5.26
WT-7	DB-3	23.00-23.40	346	771	0.3	9.63E-07	5	2.300	1000	11.08
WT_7	DB-4A	27.15-27.50	2411	7667	0.3	9.69E-08	5	2.300	1000	1.11
WT_7	DB-4B	27.15-27.50	3411	7400	0.3	1.00E-07	5	2.300	1000	1.15
WT_7	DB-5A	35.50-35.80	401	1663	0.3	4.47E-07	5	2.300	1000	5.14
WT-7	DB-5B	35.50-35.80	475	1813	0.3	4.10E-07	5	2.300	1000	4.71
WT_7	DB-6A	46.20-46.75	618	1115	0.3	6.66E-07	5	2.300	1000	7.66
WT_7	DB-6R	46.20-46.75	718	1905	0.3	3.90E-07	5	2.300	1000	4.48
WT_7	DR-7	48.25-48.50	890	1500	0.3	4.95E-07	5	2.300	1000	5.70
WT_8	DB-1	9.40-9.80	362	383	0.3	1.94E-06	5	2.300	1000	22.31
WT_8	DB-3A	45.50-45.90	918	923	0.3	8.05E-07	5	2.300	1000	9.26
WT_8	DB-3R	45.50-45.90	927	927	0.3	8.01E-07	5	2.300	1000	9.22
WT_8	DR-44	53.05-53.35	1220	1771	0.3	4.19E-07	5	2.300	1000	4.82
WT_8	DB-4R	53.05-53.35	992	1149	0.3	6.47E-07	5	2.300	1000	7.44
WT_2	DB-6	80.00-80.40	1060	1096	0.3	6.78E-07	5	2.300	1000	7.79
WT.8	DB-7	84.50-84.75	332	453	0.3	1.64E-06	5	2.300	1000	18.86

Table 6.2 Soil Laboratory Test in 1998-1999(2/2)

2) Additional 6 Consolidation Tests from the Surface Soil in 1998

Six additional consolidation tests were carried out in February 1998 because no soil sample was available to apply consolidation test from core drilling of that the former investigation stage. The 6 samples were taken by hand from the top artificial reclamation layer as shown in Figure 6.1. The test result is almost same as the Banteai Kdei conservation team. The results are shown in Table 6.3.

The calculation of deformation value was used a coefficient of volume compressibility (Mv). It is also same as the unconfined compression result as shown in Table 6.3. The 6 samples were collected from paddy field or clayey top soil by hand. Because the result is not likely representative underground condition, the actual field records from the monitoring were applied for the evaluation of land movement.

The monitoring records of land movement of LTb (In front of Angkor Wat) is compiled in Annex 3.4.1 "Hydrogeology". The evaluation result of the influence to the Angkor Wat by the ground water exploitation is mentioned in Main Report, Chapter 4.2.4 "Groundwater".

Figure 6.1 Location Map of Soil Sampling for Consolidation Test A3.3.1-18

		Location:	Bayon Well	<u>No.87</u>	Sample No.	1							
	Vertical	().)	Consoli-	Sample	Average	Compression	Coefficiet	of volume	Thickness of layon	Urawdown of	Density of water	Consolidation settlement	
Weight	Stress (P)	(ap) ha (ani	dation (C	_ n ignt(n)	nignt(11)	d m				gi Uunuwater	(ko/m ³)	a a a a a a a a a a a a a a a a a a a	83
level	kg/cm ^r	Kg/CM	C			це %	UM / NG	# / N 5			(*6/=)		
ι ι	, ,	0.14	0.0170	10.000	18.992	0.0895	0.00639	6.394E-07	2.0	1.0	1000	0.00128	1.28
1	0.14	0.12	0.0410	18.983	18.963	0.2162	0.01802	1.802E-06	2.0	1.0	1000	0.00360	3.60
2	2. 0.26	0.95	0 1100	18.942	18 887	n 5894	0 02330	2 330E-06	2.0	i 1.0	1000	0.00466	4.66
3	0.51	0.20	0.1100	18.832	10.001	0.0021					1000	0.00004	P 04
4	1 1 1 1 1	0.51	0.2880	18,544	18.688	1.5411	0.03022	3.0226-06	Z.0	1.0	1000	0.00004	0.04
-		1.00	0.2960	10.040	18.396	1,6090	0.01609	1.609E-06	2.0) 1.0	1000	0.00322	3.22
ť) 2.02	2.02	0.3140	18.248	18.091	1.7357	0.00859	8.592E-07	2.0) 1.0	1000	0.00172	1.72
6	5 4.04	-3.02	-0.0240	17.934	17,946								
7	7 1.02	0.02		17.958	17.000								
8	3 0.26	-0.76	-0.0210	17.979	17.969					·			<u> </u>
		Leastion	Reven Well	No 97	Sample No.								
						4							
	Vertical	LOCALION.	Consoli-	Sample	Average	Compression	Coefficiet	of volume	Thickness	Drawdown of	Density	Consolidation	<u></u>
Weight	Vertical Stress (P)	(dp)	Consoli- dation (d	Sample hight(h)	Average hight(h)	Compression Strain	Coefficiet compressibi	of volume lity(mv)	Thickness of layer	Drawdown of groundwater	Density of water	Consolidation settlement	<u>i</u>
Weight level	Vertical Stress (P) kg/cm ²	(dp) kg/cm ²	Consoli- dation (d	Sample hight(h)	Average hight(h)	Compression Strain de %	Coefficiet compressibi cm²/kg	of volume ility(mv) m ² /kg	Thickness of layer	Drawdown of groundwater	Density of water (kg/m ¹)	Consolidation settlement	1
Weight level	Vertical Stress (P) kg/cm ²	(dp) kg/cm ²	Consoli- dation (d	Sample hight(h) Cm 19.000	Average hight(h) 	Compression Strain de % -0.2996	Coefficiet compressibi cm²/kg -0.02140	of volume ility(mv) m ² /kg	Thickness of layer 0.5	Drawdown of groundwater	Density of water (kg/m ³) 1000	Consolidation settlement 0.00000	na 0.00
Weight level	Vertical Stress (P) kg/cm ²) 0.14	(dp) kg/cm ² 0.14	Consoli- dation (d 	No.01 Sample hight(h) Cm 19.000 19.057	Average hight(h) 	Compression Strain de % -0.2996	Coefficiet compressibi cm²/kg -0.02140	of volume ility(mv) m ² /kg	Thickness of layer 0.5	Drawdown of groundwater	Density of water (kg/m ¹) 1000	Consolidation settlement 0.00000 0.00026	0.00
Weight level	Vertical Stress (P) kg/cm² 0 0 0 0 0 0	(dp) kg/cm ² 0.14 0.12	bayon werr Consoli- dation (d 	Sample hight(h) cm 19.000 19.057 19.045	Average hight(h) 	Compression Strain de % -0.2996 0.0630	Coefficiet compressibi cm²/kg -0.02140 0.00525	of volume ility(mv) m ² /kg 5.249E-07	Thickness of layer 0.5	Drawdown of groundwater 1.0 1.0	Density of water (kg/m ³) 1000 1000	Consolidation settlement 0.00000 0.00026	0.00
Weight level 1	Vertical Stress (P) kg/cm ² 0.14 0.14 0.26 0.51	(dp) kg/cm ² 0.14 0.12 0.25	bayon werr Consoli- dation (d 	Sample Sample hight(h) cm 19.000 19.057 19.045	Average hight(h) cm 19.029 19.051 19.037	Compression Strain dε % -0.2996 0.0630 0.0840	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07	Thickness of layer 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017	0.00 0.26 0.17
Weight level 1 2	Vertical Stress (P) kg/cm² 0	(dp) kg/cm ² 0.14 0.12 0.25 0.51	bayon werr Consoli- dation (d cm -0.057 0.012 0.016 0.023	N.00 Sample hight(h) Cm 19.000 19.057 19.045 19.029	Average hight(h) cm 19.029 19.051 19.037 19.018	Compression Strain dε % -0.2996 0.0630 0.0840 0.1209	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07	Thickness of layer 0.5 0.5 0.5	Drawdown of groundwater 3 1.0 5 1.0 5 1.0 5 1.0	Density of water (kg/m ³) 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012	0.00 0.26 0.17 0.12
Weight level 1 2 2 2	Vertical Stress (P) kg/cm² 0 0.14 2 0.26 3 0.51 4	(dp) kg/cm ² 0.14 0.12 0.25 0.51	bayon werr Consoli- dation (d cm -0.057 0.012 0.016 0.023 0.03	Sample Sample hight(h) cm 19.000 19.057 19.045 19.029 19.006	Average hight(h) cm 19.029 19.051 19.037 19.018 18.991	Compression Strain dε % -0.2996 0.0630 0.0840 0.1209 0.1580	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237 0.00158	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07 1.580E-07	Thickness of layer 0.5 0.5 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012 0.00008	0.00 0.26 0.17 0.12 0.08
Weight level 1 2 3 4 4 5	Vertical Stress (P) kg/cm² 0 0	(dp) kg/cm ² 0.14 0.12 0.25 0.51 1	bayon werr Consoli- dation (d cm -0.057 0.012 0.012 0.023 0.03	N.0.01 Sample hight(h) Cm 19.000 19.057 19.045 19.029 19.006 18.976	Average hight(h) cm 19.029 19.051 19.037 19.018 18.991 18.991	Compression Strain dε % -0.2996 0.0630 0.0840 0.1209 0.1580 0.1582	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237 0.00158	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07 1.580E-07 7.833E-08	Thickness of layer 0.5 0.5 0.5 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012 0.00008 0.00004	0.00 0.26 0.17 0.12 0.08 0.04
Weight level 1 2 3 4 4 5	Vertical Stress (P) kg/cm² 0 0.14 2 0.26 3 0.51 4 1.02 5 2.02 6	(dp) kg/cm ² 0.14 0.12 0.25 0.51 1 2.02	bayon werr Consoli- dation (d cm -0.057 0.012 0.016 0.023 0.03 0.03	No.01 Sample hight(h) cm 19.000 19.057 19.045 19.029 19.006 18.976 18.946	Average hight(h) cm 19.029 19.051 19.037 19.018 18.991 18.961	Compression Strain d∉ % -0.2996 0.0630 0.0840 0.1209 0.1580 0.1582	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237 0.00158 0.00078	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07 1.580E-07 7.833E-08	Thickness of layer 0.5 0.5 0.5 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012 0.00008 0.00004	0.00 0.26 0.17 0.12 0.08 0.04
Weight level 1 2 3 4 4 6 6	Vertical Stress (P) kg/cm² 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(dp) kg/cm ² 0.14 0.12 0.25 0.51 1 2.02 -3.02	bayon werr Consoli- dation (d cm -0.057 0.012 0.016 0.023 0.03 0.03 2. 0.03 2. 0.03	N.00 Sample hight(h) Cm 19.000 19.057 19.045 19.029 19.006 18.976 18.946 18.955	Average hight(h) cm 19.029 19.051 19.037 19.018 18.991 18.961 18.951	<u>Compression</u> Strain <u>dε %</u> -0.2996 0.0630 0.0840 0.1209 0.1580 0.1582	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237 0.00158 0.00078	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07 1.580E-07 7.833E-08	Thickness of layer 0.5 0.5 0.5 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012 0.00008 0.00004	0.00 0.26 0.17 0.12 0.08 0.04
Weight level 1 2 3 4 4 5 6 6	Vertical Stress (P) kg/cm² 0 0.14 0.26 3 0.51 1.02 5 2.02 5 4.04 7 1.02 5 2.02	(dp) kg/cm ² 0.14 0.12 0.25 0.51 1 2.02 -3.02 -0.76	bayon werr Consoli- dation (d cm -0.057 0.012 0.016 0.023 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Sample Sample hight(h) Cm 19.000 19.057 19.045 19.029 19.006 18.976 18.946 18.955	Average hight(h) cm 19.029 19.051 19.037 19.018 18.991 18.961 18.951 18.963	Compression Strain d∉ % -0.2996 0.0630 0.0840 0.1209 0.1580 0.1582	Coefficiet compressibi cm²/kg -0.02140 0.00525 0.00336 0.00237 0.00158 0.00078	of volume ility(mv) m ² /kg 5.249E-07 3.362E-07 2.371E-07 1.580E-07 7.833E-08	Thickness of layer 0.5 0.5 0.5 0.5 0.5	Drawdown of groundwater 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Density of water (kg/m ³) 1000 1000 1000 1000 1000	Consolidation settlement 0.00000 0.00026 0.00017 0.00012 0.00008 0.00004	0.00 0.26 0.17 0.12 0.08 0.04

 Table 6.3 Consolidation Test Results (1/3)

		Location:	West of An	gkor Wat(3k	Sample No.	3							
Weight	Vertical Stress (P)	(dp)	Consoli- dation (d	Sample hight(h)	Average hight(h)	Compression Strain	Coefficiet compressib	of volume ility(mv)	Thickness of layer	Drawdown of groundwater	Density of water	Consolidation settlement	n
level	kg/cať	kg/cm"	C	C.	C	<u>dε %</u>	cm²/kg	<u>a²/kg</u>	<u> </u>	<u> </u>	(kg/m ²)	a	# #
1	u 0.14) 0.14	-0.083	19.000	19.042	-0.4359	-0.03114		0.5	5 1.0	1000	0.00000	0.00
2	2 0.26	0.12	0.056	19.027	19.055	0.2939	0.02449	2.4498-06	0.5	i 1.0	1000	0.00122	1.22
3	3 0.51	0.25	0.054	18.973	19.000	0.2842	0.01137	1.137E-06	0.5	i 1.0	1000	0.00057	0.57
4	l 1.02	0.51	0.096	18.877	18.925	0.5073	0.00995	9.946E-07	0.5	1.0	1000	0.00050	0.50
5	5 2.02	1.00	0.174	18 703	18.790	0.9260	0.00926	9.260E-07	0.5	1.0	1000	0.00046	0.46
6	5 4.04	2.02	0.422	18,281	18.492	2.2821	0.01130	1.130E-06	0.5	1.0	1000	0.00056	0.56
7	1.02	-3.02	0.01	18.271	18.276								
8	0.26	-0.76	-0.029	18.300	18.970								
		Location:	West of Ang	<u>skor Wat(3k</u>	Sample No.	4							
Weight	Stress (P)	(dn)	dation (d)	Sample bight(h)	Average	Compression	Coefficiet	of volume	Thickness	Drawdown of	Density	Consolidation	1
level	kg/cm ²	kg/cm ²	CE CE	Cl	CL	de %	cm ² /kg	n²/ke	of fayer	groundwater	(ke/m^3)	settiement	
0	0	0.14	-0.05	19.000	19.025	-0.2628	-0.01877		1.0	- 1.0	1000	0.00000	0.00
1	U.14 0.76	0.12	0.051	19.050	19.025	0.2681	0.02234	2.234E-06	1.0	1.0	1000	0.00223	2.23
2	0.20	0.25	0.039	18 960	18.980	0.2055	0.00822	8.219 E -07	1.0	1.0	1000	0.00082	0.82
4	1.02	0.51	0.071	18,889	18.925	0.3752	0.00736	7.356E-07	1.0	1.0	1000	0.00074	0.74
5	2.02	1.00	0.109	18.780	18.835	0.5787	0.00579	5.787E-07	1.0	1.0	1000	0.00058	0.58
6	4.04	2.02	0.228	18.552	18.666	1.2215	0.00605	6.047E-07	1.0	1.0	1000	0.00060	0.60
7	1.02	-3.02	-0.318	18 870	18.711								
א	0.26	-0.76	0.182	18.688	18.779								

 Table 6.3 Consolidation Test Results (2/3)

		Location:	WT4		Sample No.	5						0	
	Vertical		Consoli-	Sample	Average	Compression	Coefficiet	of volume litv(mv)	Thickness of laver	Drawdown OI groundwater	Density of water	settlement	l
Weight	Stress (P)) (dp)	dation (CL)	n ignu(n)	Cm	de %	cm ² /kg	n ² /kg		El omigina con	(kg/m^1)	L	RH.
	Kg/Cm			19.000		<u>uc 70</u>			·······		1000		0.00
		0.14	-0.065	10 065	19.033	-0.3415	-0.02439		1.0	1.0	1000	0.00000	0.00
1	0.14	• 0.12	0.065	19,000	19.033	0.3415	0.02846	2.846E-06	1.0	1.0	1000	0.00285	2.85
2	2. 0.2	6 0.25	5 0 08	19.000	18,960	0,4219	0.01688	1.688E-06	1.0	1.0	1000	0.00169	1.69
3	3 0.5	1		18.920	10.000	A 5779	0.01177	1 1228-06	1.0	1 T T	1000	0.00113	1 13
4	L 10'	0.51 2	0.109	18.811	18.000	0.9778	0.01133	1,1336-00	1.0			0.00110	
		1.00	0.129	10 697	18.747	0,6881	0.00688	6.881E-07	1.0	1.0	1000	0.0006a	0.69
t) 2.0	2 2.02	2. 0.175	10.002	18.595	0.9411	0.00466	4.659E-07	1.0) 1.0) 1000	0.00047	0.47
ť	6 4.0	4 _3 05	-0.017	18.507	18 516								
7	7 1.0	2	. 0.011	18.524									
s	2 0 2	-0.76 6	5 -0.04	18,564	18.544							··	
		<u> </u>	1.177 A		Comple No.	. 6							
	Vertical	Location:	Consoli-	Sample	Average	Compression	Coefficiet	of volume	Thickness	Drawdown of	Density	Consolidation	3
Weight	Stress (P) (dp)	dation (d	hight(h)	hight(h)	Strain	compressib	ility(∎v)	of layer	groundwater	of water	settlement	
level	kg/cm ²	kg/cm ²	C n	CI	CZ	de %	cn'/kg	∎'/kg	<u> </u>	h	(kg/m [*])	<u> </u>	
)	0 — 0. 14	4 -0.026	19.000	19.013	-0.1367	-0.00977		0.1	5 1.0) 1000)	
	1 0.1	4	 α Δ.021	19.026	10.016	0 1104	L 0 00920	9.203R-07	7 0.1	5 1.0) 1000	0.00046	0.46
	2 0.2	6	6 0.061	19.005	10.010			0.200- 0			- - 100/	1 0.000 <i>4</i> 9	0 42
	9 0 5	0.2	5 0.04	18 965	18.985	0.2107	0.00843	8.4288-0	(U.)	0 1.0	J 1000	0.00042	0.46
	5 0.0	0.5	1 0.045)	18,943	0.2376	6 0.00466	4.658E-0'	r 0.	5 1.0	0 1000	0.00023	0.23
4	4 1.0	2	0.044	18.920 L	18.898	0.2328	8 0.00233	2.328E-0	7 0.	5 1.(0 100	0.00012	0.12
:	5 2.0	2	,	, 18.876	10 959	0.940	0 00123	1 2348-01	7 0	5 1.(0 100	0.00006	0.06
	6 4.0	2.0	2 0.047	18.829	10,000	0.249.	5 0.00125	1.2076-0		v 1.			
		-3.0	20) 19.000	18.829)							
	γ I.C	-0.7	6 -0.02	10.023	18.839)							
	9 A 2	6		18.849	}								

 Table 6.3 Consolidation Test Results (3/3)