

RELINGING WALL L. 50 to 701 RELINFORCED EARTH HAS to 2 STANDARD BRIDGE -2 L=110m 400 RC SOLID SQURE PILE 450+450 H=35 L=20M 35000 1182.5 : SYMMETORY 625 PRIMARY AERTERIAL STREET 5150 SIDE ELEVATION S=1:500 TYPICAL CROSS SECTION OF SUPER STRUCTUER S=1:200 ASPHALT CONCRETE T=75MM 2250 2250 2250 2250 RC SOLID SOUAER PILE 450+450 N=25/per pier L=200 BRIDE LENGTH L=110800 13725 27250 12500 40000 2250 1182.5 500 F PRECAST PRESTRESSED CONCRETE GIRDER EXISTING GROUND LEVEL METLO MANILA URBAN TRASPORTATION INTEGRATIONSTUDY 35000 RC SOLID SOUAER PILE -450+450 N=45 L=20M RETAING WALL L=50to 70m 400

METRO MANILA URBAN TRANSPORTATION INTEGRATION STUDY TECHNICAL REPORT NO. 11 COST ESTIMATION AND DESIGN CRITERIA

3. STRUCTURAL DESIGN CODES AND STANDARD

3.1 General

Structural Design shall be in accordance with the following documents.

- Standard Specifications for Highway Bridges. 16th Edition 1996 AASHTO
- Design Guideline Criteria and Standard 1983 DPWH
- An Advisory for Seismic Design of Bridges Department Order No. 75 1992 DPWH

For any design aspects not specifically covered by the code and standards reference shall be made to either of the followings

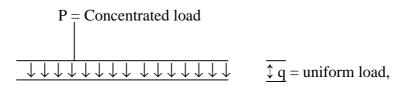
– Specifications for Road Bridges, Volume I to V 1996, Japan Road Association.

Design of reinforced concrete members shall be based on STRENGTH DESIGN METHOD which has been used for most similar project in the Philippines. Design of pre-stressed concrete members shall be based on STRENGTH DESIGN METHOD (Load Factor Design) and on behavior at service conditions at all load stages such as at transfer of pre-stressing.

3.2 Loading Specifications

3.2.1 Dead Loads

A) Unit Weight of Materials


The Unit weight of materials specified in clause 3.3.6 of AASHTO 1996 may be used for the calculation of dead load

Material	Specified Unit Weight (kN/M ³)
Steel of cast steel	78.5
Cast Iron	72.2
Aluminum Alloy	28.1
Timber hard wood	8.0
Concrete, plain or reinforced	24.0
Compacted sand earth, gravel	19.3
Loose sand	16.0
Bituminous wearing surface	22.0
Concrete (Asphalt)	22.0
Stone Masonry	23.5

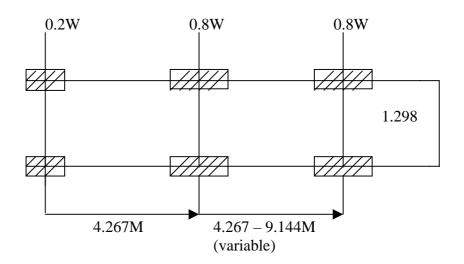
3.2.2 Standard Truck and Lane Loads

The highway live loading shall be HS-20-44

- 1) Lane Loading
 - (a) Uniform Load per liner meter of load

q = 9.34 KN/lane = 3.06 kN/m2

Lane width = 3.048 m


(b) Concentrated load (P)

P = 80.06 kN for moment P = 115.65 kN for shear

The concentrated load and uniform load shall be placed us uniformally distributed over 10 - foot width of the lane. In case of continuos spans. Two concentrated loads shall be placed on the spans to produce maximum stress.

2) Truck Loading

Truck loading is a single heavy vehicle with three axles total weight w = 352.8 kN as shown below. Which shall be applied in any position in a design traffic lane.

Percent (%)

3) Reduction of Load Intensity

The following percentage of reduction for line load intensity shall be applied taken in to account the improbability of coincident maximum loading.

One of two lanes	100
Three lanes	90
Four lanes or more	75

3.2.3 Impact Load

Impact fraction \longrightarrow I = $\frac{15.24}{L+38} < 0.3$

In which L: Span Length in meter.

3.2.4 Longitudinal Forces

The effect of a longitudinal force of 5 percent of line load (HS-20-44) without impact in all lanes. Longitudinal forces apply 1.8 m above the deck slab

3.2.5 Centrifugal Forces

One standard truck on each design traffic lane shall be considered for calculation of centrifugal force

$$C = \frac{0.79 \text{ S}^2}{\text{R}}$$

Where:

C: The centrifugal force in percent of line load without impact.

S: The design speed in Km. Per hour.

R: The radius of curve in meter.

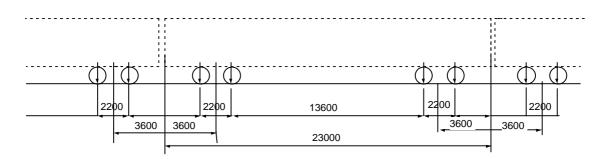
3.2.6 Wind Load

For the superstructure design, following intensities of wind loads shall be applied horizontally or right angles to the longitudinal axis of girders and beams.

For truss and arches	2.394 Pa
For girder and beams	1.596 Pa

3.2.7 Collision Load

The pier column or walls which are not protected by guardrail or other barrier devices and are place closer than 9 m from the edge of through traffic lanes shall be designed to resist and equivalent static load of 500 kn applied at an angle of 10 degree from the direction of the road centerline passing under the bridge. The load shall be applied 1.2 m above road surface.


The pier columns located within 5.5 m of a rail truck centerline shall be to resist the following minimum.

1,000 kN parallel to rails, and 500 kN normal to rails

Both load shall be applied horizontally 2 m above rail

3.2.8 Train Load

The railway live loading for MMUTIS is defined as follows:

3.2.9 Seismic Load

Seismic Design shall be in accordance with AASHTO Standard Specification Division 1-A. 1992 and an Advisory for Seismic Design of Bridges DPWH

1) Acceleration Coefficient (A)

The acceleration coefficient at the bridge site is determined A=0.4g from Seismic Zone Map of the Philippines.

2) Importance Classification (IC)

IC = I for essentials bridges

3) Seismic Performance Category (SPC)

SPC = D for A=0.4q > 0.29q, IC = I

R

4) Site Coefficient (S)

The site coefficient (S) shall be determined from soil profile type based on the soil investigation at bridge site. In general, the depths of alluvium which consist of stiff soil in Metro Manila Area (except coastal area) are considered as less than 60 m from previous soil investigation for similar projects. Therefore Site coefficient (S) are as follows.

Hill Side	(S) = 1.0
Coastal area	(S) = 1.5

5) Response Modification Factor (R)

For Substructure Design

Wall Type Pier Reinforced Concrete Pier bent (Rigid frame)	2
a) Vertical pile only	3
b) One or more better pile	2
Single Column (T or hammer head piers)	3
Steel rigid frame pier	
a) Vertical pile only	5
b) One or more batter pile	3
Multiple Column Bent	5

6) Elastic Seismic Response Coefficient (Cs)

$$Cs = \frac{1.2 \text{ A.S}}{\text{T}^{2/3}}$$

Where:

A = the Acceleration Coefficient S = the site coefficient T = the period of vibration of bridge (sec)

$$T=2 \qquad \sqrt{\frac{W}{g.K}}$$

- W: Total nominal weight of superstructure including superimposed load plus half weight of pies (adjusted by judgement as appropriate) kN
- K: Combined stiffness of bridge piers expressed as the horizontal force required to produces a unit deflection at the pier top (kN/m)
- Q: Acceleration due to gravity (m/sec2)
- 7) Equivalent static earthquake loading (Pe) (kN/m)

Pe = Cs.w for regular bridges

8) Combination of orthogonal seismic forces

A combination seismic force is used to account for the directional uncertainly of earthquake motions and the simultaneous occurrences of earthquake force in two perpendicular horizontal direction.

Load Case I	1.0 EQ long + 0.3	EQ trans
Load Case II	0.3 EQ long + 1.0	EQ trans

9) Modified seismic forces (EQM)

Design forces for structural member and connection shall be determined by the elastic seismic forces from Load case I/and Load case II by the appropriate Response Modification Factors (R).

10) Thermal Forces

The range of temperature shall be as follow

Metal structure from $17.8 \,{}^{0}$ C to $48.9 \,{}^{0}$ C

Concrete structure

16.7 [°]C Temperature Rise 22.2 [°]C Temperature fall

3.3 Material

All material to be used in the project shall conform to DPWH standard Specification (1988) and AASHTO Code 1996.

Concrete:

The classes of concrete and specified compressive strength of Concrete (28 days) are as follows:

Class	Specified Compressive Strength (28 days)	Structure
Class A	28 Mpa (4000 psi)	Concrete deck slab, Diaphragm Column, Cast in place bored pile Pier cap. Retaining wall Pile cap. Concrete Parapet
Class B	21 Mpa (3000 psi)	Gravity type of retaining wall Median barrier, concrete curb
Class P	35 Mpa (5000 psi)	Pre-stressed concrete super structures (segmental box I – shape Girders)

(1) Reinforced Concrete

Reinforcing steel shall conform to ASTM Specification A615 "Deformed and Plain Billet – Steel Bars for concrete Reinforcement Grade 60 bars shall be used for diameter 20 mm and greater for smaller diameter, Grade 40 bars are used.

Minimum yield strengths of Grade 60 and Grade 40 are fy = 413.70 Mpa and fy = 275.8 Mpa respectively.

- (2) Pre-Stressing Steel
 - 1) Strand

Uncoated seven-wire strand shall conform to ASTM Specification A 416 and supplement S1 for Law Relaxation strand. Following type of pre-stressing tendons Grade 270 are used.

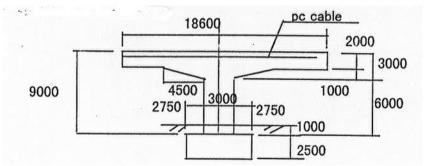
Notation	Nominal Diameter (mm)	Yield Strength (Mpa)	Tensile Strength (mpa)
PC 7-wire strand SWPR 7BN	T 12.7	1569	1863
PC7 Wire Strand (SWPR 7 BN)	T 15.2	1569	1863

(3) Structural Steel

Structural steel for bridges shall conform to the requirement of following Specification

- a) High Strength Low Alloy structural steel (ASTMA 709 Grade 50 or Grade 50 W
- b) High –Strength Low Alloy, Quenched and Tempered Structural Steel (ASTMA 709) Grade 70 W

3.4 Quantity Calculation


3.4.1 ALT-1 PC Box Girder + Single Concrete Pier (flare type pier)

1. Super Structure PC Box Girder Concrete (box girder) 13.50 0.45 0.5 guard rail 0.2 2.0 1.1 0.4 1.6 0.40 2.0 0.2 1.0 1.5 1.0 1.75 1.5 1.75 5.0

		B (m)	H (m)	$A(cm^2)$			
Top Sl	ab	13.50	0.20	2.70			
Haunc	h-1	1.75	0.25	0.44			
Huanc	h-2	2.00	0.25	1.50			
Botton	n Slab	5.00	0.20	1.00			
Web		0.40	1.35	1.08			
Area (1	\mathbf{n}^2)			5.72			
Volum	e				228.70		
Diaphr	agm	1.00	1.35	5.60	15.12		
Debate	er	0.50	1.50	5.00	7.50		
					251.32		
Other	10% above				25.13		
Total V	/olume				$276.45 (\text{m}^3)$		
Parape	t	0.20	1.00	40.00	8.00		
Curb		1.00	0.15	40.00	6.00		
Total v	olume per 1.0) k			$14,523 (m^3)$		
Pre-Stress	sing Steel						
Longit	-	12T12.7	43 kg/1	n^3		594,372 kg	
Transv		4T15.2	17 kg/1			234,984 kg	
	Total		0			829,356 kg	
Re-Bar		100/kg				1,452,260 kg	
Asphalt P	avement T=7	U	0.075	12.5	1,000	4,312.5 ton	
Guard Ra					,	1,000m	
						,	
Sub Struc	ture						
A Flared	l Type Colum	n					
	i jpe colum						
Concrete	D	BI	BT	Nos	5.		
	Pile Cap 2	6	6	50	3,600 n	n ³	
	Ĥ	Tu	Ti	Bt			
	Column 8	5	2.5	2.5	2,981 n	n ³	
Re-Bar	pile Cap 16	0 kg/m^3			576,000	λkα	
KC-Dai	Column 20				578,125	U	
	Column 20	0 Kg/ III			570,12.	, ng	
Structure Excavation					$5,400 \text{ m}^3$		
Suuciuit		gth (m) nos.	/nile can	Nos		11	
CCP Pile		20 5	[,] pric cap	50	s. 5,000 n	n	
	u-120 CIII	20 5	5		5,000 II	5,000 III	

B. T-Shape Pier for Two Way

2.

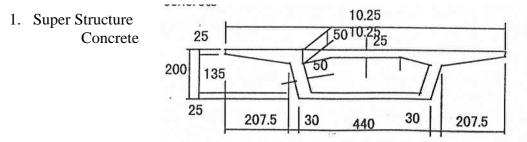
Concrete		В	Н	L	Nos.	Volume
	Beam 1	18.6	2.0	3	26	2,902
	Beam 2	4.5	1.0	3	26	351
	Column	3.0	7.0	3.0	26	1,638
	Total					4,891 m ³
	Pile Cap	8.5	8.5	2.5	26	4,696
Structural Ex	<i>cavation</i>	8.7	8.7	3.8	26	$7,478 \text{ m}^3$
Reinforceme	ent					
	Beam	100 kg/	′ m³			325,260 kg
	Column	200 kg/	′ m³			327,600 kg
	Pile Cap	160 kg/	′ m³			751,400 kg
	Total					1,404,260 kg
Pre-Stressing	g Cable	12T12.7	40 kg/m^3			195,624 kg
CCP Pile d=	150 n=5		-	20	25	5,200 m

3.4.2 ALT-2 PC Box Girder + Steel Rigid Portal Frame Pier

1. Super Structure

Box Girder (same as Alt-1)

2. Sub Structure (steel rigid frame)


Column Beam Inner rib Anchor Fr	B1(m) 2.50 2.50 20% of At ame Total Wei		Te(m) 0.040 0.032	Tb(m) 0.040 0.013	H9m) 21.65 29.50	weigh (ton) 132.934 51.390 36.865 20.000 241.189
Pile Cap	3*6*6					
Concrete		D 3	Bt 6	Bl	Nos. 50	Volume $5,400(m^3)$
Concrete		3	0	6	30	3,400(m)
CCP Pile o	d=1.5	n=4	l=2			
		Length	nos.	Nos.		
		20	5	50		5,000 (m)
Reinforcement 160 kg/						864,000 (kg)
Structure I	$7,740 \text{ (m}^3)$					

3.4.3 Alt-3 EDSA Interchange Flyover (3-span steel box girder 40+50+40)

1. Super Structure

Steel Wei	Steel Weight per sq.m=300 kg/sq.m)			B(m) 13.5	L(m 1000		weig 8100	ght (ton))
Deck Slab	t=23cm			13.5	1000)		
Haunch (4	100+900)*1/2	*220					6210) cu.m.
	0.4	0.23		5			0.92	
	0.22	0.25		10			0.55	
	1.5	0.22		2			0.66	
per me	eter						2.13	cu.m
parapet wall and curb h=75 mm								
	0.2	1.00		0.15	0.5		1100) cu.m
Asphalt Pa	avement t=75	mm w=2.3 l	cg/m^3					
Ĩ	0.075	12.5	C	1000			4312	2.5
2. Sub St	tructure							
Steel Sing	le Column h	=21.65m						
Column Beam Inner Rib	Total weight	B2(m) 2.50 2.50 re t per one pier t per km mete	Te(r 0.04 0.02	0	Tb(m) 0.040 0.013	H(m 19.6 10.5	5	weight (ton) 120.654 12.364 26.604 10.000 169.621
Pile Cap	3*6*6 n=46	i						
		Bl	Bt		D	Nos		Volume
Concrete		3	6		6	46		4,968 cu.m.
CCP Pile	d=1.5 n=4	l=2	L 20		Nos/pier 8	Nos/ 23	′km	3,680 cu.m
Reinforce	ment 160kg/c	u.m						794,880 kg
Structure	Excavation	Depth 3	Bi 7		Bt 7	Nos 33		6,953 cu.m

3.4.4 Railway Viaduct Simply Support Concrete Box Girder (span=30m)

Top Slab Haunch-1 Huanch-2 Bottom Sl Web Area (m ²) Volume Diaphragr Debater Other Total Volu	n ume/30m	10.25 2.0075 1.00 4.40 0.5 1.0 05	0.25 0.25 0.20 1.50	2.56 0.52 0.25 0.88 1.50 5.71 3.3 5	171.34 8.91 1.25 3.29 16.3.00 (m ³))
Total volu Pre-Stressing	me per/km				5,433 (m ³)	
Longitudin	nal		70 kg 13.50 l			380,333 kg 73,350 kg
Re-Bar Super Structu	ire	100 kg/c	eu.m			543,333 kg
Parapet h=10	00 cm	B(m) 0.2	H9m) 1.00	L(m) 2000.00	Volume 400 cu.m	
Sub Structure	e (standard he	eight h=17	7.0m)			
Concrete	D1(m)	$\mathbf{D}(\mathbf{m})$	$\mathbf{D}(\mathbf{t}_{0},\mathbf{r})$	U1 ()		Volume
Column	Bl(m) 2.00	Bt(m) 2.00	B(top) 4.40	H1(m) 4.00	H2(m) 13	Volume 2,825 cu.m
Pile Cap	2.0*5.5*5.5	Bl 2	Bt 5.5	D 5.5	Nos 33	Volume 1,997 cu.m
CCP Pile d=	1.20 n=4 l=	=20 20	4	2	33	5,280 m
Reinforceme	nt Column Pile Cap Total	200 kg/c 160 kg/c				564.960 319.440 884.400
Structure Exc	cavation	depth 3	Bl 5.5	Bt 5.5		4,292 cu.m

3. Sub Structure (flare shape pier for EDSA interchange)

2.

Concrete						
Column	Bl(m) 2500	· · ·		H1(m) 4.00	H2(m) 13	Volume 4,067 cu.m
Column	2300	2.30	4.40	4.00	15	4,007 cu.m

		Pile Cap	2.0*7.0*7.0	Bl 2	Bt 7	D 7	Nos 33	Volume 3,234 cu.m
		CCP Pile d=	1.20 n=5 l=	=20 20	5		33	3,300 m
		Reinforceme	nt	20	5		55	5,500 m
			Column Pile Cap Total	200 kg/c 160 kg/c				813,450 517,440 1,330,890
		Structure Exc	cavation	depth 3	B1 7	Bt 7	Nos 33	6,953 cu.m
3.4.5	Sta	andard Span	Bridge L=30	m				
	1.	Super Structu	ıre					
		Concrete	Class A Deck Slab Diaphragm Diaphragm Total	T 0.22 1.5 1.7	B 13.725 0.2 1.0	L 31 2.05 1.55	Nos 2 15 10	Volume 187.2 902 26.4 222.8
			Parapet Curb Total	0.2 0.15	1.0 0.5	31 31	2 2	12.4 4.7 17.1
		Reinforceme	-					44,557
		Pavement 2.3	3t/m	0.075	12.5	30	2	129 ton
	2.	Sub Structure	e (2 abutment	.)				
		Concrete		U	H 5 2 1 1 7	L 27.45 27.45 27.45 27.45 0.5	Nos 2 2 2 2 4	Volume 329 55 384 16 60 845 cu.m 84,527 kg
		PC Pile 45c Structural Ex			5.4)*7*27.4	45*2		1,600 m 2056

3.4.6 Standard Span Bridge L=35+40+35=110m

1. Super Structure

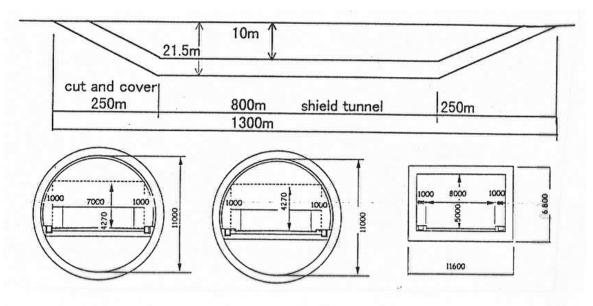
	Concrete	Class A Deck Slab Diaphragm Diaphragm Total		B 13.725 0.2 1.0	L 110.8 2.05 1.55	Nos 2 45 30	Volume 669.1 27.7 79.1 775.8
		Parapet Curb Total	0.2 0.15	1.0 0.5	111 111	2 2	44.4 16.7 61.1
	Reinforceme Pavement 2.3	-	0.075	12.5	30	2	155,169 129 ton
2.	Sub Structure	e (abutment)					
			В	Н	L	Nos	Volume
	Concrete	Stem Parapet Footing Seat Wing Wall Total	1.2 0.5 7 0.3 4.3	5 2 1 1 7	27.45 27.45 27.45 27.45 0.5	2 2 2 2 4	329 55 384 16 60 845 cu.m
	Reinforceme PC Pile 45c	nt Excavatior					84,527 kg 1,600 m
	Structural Ex			5.4)*7*27.4	45*2		2056
	PIERS						
	Concrete	Beam Column Pile Cap	B 13 2 7.5	H 2 7 2	L 2 3 7.5	Nos 4 4 4	Volume 208 168 450
	Reinforceme	Beam Column Pile Cap Total	200 kg/c 200 kg/c 160 kg/c	cu.m cu.m			41,600 kg 33,600 kg 72,000 kg 147,200 kg
	Structure Exc PC Square Pi		7.5 25*20*4	7.5 I	3.2	4	720 cu.m 2,000

Total	Super ST + a	butment	+ Pier	•		
Concrete A-1 Concrete A-2 Concrete A-3	Deck Slab Pile Cap Parapet	Supe 775.8		Abutment	Pier 450	Total 775.8 450 61
Concrete P-2	Column			845	376	1221
Reinforcemen Structure Exca Structure Exca Structure	avation	155,1 r	69	84,527	147,200	386,896 720 2,056
Structure						2,030
PC Square Pil	e 450:450			1,600	2,000	3,600
	Beam Column	B 13 2 7.5	H 2 7 2	L 2 3 7.5	Nos 4 4 4	Volume 208 168 450
Reinforcemen	0					
	Column	200 kg/c 200 kg/c 160 kg/c	cu.m			41,600 kg 33,600 kg 72,000 kg 147,200 kg
Structure Exca PC Square Pil		7.5 25*20*4	7.5 I	3.2	4	720 cu.m
Total	Super ST + a	butment	+ Pier	•		
		Supe	r ST	Abutment	Pier	Total

Concrete A-1	Deck Slab	Super ST 72,000.0	Abutment	Pier	Total 72,000.0
Concrete A-2	1			450	450
Concrete A-3	Parapet	720	0.45	074	720
Concrete P-2	Column		845	376	1221
Reinforcement		2,000	0	147,200	149,200
Structure Exca Structure Exca					720
Structure					
PC Square Pile	e 450:450		0	2,000	2,000

Pay Item	Unit	B(m)	L(m)	Thickness	Quantities
Cleaning & Grubbing	sq.m	40	1000		40000
Common Excavation	cu.m	40	1000	1.275	51000
Borrow material	cu.m	40	1000	1.275	51000
Sub Grade Preparation	cu.m	40	1000		40000
Concrete Pavement t=25	cu.m	25	1000	0.25	6250
Aggregate Base Course	cu.m	34	1000	0.20	6800
Aggregate Sub Base Course t=30	cu.m	34	1000	0.30	10200
RCRC 1.0m dia.	each		2000		
Catch Basin 1.2m	each				40
Lighting Pole	each				50
Vehicle Guard Rail	l.m				2000
Concrete curb and Gutter	l.m				4000
Concrete Block	sq.m	4	1000		4000
Concrete Curb (for median)	l.m				2000

3.4.7 At Grade Section for Primary Arterial Expressway


1. Approximate Cost Estimation of Air Port Access Tunnel

Civil Works Secondary Works Sub-Total	Dia. 12.0 20% above	Length 800	Volume 90,432	Unit Cost 450	Cost 40,694,400 8,138,880 48,833,280
Cut & Cover 5.0x11n	n Mean Depth	Length	Volume	Unit Cost US\$	Cost US\$
Civil Works Secondary Works Sub-Total	10.75 20% abo	500 ve	64500	320	20,640,000 4,128,000 24,768,000

Total Cost

Double Cell

147,202,560 56,616,369

2. Direct Construction Cost Comparison of R-7 Expressway

Alternative-1

Non-Standard Structure (Combined Structure of Concrete and Steel)

Section	Location	Length	Type of ^{1/} Structure	Unit Cost (mil. P/km)	Cost (mil P)	Remarks
Sec-1	Skyway-EDSA	2.87	5 and 6	2246.6	6447.7	Portal steel pier
Sec-2	EDSA Intersection	0.50	7	3152.8	1576.4	T-shape single pier w/ steel box girder
Sec-3	EDSA Intersection Quezon Circle	2.4	5 and 6	2246.6	5391.8	
Sec-4	After Quezon Circle	21.23	8	1113.6	23641.7	Concrete flared pier w/ concrete box girder
Total		27.00			37057.7	

1/ Type of Structure: refer to table 20

Alternative-2

Standard Structure (concrete box girder with flared type concrete pier)

Section	Location	Length	Type of Structure	Unit Cost (mil. P/km)	Cost (mil P)	Remarks
All Section	Skyway to Commonwealth Ave.	27.00	8	1113.6	30067.2	

Cost Comparison

Cost Index = 1.2325