Appendix C: Ambient Air Quality Results of EPD Mobile Laboratory

(Please see the following pages.)

.

.

14	Solar	W.m-2	1100	2000	1330.6		1.0.11	1,04.4	1.04.1	1/83.4	1785.6	1783 4	1769.4	1490.9	720.6	1 90	20.1	1		1	1					1785.6	943.8
13	Baro	mBar	1100	1100	0 000	0.705	982.9	983.4	983.9	983.8	983.7	982.9	981.9	981 4	081 2	7 100	800.8	981.0	981.3	981.8	982.0	981.9	2004 2	2106	980.9	983.9	982.3
12	Temp.	ç	100	001	2	2.52	25.3	27.5	29.1	30.6	31.6	31.9	32 4	32.5	20.0	1 1 0 0	30.7	29.5	285	28.1	26.4	25 1		24.4	23.2	32.5	28.7
7	Hum.	%	100	2		0.10	52.1	52.3	52.4	52.6	52.7	52.7	52.8	52.8	62.0	0'70	52.5	52.4	52.3	52.3	52.2	500		21.0	51.8	52.8	52.4
10	W.Dir.	Deg	360	036		0 62	25.0	250	25.0	25.0	25.0	25.0	250	13.0	0.01	5'nL	9.2	7.7	80	9.0	10.8	10.01		0.01	2.7	25.0	17.0
6	W.Speed	m s-1	100		001	2.4	4.3	5.4	4.7	4.9	4.7	5.4	4.7	39		5,5	3.7	23	1.4	12	12		7	1.2	1.2	54	3.3
8	N Meth	maa	Qa		90	I	1	1	I	I	ł	1				1	1	1		1			1	1	I	1	Ţ
-	Math	E LUC	00	8	90	1	1	1	ł	I						1	1	ł	1	1			1	I	I	:	
ų	DML	110/m3		2007	500	578.4	1003.3	969.0	996.3	978.5	9787	970.6	9101	057.0	0.100	998 1	1175.2	1258.7	1165 B	1282.0		1302.0	1163.2	1071.7	578.4	1362.4	1048 2
Ľ	NO.	ž,	002	200	800	226.8	191.6	146.5	114.2	116.5	116.4	000	117 B		0.111	142.3	148 0	222.7	261 3	245.4		308.1	287.3	356 9	99.2	356.0	194.9
	* 0	1			800	107.4		58.0	1					ł		508				1		1	149.5	194.0	31.9	194.0	86.2
c	7 2 7	3	nind	6	10	0.5	1.0	1.2	0.7	1.0	05			3	L.L	1.6	1.9	35	2 1			0.0	3.7	2.4	0.5	7.0	2.3
,	~ 8	22	ndd	500	200	52.3	44.9	42.0	33.8	33.5	25.6		0.0	C RI	19.8	28.3	40.7	55 B			0.10	78.4	72.3	82.1	18.9	87.6	47.4
ļ		Ozone	add	500	001	6.3	3.3	47	8.1	12.0	0.0	0.0	4.11.4	101	9.6	6.9	6.2	00	30	22	32	2.8	2.8	3.8	2.8	12.9	6.3
	Q	Parameters	Unit	Min. Limit	Max. Limit	0800	0060	1000	1100	1200	0007	1300	1400	1500	1600	1700	1800	0001	1300	2000	2100	2200	2300	2400	Minimum	Maviminm	Average

Table C.1: Air Quality Result at Yateem Khana Chowk in Lahore (05-04-2000)
--

Hagler Bailly Pakistan D0TA1LRI-SOC: 07/13/00

No	*	~	m	4	ŝ	9	~	ŝ	0	10	11	12	5	14
fers	Ozone	SO,	8	N0	ŇŎX	PM ₁₀	Meth	N. Meth	W.Speed	W.Dir.	Hum.	Temp.	Baro.	Solar
	qa	qaa	шаа	qdd	qdd	ng/m³	mdd	mqq	m.s-1	Deg	%	°.	mBar	W m-2
Min. Limit	500	500	10	500	500	250	80	80	100	360	100	100	1100	1100
Max. Limit	002	200	10	800	800	500	90	90	100	360	100	100	1100	2000
0600	2.5	64.2	1	1		109 5	I	1	1.3	15.0	51.2	18.9	982.3	•
0200	41.2	52.7	1	66.6	148.9	326.0	I	ł	2.7	11.5	51.1	18.6	982.8	14.7
0800	1.7	50.6	1.6	77.0	170.7	529.8	1	1	43	9.5	51.2	20.7	982.9	103.4
0060	4.6	30.4	1.4	27.0	88.2	630.5	I	1	3.8	10.5	51.5	23.7	982.9	1105.3
1000	7.9	30.5	16	20.3	784	504.7	I		39	10.3	52.2	28.2	983.3	1781.9
1100	12.5	25.9	0.6	13.7	63.1	496.4	1		4.8	9.7	52.5	30.5	983.4	1759.7
1200	15.4	21.0	0.1	9.7	51.5	544.1	1	1	5.1	9.7	52.9	32.4	983.4	1746.7
1300-1400					ž	o data mea	Isurement	t because of	No data measurement because of generation problems	roblems				
1500	16.8	10.2	07	7.4	46.8			1	35	15.2	53.1	34.9	981.1	1746.9
1600	16.9	8.9	0.3	8.2	50.2	405.6	1	1	3.3	15.0	53.1	35.1	980.1	1748.8
1700	14.1	14.1	0.6	10.5	59.3	6.707	1	1	3.0	14.3	53.1	34.4	979.5	1433.1
1800	9.7	260	0.8	9.6	62.9	872.8	,		2.0	14.2	52.9	32.3	979.4	315.9
1900	4.3	32.9	2.6	38.4	127.0	1019.7			1.3	15.8	52.5	29.7	979.6	03
2000	6.2	34.2	4.1	57.1	160.1	1161.2	1	1	1.2	17.0	52.4	28.8	980.0	1
2100	4.1	31.7	4.9	65.3	172.4	1016.2	1	1	1.2	17.5	52.3	26.8	980.4	ı
2200	9.7	51.7	7.7	1410	287.6	1053 9	I	1	1.2	17.0	52.2	25.6	980.8	1
2300	11.4	724	9.4	217.3	400.8	1348.7	1		11	17 2	52.0	25.0	981.2	
2400	7.2	47.2	4.1	134.7	264 7	1190.9	1	1	1.1	18.5	51.9	25.0	981.2	I
Minimum	1.7	8.9	0.1	7.4	46.8	109.5	I	1	1.1	9.5	51.1	18.6	979.4	1
Maximum	41.2	72.4	9.4	217.3	400.8	1348 7	1	I	5.1	18.5	53.1	35.1	983 4	1781.9
Average	10.9	35.6	2.7	56.5	140.0	744.9	1	1	2.6	14.0	52.2	27.7	981.4	691.6

Table C.2: Air Quality Result at Azadi Chowk in Lahore (06-04-2000)

Hagler Bailly Pakistan DOTAILRI-SOC: 07/13/00

•

14	Solar	W.m-2	1100	2000	162.8	1145 3	1743.1	1796 3	1799.7	1799 7	1783.1	1768.1	1756.3	17269	1180.6	105.0	0.081	•	1	1	1	I	I	t	2 0021	1.000	930.3
13	Baro	mBar	1100	1100	982.0	982.1	982.8	982.9	983.6	985.0	984.3	983.3	982.3	980.9	QRO 5		380.0	981.3	981.8	982.3	982.9	983.0	983.0	ORD 5	0.000	1000	C'786
12	Temp.	ာ	100	100	23.3	25.3	26.7	29.0	32.4	34.0	35.3	36.8	37.7	37.3	35.5	2.00	32.1	31.2	30.3	28.6	26.7	25.7	25.3	22.2	0.07	5.75	30.7
11	Hum.	%	100	100	51.6	51.8	52 2	52.5	52.9	53.2	53.2	53.3	53.5	53.5	5.2		53.1	52.8	52.7	52.7	52.5	52.1	52.0	u 1		C.5C	52.7
10	W.Dir.	Deg	360	360	17.5	17.5	17.0	18.0	19.0	18.8	17.5	18.0	17.7	17.2	101		16.0	16.0	16.0	155	15.8	15.2	15.0	14		19.0	16.9
6	W Speed	m.s-1	100	100	1.3	1,4	1.3	1.7	3.2	2.5	25	3.5	3.2	00		N .2	1.7	1.2	1.3	1.2	1.2	1.2	12			3.5	1.9
8	N. Meth	maa	80	90	1]	1	1	1	1	1	1	1			1	I	1	1	1	1	1	1		1	I	1
~	Meth	maa	80	06	1			1	1	1	1	1				1	1	1			,	t	1		1	1	'
y	PM	na/m ³	250	200	373.0	545.6	750.1	830.2	852.4	806.8	847.8	RAA 6	830.7	1.000		988.6	1280 6	1323.8	1097.5	1137.7	1080.8	870.9	671 G		373.0	1323.8	888 0
u L	, Sol	qua	200	800	53.7	74 0	83.5	04.5	83 1	83.0	69.4	666	2000	7.00		61.2	62.1	77.4	73.3	78.4	4 E.L	57 B			51.9	95.5	70.3
		quu	200		8	16.4		a v.	0,42 0,42	2.12 29 F	16.7			10.4	13.1	16.1	12.6	19.3	17.7	22.2	25.0	17.6	2 4	13.4	8.6	25.0	18.0
¢	اد		1	2 5	2				7		2 4 6	7 7			4.1	2.1	3.0	3.8	4.0	4.2	a c			0	0.6	4.2	2.3
,	v .	5	100	000	3	7777	C.22	1.24	0.00	24.4	5 U		40.0	38.3	23.7	96.9	210.9	75.3	04	0.3	2.0			1	ι	210.9	39.9
,			ndd	200	3	2	0.5 0.5	7 7 1 1	000		2.0	200		9.7	12 0	10.2	8.7	48	42	B	4			9.5	1.6	43.9	8.3
	ov c	Parameters	044	MIN. LIMI	Max. Limit	00/0	0080	0080	1000	0011	0021	0051	1400	1500	1600	1700	1800	1900	0006	2100	0000	0022	2300	2400	Minimum	Maximum	Average

Table C.3: Air Quality Results at Lohari Gate in Lahore (07-04-2000)

Hagler Bailly Pakistan D0TA1LRI-SOC 07/13/00

.

W.Dir. Hum. Temp. B Deg % °C n 360 100 100 1 360 100 100 1 360 100 100 1 360 100 100 1 22.7 51.7 21.4 1 22.2 51.7 21.4 1 21.5 51.7 21.4 1 21.5 51.7 23.0 24.8 21.0 52.5 28.6 24.8 21.1 21.4 21.4 21.4 21.0 52.5 28.6 37.7 21.0 53.7 36.9 37.7 21.5 53.7 38.1 27.7 21.2 53.3 37.7 26.0 21.2 53.3 37.7 27.7 21.2 53.3 37.7 27.2 21.1 21.4 30.2 27.3 25.1 53.3			Alath		1			
Deg % °C r 360 100 100 100 100 360 100 100 100 100 100 350 100 100 100 100 100 100 17 21.5 51.7 21.4 21.4 21.4 21.4 17 21.5 51.7 22.3 51.7 22.3 51.7 22.3 1 20.7 52.5 51.7 22.3 52.5 28.6 52.6 53.6 57.7 53.1 33.2 52.5 28.6 57.7 53.1 33.2 55.5 53.5 36.9 57.7 53.1 33.2 55.5 53.6 37.7 55.5 53.6 37.7 55.5 53.6 37.7 55.5 55.6 53.6 37.7 55.5 55.5 55.5 55.5 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 <td>N Meth W.Sp</td> <td>STATUTE OF THE OWNER OWNER</td> <td>502</td> <td></td> <td>PMra</td> <td>NO_X PM₁₀</td> <td>CO NO NO_X PM₁₀ Meth</td> <td>NO NO_x PM₁₀</td>	N Meth W.Sp	STATUTE OF THE OWNER	502		PMra	NO _X PM ₁₀	CO NO NO _X PM ₁₀ Meth	NO NO _x PM ₁₀
360 100 100 100 360 100 100 100 100 27 21.5 51.7 21.4 21.4 27 21.5 51.7 21.4 21.4 27 21.5 51.7 21.4 21.4 21 21 51.7 21.4 23.0 31 20.7 52.0 24.8 33.2 31 21.0 52.5 28.6 37.7 4.1 26.0 53.7 37.7 36.9 4.1 26.0 53.7 37.7 37.7 5.3 26.8 53.4 35.5 36.9 4.1 26.0 53.7 37.7 37.7 5.3 26.8 53.4 35.5 36.1 5.3 26.2 4108 31.7 37.7 5.3 26.2 53.4 35.5 36.1 5.3 26.2 53.3 33.7 37.7 5.3		đ	шda	ug/m ³ ppm		ug/m³	ppb dqd dqd	am ppb ppb ug/m ³
360 100 100 100 1.8 22.7 51.7 21.4 2.7 21.5 51.7 21.4 2.1 21.5 51.7 23.0 2.3 22.2 51.7 23.0 3.1 20.7 52.0 24.8 3.1 20.7 52.0 24.8 3.1 20.7 53.1 23.2 4.1 26.0 53.5 36.9 4.1 26.0 53.7 37.7 5.1 27.5 53.7 37.7 5.1 27.5 53.7 37.7 5.1 27.5 53.7 37.7 5.1 27.5 53.7 37.7 5.2 27.0 53.4 35.5 5.1 27.2 53.3 33.7 5.2 25.8 53.6 37.7 5.2 25.3 33.7 36.5 5.1 27.2 53.3 33.7 5.2	80 10(-	80	250 80	250	500 250	500 500 250	10 500 500 250
22.7 51.7 21.4 21.5 51.7 2.3.0 21.5 51.7 2.3.0 22.2 51.7 2.3.0 20.7 52.0 24.8 21.0 52.5 28.6 21.0 52.5 28.6 21.0 53.5 36.9 24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.4 36.9 27.5 53.3 37.7 26.8 53.4 36.5 27.0 53.4 36.5 27.2 53.3 33.7 27.0 53.4 36.5 27.0 53.4 36.5 27.0 53.4 36.5 26.2 4108 31.7 25.1 30.2 25.4 25.5 52.6 28.3 25.5 52.6 28.3	90 10(90	500 90		500	800 500	800 800 500
21.5 51.7 22.3 22.2 51.7 23.0 20.7 52.0 24.8 21.0 52.5 28.6 24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 27.5 53.7 37.7 27.0 53.4 35.5 27.0 53.4 35.5 27.2 53.3 33.7 27.0 53.4 35.5 27.2 53.3 33.7 27.0 53.4 35.5 27.2 53.3 33.7 27.2 53.3 33.7 25.8 52.7 30.2 25.5 52.6 29.3 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.7 29.2 25.7 51.7	1		1	68.4 –	- 68.4 -		68.4 -	2.8 68.4 -
22.2 51.7 23.0 20.7 52.0 24.8 20.7 52.5 28.6 24.7 53.1 33.2 24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 27.5 53.7 37.7 27.0 53.4 35.5 27.0 53.4 35.5 27.0 53.4 35.5 27.2 53.3 33.7 26.2 4108 31.7 27.0 53.4 35.5 27.0 53.4 35.5 27.0 53.3 33.7 26.2 4108 31.7 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.7 29.2 25.5 52.6 27.3 26.7 51.7 21.4	1		I	109.2 -	24.0 109.2 -	ľ	4.0 24.0	- 4.0 24.0
207 52.0 24.8 21.0 52.5 28.6 24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.4 37.7 27.0 53.4 35.5 27.0 53.3 33.7 27.2 53.3 33.7 27.2 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 25.1 29.2 29.2 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.7 29.2 25.5 52.7 29.2 26.7 51.7 21.4 <	1		1	275.7 -	34.3 275.7 -		8.6 34.3	8.6 34.3
21.0 52.5 28.6 24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.4 36.5 27.0 53.4 35.5 27.2 53.3 33.7 27.2 53.3 33.7 27.0 53.4 35.5 27.2 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 25.1 30.2 25.7 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.5 27.3 25.5 52.6 28.3 25.5 52.7 29.2 20.7 51.7 21.4 <td>1</td> <td></td> <td>1</td> <td>381.6 -</td> <td></td> <td>54.9</td> <td>19.2 54.9</td> <td>2.1 19.2 54.9</td>	1		1	381.6 -		54.9	19.2 54.9	2.1 19.2 54.9
24.7 53.1 33.2 26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 36.1 27.5 53.7 36.1 27.0 53.4 35.5 27.2 53.3 33.7 27.2 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 25.1 53.3 33.7 25.2 52.7 30.2 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.5 27.3 25.5 52.5 27.3 26.7 51.7 21.4				440.7 -	76.5 440.7 -	76.5	26.8 76.5	26.8 76.5
26.0 53.5 36.9 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 37.7 26.0 53.7 38.1 27.5 53.7 38.1 26.8 53.6 37.7 27.0 53.4 35.5 27.0 53.3 33.7 27.0 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 26.2 53.3 33.7 25.8 52.7 30.2 25.1 50.2 29.3 25.5 52.6 28.3 25.5 52.5 21.3 25.5 52.5 21.3 25.5 52.5 21.3 25.5 52.5 21.4 20.7 51.7 21.4			'	656.2 -	232.0 656.2 -	1	109.1 232.0	6.8 109.1 232.0
26.0 53.7 37.7 26 53.7 37.7 26 53.7 37.7 27.5 53.7 38.1 27.5 53.4 35.5 26.8 53.4 35.5 27.0 53.4 35.5 27.0 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 26.2 4108 31.7 25.8 52.7 30.2 25.1 53.3 33.7 25.2 52.7 29.2 25.5 52.6 28.3 25.5 52.5 29.2 25.5 52.5 21.3 25.5 52.4 26.8 20.7 51.7 21.4	1			796.0 -	1	267.8	130.0 267.8	4.8 130.0 267.8
26 0 53.7 37.7 27.5 53.7 38.1 27.5 53.4 36.1 26 8 53.4 35.5 27.0 53.4 35.5 27.2 53.3 33.7 26.2 4108 31.7 26.2 4108 31.7 25.8 52.7 30.2 25.1 52.7 29.2 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.5 29.2 25.5 52.6 28.3 25.5 52.4 26.8 25.5 52.4 26.8 25.5 52.4 26.8 20.7 51.7 21.4	1		'	1033.4 -	256 8 1033.4	2568	128.4 256.8	4.5 128.4 256.8
27.5 53.7 38.1 26 8 53.6 37.7 26 8 53.4 35.5 27.0 53.4 35.5 27.2 53.3 33.7 26.2 4108 31.7 26.2 4108 31.7 25.8 52.7 30.2 25.5 52.7 29.2 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.5 23.3 25.5 52.5 21.3 25.5 52.6 28.3 25.5 52.5 21.3 25.5 52.5 21.3 25.5 52.5 21.3 25.5 52.4 26.8 20.7 51.7 21.4	1		1	974.2 ~		233.9	115.3 233.9	3.9 115.3 233.9
26 8 53.6 37.7 27.0 53.4 35.5 27.2 53.3 33.7 27.2 53.3 33.7 26.2 4108 31.7 26.2 4108 31.7 26.2 52.7 30.2 25.8 52.7 30.2 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.5 21.3 25.5 52.5 21.3 25.5 52.4 26.8 25.5 52.4 26.8 20.7 51.7 21.4	1			942.9 -			104.3 2166	2.3 104.3 216.6
27.0 53.4 35.5 27.2 53.3 33.7 26.2 4108 31.7 26.2 52.7 30.2 25.8 52.7 30.2 25.5 52.7 29.2 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.6 28.3 25.5 52.4 26.8 20.7 51.7 21.4	I			8364 -		228.8	108 6 228.8	2,6 108.6 228.8
27.2 53.3 33.7 26.2 4108 31.7 25.8 52.7 30.2 25.2 52.7 29.2 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.5 27.3 25.5 52.4 26.8 25.5 52.4 26.8 20.7 51.7 21.4	1			1028.8 -			94.6 202.1	2.2 94.6 202.1
26.2 4108 31.7 25.8 52.7 30.2 25.2 52.7 29.2 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.4 26.8 25.5 52.4 26.8 20.7 51.7 21.4	1			1292.3 -		249.2	122.4 249.2	2.9 122.4 249.2
25.8 52.7 30.2 25.2 52.7 29.2 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.4 26.8 20.7 51.7 21.4	1		1	1399.8 -			326.9	4.8 172.9 326.9
25.2 52.7 29.2 25.5 52.6 28.3 25.5 52.5 27.3 25.5 52.4 26.8 20.7 51.7 21.4	1		I	- 1339.9			183.8 341.6	5.2 183.8 341.6
25.5 52.6 28.3 25.2 52.5 27.3 25.5 52.4 26.8 20.7 51.7 21.4	1			1295.5 -		390.1	217.2 390.1	217.2 390.1
25.2 52.5 27.3 25.5 52.4 26.8 20.7 51.7 21.4	1			1226 8 -		387.9	217.3 387.9	5 4 217.3 387.9
25.5 52.4 26.8 20.7 51.7 21.4	1		1	1205 8 -	423.1 1205 8 -	423.1	242.9 423.1	4.8 242.9 423.1
20.7 51.7 21.4	1		I	1043.3 -		328 4	183.2 3284	3.2 183.2 3284
	1	.		67.4 -	24.0 67.4 -		4.0 24.0	0.7 4.0 24.0
30.7	1			1399.8 -	423 1 1399.8 -		4231	242.9 4231
3.3 24.9 52.8 30.7 982.9	I		'	860.4 ·		937 S	007 E	

Table C.4: Air Quality Results at Bank Square in Lahore (08-04-2000)

Hagler Bailly Pakistan D0TA1LRI-SOC: 07/13/00

•

14	Solar	W.m-2	1100	2000	1314.7	4760 4	4-03-1	1/81.3	1747.8	1712.8	1237.2	824.4	1697.5	1705.0	0.001	0.100	32.5	1.3		•			1	ı	1	1781 3	2101	C'050
13	Baro.	mBar	1100	1100	070 1	0.010	818.0 010 0	979.0	977.1	976.6	976.4	975 9	975.1	0.75.0	91010	9/5.3	975.4	975.9		076.6		R.1.3	977.3	977.1	975.0	077.4	1.175	9/6.8
12	Temp.	ပ့	100	100	25.0	0.02	29.2	32 1	34.4	36.2	36.8	36.6	37.8		5.75	2405	34.0	29.9		990		26.0	25.6	23.3	23.3	0 20	0.10	31.9
11	Hum.	%	100	100	* • • •		52.5	52.8	53.2	54.2	53.4	53.4	53.6		53.4	4202	53.1	52.6		9.53	0.70	52.2	52.1	51.9	519		8	52.9
10	W.Dir.	Deg	360	360		200	22.8	530	23.2	22.5	21.0	22.5	200	4 4	21.5	21.3	21.0	21.2	eldin.	100	20.4	52.0	20.7	215	20.7		23.2	21.7
6	W.Speed	m s-1	100	007	202	c.	2.8	3.8	45	4.4	4.1	4.2	A A	D .4	4.1	4.0	2.6	1.1	constraint fr		2	1.2	1.3	1.2	÷	-	4.8	2.9
8	N Meth	maa	- UR	8	AU A	1	Ļ	1	1	1	1	1		I	1	I			t head to a		-	1	1	1			1	1
7	Meth	maa	Ca	3 3	20	1	I	1	1	•				1	I	1	1				1	1	I	1		1	I	ı
y	PM		010	2007	200	90.6	308.0	609.1	294.7	1533 6	542.0	1034.0	0100	2.088	1053.3	1232.7	1070.3	010.0	010.0		1207.2	1535.0	1370.0	1214 0		80.0	1535.0	931.8
v	, ov	400	202	200	800	251.9	186.0	154.8	115.9	104.0		10101	0 171	122.1	2173	135.8	7 00		32.0	- 1	534.2	555 6	555.9	121 4		32.6	555.9	233.0
		And And	anta	nna	800	153.9	77.1	68.3	42 R	20.7		0.25	1	43.6	141.3	83.3	50 A	200	7.1		461.7	493.9	499.4	- Cac		2.7	499.4	163.4
ſ		3	hhi	2	10	1	1	1.3	60			+ C	0.0	0.4	1.9	++		<u>+</u> ;	5		6.9	8.1	9.4			0.1	9.4	2.9
,	~ 2		ndd	500	200	454	43.0	30.4	12 5		50.5	70.0	34.0	32.2	29.1	22.8		C'17	9.6		95.2	85.9	<u>0</u> 3		2.00	9.6	95.2	41.4
,	-	OZODe	ud-1	500	200	0.1	0.8	26			2	9.8	6.7	0.7	15.5	48.5		8'9 1	12.1		3.6	2.3	17			0.1	48.5	8.9
	ON .	Parameters	Unit	Min Limit	Max. Limit	0800	0000		0001	ONLI	1200	1300	1400	1500	1600	1700		1800	1900	2000	2100	0000	0000	20002	2400	Minimum	Maximum	Average

 Table C.5: Air Quality Result at Qurtaba Chowk in Lahore (10-04-2000)

Investigation of Air and Water Quality (Lahore, Rawalpindi and Islamabad)

Hagler Bailly Pakistan DOTA1LRI-SOC. 07/13/00

-

1 2	. 1	e	4	5	9	7	8	6	10	11	12	13	14
Ozone SO ₂ CO NO		8		NOX	PM_{10}	Meth	N. Meth	W.Speed	W.Dir.	Hum.	Temp.	Baro.	Solar
qdd wdd qdd qdd		qdd		qdd	ng/m³	шdd	шdd	m.s-1	Deg	%	ပ္	mBar	W.m-2
500 500 10 500		500	1	500	250	80	80	100	360	100	100	1100	1100
700 700 10 800		800		800	500	<i>06</i>	<i>06</i>	100	360	100	100	1100	2000
8.4 7.8 2.4 17.4		17.4		52.6	1		1	3.0	17.0	52.6	28.1	951.4	673.8
4.9		38.1		604	1	1	I	3.1	19.3	52.9	30.2	954.0	1750.4
164 5.2 1.4 33.5		33.5		52.4	I	I	1	4.1	24.0	53.0	31.1	952.9	1778.8
21.0 5.9 - 7.6		7.6		30.9	I	1	1	3.8	22.5	53.2	32.5	952.7	1756.9
28.3 6.7 1.6 6.3		6.3		33.1	825.1	0.8	0.2	5.1	25.7	53.2	32.5	952.2	1759.7
27.7 3.2 1.8 28.1		28.1		51.8	1166.5	0.5	1	5.3	28.7	53.2	33.1	950.8	1782.1
0.4		5.1		26.1	1	0.4	3.8	4.7	27.5	53.2	33 8	948.9	1766.3
		8.1		33.4	372.1	0.5	10.3	3.8	27.5	53.3	34.5	947.9	1766.3
1.3		51		27.9	823.3	0.8	10.3	4.1	27.3	53.3	34.8	947.2	994.4
35.0 0.3 0.7 4.9		4.9	·	27.4	893.4	10	10.3	4,4	25.5	53.3	34.5	946.9	179.4
36.4 - 0.3 3.5		3.5		19.2	961.5	0.8	9.1	6.7	27.0	53.3	33.4	946.8	56.3
30.3 - 0.9 5.3		5.3		30 0	942.9	I	1	6.0	28.0	53.2	32.4	947.6	13.1
18.0 0.9 1.9 14.2		14.2		53.9	792.2	0.7	5.8	2.4	25.5	53.0	31.6	947.8	l
11.4 4.5 2.8 56.9		56.9		109.9	825.9	1.5	10.3	2.3	17.5	52.9	31.0	948.1	I
7.1 1.9 2.5 26.1		26.1		73.8	792.8	1.6	10.3	1.9	25.3	52.6	29.6	948.7	ı
13.1 – 1.8 12.5		12.5	1	44.5	644.2	0.8	7 0	2.0	24.8	52.4	28.0	948.8	ı
12.2 1.1 0.8 32.0		32.0		65 0	413.3	0.5	3.7	2.8	15.2	52.5	27.9	948.8	I
7.1 - 0.3 3.5		3.5		19.2	372.1	I		1.9	15.2	52.4	27.9	946.8	-
59.3 7.8 2.8 56.9		56.9		109.9	1166.5	1.6	10.3	6.7	28.7	53.3	34.8	954.0	1782.1
24.0 3.3 1.4 17.9		17.9		46.6	786.9	0.6	4.8	3.9	24.0	53.0	31.7	949.5	839.8
				L									

 Table C.6: Air Quality Results at Raja Bazar in Rawalpindi (07-05-2000)

Hagler Bailly Pakistan D0TA1LRI-SOC⁻ 07/13/00

14	Solar	W.m-2	1100	2000	91.6	607 B	1480.0	1400.3	1 221	4775.9	0 2 2 2 2	9'6//1	1766.6	1639.7	1452.5	244.4	75.9	5.0	1	I	1	1	1		1775.B	0.007	189.0
13	Baro.	mBar	1100	1100	950.9	052 E	0.700	0.708	6'7CA	0.7CR	R'LCR	950.5	949.4	948.8	948.1	947.6	947.2	947.4	948 1	948.6	948 9	948.8	948.8	047.9	060 0	9709	949.8
12	Temp.	ပ့	100	100	26.0	07.4	- 17	C.02	30.0	30.9	31.9	33.2	33.9	34.5	34.7	34.8	34.7	34.3	33.7	33.2	32.0	31.0	30.2	4100 0 40	0.02	0.15	31.9
11	Hum.	%	100	100	53.0		201	1.50	53 2	23.2	53.2	53.3	53.3	53.4	53.5	53.5	53 5	53.4	534	53.3	53.3	53.2	53.0			03.0 1	53.3
10	W.Dir.	Deg	JAGN	360	, et		20.3	30.8	33.8	31.7	32.8	253	35.0	35.0	35.0	35.0	12.4	0.2	27.9	34.5	7.8	1		7		35.0	23.4
6	W.Speed	m.s-1	100	100	27		8.1	2.4	3.1	3.7	3.6	4.0	3.9	3.3	3.7	2.3	1.9	1.7	1.3	1.4	14	17		0.	<u>.</u>	4.0	5
8	N. Meth	maa	Ca Ca	88		l	1	1	2.7	1	1	t	I	10.3	10.3	10.3	10.3	10.5	10.3	10.3	10.3	10.9		7.1	1	10.5	54
7	Meth	Elon	00	8	20		1	1	0.3	1	1	I	01	1.2	0.7	1.0	0.6	17	2.2	4 8	2 0			7.0	I	2.2	ď
9	PM.	, m/m		003	200	l	39.6	579.9	571.8	632.4	562.1	491.0	632.7	624.9	1066.7	1136.9	1208.0	104.2	1169.0	12021	1014 4	1,4121	1002.0	834.8	39.6	1214.4	R 77 A
L.	, ç	444	2012	200		158.8	118.3	107.1	101.9	107.6	123.9	126.2	133.5	101.9	172.8	108.3	164.4	A 720	157 0	0.07			0'0	38.9	38.9	237.4	4 104
		2444	ndd	200	800	126.6	76.8	67.1	61.4	680	71.7	73.4	76.5	54.8	103.5	120.8		152 F	2021		1'CN7	4.70	00.0	46.1	46.1	207.3	0007
6	, {	3	Indd	2	5	1	1	1.6	1.7	2.0	2.1	1.8	1.6	0.3	10	4							4.	0.6	0.3	6.7	Ì
,	√ 2	200	odd	200	200	10.7	13.0	13.7	10.8	10.1	21.1	17.9	24.1	22.4	- 0 P2			0.40	020	2.2	40.1	0.45	21.3	10.3	10.1	46.7	
,	-	Ozone	ada	500	200	63	4.7	8.1	9.6	13.0	14.5	14.9	16.6	50 E	12.5		201	1.5	0.0	41			<u>1</u> 7	1.7	0.7	52.6	
	N0.	Parameters	Cart	Min. Limit	Max. Limit	0200	0800	0060	1000	1100	1200	1300	1400	1000	0001	0001	00/1	0081	0081		2100	2200	2300	2400	Minimum	Maximum	

Table C.7: Air Quality Results at Committee Chowk, Murree Road in Rawalpindi (08-05-2000)

Hagler Bailly Pakistan DOTAILRI-SOC: 07/13/00

.

14	Solar	W.m-2	1100	2000	1117.5	1591.9	1762.2	1766.3	1765.3	1765 3	1759.7	1749.7	1557 8	850.9	195 3	50	I	I	16.9	705.9	764.7	I	1766 3	1022.0
13	Bero.	mBar	1100	1100	951.3	951.6	951.4	951.3	950.3	949 5	949 4	947.9	947.1	946.5	946 3	946 4	947.1	948 1	948 9	949.1	948 8	946.3	9516	948.9
12	Temp	ပ္	100	100	Å	31.1	32 3	33.6	34.9	35.7	36.6	38.6	39.0	38.4	37.3	36.3	35 5	34.0	33.0	31.7	312	30 0	39.0	34 7
11	Hum	%	100	100	53.2	53.2	53.2	533	53.6	53.7	53.8	54.0	54.0	540	53.9	53.8	53.7	535	53 4	53.3	53 2	53 2	54.0	53 6
<i>5</i>	W.Dir.	Deg	360	360	0.5	1.0	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0	10	10	1.0	10	1.0	1.0	1.0	0.5	10	0.1
o,	W.Speed	m.s-1	100	100	2.0	4.2	49	4.0	3.0	30	4,1	3.6	3.6	2.6	25	1.6	1.3	1.2	1.4	1.8	1.4	1.2	49	2.7
ß	N. Meth	mqq	80	90		1	ı	1	3.9	I	1	1		1	1	0.4	4.7	1	1	I	1	ı	4.7	05
~	Meth	mdd	80	90	ľ	1	0.4	ŀ	0.3	1	1	•	1	•	1	0.3	0.7	1	1	1	ł	1	0.7	0.1
9	PM ₁₀	,ш/бл	250	500	513.7	816.2	1062.5	964.6	719.3	573.6	749.7	810.8	735 9	860.1	903 2	833.6	977.1	1092.7	1406.3	1390.4	1067 3	513.7	1406.3	910.4
S	NOX	qdd	500	800	59.8	66.7	62 1	50.3	40.7	39.6	42.7	35.5	39.7	52.3	24.3	386	733	95 0	92.9	64.1	71.9	24.3	95.0	55.8
4	N	qaa	500	800	117.4	124.3	101.2	69.2	48.5	45.0	52.1	31.7	33.7	41.6	11.0	18.1	96.7	262.9	249.8	77.3	120.0	110	262 9	88.3
ę	8	шаа	10	10	ľ	•	•	1	1	ı	1	•	ľ	I	•	I	0.7	36	2.8	1.0	0.5	0.5	36	17
2	SO ₂	qaa	500	200	22.3	347	38.4	28.9	21.9	15.4	17.6	12.2	21.3	25.1	146	16.7	38.1	55.5	61.0	37.5	31.9	12.2	61.0	29.0
*-	Ozone	qaa	500	200	0.5	4.4	8.3	16.1	22.3	243	25.2	54.9	26.0	21.0	31.1	23.9	11.3	38	0.7	90	2.5	05	549	16.3
No.	Parameters	Unit	Min. Limit	Max. Limit	0800	0060	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	Minimum	Maximum	Averade

Table C.8: Air Quality Results at Pirwadhai Chowk in Rawalpindi (09-05-2000)

Hagler Bailly Pakistan D0TA1LRI-SOC: 07/13/00

.

Ambient Air Quality Results of EPD Mobile Laboratory

74	Solar	W <i>m-</i> 2	1100	2000	195.0	6916	1560.9	1758.4	1751.9	1755.3	1746.9	1725.9	1701.9	1230.0	228.4	653	3.1	668.1	772.2	775 3	835.9	717 5	3.1	1758 4	1010.2
13	Baro.	mBar	1100	1100	946.3	946 5	946.3	946 6	946 3	945.1	943.8	942 8	941.9	941.3	941.6	941.5	941 2	941.8	942.3	942.9	943 3	943.5	941.2	946.6	943.6
12	Temp.	ပ္	100	100	26.4	283	31.5	33.5	34.5	35.9	37.5	38 5	39.2	39.3	39.1	37.9	356	34.0	339	32.7	30 4	28.6	26.4	39.3	34 3
11	Hum.	%	100	100	52.2	52.9	53.4	53.5	53.7	53.8	54.0	54.0	54.1	54.1	54.9	53.9	53.8	53.6	536	53.4	53 3	53.2	52.2	54.9	536
10	W.Dir.	Deg	360	360	16.5	20 0	19.8	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	16.5	20.0	19.0
0	W.Speed	m.s-1	100	100	1.2	1.3	14	2.2	2.9	3.0	2.2	2.5	2.9	24	1.6	1.5	1.2	1.4	1.2	1.2	1.2	1.2	1.2	30	1.8
8	N. Meth	mqq	80	60	ľ	1				1		1	1	1	F	1	1	I	t		1	•	I	1	1
2	Meth	шdd	80	60	•	1			1	1	1	1	ı	1		1	1	I	1		1	1	1	1	ı
9	PM10	с ^{ш/бл}	250	200	122.1	107.9	152 1	132.5	266.2	430.9	439 3	1	837.9	937.8	816.2	ا و۲	611.8	416.5	425.4	573.0	810.6	643.6	107.9	937.8	500.8
5	XOX	qaa	500	800	1	144 3	191 9	124.7	106 7	112 0	147 6	144.6	140.2	132.3	139 3	234.9	349.5	198.3	186.3	204.1	193.7	103 3	103 3	349.5	167.8
4	N	qaa	500	800	1	233 5	123 6	64.3	55 2	55 9	69 8	663	71.0	65.2	701	145.0	262.5	124.4	1001	121.0	123.9	53.0	53.0	262.5	106 1
n	8	maa	ę	2	21	20	1.5	02		01	08	08		1	1	12	3.0	22	1.6	1.7	1.2	0.4	0	3.0	12
~	- °0%	quo	200	200	25.1	18.5	35.9	39.4	33.9	26.8	32.5	37.7	25.6	36.6	36.3	52 1	60.2	48,4	46.6	48.7	32.1	17.1	171	60.2	36.3
Ŧ	07000	qua		002	2	1	0.7	85	13.7	16.6	14.0	14.3	48 4	13.4	10.6	96	1	11	23	0.6	0-1-0	22		48.4	83
Vin	Daramatere	1 Init	15-11-16	May Limit	UZDD		0000	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	Minimum	Maximum	Average

Table C.9: Air Quality Results at Abpara Chowk in Islamabad (10-05-2000)

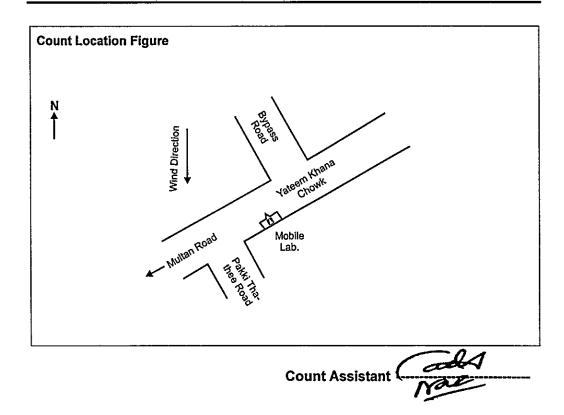
Hagler Bailly Pakistan D0TA1LRI-SOC: 07/13/00

14	Solar	W.m-2	1100	2000	393.8	767.5	1318.4	1729.4	1757.5	1710.9	1770.3	1767.2	1482.5	727 8	285 9	32.2	0.3	1	I	1	t	1	1	1770.3	763.5
13	Baro.	mBar	1100	1100	946 9	949.9	948 3	948 1	947.8	946.9	945.3	944.1	943 2	942.4	942 2	942 1	942.3	943.3	943.9	944.9	944.4	944.0	942.1	949 9	945.0
12	Temp	ຸ	100	100	28.5	30.0	32.3	33.8	35 5	36.7	37.7	38.8	38.7	38 5	38.1	367	35.7	34.9	33.6	33 6	32.7	317	285	38.8	34.9
11	Hum.	%	100	100	53 2	53 4	53.5	536	53.7	53.8	53.9	540	54.0	54.0	54 0	53.8	53.7	536	536	53.4	53 2	53.2	53.2	54 0	53.7
10	W.Dir.	Deg	360	360	21.3	23 0	20 0	19.2	19.0	19.8	20 0	20.0	19.8	20 0	20.0	20.0	20.0	20 0	20.0	19.2	19.8	20 0	19 0	23.0	201
6	W.Speed	m.s-1	100	100	1.2	10	1.5	2.3	2.8	1.5	2.0	1.8	1.9	14	13	1.2	1.2	1.4	1.3	40	23	14	1.0	40	1.7
8	N. Meth	шdd	80	60	•	I	I	ł	1	1	ſ	•	I	I	1	•		1	1	•	I	•	1		1
7	Meth	mqq	80	90	1	1	0.5		I	L	1	1	1	ŀ	1	1	1	I			1	1	1	0.5	1
9	PM10	_г ш/бл	250	500	80.7	136.5	364.3	394.8	5203	5115	458.9	528.1	564.2	594.8	620.6	750.4	777.2	853 6	797.8	619.9	668.1	562.1	80.7	853.6	539.1
S	NOX	qdd	500	800	ı	134.6	114.9	653	72 1	30 0	43.1	44 1	80.0	65.3	103.0	2064	221.6	205 0	2268	155.2	98.4	125.9	30.0	2268	117.8
4	ð	qdd	500	800	1	79.5	63.4	32.0	39.7	10.0	186	18.0	38.3	26.0	38.3	111.4	125.9	1194	1350	92.1	489	67.7	10 0	135 0	62.6
e	8	mqq	10	10	1.8	J	1		1	I	0.8	0.8	10	0.9	1.6	3.1	36	2.4	25	I	1	1	0.8	36	1.9
~	so ₂	qdd	500	700	19.7	18.0	28.2	19.7	14 0	9.3	7.0	4.3	6.5	12.4	13.9	19.3	31.1	33.0	386	473	29.9	30 9	4.3	473	21.3
-	Ozone	qdd	500	200	0.6	03	5.2	14.8	20.7	22.3	23.8	245	52.5	20.2	9.9	1.0	0.6	01	0.1	78	83	3.1	0.1	52.5	12 0
No.	Parameters	Unit	Min. Limit	Max. Limit	0200	0800	0060	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	Minimum	Maximum	Average

Table C.10: Air Quality Results at I-9 Chowk in Islamabad (11-05-2000)

Hagler Bailly Pakistan DOTAILRI-SOC. 07/13/00 Investigation of Air and Water Quality (Lahore, Rawalpindi and Islamabad)

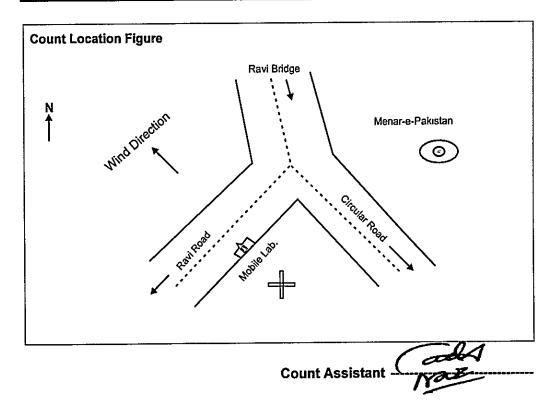
•


Appendix D: Traffic Count Data at Ambient Air Monitoring Sites

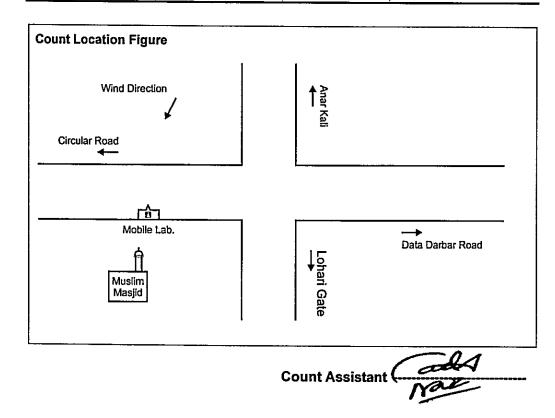
D.1 Lahore

(Please see the following pages.)

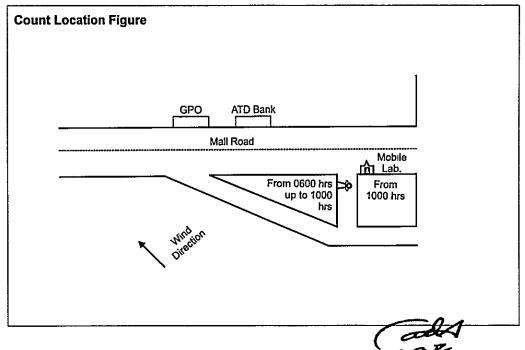
S. No	Time (hours)	Traffic	Туре	Remarks
	Ì	Diesel Vehicle	Total Vehicles	
1	0700-0800	1232	3214	
2	0800-0900	1256	4410	
3	0900-1000	1065	5065	
4	1000-1100	1104	6325	
5	1100-1200	1083	6408	
6	1200-1300	1179	6231	
7	1300-1400	1257	6113	
8	1400-1500	1077	4611	
9	1500-1600	1282	4892	
10	1600-1700	1086	4577	
11	1700-1800	1337	6482	
12	1800-1900	1578	7389	
13	1900-2000	1352	7246	
14	2000-2100	921	5672	
15	2100-2200	848	4042	
16	2200-2300	779	3502	
17	2300-2415	1125	3710	
Tot	al Number	19561	89889	
ŀ	Verage	1150.6	5287.6	


D.1.1 Chowk Yateem Kha	na, Lahore (05-04-2000)
------------------------	-------------------------

Hagler Bailly Pakistan D0TA1LRI-SOD: 07/13/00

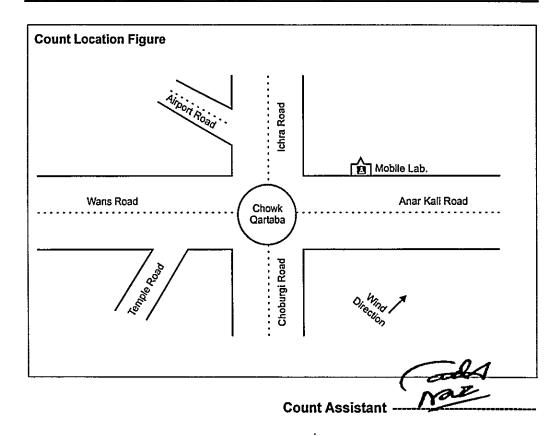

S. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0700-0800	1112	5191	
2	0800-0900	1272	6925	
3	0900-1000	1386	7416	
4	1000-1100	1134	9528	
5	1100-1200	1027	8321	
6	1200-1300	898	6080	
7	1300-1400	931	5770	
8	1400-1500	797	5400	
9	1500-1600	821	5610	
10	1600-1700	939	5233	
11	1700-1800	907	5272	
12	1800-1900	1079	5893	
13	1900-2000	987	5606	
14	2000-2100	737	5903	
15	2100-2200	844	4425	
16	2200-2300	932	4375	
17	2300-2415	1350	4292	
Tot	al Number	17153	101240	
	Average	1009	5955.3	

D.1.2 Azadi Chowk, Lahore (06-04-2000)


S. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0700-0800	404	1873	
2	0800-0900	409	3626	
3	0900-1000	525	5332	
4	1000-1100	446	6665	
5	1100-1200	452	6000	
6	1200-1300	412	6350	
7	1300-1400	336	5030	
8	1400-1500	391	5802	
9	1500-1600	419	4975	
10	1600-1700	461	5252	
11	1700-1800	439	5968	
12	1800-1900	492	6189	
13	1900-2000	470	5950	
14	2000-2100	437	4890	
15	2100-2200	329	3020	
16	2200-2300	280	2382	
17	2300-2415	390	2531	
Tota	al Number	7092	81835	
A	verage	417.2	4813.8	

D.1.3 Chowk Lohari Gate, Lahore (07-04-2000)

S. No	Time (hours)	Traffic	Туре	Remarks
1		Diesel Vehicle	Total Vehicles	
1	0600-0700	198	1098	
2	0700-0800	337	2902	
3	0800-0900	368	6510	
4	0900-1000	470	6860	
5	1000-1100	559	8868	
6	1100-1200	584	9396	
7	1200-1300	528	10882	· · · · · · · · · · ·
8	1300-1400	448	8560	
9	1400-1500	434	8806	
10	1500-1600	521	6782	
11	1600-1700	425	5611	
12	1700-1800	384	6103	
13	1800-1900	406	5880	,
14	1900-2000	318	6008	
15	2000-2100	280	5420	
16	2100-2200	239	5090	
17	2200-2300	203	4188	
18	2300-2415	110	2779	
Tot	al Number	6812	111743	
ļ	verage	378.4	6208	


D.1.4 Bank Square, Lahore (08-04-2000)

Count Assistant -----

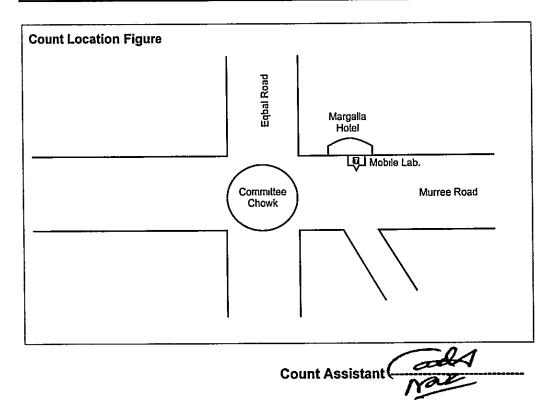
S. No Time (hours)		Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0700-0800	1078	8400	
2	0800-0900	2097	15070	
3	0900-1000	1954	16210	
4	1000-1100	1807	15938	
5	1100-1200	1434	13800	
6	1200-1300	1054	17680	
7	1300-1400	1075	15350	
8	1400-1500	1006	15775	
9	1500-1600	839	11637	
10	1600-1700	872	8486	
11	1700-1800	739	8074	
12	1800-1900	736	8507	
13	1900-2000	860	9401	
14	2000-2100	883	9941	
15	2100-2200	587	8398	
16	2200-2300	423	5820	
17	2300-2400	328	3997	
Tot	al Number	17772	192484	
ŀ	Average	1045.4	11322.6	

D.1.5 Qurtaba Chowk Mozang Chonghi, Lahore (10-04-2000)

Hagler Bailly Pakistan D0TA1LRI-SOD. 07/13/00

Traffic Count Data at Ambient Air Monitoring Sites

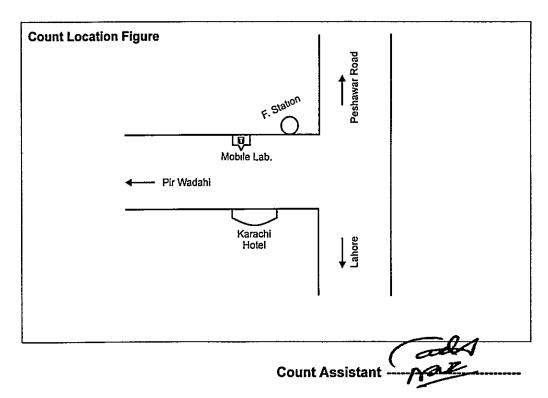
D.2 Rawalpindi and Islamabad


(Please see the following pages.)

.

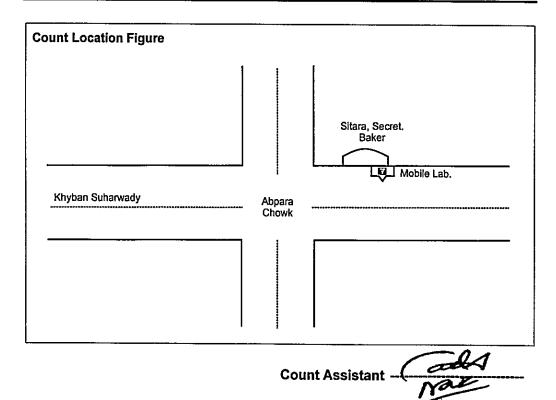
•

. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0600-0700	502	1547	
2	0700-0800	665	5723	
3	0800-0900	631	6890	
4	0900-1000	696	7086	
5	1000-1100	757	8264	
6	1100-1200	685	7740	
7	1200-1300	619	7872	
8	1300-1400	554	6863	
9	1400-1500	532	7978	
10	1500-1600	614	5610	
11	1600-1700	569	5832	
12	1700-1800	541	5978	
13	1800-1900	705	7856	
14	1900-2000	648	7480	
15	2000-2100	585	6512	
16	2100-2200	572	5471	
17	2200-2300	393	3125	
18	2300-2400	208	2812	
To	al Number	10476	110639	
	Average	582	6146.6	


D.2.1 Committee Chowk Murree Road Rwp. (08 May, 2000)

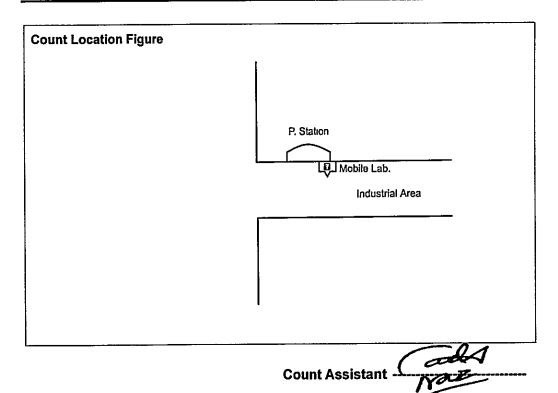
.

S. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0700-0800	407	1082	
2	0800-0900	448	1145	
3	0900-1000	482	1205	
4	1000-1100	484	1243	
5	1100-1200	472	1256	
6	1200-1300	463	1323	
7	1300-1400	438	1185	
8	1400-1500	425	1236	
9	1500-1600	403	1412	
10	1600-1700	358	1291	
11	1700-1800	390	1332	
12	1800-1900	379	1303	
13	1900-2000	367	1281	
14	2000-2100	298	1107	
15	2100-2200	300	945	
16	2200-2300	257	792	
17	2300-2400	213	508	
Tot	al Number	6584	19646	
-	Average	387.3	1155.6	


D.2.2 Pir Wadhai Chowk Rwp (09 May, 2000)

.

S. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0600-0700	457	628	
2	0700-0800	634	1834	
3	0800-0900	958	3326	
4	0900-1000	871	3485	
5	1000-1100	925	3688	
6	1100-1200	973	3863	
7	1200-1300	902	3249	
8	1300-1400	934	3200	
9	1400-1500	722	2850	
10	1500-1600	879	2431	
11	1600-1700	812	2508	
12	1700-1800	837	2596	
13	1800-1900	782	2407	
14	1900-2000	808	2630	· · · · · · · · · · · · · · · · · · ·
15	2000-2100	663	2315	
16	2100-2200	470	1837	
17	2200-2300	248	1213	
18	2300-2400	170	695	·
Tota	al Number	13045	44755	
A	verage	724.7	2486.4	


D.2.3 Abpara Chowk Islamabad (10 May, 2000)

Hagler Bailly Pakistan D0TA1LRI-SOD. 07/13/00

S. No	Time (hours)	Traffic	Туре	Remarks
		Diesel Vehicle	Total Vehicles	
1	0600-0700	97	146	
2	0700-0800	141	363	
3	0800-0900	204	686	
4	0900-1000	187	642	
5	1000-1100	198	730	
6	1100-1200	226	860	
7	1200-1300	172	643	
8	1300-1400	181	556	
9	1400-1500	166	434	
10	1500-1600	174	491	
11	1600-1700	166	538	
12	1700-1800	159	583	
13	1800-1900	173	601	
14	1900-2000	161	472	
15	2000-2100	139	431	
16	2100-2200	107	305	
17	2200-2300	59	170	
18	2300-2400	31	85	
Tot	al Number	2741	8736	
/	Average	152.3	485.3	

D.2.4 I-9 Islamabad (Near Police Station) (11-05-2000)

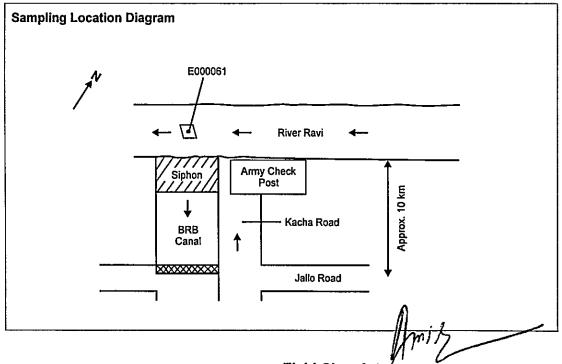
Investigation of Air and Water Quality (Lahore, Rawalpındı and Islamabad)

Hagier Bailly Pakistan DOTAILRI-SOD. 07/13/00

.

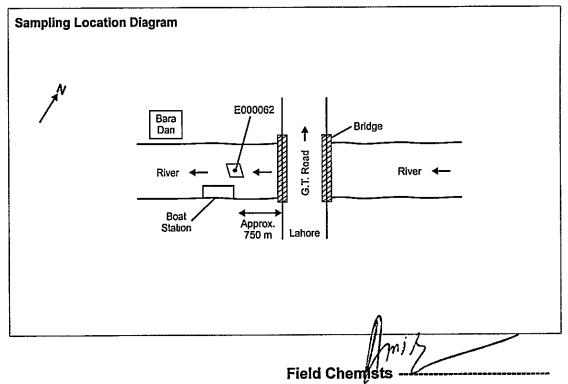
.

Appendix E: Spot Test Results of Wastewater Quality Sites

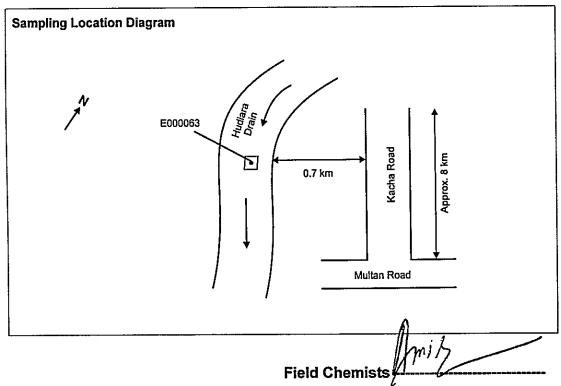

E.1 Lahore

(Please see the following pages.)

1	Sample Identification number	E000061
2	Sampling location	River Ravi BRB Siphon (along bank)
3	Date sample taken	04-04-2000
4	Time sample taken	1150 am
5	Sample depth	0.3 m
6	Sample location	Centre of the river
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	04-04-2000
9	Miscellaneous comments	Composite sample is also collected.

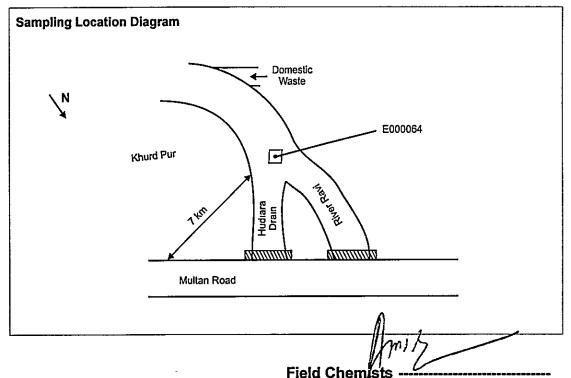

Measurement	Units	ļ	Value
Flow*	m ³ /sec	335.5	
Temperature*	°C	26.1	
pH*		8.3	
Dissolved Oxygen*	mg/l	6.4	
Conductivity	Micromohs/cm	227	
Odor	TON	1.1	
Turbidity	NTU	55	
Color	TCU	Transparent	

1	Sample Identification number	E000062
2	Sampling location	River Bara Dari near Boat Station
3	Date sample taken	04-04-2000
4	Time sample taken	0445 pm
5	Sample depth	
6	Sample location	Centre
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	04-04-2000
9	Miscellaneous comments	Sludge samples are taken from the River bed.


Measurement	Units		Value	
Flow*	m ³ /sec	88		
Temperature*	°C	29		
pH*		8.5		_
Dissolved Oxygen*	mg/l	4.9		
Conductivity	Micromohs/cm	180		
Odor	TON	10		
Turbidity	NTU	62		
Color	TCU	Transparent		

1	Sample Identification number	E000063
2	Sampling location	Babu Sabu drain outfall Mixing into River Ravi
3	Date sample taken	05-04-2000
4	Time sample taken	1055 am
5	Sample depth	
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	05-04-2000
9	Miscellaneous comments	

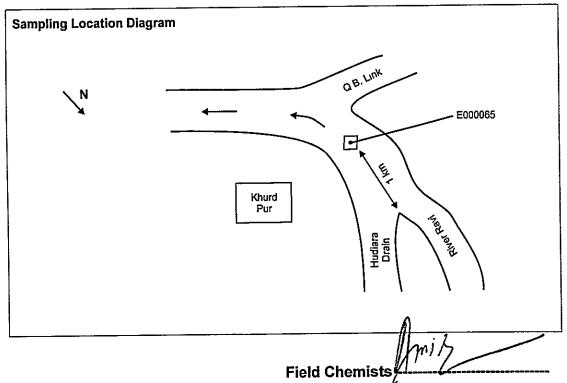
Measurement	Units		Value	
Flow*	m ³ /sec	7.286		
Temperature*	°C	28.7		
pH*		7.3		
Dissolved Oxygen*	mg/l	0.6		
Conductivity	Micromohs/cm	953		
Odor	TON	1.05		
Turbidity	NTU	37		
Color	TCU	ND		



Hagler Bailly Pakistan

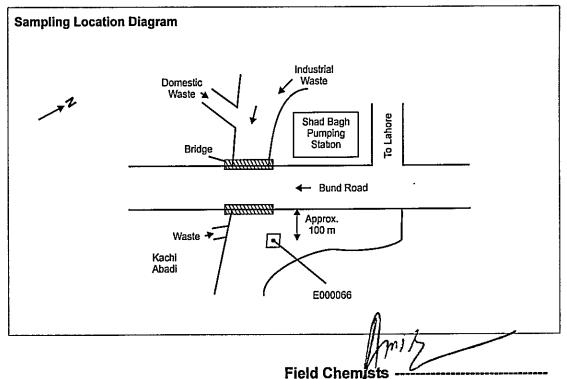
Wastewater Spot Testing Data Form

Sample Identification number E000064 1 Junction of River Ravi and Hudiara drain 2 Sampling location 05-04-2000 3 Date sample taken 0230 pm 4 Time sample taken Sample depth 0.5 m 5 Centre of the drain 6 Sample location 7 Name of analyst Amir Khurshid, Ahmed Zia 05-04-2000 Date of report 8 9 Miscellaneous comments


Units	1	Value	
m ³ /sec	78.9		
°C	29.2		
	7.4		
mg/i	0.3		
Micromohs/cm	645		
TON	10		
NTU	21		
TCU	10		
	m ³ /sec °C mg/l Micromohs/cm TON NTU	m³/sec 78.9 °C 29.2 7.4 7.4 mg/i 0.3 Micromohs/cm 645 TON 10 NTU 21	m³/sec 78.9 °C 29.2 mg/i 0.3 Micromohs/cm 645 TON 10 NTU 21

E000065 Sample Identification number 1 River 1 km D/S Hudiara Drain Sampling location 2 05-04-2000 3 Date sample taken 0520 pm Time sample taken 4 0.5 m Sample depth 5 Centre 6 Sample location Amir Khurshid, Ahmed Zıa Name of analyst 7 05-04-2000 Date of report 8 Miscellaneous comments 9

m ³ /sec	100	
1111000	480	
°C	27.7	
	7.7	
mg/i	1.2	
Micromohs/cm	516	
TON	10	
NTU	46	
TCU	10	
	mg/l Micromohs/cm TON NTU	7.7 mg/l 1.2 Micromohs/cm 516 TON 10 NTU 46



Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number	E000066
2	Sampling location	New Shadbagh, Bund Road
3	Date sample taken	07-04-2000
4	Time sample taken	1125 am
5	Sample depth	0.2 m
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	07-04-2000
9	Miscellaneous comments	

Measurement	Units		Value
Flow*	m ³ /sec	6.8	
Temperature*	°C	27.5	
pH*		7.6	
Dissolved Oxygen*	mg/l	2.0	
Conductivity	Micromohs/cm	998	
Odor	TON	20	
Turbidity	NTU	126	
Color	TCU	20	

1	Sample Identification number	E000067 Main outfall drain, Bund Road 07-04-2000				
2	Sampling location					
3	Date sample taken					
4	Time sample taken	0100 pm				
5	Sample depth	<u></u>				
6	Sample location	Centre of the drain				
7	Name of analyst	Amir Khurshid, Ahme	d Zia			
8	Date of report	07-04-2000				
9	Miscellaneous comments					
	Measurement	Units		Value		
Fl	2W*	m ³ /sec	2.205			
	emperature*	°C	27			
			7.5			
<u> </u>	ssolved Oxygen*	mg/l	1.8			
	onductivity	Micromohs/cm	1081			
	-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1	

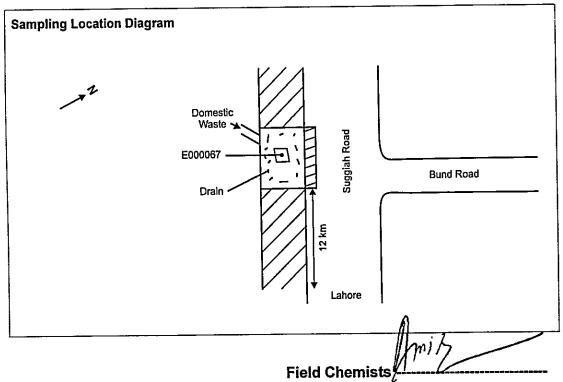
TON

NTU

TCU

20

105

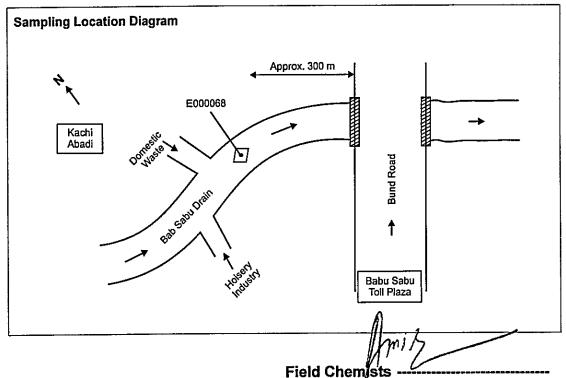

70

* In situ measurement

Odor

Color

Turbidity

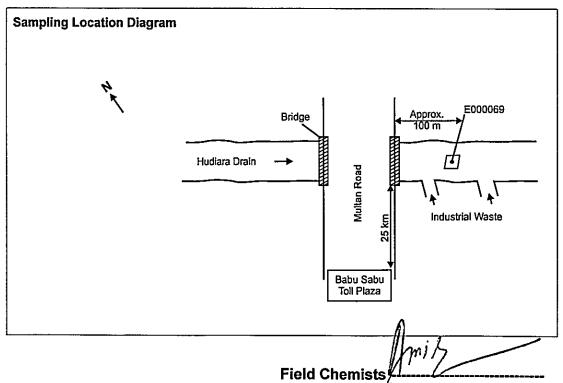


Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number	E000068
2	Sampling location	Babu Sabu drain, Bund Road
3	Date sample taken	07-04-2000
4	Time sample taken	0330 pm
5	Sample depth	0.4 m
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	07-04-2000
9	Miscellaneous comments	

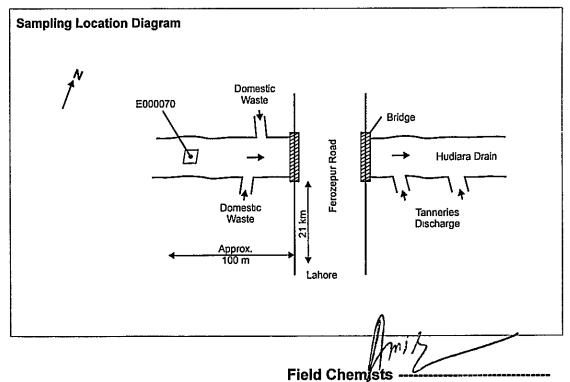
Measurement	Units		Value	
Flow*	m ³ /sec	9.042		-
Temperature*	°C	28.9		
pH*		7.4		
Dissolved Oxygen*	mg/l	1.1		
Conductivity	Micromohs/cm	1191		
Odor	TON	3.33		
Turbidity	NTU	75		
Color	TCU	50		



1	Sample Identification number	E000069
2	Sampling location	Hudiara drain, Multan Road
3	Date sample taken	07-04-2000
4	Time sample taken	0455 pm
5	Sample depth	0.5 m
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	07-04-2000
9	Miscellaneous comments	

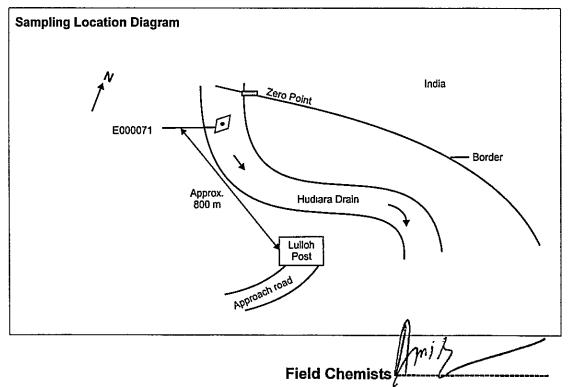
Measurement	Units		Value	
Flow*	m ³ /sec	9.108		
Temperature*	°C	29.4		
pH*		7.7		
Dissolved Oxygen*	mg/l	1.0		
Conductivity	Micromohs/cm	1765		
Odor	TON	20		
Turbidity	NTU	37		
Color	TCU	15		

* In situ measurement

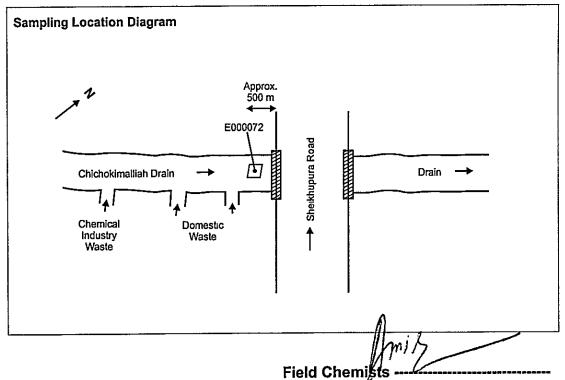


Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

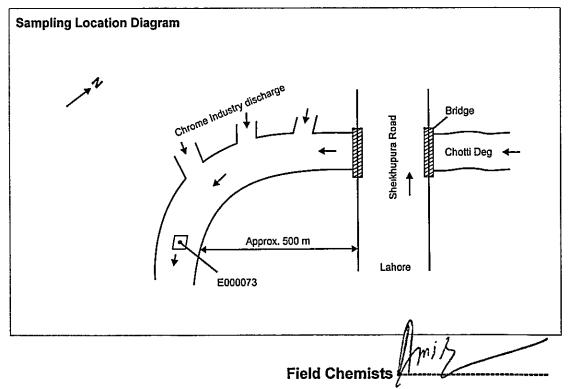

1	Sample Identification number	E000070				
2	Sampling location	Hudiara drain, Ferozpur Road 08-04-2000 1100 am				
3	Date sample taken					
4	Time sample taken					
5	Sample depth					
6	Sample location	2.75 m away from bank				
7	Name of analyst	Amır Khurshid, Ahmed Zia				
8	Date of report	08-04-2000				
9	Miscellaneous comments					
	Measurement	Units		Value		
Fk	Measurement	Units m ³ /sec	8.25	Value		
		1	8.25 28.3	Value		
	ow* emperature*	m ³ /sec		Value		
Te p⊦	ow* emperature*	m ³ /sec	28.3	Value		
Te p⊦ Di	ow* emperature* 1*	m³/sec °C	28.3 8.0	Value		
Te p⊢ Di: Co	ow* emperature* f* ssolved Oxygen*	m³/sec °C mg/l	28.3 8.0 0.7	Value		
Te p⊢ Di Co	ow* emperature* 1* ssolved Oxygen* onductivity	m ³ /sec °C mg/l Micromohs/cm	28.3 8.0 0.7 1579	Value		

1	Sample Identification number	E000071
2	Sampling location	Hudiara drain after entering into Pakistan
3	Date sample taken	08-04-2000
4	Time sample taken	0200 pm
5	Sample depth	
6	Sample location	3 m away from bank
7	Name of analyst	Amir Khurshid
8	Date of report	08-04-2000
9	Miscellaneous comments	<u></u>


Measurement	Units	Value		
Flow*	m ³ /sec	3.56		
Temperature*	°C	28.6		
pH*		7.8		
Dissolved Oxygen*	mg/l	0.6		
Conductivity	Micromohs/cm	2300		
Odor	TON	10		
Turbidity	NTU	85		
Color	TCU	1000		

1	Sample Identification number	E000072
2	Sampling location	Chickokimalliah drain, Sheikhupura Road
3	Date sample taken	09-04-2000
4	Time sample taken	1140 am
5	Sample depth	0.4 m
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	09-04-2000
9	Miscellaneous comments	

Measurement	Units		Value	
Flow*	m ³ /sec	0.394		
Temperature*	°C	27.5		
pH*		9.0		
Dissolved Oxygen*	mg/l	0.8		
Conductivity	Micromohs/cm	4660		
Odor	TON	14.28		
Turbidity	NTU	56		
Color	TCU	50		

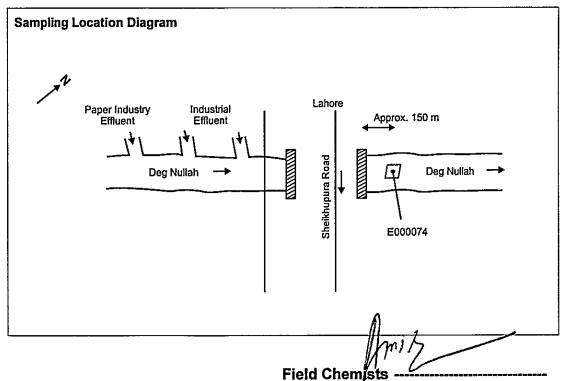


Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number	E000073
2	Sampling location	Chotti Deg (Nullah), Sheikhupura Road
3	Date sample taken	09-04-2000
4	Time sample taken	1255 pm
5	Sample depth	
6	Sample location	1.5 m away from bank
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	09-04-2000
9	Miscellaneous comments	

Measurement	Units		Value	·
Flow*	m ³ /sec	0.890		
Temperature*	°C	27.8		
pH*		8.7		
Dissolved Oxygen*	mg/l	0.6		
Conductivity	Micromohs/cm	3600		
Odor	TON	20		
Turbidity	NTU	126		
Color	TCU	35		
Rennersensensensens i normanninge i i in				

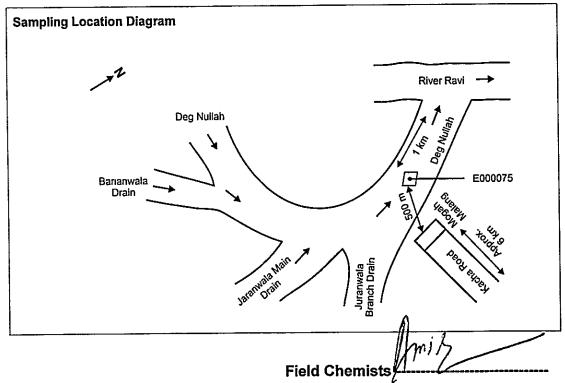


Hagler Bailly Pakstan

Wastewater Spot Testing Data Form

1	3 Date sample taken4 Time sample taken5 Sample depth	E000074 Deg Nullah, Sheikhupura Road				
2						
3		09-04-2000				
4		0250 pm				
5				·		
6		2 m away from bank Amir Khurshid, Ahmed Zıa				
7						
8	Date of report	09-04-2000				
9	Miscellaneous comments					
	Measurement	Units		Value		
Ele		m ³ /sec	1 908	1	1 1	

Measurement	Units		value	
Flow*	m ³ /sec	1.908		
Temperature*	°C	29.8		
pH*		7.3		
Dissolved Oxygen*	mg/l	0.7		
Conductivity	Micromohs/cm	3070		
Odor	TON	10		
Turbidity	NTU	128		
Color	TCU	1000		
	1		1 1	

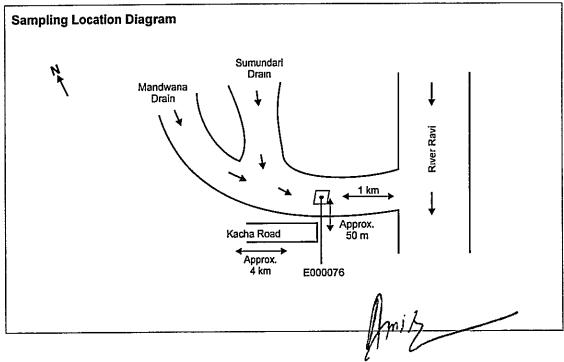


Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number	E000075
2	Sampling location	Deg. Nullah 1 km U/S off River Ravi
3	Date sample taken	10-04-2000
4	Time sample taken	1250 am
5	Sample depth	
6	Sample location	1.5 m away from bank
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	10-04-2000
9	Miscellaneous comments	

Measurement	Units		Value	
Flow*	m ³ /sec	1.046		
Temperature*	°C	27.9		
pH*		8.0		
Dissolved Oxygen*	mg/l	1.0		
Conductivity	Micromohs/cm	5310		
Odor	TON	1.05		
Turbidity	NTU	98		
Color	TCU	1000		

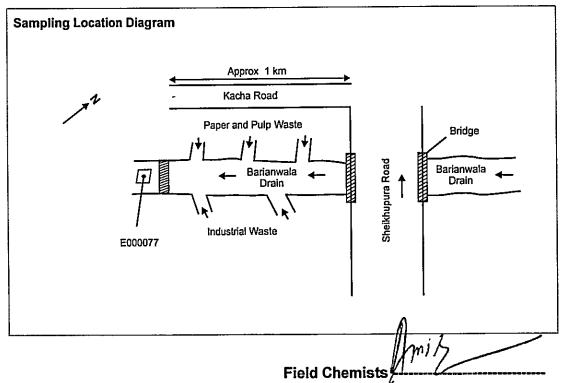


Hagler Bailly Pakstan

Wastewater Spot Testing Data Form

1	Sample Identification number	E000076
2	Sampling location	Mandwana and Sumandari drain 1 km U/S before mixing into River Ravi
3	Date sample taken	10-04-2000
4	Time sample taken	0505 pm
5	Sample depth	
6	Sample location	1.5 m away from bank
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	10-04-2000
9	Miscellaneous comments	

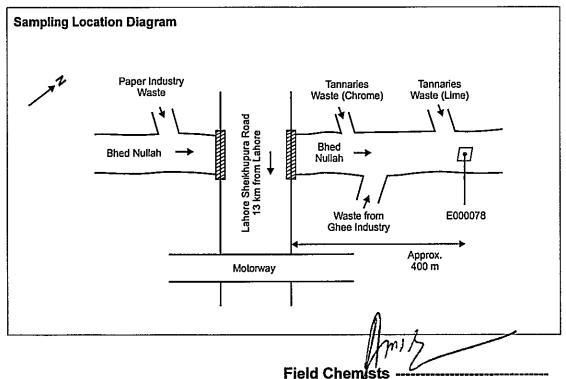
Measurement	Units		Value
Flow*	m ³ /sec	1.27	
Temperature*	°C	30.7	
pH*		8.4	
Dissolved Oxygen*	mg/l	0.4	
Conductivity	Micromohs/cm	4220	
Odor	TON	100	
Turbidity	NTU	48	
Color	TCU	ND	



Field Chemists -----

1	Sample Identification number	E000077
2	Sampling location	Barianwala drain, 1km off Sheikhupura road
3	Date sample taken	11-04-2000
4	Time sample taken	1215 pm
5	Sample depth	04 m
6	Sample location	Centre of the drain
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	11-04-2000
9	Miscellaneous comments	Duplicate sample sent to PCSIR. Sludge sample is also taken.

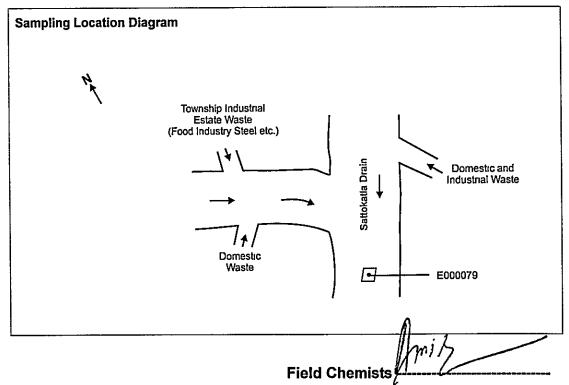
Measurement	Units		Value	
Flow*	m ³ /sec	1.78		
Temperature*	°C	32.3		
pH*		7.0		
Dissolved Oxygen*	mg/l	0.7		
Conductivity	Micromohs/cm	2270		
Odor	TON	6.66		
Turbidity	NTU	237		
Color	TCU	50		



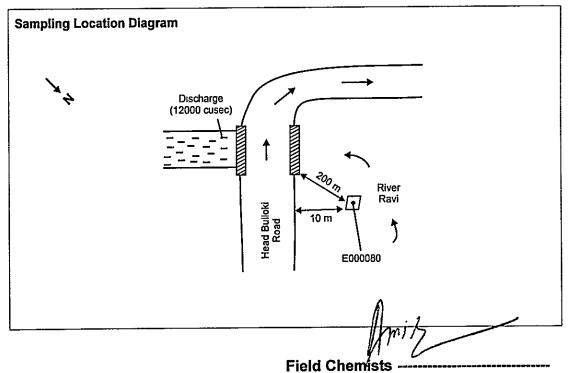
Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

Sample Identification number E000078 1 2 Sampling location Bhed Nullah, Sheikhupura road 3 Date sample taken 11-04-2000 Time sample taken 0200 pm 4 5 Sample depth 0.2 m 6 Sample location 1.5 m away from bank 7 Name of analyst Amir Khurshid 11-04-2000 8 Date of report 9 Miscellaneous comments


Measurement	Units		Value	
Flow*	m ³ /sec	0.444		
Temperature*	°C	35.5		
pH*		9.3		
Dissolved Oxygen*	mg/l	0.2		
Conductivity	Micromohs/cm	1815		
Odor	TON	50		
Turbidity	NTU	47		
Color	TCU	ND		

1	Sample Identification number	E000079
2	Sampling location	Sattokatla drain, Defence road
3	Date sample taken	12-04-2000
4	Time sample taken	0130 pm
5	Sample depth	0.5 m
6	Sample location	3 m away from Bank
7	Name of analyst	Amir Khurshid, Ahmed Zia
8	Date of report	12-04-2000
9	Miscellaneous comments	


Measurement	Units		Value	
Flow*	m ³ /sec	6.45		
Temperature*	°C	32.1		
pH*		7.6		
Dissolved Oxygen*	mg/l	0.35		
Conductivity	Micromohs/cm	1369		
Odor	TON	33.33		
Turbidity	NTU	64		
Color	TCU	50		

1	Sample Identification number	E000080		
2	Sampling location	Bulloki headworks 200 m/ U/S River Ravi		
3	Date sample taken	13-04-2000		
4	Time sample taken	0900 pm		
5	Sample depth			
6	Sample location	10 m away from bank		
7	Name of analyst	Amir Khurshid,	Ahmed Zia	
8	Date of report	13-04-2000		
9	Miscellaneous comments	Duplicate samp collected.	le sent to PCSIR, composite sample is also	
	Measurement	Units	Value	

Measurement	Units	Value		
Flow*	m³/sec	12,000		
Temperature*	°C	25.1		
pH*		7.5		
Dissolved Oxygen*	mg/l	5.25		
Conductivity	Micromohs/cm	333		
Odor	TON	1.05		
Turbidity	NTU	34		
Color	TCU	25		

E.2 Rawalpindi/Islamabad

(Please see the following pages.)

1	Sample Identification number	umber E00091 F 8/2 before Fatima Jinnah Park Near Street 24A 04-04-2000 1230 pm			
2	3 Date sample taken				
3					
4					
5	Sample depth	(9") 1.22 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and Amir Jamal			
8	Date of report				
9	Miscellaneous comments		-		
, <u> </u>	Measurement	Units		Value	
Flo	ow*	m ³ /sec	0.113		
Te	mperature*	°C	25.4		
p۲	*		7.33		
Di	ssolved Oxygen*	mg/l	3.81		
					· · · · · · · · · · · · · · · · · · ·

Micromohs/cm

TON

NTU

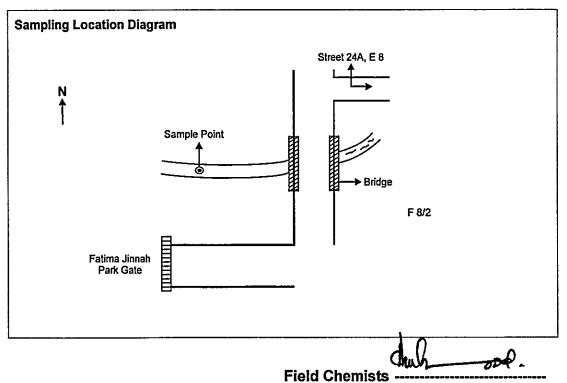
TCU

560

64

49

70

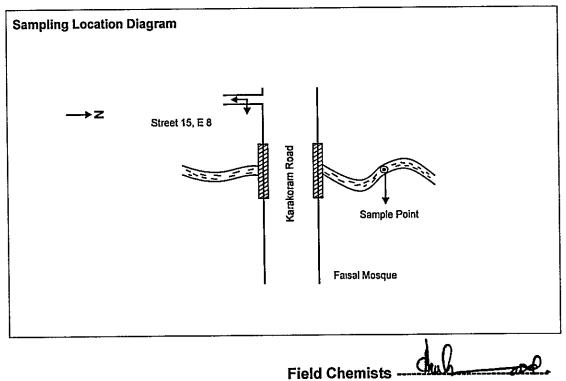

* In situ measurement

Conductivity

Odor

Color

Turbidity



Environmental Monitoring & Analysis

Wastewater Spot Testing Data Form

1	Sample Identification number	E00092			
2	 Sampling location Date sample taken 	E 8 Near Navy House	e Karakoram I	Road	
3		04-04-2000			
4	Time sample taken	0200 pm (5") 0.125 m			
5	Sample depth				
6	Sample location				
7	Name of analyst	Ghulam Sarwar and /	Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
Fk	Measurement	Units m ³ /sec	0.06	Value	
			0.06	Value	
	ow* mperature*	m³/sec		Value	
Te pH	ow* mperature*	m³/sec	18.2	Value	
Te p⊦ Di	ow* mperature*	m³/sec °C	18.2 7.42	Value	
Te p⊦ Di Co	ow* mperature* I* ssolved Oxygen*	m ³ /sec °C mg/l	18.2 7.42 5.65	Value	
Te p⊢ Di Co	ow* mperature* I* ssolved Oxygen* onductivity	m ³ /sec °C mg/l Micromohs/cm	18.2 7.42 5.65 210		

* In situ measurement

Hagler Bailly Pakistan D0STDLRI_Rwp lbd 07/13/00

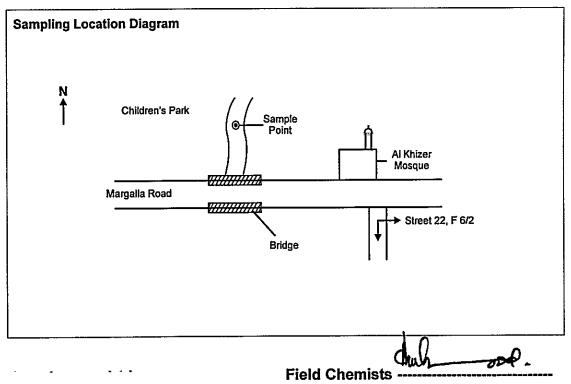
Hagler Bailly Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number	E00093			
2	Sampling location	F 6/2 Near Al-Khizar Mosque Margalla Road 05-04-2000 1000 am			
3	3 Date sample taken				
4	Time sample taken				
5	Sample depth	(4.5") 0.112 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
Flo	w*	m ³ /sec	0.0482		
Te	mperature*	°C	16		
рH	*		7.42		
Dis	ssolved Oxygen*	mg/l	5.8		
Co	onductivity	Micromohs/cm	200		
Oc	lor	TON	1		

NTU

TCU

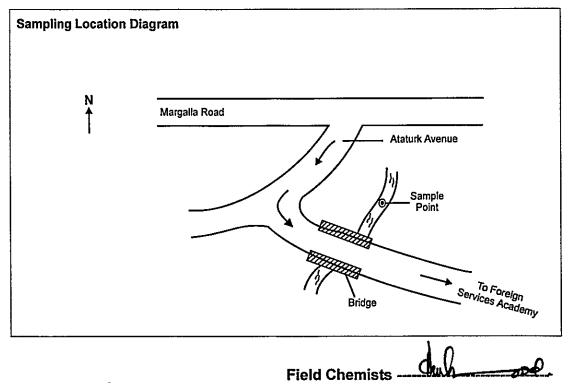

9.31

0

* In situ measurement

Turbidity

Color

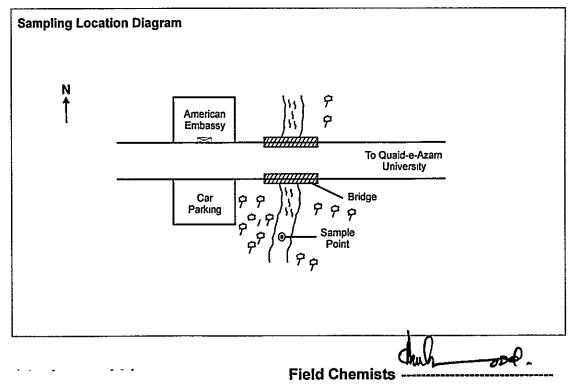

1	Sample Identification number	E00094			
2	 Sampling location Date sample taken 	F 5/2 Near Azad Jammu Kashmir Secretariat 05-04-2000			
3					
4	Time sample taken	1100 am			
5	Sample depth	(8") 0.20 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	l Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	wiscellaneous comments				
	Miscellaneous comments				<u></u>
	Miscellaneous comments	Units		Value	<u></u>
		Units m ³ /sec	0.0736	Value	
Fle	Measurement		0.0736 18.8°C	Value	
Fle	Measurement	m ³ /sec		Value	
Fk	Measurement	m ³ /sec	18.8°C	Value	
Flo Te pl- Di	Measurement	m³/sec °C	18.8°C 7.62 4.60	Value	
Flo Te pl- Di Co	Measurement	m ³ /sec °C mg/l	18.8°C 7.62 4.60	Value	

TCU

1

* In situ measurement

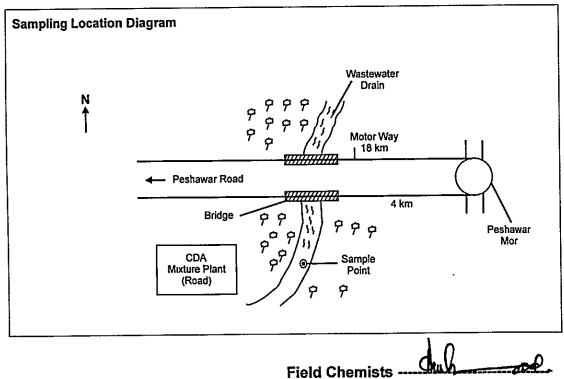
Color



Hagler Bailly Pakistan D0STDLRI_Rwp Ibd* 07/13/00

1	Sample Identification number	E00095				
2	Sampling location	Near American Embassy				
3	Date sample taken	06-04-2000	· · · · · · · · · · · · · · · · · · ·			
4	Time sample taken	1000 am				
5	Sample depth	(11") 0.28 m				
6	Sample location		· "		<u> </u>	
7	Name of analyst	Ghulam Sarwar ar	d Amir Jamal			
8	Date of report					
9	Miscellaneous comments					
	Measurement	Units		Va	lue	
Fic	*	m ³ /sec	0.5366			
	· · · · · · · · · · · · · · · · · · ·	100	477 27			

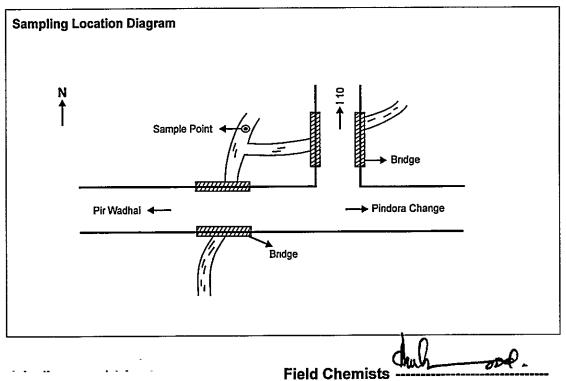
	T		
Flow*	m ³ /sec	0.5366	
Temperature*	°C	17.5	
pH*		7.82	
Dissolved Oxygen*	mg/l	6.52	
Conductivity	Micromohs/cm	590	
Odor	TON	1	
Turbidity	NTU	4.0	
Color	TCU	10	



1	Sample Identification number	E00096 Peshawar Road (motorway 18 km) 06-04-2000			
2	Sampling location				
3	Date sample taken				
4	Time sample taken	1145 am			
5	Sample depth	(14") 0 35 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar an	id Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
Flo		m ³ /sec	0.054		
Те	mperature*	°C	22.3		
	1*		7 64		

pH*		7.64		
Dissolved Oxygen*	mg/l	2.16		
Conductivity	Micromohs/cm	850		
Odor	TON	16		
Turbidity	NTU	6.4		
Color	TCU	70		

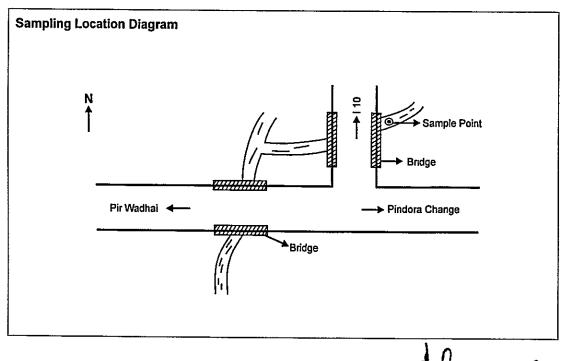
* In situ measurement


Hagler Bailly Pakistan DOSTDLRI_Rwp lbd 07/13/00

.....

1	Sample Identification number	E00097			
2	Sampling location	I 10 Pir Wadhai Crossing Nullah I			
3	Date sample taken	07-04-2000			
4	Time sample taken	1100 am			
5	Sample depth	(156 cm) 1.56 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal		
8	Date of report				
9	Miscellaneous comments	, <u>, , , , , , , , , , , , , , , , , , </u>			
	Measurement	Units		Value	
Flo	*w	m ³ /sec	2.08		
Te	mperature*	°C	20.8		
pН	*		7.86		
Dis	ssolved Oxygen*	mg/l	0.5		
Co	onductivity	Micromohs/cm	930		
Od		TON	16		
	lor				
Tu	irbidity	NTU	6.40		
			<u> </u>		

* In situ measurement

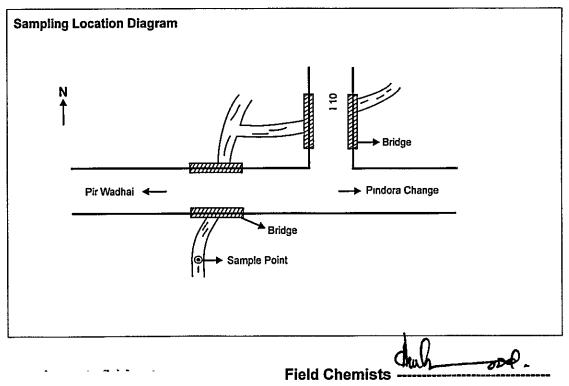

Hagler Bailly Pakistan D0STDLRI_Rwp Ibd. 07/13/00

Environmental Monitoring & Analysis Hagler Bally Pakstan

Wastewater Spot Testing Data Form

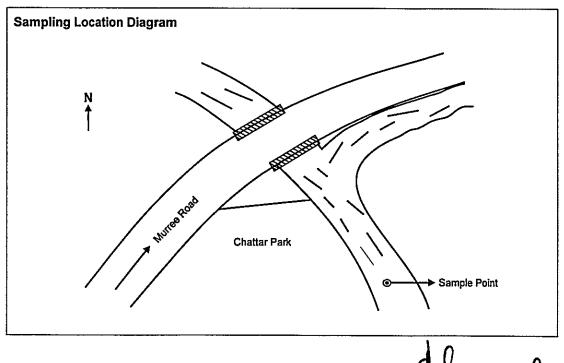
1	Sample Identification number	E00098			
2	Sampling location	I 10 Pir Wadhai crossing Nullah II			
3	Date sample taken	07-04-2000			
4	Time sample taken	1200 am			
5	Sample depth	(186 cm) 1.86 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal		
8	Date of report			· · · · · · · · · · · · · · · · · · ·	
9	Miscellaneous comments				·····
	Measurement	Units	1	Value	
Flo	Measurement	Units m³/sec	7.06	Value	
			7.06	Value	
	mperature*	m ³ /sec		Value	
Te pH	mperature*	m ³ /sec	20.4	Value	
Te pH Di:	ow* mperature* *	m ³ /sec °C	20.4 7.36	Value	
Te pH Di:	ow* mperature* I* ssolved Oxygen* onductivity	m³/sec °C mg/l	20.4 7.36 0.09	Value	
Te pH Dis Co	ow* mperature* I* ssolved Oxygen* onductivity	m ³ /sec °C mg/l Micromohs/cm	20.4 7.36 0.09 910	Value	
Te pH Dis Co Oc Tu	ow* mperature* * ssolved Oxygen* onductivity dor	m³/sec °C mg/l Micromohs/cm TON	20.4 7.36 0.09 910 16	Value	

* In situ measurement



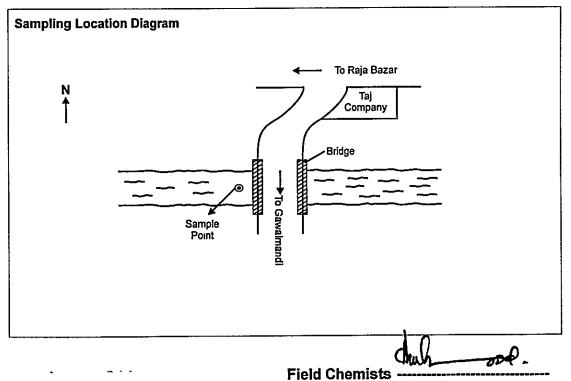
d_w Field Chemists -

Hagler Bailly Pakistan DOSTDLRI_Rwp lbd[.] 07/13/00


1	Sample Identification number	E00099			
2	Sampling location	I 10 Pir Wadhai crossing 200 m after joining I and II			
3	Date sample taken	07-04-2000			
4	Time sample taken	0100 pm			
5	Sample depth	(97 cm) 0.97 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
Flo	W*	m ³ /sec	2.716		
Te	mperature*	°C	20.3		
pН	*		7.55		
Dis	ssolved Oxygen*	mg/l	0.05		
Co	onductivity	Micromohs/cm	960		
Od	lor	TON	16		
Tu	rbidity	NTU	17		
Co	blor	TCU	70		
			1		

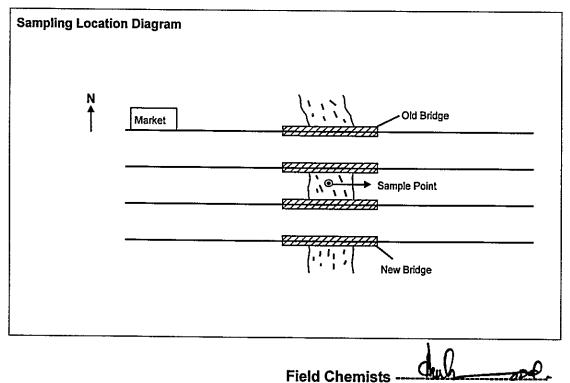
1	Sample Identification number	E00100			
2	Sampling location	Chattar Park			
3	Date sample taken	07-04-2000			
4	Time sample taken	0300 pm			
5	Sample depth	(31 cm) 0.31 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal		
8	Date of report				
9	Miscellaneous comments	·			
<u></u>	Measurement	Units		Value	
Flo	Measurement	Units m³/sec	0.749	Value	
			0.749 20.8	Value	
	w* mperature*	m ³ /sec		Value	
Te pH	w* mperature*	m ³ /sec	20.8	Value	
Te pH Dis	w* mperature* *	m³/sec °C	20.8 8.04	Value	
Te pH Dis	w* mperature* * ssolved Oxygen* nductivity	m³/sec °C mg/l	20.8 8.04 6.05	Value	
Te pH Dis Co Oo	w* mperature* * ssolved Oxygen* nductivity	m ³ /sec °C mg/l Micromohs/cm	20.8 8.04 6.05 600	Value	
Te pH Dis Cc Oc Tu	ow* mperature* * ssolved Oxygen* nductivity lor	m ³ /sec °C mg/l Micromohs/cm TON	20.8 8.04 6.05 600 1	Value	

* In situ measurement


Field Chemists _____

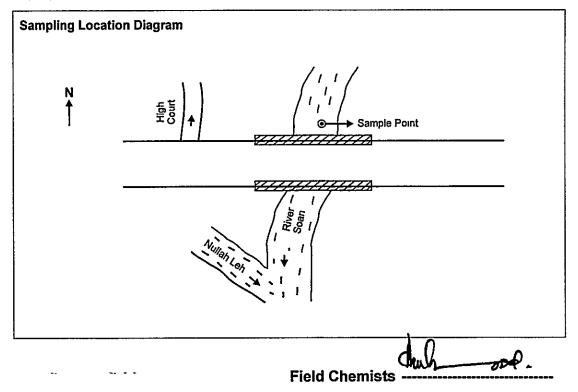
Hagler Bailly Pakistan DOSTDLRI_Rwp lbd· 07/13/00

1	Sample Identification number	E00101			
2	Sampling location	Gawalmondi Bridge Near Taj Company			
3	Date sample taken	10-04-2000			
4	Time sample taken	0130 pm			
5	Sample depth	0.86 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar ar	nd Amir Jamal		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
Flo	w*	m ³ /sec	10.79		
Te	mperature*	°C	23.8		
pŀ	*		7.05		


Temperature*	ິ	23.8	
pH*		7.05	
Dissolved Oxygen*	mg/l	0.28	
Conductivity	Micromohs/cm	1320	
Odor	TON	64	
Turbidity	NTU	41.5	
Color	TCU	70	

1	Sample Identification number	E00102
2	Sampling location	Airport Road
3	Date sample taken	10-04-2000
4	Time sample taken	0245 pm
5	Sample depth	0.90 m
6	Sample location	
7	Name of analyst	Ghulam Sarwar and Amir Jamal
8	Date of report	
9	Miscellaneous comments	

Measurement	Units	1	Value
Flow*	m ³ /sec	7.84	
Temperature*	°C	24.4	
pH*		7.13	
Dissolved Oxygen*	mg/l	0.05	
Conductivity	Micromohs/cm	1340	
Odor	TON	64	
Turbidity	NTU	65.1	
Color	TCU	70	



Hagler Bailly Pakistan DOSTDLRI_Rwp Ibd 07/13/00

1	Sample Identification number					
2	Sampling location	River Soan Bridge near High Court Building Rawalpindi				
3	Date sample taken	11-04-2000				
4	Time sample taken	1245 pm				
5	Sample depth	0.54 m				
6	Sample location	<u> </u>				
7	Name of analyst	Ghulam Sarwar and	Amir Jamal			
8	Date of report					
9	Miscellaneous comments					. <u></u>
	Measurement	Units		Valu	ue	
Flo		Units m³/sec	10.08	Vali	ue 	
			10.08 26.3	Valu	ue	
	w* mperature*	m ³ /sec	Į	Valt		
Te pH	w* mperature*	m ³ /sec	26.3	Vali		
Ter pH Dis	w* mperature* *	m ³ /sec °C	26.3 8.18	Val		
Ter pH Dis	w* mperature* * solved Oxygen* nductivity	m³/sec °C mg/l	26.3 8.18 7.58	Val		
Ter pH Dis Co Od	w* mperature* * solved Oxygen* nductivity	m³/sec °C mg/l Micromohs/cm	26.3 8.18 7.58 770	Valu		

* In situ measurement

Hagler Bailly Pakistan DOSTDLRI_Rwp Ibd: 07/13/00

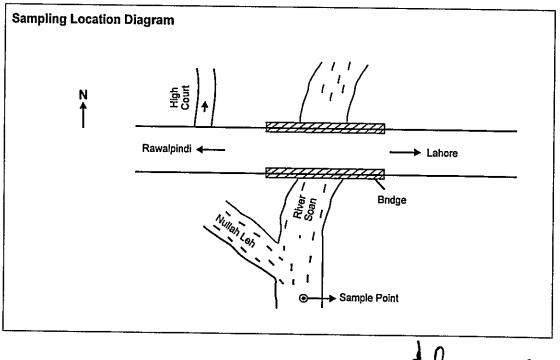
 1
 Sample Identification number
 E00104

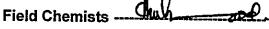
 2
 Sampling location
 300 m from Soan Bridge, Mix of Soan and Nullah Leh Rwp.

 3
 Date sample taken
 11-04-2000

1130 am

0.69 m


- 4 Time sample taken
- 5 Sample depth
- 6 Sample location
- 7 Name of analyst

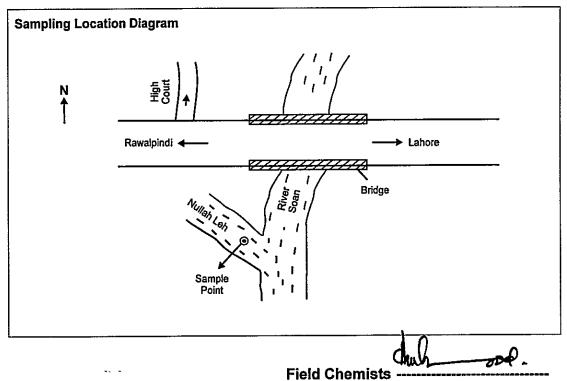

Ghulam Sarwar and Amir Jamal

- 8 Date of report
- 9 Miscellaneous comments

Measurement	Units	1	Value
Flow*	m ³ /sec	10.54	
Temperature*	°C	25.4	
рН*		7.64	
Dissolved Oxygen*	mg/l	5.39	
Conductivity	Micromohs/cm	1140	
Odor	TON	16	
Turbidity	NTU	43.5	
Color	TCU	20	

* In situ measurement

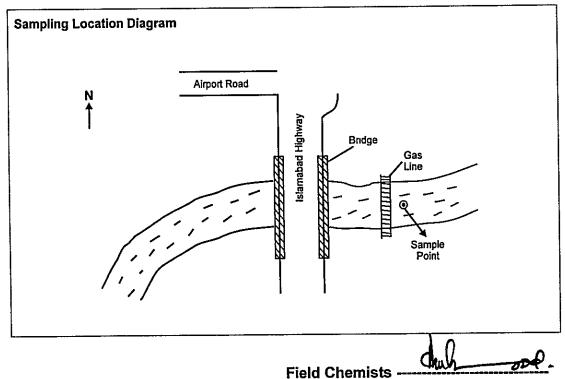
Hagler Bailly Pakistan DOSTDLRI_Rwp Ibd. 07/13/00



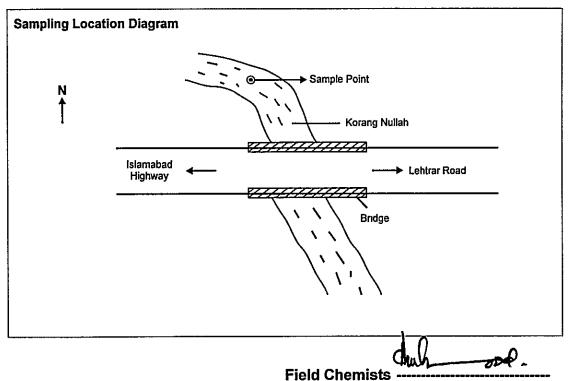
Hagler Baily Pakistan

Wastewater Spot Testing Data Form

1	Sample Identification number				
2	Sampling location				
3	Date sample taken	11-04-2000			
4	Time sample taken	1025 am			
5	Sample depth	1.8 m			
6	Sample location				
7	Name of analyst	Ghulam Sarwar ar	d Amir Jama		
8	Date of report				
9	Miscellaneous comments				
	Measurement	Units		Value	
	· · · · · · · · · · · · · · · · · · ·	31	0.60		

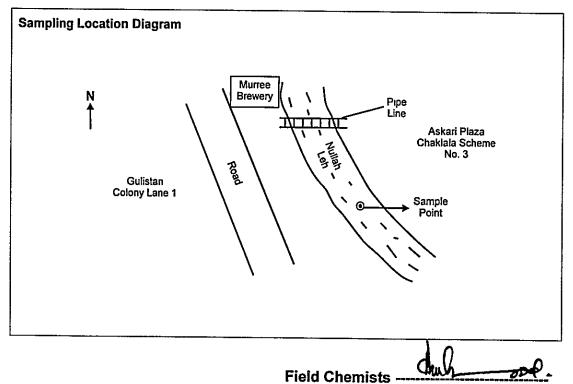

Measurement	Units	Value							
Flow*	m ³ /sec	9.60							
Temperature*	°C	24.2							
pH*		7.64							
Dissolved Oxygen*	mg/l	2.14							
Conductivity	Micromohs/cm	1590							
Odor	TON	64							
Turbidity	NTU	59.3							
Color	TCU	50							

1	Sample Identification number	E00106										
2	Sampling location	Stream water Islamabad High Way near Railway crossing (Nullah Kura)										
3	Date sample taken	12-04-2000										
4	Time sample taken	1015 am										
5	Sample depth	0.65 m										
6	Sample location											
7	Name of analyst	Ghulam Sarwar and Amir Jamal										
8	Date of report	· · · · · · · · · · · · · · · · · · ·										
9	Miscellaneous comments											
	Measurement	Units	Value									
	weasulement	01110										


Measurement	Units		Value	
Flow*	m ³ /sec	1.15		
Temperature*	°C	27.6		
pH*		8.06		
Dissolved Oxygen*	mg/l	4.78		
Conductivity	Micromohs/cm	680		
Odor	TON	2.0		
Turbidity	NTU	7.7		
Color	TCU	0		

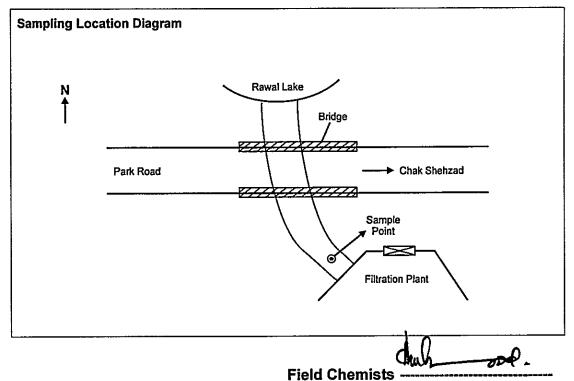
Hagler Bailly Pakistan D0STDLRI_Rwp lbd: 07/13/00

1	Sample Identification number	E00107										
2	Sampling location	Stream water Korang	Nullah Leh	trar Road								
3	Date sample taken	12-04-2000										
4	Time sample taken	0100 pm										
5	Sample depth	0.34 m										
6	Sample location											
7	Name of analyst	Ghulam Sarwar and	Amir Jamal	<u></u>								
8	Date of report											
9	Miscellaneous comments											
	Measurement	Units		Value								
Fic	Measurement	Units m ³ /sec	1.94	Value								
			1.94 26.9	Value								
	w* mperature*	m ³ /sec		Value								
Te pH	w* mperature*	m ³ /sec	26.9	Value								
Te pH Dis	w* mperature* *	m ³ /sec °C	26.9 7.56	Value								
Te pH Dis	w* mperature* * ssolved Oxygen* nductivity	m ³ /sec °C mg/l	26.9 7.56 2.44	Value								
Te pH Dis Co Oc	w* mperature* * ssolved Oxygen* nductivity	m ³ /sec °C mg/l Micromohs/cm	26.9 7.56 2.44 58	Value								

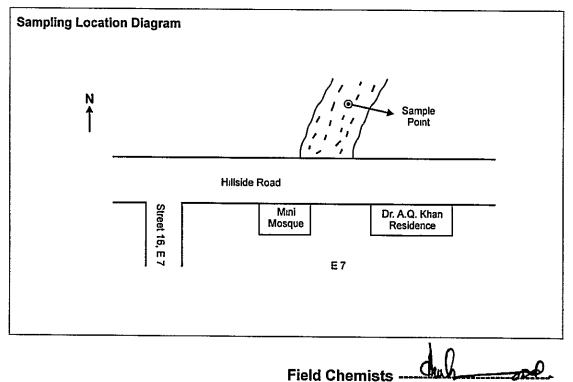


1	Sample Identification number	E00108
2	Sampling location	Nullah Leh at Gulistan Colony Line 1 after entering of Murree Brewery waste
3	Date sample taken	13-04-2000
4	Time sample taken	1045 am
5	Sample depth	0.69 m
6	Sample location	
7	Name of analyst	Ghulam Sarwar and Amir Jamal
8	Date of report	
9	Miscellaneous comments	

Measurement	Units	Value						
Flow*	m ³ /sec	8.625						
Temperature*	°C	30.0						
рН*		7.26						
Dissolved Oxygen*	mg/l	1.87						
Conductivity	Micromohs/cm	1260						
Odor	TON	64						
Turbidity	NTU	64.5						
Color	TCU	70						


* In situ measurement

Hagler Bailly Pakistan D0STDLRI_Rwp lbd: 07/13/00


1	Sample Identification number	E00109		E00109											
2	Sampling location	Rawal Dam Outlet be	fore entering	Filteration Plant	_										
3	Date sample taken	13-04-2000													
4	Time sample taken	1200 pm													
5	Sample depth	0.90 m													
6	Sample location														
7	Name of analyst	Ghulam Sarwar and J	Amir Jamal												
8	Date of report														
9	Miscellaneous comments	<u>, , , , , , , , , , , , , , , , , , , </u>													
	Measurement	Units		Value											
Flo	W*	m ³ /sec	1.215												
Te	mperature*	°C	19.8												
pН	*		7.83												
Dis	ssolved Oxygen*	mg/l	6.01		_										
_	Joon da Oxygon														
CO	nductivity	Micromohs/cm	410												
Od	nductivity	Micromohs/cm	410												

1	Sample Identification number	E00110
2	Sampling location	Rawal Dam Outlet before entering Filteration Plant
3	Date sample taken	13-04-2000
4	Time sample taken	1400 pm
5	Sample depth	0.12 m
6	Sample location	
7	Name of analyst	Ghulam Sarwar and Amir Jamal
8	Date of report	· · · · · · · · · · · · · · · · · · ·
9	Miscellaneous comments	

m ³ /sec °C mg/l	0.036 20.5 7.72 0.66		
	7.72	· · · · · · · · · · · · · · · · · · ·	
mg/l			
mg/l	220	·	
~	0.00		
Micromohs/cm	760		
TON	16		
NTU	9.9		
TCU	10		
	TON NTU	TON 16 NTU 9.9	TON 16

Appendix F: Laboratory Test Results of Wastewater Monitoring Sites

(Please see the following pages.)

Investigation of Air and Water Quality (Lahore, Rawalpindi and Islamabad)

•

•1

-

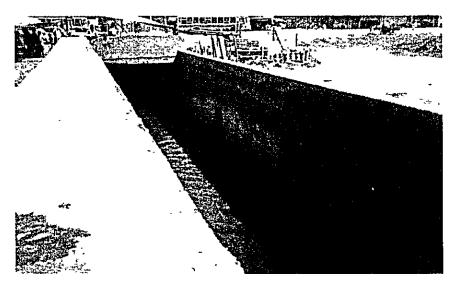
•

TOR NO	Logica No.	al Date of Sampling	Time Hrs	Sample ID No	Sampling Location	Flow Rate (m³/sec)	Temp (°C)	pН	DO (mg/l)	Cond (µS/cm)	Odor (TON)	Turb. (NTU)	Color (TCU)	BOD₅ (mg/l)	COD (mg/l)	TSS (mg/l)	0&G (mg/l)	T-N (mg/l)	E-Colı (MPN/100ml)	As (ppb)	Cu (ppm)	Cr (ppm)	Cđ (ppm)	Pb Zi (ppm) (pp
					National Environmental Quality Standards		40 0	6.0 to 9.0	1					80.0	150.0	200.0	10.0			1,000 0	1.0) 1.0	01	0.5
SS1	1	04 04.00	1150	E061	River Ravi BRB Siphon (Composite)	336.0	26 1	8.3	6.4	227.0	1.1	55.0	1.0	92	16.9	124.0	ND	1.1	<1 0					
SS6	2	07.04.00	1125	E066	New Shadbagh Sewage Drain, Bund Road	6.8	27.5	7.6	2.0	998.0	20.0	126.0	20.0	110.0	162 3	855 0	ND	38 1	>180.0					
552	3	04.04.00	1645	E062	River Ravi Bara Dari Near Boat Station	88 0	29.0	8.5	4.9	180.0	10.0	62.0	1.0	12.1	26.6	162 0	ND	28	>180.0					
SS8	4	07 04.00	1530	E068	Babu Sabu Drain, Bund Road	9.0	28.9	7.4	11	1,191.0	3.3	75 0	50.0	110.0	179.8	249.0	ND	38.6	>180.0					
SS3	5	05.04.00	1055	E063	Babu Sabu Outfall (Before Joining River Ravi)	7.3	28.7	7.3	0.6	953.0	1.1	37.0	ND	102.0	111.8	110.0	NÐ	4.5	>180.0					
SS7	6	07.04 00	1300	E067	Main Outfall Drain, Bund Road	2 2	27.0	7.5	1.8	1,081.0	20.0	105.0	70 0	109.0	214 4	342.0	ND	29 7	>180.0					
SS11	7	09.04 00	1450	E074	Deg Nullah, Sheikhupura Road	1.9	29.8	7.3	0.7	3,070.0	10.0	128.0	1,000.0	159.0	831.1	348.0	ND	ND	>180 0	13.0	<05	< 0.5	< 0.1	< 0.2 < 0
SS12	8	09.04.00	1255	E073	Choti Deg Nullah, Sheikhupura Road	0.9	27.8	8.7	0.6	3,600 0	20.0	126.0	35.0	109 0	196.8	278.0	ND	28	>180.0	11 0	< 0.5	25 0	< 0 1	< 0 2 < 0
SS10	9	11.04.00	1400	E078	Bhed Nallah Shiekhupura Road	0.5	35.5	93	0.2	1,815.0	50.0	47.0	ND	140.0	582.4	405.0	ND	2.8	>180.0	25.0	0.8	< 0 5	< 0.1	< 0.2 0.9
SS20	10	08 04 00	1400	E071	Hudiara Drain, From India	36	28.6	7.8	0.6	2,300.0	10 0	85.0	1,000.0	449 0	862.0	537.0	ND	3.6	>180.0					
SS16	11	08 04 00	1100	E070	Hudiara Drain, Ferozpur Road	8.3	28 3	8.0	0.7	1,579.0	50 0	42.0	200.0	163.0	215 0	5,982.0	ND	4.0	>180 0	10.0	< 0 5	< 0.5	< 0 1	< 0.2 < 0
SS15	12	12 04 00	1330	E079	Satokattla Drain -Defence Road	6.5	32.1	7.6	0.4	1,359.0	33.3	64 0	50.0	103.0	252 7	170.0	ND	18 5	>180.0					
SS9	13	07.04.00	1655	E069	Hudiara Drain, Multan Road	9.1	29.4	7.7	1.0	1,765.0	20.0	37.0	15.0	117.0	387.8	126 0	ND	84	>180 0	25.0	< 0.5	< 0 5	< 0 1	< 0.2 < 0
SS17	14	05 04 00	1430	E064	River Ravi at Junction of Hudiara Drain	78.9	29.2	7.4	0.3	645.0	10.0	21.0	10.0	63 0	165 6	133.0	ND	8.4	>180.0					
SS4	15	05 04.00	1720	E065	River 1 KM D/S of Hudiara Drain	480.0	27.7	7.7	1.2	516.0	10.0	46 0	10.0	7.1	36.4	134 0	ND	12 3	>180.0	< 10.0	< 0.5	< 0.5	< 0.1	< 0 2 < 0
SS5	16	13 04.00	900	E080	Baloki Headworks (Composite)	340 0	25.1	7.5	5.3	333.0	1.0	34.0	25.0	7.1	33.4	80.0	ND	ND	>180 0					
SS13	17	09.04.00	1140	E072	Chichokimalian Drain, Sheikhupura Road	0.4	27.5	9.0	0.8	4,660.0	14.5	56.0	50.0	73.0	77.6	1,562.0	ND	65.0	>180.0	28.0	< 0.5	< 0 5	< 0.1	<02 <0
SS14	18	11.04.00	1215	E077	Barian Drain 1km off Sheikhupura road	1.8	32.3	7.0	0.7	2,270.0	67	237 0	50.0	142 0	2,383.0	736.0	53.3	3.9	>180 0	14 0	2.0	< 0.5	< 0 1	02 03
SS18	19	10.04 00	1250	E075	Deg Nullah II, before river after Baloki HW	1.0	27.9	80	1.0	5,310.0	1.1	98.0	1,000.0	105 0	1,046.0	495.0	ND	50	161.0					
SS19	20	10.04.00	1705	E076	Mundwana, Samundri Drain before Ravi	1.3	30.7	8.4	0.4	4,220.0	100 0	48.0	NÐ	161.0	180.1	152.0	ND	6.7	>180 0					
	Duplic	ate Analys	s By													PC	SIR					NUST		
SS5	16	13.04.00		E080	River Ravi 200M U/S, Baloki Headworks									6.2	15.1	20	06	0.1	1 0	1				
SS14	18	11.04 00		E077	Barian Drain 1km off Sheikhupura road									965.0	2,826.0	1.092.0	27	0.3	1.0	< 0.5 ppm	< 0 :	5 < 0.5	< 0 5	< 0.5 <

F.1 Laboratory Test Results of Wastewater Quality in Lahore

F.2	Laboratory Test Results of Wastewater Quality Sites in Rawalpindi and Islamabad
-----	---

TOR NO	Logical No	Date of Sampling	Time Hrs	Sample ID No.	Sampling Location	Flow Rate (m³/sec)	Temp (°C)	pН	DO (mg/l)	Cond (µS/cm)	Odor (TON)	Turb (NTU)	Color (TCU)	BOD₅ (mg/l)	COD (mg/l)	TSS (mg/l)	0&G (mg/l)	T-N (mg/l)	E-Coli (MPN/100ml)	As (ppb)	Cu (ppm)	Cr (ppm)	Cd (ppm)	Pb (ppm	Zn (ppm)
					National Environmental Quality Standards		40 0	6 0 to 9.0					-	80.0	150.0	200.0	10.0			1,000.0	1.0	1.0	0.1	05	50
SS2	1	04.04.00	1400	E092	E-8 Near Navy House Karakuram Road	0.5	18 2	7.4	5.7	210 0	40	13.7	00	6.8	25 6	4,041.0	BDL.	BDL	18+						
SS18	2	13.04.00	400	E110	E-7 Hill Side Road opp St :16	0.0	20 5	7.7	0.7	760.0	16.0	9.9	10.0	58 0	89.3	50.0	BDL	18 5	18+						
SS1	3	04 04.00	1230	E091	F-8/2 Before Fatima Jinnah Park,	0.1	25 4	7.3	3.8	560 0	64.0	49.0	70.0	60 1	101.3	16,154.0	BDL	12.3	18+						
SS3	4	05.04.00	1000	E093	F-6/2 Near Alkhizar Mosque Margalla Road	0.1	16 0	7.4	5.8	200.0	10	9.3	00	17.0	18.4	107.0	BDL	BDL	0.0						
SS4	5	05 04.00	1100	E094	F-5/2 Near Azad Jamun Kashmir Secretariat	0.1	18 8	7.6	4.6	230 0	4.0	11.4	1.0	12 2	20.9	42.0	BDL	BDL	18+						
SS5	6	06.04.00	1000	E095	Near American Embassy	0.5	17.5	78	65	590 0	1.0	4.0	10.0	16.3	19 3	47.0	BDL.	BDL	18+						
SS6	7	06 04.00	1145	E096	Peshawar Road	0.1	22.3	7.6	2.2	850.0	16 0	6.4	70 0	31.3	58.2	146.0	BDL	1.7	18+						<u></u>
SS7	8	07.04.00	1100	E097	I-10 Pirwadhai crossing, Nullah 1	2.1	20 8	7.9	0.5	930 0	16 0	6.4	70.0	57.6	83 7	358.0	BDL	10.1	18+	< 10.0	< 0.5	< 0.5	< 0 1	< 0.2	< 0.2
SS8	9	07 04.00	1200	E098	I-10 Pırwadhai crossing, Nullah 2	7.1	20 4	74	0.8	910 0	16 0	18 5	70 0	59 5	114.3	89.0	BDL	3.4	18+	< 10.0	< 0.5	< 0.5	< 0.1	< 0.2	< 0 2
SS9	10	07.04 00	1300	E099	I-10 Pirwadhai crossing, 200M after Joining	2.7	20.3	7.6	01	960 0	16.0	17.0	70.0	34.2	81.0	210.0	BDL	5.1	18+	< 10.0	< 0.5	< 0.5	< 0 1	< 0.2	< 0.2
SS11	11	10.04.00	1330	E101	Nallah Leh Near Guwaimondi Bridge	10.8	23 8	7.1	0.3	1,320.0	64.0	41.5	70 0	139 1	357.5	284.0	BDL	6.7	18+	< 10.0	< 0.5	< 0.5	< 0.1	< 0 2	0.3
SS12	12	10 04.00	1445	E102	Jahanda Chichi, Aır Port Road	7.8	24.4	7.1	01	1,340 0	64.0	65 1	70.0	139.3	215 4	272.0	BDL	56	18+						
SS20	13	13.04.00	1045	E108	Nallah Leh at Gulistan Colony line-1	8.6	30.0	73	1.9	1,260 0	64.0	64.5	70 0	118 8	209.6	127.0	BDL	37.5	18+						
SS13	14	11.04.00	1025	E105	Nallah Leh before joining River Swan	9.6	24.2	7.6	2 1	1,590 0	64.0	59.3	50.0	81.7	147.1	255.0	BDL	51 0	18+	11.0	3.0	< 0 5	< 0.1	0.3	0.3
SS10	15	07.04 00	1500	E100	Chattar Park	0.8	20.8	8.1	61	600 0	1.0	05	0.0	14.2	34 8	43.0	BDL	BDL	18+	.					
SS16	16	13.04.00	1220	E109	Rawal Dam	1.2	19.8	7.8	60	410 0	1.0	2.6	10 0	BDL	7.0	106.0	BDL	BDL	18+						
SS17	17	12 04 00	1300	E107	Stream water Korang Nallah Lehtrar road	1.9	26.9	7.6	2.4	58 0	4.0	226	70.0	10.9	15.8	77.0	BDL	BDL	18+						
SS19	18	12.04.00	1015	E106	Naliah Kura, Shahrahe-Islamabad	1.2	27.6	8 1	48	680.0	2.0	7.7	0 0	16 0	18 4	36.0	BDL	BDL	18+	< 10.0	< 0.5	< 0 5	< 0 1	< 0 2	< 0 2
SS14	19	11.04.00	1245	E103	River Swan before Swan Bridge	10.1	26.3	8.2	7.6	770 0	4.0	6.1	20.0	26 9	45 6	94.0	BDL	BDL	18+						
SS15	20	11.04.00	1130	E104	Mix of Swan and Nallah Lai	10.5	25.4	7.6	54	1,140 0	16.0	43 5	20 0	42 6	68 7	22.0	BDL	50	18+	< 10.0	05	< 0 5	< 0.1	0 2	0 2
		Duplicate An	alysis B	У												PC	SIR					NUS	Т		
SS13	14	11 04 00		E105	Nallah Lai before joining River Swan									256.0	1,676 0	253.0	0.4	0 2	<0.5 ppm	<10	< 0.5	< 0.5	< 0.5	< 1.0	
SS19	18	12.04.00		E106	Nallah Kura, Shahrahe-Islamabad									12 5	31.6	15 0	04	0.1	<0.5 ppm	< 1 0	< 0.5	< 0 5	< 0.5	< 0 5	


Appendix G: Photographs of Wastewater Sampling Sites

G.1 Sampling in Lahore

Figure G.1: Sampling Site 6 - New Shadbagh Drain, Bund Road

Figure G.2: Sampling Site 7 - Main Outfall Drain, Bund Road

Hagler Bailly Pakistan DOTAILRI-SOG 07/19/00

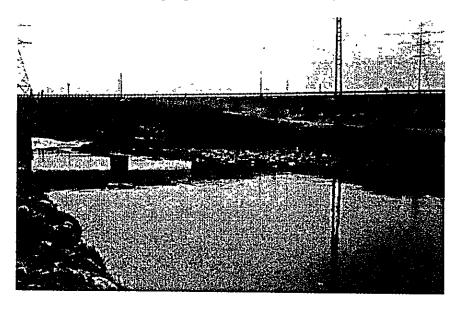


Figure G.3: Sampling Site 8 -- Babu Sabu Drain, Bund Road

Figure G.4: Sampling Site 9 - Hudiara Drain, Multan Road

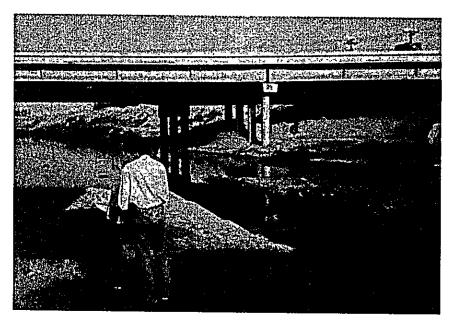


Figure G.5: Sampling Site 10 – Bhed Nullah, Sheikhupura Road

Figure G.6: Sample from Site 14 – Barian Drain, Sheikhupura Road

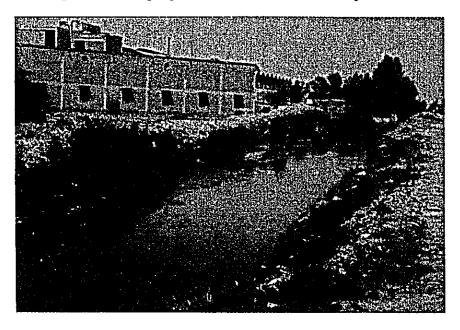
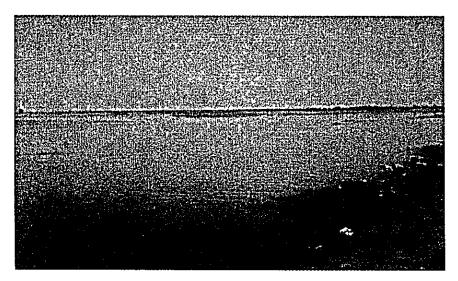



Figure G.7: Sampling Site 14 – Barian Drain, Sheikhupura Road

Figure G.8: Sampling Site 17 – Junction of Ravi River with Hudiara Drain

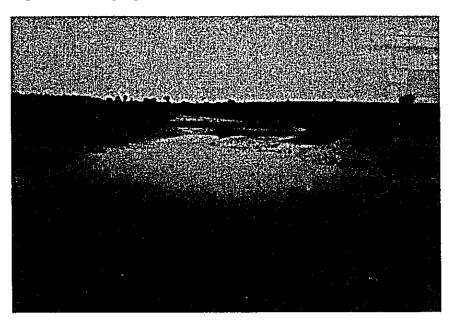


Figure G.9: Sampling Site 19 - Samundari Drain before entering Ravi River

G.2 Sampling in Rawalpindi/Islamabad

Figure G.10: Sampling Site No. – F8/2 (near Fatima Jinnah Park)

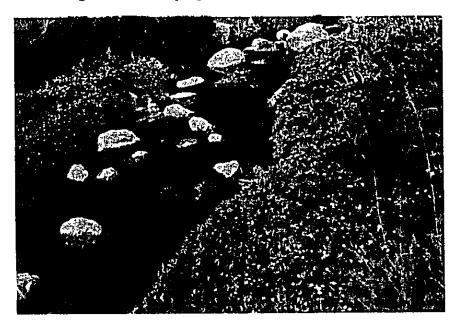



Figure -G.11: Sampling Site 5 – Near American Embassy

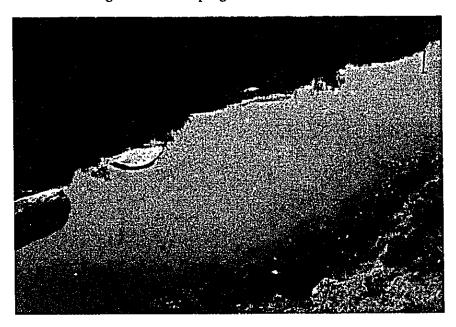
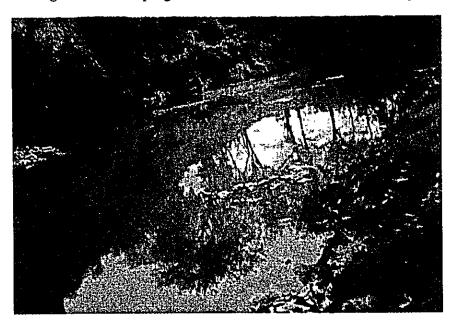



Figure G.12: Sampling Site 6 – Peshawar Road

Figure G.13: Sampling Site 7 - Nullah 1, I-10 Pir Wadhai Crossing

Hagler Bailly Pakistan DOTAILRI-SOG. 07/19/00

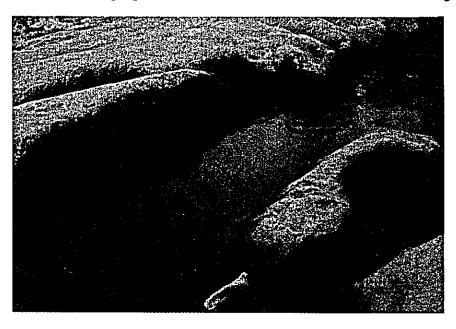
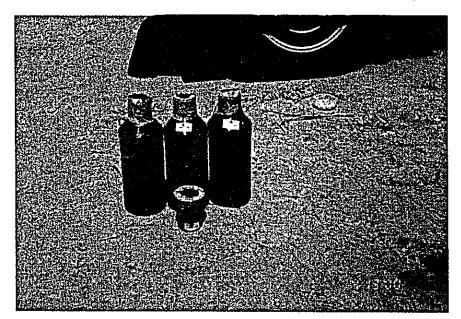



Figure G.14: Sampling Site 9 - Combined Nullah 1 & 2 at Pir Wadhai Crossing

Figure G.15: Sample from Site 13 – Nullah Leh at Gulistan Colony

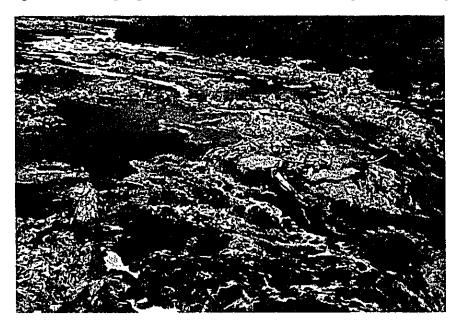


Figure G.16: Sampling Site 14 -- View of Nullah Leh near High Court Building

Figure G.17: Sampling Site 17 – Stream Water, Korang Nullah, Lehtrar Road

Figure G.18: Sample from Site 19 – View of Nullah Kura, Shahrah-e-Islamabad

Figure G.19: Sampling Site 19 – View of Nullah Kura, Shahrah-e-Islamabad

G.3 The Team at Work

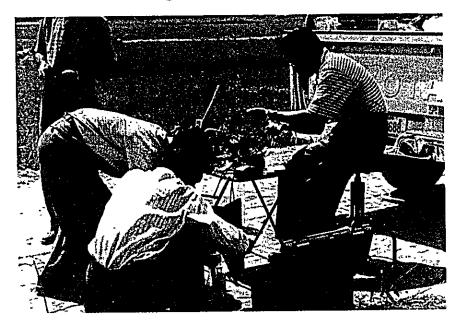
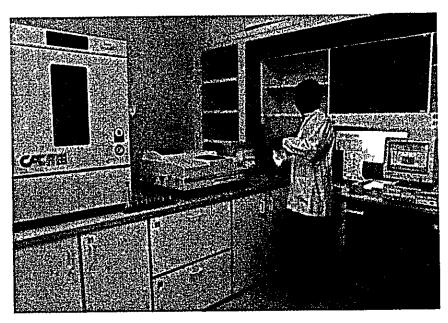



Figure G.20: Spot Testing

Figure G.21: Laboratory Testing

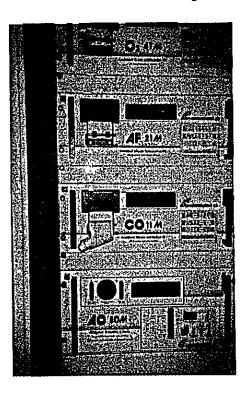
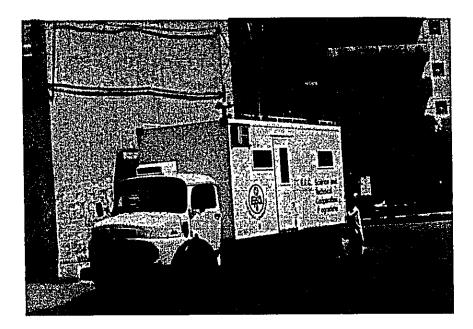



Figure G.22: Interior View of Air Monitoring Mobile Station

Figure G.23: The Air Monitoring Mobile Station

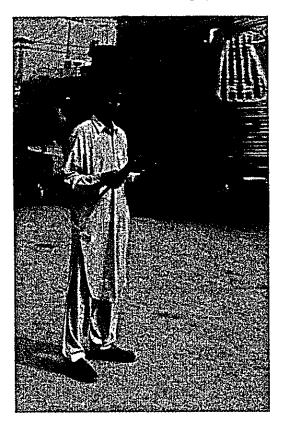
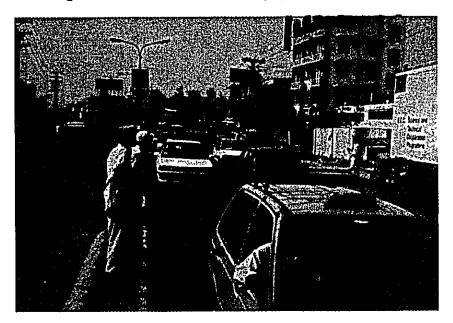



Figure G.24: Ambient Air Monitoring by Detector Tubes

Figure G.25: Ambient Air Monitoring by EPD Mobile Station

Hagler Bailly Pakistan DOTAILRI-SOG 07/19/00

Figure G.26: Traffic Count

Figure G.27: Project Team in Discussion for Ambient Air Site Selection

•

-

Japan International Cooperation Agency 1, St. 61, F6/3, PO Box 1772 Islamabad 44000, Pakistan Tel (92 51) 829473-6, Fax (92 51) 829471

-