4) Shops around LRT stairs

At all LRT stations, food stall and copying service are operating under the LRT stairs. They occupy the space not only under the stair but also in the outer area depriving space for passengers and pedestrians.

5) Loading and unloading activities of jeepneys

Jeepneys are more convenient for passengers because they stop at any point along the route to pick up or unload passengers. From the viewpoint of efficient traffic operation, disorderly behaviour of jeepney is a main factor that reduces the capacity. The problem is often observed at the exit side of intersection and in front of LRT station. In the former case, vehicles queuing inside the intersection block the flow on the crossing street. In the latter case, jeepney even waits on the busy street until they get enough passengers. They pay little attention to the impact that they give on the traffic flow.

### 9.9 Proposed Improvement Plan

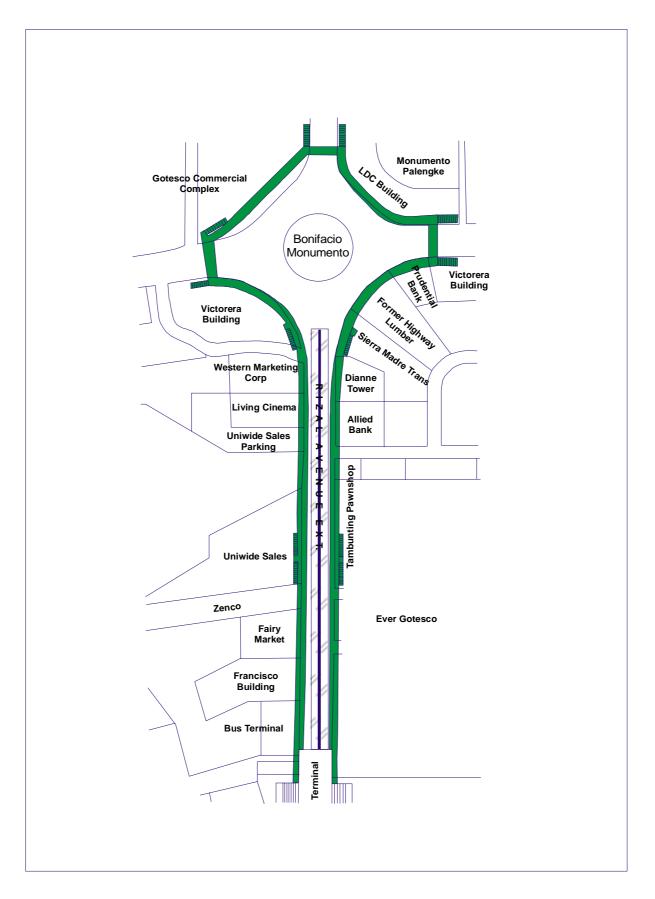
Improvement plans have been prepared for the bottleneck and problematic intersection/area along the route. In addition, rehabilitation of street lighting facility, application of pavement markings and removal of shops around LRT stairs are proposed for the entire route. Measures that can be implemented under the existing condition are selected and proposed here. Further study is necessary for some measures, as there are other projects or plans such as LRT Line 2 or EDSA LRT at these locations, which create additional demand or change in the pattern of vehicular and pedestrian movements.

As mentioned above, congestion is created by the fact that there are many pedestrians along the route, particularly near LRT stations, while sidewalk is narrow and often occupied by street vendors. Even if frontage parking is removed, the sidewalk is not wide enough to accommodate a large number of pedestrians. Pedestrian deck is proposed at three locations, Monument, EDSA and Baclaran to provide more space to pedestrians. The deck connects LRT station with the nearest intersection with an elevated pedestrian pass.

Baclaran area forms a large terminal. Service road of Roxas Blvd., Redemptorist and Quirino Avenue make up a jeepney route in clockwise direction. Jeepneys load and unload passengers while travelling slowly along Redemptorist, where jeepneys, pedestrian and on-street vendors are creating a chaotic situation filled with polluted air exhausted by smoke belching jeepneys. Buses plying Manila – Cavite route load and unload passengers at roadside in front of Baclaran Church taking up effectively two lanes from the four-road in each direction. As a result, long queue is created along Roxas Blvd. Particularly, queue in southbound direction is severe reaching beyond Gil Puyat fly-over. To alleviate the problem, a bus/jeepney terminal is proposed on a site adjoining the Roxas Blvd. across Baclaran Church. For the northbound bus traffic, exclusive bus lane is proposed. New Jeepney route diverting them from Redemptorist to a new jeepney route is also proposed.

In the area between Aurora Blvd. and C. M. Recto, a grid road network is formed. The roads in north-south direction have reasonably good pavement. But the street parallel to Rizal Avenue is under-utilized, due probably poor connectivity. Improvement of railroad crossing, opening of new railroad crossing at Blumentritt, and new median opening with a signal at C. M. Recto are proposed to encourage the use of the roads parallel to Rizal Avenue.

LRT runs along Arroceros at the back of Manila City Hall and Mehan Garden. P. Burgos is located on the other side of Hall and Garden, and facing Intramuros, the old fort constructed by Spanish when they first established a settlement in Manila. Another park is located at moat, which no longer has water. The location is situated at a focal point in Manila's road network. Large number of jeepneys also run on P. Burgos and jeepney terminals with waiting shed is provided. Considering symbolic nature of the location, provision of guide signs on a gantry and rehabilitation and beautification of pedestrian underpass are proposed at this location.


### 9.9.1 Monumento

There is a large volume of pedestrian flow between LRT station and Monumento intersection. The existing sidewalk is narrow and already crowded with pedestrians, sidewalk vendors, parked vehicles, ad signs, utility poles, etc. In fact, pedestrians and waiting passengers occupy the outmost lane. Another problem is that the space at LRT station is too small to accommodate waiting passengers. The situation is expected to worsen when the LRT capacity expansion program is completed. The capacity of train will become 1.5 times as three units form a train instead of existing two-unit system, while the area of station, particularly stairs, corridors and space in front of station, remains same.

The proposed pedestrian deck directly connects LRT station with Monumento intersection, around which several bus and jeepney terminals are located. It also provides space for waiting passengers.

The biggest obstacle of constructing the proposed pedestrian deck is the utility poles along the sidewalk. Roof and canopy extruding over sidewalk must also be demolished.

Figure 17 Proposed Pedestrian Deck from LRT Station – Monumento Intersection



### 9.9.2 Blumentritt

Blumentritt intersection is congested as roads in north-south direction is cut by PNR line except Rizal Avenue and Mapua, which is located some 120 meter on the west side, so that traffic concentrate there. The proposed measures shown in Figure 18 are intended to divert the traffic on Rizal Avenue to the two neighbouring streets.

Mapua is under-utilized in spite of the good pavement. One of the reasons is the poor condition of railroad crossing with PNR line. Vehicles are forced to slow down to a crawling speed. If the surface condition is improved, the street is expected to carry more traffic relieving heavy congestion along Rizal Avenue to some extent.

On the east side of Rizal Avenue runs Oroquieta in parallel to Rizal Avenue. It is cut by PNR and south and north sections of Oroquieta is not connected each other. If two sections are connected, jeepney route that is causing congestion at Blumentritt can be diverted to here. No PNR facility stands on the proposed opening. But barangay office located on both sides of PNR line must be removed. A section of Oroquieta south of PNR is not paved and currently used as parking. Pavement work is required there. On the north side, street market occupies along Blumentritt and Oroquieta. The market along Oroquieta must also be removed.

There is almost no space for pedestrian at the railroad crossing at Blumentritt. Sidewalk is narrow and blocked by vendors. People walk on the carriageway disturbing vehicular traffic. New pedestrian railroad crossings are proposed on both sides of the existing railroad crossing. The crossing will be several meters away from carriageway and pass the back of the columns for LRT stations.

### 9.9.3 C. M. Recto

At the intersection of Rizal Ave. - C. M. Recto, jeepney stops after crossing the intersection at all exits. Jeepneys loading and unloading passengers stack up during green signal blocking the vehicles behind. The signal there is most of the time operated manually and traffic enforcer extends green signal until intersection is cleared. The situation is worst at the north-east corner for northbound traffic along Rizal Avenue, as the road becomes narrow there. Oroquieta is a street about 60 meter on the east side parallel to Rizal Avenue. The street is currently under-utilized as only right turn from C. M. Recto is allowed.

The proposed measure opens up the median along C. M. Recto at Oroqueta and divert some of the northbound traffic to it. In order to implement the measure, a signal, which operates in close coordination with the signal at C. M. Recto – Rizal Ave. must be installed. These two signals must have the phase sequence shown in Figure 19. No manual operation of signal is allowed including the signal at C. M. Recto – Mapua after the measures is implemented. To supplement the signal operation, traffic enforce must be assigned at C. M. Recto – Oroquieta intersection to prevent blocking of intersection by westbound traffic.

The west end station of LRT Line 2 will be constructed on C. M. Recto near Rizal Avenue. There is a plan to develop Old Manila City Jail. Further study is necessary to coordinate with these projects.

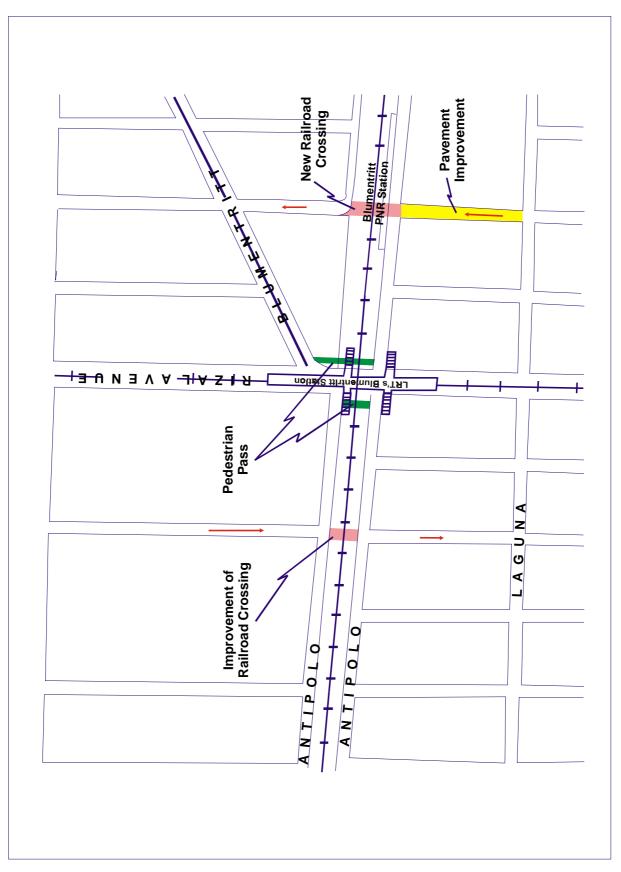



Figure 18 Proposed Improvements along PNR Corridor (Blumentritt)

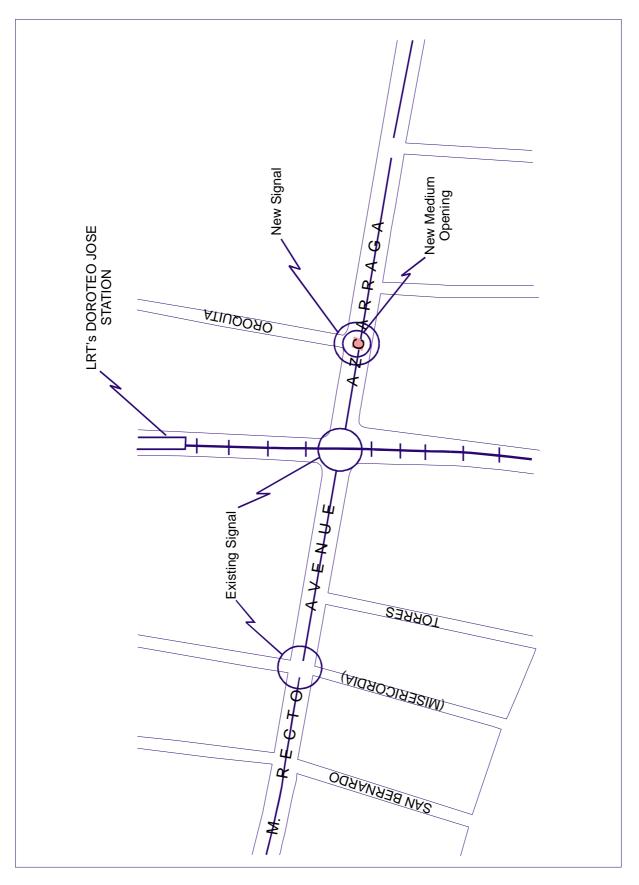



Figure 19 Proposed Improvements along Oroqueta and Azcaraga

### 9.9.4 Central Station (P. Burgos)

P. Burgos in front of Manila City Hall and Mehan Garden is located at a focal point in Metro Manila's road network. Traffic flow there will be a showcase for other locations. In order to foster orderly traffic flow, guide sign showing lane assignment and destination is proposed. A guide sign for northbound traffic is located in front of Freedom Park traversing seven lanes. It shows the lane assignment going toward Quezon Bridge, McArthur Bridge and Jones Bridge. Another guide sign for southbound traffic will be installed on the opposite side of P. Burgos at the same location, where the southbound has five lanes. It shows the lane assignment going toward Taft Avenue and Roxas Blvd.

There are three underpasses under P. Burgos. Underpasses are wide and well designed but no maintenance seems to be undertaken. Rehabilitation of these underground passes is proposed to improve the amenity for users. The work will include general cleaning, painting, fixing of lighting facility, dredging of drainage, etc.

### 9.9.5 EDSA

A large volume of pedestrian movement exists between EDSA station and Taft – EDSA intersection. Definitely the number will increase substantially when the ongoing EDSA LRT is completed and a new station will be constructed in the area. The connection of LRT Line 1 and EDSA LRT is an important issue. Movement of pedestrians and passengers must be carefully studied. Considering the role the location will play after the completion of EDSA LRT, facilities for vehicles, public transport and pedestrians that allow efficient and safe movement of these components must be designed and constructed in an integrated manner. At this moment, however, the design of EDSA LRT station is not yet finalised. Regardless of the location of EDSA LRT station, pedestrian deck is necessary to connect the intersection directly to the existing EDSA station. The proposed pedestrian deck is shown in Figure 21.

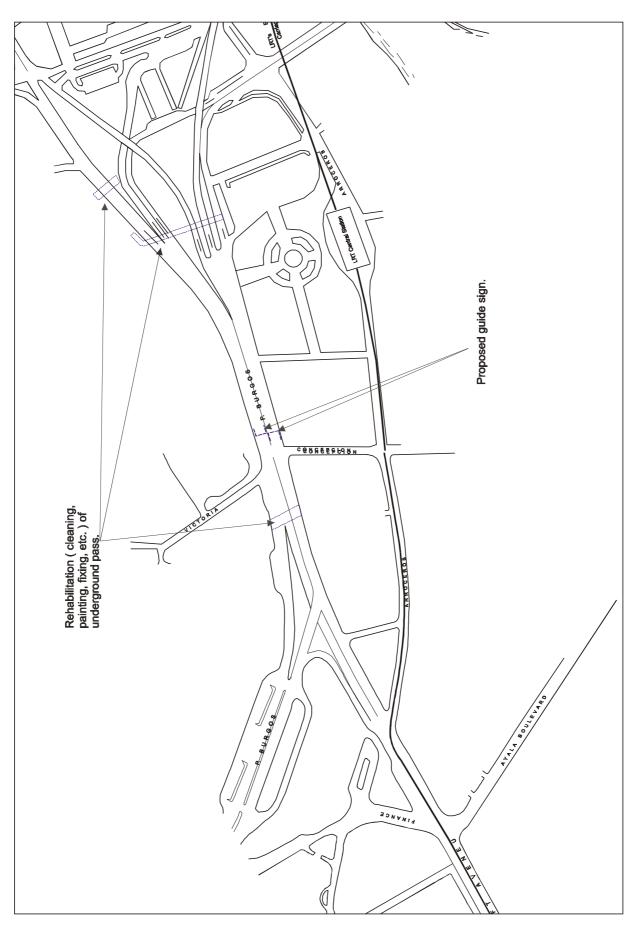
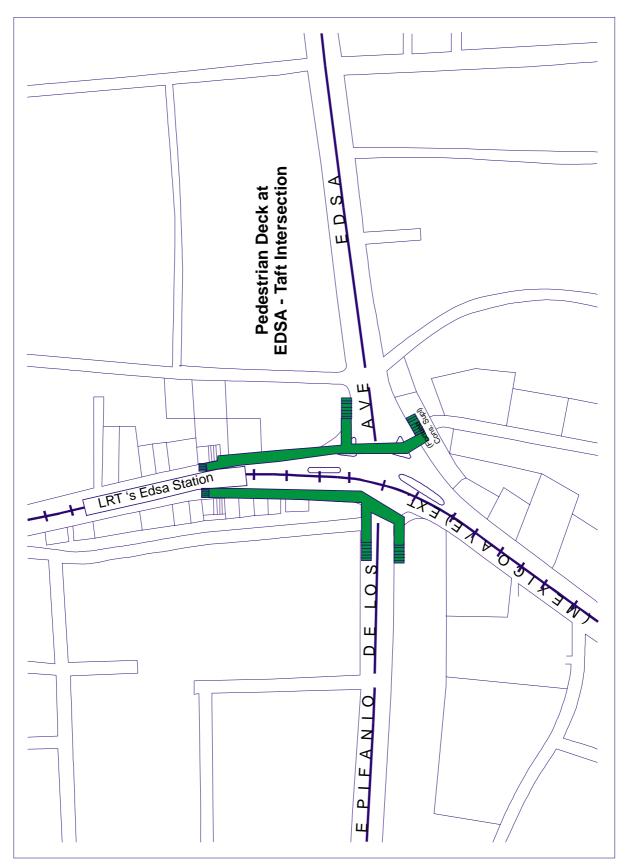




Figure 20 Proposed Improvement along P. Burgos

Figure 21 Pedestrian Decks at ESDA – Taft Intersection



### 9.9.6 Baclaran

At the south end of the LRT, a large number of pedestrian were moving around Baclaran station, in jeepney terminals at Redemptorist, and bus terminals in Roxas Blvd. Currently huge congestion is created everyday along Roxas Blvd. and to a lesser extent on Redemptorist due to the inefficient operation of traffic in the area. The proposed measures are intended to segregate vehicle flow and pedestrian movement.

The proposed measures are:

- Pedestrian deck connecting Baclaran Station and Redemptorist
- Pedestrian mall along Redemptorist
- Pedestrian overpass across Roxas Blvd.
- Bus/jeepney terminal on the reclaimed land

### Pedestrian deck

Mexico Road is not wide enough to accommodate both pedestrians and vehicles. The large volume of pedestrian made the location a good place of business and street vendors have flourished. A pedestrian deck is proposed to segregate pedestrian movement from vehicle flow. It connects Baclaran station with Redemptorist, which is proposed to become a pedestrian mall.

### Pedestrian mall

Redemptorist will be converted to a pedestrian mall and entry of vehicles will be prohibited except emergency vehicle. Facilities such as plants and trees, benches, comfort rooms, trash bins, street lighting will be provided. Street vendors will be allowed to do business at the designated locations.

### Pedestrian overpass across Roxas Blvd.

To provide safe path for pedestrians who need to cross Roxas Blvd., a pedestrian overpass will be constructed. The overpass is connected to the proposed bus/jeepney terminal so that pedestrians can access to bus and jeepney without crossing vehicle path.

### Bus jeepney terminal

A bus and jeepney terminal is proposed on the west side of Roxas Blvd. at Redemptorist and exclusive bus lane will be created on the service road of Roxas Blvd. The layout of the site and conceptual design of bus terminal is shown in Figures 22 and 23, respectively. The terminal is intended to alleviate the congestion at Roxas Blvd. – Redemptorist, which is mainly caused by loading and unloading of buses, and to accommodate jeepneys re-routed from Redemptorist.

All southbound buses that is to load or unload passengers are required to enter the terminal. No stopping of bus is allowed on Roxas Blvd. in the area. Likewise, the

northbound buses that want to stop at Redemptorist are required to take exclusive bus lane.

Jeepneys plying Redemptorist (Baclaran – Sucat, Baclaran – Alabang, Baclaran – Zapote, etc.) are required to turn left at Roxas – Redemptorist into the proposed bus jeepney terminal. They are allowed to unload at the jeepney lane in front of Baclaran Church but not allowed to load passengers. Passengers are required to board at the terminal. The existing intersection layout must be modified and the signal is rehabilitated. Minor modification of jeepney routes is required as shown in Figures 24 and 25.

### **9.9.7** Other Measures

In addition to the measures proposed to the specific locations, the following measures are highly recommended for implementation:

1) Street lighting

Lighting facilities are provided under LRT structure throughout the route. The lighting system is not operating at all sections except the section between D. Jose and Carriedo. It is not known whether the facilities are in working condition but switch is not turned on, or the facilities are aleady defective. In both cases, rehabilitation of the facilities and modification of the system from manual switching to automatic switching are recommended.

2) Pavement Marking

Pavement Marking is at poor condition for the entire stretch of the road under LRT Line 1. Reflective studs are recently installed. But stud works if used together with markings. Re-application of pavement markings, which include lane line, stop line, directional arrow, pedestrian crossing, zebra, etc., is recommended.

3) Removal of Shops around LRT Stairs

Shops selling foodstuff or offering copying service are established under the LRT stairs without exception. According to LRTA, these shops have an annual contract with a subsidiary company of LRTA and pay rent for the space. They are one of the causes of congestion at LRT station, as they take up the narrow space around LRT stairs making it narrower. It is recommended not to renew the contract when it expires and recover the space for passengers and pedestrians.

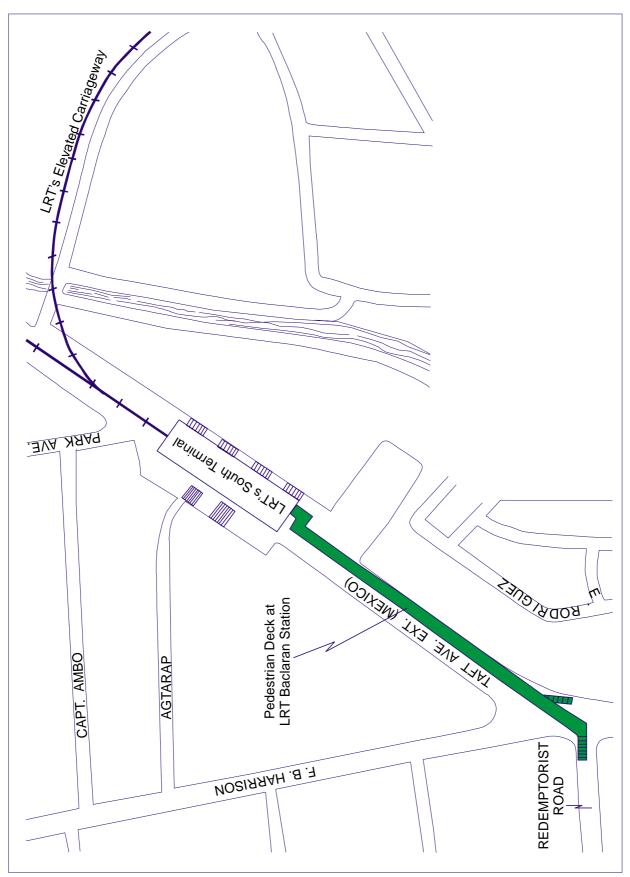



Figure 22 Proposes Pedestrian Deck Connecting Baclaran LRT Station to Redemporist

Figure 23 Proposed Bus/Jeepney Terminal

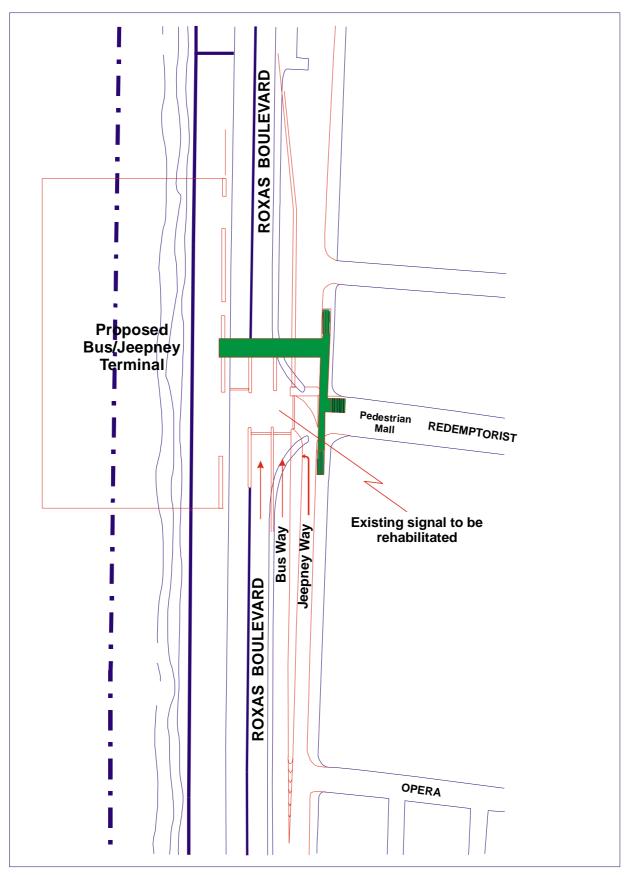



Figure 24 Existing Jeepney Routes

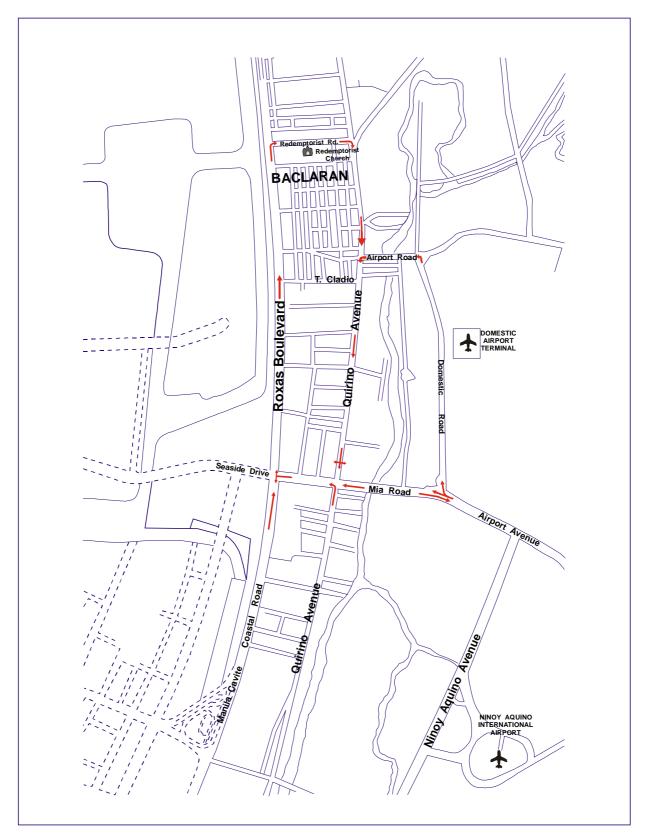
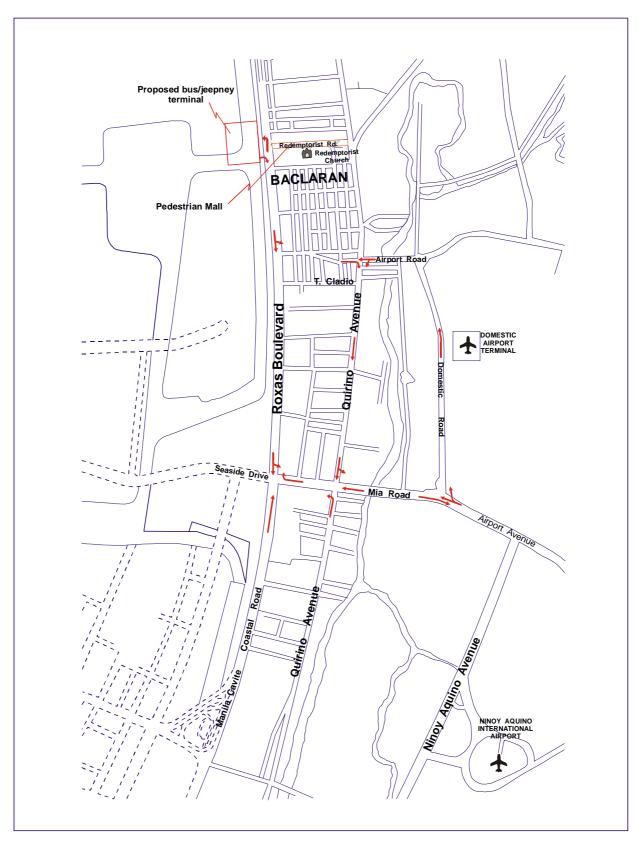




Figure 25 Proposed Jeepney Routes



## **APPENDIX II**

### TECHNICAL NOTES/MATERIALS MMURTRIP RECOMMENDATION SUMMARY

### **10. MMURTRIP RECOMMENDATIONS**

|     | LRT Line 2 Corridor |                    |               |                   |                      |                   |                  |   |         |                 |             |                  |     |      |
|-----|---------------------|--------------------|---------------|-------------------|----------------------|-------------------|------------------|---|---------|-----------------|-------------|------------------|-----|------|
|     | Project             | Signal<br>improv't | New<br>signal | Pave't<br>Marking | Sidewalk<br>improv't | Ped'n<br>overpass | Ped'n<br>barrier |   | Bollard | Street<br>light | New<br>road | Road<br>widening | ROW | Note |
| 1.1 | Recto station       | 0                  |               | 0                 | 0                    |                   | 0                | 0 | 0       | 0               |             |                  |     |      |
| 1.2 | Legarda station     | 0                  | 0             | 0                 | 0                    |                   | 0                |   | 0       |                 |             |                  |     | 4/   |
| 1.3 | Nagtahan-Araneta    | 0                  |               | 0                 | 0                    |                   | 0                |   |         | 0               |             |                  |     |      |
| 1.4 | Araneta-Cubao       | 0                  | 0             | 0                 | 0                    |                   | 0                | 0 | 0       |                 |             |                  |     |      |
| 1.5 | Cubao-Katipunan     | 0                  |               | 0                 | 0                    |                   | 0                |   |         |                 |             |                  |     |      |

Table 1 LRT Line 2 Corridor

#### Table 2 EDSA Corridor

|          | Project              | Signal<br>improv't | New<br>signal | Pave't<br>Marking | Sidewalk | Ped'n<br>overpass | Ped'n | Road<br>improv't | Bollard | Street<br>light | New<br>road | Road<br>widening | ROW | Note |
|----------|----------------------|--------------------|---------------|-------------------|----------|-------------------|-------|------------------|---------|-----------------|-------------|------------------|-----|------|
| 2.1      | North Ave.           | 0                  |               | 0                 | 0        | 0                 | 0     |                  |         |                 |             |                  |     |      |
| 2.2      | Quezon Ave.          | 0                  |               | 0                 | 0        |                   | 0     |                  |         |                 |             |                  |     |      |
| 2.3      | East AveSantolan     | 0                  | 0             | 0                 | 0        | 0                 | 0     | 0                | 0       | 0               |             |                  |     |      |
| 2.4      | White Plain          |                    | 0             |                   |          | 0                 |       |                  |         |                 |             |                  |     |      |
| 2.5      | Ortigas-Shaw         | 0                  |               | 0                 | 0        |                   | 0     | 0                |         | 0               |             |                  |     |      |
| 2.6      | Shaw-Guadalupe       |                    |               |                   | 0        |                   | 0     | 0                | 0       |                 |             |                  |     |      |
| 2.7      | Guadalupe-Gil Puyat  | 0                  |               | 0                 | 0        |                   | 0     | 0                |         | 0               |             |                  |     |      |
| 2.8      | Gil Puyat-Magallanes | 0                  |               | 0                 | 0        |                   |       |                  |         | 0               |             |                  |     |      |
| 2.9      | Magallanes-Taft      | 0                  | 0             | 0                 | 0        | 0                 | 0     | 0                |         | 0               |             |                  |     |      |
| 2.1<br>0 | Taft-Roxas           | 0                  |               | 0                 |          |                   |       |                  |         | 0               |             |                  |     |      |

#### Table 3 Southern Corridor

|     | Southern Corridor |                    |                                  |                   |                      |                   |                  |                  |         |                 |             |                  |     |      |
|-----|-------------------|--------------------|----------------------------------|-------------------|----------------------|-------------------|------------------|------------------|---------|-----------------|-------------|------------------|-----|------|
|     | Project           | Signal<br>improv't | New<br>signal                    | Pave't<br>Marking | Sidewalk<br>improv't | Ped'n<br>overpass | Ped'n<br>barrier | Road<br>improv't | Bollard | Street<br>light | New<br>road | Road<br>widening | ROW | Note |
| 3.1 | Nichols IC        | Interim s          | Interim scheme being implemented |                   |                      |                   |                  |                  |         |                 |             |                  |     |      |
| 3.2 | Bicutan IC        | 0                  | 0                                | 0                 | 0                    |                   | 0                |                  |         |                 | 0           |                  |     | 5/   |
| 3.3 | Sucat IC          | 0                  |                                  | 0                 | 0                    |                   | 0                |                  |         |                 | 0           |                  |     | 5/   |
| 3.4 | Alabang IC        | 0                  | 0                                | 0                 | 0                    |                   | 0                |                  |         | 0               |             |                  |     | 6/   |

#### **MARIPAS** Area Ped'n Signal Pave't Sidewalk Ped'n Road Street New Road New Project Bollard ROW Note improv't signal Marking improv't overpass barrier improv' light road widening 4.1 Katipunan-Maj. Dizon 0 0 0 О С 4.2 Marikina Road Network New road network, widening of Marcos Bridge, intersection improvement at C5-Boni Serrano 4.3 Evangelista-Sumulong 0 0 0 0 0 0 0 0 0 0 4.4 Sumulong-C6 0 0 4.5 Ortigas (C5-Mangahan) 0 0 0 0 Ortigas (Mangahan-Tikling 0 4.6 0 0 0 0 4.7 Radial Road II New road and bridge, widening and improvement of existing road, intersection imimprovement Radial Road III 4.8 New road and bridge, widening of existing road, intersection improvement

Table 4

|      |                              |                    |               | Se                | condary              | Roads             |                  |                  |         |                 |             |                  |     |      |
|------|------------------------------|--------------------|---------------|-------------------|----------------------|-------------------|------------------|------------------|---------|-----------------|-------------|------------------|-----|------|
|      | Project                      | Signal<br>improv't | New<br>signal | Pave't<br>Marking | Sidewalk<br>improv't | Ped'n<br>overpass | Ped'n<br>barrier | Road<br>improv't | Bollard | Street<br>light | New<br>road | Road<br>widening | ROW | Note |
| 5.1  | DMMA Ext.                    |                    | 0             | 0                 |                      |                   |                  |                  |         | 0               | 0           |                  | 0   |      |
| 5.2  | Central Ave.                 | 0                  | 0             | 0                 | 0                    |                   |                  |                  |         |                 | 0           | 0                | 0   |      |
| 5.3  | Tandang Sora                 | 0                  | 0             | 0                 | 0                    | 0                 |                  | 0                |         |                 |             | 0                | 0   |      |
| 5.4  | New Balara-Marikina Road     | 0                  | 0             | 0                 | 0                    |                   |                  | 0                |         |                 | 0           |                  | 0   |      |
| 5.5  | Quirino Highway              | 0                  | 0             | 0                 | 0                    |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.6  | Del Monte                    | 0                  | 0             | 0                 | 0                    |                   |                  | 0                |         |                 |             | 0                | 0   | 7/   |
| 5.7  | Roosevelt Ave.               | 0                  | 0             | 0                 |                      |                   |                  | 0                |         |                 |             |                  | 0   |      |
| 5.8  | Banawe Ave.                  | 0                  | 0             | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.9  | North Ave.                   | 0                  | 0             | 0                 | 0                    |                   | 0                | 0                |         |                 |             |                  | 0   |      |
| 5.10 | Antonio Arnaiz               | 0                  | 0             | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.11 | SSH West Service Road        |                    |               |                   | 0                    |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.12 | SSH East Service Road        |                    |               |                   | 0                    |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.13 | A. Santos/Alabang-Zapote     | New jeep           | ney rou       | te, open of       | fsubdivisio          | n road to p       | rivate v         | ehicles          |         |                 |             |                  |     |      |
| 5.14 | Pedro Gil                    | 0                  | 0             | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.15 | Aurora Blvd.                 | 0                  |               | 0                 | 0                    |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.16 | Tayuman                      | 0                  |               | 0                 | 0                    |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.17 | Moriones                     | 0                  | 0             | 0                 | 0                    |                   |                  | 0                |         |                 |             | 0                | 0   | 7/   |
| 5.18 | 10th Avenue                  | 0                  |               | 0                 | 0                    |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.19 | D. Romualdez/S.<br>Marcerino | 0                  |               | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 8/   |
| 5.20 | Gil Puyat                    | 0                  |               | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.21 | C. M. Recto                  | 0                  | 0             | 0                 | 0                    |                   |                  | 0                |         |                 |             | 0                | 0   |      |
| 5.22 | Legarda                      | 0                  |               | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.23 | Pasong Tamo                  | 0                  | 0             | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     |      |
| 5.24 | Quezon Blvd.                 | 0                  |               | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 9/   |
| 5.25 | De La Fuente/ V.G. Cruz      | 0                  |               | 0                 | 0                    |                   |                  | 0                |         |                 |             |                  |     | 7/   |
| 5.26 | Fajardo/Loyola               | 0                  |               | 0                 |                      |                   |                  | 0                |         |                 |             |                  |     | 7/   |

| Table | 5 |
|-------|---|
| <br>  |   |

Notes:

1/ Road improvement includes re-concreting, asphalt overlay, new/improvement of drainage facilities, and improvement of alignment

2/ Sidewalk improvement includes cleaning of sidewalk, provision of sidewalk, and removal of sidewalk vendors.

3/ Pedestrian barrier includes pedestrian barrier on sidewalk, pedestrian barrier on medium and service road barrier

4/ Pedestrian walk path

5/ Geometric improvement as per TEC plan

6/ Bridge widening

7/ Removal of on-street parking

8/ Banning of truck parking

9/ Removal of sidewalk vendors

### **APPENDIX II**

TECHNICAL NOTES/MATERIALS VEHICLE OPERATING COST ESTIMATION FOR URBAN CONDITION

### 11. VEHILCE OPERATING COST ESTIMATION FOR URBAN CONDITIONS

### **DPWH Model**

The main source of vehicle operating cost estimates for the Philippines appears to be an annual series produced by DPWH. Details of the methodology are not readily available, but it appears to follow that developed by Peder Nielson in 1982 mission and documented in the 8 volume Highway Planning Manual (HPM) and 1991 review and update<sup>1</sup>.

The representative vehicles (and their individual weight in each of the 15 vehicle types analyzed) may change from year to year, but there does not seem to have been any update of other assumptions (e.g. vehicle occupancy, journey purpose proportions etc.). Further, it is not explicit in model the output which of the 15 categories the emerging vehicle types, such as the Tamara, go into.

The DPWH model generates cost per vehicle km. and vehicle hour free flow running on open (inter-urban) road, defined as:

- 1) reasonably good paved surface as found on the new paved asphalt concrete surfaces financed by local funds;
- 2) at least 6.0 m of carriageway width, with shoulde disths of 2 x 2.0 m or more;
- 3) gradients below 1%;
- 4) design speeds no less than 70 kph for cars and 60 kph for trucks;
- 5) minimum roadside friction and traffic volumes with no effect on driver behavior (free flow conditions); and
- 6) average Philippine driver behavior.

(HPM, Volume 4, Introduction)

Costs are then published for 8 roads types, ranging from "good

"very bad gravel", but detailed costs are probably generated for good metalled and factored ("dl" factors) for other road types. Assumptions (detailed in appendices to the 1982 report) are made on the free flow speed for each vehicle type on each road type, e.g. 30 km/hr for bus/truck on very bad gravel. Costs are thus only estimated for one speed for each vehicle type and road type.

The DPWH costs are thus for use in inter-urban and rural road assessments, and have a number of disadvantages for evaluation of projects in urban areas, including:

- inability to estimate costs for different speeds;
- inability to estimate costs for different road types; and
- unrealistically high assumed speeds (for urban conditions) on the better road types; and
- unrealistic assumptions on traffic conditions (item 5).

<sup>&</sup>lt;sup>1</sup> Coordinating Consultancy Services for the Organization, Planning, Coordination and Review of the Feasibility Studies on the Improvement of Major Road Sections and the Arterial Road Program, Renadet S.A. and others for DPWH, 1997

In an attempt to overcome these deficiencies, a vehicle operating cost model originally developed by the (Pakistan) National Transport Research Center (NTRC) in Islamabad has been adapted. Vehicle speed, road roughness, road curvature and road rise and fall can all be varied within a reasonable range to generate cost estimates under a much wider range of operating conditions than is possible with the existing (published) Philippine methodology.

The NTRC model also contains formulate which adjust annual vehicle km. and vehicle life according to the average speed.

Work to date has concentrated on calibrating the NTRC model to Philippine conditions, making adjustments where necessary. There will be problems with transferring any model between countries, and the NTRC mode, while based on authoritative studies<sup>2</sup> has itself been adapted to Pakistan conditions. It has therefore been necessary to identify and remove, where possible, the "Pakistan" elements of the model before inserting any necessary "Philippines" features.

The capabilities of the NTRC model have been expanded to include features of the DPWH model, including:

- split of depreciation into distance and time elements;
- assignment of some costs on a per-km. basis, others on per-hour (NTRC) methodology assigned all costs per km.);
- ability to shadow price labor cost and value of travel time; and
- incorporation of an internal sub-model to generate values time for vehicle types.

While the NTRC model generates costs for 9 vehicle types, it only uses accurate consumption data for three types:

- saloon car;
- heavy 2-axle truck; and
- big bus.

A fourth vehicle type, a mini-bus derived from a Ford Transit 1.5 ton van which is particularly common in Pakistan, has been added, with all other costs estimated by factoring the costs for these base vehicle types.

Calibration has been by adopting DPWH assumptions on speed, road type and vehicle use and comparing the resource consumption output of the tow models (resource valuation is a separate issued) for these base vehicle types. Judgement has then been used in selection of the factors to generate costs for the other vehicle types common in the Philippines.

Results are good/acceptable if it is assumed that the HPM "good" road has a roughness factor of 25000, as shown in Table 1.

 $<sup>^{2}</sup>$  Detailed in a technical note on the first adaptation of the NTRC model, for a 1995 toll-road study in Pakistan, which will be forwarded from London.

| Vehicle | Resource                              | DPWH   | New Model<br>output |
|---------|---------------------------------------|--------|---------------------|
| Car     | fuel / 1000 km                        | 110    | 105                 |
|         | oil / 1000 km                         | 1      | 1.18                |
|         | tire life                             | 40,000 | 48,000              |
|         | parts (as % of new vehicle) / 100 km  | 14.7%  | 10.9%               |
|         | maintenance labor (hours) per 1000 km | 3.53   | 3.79                |
| Jeepney | fuel / 1000 km                        | 90     | 102                 |
|         | oil / 1000 km                         | 1      | 1.2                 |
|         | tire life                             | 40,000 | 43,500              |
|         | parts (as % of new vehicle) / 100 km  | 17.0%  | 17.2%               |
|         | maintenance labor (hours) per 1000 km | 3.33   | 3.80                |
|         |                                       |        |                     |
| Big Bus | fuel / 1000 km                        | 240    | 254                 |
| _       | oil / 1000 km                         | 3      | 3.5                 |
|         | tire life                             | 60,000 | 51,500              |
|         | parts (as % of new vehicle) / 100 km  | 12.5%  | 18.0%               |
|         | maintenance labor (hours) per 1000 km | 3.75%  | 4.07                |
| Truck   | fuel / 1000 km                        | 270    | 230                 |
|         | oil / 1000 km                         | 3.25   | 3.87                |
|         | tire life                             | 55,000 | 51,500              |
|         | parts (as % of new vehicle) / 100 km  | 14.0%  | 18.3%               |
|         | maintenance labor (hours) per 1000 km | 5.50   | 5.26                |

Table 1 Comparison of Model Results

The resource assumptions of the two models are thus reasonably similar and, in calculating overall vehicle operating cost, the differences tend to balance out – for truck, for example, the new model will generate higher costs per km than DPWH model for oil, tires and spare parts, but lower costs for fuel and maintenance labor.

It is not considered to be worth spending more time investigating both models until they match exactly. Benefits for evaluations depend more on differences between the with and without project scenarios than they do on the absolute level of costs. The main feature of the new model is thus its ability to generate differential costs for small changes in operating conditions, and the speed-consumption relationships in the model are well founded.

### MMU Model

If the strength of the new Metr0-Manila Urban (MMU) model is this ability to generate reasonably accurate costs under a range of road and speed conditions, its weaknesses are that input consumption is well founded for only three of the nine vehicle types an are based on studies carried out in the early 1960s. The technical note discusses this and concludes that, for a variety of reasons, these relationships may still be valid today<sup>3</sup>

If therefore makes poor estimation of m/c costs (but there are few of in Manila at present) and has no basis whatsoever for forecasting tricycle costs, the MMUTIS surveys are the best data available. "UV" is a catch-all for private jeepney, puck-up, "van" etc., and necessarily incorporates light goods vehicles (as they are not included anywhere else) while excluding crew costs on current input values. Type 5 is captioned "HOV/taxi", but no cost data relating to Tamaraw have yet been entered. Costs output for this vehicle type should be treated with

 $<sup>^{3}</sup>$  Many of the relationships in the DPWH model seem to be equally out of date.

caution. Bus is bit (11-12 m) bus. The output table present a composite value for medium / heavy goods vehicle – costs for the heavier vehicles are factored up from heavy 2-axle, but both NTRC and DPWH methodologies seem to make similar assumptions on this, vehicle proportions are selected by the user.

The MMU model does not, therefore, produce definitive cost estimates but by virtue of its greater flexibility, produces better estimates for congested urban conditions than are currently available for the Philippines.

### Vehicle operating cost in Peso per 1,000 km for diferent speeds ECONOMIC COSTS

| Speed<br>(kmh) | Ve | ehicle              |                | Dista        | nce related co | st           |                | Time related of / hour | xost<br>/ 1000 km | Value of time<br>/ hour | / 1000 km | Total<br>/ 1000 km |
|----------------|----|---------------------|----------------|--------------|----------------|--------------|----------------|------------------------|-------------------|-------------------------|-----------|--------------------|
|                |    |                     |                |              |                |              |                |                        |                   |                         |           | Road Typ           |
|                |    |                     |                |              | <i>c</i> ·     |              |                |                        |                   |                         |           | v good             |
|                |    | bad Type<br>bughnes | v good<br>1500 | good<br>2500 | fair<br>3500   | poor<br>5500 | v poor<br>7500 |                        |                   |                         |           |                    |
|                |    | se/Fall             | 10             | 2500<br>10   | 20             | 20           | 30             |                        |                   |                         |           |                    |
|                |    | urvature            | 100            | 100          | 200            | 300          | 400            |                        |                   |                         |           |                    |
|                |    |                     |                |              |                |              |                |                        |                   |                         |           |                    |
|                | 10 | m/c                 | 489            | 548          | 644            | 835          | 1,026          | 1.36                   | 136               | 13.24                   |           | 1,949              |
|                |    | car (priv)          | 2,337          | 2,618        | 3,294          | 4,550        | 5,855          | 23.86                  | 2,386             | 51.36                   | 5,136     | 9,859              |
|                |    | UV (priv)           | 2,370          | 2,675        | 3,067          | 693          | 4,398          | 19.49                  | 1,949             | 36.53                   | 3,653     | 7,973              |
|                |    | jeepney             | 2,080          | 2,509        | 3,047          | 3,924        | 4,900          | 38.09                  | 3,809             | 58.36                   | 5,836     | 11,725             |
|                |    | HOV/taxi            | 1,199          | 1,552        | 1,910          | 2,627        | 4,248          | 41.66                  | 4,166             | 42.78                   | 4,278     | 9,643              |
|                |    | bus                 | 6,032          | 7,190        | 8,510          | 10,824       | 13,297         | 70.81                  | 7,081             | 218.45                  | 21,845    | 34,959             |
|                |    | MGV/HGV             | 8,883          | 10,043       | 11,380         | 13,593       | 16,182         | 76                     | 7,598             | 0.00                    | 0         | 16,481             |
|                | 20 | m/c                 | 455            | 525          | 641            | 872          | 1,104          | 1.37                   | 68                | 13.24                   | 662       | 1,185              |
|                |    | car (priv)          | 2,159          | 2,442        | 3,123          | 4,390        | 5,705          | 26.95                  | 1,348             | 51.36                   | 2,568     | 6,075              |
|                |    | UV (priv)           | 2,191          | 2,498        | 2,895          | 3,529        | 4,244          | 22.69                  | 1,135             | 36.53                   | 1,827     | 5,152              |
|                |    | jeepney             | 1,912          | 2,343        | 2,887          | 3,775        | 4,762          | 40.70                  | 2,035             | 58.36                   | 2,918     | 6,864              |
|                |    | HOV/taxi            | 1,136          | 1,491        | 1,854          | 2,580        | 4,119          | 45.73                  | 2,286             | 42.78                   | 2,139     | 5,561              |
|                |    | bus                 | 5,558          | 6,716        | 8,037          | 10,351       | 12,825         | 80.95                  | 4,048             | 218.45                  | 10,923    | 20,528             |
|                |    | MGV/HGV             | 7,435          | 8,596        | 9,933          | 12,147       | 14,736         | 84.21                  | 4,210             | 0.00                    | 0         | 11,645             |
|                | 30 | m/c                 | 435            | 519          | 659            | 937          | 1,216          | 1.25                   | 42                | 13.24                   | 441       | 918                |
|                |    | car (priv)          | 2,028          | 2,315        | 3,002          | 4,280        | 5,607          | 26.48                  | 883               | 51.36                   | 1,712     | 4,623              |
|                |    | UV (priv)           | 2,049          | 2,360        | 2,764          | 3,412        | 4,140          | 22.58                  | 753               | 36.53                   | 1,218     | 4,019              |
|                |    | jeepney             | 1,783          | 2,219        | 2,771          | 3,676        | 4,681          | 41.45                  | 1,381             | 58.36                   | 1,945     | 5,109              |
|                |    | HOV/taxi            | 1,083          | 1,443        | 1,813          | 2,553        | 4,040          | 47.35                  | 1,570             | 42.78                   | 1,426     | 4,079              |
|                |    | bus                 | 5,251          | 6,415        | 7,754          | 10,078       | 12,563         | 85.99                  | 2,829             | 218.45                  | 7,282     | 15,362             |
|                |    | MGV/HGV             | 6,366          | 7,535        | 8,904          | 11,133       | 13,737         | 84.79                  | 2,855             | 0.00                    | 0         | 9,222              |
|                | 40 | m/c                 | 430            | 530          | 696            | 1,028        | 1,420          | 1.12                   | 28                | 13.24                   | 331       | 789                |
|                |    | car (priv)          | 1,944          | 2,234        | 2,928          | 4,220        | 5,575          | 25.18                  | 629               | 51.36                   | 1,284     | 3,858              |
|                |    | UV (priv)           | 1,942          | 2,258        | 2,671          | 3,338        | 4,108          | 21.59                  | 540               | 36.53                   | 913       | 3,395              |
|                |    | jeepney             | 1,693          | 2,135        | 2,699          | 3,627        | 4,684          | 41.45                  | 1,036             | 58.36                   | 1,459     | 4,188              |
|                |    | HOV/taxi            | 1,040          | 10,406       | 1,785          | 2,543        | 4,032          | 47.35                  | 1,184             | 42.78                   | 1,069     | 3,293              |
|                |    | bus                 | 5,109          | 6,283        | 7,632          | 9,977        | 12,552         | 85.99                  | 2,150             | 218.45                  | 5,461     | 12,720             |
|                |    | MGV/HGV             | 5,674          | 6,858        | 8,235          | 10,494       | 13,225         | 84.79                  | 2,120             | 0.00                    | 0         | 7,793              |
|                | 50 | m/c                 | 456            | 593          | 872            | 1,497        | 2,451          | 1.01                   | 20                | 13.24                   | 265       | 741                |
|                |    | car (priv)          | 1,909          | 2,209        | 2,931          | 4,296        | 5,804          | 23.72                  |                   | 51.36                   |           | 3,411              |
|                |    | UV (priv)           | 1,876          | 2,206        | 2,664          | 3,447        | 4,446          | 20.39                  | 408               | 36.53                   | 731       | 3,015              |
|                |    | jeepney             | 1,649          | 2,109        | 2,728          | 3,801        | 5,142          | 41.17                  | 823               | 58.36                   | 1,167     | 3,640              |
|                |    | HOV/taxi            | 1,011          | 1,394        | 1,816          | 2,690        | 4,392          | 47.12                  | 942               | 42.78                   | 856       | 2,809              |
|                |    | bus                 | 5,277          | 6,485        | 7,990          | 10,618       | 13,720         | 85.78                  | 1,716             | 218.45                  | 4,369     | 11,362             |
|                |    | MGV/HGV             | 5,567          | 6,798        | 8,394          | 11,052       | 14,528         | 83.10                  | 1,662             | 0.00                    | 0         | 7,229              |
|                | 60 | m/c                 | 492            | 664          | 1,049          | 2,029        | 3,678          | 0.92                   | 15                | 13.24                   | 221       | 728                |
|                |    | car (priv)          | 1,917          | 2,226        | 2,974          | 4,446        | 6,125          | 22.31                  | 372               | 51.36                   | 856       | 3,145              |
|                |    | UV (priv)           | 1,842          | 2,186        | 2,686          | 3,621        | 4,904          | 19.20                  | 320               | 36.53                   | 609       | 2,771              |
|                |    | jeepney             | 1,641          | 2,118        | 2,790          | 4,052        | 5,476          | 40.76                  | 679               | 58.36                   | 973       | 3,293              |
|                |    | HOV/taxi            | 989            | 1,388        | 1,853          | 2,871        | 4,873          | 46.66                  | 778               | 42.78                   | 713       | 2,480              |
|                |    | bus                 | 5,595          | 6,839        | 8,512          | 11,588       | 15,449         | 84.93                  | 1,415             | 218.45                  | 3,641     | 10,652             |
|                |    | MGV/HGV             | 5,814          | 7,094        | 8,929          | 12,205       | 16,731         | 81.18                  | 1,353             | 0.00                    | 0         | 7,167              |

# Vehicle operating cost in Peso per 1,000 km for different speeds ECONOMIC COSTS

| Speed |     | (-h:-l-        |        |        |           |         |         | Trace velated  |           |                |           | <b>T</b> -4-1                  |
|-------|-----|----------------|--------|--------|-----------|---------|---------|----------------|-----------|----------------|-----------|--------------------------------|
| (kmh) | `   | /ehide         |        |        |           | St      |         | Time related o |           | Value of time  | 14000     | Total                          |
|       |     |                |        |        | / 1000 km |         |         | /hour          | / 1000 km | /hour          | / 1000 km | / 1000 km<br>Road Typ<br>vgood |
|       | F   | RoadType       | vgood  | good   | fair      | poor    | vpoor   |                |           |                |           | vguu                           |
|       |     | Roughnes       | 1500   | 2500   | 3500      | 5500    | 7500    |                |           |                |           |                                |
|       |     | Rise/Fall      | 10     | 10     | 20        | 20      | 30      |                |           |                |           |                                |
|       |     | Curvature      | 100    | 100    | 200       | 300     | 400     |                |           |                |           |                                |
|       |     |                |        |        |           |         |         | I              |           | 1              |           |                                |
|       | 70  | m/c            | 546    | 760    | 1,364     | 2,950   | 5,391   | 0.84           | 12        |                | 189       | 747                            |
|       |     | car (priv)     | 1,980  | 2,299  | 3,108     | 4,741   | 6,641   | 21.01          | 300       | 51.36          | 734       | 3,014                          |
|       |     | UV (priv)      | 1,842  | 2,203  | 2,806     | 3,996   | 5,628   | 18.09          | 258       | 36.53          | 522       | 2,622                          |
|       |     | jeepney        | 1,672  | 2,171  | 2,971     | 4,549   | 6,678   | 40.31          | 576       | 58.36          | 834       | 3,082                          |
|       |     | HOV/taxi       | 977    | 1,396  | 1,952     | 3,223   | 5,622   | 46.11          | 659       | 42.78          | 611       | 2,246                          |
|       |     | bus            | 5,595  | 7,428  | 9,612     | 13,525  | 18,361  | 83.76          | 1,197     | 218.45         | 3,121     | 10,453                         |
|       |     | MGV/HGV        | 5,814  | 7,873  | 10,418    | 14,847  | 20,669  | 7925           | 1,132     | 0.00           | C         | 7,654                          |
|       | 80  | m/c            | 631    | 908    | 1,781     | 4,375   | 8,657   | 0.77           | 10        | 13.24          | 165       | 806                            |
|       |     | car (priv)     | 2,089  | 2,423  | 3,307     | 5,225   | 7,606   | 19.83          | 248       | 51.36          | 642       | 2,978                          |
|       |     | UV (priv)      | 1,885  | 2,273  | 2,998     | 4,654   | 7,072   | 17.07          | 213       | 36.53          | 457       | 2,555                          |
|       |     | jeepney        | 1,755  | 2,287  | 3,239     | 5,396   | 8,502   | 39.86          | 498       | 58.36          | 729       | 2,983                          |
|       |     | HOV/taxi       | 977    | 1,428  | 2,100     | 3,803   | 7,091   | 45.53          | 569       | 42.78          | 535       | 2,081                          |
|       |     | bus            | 7,053  | 8,422  | 11,268    | 16,837  | _       | 82.46          | 1,031     | 218.45         | 2,731     | 10,814                         |
|       |     | MGV/HGV        | 7,909  | 9,370  | 12,840    | 19,575  | -       | 77.42          | 968       | 0.00           | C         |                                |
|       |     |                |        |        |           |         |         |                |           | 10.01          |           |                                |
|       | 90  | m/c            | 769    | 1,157  | 2,769     | 8,360   | -       | 0.72           | 8         | 13.24          | 147       | 924                            |
|       |     | car (priv)     | 2,252  | 2,615  | 3,712     | 6,442   | 436,475 | 18.77          | 209       | 51.36          | 571       | 3,032                          |
|       |     | UV (priv)      | 1,979  | 2,415  | 3,463     | 6,467   | -       | 16.15          | 179       | 36.53          | 406       | 2,564                          |
|       |     | jeepney        | 1,898  | 2,490  | 3,843     | 7,676   | -       | 39.42          | 438       | 58.36          | 648       | 2,985                          |
|       |     | HOV/taxi       | 999    | 1,507  | 2,497     | 5,499   | -       | 44.94          | 499       | 42.78          | 475       | 1,974                          |
|       |     | bus<br>MGV/HGV | 8,617  | 10,123 | 15,042    | -       | -       | 81.12          | 901       | 218.45<br>0.00 | 2,427     | 11,945                         |
|       |     |                | 10,375 | 12,032 | 18,446    | -       | -       | 75.71          | 841       | 0.00           | C         | 11,216                         |
|       | 100 | m/c            | 1,021  | 1,634  | 5,710     | -       | -       | 0.67           | 7         | 13.24          | 132       | 1,160                          |
|       |     | car (priv)     | 2,498  | 2,917  | 4,781     | 342,041 | -       | 17.80          | 178       | 51.36          | 514       | 3,189                          |
|       |     | UV (priv)      | 2,151  | 686    | 4,872     | -       | -       | 15.31          | 153       | 36.53          | 365       | 2,669                          |
|       |     | jeepney        | 2,137  | 2,851  | 5,620     | -       | -       | 39.01          | 390       | 58.36          | 584       | 3,110                          |
|       |     | HOV/taxi       | 1,064  | 1,688  | 3,752     | 587,204 | -       | 44.38          | 444       | 42.78          | 428       | 1,936                          |
|       |     | bus            | 11,572 | 13,364 | -         | -       | -       | 79.79          | 798       | 218.45         | 2,185     | 14,555                         |
|       |     | MGV/HGV        | 14,990 | 17,051 | -         | -       | -       | 74.14          | 741       | 0.00           | C         | 15,731                         |

# **APPENDIX II**

TECHNICAL NOTES/MATERIALS ECONOMIC EVALUATION

### 12. ECONOMIC EVALUATION OF MTDP PROJECTS

### 1. Master Plan - All Projects

|      | Cash Flow | -       |           | Discounted | Cash Flow ( | 15%)     |
|------|-----------|---------|-----------|------------|-------------|----------|
| Year | Cost      | Benefit | B-C       | Cost       | Benefit     | B-C      |
| 1999 | 0         | 0       | 0         | 0          | 0           | 0        |
| 2000 | 10,413    | 0       | (10,413)  | 9,055      | 0           | (9,055)  |
| 2001 | 11,951    | 0       | (11,951)  | 9,036      | 0           | (9,036)  |
| 2002 | 22,590    | 0       | (22,590)  | 14,853     | 0           | (14,853) |
| 2003 | 44,731    | 0       | (44,731)  | 25,575     | 0           | (25,575) |
| 2004 | 105,922   | 0       | (105,922) | 52,662     | 0           | (52,662) |
| 2005 | 22,481    | 99,489  | 77,008    | 9,719      | 43,012      | 33,293   |
| 2006 | 23,605    | 130,459 | 106,854   | 8,874      | 49,044      | 40,171   |
| 2007 | 24,785    | 161,430 | 136,645   | 8,102      | 52,772      | 44,669   |
| 2008 | 26,024    | 192,400 | 166,376   | 7,398      | 54,692      | 47,294   |
| 2009 | 27,325    | 223,371 | 196,045   | 6,754      | 55,214      | 48,459   |
| 2010 | 28,692    | 254,341 | 225,650   | 6,167      | 54,669      | 48,502   |
| 2011 | 30,126    | 285,312 | 255,186   | 5,631      | 53,327      | 47,696   |
| 2012 | 31,633    | 316,282 | 284,650   | 5,141      | 51,405      | 46,264   |
| 2013 | 33,214    | 347,253 | 314,039   | 4,694      | 49,077      | 44,383   |
| 2014 | 34,875    | 378,223 | 343,349   | 4,286      | 46,482      | 42,196   |
| 2015 | 0         | 409,194 | 409,194   | 0          | 43,728      | 43,728   |
| 2016 | 0         | 440,164 | 440,164   | 0          | 40,903      | 40,903   |
| 2017 | 0         | 471,135 | 471,135   | 0          | 38,070      | 38,070   |
| 2018 | 0         | 502,105 | 502,105   | 0          | 35,281      | 35,281   |
| 2019 | 0         | 533,076 | 533,076   | 0          | 32,571      | 32,571   |
| 2020 | 0         | 564,047 | 564,047   | 0          | 29,968      | 29,968   |
| 2021 | 0         | 595,017 | 595,017   | 0          | 27,490      | 27,490   |
| 2022 | 0         | 625,988 | 625,988   | 0          | 25,149      | 25,149   |
| 2023 | 0         | 656,958 | 656,958   | 0          | 22,950      | 22,950   |
| 2024 | (148,356) | 0       | 148,356   | (4,507)    | 0           | 4,507    |
| IRR= | 46.37     | %       |           |            |             |          |

B/C= NPV= 4.65 632,361

### 2. Master Plan - Railway Projects

|      | Cash Flow |         |          | Discounted | Cash Flow ( |          |
|------|-----------|---------|----------|------------|-------------|----------|
| Year | Cost      | Benefit | B-C      | Cost       | Benefit     | B-C      |
| 1999 | 0         | 0       | 0        | 0          | 0           | 0        |
| 2000 | 0         | 0       | 0        | 0          | 0           | 0        |
| 2001 | 0         | 0       | 0        | 0          | 0           | 0        |
| 2002 | 4,980     | 0       | (4,980)  |            | 0           | (3,274)  |
| 2003 | 18,054    | 0       | (18,054) | 10,323     | 0           | (10,323) |
| 2004 | 67,052    | 0       | (67,052) | 33,337     | 0           | (33,337) |
| 2005 | 5,507     | 27,668  | 22,162   | 2,381      | 11,962      | 9,581    |
| 2006 | 5,782     | 35,800  | 30,018   | 2,174      | 13,459      | 11,285   |
| 2007 | 6,071     | 43,932  | 37,861   | 1,985      | 14,362      | 12,377   |
| 2008 | 6,375     | 52,064  | 45,690   | 1,812      | 14,800      | 12,988   |
| 2009 | 6,693     | 60,196  | 53,503   | 1,655      | 14,880      | 13,225   |
| 2010 | 7,028     | 68,328  | 61,300   | 1,511      | 14,687      | 13,176   |
| 2011 | 7,380     | 76,460  | 69,081   | 1,379      | 14,291      | 12,912   |
| 2012 | 7,749     | 84,592  | 76,844   | 1,259      | 13,749      | 12,489   |
| 2013 | 8,136     | 92,724  | 84,588   | 1,150      | 13,105      | 11,955   |
| 2014 | 8,543     | 100,856 | 92,313   | 1,050      | 12,395      | 11,345   |
| 2015 | 0         | 108,988 | 108,988  | 0          | 11,647      | 11,647   |
| 2016 | 0         | 117,120 | 117,120  | 0          | 10,884      | 10,884   |
| 2017 | 0         | 125,252 | 125,252  | 0          | 10,121      | 10,121   |
| 2018 | 0         | 133,384 | 133,384  | 0          | 9,372       | 9,372    |
| 2019 | 0         | 141,516 | 141,516  | 0          | 8,647       | 8,647    |
| 2020 | 0         | 149,648 | 149,648  | 0          | 7,951       | 7,951    |
| 2021 | 0         | 157,779 | 157,779  | 0          | 7,290       | 7,290    |
| 2022 | 0         | 165,911 | 165,911  | 0          | 6,665       | 6,665    |
| 2023 | 0         | 174,043 | 174,043  | 0          | 6,080       | 6,080    |
| 2024 | (27,280)  | 0       | 27,280   | (829)      | 0           | 829      |
| IRR= | 40.56     | %       |          |            |             |          |
| B/C= | 3.46      |         |          |            |             |          |

NPV= 153,883

|      | Cash Flow |         |          |         | Cash Flow ( | . /     |
|------|-----------|---------|----------|---------|-------------|---------|
| Year | Cost      | Benefit | B-C      | Cost    | Benefit     | B-C     |
| 1999 | 0         | 0       | 0        | 0       | 0           | 0       |
| 2000 | 0         | 0       | 0        | 0       | 0           | 0       |
| 2001 | 0         | 0       | 0        | 0       | 0           | 0       |
| 2002 | 14,700    | 0       | (14,700) | 9,665   | 0           | (9,665) |
| 2003 | 14,700    | 0       | (14,700) | 8,405   | 0           | (8,405) |
| 2004 | 14,700    | 0       | (14,700) | 7,308   | 0           | (7,308) |
| 2005 | 4,733     | 37,025  | 32,292   | 2,046   | 16,007      | 13,961  |
| 2006 | 4,969     | 38,987  | 34,018   | 1,868   | 14,657      | 12,789  |
| 2007 | 5,218     | 40,950  | 35,732   | 1,706   | 13,387      | 11,681  |
| 2008 | 5,478     | 42,912  | 37,434   | 1,557   | 12,198      | 10,641  |
| 2009 | 5,752     | 44,875  | 39,122   | 1,422   | 11,092      | 9,670   |
| 2010 | 6,040     | 46,837  | 40,797   | 1,298   | 10,067      | 8,769   |
| 2011 | 6,342     | 48,799  | 42,458   | 1,185   | 9,121       | 7,936   |
| 2012 | 6,659     | 50,762  | 44,103   | 1,082   | 8,250       | 7,168   |
| 2013 | 6,992     | 52,724  | 45,732   | 988     | 7,451       | 6,463   |
| 2014 | 7,342     | 54,687  | 47,345   | 902     | 6,721       | 5,818   |
| 2015 | 0         | 56,649  | 56,649   | 0       | 6,054       | 6,054   |
| 2016 | 0         | 58,612  | 58,612   | 0       | 5,447       | 5,447   |
| 2017 | 0         | 60,574  | 60,574   | 0       | 4,895       | 4,895   |
| 2018 | 0         | 62,536  | 62,536   | 0       | 4,394       | 4,394   |
| 2019 | 0         | 64,499  | 64,499   | 0       | 3,941       | 3,941   |
| 2020 | 0         | 66,461  | 66,461   | 0       | 3,531       | 3,531   |
| 2021 | 0         | 68,424  | 68,424   | 0       | 3,161       | 3,161   |
| 2022 | 0         | 70,386  | 70,386   | 0       | 2,828       | 2,828   |
| 2023 | 0         | 72,349  | 72,349   | 0       | 2,527       | 2,527   |
| 2024 | (34,394)  | 0       | 34,394   | (1,045) | 0           | 1,045   |
| IRR= | 50.84     | %       |          |         |             |         |
| B/C= | 3.8       |         |          |         |             |         |
| NPV= | 107,340   |         |          |         |             |         |

3. Master Plan - Expressway Projects

### 4. Master Plan - Primary Road Projects

|      | Cash Flow |         |          |         | Cash Flow ( |         |
|------|-----------|---------|----------|---------|-------------|---------|
| Year | Cost      | Benefit | B-C      | Cost    | Benefit     | B-C     |
| 1999 | 0         | 0       | 0        | 0       | 0           | 0       |
| 2000 | 11,647    | 0       | (11,647) | 10,128  | 0           | (10,128 |
| 2001 | 4,552     | 0       | (4,552)  | 3,442   | 0           | (3,442  |
| 2002 | 3,757     | 0       | (3,757)  | 2,470   | 0           | (2,470  |
| 2003 | 3,757     | 0       | (3,757)  | 2,148   | 0           | (2,148  |
| 2004 | 3,757     | 0       | (3,757)  | 1,868   | 0           | (1,868  |
| 2005 | 13,251    | 15,982  | 2,731    | 5,729   | 6,909       | 1,181   |
| 2006 | 13,913    | 34,949  | 21,036   | 5,230   | 13,139      | 7,908   |
| 2007 | 14,609    | 53,917  | 39,308   | 4,776   | 17,626      | 12,850  |
| 2008 | 15,339    | 72,884  | 57,545   | 4,360   | 20,718      | 16,358  |
| 2009 | 16,106    | 91,852  | 75,746   | 3,981   | 22,704      | 18,723  |
| 2010 | 16,911    | 110,819 | 93,908   | 3,635   | 23,820      | 20,185  |
| 2011 | 17,757    | 129,787 | 112,030  | 3,319   | 24,258      | 20,939  |
| 2012 | 18,645    | 148,754 | 130,110  | 3,030   | 24,177      | 21,146  |
| 2013 | 19,577    | 167,722 | 148,145  | 2,767   | 23,704      | 20,937  |
| 2014 | 20,556    | 186,690 | 166,134  | 2,526   | 22,943      | 20,417  |
| 2015 | 0         | 205,657 | 205,657  | 0       | 21,978      | 21,978  |
| 2016 | 0         | 224,625 | 224,625  | 0       | 20,873      | 20,873  |
| 2017 | 0         | 243,592 | 243,592  | 0       | 19,684      | 19,684  |
| 2018 | 0         | 262,560 | 262,560  | 0       | 18,449      | 18,449  |
| 2019 | 0         | 281,527 | 281,527  | 0       | 17,201      | 17,201  |
| 2020 | 0         | 300,495 | 300,495  | 0       | 15,966      | 15,966  |
| 2021 | 0         | 319,462 | 319,462  | 0       | 14,759      | 14,759  |
| 2022 | 0         | 338,430 | 338,430  | 0       | 13,596      | 13,596  |
| 2023 | 0         | 357,397 | 357,397  | 0       | 12,485      | 12,485  |
| 2024 | (85,074)  | 0       | 85,074   | (2,584) | 0           | 2,584   |
| IRR= | 47.47     |         |          |         |             |         |
| B/C= | 6 25      |         |          |         |             |         |

B/C= NPV=

6.25 298,165

| 2003 3,139 0 (3,139) 1,795 0 (1,795)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Discounted Cook Flow |          |            |        |       |       |       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------------|--------|-------|-------|-------|--|--|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          | <b>D C</b> |        |       |       |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |          |            | -      |       |       |       |  |  |
| 2001         8,376         0         (8,376)         6,333         0         (6,333)           2002         3,216         0         (3,216)         2,114         0         (2,114)           2003         3,139         0         (3,139)         1,795         0         (1,795)           2004         3,139         0         (3,139)         1,561         0         (1,561)           2005         3,083         7,603         4,520         1,333         3,287         1,954           2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,982           2013         4,555         31,331                                                                                                                         |                      | -        | -          | -      | -     | -     | -     |  |  |
| 2002         3,216         0         (3,216)         2,114         0         (2,114)           2003         3,139         0         (3,139)         1,795         0         (1,795)           2004         3,139         0         (3,139)         1,561         0         (1,561)           2005         3,083         7,603         4,520         1,333         3,287         1,954           2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,31         26,776         644         4,428         3,738           2014         4,783         34,297                                                                                                                      |                      |          |            |        |       |       |       |  |  |
| 2003         3,139         0         (3,139)         1,795         0         (1,795)           2004         3,139         0         (3,139)         1,561         0         (1,561)           2005         3,083         7,603         4,520         1,333         3,287         1,954           2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263                                                                                                                    |                      |          | -          | ,      |       | -     |       |  |  |
| 2004         3,139         0         (3,139)         1,561         0         (1,561)           2005         3,083         7,603         4,520         1,333         3,287         1,954           2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263                                                                                                                |                      | ,        | -          |        | · ·   | -     |       |  |  |
| 2005         3,083         7,603         4,520         1,333         3,287         1,954           2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,738         3,738           2017         0         43,195                                                                                                                  |                      | ,        | -          |        |       |       |       |  |  |
| 2006         3,237         10,569         7,332         1,217         3,973         2,756           2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195                                                                                                                        |                      | ,        | -          |        |       | -     |       |  |  |
| 2007         3,399         13,535         10,136         1,111         4,425         3,313           2008         3,569         16,501         12,932         1,015         4,691         3,676           2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         0         3,490         3,490           2018         0         46,161         46,161         0<                                                                                                                    |                      | ,        | · ·        | · · ·  | · ·   | · ·   |       |  |  |
| 2008         3,569         16,501         12,932         1,015         4,691         3,676           2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         6444         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         0         3,490         3,490           2018         0         46,161         46,161         0         3,244         3,244           2019         0         52,093         52,093         0                                                                                                                             |                      |          |            |        |       | · ·   |       |  |  |
| 2009         3,748         19,467         15,720         926         4,812         3,886           2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         644         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         0         3,490         3,490         3,490           2018         0         46,161         46,161         0         3,002         3,002           2020         0         52,059         50,059         0         2,544         2,544           2020         0         58,025         0         2                                                                                                                             |                      | ,        | · ·        | · '    | 1,111 | · ·   | · · · |  |  |
| 2010         3,935         22,433         18,498         846         4,822         3,976           2011         4,132         25,399         21,267         772         4,747         3,975           2012         4,338         28,365         24,027         705         4,610         3,905           2013         4,555         31,331         26,776         644         4,428         3,784           2014         4,783         34,297         29,514         588         4,215         3,627           2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         43,195         0         3,490         3,490           2018         0         46,161         46,161         0         3,002         3,002           2020         0         52,093         52,093         0         2,768         2,768           2021         0         58,025         0         2,331         2,331           2020         0         58,025         0         2,331         2,331 </td <td>2008</td> <td>3,569</td> <td>16,501</td> <td>12,932</td> <td>1,015</td> <td>4,691</td> <td></td>                     | 2008                 | 3,569    | 16,501     | 12,932 | 1,015 | 4,691 |       |  |  |
| 2011       4,132       25,399       21,267       772       4,747       3,975         2012       4,338       28,365       24,027       705       4,610       3,905         2013       4,555       31,331       26,776       644       4,428       3,784         2014       4,783       34,297       29,514       588       4,215       3,627         2015       0       37,263       37,263       0       3,982       3,982         2016       0       40,229       40,229       0       3,738       3,738         2017       0       43,195       43,195       0       3,490       3,490         2018       0       46,161       46,161       0       3,244       3,244         2019       0       52,093       52,093       0       2,768       2,768         2020       0       52,059       55,059       0       2,544       2,544         2022       0       58,025       0       2,331       2,331         2023       0       60,991       60,991       0       2,131       2,131         2023       0       60,991       60,991       0       2,131 </td <td></td> <td></td> <td>19,467</td> <td>15,720</td> <td></td> <td></td> <td></td>                                                                                                                                |                      |          | 19,467     | 15,720 |       |       |       |  |  |
| 2012       4,338       28,365       24,027       705       4,610       3,905         2013       4,555       31,331       26,776       644       4,428       3,784         2014       4,783       34,297       29,514       588       4,215       3,627         2015       0       37,263       37,263       0       3,982       3,982         2016       0       40,229       40,229       0       3,738       3,738         2017       0       43,195       43,195       0       3,490       3,490         2018       0       46,161       46,161       0       3,244       3,244         2019       0       49,127       49,127       0       3,002       3,002         2020       0       52,093       52,093       0       2,768       2,768         2021       0       58,025       58,025       0       2,331       2,331         2023       0       60,991       60,991       0       2,131       2,131         2024       (29,031)       0       29,031       (882)       0       882         IRR=       28.66 %         882                                                                                                                                                                                                                                            |                      | 3,935    | 22,433     | 18,498 |       |       | 3,976 |  |  |
| 2013       4,555       31,331       26,776       644       4,428       3,784         2014       4,783       34,297       29,514       588       4,215       3,627         2015       0       37,263       37,263       0       3,982       3,982         2016       0       40,229       40,229       0       3,738       3,738         2017       0       43,195       43,195       0       3,490       3,490         2018       0       46,161       46,161       0       3,244       3,244         2019       0       49,127       49,127       0       3,002       3,002         2020       0       52,093       0       2,768       2,768         2021       0       55,059       55,059       0       2,544       2,544         2022       0       58,025       0       2,331       2,331         2023       0       60,991       60,991       0       2,131       2,131         2024       (29,031)       0       29,031       (882)       0       882         IRR=       28.66 %       B/C=       2.73       2.73       3.73       3.73 </td <td>2011</td> <td>4,132</td> <td>25,399</td> <td>21,267</td> <td>772</td> <td>4,747</td> <td>3,975</td>                                                                                                                    | 2011                 | 4,132    | 25,399     | 21,267 | 772   | 4,747 | 3,975 |  |  |
| 2014       4,783       34,297       29,514       588       4,215       3,627         2015       0       37,263       37,263       0       3,982       3,982         2016       0       40,229       40,229       0       3,738       3,738         2017       0       43,195       43,195       0       3,490       3,490         2018       0       46,161       46,161       0       3,244       3,244         2019       0       49,127       49,127       0       3,002       3,002         2020       0       52,093       52,093       0       2,768       2,768         2021       0       55,059       55,059       0       2,544       2,544         2022       0       58,025       0       2,331       2,331         2023       0       60,991       60,991       0       2,131       2,131         2024       (29,031)       0       29,031       (882)       0       882         IRR=       28.66 %       B/C=       2.73       3.73       3.73       3.73                                                                                                                                                                                                                                                                                                         | 2012                 | 4,338    | 28,365     | 24,027 | 705   | 4,610 | 3,905 |  |  |
| 2015         0         37,263         37,263         0         3,982         3,982           2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         43,195         0         3,490         3,490           2018         0         46,161         46,161         0         3,244         3,244           2019         0         49,127         49,127         0         3,002         3,002           2020         0         52,093         0         2,768         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         3         3         3         3                                                                                                                                                                                                                                        |                      | 4,555    | · · ·      | · · ·  | -     | · ·   | · · · |  |  |
| 2016         0         40,229         40,229         0         3,738         3,738           2017         0         43,195         43,195         0         3,490         3,490           2018         0         46,161         46,161         0         3,244         3,244           2019         0         49,127         49,127         0         3,002         3,002           2020         0         52,093         52,093         0         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         2.73         2.73         2.73                                                                                                                                                                                                                                                                                                                      | 2014                 | 4,783    | 34,297     | 29,514 | 588   | 4,215 | 3,627 |  |  |
| 2017         0         43,195         43,195         0         3,490         3,490           2018         0         46,161         46,161         0         3,244         3,244           2019         0         49,127         49,127         0         3,002         3,002           2020         0         52,093         52,093         0         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         5.73         5.73         5.73         5.73                                                                                                                                                                                                                                                                                                                                                                                                      | 2015                 | 0        | 37,263     | 37,263 | 0     | 3,982 | 3,982 |  |  |
| 2018         0         46,161         46,161         0         3,244         3,244           2019         0         49,127         49,127         0         3,002         3,002           2020         0         52,093         52,093         0         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         3.73         3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2016                 | 0        | 40,229     | 40,229 | 0     | 3,738 | 3,738 |  |  |
| 2019         0         49,127         49,127         0         3,002         3,002           2020         0         52,093         52,093         0         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         3.73         3.73         3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2017                 | 0        | 43,195     | 43,195 | 0     | 3,490 | 3,490 |  |  |
| 2020         0         52,093         52,093         0         2,768         2,768           2021         0         55,059         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         B/C=         2.73         2.73         2.73         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2018                 | 0        | 46,161     | 46,161 | 0     | 3,244 | 3,244 |  |  |
| 2021         0         55,059         0         2,544         2,544           2022         0         58,025         58,025         0         2,331         2,331           2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %           5.73         5.73         5.73         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75         5.75                                                                                                   | 2019                 | 0        | 49,127     | 49,127 | 0     | 3,002 |       |  |  |
| 2022         0         58,025         58,025         0         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331         2,331< | 2020                 | 0        | 52,093     | 52,093 | 0     | 2,768 | 2,768 |  |  |
| 2023         0         60,991         60,991         0         2,131         2,131           2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         8         5         5         5         5           B/C=         2.73         2.73         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2021                 | 0        | 55,059     | 55,059 | 0     | 2,544 | 2,544 |  |  |
| 2024         (29,031)         0         29,031         (882)         0         882           IRR=         28.66 %         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8 <t< td=""><td>2022</td><td>0</td><td>58,025</td><td>58,025</td><td>0</td><td>2,331</td><td>2,331</td></t<>                                                              | 2022                 | 0        | 58,025     | 58,025 | 0     | 2,331 | 2,331 |  |  |
| IRR= 28.66 %<br>B/C= 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2023                 | 0        | 60,991     | 60,991 | 0     | 2,131 | 2,131 |  |  |
| B/C= 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | (29,031) | 0          | 29,031 | (882) | 0     | 882   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |          |            |        |       |       |       |  |  |
| NPV= 45,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B/C=                 | 2.73     |            |        |       |       |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NPV=                 | 45,127   |            |        |       |       |       |  |  |

### 6. MTDP - All Projects

|      | Cash Flow |         |           | Discounted | Cash Flow | (15%)    |
|------|-----------|---------|-----------|------------|-----------|----------|
| Year | Cost      | Benefit | B-C       | Cost       | Benefit   | B-C      |
| 1999 | 0         | 0       | 0         | 0          | 0         | 0        |
| 2000 | 18,586    | 0       | (18,586)  | 16,162     | 0         | (16,162) |
| 2001 | 16,094    | 0       | (16,094)  | 12,169     | 0         | (12,169) |
| 2002 | 30,413    | 0       | (30,413)  | 19,997     | 0         | (19,997) |
| 2003 | 52,677    | 0       | (52,677)  | 30,118     | 0         | (30,118) |
| 2004 | 114,224   | 0       | (114,224) | 56,790     | 0         | (56,790) |
| 2005 | 0         | 99,489  | 99,489    | 0          | 43,012    | 43,012   |
| 2006 | 0         | 100,036 | 100,036   | 0          | 37,607    | 37,607   |
| 2007 | 0         | 100,584 | 100,584   | 0          | 32,881    | 32,881   |
| 2008 | 0         | 101,132 | 101,132   | 0          | 28,748    | 28,748   |
| 2009 | 0         | 101,679 | 101,679   | 0          | 25,134    | 25,134   |
| 2010 | 0         | 102,227 | 102,227   | 0          | 21,973    | 21,973   |
| 2011 | 0         | 102,775 | 102,775   | 0          | 19,209    | 19,209   |
| 2012 | 0         | 103,322 | 103,322   | 0          | 16,793    | 16,793   |
| 2013 | 0         | 103,870 | 103,870   | 0          | 14,680    | 14,680   |
| 2014 | 0         | 104,418 | 104,418   | 0          | 12,832    | 12,832   |
| 2015 | 0         | 104,965 | 104,965   | 0          | 11,217    | 11,217   |
| 2016 | 0         | 105,513 | 105,513   | 0          | 9,805     | 9,805    |
| 2017 | 0         | 106,061 | 106,061   | 0          | 8,570     | 8,570    |
| 2018 | 0         | 106,608 | 106,608   | 0          | 7,491     | 7,491    |
| 2019 | 0         | 107,156 | 107,156   | 0          | 6,547     | 6,547    |
| 2020 | 0         | 107,704 | 107,704   | 0          | 5,722     | 5,722    |
| 2021 | 0         | 108,251 | 108,251   | 0          | 5,001     | 5,001    |
| 2022 | 0         | 108,799 | 108,799   | 0          | 4,371     | 4,371    |
| 2023 | 0         | 109,347 | 109,347   | 0          | 3,820     | 3,820    |
| 2024 | (51,346)  | 0       | 51,346    | (1,560)    | 0         | 1,560    |
| IRR= | 30.89     | %       |           |            |           |          |
| B/C= | 2.36      |         |           |            |           |          |

NPV= 181,737

|      | Cash Flow |         |         | Discounted Cash Flow (15%) |         |         |
|------|-----------|---------|---------|----------------------------|---------|---------|
| Year | Cost      | Benefit | B-C     | Cost                       | Benefit | B-C     |
| 1999 | 0         | 0       | 0       | 0                          | 0       | 0       |
| 2000 | 4,236     | 0       | (4,236) | 3,684                      | 0       | (3,684) |
| 2001 | 2,050     | 0       | (2,050) | 1,550                      | 0       | (1,550) |
| 2002 | 2,050     | 0       | (2,050) | 1,348                      | 0       | (1,348) |
| 2003 | 1,973     | 0       | (1,973) | 1,128                      | 0       | (1,128) |
| 2004 | 1,973     | 0       | (1,973) | 981                        | 0       | (981)   |
| 2005 | 0         | 610     | 610     | 0                          | 264     | 264     |
| 2006 | 0         | 2,439   | 2,439   | 0                          | 917     | 917     |
| 2007 | 0         | 4,267   | 4,267   | 0                          | 1,395   | 1,395   |
| 2008 | 0         | 6,095   | 6,095   | 0                          | 1,733   | 1,733   |
| 2009 | 0         | 7,924   | 7,924   | 0                          | 1,959   | 1,959   |
| 2010 | 0         | 9,752   | 9,752   | 0                          | 2,096   | 2,096   |
| 2011 | 0         | 11,580  | 11,580  | 0                          | 2,164   | 2,164   |
| 2012 | 0         | 13,409  | 13,409  | 0                          | 2,179   | 2,179   |
| 2013 | 0         | 15,237  | 15,237  | 0                          | 2,153   | 2,153   |
| 2014 | 0         | 17,065  | 17,065  | 0                          | 2,097   | 2,097   |
| 2015 | 0         | 18,894  | 18,894  | 0                          | 2,019   | 2,019   |
| 2016 | 0         | 20,722  | 20,722  | 0                          | 1,926   | 1,926   |
| 2017 | 0         | 22,551  | 22,551  | 0                          | 1,822   | 1,822   |
| 2018 | 0         | 24,379  | 24,379  | 0                          | 1,713   | 1,713   |
| 2019 | 0         | 26,207  | 26,207  | 0                          | 1,601   | 1,601   |
| 2020 | 0         | 28,036  | 28,036  | 0                          | 1,490   | 1,490   |
| 2021 | 0         | 29,864  | 29,864  | 0                          | 1,380   | 1,380   |
| 2022 | 0         | 31,692  | 31,692  | 0                          | 1,273   | 1,273   |
| 2023 | 0         | 33,521  | 33,521  | 0                          | 1,171   | 1,171   |
| 2024 | (3,410)   |         | 3,410   | (104)                      | 0       | 104     |
| IRR= | 28.31     | %       |         |                            |         |         |
| B/C= | 3.65      |         |         |                            |         |         |
| NPV= | 22,765    |         |         |                            |         |         |

| 7. | MTDP - | Northern | Package | (Road) |
|----|--------|----------|---------|--------|
|    |        |          |         |        |

### 8. MTDP - Southern Package (Road)

|      | Cash Flow |         |         |       | Cash Flow |         |
|------|-----------|---------|---------|-------|-----------|---------|
| Year | Cost      | Benefit | B-C     | Cost  | Benefit   | B-C     |
| 1999 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2000 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2001 | 8,612     | 0       | (8,612) |       | 0         | (6,512) |
| 2002 | 2,657     | 0       | (2,657) | 1,747 | 0         | (1,747) |
| 2003 | 2,856     | 0       | (2,856) |       | 0         | (1,633) |
| 2004 | 2,856     | 0       | (2,856) | 1,420 | 0         | (1,420) |
| 2005 | 0         | 22,551  | 22,551  | 0     | 9,749     | 9,749   |
| 2006 | 0         | 22,941  | 22,941  | 0     | 8,624     | 8,624   |
| 2007 | 0         | 23,330  | 23,330  | 0     | 7,627     | 7,627   |
| 2008 | 0         | 23,720  | 23,720  | 0     | 6,743     | 6,743   |
| 2009 | 0         | 24,109  | 24,109  | 0     | 5,959     | 5,959   |
| 2010 | 0         | 24,499  | 24,499  | 0     | 5,266     | 5,266   |
| 2011 | 0         | 24,888  | 24,888  | 0     | 4,652     | 4,652   |
| 2012 | 0         | 25,278  | 25,278  | 0     | 4,108     | 4,108   |
| 2013 | 0         | 25,667  | 25,667  | 0     | 3,628     | 3,628   |
| 2014 | 0         | 26,057  | 26,057  | 0     | 3,202     | 3,202   |
| 2015 | 0         | 26,447  | 26,447  | 0     | 2,826     | 2,826   |
| 2016 | 0         | 26,836  | 26,836  | 0     | 2,494     | 2,494   |
| 2017 | 0         | 27,226  | 27,226  | 0     | 2,200     | 2,200   |
| 2018 | 0         | 27,615  | 27,615  | 0     | 1,940     | 1,940   |
| 2019 | 0         | 28,005  | 28,005  | 0     | 1,711     | 1,711   |
| 2020 | 0         | 28,394  | 28,394  | 0     | 1,509     | 1,509   |
| 2021 | 0         | 28,784  | 28,784  | 0     | 1,330     | 1,330   |
| 2022 | 0         | 29,173  | 29,173  | 0     | 1,172     | 1,172   |
| 2023 | 0         | 29,563  | 29,563  | 0     | 1,033     | 1,033   |
| 2024 | (7,968)   | 0       | 7,968   | (242) | 0         | 242     |
| IRR= | 52.76     | %       |         |       |           |         |
| B/C= | 6.84      |         |         |       |           |         |

NPV= 64,703

|      | Cash Flow |         |         |       |         | ( )     |
|------|-----------|---------|---------|-------|---------|---------|
| Year | Cost      | Benefit | B-C     | Cost  | Benefit | B-C     |
| 1999 | 0         | 0       | 0       | 0     | 0       | 0       |
| 2000 | 4,284     | 0       | (4,284) |       | 0       | (3,725) |
| 2001 | 1,362     | 0       | (1,362) | 1,030 | 0       | (1,030) |
| 2002 | 1,362     | 0       | (1,362) | 896   | 0       | (896)   |
| 2003 | 1,362     | 0       | (1,362) | 779   | 0       | (779)   |
| 2004 | 1,362     | 0       | (1,362) | 677   | 0       | (677)   |
| 2005 | 0         | 1,483   | 1,483   | 0     | 641     | 641     |
| 2006 | 0         | 1,889   | 1,889   | 0     | 710     | 710     |
| 2007 | 0         | 2,295   | 2,295   | 0     | 750     | 750     |
| 2008 | 0         | 2,700   | 2,700   | 0     | 768     | 768     |
| 2009 | 0         | 3,106   | 3,106   | 0     | 768     | 768     |
| 2010 | 0         | 3,512   | 3,512   | 0     | 755     | 755     |
| 2011 | 0         | 3,918   | 3,918   | 0     | 732     | 732     |
| 2012 | 0         | 4,324   | 4,324   | 0     | 703     | 703     |
| 2013 | 0         | 4,730   | 4,730   | 0     | 669     | 669     |
| 2014 | 0         | 5,136   | 5,136   | 0     | 631     | 631     |
| 2015 | 0         | 5,542   | 5,542   | 0     | 592     | 592     |
| 2016 | 0         | 5,948   | 5,948   | 0     | 553     | 553     |
| 2017 | 0         | 6,354   | 6,354   | 0     | 513     | 513     |
| 2018 | 0         | 6,759   | 6,759   | 0     | 475     | 475     |
| 2019 | 0         | 7,165   | 7,165   | 0     | 438     | 438     |
| 2020 | 0         | 7,571   | 7,571   | 0     | 402     | 402     |
| 2021 | 0         | 7,977   | 7,977   | 0     | 369     | 369     |
| 2022 | 0         | 8,383   | 8,383   | 0     | 337     | 337     |
| 2023 | 0         | 8,789   | 8,789   | 0     | 307     | 307     |
| 2024 | (4,177)   | 0       | 4,177   | (127) | 0       | 127     |
| IRR= | 19.8      | %       |         |       |         |         |
| B/C= | 1.59      |         |         |       |         |         |

| 9. | MTDP - | Central | Package ( | (Road) |  |
|----|--------|---------|-----------|--------|--|
|----|--------|---------|-----------|--------|--|

NPV=

### 10. MTDP - Eastern Package (Road)

4,133

|      | Cash Flow Discounted Cash Flow (15%) |         |       |      |     |       |
|------|--------------------------------------|---------|-------|------|-----|-------|
| Year |                                      | Benefit | B-C   | Cost |     | B-C   |
| 1999 | 0                                    | 0       | 0     | 0    | 0   | 0     |
| 2000 | 608                                  | 0       | (608) |      | 0   | (529) |
| 2001 | 430                                  | 0       | (430) |      | 0   | (325) |
| 2002 | 430                                  | 0       | (430) |      | 0   | (283) |
| 2003 | 430                                  | 0       | (430) | 246  | 0   | (246) |
| 2004 | 430                                  | 0       | (430) |      | 0   | (214) |
| 2005 | 0                                    | 556     | 556   | 0    | 240 | 240   |
| 2006 | 0                                    | 768     | 768   | 0    | 289 | 289   |
| 2007 | 0                                    | 980     | 980   | 0    | 320 | 320   |
| 2008 | 0                                    | 1,192   | 1,192 | 0    | 339 | 339   |
| 2009 | 0                                    | 1,403   | 1,403 | 0    | 347 | 347   |
| 2010 | 0                                    | 1,615   | 1,615 | 0    | 347 | 347   |
| 2011 | 0                                    | 1,827   | 1,827 | 0    | 342 | 342   |
| 2012 | 0                                    | 2,039   | 2,039 | 0    | 331 | 331   |
| 2013 | 0                                    | 2,251   | 2,251 | 0    | 318 | 318   |
| 2014 | 0                                    | 2,463   | 2,463 | 0    | 303 | 303   |
| 2015 | 0                                    | 2,674   | 2,674 | 0    | 286 | 286   |
| 2016 | 0                                    | 2,886   | 2,886 | 0    | 268 | 268   |
| 2017 | 0                                    | 3,098   | 3,098 | 0    | 250 | 250   |
| 2018 | 0                                    | 3,310   | 3,310 | 0    | 233 | 233   |
| 2019 | 0                                    | 3,522   | 3,522 | 0    | 215 | 215   |
| 2020 | 0                                    | 3,734   | 3,734 | 0    | 198 | 198   |
| 2021 | 0                                    | 3,946   | 3,946 | 0    | 182 | 182   |
| 2022 | 0                                    | 4,157   | 4,157 | 0    | 167 | 167   |
| 2023 | 0                                    | 4,369   | 4,369 | 0    | 153 | 153   |
| 2024 | (717)                                | 0       | 717   | (22) | 0   | 22    |
| IRR= | 28.97                                |         |       |      |     |       |
| B/C= | 3.26                                 |         |       |      |     |       |
| NPV= | 3,554                                |         |       |      |     |       |

|      | Cash Flow | uy Bluge |          |       |         | · · ·   |
|------|-----------|----------|----------|-------|---------|---------|
| Year | Cost      | Benefit  | B-C      | Cost  | Benefit | B-C     |
| 1999 | 0         | 0        | 0        | 0     | 0       | 0       |
| 2000 | 0         | 0        | 0        | 0     | 0       | 0       |
| 2001 | 0         | 0        | 0        | 0     | 0       | 0       |
| 2002 | 11,177    | 0        | (11,177) | 7,349 | 0       | (7,349) |
| 2003 | 11,177    | 0        | (11,177) | 6,391 | 0       | (6,391) |
| 2004 | 11,177    | 0        | (11,177) | 5,557 | 0       | (5,557) |
| 2005 | 0         | 31,970   | 31,970   | 0     | 13,821  | 13,821  |
| 2006 | 0         | 34,405   | 34,405   | 0     | 12,934  | 12,934  |
| 2007 | 0         | 36,839   | 36,839   | 0     | 12,043  | 12,043  |
| 2008 | 0         | 39,274   | 39,274   | 0     | 11,164  | 11,164  |
| 2009 | 0         | 41,709   | 41,709   | 0     | 10,310  | 10,310  |
| 2010 | 0         | 44,144   | 44,144   | 0     | 9,489   | 9,489   |
| 2011 | 0         | 46,579   | 46,579   | 0     | 8,706   | 8,706   |
| 2012 | 0         | 49,014   | 49,014   | 0     | 7,966   | 7,966   |
| 2013 | 0         | 51,449   | 51,449   | 0     | 7,271   | 7,271   |
| 2014 | 0         | 53,884   | 53,884   | 0     | 6,622   | 6,622   |
| 2015 | 0         | 56,319   | 56,319   | 0     | 6,019   | 6,019   |
| 2016 | 0         | 58,754   | 58,754   | 0     | 5,460   | 5,460   |
| 2017 | 0         | 61,189   | 61,189   | 0     | 4,944   | 4,944   |
| 2018 | 0         | 63,624   | 63,624   | 0     | 4,471   | 4,471   |
| 2019 | 0         | 66,059   | 66,059   | 0     | 4,036   | 4,036   |
| 2020 | 0         | 68,494   | 68,494   | 0     | 3,639   | 3,639   |
| 2021 | 0         | 70,929   | 70,929   | 0     | 3,277   | 3,277   |
| 2022 | 0         | 73,364   | 73,364   | 0     | 2,947   | 2,947   |
| 2023 | 0         | 75,799   | 75,799   | 0     | 2,648   | 2,648   |
| 2024 | (8,048)   | 0        | 8,048    | (245) | 0       | 245     |
| IRR= | 61.52     | %        |          |       |         |         |
| B/C= | 7.23      |          |          |       |         |         |
| NPV= | 118,715   |          |          |       |         |         |

| 11. MTDP · | - Skyway | Stage | II&III |
|------------|----------|-------|--------|
|------------|----------|-------|--------|

### 12. MTDP - Port Access (R10/C3)

|              | Cash Flow Discounted Cash Flow (15%) |         |                 |       |         |              |  |
|--------------|--------------------------------------|---------|-----------------|-------|---------|--------------|--|
| Year         | Cost                                 | Benefit | B-C             | Cost  | Benefit | (15%)<br>B-C |  |
| 1999         | 0                                    | 0       | <u>в-с</u><br>0 | 0     | 0       | <u>в-с</u>   |  |
| 2000         | 0                                    | 0       | 0               |       |         | 0            |  |
| 2000         | 0                                    |         |                 |       |         | 0            |  |
| 2001         | 3,523                                |         | -               | -     |         | -            |  |
| 2002         | ,                                    |         | (3,523)         | 2,316 |         | (2,316)      |  |
| 2003         | 3,523                                |         | (3,523)         | 2,014 |         | (2,014)      |  |
|              | 3,523                                | -       | (3,523)         | 1,751 | -       | (1,751)      |  |
| 2005<br>2006 | 0                                    | 2,474   | 2,474           | 0     | 1,070   | 1,070        |  |
| 2006         | -                                    | 3,045   | 3,045           | 0     | 1,145   | 1,145        |  |
|              | 0                                    | 3,616   | 3,616           | 0     | 1,182   | 1,182        |  |
| 2008         | 0                                    | 4,188   | 4,188           | 0     | 1,190   | 1,190        |  |
| 2009         | 0                                    | 4,759   | 4,759           | 0     | 1,176   | 1,176        |  |
| 2010         | 0                                    | 5,330   | 5,330           | 0     | 1,146   | 1,146        |  |
| 2011         | 0                                    | 5,901   | 5,901           | 0     | 1,103   | 1,103        |  |
| 2012         | 0                                    | 6,472   | 6,472           | 0     | 1,052   | 1,052        |  |
| 2013         | 0                                    | 7,044   | 7,044           | 0     | 995     | 995          |  |
| 2014         | 0                                    | 7,615   | 7,615           | 0     | 936     | 936          |  |
| 2015         | 0                                    | 8,186   | 8,186           | 0     | 875     | 875          |  |
| 2016         | 0                                    | 8,757   | 8,757           | 0     | 814     | 814          |  |
| 2017         | 0                                    | 9,328   | 9,328           | 0     | 754     | 754          |  |
| 2018         | 0                                    | 9,900   | 9,900           | 0     | 696     | 696          |  |
| 2019         | 0                                    | 10,471  | 10,471          | 0     | 640     | 640          |  |
| 2020         | 0                                    | 11,042  | 11,042          | 0     | 587     | 587          |  |
| 2021         | 0                                    | 11,613  | 11,613          | 0     | 537     | 537          |  |
| 2022         | 0                                    | 12,184  | 12,184          | 0     | 490     | 490          |  |
| 2023         | 0                                    | 12,756  | 12,756          | 0     | 446     | 446          |  |
| 2024         | (2,536)                              | 0       | 2,536           | (77)  | 0       | 77           |  |
| IRR=         | 30.27                                | %       |                 |       |         |              |  |

B/C= NPV= 2.80 10,827

|      | Cash Flow |         |         | Discounted Cash Flow (15%) |         |         |
|------|-----------|---------|---------|----------------------------|---------|---------|
| Year | Cost      | Benefit | B-C     | Cost                       | Benefit | B-C     |
| 1999 | 0         | 0       | 0       | 0                          | 0       | 0       |
| 2000 | 9,458     | 0       | (9,458) |                            | 0       | (8,224) |
| 2001 | 972       | 0       | (972)   | 735                        | 0       | (735)   |
| 2002 | 972       | 0       | (972)   | 639                        | 0       | (639)   |
| 2003 | 972       | 0       | (972)   | 556                        | 0       | (556)   |
| 2004 | 972       | 0       | (972)   | 483                        | 0       | (483)   |
| 2005 | 0         | 5,744   | 5,744   | 0                          | 2,484   | 2,484   |
| 2006 | 0         | 7,083   | 7,083   | 0                          | 2,663   | 2,663   |
| 2007 | 0         | 8,421   | 8,421   | 0                          | 2,753   | 2,753   |
| 2008 | 0         | 9,759   | 9,759   | 0                          | 2,774   | 2,774   |
| 2009 | 0         | 11,097  | 11,097  | 0                          | 2,743   | 2,743   |
| 2010 | 0         | 12,435  | 12,435  | 0                          | 2,673   | 2,673   |
| 2011 | 0         | 13,773  | 13,773  | 0                          | 2,574   | 2,574   |
| 2012 | 0         | 15,111  | 15,111  | 0                          | 2,456   | 2,456   |
| 2013 | 0         | 16,449  | 16,449  | 0                          | 2,325   | 2,325   |
| 2014 | 0         | 17,787  | 17,787  | 0                          | 2,186   | 2,186   |
| 2015 | 0         | 19,125  | 19,125  | 0                          | 2,044   | 2,044   |
| 2016 | 0         | 20,463  | 20,463  | 0                          | 1,902   | 1,902   |
| 2017 | 0         | 21,801  | 21,801  | 0                          | 1,762   | 1,762   |
| 2018 | 0         | 23,140  | 23,140  | 0                          | 1,626   | 1,626   |
| 2019 | 0         | 24,478  | 24,478  | 0                          | 1,496   | 1,496   |
| 2020 | 0         | 25,816  | 25,816  | 0                          | 1,372   | 1,372   |
| 2021 | 0         | 27,154  | 27,154  | 0                          | 1,255   | 1,255   |
| 2022 | 0         | 28,492  | 28,492  | 0                          | 1,145   | 1,145   |
| 2023 | 0         | 29,830  | 29,830  | 0                          | 1,042   | 1,042   |
| 2024 | (6,819)   | 0       | 6,819   | (207)                      | 0       | 207     |
| IRR= | 30.09     | %       |         |                            |         |         |
| B/C= | 3.77      |         |         |                            |         |         |
| NPV= | 28,841    |         |         |                            |         |         |

13. MTDP - C-5 North Section

| 14. MTDP - MRT2 Extension | (Santolan - Masinag) |
|---------------------------|----------------------|
|---------------------------|----------------------|

|      | Cash Flow Discounted Cash Flow (1 |         |         |       |         | (15%)           |
|------|-----------------------------------|---------|---------|-------|---------|-----------------|
| Year | Cost                              | Benefit | B-C     | Cost  | Benefit | B-C             |
| 1999 | 0                                 | 0       | 0       | 0     | 0       | 0               |
| 2000 | 0                                 | 0       | 0       | 0     | 0       | C               |
| 2001 | 0                                 | 0       | 0       | 0     | 0       | 0               |
| 2002 | 0                                 | 0       | 0       | 0     | 0       | (               |
| 2003 | 2,274                             | 0       | (2,274) |       | 0       | (1,300          |
| 2004 | 5,113                             | 0       | (5,113) | 2,542 | 0       | (2,542          |
| 2005 | 0                                 | 514     | 514     | 0     | 222     | 222             |
| 2006 | 0                                 | 741     | 741     | 0     | 279     | 279             |
| 2007 | 0                                 | 968     | 968     | 0     | 317     | 317             |
| 2008 | 0                                 | 1,196   | 1,196   | 0     | 340     | 340             |
| 2009 | 0                                 | 1,423   | 1,423   | 0     | 352     | 352             |
| 2010 | 0                                 | 1,651   | 1,651   | 0     | 355     | 35              |
| 2011 | 0                                 | 1,878   | 1,878   | 0     | 351     | 35              |
| 2012 | 0                                 | 2,106   | 2,106   | 0     | 342     | 342             |
| 2013 | 0                                 | 2,333   | 2,333   | 0     | 330     | 330             |
| 2014 | 0                                 | 2,561   | 2,561   | 0     | 315     | 31              |
| 2015 | 0                                 | 2,788   | 2,788   | 0     | 298     | 298             |
| 2016 | 0                                 | 3,015   | 3,015   | 0     | 280     | 280             |
| 2017 | 0                                 | 3,243   | 3,243   | 0     | 262     | 262             |
| 2018 | 0                                 | 3,470   | 3,470   | 0     | 244     | 244             |
| 2019 | 0                                 | 3,698   | 3,698   | 0     | 226     | 220             |
| 2020 | 0                                 | 3,925   | 3,925   | 0     | 209     | 209             |
| 2021 | 0                                 | 4,153   | 4,153   | 0     | 192     | 192             |
| 2022 | 0                                 | 4,380   | 4,380   | 0     | 176     | 176             |
| 2023 | 0                                 | 4,608   | 4,608   | 0     | 161     | 16 <sup>.</sup> |
| 2024 | (1,092)                           | 0       | 1,092   | (33)  | 0       | 33              |
| RR=  | 19.09                             | %       |         |       |         |                 |
| 3/C= | 1.38                              |         |         |       |         |                 |

B/C= NPV= 1.38 1,439

|      | Cash Flow |         |         |       | Cash Flow |         |
|------|-----------|---------|---------|-------|-----------|---------|
| Year | Cost      | Benefit | B-C     | Cost  | Benefit   | B-C     |
| 1999 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2000 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2001 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2002 | 0         | 0       | 0       | 0     | 0         | 0       |
| 2003 | 3,641     | 0       | (3,641) | 2,082 | 0         | (2,082) |
| 2004 | 9,371     | 0       | (9,371) | 4,659 | 0         | (4,659) |
| 2005 | 0         | 646     | 646     | 0     | 279       | 279     |
| 2006 | 0         | 923     | 923     | 0     | 347       | 347     |
| 2007 | 0         | 1,200   | 1,200   | 0     | 392       | 392     |
| 2008 | 0         | 1,477   | 1,477   | 0     | 420       | 420     |
| 2009 | 0         | 1,754   | 1,754   | 0     | 433       | 433     |
| 2010 | 0         | 2,030   | 2,030   | 0     | 436       | 436     |
| 2011 | 0         | 2,307   | 2,307   | 0     | 431       | 431     |
| 2012 | 0         | 2,584   | 2,584   | 0     | 420       | 420     |
| 2013 | 0         | 2,861   | 2,861   | 0     | 404       | 404     |
| 2014 | 0         | 3,138   | 3,138   | 0     | 386       | 386     |
| 2015 | 0         | 3,415   | 3,415   | 0     | 365       | 365     |
| 2016 | 0         | 3,692   | 3,692   | 0     | 343       | 343     |
| 2017 | 0         | 3,969   | 3,969   | 0     | 321       | 321     |
| 2018 | 0         | 4,245   | 4,245   | 0     | 298       | 298     |
| 2019 | 0         | 4,522   | 4,522   | 0     | 276       | 276     |
| 2020 | 0         | 4,799   | 4,799   | 0     | 255       | 255     |
| 2021 | 0         | 5,076   | 5,076   | 0     | 235       | 235     |
| 2022 | 0         | 5,353   | 5,353   | 0     | 215       | 215     |
| 2023 | 0         | 5,630   | 5,630   | 0     | 197       | 197     |
| 2024 | (1,748)   | 0       | 1,748   | (53)  | 0         | 53      |
| IRR= | 14.57     | %       |         |       |           |         |
| B/C= | 0.96      |         |         |       |           |         |
| NPV= | (234)     |         |         |       |           |         |

15. MTDP - MRT3 Extension (North Ave. - Caloocan)

### 16. MTDP - MRT4 Phase I

|      | Cash Flow |         |          | Discounted Cash Flow (15%) |         |          |
|------|-----------|---------|----------|----------------------------|---------|----------|
| Year | Cost      | Benefit | B-C      | Cost                       | Benefit | B-C      |
| 1999 | 0         | 0       | 0        | 0                          | 0       | 0        |
| 2000 | 0         | 0       | 0        | 0                          | 0       | 0        |
| 2001 | 0         | 0       | 0        | 0                          | 0       | 0        |
| 2002 | 0         | 0       | 0        | 0                          | 0       | 0        |
| 2003 | 7,520     | 0       | (7,520)  | 4,300                      | 0       | (4,300)  |
| 2004 | 21,653    | 0       | (21,653) | 10,766                     | 0       | (10,766) |
| 2005 | 0         | 6,744   | 6,744    | 0                          | 2,916   | 2,916    |
| 2006 | 0         | 7,560   | 7,560    | 0                          | 2,842   | 2,842    |
| 2007 | 0         | 8,376   | 8,376    | 0                          | 2,738   | 2,738    |
| 2008 | 0         | 9,192   | 9,192    | 0                          | 2,613   | 2,613    |
| 2009 | 0         | 10,007  | 10,007   | 0                          | 2,474   | 2,474    |
| 2010 | 0         | 10,823  | 10,823   | 0                          | 2,326   | 2,326    |
| 2011 | 0         | 11,639  | 11,639   | 0                          | 2,175   | 2,175    |
| 2012 | 0         | 12,455  | 12,455   | 0                          | 2,024   | 2,024    |
| 2013 | 0         | 13,270  | 13,270   | 0                          | 1,876   | 1,876    |
| 2014 | 0         | 14,086  | 14,086   | 0                          | 1,731   | 1,731    |
| 2015 | 0         | 14,902  | 14,902   | 0                          | 1,593   | 1,593    |
| 2016 | 0         | 15,718  | 15,718   | 0                          | 1,461   | 1,461    |
| 2017 | 0         | 16,533  | 16,533   | 0                          | 1,336   | 1,336    |
| 2018 | 0         | 17,349  | 17,349   | 0                          | 1,219   | 1,219    |
| 2019 | 0         | 18,165  | 18,165   | 0                          | 1,110   | 1,110    |
| 2020 | 0         | 18,981  | 18,981   | 0                          | 1,008   | 1,008    |
| 2021 | 0         | 19,796  | 19,796   | 0                          | 915     | 915      |
| 2022 | 0         | 20,612  | 20,612   | 0                          | 828     | 828      |
| 2023 | 0         | 21,428  | 21,428   | 0                          | 749     | 749      |
| 2024 | (3,610)   | 0       | 3,610    | (110)                      | 0       | 110      |
| IRR= | 29.67     | %       |          |                            |         |          |
| B/C= | 2.27      |         |          |                            |         |          |

B/C= NPV=

18,977

|      | 17. WIDI - Telin Kan (Meyeauayan - Canotan) |           |         |          |       |           |         |
|------|---------------------------------------------|-----------|---------|----------|-------|-----------|---------|
|      |                                             | Cash Flow |         | -        |       | Cash Flow | · · · · |
|      | ear                                         | Cost      | Benefit | B-C      | Cost  | Benefit   | B-C     |
| -    | 999                                         | 0         | 0       | 0        | 0     | 0         | 0       |
|      | 000                                         | 0         | 0       | 0        | 0     | 0         | 0       |
|      | 001                                         | 0         | 0       | 0        | 0     | 0         | 0       |
|      | 002                                         | 3,862     | 0       | (3,862)  |       | 0         | (2,540) |
|      | 003                                         | 3,862     | 0       | (3,862)  | 2,208 | 0         | (2,208) |
|      | 004                                         | 16,623    | 0       | (16,623) | 8,265 | 0         | (8,265) |
|      | 005                                         | 0         | 2,016   | 2,016    | 0     | 871       | 871     |
| 20   | 006                                         | 0         | 2,948   | 2,948    | 0     | 1,108     | 1,108   |
| 20   | 007                                         | 0         | 3,879   | 3,879    | 0     | 1,268     | 1,268   |
| 20   | 800                                         | 0         | 4,811   | 4,811    | 0     | 1,368     | 1,368   |
| 20   | 009                                         | 0         | 5,743   | 5,743    | 0     | 1,420     | 1,420   |
| 20   | 010                                         | 0         | 6,675   | 6,675    | 0     | 1,435     | 1,435   |
| 20   | )11                                         | 0         | 7,607   | 7,607    | 0     | 1,422     | 1,422   |
| 20   | )12                                         | 0         | 8,539   | 8,539    | 0     | 1,388     | 1,388   |
| 20   | )13                                         | 0         | 9,471   | 9,471    | 0     | 1,339     | 1,339   |
| 20   | )14                                         | 0         | 10,403  | 10,403   | 0     | 1,278     | 1,278   |
| 20   | )15                                         | 0         | 11,335  | 11,335   | 0     | 1,211     | 1,211   |
| 20   | 016                                         | 0         | 12,267  | 12,267   | 0     | 1,140     | 1,140   |
| 20   | )17                                         | 0         | 13,199  | 13,199   | 0     | 1,067     | 1,067   |
| 20   | )18                                         | 0         | 14,131  | 14,131   | 0     | 993       | 993     |
| 20   | )19                                         | 0         | 15,062  | 15,062   | 0     | 920       | 920     |
| 20   | )20                                         | 0         | 15,994  | 15,994   | 0     | 850       | 850     |
| 20   | )21                                         | 0         | 16,926  | 16,926   | 0     | 782       | 782     |
| 20   | )22                                         | 0         | 17,858  | 17,858   | 0     | 717       | 717     |
| 20   | )23                                         | 0         | 18,790  | 18,790   | 0     | 656       | 656     |
| 20   | )24                                         | (2,781)   | 0       | 2,781    | (85)  | 0         | 85      |
| IRR= |                                             | 21.40     | %       |          |       |           |         |
| B/C= |                                             | 1.64      |         |          |       |           |         |
|      |                                             |           |         |          |       |           |         |

17. MTDP - North Rail (Meycauayan - Caloocan)

NPV=

8,305

18. MTDP - MCX/PNR Improvement (Caloocan - Alabang)

|      | Cash Flow |         |          | Discounted Cash Flow (15%) |         |          |  |
|------|-----------|---------|----------|----------------------------|---------|----------|--|
| Year | Cost      | Benefit | B-C      | Cost                       | Benefit | B-C      |  |
| 1999 | 0         | 0       | 0        | 0                          | 0       | 0        |  |
| 2000 | 0         | 0       | 0        | 0                          | 0       | 0        |  |
| 2001 | 0         | 0       | 0        | 0                          | 0       | 0        |  |
| 2002 | 0         | 0       | 0        | 0                          | 0       | 0        |  |
| 2003 | 12,348    | 0       | (12,348) |                            | 0       | (7,060)  |  |
| 2004 | 39,528    | 0       | (39,528) | 19,653                     | 0       | (19,653) |  |
| 2005 | 0         | 8,902   | 8,902    | 0                          | 3,849   | 3,849    |  |
| 2006 | 0         | 10,809  | 10,809   | 0                          | 4,064   | 4,064    |  |
| 2007 | 0         | 12,717  | 12,717   | 0                          | 4,157   | 4,157    |  |
| 2008 | 0         | 14,624  | 14,624   | 0                          | 4,157   | 4,157    |  |
| 2009 | 0         | 16,532  | 16,532   | 0                          | 4,086   | 4,086    |  |
| 2010 | 0         | 18,439  | 18,439   | 0                          | 3,963   | 3,963    |  |
| 2011 | 0         | 20,346  | 20,346   | 0                          | 3,803   | 3,803    |  |
| 2012 | 0         | 22,254  | 22,254   | 0                          | 3,617   | 3,617    |  |
| 2013 | 0         | 24,161  | 24,161   | 0                          | 3,415   | 3,415    |  |
| 2014 | 0         | 26,069  | 26,069   | 0                          | 3,204   | 3,204    |  |
| 2015 | 0         | 27,976  | 27,976   | 0                          | 2,990   | 2,990    |  |
| 2016 | 0         | 29,884  | 29,884   | 0                          | 2,777   | 2,777    |  |
| 2017 | 0         | 31,791  | 31,791   | 0                          | 2,569   | 2,569    |  |
| 2018 | 0         | 33,698  | 33,698   | 0                          | 2,368   | 2,368    |  |
| 2019 | 0         | 35,606  | 35,606   | 0                          | 2,176   | 2,176    |  |
| 2020 | 0         | 37,513  | 37,513   | 0                          | 1,993   | 1,993    |  |
| 2021 | 0         | 39,421  | 39,421   | 0                          | 1,821   | 1,821    |  |
| 2022 | 0         | 41,328  | 41,328   | 0                          | 1,660   | 1,660    |  |
| 2023 | 0         | 43,236  | 43,236   | 0                          | 1,510   | 1,510    |  |
| 2024 | (5,927)   | 0       | 5,927    | (180)                      | 0       | 180      |  |
| IRR= | 27.68     |         |          |                            |         |          |  |
| B/C= | 2.19      |         |          |                            |         |          |  |

NPV= 31,646

|      | Cash Flow |         |          |       | Cash Flow |         |
|------|-----------|---------|----------|-------|-----------|---------|
| Year | Cost      | Benefit | B-C      | Cost  | Benefit   | B-C     |
| 1999 | 0         | 0       | 0        | 0     | 0         | 0       |
| 2000 | 0         | 0       | 0        | 0     | 0         | 0       |
| 2001 | 0         | 0       | 0        | 0     | 0         | 0       |
| 2002 | 4,980     | 0       | (4,980)  |       | 0         | (3,274) |
| 2003 | 4,980     | 0       | (4,980)  |       | 0         | (2,847) |
| 2004 | 19,020    | 0       | (19,020) |       | 0         | (9,456) |
| 2005 | 0         | 3,661   | 3,661    | 0     | 1,583     | 1,583   |
| 2006 | 0         | 4,765   | 4,765    | 0     | 1,791     | 1,791   |
| 2007 | 0         | 5,870   | 5,870    | 0     | 1,919     | 1,919   |
| 2008 | 0         | 6,974   | 6,974    | 0     | 1,982     | 1,982   |
| 2009 | 0         | 8,078   | 8,078    | 0     | 1,997     | 1,997   |
| 2010 | 0         | 9,183   | 9,183    | 0     | 1,974     | 1,974   |
| 2011 | 0         | 10,287  | 10,287   | 0     | 1,923     | 1,923   |
| 2012 | 0         | 11,392  | 11,392   | 0     | 1,851     | 1,851   |
| 2013 | 0         | 12,496  | 12,496   | 0     | 1,766     | 1,766   |
| 2014 | 0         | 13,600  | 13,600   | 0     | 1,671     | 1,671   |
| 2015 | 0         | 14,705  | 14,705   | 0     | 1,571     | 1,571   |
| 2016 | 0         | 15,809  | 15,809   | 0     | 1,469     | 1,469   |
| 2017 | 0         | 16,914  | 16,914   | 0     | 1,367     | 1,367   |
| 2018 | 0         | 18,018  | 18,018   | 0     | 1,266     | 1,266   |
| 2019 | 0         | 19,122  | 19,122   | 0     | 1,168     | 1,168   |
| 2020 | 0         | 20,227  | 20,227   | 0     | 1,075     | 1,075   |
| 2021 | 0         | 21,331  | 21,331   | 0     | 986       | 986     |
| 2022 | 0         | 22,436  | 22,436   | 0     | 901       | 901     |
| 2023 | 0         | 23,540  | 23,540   | 0     | 822       | 822     |
| 2024 | (3,586)   | 0       | 3,586    | (109) | 0         | 109     |
| IRR= | 0.24      |         |          |       |           |         |
| B/C= | 1.88      |         |          |       |           |         |
| NPV= | 13,614    |         |          |       |           |         |

**19. MTDP - MRT6 (Baclaran - Imus)** 

#### Sensitibity Test

#### 1. Master Plan - All Projects

| _                   |      |      |      |      | <cost></cost> |      |      |      |  |  |
|---------------------|------|------|------|------|---------------|------|------|------|--|--|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |  |  |
|                     | 1.20 | 46.4 | 47.6 | 48.9 | 51.7          | 54.9 | 56.7 | 58.7 |  |  |
|                     | 1.15 | 45.2 | 46.4 | 47.6 | 50.4          | 53.6 | 55.4 | 57.3 |  |  |
|                     | 1.10 | 44.0 | 45.1 | 46.4 | 49.1          | 52.2 | 54.0 | 55.9 |  |  |
| <revenue></revenue> | 1.00 | 41.4 | 42.6 | 43.8 | 46.4          | 49.4 | 51.1 | 52.9 |  |  |
|                     | 0.90 | 38.8 | 39.8 | 41.0 | 43.5          | 46.4 | 48.0 | 49.8 |  |  |
|                     | 0.85 | 37.3 | 38.4 | 39.5 | 42.0          | 44.8 | 46.4 | 48.1 |  |  |
|                     | 0.80 | 35.9 | 36.9 | 38.0 | 40.4          | 43.1 | 44.7 | 46.4 |  |  |

#### 2. Master Plan - Railway Projects

|                     | 2. Intester | Thuster Full Rullway Frojects |      |      |               |      |      |      |  |  |  |
|---------------------|-------------|-------------------------------|------|------|---------------|------|------|------|--|--|--|
| _                   |             |                               |      |      | <cost></cost> |      |      |      |  |  |  |
| [                   |             | 1.20                          | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |  |  |  |
| ĺ                   | 1.20        | 40.6                          | 41.8 | 43.2 | 46.3          | 49.9 | 52.0 | 54.3 |  |  |  |
|                     | 1.15        | 39.3                          | 40.6 | 41.9 | 44.9          | 48.4 | 50.4 | 52.7 |  |  |  |
|                     | 1.10        | 38.1                          | 39.3 | 40.6 | 43.5          | 46.9 | 48.9 | 51.0 |  |  |  |
| <revenue></revenue> | 1.00        | 35.5                          | 36.6 | 37.8 | 40.6          | 43.8 | 45.6 | 47.7 |  |  |  |
|                     | 0.90        | 32.8                          | 33.9 | 35.0 | 37.6          | 40.6 | 42.3 | 44.2 |  |  |  |
|                     | 0.85        | 31.5                          | 32.5 | 33.6 | 36.0          | 38.9 | 40.6 | 42.4 |  |  |  |
|                     | 0.80        | 30.1                          | 31.0 | 32.1 | 34.4          | 37.2 | 38.8 | 40.6 |  |  |  |

#### 3. Master Plan - Expressway Projects

|                     |      | Thustor Fruit Express way Frequencies |      |      |               |      |      |      |  |  |  |
|---------------------|------|---------------------------------------|------|------|---------------|------|------|------|--|--|--|
| _                   |      |                                       |      |      | <cost></cost> |      |      |      |  |  |  |
|                     |      | 1.20                                  | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |  |  |  |
|                     | 1.20 | 50.8                                  | 52.5 | 54.2 | 58.1          | 62.6 | 65.1 | 67.8 |  |  |  |
|                     | 1.15 | 49.2                                  | 50.8 | 52.6 | 56.3          | 60.7 | 63.2 | 65.9 |  |  |  |
|                     | 1.10 | 47.6                                  | 49.2 | 50.8 | 54.6          | 58.9 | 61.3 | 63.9 |  |  |  |
| <revenue></revenue> | 1.00 | 44.2                                  | 45.7 | 47.3 | 50.8          | 55.0 | 57.3 | 59.8 |  |  |  |
|                     | 0.90 | 40.7                                  | 42.1 | 43.6 | 46.9          | 50.8 | 53.0 | 55.5 |  |  |  |
|                     | 0.85 | 38.8                                  | 40.2 | 41.6 | 44.9          | 48.7 | 50.8 | 53.2 |  |  |  |
|                     | 0.80 | 36.9                                  | 38.2 | 39.7 | 42.8          | 46.5 | 48.6 | 50.8 |  |  |  |

4. Master Plan - Primary Road Projects

|                     |               |      | •    |      |      |      |      |      |  |  |  |  |  |
|---------------------|---------------|------|------|------|------|------|------|------|--|--|--|--|--|
| _                   | <cost></cost> |      |      |      |      |      |      |      |  |  |  |  |  |
|                     |               | 1.20 | 1.15 | 1.10 | 1.00 | 0.90 | 0.85 | 0.80 |  |  |  |  |  |
|                     | 1.20          | 47.5 | 48.4 | 49.4 | 51.5 | 53.8 | 55.1 | 56.5 |  |  |  |  |  |
|                     | 1.15          | 46.6 | 47.5 | 48.4 | 50.5 | 52.8 | 54.1 | 55.5 |  |  |  |  |  |
|                     | 1.10          | 45.6 | 46.5 | 47.5 | 49.5 | 51.9 | 53.1 | 54.5 |  |  |  |  |  |
| <revenue></revenue> | 1.00          | 43.6 | 44.5 | 45.5 | 47.5 | 49.8 | 51.0 | 52.4 |  |  |  |  |  |
|                     | 0.90          | 41.5 | 42.3 | 43.3 | 45.2 | 47.5 | 48.7 | 50.0 |  |  |  |  |  |
|                     | 0.85          | 40.3 | 41.2 | 42.1 | 44.1 | 46.3 | 47.5 | 48.8 |  |  |  |  |  |
|                     | 0.80          | 39.1 | 40.0 | 40.9 | 42.8 | 45.0 | 46.2 | 47.5 |  |  |  |  |  |

#### 5. Master Plan - Secondary Road Projects

| -                   | . Master I | . Master Flan - Secondary Road Frojects |      |      |               |      |      |      |  |  |  |
|---------------------|------------|-----------------------------------------|------|------|---------------|------|------|------|--|--|--|
| _                   |            |                                         |      |      | <cost></cost> |      |      |      |  |  |  |
|                     |            | 1.20                                    | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |  |  |  |
|                     | 1.20       | 28.7                                    | 29.3 | 30.0 | 31.6          | 33.4 | 34.4 | 35.4 |  |  |  |
|                     | 1.15       | 28.0                                    | 28.7 | 29.4 | 30.9          | 32.7 | 33.6 | 34.7 |  |  |  |
|                     | 1.10       | 27.3                                    | 28.0 | 28.7 | 30.2          | 31.9 | 32.9 | 33.9 |  |  |  |
| <revenue></revenue> | 1.00       | 25.9                                    | 26.5 | 27.2 | 28.7          | 30.3 | 31.3 | 32.3 |  |  |  |
|                     | 0.90       | 24.3                                    | 24.9 | 25.6 | 27.0          | 28.7 | 29.6 | 30.5 |  |  |  |
|                     | 0.85       | 23.5                                    | 24.1 | 24.8 | 26.2          | 27.8 | 28.7 | 29.6 |  |  |  |
|                     | 0.80       | 22.6                                    | 23.2 | 23.9 | 25.3          | 26.8 | 27.7 | 28.7 |  |  |  |

|                     |      | 1111 1 1 0 100 |      |      |               |      |      |      |
|---------------------|------|----------------|------|------|---------------|------|------|------|
| _                   |      |                |      |      | <cost></cost> |      |      |      |
|                     |      | 1.20           | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 30.9           | 31.9 | 32.9 | 35.2          | 37.9 | 39.4 | 41.1 |
|                     | 1.15 | 29.9           | 30.9 | 31.9 | 34.2          | 36.8 | 38.3 | 39.9 |
|                     | 1.10 | 28.9           | 29.9 | 30.9 | 33.1          | 35.7 | 37.1 | 38.7 |
| <revenue></revenue> | 1.00 | 26.9           | 27.8 | 28.8 | 30.9          | 33.4 | 34.7 | 36.3 |
|                     | 0.90 | 24.8           | 25.6 | 26.5 | 28.5          | 30.9 | 32.2 | 33.7 |
|                     | 0.85 | 23.7           | 24.5 | 25.4 | 27.3          | 29.6 | 30.9 | 32.3 |
|                     | 0.80 | 22.5           | 23.3 | 24.2 | 26.1          | 28.3 | 29.5 | 30.9 |

#### 6. MTDP - All Projects

#### 7. MTDP - Northern Package (Road)

|                     |      |      |      | ,    | <i>(</i> <b>0</b> )) |      |      |      |
|---------------------|------|------|------|------|----------------------|------|------|------|
| _                   |      |      |      |      | <cost></cost>        |      |      |      |
|                     |      | 1.20 | 1.15 | 1.10 | 1.00                 | 0.90 | 0.85 | 0.80 |
| ſ                   | 1.20 | 28.3 | 28.8 | 29.4 | 30.5                 | 31.9 | 32.6 | 33.4 |
|                     | 1.15 | 27.8 | 28.3 | 28.9 | 30.0                 | 31.3 | 32.1 | 32.9 |
|                     | 1.10 | 27.3 | 27.8 | 28.3 | 29.5                 | 30.8 | 31.5 | 32.3 |
| <revenue></revenue> | 1.00 | 26.2 | 26.7 | 27.2 | 28.3                 | 29.6 | 30.3 | 31.1 |
|                     | 0.90 | 25.0 | 25.5 | 26.0 | 27.1                 | 28.3 | 29.0 | 29.7 |
|                     | 0.85 | 24.4 | 24.8 | 25.3 | 26.4                 | 27.6 | 28.3 | 29.0 |
|                     | 0.80 | 23.7 | 24.2 | 24.7 | 25.7                 | 26.9 | 27.6 | 28.3 |

#### 8. MTDP - Southern Package (Road)

|                     |      | Southern I uchage (Roud) |      |      |               |      |      |      |  |  |
|---------------------|------|--------------------------|------|------|---------------|------|------|------|--|--|
| _                   |      |                          |      |      | <cost></cost> |      |      |      |  |  |
|                     |      | 1.20                     | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |  |  |
|                     | 1.20 | 52.8                     | 54.0 | 55.2 | 58.0          | 61.2 | 63.0 | 65.0 |  |  |
|                     | 1.15 | 51.6                     | 52.8 | 54.0 | 56.8          | 59.9 | 61.7 | 63.6 |  |  |
|                     | 1.10 | 50.4                     | 51.5 | 52.8 | 55.5          | 58.6 | 60.3 | 62.2 |  |  |
| <revenue></revenue> | 1.00 | 47.8                     | 48.9 | 50.1 | 52.8          | 55.8 | 57.5 | 59.3 |  |  |
|                     | 0.90 | 45.1                     | 46.2 | 47.3 | 49.9          | 52.8 | 54.4 | 56.1 |  |  |
|                     | 0.85 | 43.7                     | 44.7 | 45.9 | 48.3          | 51.2 | 52.8 | 54.5 |  |  |
|                     | 0.80 | 42.2                     | 43.2 | 44.3 | 46.8          | 49.5 | 51.1 | 52.8 |  |  |

#### 9. MTDP - Central Package (Road)

|                     |               | B- () |      |      |      |      |      |      |  |  |
|---------------------|---------------|-------|------|------|------|------|------|------|--|--|
|                     | <cost></cost> |       |      |      |      |      |      |      |  |  |
|                     |               | 1.20  | 1.15 | 1.10 | 1.00 | 0.90 | 0.85 | 0.80 |  |  |
|                     | 1.20          | 19.8  | 20.3 | 20.8 | 21.9 | 23.2 | 23.9 | 24.6 |  |  |
|                     | 1.15          | 19.3  | 19.8 | 20.3 | 21.4 | 22.6 | 23.3 | 24.1 |  |  |
|                     | 1.10          | 18.9  | 19.3 | 19.8 | 20.9 | 22.1 | 22.8 | 23.5 |  |  |
| <revenue></revenue> | 1.00          | 17.8  | 18.3 | 18.8 | 19.8 | 21.0 | 21.7 | 22.4 |  |  |
|                     | 0.90          | 16.8  | 17.2 | 17.7 | 18.7 | 19.8 | 20.4 | 21.1 |  |  |
|                     | 0.85          | 16.2  | 16.6 | 17.1 | 18.1 | 19.2 | 19.8 | 20.5 |  |  |
|                     | 0.80          | 15.6  | 16.0 | 16.4 | 17.4 | 18.5 | 19.1 | 19.8 |  |  |

#### 10. MTDP - Eastern Package (Road)

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 29.0 | 29.6 | 30.2 | 31.6          | 33.2 | 34.1 | 35.1 |
|                     | 1.15 | 28.4 | 29.0 | 29.6 | 31.0          | 32.6 | 33.5 | 34.4 |
|                     | 1.10 | 27.7 | 28.3 | 29.0 | 30.3          | 31.9 | 32.8 | 33.7 |
| <revenue></revenue> | 1.00 | 26.5 | 27.0 | 27.6 | 29.0          | 30.5 | 31.3 | 32.2 |
|                     | 0.90 | 25.1 | 25.6 | 26.2 | 27.5          | 29.0 | 29.8 | 30.7 |
|                     | 0.85 | 24.3 | 24.9 | 25.5 | 26.7          | 28.2 | 29.0 | 29.8 |
|                     | 0.80 | 23.6 | 24.1 | 24.7 | 25.9          | 27.3 | 28.1 | 29.0 |

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 61.5 | 63.2 | 64.9 | 68.8          | 73.4 | 75.9 | 78.7 |
|                     | 1.15 | 59.9 | 61.5 | 63.2 | 67.1          | 71.5 | 74.0 | 76.7 |
|                     | 1.10 | 58.3 | 59.8 | 61.5 | 65.3          | 69.6 | 72.1 | 74.7 |
| <revenue></revenue> | 1.00 | 54.9 | 56.4 | 58.0 | 61.5          | 65.7 | 68.0 | 70.6 |
|                     | 0.90 | 51.3 | 52.7 | 54.2 | 57.6          | 61.5 | 63.7 | 66.2 |
|                     | 0.85 | 49.4 | 50.8 | 52.3 | 55.5          | 59.4 | 61.5 | 63.9 |
|                     | 0.80 | 47.5 | 48.8 | 50.3 | 53.4          | 57.1 | 59.2 | 61.5 |

~

#### 11. MTDP - Skyway Stage II&III

#### 12. MTDP - Port Access(R10/C3)

|                     |               |      | · · · · |      |      |      |      |      |  |  |
|---------------------|---------------|------|---------|------|------|------|------|------|--|--|
| _                   | <cost></cost> |      |         |      |      |      |      |      |  |  |
|                     |               | 1.20 | 1.15    | 1.10 | 1.00 | 0.90 | 0.85 | 0.80 |  |  |
|                     | 1.20          | 30.3 | 31.1    | 31.9 | 33.9 | 36.1 | 37.3 | 38.7 |  |  |
|                     | 1.15          | 29.5 | 30.3    | 31.1 | 33.0 | 35.2 | 36.4 | 37.8 |  |  |
|                     | 1.10          | 28.7 | 29.5    | 30.3 | 32.1 | 34.2 | 35.4 | 36.8 |  |  |
| <revenue></revenue> | 1.00          | 27.0 | 27.7    | 28.5 | 30.3 | 32.3 | 33.5 | 34.7 |  |  |
|                     | 0.90          | 25.2 | 25.9    | 26.7 | 28.3 | 30.3 | 31.4 | 32.6 |  |  |
|                     | 0.85          | 24.3 | 25.0    | 25.7 | 27.3 | 29.2 | 30.3 | 31.4 |  |  |
|                     | 0.80          | 23.4 | 24.0    | 24.7 | 26.3 | 28.1 | 29.2 | 30.3 |  |  |

#### 13. MTDP - C-5 North Section

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 30.1 | 30.7 | 31.3 | 32.7          | 34.2 | 35.1 | 36.1 |
|                     | 1.15 | 29.5 | 30.1 | 30.7 | 32.1          | 33.6 | 34.5 | 35.4 |
|                     | 1.10 | 28.9 | 29.5 | 30.1 | 31.4          | 33.0 | 33.8 | 34.7 |
| <revenue></revenue> | 1.00 | 27.6 | 28.2 | 28.8 | 30.1          | 31.6 | 32.4 | 33.3 |
|                     | 0.90 | 26.3 | 26.8 | 27.4 | 28.7          | 30.1 | 30.9 | 31.8 |
|                     | 0.85 | 25.6 | 26.1 | 26.7 | 27.9          | 29.3 | 30.1 | 30.9 |
|                     | 0.80 | 24.8 | 25.3 | 25.9 | 27.1          | 28.5 | 29.3 | 30.1 |

#### 14. MTDP - MRT2 Extension(Santolan - Masinag)

|                     |      |      |      |      | 8/            |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
| _                   |      |      |      |      | <cost></cost> |      |      |      |
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 19.1 | 19.7 | 20.3 | 21.7          | 23.3 | 24.2 | 25.2 |
|                     | 1.15 | 18.5 | 19.1 | 19.7 | 21.1          | 22.6 | 23.5 | 24.5 |
|                     | 1.10 | 17.9 | 18.5 | 19.1 | 20.4          | 22.0 | 22.8 | 23.8 |
| <revenue></revenue> | 1.00 | 16.7 | 17.2 | 17.8 | 19.1          | 20.6 | 21.4 | 22.3 |
|                     | 0.90 | 15.4 | 15.9 | 16.5 | 17.7          | 19.1 | 19.9 | 20.8 |
|                     | 0.85 | 14.7 | 15.2 | 15.8 | 17.0          | 18.3 | 19.1 | 19.9 |
|                     | 0.80 | 14.0 | 14.5 | 15.0 | 16.2          | 17.5 | 18.3 | 19.1 |

#### 15. MTDP - MRT3 Extension(North Ave. - Caloocan)

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 14.6 | 15.1 | 15.6 | 16.8          | 18.2 | 19.0 | 19.8 |
|                     | 1.15 | 14.1 | 14.6 | 15.1 | 16.3          | 17.6 | 18.4 | 19.2 |
|                     | 1.10 | 13.6 | 14.1 | 14.6 | 15.7          | 17.1 | 17.8 | 18.6 |
| <revenue></revenue> | 1.00 | 12.5 | 13.0 | 13.5 | 14.6          | 15.9 | 16.6 | 17.3 |
|                     | 0.90 | 11.4 | 11.8 | 12.3 | 13.4          | 14.6 | 15.3 | 16.0 |
|                     | 0.85 | 10.8 | 11.2 | 11.7 | 12.7          | 13.9 | 14.6 | 15.3 |
|                     | 0.80 | 10.2 | 10.6 | 11.0 | 12.1          | 13.2 | 13.9 | 14.6 |

#### 16. MTDP - MRT4 Phase I

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
| Γ                   | 1.20 | 29.7 | 30.7 | 31.8 | 34.2          | 37.1 | 38.7 | 40.6 |
|                     | 1.15 | 28.7 | 29.7 | 30.7 | 33.1          | 35.9 | 37.5 | 39.3 |
|                     | 1.10 | 27.7 | 28.7 | 29.7 | 32.0          | 34.7 | 36.2 | 38.0 |
| <revenue></revenue> | 1.00 | 25.7 | 26.6 | 27.5 | 29.7          | 32.2 | 33.7 | 35.3 |
|                     | 0.90 | 23.6 | 24.5 | 25.3 | 27.3          | 29.7 | 31.0 | 32.5 |
|                     | 0.85 | 22.6 | 23.4 | 24.2 | 26.1          | 28.4 | 29.7 | 31.1 |
|                     | 0.80 | 21.5 | 22.2 | 23.1 | 24.9          | 27.1 | 28.3 | 29.7 |

#### 17. MTDP - North Rail(Meycauayan - Caloocan)

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 21.4 | 22.0 | 22.7 | 24.1          | 25.8 | 26.7 | 27.8 |
|                     | 1.15 | 20.8 | 21.4 | 22.0 | 23.5          | 25.1 | 26.0 | 27.0 |
|                     | 1.10 | 20.2 | 20.8 | 21.4 | 22.8          | 24.4 | 25.3 | 26.3 |
| <revenue></revenue> | 1.00 | 18.9 | 19.5 | 20.1 | 21.4          | 22.9 | 23.8 | 24.8 |
|                     | 0.90 | 17.5 | 18.1 | 18.7 | 19.9          | 21.4 | 22.2 | 23.1 |
|                     | 0.85 | 16.8 | 17.4 | 17.9 | 19.2          | 20.6 | 21.4 | 22.3 |
|                     | 0.80 | 16.1 | 16.6 | 17.1 | 18.4          | 19.8 | 20.5 | 21.4 |

#### 18. MTDP - MCX/PNR Improvement(Caloocan - Alabang)

| _                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
| [                   |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 27.7 | 28.6 | 29.5 | 31.6          | 34.0 | 35.5 | 37.0 |
|                     | 1.15 | 26.8 | 27.7 | 28.6 | 30.6          | 33.0 | 34.4 | 35.9 |
|                     | 1.10 | 26.0 | 26.8 | 27.7 | 29.7          | 32.0 | 33.3 | 34.8 |
| <revenue></revenue> | 1.00 | 24.2 | 25.0 | 25.8 | 27.7          | 29.9 | 31.1 | 32.5 |
|                     | 0.90 | 22.4 | 23.1 | 23.9 | 25.6          | 27.7 | 28.9 | 30.1 |
|                     | 0.85 | 21.4 | 22.1 | 22.9 | 24.6          | 26.6 | 27.7 | 28.9 |
|                     | 0.80 | 20.5 | 21.1 | 21.9 | 23.5          | 25.4 | 26.5 | 27.7 |

#### 19. MTDP - MRT6 (Baclaran - Imus)

|                     |      | · · · |      | /    |               |      |      |      |
|---------------------|------|-------|------|------|---------------|------|------|------|
| _                   |      |       |      |      | <cost></cost> |      |      |      |
|                     |      | 1.20  | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 23.8  | 24.5 | 25.2 | 26.9          | 28.8 | 29.9 | 31.0 |
|                     | 1.15 | 23.1  | 23.8 | 24.5 | 26.1          | 28.0 | 29.1 | 30.2 |
|                     | 1.10 | 22.4  | 23.1 | 23.8 | 25.4          | 27.2 | 28.2 | 29.4 |
| <revenue></revenue> | 1.00 | 21.0  | 21.6 | 22.3 | 23.8          | 25.5 | 26.5 | 27.6 |
|                     | 0.90 | 19.5  | 20.1 | 20.7 | 22.1          | 23.8 | 24.7 | 25.7 |
|                     | 0.85 | 18.7  | 19.3 | 19.9 | 21.3          | 22.9 | 23.8 | 24.8 |
|                     | 0.80 | 17.9  | 18.4 | 19.0 | 20.4          | 22.0 | 22.8 | 23.8 |

# **APPENDIX II**

# TECHNICAL NOTES/MATERIALS FINANCIAL EVALUATION OF MTDP PROJECTS

### 13. FINANCIAL EVALUATION OF MTDP PROJECTS

### 1. Skyway Stage II&III

| 1999         6,708         6,708         -6,708         -4,4           2002         6,708         6,708         -6,708         -3,6           2004         6,708         6,708         -6,708         -3,6           2005         201         201         2,122         1,921         8           2006         201         201         2,282         2,081         7           2008         201         201         2,603         2,402         6           2009         201         201         2,603         2,402         6           2010         201         201         2,924         2,723         5           2011         201         201         2,924         2,723         5           2010         201         201         3,084         2,883         5           2011         201         201         3,044         3,203         4           2013         201         201         3,655         3,364         4           2015         201         201         3,685         3,684         5         5           2016         201         201         201         4,687         4,486             |      |                    |         |        | -            |            | (PhP Million) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|---------|--------|--------------|------------|---------------|
| 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Cost               |         |        |              |            |               |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Capital Investment | O&M     | Total  | Fare Revenue | Net Income | Discounted    |
| 2001       6,708       6,708       -6,708       -4,4         2003       6,708       6,708       -6,708       -4,4         2004       6,708       6,708       -6,708       -3,3         2005       201       201       2,122       1,921       8         2006       201       201       2,282       2,081       7         2007       201       201       2,603       2,402       6         2009       201       201       2,603       2,402       6         2009       201       201       2,603       2,402       6         2010       201       201       2,603       2,402       6         2010       201       201       2,603       2,402       6         2010       201       201       2,603       2,402       6         2010       201       201       2,603       2,402       6         2011       201       2,603       2,402       6       6         2010       201       2,01       3,084       2,883       6       6         2011       201       201       3,044       3,043       4       6                                                                                                         | 1999 |                    |         |        |              |            |               |
| 2002       6,708       6,708       -6,708       -4,44         2003       6,708       6,708       -6,708       -6,708       -3,5         2004       6,708       6,708       -6,708       -6,708       -3,5         2005       201       201       2,122       1,921       -8,73         2006       201       201       2,282       2,081       7,73         2007       201       201       2,603       2,402       6,708         2009       201       201       2,763       2,562       6,708         2010       201       201       2,763       2,562       6,708         2011       201       201       2,763       2,562       6,708         2010       201       201       2,763       2,562       6,708         2011       201       201       2,763       2,562       6,708         2010       201       201       3,084       2,883       5,55         2011       201       201       3,044       3,203       4,44         2013       201       201       3,725       3,524       5,52         2016       201       201       201 <td>2000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | 2000 |                    |         |        |              |            |               |
| 2003       6,708       6,708       -6,708       -6,708       -3,3         2004       6,708       6,708       -6,708       -6,708       -3,3         2005       201       201       2,122       1,921       -8,20         2006       201       201       2,282       2,081       7,7         2007       201       201       2,443       2,242       7,7         2008       201       201       2,603       2,402       6,7         2009       201       201       2,924       2,723       6,7         2010       201       201       3,084       2,883       6,7         2011       201       201       3,044       3,203       4,4         2012       201       201       2,014       3,043       4,4         2013       201       201       3,665       3,364       4,4         2014       201       201       201       3,725       3,524       5,2         2016       201       201       201       3,885       3,684       5,2       2,2       2,2       2,2       2,2       2,2       2,2       2,2       2,2       2,2       2,2                                                                            | 2001 |                    |         |        |              |            |               |
| 2004       6,708       6,708       -6,708       -6,708       -3,3         2005       201       201       2,122       1,921       -8,3         2006       201       201       2,122       1,921       -8,7         2007       201       201       2,282       2,081       7,7         2008       201       201       2,603       2,402       6,7         2009       201       201       2,603       2,402       6,7         2010       201       201       2,633       2,402       6,7         2010       201       201       2,633       2,402       6,7         2011       201       201       2,633       2,402       6,7         2010       201       201       2,633       2,402       6,7         2011       201       201       3,084       2,883       6,7         2011       201       201       3,084       2,883       6,7         2012       201       201       3,144       3,043       4,4         2013       201       201       201       3,565       3,364       4,4         2015       201       201       <                                                                                     | 2002 | 6,708              |         | 6,708  |              | -6,708     | -4,411        |
| 2005       201       201       2,122       1,921       8         2006       201       201       2,282       2,081       7         2007       201       201       2,443       2,242       7         2008       201       201       2,603       2,402       6         2009       201       201       2,763       2,562       6         2010       201       201       2,924       2,723       5         2011       201       201       3,084       2,883       5         2012       201       201       3,084       2,883       5         2013       201       201       3,044       3,203       4         2014       201       201       201       3,644       4         2015       201       201       3,725       3,524       5         2016       201       201       201       3,885       3,684       5       5         2018       201       201       201       4,366       4,165       2       2         2020       201       201       201       4,527       4,326       2       2         2021<                                                                                                           | 2003 | 6,708              |         | 6,708  |              | -6,708     | -3,835        |
| 2006       201       201       2,282       2,081       7         2007       201       201       2,443       2,242       7         2008       201       201       2,603       2,402       66         2009       201       201       2,603       2,402       66         2010       201       201       2,763       2,562       66         2011       201       2,011       2,924       2,723       55         2011       201       201       3,084       2,883       55         2012       201       201       3,244       3,043       44         2013       201       201       2,444       3,043       44         2013       201       201       3,404       3,203       44         2014       201       201       3,565       3,364       44         2015       201       201       3,725       3,524       53         2016       201       201       201       3,885       3,684       53         2018       201       201       201       4,687       4,486       53         2020       201       201       2                                                                                                  | 2004 | 6,708              |         | 6,708  |              | -6,708     | -3,335        |
| 2007       201       201       2,443       2,242       7         2008       201       201       2,603       2,402       6         2009       201       201       2,763       2,562       6         2010       201       201       2,924       2,723       5         2011       201       201       2,924       2,723       5         2011       201       201       2,924       2,723       5         2011       201       201       3,084       2,883       5         2012       201       201       3,244       3,043       4         2013       201       201       3,404       3,203       4         2014       201       201       20,13       3,644       4         2015       201       201       3,725       3,524       5         2016       201       201       201       3,885       3,684       5         2018       201       201       201       4,046       3,845       5       5         2020       201       201       201       4,687       4,486       5       5         2021                                                                                                                  | 2005 |                    | 201     | 201    | 2,122        | 1,921      | 830           |
| 2008       201       201       2,603       2,402       6         2009       201       201       2,763       2,562       6         2010       201       201       2,924       2,723       5         2011       201       201       2,924       2,723       5         2011       201       201       2,924       2,723       5         2012       201       201       3,084       2,883       5         2013       201       201       3,244       3,043       4         2014       201       201       3,565       3,364       4         2015       201       201       2,723       524       3         2014       201       201       3,084       3,043       4         2015       201       201       3,665       3,364       4         2016       201       201       3,725       3,524       3       3         2017       201       201       201       4,046       3,845       3       3         2018       201       201       201       4,165       2       2       2       2       2       2                                                                                                               | 2006 |                    | 201     | 201    | 2,282        | 2,081      | 782           |
| 2009       201       201       2,763       2,562       6         2010       201       201       2,924       2,723       5         2011       201       201       2,024       2,723       5         2012       201       201       2,01       3,084       2,883       5         2013       201       201       2,01       3,244       3,043       4         2013       201       201       2,01       3,404       3,203       4         2014       201       201       2,565       3,364       4         2013       201       201       3,565       3,364       4         2014       201       201       3,725       3,524       5         2016       201       201       2,01       3,885       3,684       5         2016       201       201       201       4,046       3,845       5         2018       201       201       4,046       4,465       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       <                                                                                                 | 2007 |                    | 201     | 201    | 2,443        | 2,242      | 733           |
| 2010       201       201       2,924       2,723       5         2011       201       201       201       3,084       2,883       5         2012       201       201       201       3,044       3,043       4         2013       201       201       201       3,404       3,203       4         2014       201       201       201       3,655       3,364       4         2015       201       201       201       3,725       3,524       3         2016       201       201       201       3,885       3,684       3         2017       201       201       201       4,046       3,845       3         2018       201       201       201       4,066       4,165       2         2020       201       201       201       4,366       4,165       2         2021       201       201       201       4,366       4,165       2         2020       201       201       201       4,867       4,486       4         2022       201       201       201       4,686       4       4         2023       201                                                                                                   | 2008 |                    | 201     | 201    | 2,603        | 2,402      | 683           |
| 2011       201       201       3,084       2,883       5         2012       201       201       201       3,244       3,043       4         2013       201       201       201       3,404       3,203       4         2014       201       201       201       3,565       3,364       4         2015       201       201       201       3,725       3,524       3         2016       201       201       201       3,885       3,684       3         2017       201       201       201       4,046       3,845       3         2018       201       201       201       4,066       4,165       2         2020       201       201       201       4,366       4,165       2         2021       201       201       201       4,366       4,165       2         2020       201       201       201       4,867       4,486       4         2022       201       201       201       4,687       4,646       4         2023       201       201       201       5,007       4,806       4         2024 <td< td=""><td>2009</td><td></td><td>201</td><td>201</td><td>2,763</td><td>2,562</td><td>633</td></td<> | 2009 |                    | 201     | 201    | 2,763        | 2,562      | 633           |
| 2012       201       201       3,244       3,043       4         2013       201       201       201       3,404       3,203       4         2014       201       201       201       3,565       3,364       4         2015       201       201       201       3,725       3,524       5         2016       201       201       201       3,885       3,684       5         2017       201       201       201       4,046       3,845       5         2018       201       201       201       4,366       4,165       5         2020       201       201       201       4,366       4,165       5         2020       201       201       201       4,366       4,165       5         2020       201       201       201       4,366       4,486       5         2022       201       201       201       4,847       4,646       4         2023       201       201       201       5,007       4,806       4         2024       -4.025       201       -3.824       5,168       8,992       5                                                                                                                | 2010 |                    | 201     | 201    | 2,924        | 2,723      | 585           |
| 2013       201       201       3,404       3,203       4         2014       201       201       201       3,565       3,364       4         2015       201       201       201       3,725       3,524       5         2016       201       201       201       3,885       3,684       5         2017       201       201       201       4,046       3,845       5         2018       201       201       201       4,206       4,005       2         2019       201       201       201       4,366       4,165       2         2020       201       201       201       4,366       4,165       2         2020       201       201       201       4,366       4,486       2         2021       201       201       201       4,687       4,486       2         2022       201       201       201       4,646       1         2023       201       201       2007       4,806       1         2024       -4.025       201       -3.824       5168       8.992       2                                                                                                                                        | 2011 |                    | 201     | 201    | 3,084        | 2,883      | 539           |
| 2014     201     201     3,565     3,364     4       2015     201     201     3,725     3,524     3       2016     201     201     3,885     3,684     3       2017     201     201     201     4,046     3,845     3       2018     201     201     201     4,206     4,005     2       2019     201     201     201     4,366     4,165     2       2020     201     201     4,527     4,326     2       2021     201     201     201     4,687     4,486       2022     201     201     201     4,646     1       2023     201     201     201     5,007     4,806     1       2024     -4.025     201     -3.824     5,168     8,992     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2012 |                    | 201     | 201    | 3,244        | 3,043      | 495           |
| 2015         201         201         3,725         3,524         3           2016         201         201         3,885         3,684         3           2017         201         201         201         4,046         3,845         3           2018         201         201         201         4,206         4,005         2           2019         201         201         201         4,366         4,165         2           2020         201         201         201         4,687         4,486         2           2021         201         201         201         4,687         4,646         1           2022         201         201         201         4,687         4,646         1           2023         201         201         201         5,007         4,806         1           2024         -4.025         201         -3.824         5.168         8.992         2                                                                                                                                                                                                                     | 2013 |                    | 201     | 201    | 3,404        | 3,203      | 453           |
| 2016       201       201       3,885       3,684       3         2017       201       201       201       4,046       3,845       3         2018       201       201       201       4,206       4,005       2         2019       201       201       201       4,366       4,165       2         2020       201       201       201       4,527       4,326       2         2021       201       201       201       4,687       4,486       2         2022       201       201       201       4,687       4,646       1         2023       201       201       201       5,007       4,806       1         2024       -4.025       201       -3,824       5,168       8,992       2         Discourt                                                                                                                                                                                                                                                                                                                                                                                                           | 2014 |                    | 201     | 201    | 3,565        | 3,364      | 413           |
| 2017       201       201       4,046       3,845       3         2018       201       201       201       4,206       4,005       2         2019       201       201       201       4,366       4,165       2         2020       201       201       201       4,527       4,326       2         2021       201       201       201       4,687       4,486       2         2022       201       201       201       4,847       4,646       1         2023       201       201       201       5,007       4,806       1         2024       -4.025       201       -3,824       5,168       8,992       2         FIRR=       11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2015 |                    | 201     | 201    | 3,725        | 3,524      | 377           |
| 2018       201       201       4,206       4,005       2         2019       201       201       201       4,366       4,165       2         2020       201       201       201       4,527       4,326       2         2021       201       201       201       4,687       4,486       2         2022       201       201       201       4,847       4,646       1         2023       201       201       201       5,007       4,806       1         2024       -4.025       201       -3.824       5.168       8.992       2         Discourd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2016 |                    | 201     | 201    | 3,885        | 3,684      | 342           |
| 2019         201         201         4,366         4,165         2           2020         201         201         201         4,527         4,326         2           2021         201         201         201         4,687         4,486         2           2022         201         201         201         4,847         4,646         1           2023         201         201         201         5,007         4,806         1           2024         -4.025         201         -3.824         5.168         8.992         2           Discourd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2017 |                    | 201     | 201    | 4,046        | 3,845      | 311           |
| 2020         201         201         4,527         4,326         2           2021         201         201         201         4,687         4,486         2           2022         201         201         201         4,847         4,646         1           2023         201         201         201         5,007         4,806         1           2024         -4,025         201         -3,824         5,168         8,992         2           FIRR=         11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2018 |                    | 201     | 201    | 4,206        | 4,005      | 281           |
| 2021         201         201         4,687         4,486         2           2022         201         201         4,847         4,646         1           2023         201         201         201         5,007         4,806         1           2024         -4,025         201         -3,824         5,168         8,992         2           FIRR=         11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2019 |                    | 201     | 201    | 4,366        | 4,165      | 254           |
| 2022         201         201         4,847         4,646         1           2023         201         201         201         5,007         4,806         1           2024         -4,025         201         -3,824         5,168         8,992         2           FIRR=         11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2020 |                    | 201     | 201    | 4,527        | 4,326      | 230           |
| 2023         201         201         5,007         4,806         1           2024         -4,025         201         -3,824         5,168         8,992         2           FIRR=         11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2021 |                    | 201     | 201    | 4,687        | 4,486      | 207           |
| 2024         -4.025         201         -3.824         5.168         8.992         2           FIRR=         11.7%         Discount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2022 |                    | 201     | 201    | 4,847        | 4,646      | 187           |
| FIRR= 11.7% Discoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2023 |                    | 201     | 201    | 5,007        | 4,806      | 168           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024 | -4,025             |         | -3,824 | 5,168        | 8,992      | 273           |
| B/C= 0.77 at 15% p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |         |        |              |            | Discounted    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |         |        |              |            | at 15% p.a.   |
| NPV= (2,805)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | NPV=               | (2,805) |        |              |            |               |

#### 2. Port Access(R10/C3)

|      | (KI0/C3)           |         |        |              |            | (PhP Million) |
|------|--------------------|---------|--------|--------------|------------|---------------|
|      | Cost               |         |        |              |            |               |
|      | Capital Investment | O&M     | Total  | Fare Revenue | Net Income | Discounted    |
| 1999 |                    |         |        |              |            |               |
| 2000 |                    |         |        |              |            |               |
| 2001 |                    |         |        |              |            |               |
| 2002 | 4,244              |         | 4,244  |              | -4,244     | -2,790        |
| 2003 | 4,244              |         | 4,244  |              | -4,244     | -2,427        |
| 2004 | 4,244              |         | 4,244  |              | -4,244     | -2,110        |
| 2005 |                    | 127     | 127    | 713          | 586        | 253           |
| 2006 |                    | 127     | 127    | 743          | 616        | 231           |
| 2007 |                    | 127     | 127    | 774          | 647        | 211           |
| 2008 |                    | 127     | 127    | 804          | 677        | 192           |
| 2009 |                    | 127     | 127    | 834          | 707        | 175           |
| 2010 |                    | 127     | 127    | 864          | 737        | 158           |
| 2011 |                    | 127     | 127    | 894          | 767        | 143           |
| 2012 |                    | 127     | 127    | 925          | 798        | 130           |
| 2013 |                    | 127     | 127    | 955          | 828        | 117           |
| 2014 |                    | 127     | 127    | 985          | 858        | 105           |
| 2015 |                    | 127     | 127    | 1,015        | 888        | 95            |
| 2016 |                    | 127     | 127    | 1,045        | 918        | 85            |
| 2017 |                    | 127     | 127    | 1,076        | 949        | 77            |
| 2018 |                    | 127     | 127    | 1,106        | 979        | 69            |
| 2019 |                    | 127     | 127    | 1,136        | 1,009      | 62            |
| 2020 |                    | 127     | 127    | 1,166        | 1,039      | 55            |
| 2021 |                    | 127     | 127    | 1,196        | 1,069      | 49            |
| 2022 |                    | 127     | 127    | 1,227        | 1,100      | 44            |
| 2023 |                    | 127     | 127    | 1,257        | 1,130      | 39            |
| 2024 | -2,547             | 127     | -2,420 | 1,287        | 3,707      | 113           |
|      | FIRR=              | 3.5%    |        |              |            | Discounted    |
|      | B/C=               | 33.6%   |        |              |            | at 15% p.a.   |
|      | NPV=               | (5,119) |        |              |            |               |

|      |                                       |              |         |     |         |         |         | (PhP Millio |
|------|---------------------------------------|--------------|---------|-----|---------|---------|---------|-------------|
|      |                                       |              | Cost    |     |         |         |         |             |
|      | · · · · · · · · · · · · · · · · · · · | Capital Inve | stment  |     |         | Fare    | Net     | Discounte   |
|      | Construction                          | E&M          | Total   | O&M | Total   | revenue | Income  | at15%p.a    |
| 1999 |                                       |              |         |     |         |         |         |             |
| 2000 |                                       |              |         |     |         |         |         |             |
| 2001 |                                       |              |         |     |         |         |         |             |
| 2002 |                                       |              |         |     |         |         |         |             |
| 2003 |                                       |              |         |     |         |         |         |             |
| 2004 | 5,480                                 | 3,640        | 9,120   |     | 9,120   |         | (9,120) | -4,534      |
| 2005 |                                       |              |         | 121 | 121     | 920     | 799     | 34          |
| 2006 |                                       |              |         | 128 | 128     | 967     | 839     | 31          |
| 2007 |                                       |              |         | 135 | 135     | 1,013   | 878     | 28          |
| 2008 |                                       |              |         | 141 | 141     | 1,060   | 919     | 26          |
| 2009 |                                       |              |         | 148 | 148     | 1,106   | 958     | 23          |
| 2010 |                                       |              |         | 154 | 154     | 1,153   | 999     | 21          |
| 2011 |                                       |              |         | 161 | 161     | 1,199   | 1,038   | 19          |
| 2012 |                                       |              |         | 168 | 168     | 1,246   | 1,078   | 17          |
| 2013 |                                       |              |         | 174 | 174     | 1,292   | 1,118   | 15          |
| 2014 |                                       |              |         | 181 | 181     | 1,339   | 1,158   | 14          |
| 2015 |                                       |              |         | 187 | 187     | 1,385   | 1,198   | 12          |
| 2016 |                                       |              |         | 194 | 194     | 1,432   | 1,238   | 11          |
| 2017 |                                       |              |         | 201 | 201     | 1,478   | 1,277   | 10          |
| 2018 |                                       |              |         | 207 | 207     | 1,525   | 1,318   | 9:          |
| 2019 |                                       |              |         | 214 | 214     | 1,571   | 1,357   | 8           |
| 2020 |                                       |              |         | 220 | 220     | 1,618   | 1,398   | 74          |
| 2021 |                                       |              |         | 227 | 227     | 1,664   | 1,437   | 6           |
| 2022 |                                       |              |         | 234 | 234     | 1,711   | 1,477   | 5           |
| 2023 |                                       |              |         | 240 | 240     | 1,757   | 1,517   | 5           |
| 2024 | (1,315)                               |              | (1,315) | 247 | (1,068) | 1,804   | 2,872   | 8           |
|      | FIRR=                                 | 10.1%        |         |     |         |         |         |             |
|      | B/C=                                  | 0.73         |         |     |         |         |         |             |
|      | NPV=                                  | -1,342       |         |     |         |         |         |             |

## 3. Financial Evaluation of MRT2 Extension(Santolan - Masinag)

|      |              |              |        |     |        | -       | -       | (PhP Million) |
|------|--------------|--------------|--------|-----|--------|---------|---------|---------------|
|      |              |              | Cost   |     |        |         |         |               |
|      | (            | Capital Inve | stment |     |        | Fare    | Net     | Discounted    |
|      | Construction | E&M          | Total  | O&M | Total  | revenue | Income  | at15%p.a      |
| 1999 |              |              | 0      |     | 0      | 0       | 0       | 0             |
| 2000 |              |              | 0      |     | 0      | 0       | 0       | 0             |
| 2001 |              |              | 0      |     | 0      | 0       | 0       | 0             |
| 2002 |              |              | 0      |     | 0      | 0       | 0       | 0             |
| 2003 | 3,800        |              | 3,800  |     | 3,800  | 0       | -3,800  | -2,173        |
| 2004 | 3,800        | 7,346        | 11,146 |     | 11,146 | 0       | -11,146 | -5,542        |
| 2005 |              |              | 0      | 238 | 238    | 1,068   | 830     | 359           |
| 2006 |              |              | 0      | 253 | 253    | 1,123   | 870     | 327           |
| 2007 |              |              | 0      | 268 | 268    | 1,177   | 909     | 297           |
| 2008 |              |              | 0      | 283 | 283    | 1,232   | 949     | 270           |
| 2009 |              |              | 0      | 298 | 298    | 1,286   | 988     | 244           |
| 2010 |              |              | 0      | 313 | 313    | 1,341   | 1,028   | 221           |
| 2011 |              |              | 0      | 328 | 328    | 1,396   | 1,068   | 200           |
| 2012 |              |              | 0      | 343 | 343    | 1,450   | 1,107   | 180           |
| 2013 |              |              | 0      | 358 | 358    | 1,505   | 1,147   | 162           |
| 2014 |              |              | 0      | 373 | 373    | 1,559   | 1,186   | 146           |
| 2015 |              |              | 0      | 388 | 388    | 1,614   | 1,226   | 131           |
| 2016 |              |              | 0      | 403 | 403    | 1,669   | 1,266   | 118           |
| 2017 |              |              | 0      | 418 | 418    | 1,723   | 1,305   | 105           |
| 2018 |              |              | 0      | 433 | 433    | 1,778   | 1,345   | 95            |
| 2019 |              |              | 0      | 448 | 448    | 1,832   | 1,384   | 85            |
| 2020 |              |              | 0      | 463 | 463    | 1,887   | 1,424   | 76            |
| 2021 |              |              | 0      | 478 | 478    | 1,942   | 1,464   | 68            |
| 2022 |              |              | 0      | 493 | 493    | 1,996   | 1,503   | 60            |
| 2023 |              |              | 0      | 508 | 508    | 2,051   | 1,543   | 54            |
| 2024 | -1,520       |              | -1,520 | 523 | -997   | 2,105   | 3,102   | 94            |

#### 4. Financial Evaluation of MRT3 Extension(North Rail - Caloocan)

(PhP Million)

|      | 1            |              |        |       |        |         |         | (PhP Millio |
|------|--------------|--------------|--------|-------|--------|---------|---------|-------------|
|      |              |              | Cost   |       |        |         |         |             |
|      |              | Capital Inve |        |       |        | Fare    | Net     | Discount    |
|      | Construction | E&M          | Total  | O&M   | Total  | revenue | Income  | at15%p.     |
| 1999 |              |              | 0      |       | 0      | 0       | 0       |             |
| 2000 |              |              | 0      |       | 0      | 0       | 0       |             |
| 2001 |              |              | 0      |       | 0      | 0       | 0       |             |
| 2002 |              |              | 0      |       | 0      | 0       | 0       |             |
| 2003 | 9,060        |              | 9,060  |       | 9,060  | 0       | -9,060  | -5,18       |
| 2004 | 9,060        | 18,120       | 27,180 |       | 27,180 | 0       | -27,180 | -13,51      |
| 2005 |              |              | 0      | 525   | 525    | 3,492   | 2,967   | 1,28        |
| 2006 |              |              | 0      | 556   | 556    | 3,699   | 3,143   | 1,18        |
| 2007 |              |              | 0      | 586   | 586    | 3,905   | 3,319   | 1,08        |
| 2008 |              |              | 0      | 617   | 617    | 4,112   | 3,495   | 99          |
| 2009 |              |              | 0      | 648   | 648    | 4,319   | 3,671   | 90          |
| 2010 |              |              | 0      | 679   | 679    | 4,526   | 3,847   | 82          |
| 2011 |              |              | 0      | 709   | 709    | 4,732   | 4,023   | 75          |
| 2012 |              |              | 0      | 740   | 740    | 4,939   | 4,199   | 68          |
| 2013 |              |              | 0      | 771   | 771    | 5,146   | 4,375   | 61          |
| 2014 |              |              | 0      | 802   | 802    | 5,352   | 4,550   | 55          |
| 2015 |              |              | 0      | 832   | 832    | 5,559   | 4,727   | 50          |
| 2016 |              |              | 0      | 863   | 863    | 5,766   | 4,903   | 45          |
| 2017 |              |              | 0      | 894   | 894    | 5,972   | 5,078   | 41          |
| 2018 |              |              | 0      | 925   | 925    | 6,179   | 5,254   | 36          |
| 2019 |              |              | 0      | 955   | 955    | 6,386   | 5,431   | 33          |
| 2020 |              |              | 0      | 986   | 986    | 6,593   | 5,607   | 29          |
| 2021 |              |              | 0      | 1,017 | 1,017  | 6,799   | 5,782   | 26          |
| 2022 |              |              | 0      | 1,047 | 1,047  | 7,006   | 5,959   | 23          |
| 2023 |              |              | 0      | 1,078 | 1,078  | 7,213   | 6,135   | 21          |
| 2024 | -3,624       |              | -3,624 | 1,109 | -2,515 | 7,419   | 9,934   | 30          |
|      | FIRR=        | 9.5%         |        |       |        |         |         |             |
|      | B/C=         | 0.69         |        |       |        |         |         |             |
|      | NPV=         | -6,412       |        |       |        |         |         |             |

#### 5. Financial Evaluation of MRT4 Phase I

#### Cost Discounted Capital Investment Fare Net E&M at15%p.a Construction Total O&M Total revenue Income 4,653 4,653 4,653 -4,653 -3,059 4,653 4,653 4,653 -4,653 -2,660 4,654 16,360 21,014 21,014 -21,014 -10,448 1,796 1,570 1,965 1,717 2,134 1,864 2,303 2,011 2,472 2,158 2,640 2,304 2,809 2,451 2,978 2,598 2,745 3,147 3,316 2,891

4,000

4,169

4,338 4,506

4,675

4,844

5,013

5,182

5,351

5.520

3,537

3,663

3,790

3,915

4,041

4,167

4,293

4,419

4,545

7 463

#### 6. Financial Evaluation of North Rail(Meycauayan - Caloocan)

| -2.792 |        |
|--------|--------|
| FIRR=  | 6.7%   |
| B/C=   | 0.51   |
| NPV=   | -8,481 |
|        |        |

| 7. Financial Evaluation of MCX/PNR Improvement (Caloocan - Alabang) |              |              |         |       |        |         |         |               |  |  |  |
|---------------------------------------------------------------------|--------------|--------------|---------|-------|--------|---------|---------|---------------|--|--|--|
|                                                                     |              |              |         |       |        |         |         | (PhP Million) |  |  |  |
|                                                                     |              |              | Cost    |       |        |         |         |               |  |  |  |
|                                                                     |              | Capital Inve | estment |       |        | Fare    | Net     | Discounted    |  |  |  |
|                                                                     | Construction | E&M          | Total   | O&M   | Total  | revenue | Income  | at15%p.a      |  |  |  |
| 1999                                                                |              |              | 0       |       | 0      | 0       | 0       | 0             |  |  |  |
| 2000                                                                |              |              | 0       |       | 0      | 0       | 0       | 0             |  |  |  |
| 2001                                                                |              |              | 0       |       | 0      | 0       | 0       | 0             |  |  |  |
| 2002                                                                |              |              | 0       |       | 0      | 0       | 0       | 0             |  |  |  |
| 2003                                                                | 14,877       |              | 14,877  |       | 14,877 | 0       | -14,877 | -8,506        |  |  |  |
| 2004                                                                | 14,877       | 34,847       | 49,724  |       | 49,724 | 0       | -49,724 | -24,721       |  |  |  |
| 2005                                                                |              |              | 0       | 1,447 | 1,447  | 10,791  | 9,344   | 4,039         |  |  |  |
| 2006                                                                |              |              | 0       | 1,517 | 1,517  | 11,254  | 9,737   | 3,660         |  |  |  |
| 2007                                                                |              |              | 0       | 1,587 | 1,587  | 11,717  | 10,130  | 3,311         |  |  |  |
| 2008                                                                |              |              | 0       | 1,657 | 1,657  | 12,181  | 10,524  | 2,992         |  |  |  |
| 2009                                                                |              |              | 0       | 1,727 | 1,727  | 12,644  | 10,917  | 2,699         |  |  |  |
| 2010                                                                |              |              | 0       | 1,797 | 1,797  | 13,107  | 11,310  | 2,431         |  |  |  |
| 2011                                                                |              |              | 0       | 1,867 | 1,867  | 13,570  | 11,703  | 2,187         |  |  |  |
| 2012                                                                |              |              | 0       | 1,936 | 1,936  | 14,033  | 12,097  | 1,966         |  |  |  |
| 2013                                                                |              |              | 0       | 2,006 | 2,006  | 14,497  | 12,491  | 1,765         |  |  |  |
| 2014                                                                |              |              | 0       | 2,076 | 2,076  | 14,960  | 12,884  | 1,583         |  |  |  |
| 2015                                                                |              |              | 0       | 2,146 | 2,146  | 15,423  | 13,277  | 1,419         |  |  |  |
| 2016                                                                |              |              | 0       | 2,216 | 2,216  | 15,886  | 13,670  | 1,270         |  |  |  |
| 2017                                                                |              |              | 0       | 2,286 | 2,286  | 16,349  | 14,063  | 1,136         |  |  |  |
| 2018                                                                |              |              | 0       | 2,355 | 2,355  | 16,813  | 14,458  | 1,016         |  |  |  |
| 2019                                                                |              |              | 0       | 2,425 | 2,425  | 17,276  | 14,851  | 907           |  |  |  |
| 2020                                                                |              |              | 0       | 2,495 | 2,495  | 17,739  | 15,244  | 810           |  |  |  |
| 2021                                                                |              |              | 0       | 2,565 | 2,565  | 18,202  | 15,637  | 722           |  |  |  |
| 2022                                                                |              |              | 0       | 2,635 | 2,635  | 18,665  | 16,030  | 644           |  |  |  |
| 2023                                                                |              |              | 0       | 2,705 | 2,705  | 19,129  | 16,424  | 574           |  |  |  |
| 2024                                                                | -5.951       |              | -5,951  | 2,775 | -3,176 | 19,592  | 22,768  | 692           |  |  |  |
|                                                                     | FIRR=        | 16.2%        |         |       |        |         |         |               |  |  |  |
|                                                                     | B/C=         | 1.07         |         |       |        |         |         |               |  |  |  |
|                                                                     | NPV=         | 2,598        |         |       |        |         |         |               |  |  |  |

## 7. Financial Evaluation of MCX/PNR Improvement (Caloocan - Alabang)

|      |              |              |        |       |        |         |         | (PhP Millio |
|------|--------------|--------------|--------|-------|--------|---------|---------|-------------|
|      |              |              | Cost   |       |        |         |         |             |
|      |              | Capital Inve | stment |       |        | Fare    | Net     | Discounte   |
|      | Construction | E&M          | Total  | O&M   | Total  | revenue | Income  | at15%p.a    |
| 1999 |              |              | 0      |       | 0      | 0       | 0       | C           |
| 2000 |              |              | 0      |       | 0      | 0       | 0       | (           |
| 2001 |              |              | 0      |       | 0      | 0       | 0       | (           |
| 2002 |              |              | 0      |       | 0      | 0       | 0       | (           |
| 2003 | 9,000        |              | 9,000  |       | 9,000  | 0       | -9,000  | -5,146      |
| 2004 | 9,000        | 18,000       | 27,000 |       | 27,000 | 0       | -27,000 | -13,424     |
| 2005 |              |              | 0      | 349   | 349    | 2,874   | 2,525   | 1,09        |
| 2006 |              |              | 0      | 389   | 389    | 3,189   | 2,800   | 1,05        |
| 2007 |              |              | 0      | 429   | 429    | 3,505   | 3,076   | 1,000       |
| 2008 |              |              | 0      | 468   | 468    | 3,820   | 3,352   | 95          |
| 2009 |              |              | 0      | 508   | 508    | 4,135   | 3,627   | 89          |
| 2010 |              |              | 0      | 547   | 547    | 4,451   | 3,904   | 83          |
| 2011 |              |              | 0      | 587   | 587    | 4,766   | 4,179   | 78          |
| 2012 |              |              | 0      | 627   | 627    | 5,081   | 4,454   | 72          |
| 2013 |              |              | 0      | 666   | 666    | 5,396   | 4,730   | 66          |
| 2014 |              |              | 0      | 706   | 706    | 5,712   | 5,006   | 61          |
| 2015 |              |              | 0      | 746   | 746    | 6,027   | 5,281   | 56          |
| 2016 |              |              | 0      | 785   | 785    | 6,342   | 5,557   | 51          |
| 2017 |              |              | 0      | 825   | 825    | 6,658   | 5,833   | 47          |
| 2018 |              |              | 0      | 864   | 864    | 6,973   | 6,109   | 42          |
| 2019 |              |              | 0      | 904   | 904    | 7,288   | 6,384   | 39          |
| 2020 |              |              | 0      | 944   | 944    | 7,604   | 6,660   | 35          |
| 2021 |              |              | 0      | 983   | 983    | 7,919   | 6,936   | 32          |
| 2022 |              |              | 0      | 1,023 | 1,023  | 8,234   | 7,211   | 29          |
| 2023 |              |              | 0      | 1,063 | 1,063  | 8,549   | 7,486   | 26          |
| 2024 | -3,600       |              | -3,600 | 1,102 | -2,498 | 8,865   | 11,363  | 34          |
|      | FIRR=        | 10.1%        |        |       |        |         |         |             |
|      | B/C=         | 0.70         |        |       |        |         |         |             |
|      | NPV=         | -6,001       |        |       |        |         |         |             |

#### 8. Financial Evaluation of MRT6(Baclaran - Imus)

# Sensitibity Test

| 1. Skyway | Stage | II&III |
|-----------|-------|--------|
|-----------|-------|--------|

|                     |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 11.7 | 12.2 | 12.7 | 13.9          | 15.3 | 16.1 | 17.0 |
|                     | 1.15 | 11.2 | 11.7 | 12.2 | 13.4          | 14.8 | 15.5 | 16.4 |
|                     | 1.10 | 10.7 | 11.1 | 11.7 | 12.8          | 14.2 | 14.9 | 15.7 |
| <revenue></revenue> | 1.00 | 9.6  | 10.1 | 10.6 | 11.7          | 12.9 | 13.7 | 14.5 |
|                     | 0.90 | 8.5  | 8.9  | 9.4  | 10.4          | 11.7 | 12.4 | 13.1 |
|                     | 0.85 | 7.9  | 8.3  | 8.8  | 9.8           | 11.0 | 11.7 | 12.4 |
|                     | 0.80 | 7.3  | 7.7  | 8.1  | 9.1           | 10.3 | 11.0 | 11.7 |

#### 2. Port Access(R10/C3)

|                     |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 38.7 | 39.9 | 41.1 | 43.7          | 46.7 | 48.4 | 50.1 |
|                     | 1.15 | 37.5 | 38.7 | 39.9 | 42.6          | 45.5 | 47.1 | 48.9 |
|                     | 1.10 | 36.3 | 37.5 | 38.7 | 41.3          | 44.3 | 45.9 | 47.6 |
| <revenue></revenue> | 1.00 | 33.8 | 34.9 | 36.1 | 38.7          | 41.6 | 43.2 | 44.9 |
|                     | 0.90 | 31.0 | 32.1 | 33.3 | 35.8          | 38.7 | 40.3 | 41.9 |
|                     | 0.85 | 29.4 | 30.6 | 31.8 | 34.3          | 37.1 | 38.7 | 40.4 |
|                     | 0.80 | 27.8 | 29.0 | 30.2 | 32.7          | 35.5 | 37.1 | 38.7 |

#### 3. MRT2 Extension (Santolan - Masinag)

|                     |      |      | (    |      | -8/           |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
| _                   |      |      |      |      | <cost></cost> |      |      |      |
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 10.1 | 10.7 | 11.4 | 12.8          | 14.6 | 15.5 | 16.6 |
|                     | 1.15 | 9.5  | 10.1 | 10.8 | 12.2          | 13.9 | 14.8 | 15.9 |
|                     | 1.10 | 8.9  | 9.5  | 10.1 | 11.5          | 13.1 | 14.1 | 15.1 |
| <revenue></revenue> | 1.00 | 7.7  | 8.2  | 8.8  | 10.1          | 11.7 | 12.5 | 13.5 |
|                     | 0.90 | 6.3  | 6.9  | 7.4  | 8.7           | 10.1 | 10.9 | 11.9 |
|                     | 0.85 | 5.6  | 6.1  | 6.7  | 7.9           | 9.3  | 10.1 | 11.0 |
|                     | 0.80 | 4.9  | 5.4  | 5.9  | 7.1           | 8.5  | 9.3  | 10.1 |

#### 4. MRT3 Extension (North Ave. - Caloocan)

| -                   |      |      | ·    |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 4.8  | 5.3  | 5.9  | 7.1           | 8.5  | 9.3  | 10.2 |
|                     | 1.15 | 4.3  | 4.8  | 5.3  | 6.6           | 7.9  | 8.7  | 9.6  |
|                     | 1.10 | 3.7  | 4.3  | 4.8  | 6.0           | 7.4  | 8.1  | 8.9  |
| <revenue></revenue> | 1.00 | 2.6  | 3.1  | 3.6  | 4.8           | 6.1  | 6.9  | 7.7  |
|                     | 0.90 | 1.4  | 1.9  | 2.4  | 3.5           | 4.8  | 5.5  | 6.3  |
|                     | 0.85 | 0.7  | 1.2  | 1.7  | 2.8           | 4.1  | 4.8  | 5.5  |
|                     | 0.80 | 0.1  | 0.5  | 1.0  | 2.1           | 3.4  | 4.1  | 4.8  |

|                     |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 9.5  | 10.1 | 10.7 | 12.1          | 13.7 | 14.6 | 15.6 |
|                     | 1.15 | 8.9  | 9.5  | 10.1 | 11.4          | 13.0 | 13.9 | 14.9 |
|                     | 1.10 | 8.3  | 8.9  | 9.5  | 10.8          | 12.3 | 13.2 | 14.2 |
| <revenue></revenue> | 1.00 | 7.1  | 7.6  | 8.2  | 9.5           | 11.0 | 11.8 | 12.7 |
|                     | 0.90 | 5.8  | 6.3  | 6.9  | 8.1           | 9.5  | 10.3 | 11.1 |
|                     | 0.85 | 5.1  | 5.6  | 6.1  | 7.3           | 8.7  | 9.5  | 10.3 |
|                     | 0.80 | 4.4  | 4.9  | 5.4  | 6.6           | 7.9  | 8.7  | 9.5  |

#### 5. MRT4 Phase I

#### 6. North Rail(Meycauayan - Caloocan)

| -                   |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 6.7  | 7.1  | 7.6  | 8.7           | 9.9  | 10.6 | 11.4 |
|                     | 1.15 | 6.2  | 6.7  | 7.1  | 8.2           | 9.4  | 10.1 | 10.8 |
|                     | 1.10 | 5.7  | 6.2  | 6.7  | 7.7           | 8.9  | 9.6  | 10.3 |
| <revenue></revenue> | 1.00 | 4.7  | 5.2  | 5.6  | 6.7           | 7.8  | 8.5  | 9.2  |
|                     | 0.90 | 3.7  | 4.1  | 4.6  | 5.5           | 6.7  | 7.3  | 8.0  |
|                     | 0.85 | 3.1  | 3.5  | 4.0  | 4.9           | 6.0  | 6.7  | 7.3  |
|                     | 0.80 | 2.5  | 2.9  | 3.4  | 4.3           | 5.4  | 6.0  | 6.7  |

#### 7. MCX/PNR Improvement (Caloocan - Alabang)

|                     |      |      |      |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 16.2 | 17.0 | 17.8 | 19.8          | 22.0 | 23.3 | 24.8 |
|                     | 1.15 | 15.4 | 16.2 | 17.0 | 18.9          | 21.1 | 22.4 | 23.8 |
|                     | 1.10 | 14.6 | 15.4 | 16.2 | 18.0          | 20.2 | 21.4 | 22.7 |
| <revenue></revenue> | 1.00 | 13.0 | 13.7 | 14.5 | 16.2          | 18.2 | 19.4 | 20.6 |
|                     | 0.90 | 11.3 | 11.9 | 12.7 | 14.3          | 16.2 | 17.3 | 18.5 |
|                     | 0.85 | 10.4 | 11.0 | 11.7 | 13.3          | 15.1 | 16.2 | 17.3 |
|                     | 0.80 | 9.4  | 10.1 | 10.8 | 12.3          | 14.1 | 15.1 | 16.2 |

#### 8. MRT6 (Baclaran - Imus)

|                     |      |      | ,    |      | <cost></cost> |      |      |      |
|---------------------|------|------|------|------|---------------|------|------|------|
|                     |      | 1.20 | 1.15 | 1.10 | 1.00          | 0.90 | 0.85 | 0.80 |
|                     | 1.20 | 10.1 | 10.7 | 11.3 | 12.6          | 14.0 | 14.9 | 15.8 |
|                     | 1.15 | 9.6  | 10.1 | 10.7 | 12.0          | 13.4 | 14.3 | 15.2 |
|                     | 1.10 | 9.0  | 9.6  | 10.1 | 11.4          | 12.8 | 13.6 | 14.5 |
| <revenue></revenue> | 1.00 | 7.9  | 8.4  | 8.9  | 10.1          | 11.5 | 12.3 | 13.1 |
|                     | 0.90 | 6.6  | 7.1  | 7.7  | 8.8           | 10.1 | 10.9 | 11.7 |
|                     | 0.85 | 6.0  | 6.5  | 7.0  | 8.1           | 9.4  | 10.1 | 10.9 |
|                     | 0.80 | 5.3  | 5.8  | 6.3  | 7.4           | 8.7  | 9.4  | 10.1 |

# **APPENDIX II**

# TECHNICAL NOTES/MATERIALS **AIR POLLUTION PROJECTION**

### 14. AIR POLLUTION PROJECTION

As transport brings unquestionable benefits so does it cause an indispensable side effect such as environmental degradation. This chapter examines the interaction between transport and environment which contribute to unsustainability in urban travel. And because of the side effect of transport, transport policies were considered in many countries. Recently prototypical example of transport policy was introduced in some countries. However, proposed measures for air quality improvement in Metro Manila will be taken into account. Based on these backgrounds, an environmental analysis for Metro Manila was carried out. Transport policy for sustainable environment development was roughly recommended.

#### Interaction between transport and environment

Above all, it is greatly important to understand interaction between transport and environment because transport policy starts form it. As Figure 1 indicates, a lot of factors are to a considerable extent interrelated. In general, environmental impact is determined largely by vehicles themselves and the way they are used. In the latter's case it is important how to cope with rapidly increasing travel demand, i.e. more journeys, longer journeys and greater car use. The travel demand has been increasing at a rapid rate annually. Comparison of the 1980 and 1996 person trip surveys in Metro Manila indicates that over the 16-year period, the number of trip increased by 63.6%. Also, rough estimation shows that total vehicle travel in the year 2015, in yeh-km, will increase by around 170% in the case of "Do-Nothing". These are encouraged by a number of factors, including the trend of lower density development; construction of larger, more remote, schools, shopping centers and hospitals, provision of transport at less than the marginal cost, and discouragement of shorter journeys. As a result, conditions for walking and cycling are worsened and the level of public service is reduced. More journeys, longer journeys and greater car use adversely impacted on the environment and a radically different concept on how to deal with those factors is being taken in many other countries.



#### **Policy Responses**

As environmental quality has worsened day by day, a new approach or concept has been proposed. In the past, demand forecasts have been made for traffic and networks, have been defined to meet that demand. It has now been realized that it may not be socially efficient or desirable or possible to meet unrestricted demand. So, TDM (Transport Demand Management) measures have become key concerns of transport planners. In particular, the integrated package approach, including supply-side and demand-side or institutionalized measures has been thought to be greatly effective to reduce travel demand and improve environment. As a result, the policy goal is attained. An example of integrated package approach, as shown in Table 1, includes financing factor, , demand-side factor, fare level factor and supply-side factor. It should be stressed that pricing-related measure and measures for improving non-motorized transport, like walking and cycling, are considered important tools to improvement of air quality.

| Strategy               | Do<br>Minimum | C1   | C2   | C3   | C4   | C5   | C6   |
|------------------------|---------------|------|------|------|------|------|------|
| Access by car          |               | +++  | -    |      |      | ++   |      |
| Access by bus/rail     |               | +++  | +++  | -++  | -    | +++  |      |
| Environmental Quality  |               | +    |      | -    |      | +    |      |
| Local economic quality |               |      | -    |      |      |      |      |
| Fuel consumption       | -16%          | -2%  | -7%  | 0    | -10% | -1%  | -12% |
| Causality              | -7%           | -8%  | -1%  | -7%  | -2%  | -7%  | -3%  |
| Benefits (£m NPV)      | N/A           | -410 | -300 | -330 | -180 | -310 | -110 |
| Finance (£m PVF)       | N/A           | -260 | -270 | -100 | -160 | -10  | 0    |
| Capital cost (£m 1990) | N/A           | 530  | 520  | 530  | 540  | 5830 | 340  |
| Key < Worse            | •             | •    | •    |      |      | •    |      |
| <b></b>                |               |      | - 11 |      |      |      |      |

Table 1An Example of Integrated Package Approach

NPV: Net Present Value as measure of economic efficiency relative to Do Maximum

| THE SIX COMBINED STRATEGIES |  |
|-----------------------------|--|
|-----------------------------|--|

| Strategy                               | C1       | C2       | C3       | C4     | C5       | C6   |
|----------------------------------------|----------|----------|----------|--------|----------|------|
| Finance                                | High     | High     | Medium   | Medium | Low      | Low  |
| Infrastructure                         | NS<br>EW | NS<br>EW | NS<br>EW | NS     | NS<br>EW | NS   |
|                                        | WR       | WR       | WR       | WR     | WR       | WR   |
| Capacity<br>Reduction (%) <sup>1</sup> | 10%      | 10%      | 25%      | 10%    | 25%      | 10%  |
| Fares level (%) <sup>2</sup>           | -50%     | 0        | -25%     | 0      | -10%     | -25% |
| Road pricing                           | Yes      | No       | Yes      | No     | Yes      | No   |

. High : £200m - £300m PVF"

Medium : £100m - £200m PVF"

Low : Zero financial outlay

NS : North-South Light Rapid Transit: EW : East-West Light Rapid Transit:

WR : Western Radial

Percentage reduction in city center road capacity

Percentage change from level anticipated in 2010.

Inclusion or otherwise of a change of £1.50 to enter or leave the city center throughout the day

As a general guideline for improving air quality, measures as Table 2 can be taken into account. In Metro Manila, measures which seem to be appropriate for reducing air pollution were proposed by foreign research group. The measures are categorized as traffic, power, fuel combustion other than in power plants, non-combustion sources, construction and refuse burning and ones in traffic are summarized as follows:

- 1) Enhancing effectiveness of the anti-smoke belching program;
- 2) Improving diesel fuel quality;
- 3) Implementation of a scheme for inspection and maintenance;
- 4) Fuel switches (diesel to gasoline) in the transportation sector induced by price-shifts;
- 5) Adoption of clean vehicle emission standards; and

6) Other measures;

Source: URBAIR (1995)

These measures were evaluated from the viewpoint of benefit/cost analysis and its result showed that those measures could bring a great of benefit. However, the measures taken above are related to technical factors and no transport-related measures were evaluated. From the viewpoint of transport, its impact on air pollution is herein analyzed and discussed.

| General Guideline for improv                                                                                                                                                |                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Technical Fixes 1: Pollutant Reduction and Ener                                                                                                                          | gy Efficiency                                                                                                                                                                                                                            |
| Pollution reduction technology – Improving energy efficiencies –                                                                                                            | oxidation catalysts<br>three-way catalysts<br>catalytic trap oxidisers<br>engine changes (e.g. lean burn)<br>weight reduction<br>aerodynamics<br>other technological modifications<br>(e.g. transmission changes, rolling<br>resistance) |
| Technical fixes 2: Alternative Fuels and Power Source                                                                                                                       | es                                                                                                                                                                                                                                       |
| Diesel<br>Electricity<br>Hydrogen<br>Alternative power sources (e.g. power, gas from pow<br>Gas (e.g. liquefied natural gas, liquefied petroleum ga<br>Methanol and ethanol |                                                                                                                                                                                                                                          |
| 2. The Role of the Driver                                                                                                                                                   |                                                                                                                                                                                                                                          |
| Lower average engine size: the vehicle purchase dec<br>The vehicle replacement decision<br>Increasing car occupancies<br>Better driving<br>Better maintenance               | cision                                                                                                                                                                                                                                   |
| 3. Transport Planning Policies                                                                                                                                              |                                                                                                                                                                                                                                          |
| Intermodal shift<br>Road traffic management –                                                                                                                               | Improving traffic flow<br>reducing excessive speeds<br>discouraging car traffic                                                                                                                                                          |
| Land-use planning<br>Other policies –                                                                                                                                       | public information campaigns<br>encouraging telecommuting                                                                                                                                                                                |
| 4. Transport Planning Policies                                                                                                                                              |                                                                                                                                                                                                                                          |

Table 2 General Guideline for Improving Air Pollution

Source: Road pricing

Fuel pricing and taxation policies Company car tax policies

### **Environmental Analysis in Metro Manila**

Environmental analysis model was developed in order to examine the impact of transport on air pollution. In addition, some scenarios were evaluated based on this model.

Methodology: air pollution is affected by many factors and composes of a very complex function. Its general form can be expressed as:

Air pollutant emission = f (travel distance, travel speed, idling, emission factors, wind speed, wind direction)

However it must be noted that it is very difficult to put so many factors into air pollution model, especially macro analysis model. In general, traditional traffic assignment model uses travel distance, travel speed and emission factor as exogenous factors to conduct emission estimation. However, the methodology presented in this paper will include idling factor and estimate air pollutant emission.

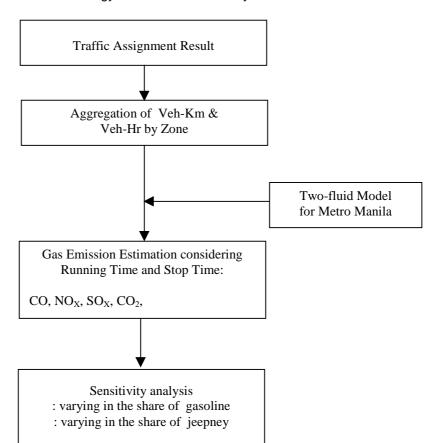
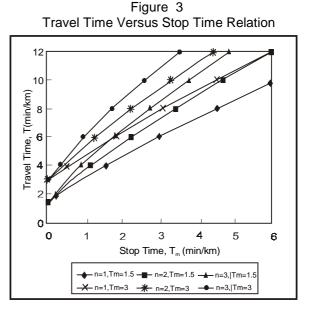



Figure 2 Methodology for Environment Analysis

Methodology for environment analysis is shown if Figure 2. Firstly, travel distances (veh-km) and average speed (km/h) are aggregated by each zone based on traffic assignment results for "Do-Nothing", "Master Plan" and Do-Max". air pollutants emissions, as mentioned earlier, are estimated based on travelling distance and average speed. However, we have to be attention that air pollutant emissions are affected by travelling patterns in while vehicles is not only moving but also stopped. In order to do reasonable emission estimation, we have to consider air pollutant emissions in while vehicle is not only moving but also stopped. Problems is that traffic assignment result estimated from STRADA doesn't give any information on vehicle stop time. That's why we incorporate two fluid model, we can estimate emission unit in while vehicle is stopped (i.e. idling) as well as emission unit in while vehicle is moving. After then, each air pollutant emissions (CO, NO<sub>X</sub>, SO<sub>X</sub>, and PM) are estimated by zone. Finally, sensitivity analysis by varying in the share of gasoline and diesel and the share of bus and jeepney was carried out.

Two-Fluid Model: Two –fluid model deals with a simple relation between two traffic variables, namely the travel time per unit distance (reciprocal of speed) and the stop time per unit distance. Likewise the traffic in a non-highway urban street network may be considered to consist of two traffic fluids – one composed of moving vehicles an the other of vehicles that are stopped as a consequence of congestion, traffic control devices, obstruction resulting from construction, accidents, etc., but not cars stopped in the parked condition.


In the two fluid model ideas are followed by assuming that the average speed of the moving cars,  $v_r$  depends on the fraction of the cars that are moving,  $f_r$  in the following form:

$$v_r = v f_r^{-1} = v_m (1 - f_r)^{n}$$

Where  $v_m$  is the average maximum running speed in the network, v is the average speed of the traffic, and n is a parameter. Note that

 $f_r + f_s = 1$  $v_m = 1/T_m$  $v_r = 1/T_r$ v = 1/T

where  $f_s$  and  $f_r$  are the fraction of the vehicles stopped and moving, respectively:  $T_m$  is a parameter representing the average minimum trip time per unit distance:  $T_r$  is the running time per unit distance: and T is the trip time per unit distance. If, in addition, the stop time per unit distance is denoted by  $T_s$ , it follows that:

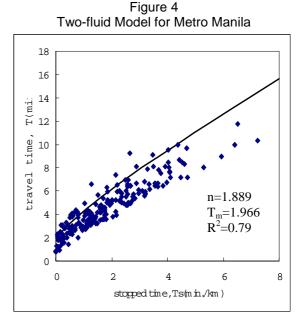


$$T = T_s + T_s$$

In the two-fluid model it is also assumed that the fraction of time stopped for the with vehicle circulating in a network,  $(T_s/T)_I$ , is equal to the average fraction of the population of vehicles stopped in the system,  $\langle f_s \rangle_p$ , over the same time period, namely,

 $\langle f_s \rangle_p = (T_s/T)_1$ 

These assumptions lead to the two-fluid model relation between the trip time, T, and the running time,  $T_r$ , namely:


$$T_r = T_m^{\frac{1}{n+1}} T^{\frac{n}{n+1}}$$

Yielding the final result:

$$T_{s} = T - T_{m}^{\frac{1}{n+1}} T^{\frac{n}{n+1}}$$

The two-fluid model represented by equation yields a curvilinear relation between *T* and  $T_s$  as shown in Figure 3 for  $T_m$  values of 1,2 and 3.

A traffic system with smaller values of parameters  $T_m$  and n offers a better time per unit distance or the reciprocal of the average maximum speed that can be achieve in a network under the lightest traffic conditions. Therefore, the larger  $T_m$  implies a less efficient network geometry and control system.



Two-fluid model in Metro Manila, as shown in Figure 4, was estimated using speed survey data (refer to Appendix A) collected in MMUTIS speed survey in 1997. As a result, two-fluid model in Metro Manila has significantly high values of  $T_m = 1.966$  (min/km) and n = 1889. As mentioned earlier, it must be noted that a city which appears to have less traffic control and geometric features has higher values of  $T_m$  and n. Therefore, it seems that Metro Manila with significantly high values of  $T_m$  and n has less traffic control and geometric features. Actually, it is thought that Metro Manila has higher values of  $T_m$  and n because it has bad traffic control, long-cycled traffic signals and so on.

|                   | Т               | wo-Fluid Model Paramet | er    |
|-------------------|-----------------|------------------------|-------|
| Downtown Network  | $T_m$ (min./km) | n                      | $R^2$ |
| London, 1984      | 1.26            | 1.66                   | 0.86  |
| Lubbock, 1984     | 1.33            | 0.82                   | 0.70  |
| San Antonio, 1984 | 1.24            | 1.33                   | 0.81  |
| Albuquerque       | 1.20            | 1.62                   | 0.70  |
| Roanoke           | 1.19            | 1.60                   | 0.79  |
| Tehran, Iran      | 1.57            | 1.45                   | 0.74  |
| Matamoros, Mexico | 1.85            | 2.10                   | 0.88  |
| Brussels          | 0.78            | 2.67                   | 0.92  |
| Austin            | 1.11            | 1.65                   | 0.78  |
| Dallas            | 1.22            | 1.48                   | 0.80  |
| Houston           | 1.68            | 0.80                   | 0.63  |
| Milwaukee         | 0.98            | 1.41                   | 0.81  |
| Melbourne         | 1.08            | 1.41                   | 0.95  |
| Sydney            | 1.15            | 1.68                   | 0.88  |
| Metro Manila      | 1.97            | 1.89                   | 0.79  |

Table 3 Comparison of Two-fluid Model with Other Cities

Note: two-fluid models except Metro Manila were cited from "traffic engineering and control, 1985"

Table 3 shows the comparison of two-fluid model with ones for other cities. Two-fluid model in Metro Manila has significantly high values of  $T_m$  and n compared to other cities. From this comparison, it is manifest that Metro Manila has less efficient network geometry and control system.

Aggregation of Travel Distance & Average Speed: Travel distance (veh-km) and average speed (km/h) were aggregated by zone (refer to Appendix B). Table 4 shows the summary of changes in travel distance and average speed. It must be noted that, in the case of "Do-Nothing" without any projects, travel distance greatly increased, especially in private vehicle, and average speed greatly decreased. On the other hand, travel distance in public vehicle for both "Master Plan" and "Do-Max" decreased up to about 40%. It seems to be because MRT systems was incorporated into "Master Plan" and "Do-Max" and users of public transport converted to MRT. This, as already known well, means that railways system such as MRT, subway, etc. contributes to shorter travel journey and the environmental improvement. However, the increase of travel distance in private vehicle is still high even for both "Master Plan" and "Do-Max".

One problem of traffic assignment results estimated from STRADA is that average speeds in CBD area such as Manila and Makati City were estimated highly (refer to Appendix B), even though actual speeds are significant low. It seems that traffic assignment results estimated from STRADA can't consider factors such as delay time at signal intersection and do on.

Based on travel distance and average speed, air pollutant emissions are estimated as a next step.

| $\sim$ | Present | t (1996) | Do-Nothi | ng (2015) | Master Pl | an (2015) | Do-Max  | x (2015) |
|--------|---------|----------|----------|-----------|-----------|-----------|---------|----------|
|        | Public  | Private  | Public   | Private   | Public    | Private   | Public  | Private  |
| Veh-km | 9,827   | 24,434   | 15,017   | 76,319    | 6,480     | 43,290    | 4,925   | 39,764   |
| ('000) | 9,027   | 24,434   | (+52.3)  | (+212.3)  | (-34.1)   | (+77.2)   | (49.9)  | (+62.7)  |
| Ave.   | 28.0    | 20.6     | 13.5     | 13.1      | 19.4      | 19.2      | 19.2    | 20.1     |
| Speed  | 28.9    | 30.6     | (-53.3)  | (-57.2)   | (-37.3)   | (-37.3)   | (-33.6) | (-34.3)  |

Table 4 Change in Travel Distance & Ave. Speed

Note: parenthesis refers to % changes which report present situation

*Emission Estimation*: In the emission estimation, a basic requirement is the air pollutant emission parameter varying travel by speed and mode type. As the emission parameter for emission estimation couldn't be obtained, it was built from MMUTIS environmental survey. The air pollutant emission parameters are followed as Table 5-8. All the air pollutants taken in this paper are related to local or regional factors. It is noted that global factors such as CO2 were not taken in this paper because of the constraint of data set.

The emission parameters are different by mode types, i.e. car, jeepney and bus. Here, it is a problem how to reflect the emission parameters of jeepney and bus upon the emission estimation for public transport because jeepney and bus aren't separated in traffic assignment results. So, the share of the present travel distance for jeepney and bus was used to divide the travel distance by public transport into travel distances by jeepney and bus, Table 9 shows the share of the present travel distance for jeepney and bus obtained from MMUTIS person trip survey.

|          |         | Idling | -10km/h | 10km/h~20km/h | 20km/h~ |
|----------|---------|--------|---------|---------------|---------|
| Gasoline | Car     | 0.0858 | 27.57   | 23.50         | 18.70   |
|          | Jeepney | 0.0781 | 47.58   | 52.20         | 41.14   |
| Diesel   | Car     | 0.0095 | 7.85    | 6.54          | 5.94    |
|          | Jeepney | 0.0124 | 8.02    | 6.80          | 6.20    |
|          | Bus     | 0.0214 | 8.12    | 7.11          | 6.50    |
| Unit     |         | g/min. | g/km    | g/km          | g/km    |

Table 5 CO Emission Parameter

Note: air pollution emission parameter was built from MMUTIS air pollution survey.

#### Table 6 NO<sub>x</sub> Emission Parameter

|          |         | Idling | -10km/h | 10km/h~20km/h | 20km/h~ |
|----------|---------|--------|---------|---------------|---------|
| Gasoline | Car     | 1.51   | 2.75    | 2.76          | 2.78    |
|          | Jeepney | 1.55   | 4.70    | 3.59          | 3.53    |
| Diesel   | Car     | 6.84   | 5.65    | 4.28          | 3.89    |
|          | Jeepney | 9.35   | 8.95    | 7.66          | 7.01    |
|          | Bus     | 12.6   | 11.24   | 10.59         | 9.22    |
| Unit     |         | g/min. | g/km    | G/km          | g/km    |

Note: air pollution emission parameter was built from MMUTIS air pollution survey.

| Table 7                   |
|---------------------------|
| $SO_X$ Emission Parameter |

|          |         | Idling | -10km/h | 10km/h~20km/h | 20km/h~ |
|----------|---------|--------|---------|---------------|---------|
| Gasoline | Car     | 0.018  | 0.013   | 0.011         | 0.011   |
|          | Jeepney | 0.02   | 0.015   | 0.011         | 0.010   |
| Diesel   | Car     | 0.09   | 0.140   | 0.080         | 0.070   |
|          | Jeepney | 0.18   | 0.180   | 0.121         | 0.110   |
|          | Bus     | 0.22   | 0.200   | 0.150         | 0.100   |
| Unit     |         | g/min. | g/km    | G/km          | g/km    |

Note: air pollution emission parameter was built from MMUTIS air pollution survey.

| Table 8                      |
|------------------------------|
| <b>PM Emission Parameter</b> |

|          |         | Idling | -10km/h | 10km/h~20km/h | 20km/h~ |
|----------|---------|--------|---------|---------------|---------|
| Gasoline | Car     | 0.10   | 0.07    | 0.05          | 0.05    |
|          | Jeepney | 0.10   | 0.07    | 0.06          | 0.05    |
| Diesel   | Car     | 0.90   | 1.20    | 0.07          | 0.07    |
|          | Jeepney | 1.50   | 1.80    | 0.90          | 0.81    |
|          | Bus     | 1.50   | 2.30    | 1.50          | 0.80    |
| Unit     |         | g/min. | g/km    | G/km          | g/km    |

Note: air pollution emission parameter was built from MMUTIS air pollution survey.

| Table 9                                                     |
|-------------------------------------------------------------|
| The Share of the Present Travel Distance by Jeepney and Bus |

|         | Vehicle trips<br>('000) | Ave. Trip Length<br>(km) | Veh-km<br>('000) | Share of veh-km<br>(%) |
|---------|-------------------------|--------------------------|------------------|------------------------|
| Bus     | 57                      | 13.0                     | 741              | 31.5                   |
| Jeepney | 460                     | 3.5                      | 1,610            | 68.5                   |

In addition, it is necessary to consider the share of gasoline and diesel of mode type because emission parameters are different by engine type. Table 10 shows the share of gasoline and diesel of mode type and emission estimation was conducted by assuming that their share would not change even in the future, 2015.

|          | Car   | Jeepney | Bus   |
|----------|-------|---------|-------|
| Gasoline | 95.3% | 54.6%   | 6.7%  |
| Diesel   | 4.7%  | 45.4%   | 93.3% |

Table 10 The Share of Gasoline & Diesel of Mode Type

Source: MMUTIS Survey

Air pollutants can be estimated as follows:

Air pollutants = travel distance (veh-km)\* emission factor at running speed (g/veh-km) + total stop time (min)\* emission factor at stop time (g/min)

The air pollutants were estimated based on this equation (refer to Figure 4-7 and Appendix C). Table 11 shows the emission estimation results. Some founding can be taken from the emission estimation results. Firstly, areas with MRT system have comparatively low increases in air pollutant emission. Secondly, there are significant increases in air pollutant emission even in "Master Plan" and "Do-Max" and it seems that this is mainly caused by the travel distance increase of private transport. In order to preserve the present situation or improve the air pollution quality, the reduction of private transport volume is required. This will be discussed in details later.

|                 | Present<br>(1996) | Do-Nothing<br>(2015) | Master Plan<br>(2015) | Do-max<br>(2015) |
|-----------------|-------------------|----------------------|-----------------------|------------------|
|                 | (1990)            |                      | · · · /               | . ,              |
| CO              | 841.5             | 2372.1               | 1286.1                | 1161.6           |
|                 | 041.5             | (+181.9)             | (+52.8)               | (+38.0)          |
| NO <sub>X</sub> | 145 7             | 613.7                | 232.2                 | 201.4            |
|                 | 145.7             | (+321.2)             | (+59.4)               | (+38.2)          |
| SO <sub>X</sub> | 1.2               | 6.9                  | 2.2                   | 1.9              |
|                 | 1.3               | (+430.7)             | (+69.2)               | (+46.1)          |
| PM              | 0.5               | 49.0                 | 15.5                  | 13.1             |
|                 | 9.5               | (+415.8)             | (+63.1)               | (+37.9)          |

Table 11 Emission Estimation Results

Note: parentheses refer to % increases with regard o present situation.

Unit: ton/day

Sensitivity Analysis: Sensitivity analysis was done in order to investigate how changes in the mode and engine type will affect air pollutant emissions. Scenario 1 and 2 indicate the change in the share of gasoline and diesel, and Scenario 3 and 4 indicate the change in the share of bus and jeepney.

| Table 12                                    |
|---------------------------------------------|
| Changes in the Share of Gasoline and Diesel |

|            | Jeepney Gasoline | Jeepney Diesel |
|------------|------------------|----------------|
| Present    | 54.6%            | 45.4%          |
| Scenario 1 | 75.0%            | 25.0%          |
| Scenario 2 | 100.0%           | 0.0%           |

|            | Jeepney Gasoline | Jeepney Diesel |
|------------|------------------|----------------|
| Present    | 3.15%            | 68.5%          |
| Scenario 3 | 50.0%            | 50.0%          |
| Scenario 4 | 75.0%            | 25.0%          |

Table 13 Changes in the Share of Bus and Jeepney

Sensitivity analysis was conducted based on these four scenarios. Results, as referred to Table 14, show that, as the share of gasoline vehicle increases, CO emission increases and the remainder decreases, and as the bus share increases, CO emission decreases and the remainder increases. However, increase of CO emission, generally speaking, is very small and it seems that more gasoline vehicle and less bus share have good impact on the air pollution.

|                                                                                       | Master Plan | Scenario 1        | Scenario 2        | Scenario 3        | Scenario 4        |  |
|---------------------------------------------------------------------------------------|-------------|-------------------|-------------------|-------------------|-------------------|--|
| CO                                                                                    | 1,286.1     | 1,319.4<br>(+2.6) | 1,360.3<br>(+5.7) | 1,262.4<br>(-1.8) | 1,230.4<br>(-4.3) |  |
| NO <sub>X</sub>                                                                       | 232.2       | 225.4<br>(-2.9)   | 217.0<br>(-6.5)   | 242.1<br>(+4.3)   | 255.3<br>(+9.9)   |  |
| SO <sub>X</sub>                                                                       | 2.23        | 2.06<br>(-7.6)    | 1.86<br>(-16.6)   | 2.37<br>(+6.3)    | 2.54<br>(+13.9)   |  |
| РМ                                                                                    | 15.5        | 14.1<br>(-9.0)    | 12.4<br>(-20.0)   | 16.6<br>(+7.1)    | 18.1<br>(+16.8)   |  |
| Note: parentheses refer to % increases with regard o present situation. Unit: ton/day |             |                   |                   |                   |                   |  |

Table 14 Sensitivity Analysis Results

#### **Recommendation for Sustainable Environment Development**

Analysis results showed that, compared to "Do-Nothing", "Master Plan" and Do-Max" brought much reduction in air pollutant emission. However, it must be noted that the increase of air pollutant emission even in "Master Plan" and "Do-Max" is very significant and it will increase by around 30-50% as compared to the present situation. It could be found with ease that this is caused by intractable private vehicle increase. This means that only supply-side transport measures may not solve transport problems such as traffic congestion and the environmental concern s with which Metro Manila is facing now. From now on, as explained earlier, integrated package approach should be considered and evaluated in Metro Manila. In MMTUIS, pricing related measures such as heavier vehicle tax, heavier fuel tax, road pricing and cordon pricing were also taken and their effect were evaluated. Among those measures, EDSA cordon pricing was taken as an experimental case in order to investigate its effect on air pollutant reduction. As a result, air pollutants in the case of Master Plan with EDSA cordon pricing were reduced up to about 6% with regards to "Master Plan". It seems that air pollutant reduction would be very significant in the case with heavier vehicle tax. Integrated package approach in Metro Manila will contribute to traffic congestion reduction and air quality improvement.

Figure 4 CO Emissions

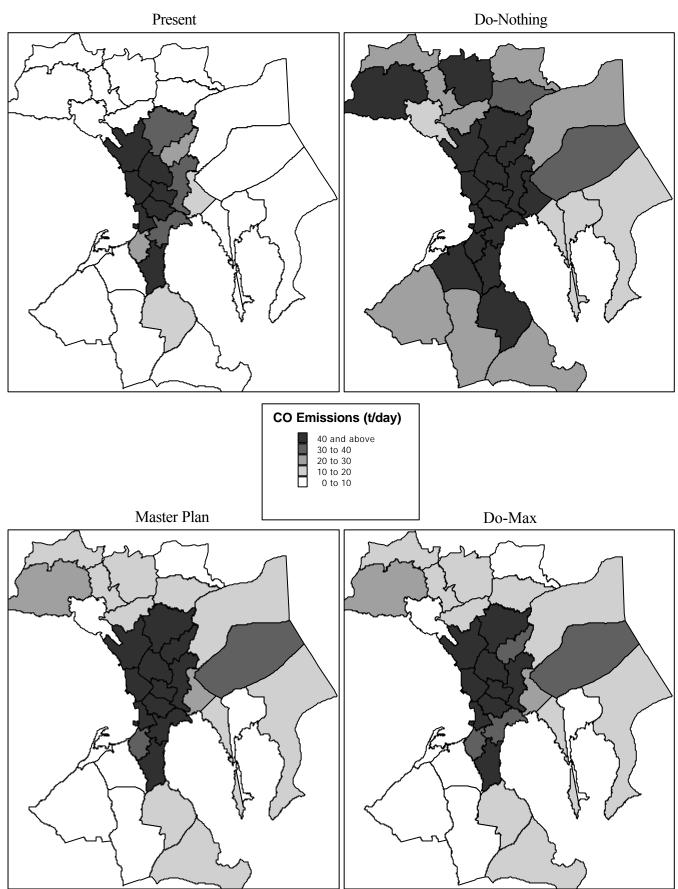
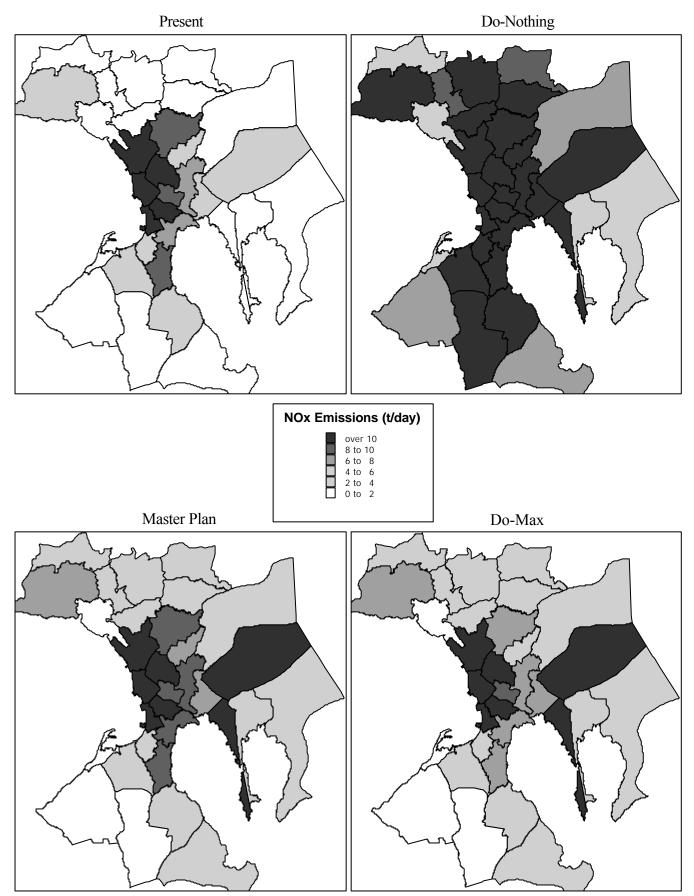




Figure 5 NOx Emissions



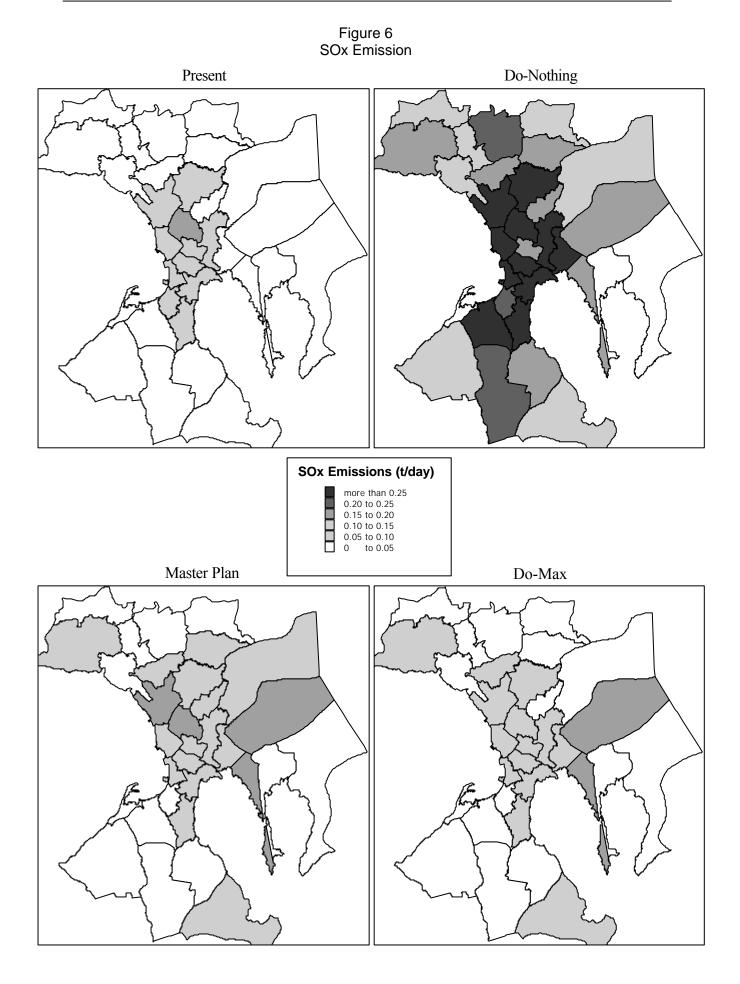
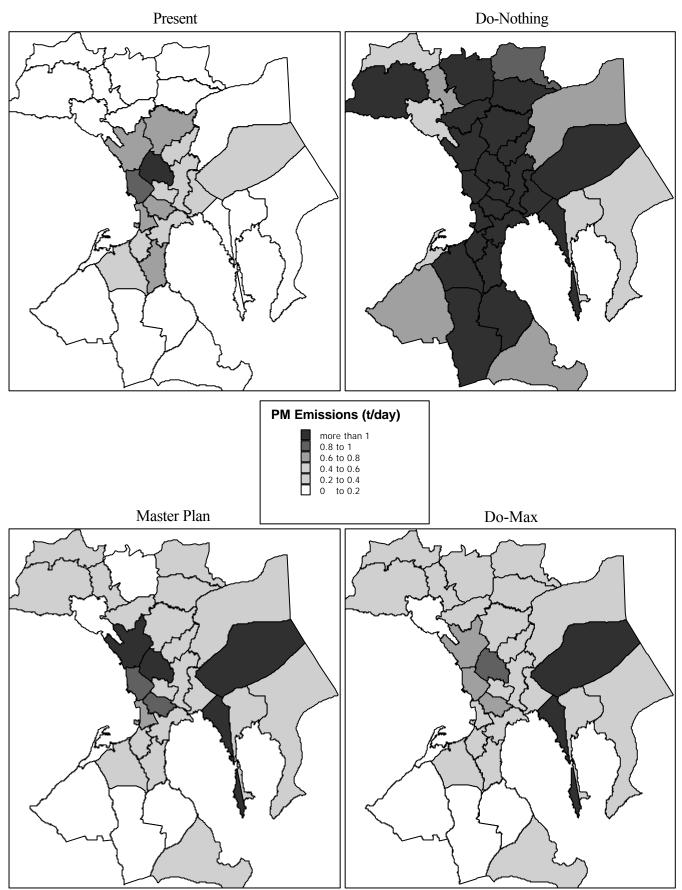




Figure 7 PM Emissions



# **APPENDIX II**

TECHNICAL NOTES/MATERIALS MMUTIS DATABASE

# **15. MMUTIS DATABASE**

LAST UPDATE: 1999/04/28

| r                         |                       |                   |                              |              | 1              |                                                        |
|---------------------------|-----------------------|-------------------|------------------------------|--------------|----------------|--------------------------------------------------------|
| Data<br>Category          | Second<br>Category    | Third<br>Category | File Name                    | File<br>Size | File<br>Format | Description                                            |
| JICA STRADA               | Network               | Link Data         | Tr69 dom int                 | (Kb)<br>292  | INT            | Do-maximum Network                                     |
| JICA STRADA               | Network               | LINK Data         | Tr68-dom.int<br>Tr68-mst.int |              | INT            |                                                        |
|                           |                       |                   |                              | 292          |                | Master Plan Network                                    |
|                           |                       |                   | Tr68-mtd.int                 | 292          |                | MTDP Network                                           |
|                           |                       |                   | Tr68-doc.int                 | 292          | INT            | Fixed Projects Network                                 |
|                           |                       |                   | Tr68-don.int                 | 292          | INT            | Present Network                                        |
|                           |                       | Line Data         | Tr68-dom.tnt                 | 107          | TNT            | Do-maximum Lines                                       |
|                           |                       |                   | Tr68-mst.tnt                 | 106          | TNT            | Master Plan Lines                                      |
|                           |                       |                   | Tr68-mtd.tnt                 | 102          | TNT            | MTDP Lines                                             |
|                           |                       |                   | Tr68-doc.tnt                 | 99           | TNT            | Fixed Projects Lines                                   |
|                           |                       |                   | Tr68-don.tnt                 | 99           | TNT            | Present Lines                                          |
|                           | OD Table              |                   | Od96-new.aod                 | 462          | AOD            | 1996                                                   |
|                           |                       |                   | Od05.aod                     | 462          | AOD            | 2005                                                   |
|                           |                       |                   | Od15s2.aod                   | 462          | AOD            | 2015                                                   |
|                           | Parameter             |                   | Ipa.ipa                      | 2            | IPA            | Parameter file for incremental assignment              |
|                           |                       |                   | Mt05.tpa                     | 3            | IPA            | Parameter file for transit assignment (2005)           |
|                           |                       |                   | Mp15.tpa                     | 3            | IPA            | Parameter file for transit assignment (2015)           |
|                           | Zone Boundary         |                   | Zone1.zxy                    | 13           | ZXY            | Metro Manila 24-zone boundary                          |
|                           | -                     |                   | Zone2.zxy                    | 53           | ZXY            | Metro Manila 265-zone boundary                         |
|                           |                       |                   | Zone5.zxy                    | 65           | ZXY            | Metro Manila 265-zone and Outside 51-<br>zone boundary |
|                           |                       |                   | Plan.zxy                     | 17           | ZXY            | MMUTIS Planning 36-zone boundary                       |
| Socio-Economy             | Population            |                   | Summary.xls                  | 273          | Excel          | Socio-economic indexes by traffic zone                 |
| ,                         | Employment/ Student   |                   | Socio96.xls                  | 698          | Excel          | Socio-economic indexes by traffic zone                 |
|                           | Income/ Car Ownership |                   | Bantab.dbf                   | 261          | Dbf            | Barangay Population by MMUTIS zone                     |
|                           | Others                |                   | Outside.dbf                  | 10           | Dbf            | Population in MMUTIS Study Area                        |
| Land Use/<br>Road Network | Land Use Data         |                   | Landuse_95.xls               | 818          | Excel          | Area of each land use class within each zone(1986/96)  |
|                           |                       |                   | Landusebyzone_95.xls         | 59           | Excel          | Land use by type of land                               |
| Demand                    | Cordon / Screenline   |                   | Cordon.dbf                   | 314          | Dbf            | Cordonline traffic volume by time and section          |
|                           |                       |                   | Cordon15.dbf                 | 1,191        | Dbf            | Cordonline traffic volume by 15 minutes and station    |
|                           |                       |                   | Cordon.xls                   | 46           | Excel          | Cordonline                                             |
|                           |                       |                   | Screen.dbf                   | 422          | Dbf            | Screenline traffic volume by time and section          |

| Data Category    | Second<br>Category | Third<br>Category | File Name            | File Size<br>(Kb) | File<br>Format | Description                                         |
|------------------|--------------------|-------------------|----------------------|-------------------|----------------|-----------------------------------------------------|
|                  |                    |                   | Screen15.dbf         | 1,605             | Dbf            | Screenline traffic volume by 15 minutes and station |
|                  |                    |                   | Screen.xls           | 57                | Excel          | Screenline                                          |
|                  |                    |                   | Forma.dbf            | 449               | Dbf            | Interview data in form A                            |
|                  |                    |                   | Formb.dbf            | 305               | Dbf            | Interview data in form B                            |
|                  |                    |                   | Formc.dbf            | 414               | Dbf            | Interview data in form C                            |
|                  | OD Matrix          |                   | Pa96ma11.mst         | 5,371             | Text           | Origin destination data by mode                     |
|                  |                    |                   | Pa96pa11.mst         | 1,993             | Text           | Origin destination data by purpose                  |
| Road and Traffic | Road Inventory     |                   | Road InventoryPR.xls | 51                | Excel          | Road inventory data for provinces                   |
|                  |                    |                   | Road InventoryMM.xls | 150               | Excel          | Road inventory data for metro manila                |
|                  | Subdivision        |                   | Subinvent1.xls       | 658               | Excel          | Subdivision road inventory survey data              |
|                  | Road Inventory     |                   | Sub-gate.xls         | 80                | Excel          | Subdivision road inventory survey data              |
|                  | Traffic            | Travel Speed      | Route96.doc          | 54                | Word           | Travel speed survey data by route                   |
|                  |                    |                   | Sect96.doc           | 528               | Word           | Travel speed survey data by section                 |
|                  |                    |                   | Worst.doc            | 267               | Word           | Travel speed survey data by worst section           |
|                  |                    | Ferry             | Ferry.dbf            | 65                | Dbf            | Cordonline roadside interview survey at             |
|                  |                    |                   |                      |                   |                | ferry                                               |
|                  |                    | Truck             | Tod.dbf              | 314               | Dbf            | Cargo vehicle roadside interview survey             |
| Person Trip      | PT Master File     | 1996              | Form1.dbf            | 4,748             | Dbf            | HIS data survey                                     |
| (HIS)            |                    |                   | Form2.dbf            | 8,067             | Dbf            | HIS data survey                                     |
|                  |                    |                   | Form3.dbf            | 46,968            | Dbf            | HIS data survey                                     |
|                  |                    |                   | Form4.dbf            | 1,021             | Dbf            | HIS data survey                                     |
|                  |                    |                   | Form5.dbf            | 259               | Dbf            | HIS data survey                                     |
|                  |                    |                   | Form6.dbf            | 1,457             | Dbf            | HIS data survey                                     |
|                  |                    | 1983              | House80.dbf          | 2,415             | Dbf            | JUMSUT Person Trip Survey Household                 |
|                  |                    |                   |                      |                   |                | data                                                |
|                  |                    |                   | Member80.dbf         | 3,900             | Dbf            | JUMSUT Person Trip Survey Member data               |
|                  |                    |                   | Trip80.dbf           | 14,577            | Dbf            | JUMSUT Person Trip Survey data                      |
| Public Transport | Route Data         | Bus route         | Bus ro~2.xls         | 1,045             | Excel          | Bus route data                                      |
|                  |                    | Jeepney route     | Jeepney~3.xls        | 553               | Excel          | Jeepney route data                                  |
|                  |                    |                   | Route.xls            | 165               | Excel          | Public transport survey by route                    |
|                  | Link Data          |                   | Alinkrpt.xls         | 401               | Excel          | Public transport survey by link                     |
|                  |                    |                   | Linktrip.xls         | 216               | Excel          | Public transport survey by link                     |
|                  | Terminal Interview | Passenger         | Passint.dbf          | 220               | Dbf            | Terminal survey for passenger                       |
|                  |                    |                   | Passint.doc          | 74                | Word           | Terminal survey for passenger                       |
|                  |                    | Driver            | Driver.dbf           | 522               | Dbf            | Terminal survey for driver                          |
|                  |                    |                   | Drvint.doc           | 15                | Word           | Terminal survey for driver                          |

MMUTIS Appendices

| Data<br>Category | Second<br>Category | Third<br>Category | File Name               | File Size<br>(kb) | File<br>Format | Description                                              |
|------------------|--------------------|-------------------|-------------------------|-------------------|----------------|----------------------------------------------------------|
| Modal Choice     | Willingness to Pay | Special Car       | Sp-car.xls              | 420               | Excel          | Willingness to pay for travel time reduction (car user)  |
|                  |                    | Special FX        | Sp-fx.xls               | 378               | Excel          | Willingness to pay for travel time reduction (FX user)   |
|                  |                    | Special Taxi      | Sp-taxi.xls             | 513               | Excel          | Willingness to pay for travel time reduction (taxi user) |
|                  |                    |                   | Sp-fx-tab.xls           | 59                | Excel          | Summary of interview for willingness to pay              |
|                  | Water Transport    |                   | WaterJpy.xls            | 622               | Excel          | Water transport survey for jeepney                       |
|                  |                    |                   | WaterBus.xls            | 192               | Excel          | Water transport survey for bus                           |
|                  |                    |                   | WaterFry.xls            | 280               | Excel          | Water transport survey for ferry                         |
|                  |                    |                   | WaterBnc.xls            | 168               | Excel          | Water transport survey for bancas                        |
| Others           | Airport            | Agency Interview  | Emp.dbf                 | 92                | Dbf            | Staff/ Employee airport survey data                      |
|                  |                    | Occupancy Volume  | Empod.dbf               | 40                | Dbf            | Origin destination of staff / employee                   |
|                  |                    |                   | Airod.dbf               | 131               | Dbf            | Origin destination at airport                            |
|                  |                    | Others            | Apc.dbf                 | 59                | Dbf            | Arriving passengers /crews                               |
|                  |                    |                   | Dpc.dbf                 | 67                | Dbf            | Departing passengers /crews                              |
|                  |                    |                   | Wwv.dbf                 | 111               | Dbf            | Well-wishers / visitors                                  |
|                  | Garbage Truck      |                   | !paya-ma.xls            | 312               | Excel          | Garbage truck survey for Payatas                         |
|                  |                    |                   | Carmona.xls             | 419               | Excel          | Garbage truck survey for Carmona                         |
|                  |                    |                   | Catmon.xls              | 180               | Excel          | Garbage truck survey for Catmon                          |
|                  |                    |                   | Dayly.xls               | 294               | Excel          | Garbage truck survey in daily results                    |
|                  |                    |                   | Laspinas.xls            | 493               | Excel          | Garbage truck survey for Las Pinas                       |
|                  |                    |                   | Sanmat~1.xls            | 842               | Excel          | Garbage truck survey for San Mateo                       |
|                  | Traffic Accident   |                   | Nctsacc1.dat            | 1,250             | Text           | Accident Record                                          |
|                  |                    |                   | Nctsacc2.dat            | 1,250             | Text           | Accident Record                                          |
|                  |                    |                   | Accident.xls            | 1,955             | Excel          | Accident Record                                          |
|                  | Environmental      |                   | ENV.Data.xls            | 186               | Excel          | Survey of air pollution, relation to traffic volume      |
|                  |                    |                   | Traffic Vol(5sites).xls | 214               | Excel          | Traffic volume survey at air pollution monitoring sites  |
|                  |                    |                   | VicintyMap.xls          | 59                | Excel          | Vicinity map of survey place                             |

# **APPENDIX III**

DRAFT TERM OF REFERENCES METRO MANILA TRAFFIC INFORMATION CENTER

# 1. METRO MANILA TRAFFIC INFORMATION CENTER

#### 1.1 Rationale

Metro Manila's chronic traffic problem is worsening day by day. Heavy congestion is a daily event and people waster their time on the road. Efforts have been exerted to alleviate the congestion. One example is UVVR which was implemented in 1996 to reduce the number of cars on the Metro Manila's road network. But the effect of the scheme was soon negated by the remarkable increase in the number of the registered vehicles. In a mega city line Metro Manila congestion is unavoidable as demand far exceeds capacity even a computerized smart signal system in installed. Traffic situation often gets worse when accident, flooding, stalled car, construction work, or other incident occurs. People often become disparate and irritated when they meet an incident unexpectedly and don't know how long they have to endure. Economic loss caused by traffic congestion amount to a huge sum. Metro Manila's air pollution caused by vehicle emission is far above the environmental standards.

Fundamental approach to the problem may be a very stringent control of demand. If there is no alternative mode of transportation, however, restriction is not a good solution and may not be accepted by the people. If a society is depleted of mobility, its economic, social and activities will be much hampered.

Information is becoming increasingly important in the traffic management in a mega city, where minor incident often leads to major congestion. If drivers are properly informed of the road and traffic condition, they can have options to choose. They may take another route defer the starting time or use other mode of communication for example. At the same time, countermeasures can be taken and the incident can be swiftly disposed of. The road condition can be restored to its original in a short time.

Currently Metro Manila Development Authority (MMDA) has a large group of traffic enforcers who are assigned to critical intersections in Metro Manila to control traffic together with police and traffic aids. They activities are, however, limited to individual intersection. Coordination between neighboring intersections is not considered. No system wide approach is taken to tackle the congestion.

The existing Metro Base of MMDA is expected to play a role of communication center. But its functions are very weak due to the constraint of facilities and staff. Considering the important role of information Metro Base will be expanded and a Metro Manila Traffic Information Center will be created. The Center is not considered. No system wide approach is taken to tackle the congestion.

#### 1.2 Metro Base

Metro Base of MMDA was established as 24-hour communications center that monitors traffic situations, road conditions occurrence of fire, floods, typhoons, and other man-made and natural disasters. It objectives are:

- 1) To link various concerned agencies working together to deliver the basic needs of Metro Manila and suburban areas.
- 2) To provide timely, accurate and responsive information to meet the demands of an ever growing metropolis

In order to achieve these missions, Metro Base has a close communication link with:

- 3) Philippine National Police
  - Traffic Management Group
  - National Capital Region Police Office
  - Five Traffic District Commands
- 4) Department of Transportation Franchising and Regulatory Board
- 5) Department of Transportation and Communication
- 6) Department of Public Works and Highways
- 7) Local government units

Currently, Metro Base has very limited facilities, only several units of radio communication equipment and a few telephone lines. Lack of the facilities hampers that their activities greatly, particularly at the time of emergency when close coordination is required among the agencies concerned. It is very difficult for Metro Base to respond to an emergency and provide timely service.

The proposed Metro Manila Traffic Information Center will be required with a set of modern communication facilities as well as the data processing system to collect process and store the information. It will provide road user and residents alike of useful information in a timely manner through various channels. It will also have a mobile unit to support its activities at the field.

#### **1.3** Traffic Information Center

#### 1.3.1 Objectives

The proposed Metro Manila Traffic Information Center will have the objectives of securing fast, comfortable and safe traffic environments by collecting and providing road and traffic information that directly affects economic, social and other activities in the metropolis.

#### 1.3.2 Functions

The Traffic Information Center consists of the following five functional components:

- 1) Road and traffic information gathering
- 2) Road and traffic information database
- 3) Road and traffic information dissemination
- 4) Incident disposal
- 5) Coordination among agencies concerned

In order to support these functions, the Center must be equipped with a suitable information processing and communications infrastructure. Communication network

is vital for gathering and dissemination of information, as well as for coordination with other agencies. Geographic information system capable of operating on a realtime basis must be introduced to process, update and store the based map information. Separately, a mobile unit will be setup and dispatched to the site of incident for proper action.

### 1.3.1.1 Traffic information gathering

Traffic information will be gathered in several ways. The possible means include:

- Report form traffic enforcer/traffic police at field
- Close circuit television camera installed at strategic locations
- Information from toll road operators
- Communication link with other government agencies (DPWH, DOTC, LGU, Police District etc.)

#### MMDA traffic enforcer

MMDA has more than 3,000 traffic enforcers. They are developed at all critical intersections in Metro Manila in group to guide traffic and provide assistance to the motorists. They can be a useful source of information because they directly interact with traffic. At each critical intersection, one of enforcers will be designed as reporter, who regularly report the traffic condition at the intersection and neighboring area to the Center through radio communication unit. Guidelines will be developed as to the reporting system, in which reporting schedule, method of describing traffic situation, use of radio communication unit, etc. will be stipulated. The qualification of traffic enforcers currently deployed is generally not high. An intensive training is necessary to establish an effective reporting system.

#### Closed circuit television camera system

The existing signal system has a closed circuit television system. A total of 19 TV cameras are installed at strategic locations in Metro Manila from Balintawak in the north to Magallanes in the south. A monitoring and control system is placed at Traffic Engineering Center located at Santa Mesa. Communication links using coaxial cable and optical fiber cable are installed for video image and control signal transmission between cameras and central equipment. The maintenance of the system has not been undertaken since 1997 and system is not functioning at this moment. Under the proposed project, new cable network will be installed and all cameras will be connected to the Traffic Information Center. The central monitoring and control equipment will also be relocated to the Traffic Information Center.

#### **Toll road operator**

Toll road or expressway is an access road. Entry and exit points are limited to specific locations. Toll is collected from the user in exchange for better service. As such, incident on toll road has bigger impact than that on ordinary road. Toll road information system is a standard facility on today's toll road to maintain service level. Existing North and South Superhighway has no such system. But the operator of these toll roads has a patrol group, which regularly patrol the toll road and attend to

incident. The toll road operator of the on-going Skyway project has a plan to install to road information system. But the detail of the system is not known. Regardless of whether a toll road has information system. But the detail or not, the operator usually has information Center will gather the information, directly through communication link or through telephone line. For the toll road with surveillance system, information can be collected through computer network.

#### **Government agencies**

Each government agency has the responsibility to road and traffic in their respective area. DPWH undertakes the maintenance of national roads, while local government unit is responsible for city and municipality roads. These government agencies have the information of road condition as well as the construction and maintenance work schedule. These information will be provided to the Center for dissemination to the public.

#### Public

General public, motorist or not, is also a good source of information. Especially cellular phone is common these days and motorists on the road have a mean to call Traffic Information Center to inform the condition around them. Telephone number that receives traffic information will be widely publicized to collect information.

#### **1.3.1.2 Traffic Information database**

Traffic information database is a nucleus of the proposed system. It will be a geographic information system with a real-time database. All information collected such as congestion, accident, construction work, flooding, fire, etc. will be input into the database as location data together with the details of incident. The information will be updated from time to time. It will be possible to retrieve the stored data by area, by incident type or by the time of occurrence and show them graphically on the monitor. If necessary, countermeasures will be developed and implemented. The current road condition and traffic information will be disseminated to the agencies concerned and to the general public.

The system consists of several sets of computers and a large screen projector. The computers from a local area network and are used as input and output device. A large screen project is used to display a video image taken by one of the cameras, or any monitor screen produced by computer.

A set of computer is used as server to host an Internet home page, where traffic condition map is provided on a real-time basis. The map is updated at a certain interval or as new data is input to the database.

#### **1.3.1.3** Traffic information dissemination

Traffic information useful to motorists will be disseminated in a variety of ways. The possible media to be used include the following:

1) Commercial radio station

- 2) Exclusive traffic information radio station
- 3) Changeable message sign
- 4) Cable TV network
- 5) Telephone inquiry system
- 6) Auto answering telephone system
- 7) Internet
- 8) Car navigation system

#### **Commercial radio station**

Currently, some radio stations have a traffic information program regularly during peak hours. It provides narrative description of the traffic situation along major arterial streets. Although, the contents of the program are limited and broadcasting schedule is flexible it is convenient means for driver to get traffic information. Advantage of using commercial radio station is that traffic information can be disseminated without no new investment on the facilities. The Center will provide more comprehensive and accurate information on the program.

#### Exclusive traffic information radio station

Traffic information may be distributed through a radio station, which is dedicated to traffic information. It broadcast the pre-recorded message cyclically without stopping. More information can be provided manually or automatically using voice synthesizer. Broadcasting facilities and permission of radio frequency are required.

#### Changeable message sign

There are seven (7) sets of changeable message sings on Metro Manila's network. The central monitoring and control equipment is located in the Traffic Engineering Center. The system, which is called driver information system, was installed under TEAM projects. But they are not used effectively. Once the traffic Information Center is established the monitoring and control equipment will be transferred to the center and various traffic messages will be shown on them.

#### Cable TV network

Cable TV service is popular in Metro Manila. It offers a large number of channels with relatively low price. Some channels are used for public service such as arrival information at Ninoy Aquino International Airport. A channel dedicated to traffic information will be developed in cooperation with a cable TV service provider. The channel continuously provides the congestion map of Metro Manila produced by the traffic information database. Live video image taken by TV cameras will also be transmitted sequentially for all cameras together with their location.

#### **Telephone inquiry system**

Telephone is the easiest way to get the information. Anybody wanting to know the road and traffic information can call be the Center and ask the situation. The telephone number must be widely announced. Sufficient number of lines must be prepared to avoid busy condition of telephone lines.

## Auto answering telephone system

Telephone inquiry system can be automated into auto answering telephone service. It automatically provides information to inquirer, who accesses the service through ordinary telephone. The system responds to the incoming calls and replays one of the pre-recorded messages have to be prepared manually. But once the messages are set, operation is automatic message preparation is possible using computer and voice synthesizer.

## Internet

Internet is increasingly becoming popular in the Philippines. There are many internet service providers that offer the service with a reasonable subscription fee. Internet is a very flexible tool of information dissemination and best suited to provide graphical information such as congestion map. One of the computers will be dedicated as web site server. Congestion map created by other computers will be posted at the web site of the Center. Anybody who has an Internet access can retrieve the congestion map. Road users who want to make a trip can access the site before the start and adjust the trip according to the road and traffic condition.

## Car navigation system

Car navigation system is already in use some developed countries. The system is a on-vehicle navigation tool and shows the present location of the vehicle determined by the system using the position signal GPS (Global Positioning System) superimposed on a vicinity map on a monitor. If the destination is input, the device tells the driver how to get there. Rail-time version of the system receives the congestion information and displays it in addition to the location of the vehicle.

## 1.3.1.4 Incident disposal

Swift disposal of incident is crucial to prevent the adverse effect of the incident from propagating. The earlier the action, the lesser the loss caused by the incident. When an incident is reported by traffic enforcer, traffic police, other agencies or general public, the incident is recorded and its nature is assessed. If found necessary, action will be taken, which includes dispatching traffic police, traffic enforcer, ambulance, fire engine etc. Traffic Information Center will act as command center to coordinate the operation.

## **1.3.1.5** Communication network

In order for Traffic Management Center to work as center of communication. It must be equipped with communication facilities. The facilities include

- 1) Radio communication network
- 2) Video signal transmission system
- 3) Digital with other computer network
- 4) Dedicated telephone link (hot line)
- 5) Public telephone service

## **Radio communication network**

The existing radio communication network that connects Traffic Engineering Center, Police Districts and traffic enforcers will be rehabilitated and expanded. New base station will be established at MMDA, which will administer the whole network.

## Video signal transmission system

Video signal transmission system using optical fiber cable will be installed to bring the video signal taken by the existing TV cameras to the Center.

## Digital link with other computer networks

Digital link will be established between the computer at the Center and the computers in other agencies to facilitate the direct data exchange between the computers.

## **Dedicated telephone link (hot line)**

Hot lines that do not go through telephone exchange will established between the Center and other agencies for voice communication. The line may be leased from PLDT or other telephone company.

## **Public telephone service**

Sufficient number of subscriber lines will be connected to the Center for the telephone inquiry and Internet access.

## 1.3.3 Mobile unit

The Traffic Information Center will have a mobile unit which consists of several units of ordinary trucks and tow trucks. Trucks will carry good, materials and work force and will be dispatched to the incident site to take countermeasures. Tow trucks will be used to remove the stalled vehicles and illegally parked vehicles.

## **1.4 Description of the Project**

The project consists of two categories of work.

- Establishment of Traffic Information Center
- Organizational setup and staff training

The first part of the work is to construct a traffic information system while the latter is to strengthen the existing organization to operate the system and manage the information efficiently.

## **1.4.1** Establishment of Traffic Information Center

The work to establish the system include the following:

- 1) Purchase of center equipment and software, and development of information processing system.
- 2) Construction of a center building and installation of associated facilities
- 3) Purchase of radio communication equipment and installation of base station at MMDA
- 4) Rehabilitation of the existing closed circuit television system and connection of TV cameras with the Center through optical fiber cable system.
- 5) Purchasing of mobile units which consist of small and large trucks and small and large tow trucks.

## **1.4.2** Organizational setup and staff training

In order for the Center to function as a focal point of information collection and dissemination, and as a communication center in implementing countermeasure, operational procedure of the center must be clearly defined. For this purpose, jop description and authority and responsibility of the various positions must be made clear. More specifically, the works under this category include the following

- 1) Definition of role, authority and responsibility of the position at various levels.
- 2) Establishment of information flow through different media in different cases
- 3) Establishment of communication link with other agencies and organizations
- 4) Development of contingency plans and countermeasures against various incidents
- 5) Training on the use of the equipment comprising the system
- 6) Preparation of operation manuals which specify the definitions and procedures in detail

Intensive staff training is required to upgrade the capability of the staff and efficiency of the operation at the Center. The training will be carried out in parallel to the construction of the system so that the Center will function properly when the system is completed.

## **1.5** Technical Assistance

The design of the proposed system requires highly technical knowledge of traffic engineering, computer communications and system integration. Experience of the similar system is essential to design a good traffic information system. Considering the fact that the delay and problems of the on-going signal replacement project partly stems from the lack of competent consultant, it is necessary to retain consultant who is familiar with the system for the design and construction supervision of the proposed project.

Information plays an important role in the operation of the proposed system than the hardware such as computer and communication equipment. Usefulness and effectiveness of the system depend much on the organizational setup and operational procedure. Experience of the similar system in other country will provide valuable

resource of the information in strengthening the organizational capability and development of the operation procedure.

For these reasons, hiring of competent consultant is highly recommended in the implementation of the project.

## 1.6 Project Cost

The scope of work and the size of the project are yet to be discussed and finalized. The cost estimate at this moment is therefore, very rough and will vary, as the details of the system are determined. The initial cost estimate is presented below.

|                                       | Foreign    | Local       |
|---------------------------------------|------------|-------------|
|                                       | (US\$)     | (Pesos)     |
| Total direct cost                     | 8,342000   | 93,700,000  |
| Physical contigency (10%)             | 834,200    | 9,370,000   |
| Price escalation (5%, 15%)            | 417,100    | 14,055,000  |
| Detailed design and supervision (14%) | 1,343,062  | 16,397,500  |
| Total project cost                    | 10,936,362 | 133,522,500 |

# **APPENDIX III**

DRAFT TERM OF REFERENCES METRO MANILA SIGNAL SYSTEM REHABILITATION PROJECT

## 2. METRO MANILA SIGNAL SYSTEM REHABILITATION PROJECT

## 2.1 Background

Metro Manila has a computerized signal system. A central computer installed at Traffic Engineer Center (TEC), under Department of Public Works controls more than 400 signal controllers in Metro Manila and Highways (DPWH) located at Santa Mesa. The system has been developed over 15 years. The first phase of the project installed the system in 1980 to 1982 under Metro Manila Traffic Engineering and Management (TEAM) Project financed by the World Bank. The second and third phases of the project were implemented with a financial assistance of Overseas Economic Cooperation Fund of Japan. The second phase was completed in 1987 and the third phase of the system in 1994. Although there is an on-going signal replacement project, the completion of the project is still far away. In the meantime, the existing system must be utilized to the maximum extent possible to provide effective road traffic system. The existing system has the advanced features that a modern computerized signal control system is required to provide. The existing system is, however, at a deplorable condition due to the lack of proper maintenance. Metropolitan Manila Development Authority (MMDA) is mandated the task of traffic management in Metro Manila. In accordance with this policy, the signal system was transferred to MMDA from DPWH in August 1995. This paper proposes a Metro Manila Signal System Rehabilitation Project, which aims at revitalizing the existing signal system.

## 2.2 Description of the Present Status

## 2.2.1 Existing system

The system consists of 435 signals, 1,286 vehicle detectors, 19 television cameras, 7 changeable message signs, 4 air pollution monitoring stations, and 5 radio base stations. The control center system includes central computer system, a wall map, communication equipment, control console, TV monitors and air pollution monitoring equipment. The data exchange between the control center equipment and field equipment is made through communication cable network established by the project.

The existing signal has the advanced signal control functions such as traffic responsive signal control, traffic adaptive control, multiple phase sequences, remote flashing etc. Thus the signals can be operated with the most optimum timing parameter without intervention by traffic enforcer.

The system is a comprehensive traffic control system. It can not only control signals but also monitor traffic conditions through television camera and disseminate traffic related information to road users through changeable message signs.

Unfortunately, the system is not performing at its best. The main reason is that the equipment is not well maintained. Communication cable is damaged at many locations by other construction projects so that remote control of signal is no longer possible and TV cameras are not connected with the control center. Lack of

competent personnel in managing the system and indiscriminate of manual control by traffic enforcers are also a problem.

Although some equipment was installed some 15 years ago, the system is still capable of controlling traffic if properly maintained. The central computer system is, however, outdated as the progress of computer technology is so fast. Replacement of the central computer is desirable, as the new computer system will enhance the reliability and user-friendliness of the system.

## 2.2.2 Signal replacement project

A "smart signal system" project partly funded by Australian aid started in 1997. The project is intended to replace the 419 existing signals with new signals. The progress of the project is, however, slow. Since the commencement of the project in November 1997, only ten (10) intersections have been completed the replacement as of September 1998. The scheduled completion of the replacement of 419 signals by March 2000 is, thus, not certain, considering the problems that the project is facing now.

The replacement project assumed that the existing communication cable network, which has been established in the previous projects, is available and no provision is made in the construction contract for the rehabilitation and expansion of the cable network system. In reality, however, communication cables are damaged at many locations and rehabilitation is needed to utilized it. Another option of leasing telephone lines from the telephone company such as PLDT turned out very costly, several million Pesos a month for telephone bill, and seems not viable.

Another issue to be solved is the control center. TEC is located along Magsaysay Blvd. near Nagtahan intersection, where LRT Line 2 is being constructed. The one third of the existing TEC building must be demolished to construct LRT structure. The new building is planned but no definite plan and schedule has been prepared. In the meantime, the existing central equipment must be relocated without damaging its function.

## 2.2.3 Maintenance

The maintenance management system worked well until December 1996. A maintenance contract was made between TEC and a maintenance contractor. Periodic inspection, reporting of defect, supply of spare parts, fixing of defective or damaged equipment, and minor modification of the system have been carried out by the maintenance contractor under supervision of TEC maintenance division. Since January 1997, however, no maintenance contract has been made due to lack of budget. The system has been degrading gradually since. Only one time in October 1997, MMDA purchased some spare parts for signal controller. No budget is allocated to the maintenance of the existing system at this moment while the imperfect signal equipment is still controlling Metro Manila's chaotic traffic.

Computerized signal system is a sophisticated computer and communication system. In order for the system to exhibit its functions to the full extent, good maintenance management system must be established under which maintenance work must be carried out by a competent personnel. As the system is expected to work for several years more, rehabilitation of the system is urgently required.

## 2.2.4 Transfer to MMDA

The existing signal system was built and operated by TEC, which is under DPWH. In August 1995, the system was transferred to Metro Manila Development Authority under a Memorandum of Agreement between the Secretary of DPWH and MMDA Chairman. The staff of operation and maintenance section was also transferred to MMDA. But the inventory of the equipment and other assets are not yet prepared and the property is not officially transferred to MMDA. This fact made it difficult for both TEC and MMDA to engage in the intense rehabilitation of the system.

## 2.3 Description of the Project

## 2.3.1 System/equipment to be rehabilitated

The rehabilitation work shall cover signal system except a portion stated below, closed circuit television system, driver information system, air pollution monitoring system, communication cable network system and radio communication system. The intersection and signal equipment being replaced, which numbers about 100 intersections will be excluded from the project. The exact location and equipment to be excluded depends on the plan of the on-going replacement project and will be discussed with TEC.

## 2.3.2 Scope of work

The proposed project is intended to rehabilitate and reinstate the existing signal system so that it can perform its original functions. The scope of the work is divided into three groups, which will be undertaken sequentially.

- Stage 1: Inspection and identification of the extent of rehabilitation work.
- Stage 2: Carrying out the basic rehabilitation work
- Stage 3: Upgrading of the central computer system

The regular maintenance of the signal system will be a part of the project in addition to the rehabilitation work. The regular maintenance will commence at Stage 2. The tasks in each stage are described below.

Stage 1: Inspection and identification

In Stage 1 all the pre-existing defects and damages shall be identified and the extent and manner of rehabilitation work will be determined through the site inspection, test and measurement.

1) Inspection and appraisal of the condition of the signal equipment including signal controller, mast-arm and post, lantern and vehicle detectors at intersection except one where signal has been replaced or to be replace soon to identify the defects in the system.

- 2) Inspection and appraisal of the condition of the central equipment at Center and Sub-stations including central computer, communication equipment, operator console, engine generator and air-conditioning equipment.
- 3) Inspection and appraisal of the condition of the closed circuit television system including both field equipment at intersection and the central equipment at the Control Center.
- 4) Inspection and appraisal of the condition of the driver information system including both changeable message sign at field and the central monitoring and control equipment at the Control Center.
- 5) Inspection and appraisal of the condition of the air pollution monitoring system including both measurement system at sub-station and the central data gathering system at the Control Center.
- 6) Inspection and appraisal of the condition of the communication cable network system including both telephone cable, coaxial cable and optical fiber cable. The inspection work includes measurements of the cable characteristics.
- 7) Inspection and appraisal of the condition of the radio communication system including base station console, mobile and portable units, chargers and accessories, antenna system and accessories, and the radio satellite repeaters.
- Stage 2: Rehabilitation work

In Stage 2, actual maintenance work will be carried out and the equipment will be restored to the original functioning condition. In addition, regular maintenance work starts in Stage 2. Training on the system operation and maintenance management shall also be undertaken for MMDA personnel.

- 1) Supply of the spare parts for signal equipment, closed circuit television equipment, driver information system, air pollution monitoring system, communication cable network, and radio communication system as identified by the tasks in Stage 1. The spare parts shall conform to the original specifications unless they are no longer available due to termination of the production.
- 2) Design and installation, replacement, repair or modification of the defective or damaged parts as identified in Stage 1 using the parts supplied under the item 10 above.
- 3) Regular maintenance which consists of periodic inspection and accident repair of the equipment that may occur during the Rehabilitation Project.
- 4) Training of MMDA personnel in the basic course of system operation and maintenance management.

## Stage 3: Upgrading of central computer system

In the Stage 3, the existing central computer system will be replaced with a new system. Basically no modification of the functions will be implemented as the existing system has the sufficient functions.

- 1) Replacement of the central computer system with the new hardware and operating system. The basic functions of the system will remain same but minor enhancement particularly in the man-machine interface will be introduced.
- 2) Training of MMDA personnel for the use of new computer system and basics for daily operation such as modification of phase sequence and signal timing parameters.

## 2.4 Technical Assistance

The proposed project requires highly technical knowledge in the field of traffic engineering, computer, and communications. It also needs the practical experience of the installation work, and inspection and testing of various equipment. Considering the fact that the delay and problems of the on-going signal replacement project partly stems from the lack of competent staff, it is highly necessary to have a technical adviser in the implementation of the proposed project. The technical advisor must be an expert of traffic signal system and related technologies, and must have the sufficient experience in the installation, operation and maintenance of the similar system. The adviser will be resident in Metro Manila during the entire period of the project. He will provide advice to the MMDA Director in charge of traffic management on a daily basis and jointly oversee the implementation of the project.

## 2.5 Technology Transfer and Training

Throughout the all stages of the project, technology transfer to the local counterpart will be given a higher priority. Local counterpart will be intensively involved in the all activities of the rehabilitation project. Particularly during the Stage 1, site inspection shall be carried out jointly by the inspector, who is an expert of the system or equipment under inspection, and local counterpart. This provides the best opportunity to the local staff to understand how the system is constructed and operates as well as the technologies behind the computerized signal control system.

## 2.6 **Project Schedule**

The project will take two (2) years to complete. Duration of each stage will be as follows:

| Stage 1: | Inspection and identification | Three (3) months |
|----------|-------------------------------|------------------|
| Stage 2: | Rehabilitation work           | Nine (9) months  |
| Stage 3: | Computer system upgrading     | One (1) year     |

# 2.7 Project Cost

The project cost is estimated as shown below. The cost estimate does not include the cost of technical assistance.

|                   | Foreign   | Local      |
|-------------------|-----------|------------|
|                   | (US\$)    | (Pesos)    |
| Stage 1           | 34,000    | 6,300,000  |
| Stage 2           | 1,400,000 | 53,700,000 |
| Stage 3           | 7,520,000 | 1,500,000  |
| Contingency (10%) | 895,400   | 6,150,000  |
| Total             | 9,849,400 | 67,650,000 |

# **APPENDIX III**

DRAFT TERM OF REFERENCES TRAFFIC SIGN AND PAVEMENT MARKING IMPROVEMENT PROJECTS

## 3. TRAFFIC SIGN AND PAVEMENT MARKING IMPROVEMENT PROJECT

## 3.1 Introduction

Various traffic regulations such as no left turn, no U turn, no parking, etc. are applied in the road network in Metro Manila to regulate traffic flow for efficient and safe traffic environment. The signs currently used are, however, not consistent in design, material and installation. Makeshift signs are also found. Some signs are not clearly visible as they are not posted at right place. These signs create unintentional violators.

Undisciplined behavior is often blamed as a cause of traffic mess in Metro Manila. Sudden lane change, blocking of other's path, loading and unloading of passengers at inner lane, etc. are common phenomenon. Jaywalkers disturb the flow and risk themselves. If vehicles form orderly flow, the efficiency can be much higher and traffic is much smooth. If pedestrian crossing marking is more conspicuous, pedestrians can cross a road more safely.

Pavement markings are a tool to foster traffic discipline and improve efficiency. They show where to run, where to stop and where to cross. Lane arrow indicates the direction of flow and reduces unnecessary interaction between vehicles.

Currently the condition of pavement marking on the roads in Metro Manila is very poor. Many roads have worn out and almost invisible pavement markings, or no pavement marking at all. The proposed Traffic Sign and Pavement Marking Improvement Project aims to improve the traffic and enhance the discipline among the drivers at by improving the traffic sign and pavement markings.

## **3.2** Description of the Project

The proposed project consists of three components;

- Part 1: Establishment of standards for traffic sign and pavement markings
- Part 2: Establishment of traffic sign database and renewal of traffic sign
- Part 3: Establishment and implementation of three-year pavement marking program.

The first component will standardize the specifications for the design of traffic signs and for pavement marking materials and develop guidelines for their installation. In the second component, a traffic sign database will be established and the existing traffic signs that is already in bad shape or of sub-standard design will be replaced with a new sign. A three-year pavement marking program will be established and pavement marking will be applied according to the program.

## 3.2.1 Part 1: Standards

Traffic sign and pavement marking must be uniform and consistent in the design and application to avoid confusion among drivers. The meaning of traffic sign must be clearly defined. Materials used must meet the specifications to maintain the quality. The task consists of the establishment of specifications and the preparation of

installation guidelines.

1) Specifications

Two sets of specifications will be prepared; one for traffic sign and another for pavement marking. The specifications must be suitable to the road and traffic condition and the climate in the Philippines. The specifications adopted during TEAM Project Phase III can be a good reference in establishing specifications.

Standard specifications for traffic sign shall stipulate size, material, reflection property and structure of traffic sign.

Standard specification for pavement marking shall cover both marking materials and reflective studs. Thermo-plastic type marking is recommended for its durability and high reflection property. The specifications for marking material shall set forth the composition, chemical and physical properties, size and amount of glass beads, application method and testing method. The specifications for reflective stud specify the size, color, reflection property and installation method.

2) Design and application guidelines

Two manuals will be prepared; one covers traffic sign and another for pavement marking and reflective stud.

The existing manual "Philippine Road Sign Manual" prepared and published by then Ministry of Public Works and Highways in 1982 will be revised to reflect new development in traffic. Traffic sign manual stipulates code, name, size, color, design, layout, symbol, font, definition and meaning of various types of regulatory and guidance signs. The United Nation Standards established in 1968 may be used as reference. The manual also contains the installation guidelines.

The existing manual for pavement markings entitled "Manual on Pavement Markings" prepared and issued by then Ministry of Public Highways in 1980 will be revised and updated. For example, painting of curb in yellow or red to indicate no-parking regulation is used in some cities but it is not included in the current version of the manual. There is no description of reflective stud in the manual, as it was not used during the time the manual was prepared.

The guidelines for pavement marking will specify the size, thickness, color, spacing and location of the markings. The type of markings includes center line, double yellow line, lane line, stop line, pedestrian crossing, zebra, lane arrow, no-parking, and no-stopping. The guidelines for reflective stud will specify the use of the reflective stud specified in the specifications.

Other traffic safety devices such as safety cone, reflective delineator, light emitting stud, etc. may be included in the specifications and guideline.

3) Distribution

Sufficient number of copies of these specifications and guidelines will be printed and distributed to the government agencies concerned such as DPWH, DOTC and local government units, as well as non-governmental organizations. Simplified leaflet showing basic traffic signs and pavement markings will also be printed and distributed to drivers who come to Land Transportation Office for renewal of their driver's license.

## 3.2.2 Part 2: Traffic Sign

Tasks under this part consist of conducting site survey, establishing a geographic information system and renewal of traffic signs. Location and type of existing traffic signs on all primary and secondary roads will be identified by field survey. The location of turning restriction sign, no-parking sign, one-way and other regulatory signs (Type R signs) will be identified.

A geographic information system will be established and the traffic regulation and sign information in Metro Manila obtained by site survey will be stored in the database. Regulation and sign location will be reviewed and revised if necessary. New traffic signs will be installed at the location where such action is found necessary.

## 3.2.3 Part 3: Pavement Marking Program

Pavement markings and reflective studs are not a permanent facility. Pavement marking looses its thickness and reflection property over the time as it is exposed to traffic and direct sun. Reflective stud may come off under the repeated load. They must be regarded as consumable and renewed or supplemented at a certain interval.

The proposed project covers all primary and secondary roads in Metro Manila, the total length of which is estimated at 399 km and 235 km, respectively. A three-year pavement marking renewal program will be established. In principle, all pavement markings on these roads will be re-applied every three years according to the program. Center line, lane line, stop line, pedestrian crossing and lane arrow will be drawn but depending on the site condition, other markings such as zebra marking will also be applied.

The tasks in the program includes selection of roads, preparation of base plan, design of pavement markings, scheduling of work and application of pavement markings. All primary and secondary roads will be divided into three groups and each year markings are applied to one group. Base plan will be prepared with the scale of 1/1000 based on the existing plans or aerial photo, on which markings will be designed.

Application of markings will be implemented under a contract with the qualified contractor. Materials used for pavement marking shall be tested at the laboratory at Traffic Engineering Center and shall meet the specifications established under the Part 1 of the project.

## 3.3 **Project Schedule**

The overall project will take three and half years to complete. The duration of each component is shown below.

| Part 1: Standard         | 6 months  |
|--------------------------|-----------|
| Part 2: Traffic sign     | 18 months |
| Part 3: Pavement marking | 3 years   |

The project starts with Part 1, after which Part 2 and Part 3 will be carried out simultaneously.

## 3.4 Project Cost

The cost of the project is estimated as shown below.

| Part 1: Standard                     | 6.8 million Pesos  |
|--------------------------------------|--------------------|
| Part 2: Traffic sign renewal         | 32.1 million Pesos |
| Part 3: Pavement marking application | 58.4 million Pesos |
| Total                                | 97.3 million Pesos |

# **APPENDIX III**

DRAFT TERM OF REFERENCES METRO MANILA NORTHERN ROAD **DEVELOPMENT PROJECT** 

(NORTHERN AND CENTRAL PACKAGES)

# 4. METRO MANILA NORTHERN ROAD DEVELOPMENT PROJECT (NORTHERN AND CENTRAL PACKAGE)

## 4.1 Background

Metro Manila and its vicinity has been suffering from worsening traffic situation and severe environmental degradation. Roads have become more congested, commuting time and distance lengthened, in-vehicle congestion and comfort level of public transport decreased, air pollution worsened, and accidents increased. Many of these are attributed to the situation which includes lack of infrastructure, poor maintenance, inadequate traffic and vehicle management, undisciplined drivers and pedestrian attitudes, uncontrolled road side activities and land use, etc. Fast growing population in urban areas are enormous serious threats to sustainable development of urban transportation from the medium to long-term viewpoints. While requirements for more strategic transport planning were necessary, updated database and effective planning tools were insufficient.

Under these circumstances, the Metro Manila Urban Transportation Integration Study (MMUTIS) was conducted, upon request of the Philippine Government, with technical assistance of Japan International Cooperation Agency (JICA) with the following objectives:

- To establish an updated transportation database system similar to the one built in JUMSUT which is intended to contribute to transportation planning research and education in the Philippines;
- To formulate a Master Plan for a comprehensive urban transportation system of Metro Manila for the target year 2015; and
- To formulate a Medium-term Development Plan (1999 2004) based on the Master Plan.

The MMUTIS proposes at-grade road development as one of the important strategy. The proposal consists of development of primary arterial roads for missing links and promoting effective north-south urban expansion, and secondary roads to strengthen road network hierarchy. Role of those at-grade roads is also strictly important for the space to accommodate elevated expressway and MRT.

In the mid-term plan, MMUTIS road development plan was categorized as several spatial packages to promote the network development, and to formulate appropriate project sizes. The northern package consists of two new primary roads and two new secondary roads development at the northern part of Metro Manila, whereas the central package consists of seven new secondary roads development and five grade separation projects at the central part of Metro Manila.

## 4.2 **Objective of the Study**

The objective of the study is to perform a feasibility study for each component road of the north and south project packages. The study includes:

- 1. conduct supplemental surveys including traffic surveys, topographic surveys and land use surveys for the projected areas.
- 2. conduct engineering and alignment studies,.
- 3. forecast traffic demand up to year 2020.
- 4. estimate project costs and benefits.
- 5. prepare alternative plans.
- 6. conduct economic evaluation.
- 7. conduct environmental impact evaluation.
- 8. formulate Project implementation plans.

## 4.3 Study Area and Outline of the Proposed Project

The study area for the northern package is a northern part of Metro Manila approximately between Tandang Sora Avenue at the south and Bocaue Provincial Road at the north.

The northern package consists of the following road sections:

| Category              | Road Name                             | Length  | Project Cost |
|-----------------------|---------------------------------------|---------|--------------|
| (1) Primary Arterial  | PN03:North Central Road               | 11.0 km | P8,087mil    |
| (2) Secondary Arteria | alSM13: Marcos Ave. Extension         | 4.5 km  | P2,116mil    |
| (3) Secondary Arteria | alSM14: Quirino Hwy Novaliches Bypass | 1.5 km  | P418mil      |
|                       | Total                                 | 17.0 km | P10,621mil   |

The study area for the central package is a central part of Metro Manila approximately surrounded by Tandang Sora Avenue at the north, C-5 at the east and EDSA at the south.

The central package consists of the following road sections:

|    | Category           | Road Name                           | Length 1 | Project Cost |
|----|--------------------|-------------------------------------|----------|--------------|
| 1) | Secondary Arterial | SM01: Aurora Ave. Extension to R-10 | 2.5 km   | P1,727mil    |
| 2) | Secondary Arterial | SM02: A.M. Maceda & Extension       | 3.5 km   | P838mil      |
| 3) | Secondary Arterial | SM03: F. Martinez Extension         | 1.7 km   | P523mil      |
| 4) | Secondary Arterial | SM04: South Luzon Expressway Ext.   | 1.8 km   | P2,709mil    |
| 5) | Secondary Arterial | SM05: Gilmore Ave. Extension        | 1.5 km   | P1,062mil    |
| 6) | Secondary Arterial | SM06: Victoneta Ave. Extension      | 2.5 km   | P865mil      |

| 7)  | Secondary Arterial | SM17: Kalayaan Ave. Extension               | 1.0 km | P725mil |
|-----|--------------------|---------------------------------------------|--------|---------|
| 8)  | Grade Separation   | GS01: C-3/A. Bonifacio Ave. Intersec.       |        | P480    |
| 9)  | Grade Separation   | GS02: C-3/Quezon Ave. Intersec.             |        | P480    |
| 10) | Grade Separation   | GS03: C-3/Aurora Blvd. Intersec.            |        | P480    |
| 11) | Grade Separation   | GS04: España/Pres. Quirino Ave. Intersec.   |        | P480    |
| 12) | Grade Separation   | GS05: Roxas Blvd./Pres. Quirino Ave. Inters | 5      | P480    |

Total

14.5 km P10,849mil

The indicated project costs are an approximate estimation by MMUTIS. The study area is shown in Figure-1.

## 4.4 Scope of the Study

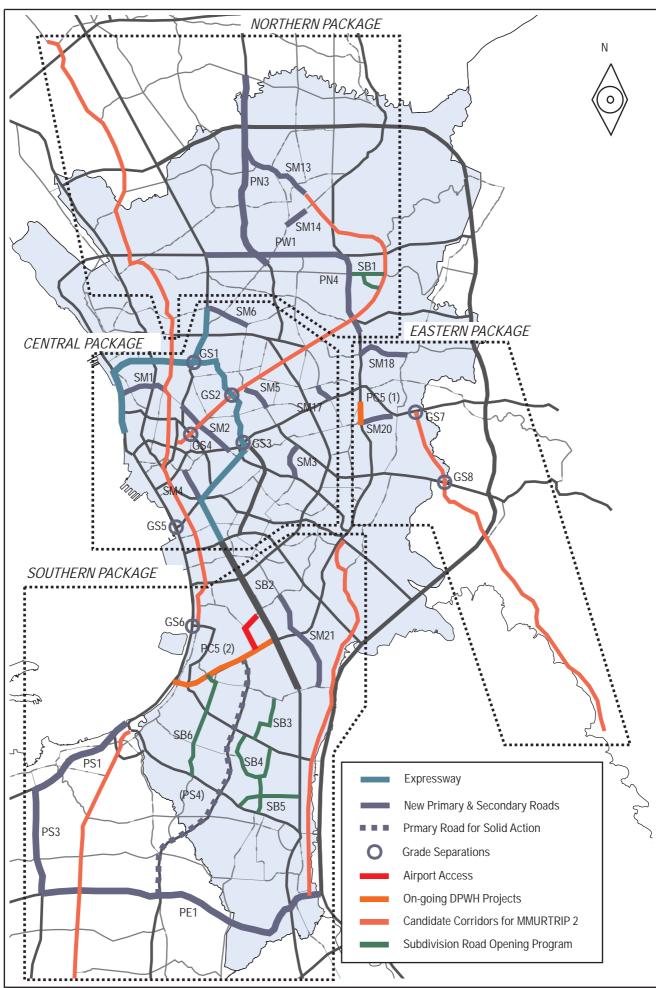
- 1) Present Condition Survey of the Study Roads
  - Geometric condition
  - Road condition
  - Roadside development condition
  - Land use for proposed alignment
- 2) Traffic Surveys of the Study Areas
  - Analysis on existing traffic data
  - Additional traffic volume survey
  - OD patterns survey
  - Travel speed survey
  - Analysis on causes of traffic congestion in the study area
- 3) Future Traffic Demand Forecast
  - Establishment of future socio-economic framework
  - Forecast of future traffic demand up to year 2020
- 4) Preparation of Aerial Photo Mosaic Map for the new road sections
  - Aerial photo taking
  - Aerial photo mosaic preparation (scale 1:5,000)
- 5) Establishment of Alternative Route Alignments
  - Development of alternative routes for new road sections
  - Evaluation and selection of the alternatives
- 6) Engineering Survey
  - Topographic survey (horizontal and vertical alignment survey)

- Geotechnical survey at bridge construction sites
- Soils investigation along the selected alignement
- Hydrological survey and analysis
- 7) Preliminary Engineering Design
  - Geometric design
  - Earthwork design
  - Pavement design
  - Structure design
  - Drainage design
  - Intersection and/or grade separation design
- 8) Cost Estimate
  - Project cost estimate including further engineering services, right-of-way acquisition and construction
  - Maintenance and operation cost
- 9) Economic and Financial Evaluation
  - Cost/benefit analysis
  - Fund availability analysis
- 10) Environmental Impact Evaluation
  - Environmental impact assessment
  - Proposal of mitigation measures
- 11) Project Implementation Program
  - Prioritization of sections
  - Implementation schedule
  - Annual fund requirements

## 9.5 Study Period

The study shall be completed within a period of 10 (ten) months.

## 9.6 Man-month Requirements


| 1) | Team Leader/Highway planner | 8 months |
|----|-----------------------------|----------|
| 2) | Regional Planner            | 2 months |
| 3) | Highway Engineer            | 6 months |
| 4) | Structure Engineer          | 3 months |

| 5) Traffic Surveyor               | 2 months |
|-----------------------------------|----------|
| 6) Traffic Demand Forecast Expert | 3 months |
| 7) Economic Analysis Expert       | 3 months |
| 8) Environmental Specialist       | 3 months |

Total man-months

30 months

Figure 1 Road Project Packages



# **APPENDIX III**

DRAFT TERM OF REFERENCES METRO MANILA NORTHERN ROAD DEVELOPMENT PROJECT (SOUTHERN PACKAGES)

# 5. METRO MANILA NORTHERN ROAD DEVELOPMENT PROJECT (SOUTHERN PACKAGE)

## 5.1 Background

Metro Manila and its vicinity has been suffering from worsening traffic situation and severe environmental degradation. Roads have become more congested, commuting time and distance lengthened, in-vehicle congestion and comfort level of public transport decreased, air pollution worsened, and accidents increased. Many of these are attributed to the situation which includes lack of infrastructure, poor maintenance, inadequate traffic and vehicle management, undisciplined drivers and pedestrian attitudes, uncontrolled road side activities and land use, etc. Fast growing population in urban areas are enormous serious threats to sustainable development of urban transportation from the medium to long-term viewpoints. While requirements for more strategic transport planning were necessary, updated database and effective planning tools were insufficient.

Under these circumstances, the Metro Manila Urban Transportation Integration Study (MMUTIS) was conducted, upon request of the Philippine Government, with technical assistance of Japan International Cooperation Agency (JICA) with the following objectives:

- To establish an updated transportation database system similar to the one built in JUMSUT which is intended to contribute to transportation planning research and education in the Philippines;
- To formulate a Master Plan for a comprehensive urban transportation system of Metro Manila for the target year 2015; and
- To formulate a Medium-term Development Plan (1999 2004) based on the Master Plan.

The MMUTIS proposes at-grade road development as one of the important strategy. The proposal consists of development of primary arterial roads for missing links and promoting effective north-south urban expansion, and secondary roads to strengthen road network hierarchy. Role of those at-grade roads is also strictly important for the space to accommodate elevated expressway and MRT.

In the mid-term plan, MMUTIS road development plan was categorized as several spatial packages to promote the network development, and to formulate appropriate project sizes. The southern package consists of four new primary roads, one new secondary road and one grade separation project.

## 5.2 **Objective of the Study**

The objective of the study is to perform a feasibility study for each component road of the north and south project packages. The study includes:

- 1) conduct supplemental surveys including traffic surveys, topographic surveys and land use surveys for the projected areas.
- 2) conduct engineering and alignment studies,.
- 3) forecast traffic demand up to year 2020.
- 4) estimate project costs and benefits.
- 5) prepare alternative plans.
- 6) conduct economic evaluation.
- 7) conduct environmental impact evaluation.
- 8) formulate Project implementation plans.

## 5.3 Study Area and Outline of the Proposed Project

The study area for the southern package is a southern part of Metro Manila and Cavite Province approximately between EDSA at the north and the Governor's Drive at the south.

The southern package consists of the following road sections:

|     | Category           | Road Name                            | Length  | Project Cost |
|-----|--------------------|--------------------------------------|---------|--------------|
| (1) | Primary Arterial   | PS01: Talaba-Kawit Road              | 6.0 km  | P1,496mil    |
| (2) | Primary Arterial   | PS03: Kawit-Bucandala Road           | 5.5 km  | P1,052mil    |
| (3) | Primary Arterial   | PS04: South Central Road             | 15.5 km | P13,133mil   |
| (4) | Primary Arterial   | PE01: Bucandala-Muntinglupa Road     | 16.0 km | P5,450mil    |
| (5) | Secondary Arterial | SM21: Pasay Road Extension           | 5.5 km  | P4,805mil    |
| (6) | Grade Separation   | GS06: Roxas Blvd./Mia Road Intersec. |         | P480mil      |
|     |                    | Total                                | 48.5 km | P26,416mil   |

The indicated project costs are an approximate estimation by MMUTIS. The study area is shown in Figure-1.

## 5.4 Scope of the Study

1) Present Condition Survey of the Study Roads

- Geometric condition
- Road condition
- Roadside development condition
- Land use for proposed alignment

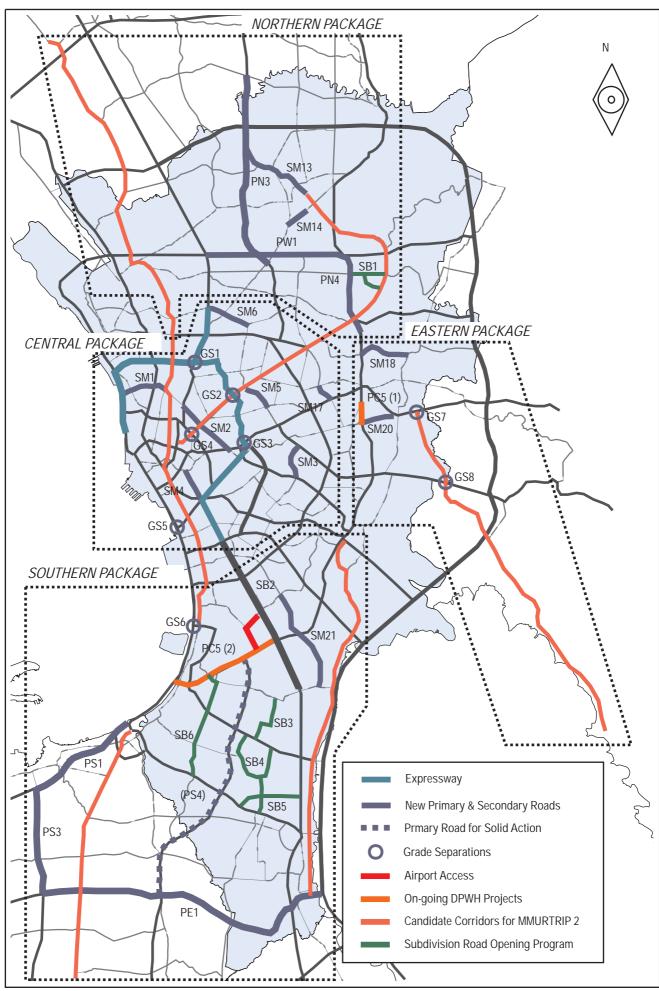
- 2) Traffic Surveys of the Study Areas
  - Analysis on existing traffic data
  - Additional traffic volume survey
  - OD patterns survey
  - Travel speed survey
  - Analysis on causes of traffic congestion in the study area
- 3) Future Traffic Demand Forecast
  - Establishment of future socio-economic framework
  - Forecast of future traffic demand up to year 2020
- 4) Preparation of Aerial Photo Mosaic Map for the new road sections
  - Aerial photo taking
  - Aerial photo mosaic preparation (scale 1:5,000)
- 5) Establishment of Alternative Route Alignments
  - Development of alternative routes for new road sections
  - Evaluation and selection of the alternatives
- 6) Engineering Survey
  - Topographic survey (horizontal and vertical alignment survey)
  - Geotechnical survey at bridge construction sites
  - Soils investigation along the selected alignement
  - Hydrological survey and analysis
- 7) Preliminary Engineering Design
  - Geometric design
  - Earthwork design
  - Pavement design
  - Structure design
  - Drainage design
  - Intersection and/or grade separation design
- 8) Cost Estimate
  - Project cost estimate including further engineering services, right-of-way acquisition and construction
  - Maintenance and operation cost
- 9) Economic and Financial Evaluation
  - Cost/benefit analysis
  - Fund availability analysis

## 10) Environmental Impact Evaluation

- Environmental impact assessment
- Proposal of mitigation measures

11) Project Implementation Program

- Prioritization of sections
- Implementation schedule
- Annual fund requirements


## 5.5 Study Period

The study shall be completed within a period of 10 (ten) months.

## 5.6 Man-month Requirements

| 1) | Team Leader/Highway planner    | 8 months  |
|----|--------------------------------|-----------|
| 2) | Regional Planner               | 2 months  |
| 3) | Highway Engineer               | 6 months  |
| 4) | Structure Engineer             | 3 months  |
| 5) | Traffic Surveyor               | 2 months  |
| 6) | Traffic Demand Forecast Expert | 3 months  |
| 7) | Economic Analysis Expert       | 3 months  |
| 8) | Environmental Specialist       | 3 months  |
|    | Total man-months               | 30 months |

Figure 1 Road Project Packages

