### 9.4.3 Stage Construction Methodology

Stage construction is a scheme of initially constructing smaller number of lanes appropriate for immediate traffic demand, and additionally constructing ultimately planned number of lanes when traffic demand grows later time in order to minimize the initial cost. This scheme is most effective when the initial traffic demand is small but it is expected to grow rapidly in the future. A simple summation of construction costs of the initial stage plus the ultimate stage will be generally larger than the normal scheme of constructing the ultimate number of lanes at the initial stage. In order to apply a stage construction scheme, therefore, the value of the total (discounted) benefit over the total (discounted) cost for stage construction should be larger than that of the normal scheme.

Due to the traffic characteristics it is expected that a stage construction scheme is considered very effective for K-G and G-M Expressways. The designated staging scheme will be initially 6 lanes and ultimately 8 lanes for the JUNCTION - Ghaziabad IC section, and initially 4 lanes and ultimately 6 lanes for the other sections. The stage construction for 4 to 6 lanes have basically 2 methods as shown in Figure 9.4.1. The stage construction from 6 to 8 lanes is basically the same.

6-Lane Operation Carriageway Median Carriageway Shoulder Carriageway Hedian Carriageway Shoulder Shoulder Shoulder (3 Lanes) > (3 Lanes) (3 Lanes) (3 Lanes) Shoulder Carriageway Median Carriageway Shoulder Carriageway Median Carriageway (2 Lanes) (2 Lanes) (2 Lanes) (2 Lanes) 4-Lane Operation 4-Lane Operation METHOD A: OUTER INITIAL LANES METHOD 8: INNER INITIAL LANES

Figure 9.4.1: Typical Methods of Stage Construction

Method A is more appropriate when the growth of traffic is expected in near future. The additional construction is easier since the embankment is substantially completed at the initial stage, however, the initial cost can not be reduced substantially. In this case bridges are usually constructed for ultimate lanes due to the difficulty of the additional construction.

Method B is simply better when the timing of additional construction is expected in far future or uncertain in foreseeable future since the initial cost can be lower than Method A. When the additional construction for the ultimate stage actually happens,

however, it will be more costly since additional embankment will be necessary.

The expected timing for widening for ultimate lanes is around year 2021 - 2026 as discussed in the previous section. This means that the period of operation with the initial lanes is more than 20 years. The policy on stage construction, therefore, should focus on minimizing the initial construction cost, rather than minimizing the additional cost at the time of widening.

With this policy the construction method should be Method B: Inner Initial Lane Method. The width of initial bridges could be for ultimate lane width, and it could be better for small bridges, however, the width of major bridges should be for the initial lanes to minimize the initial construction cost. This will be discussed more in detail in the section for construction planning.

#### 9.5 Preliminary Engineering Design

# 9.5.1 Preliminary Geometric Design

# (1) Horizontal Alignment

The horizontal alignment of the proposed optimum route was refined against major control points within an accuracy of the available information including site observation and investigation. The topographic survey was performed based on the designated alignment, and preliminary design was performed on the surveyed topographic sheets.

The station (chainage) was set forth from Kundli IC (STA0+600) to Ghaziabad North JCT (STA41+400) for K-G Expressway, and from Ghaziabad IC (STA00-200) to Meerut IC (STA39+750) for G-M Expressway.

A summary of design features for horizontal alignment for the designed routes are shown in Table 9.5.1. A set of drawings for preliminary design of K-G and G-M Expressways are shown in the separate volume. The design was performed in the scale of 1: 2,500, and the sets of design drawings are prepared for A1 size (S=1: 2,500) and A3 size (S=1:5,000).

Table 9.5.1: Summary of Design Features of Horizontal Alignment of the Projects

| Item                               | Unit | K-G Expressway<br>(Kundli IC - JCT) | G-M Expressway<br>(Ghaziabad IC-Meerut IC) |
|------------------------------------|------|-------------------------------------|--------------------------------------------|
| Design Speed                       | km/h | 120                                 | 120                                        |
| Expressway Length                  | km   | 41.2 (including JCT)                | 40.0                                       |
| Minimum Radius                     | m    | 1,500 (K-G Ramp)                    | 2,000                                      |
| Minimum Curve Length               | m    | 485 (K-G Ramp)                      | 1,694                                      |
|                                    |      |                                     | (STA1+867 - 3+561)                         |
| Maximum Curve Length               | m    | 6,000                               | 6,300                                      |
|                                    | **** | (STA18+650 - 24+622)                | (STA26+887 - 33+187)                       |
| Maximum Tangent Length             | m    | 2,940                               | 2,403                                      |
| Tungon Evingen                     | 111  | (STA10+570 - 13+510)                | (STA14+071 - 16+474)                       |
| Minimum Tangent Length             | m    | 2,450                               | 1,175                                      |
| between Opposite Curves            | 111  | (STA10+570 - 13+510)                | (STA7+107 - 8+282)                         |
| Minimum Tangent Length             | m    | 1,140                               | N.A.                                       |
| between Same-directional<br>Curves |      | (STA5+000 - 6+140)                  | IV:F1:                                     |
| Maximum Superelevation             | %    | 4 (K-G Ramp)                        | 3                                          |

Source: JICA Study Team

## (2) Vertical Alignment

The existing crossing facilities such as roads, rivers, distributary canals and drains, and railway lines are principal controls for vertical alignment design. At the same time, both of the expressway stretches are all on embankment structures except bridge and culvert sections, and it is critical to keep the height of the embankment low to save the construction cost. Also, the minimum level of embankment height for the flood prone area should be maintained.

With these considerations, the embankment height at the western side of Yamuna River is kept to be 5 to 6 m to avoid the influence of floods. The eastern side of Yamuna River and other area is kept to have an embankment height of 2 to 3 m to save the amount of earthworks. To keep necessary clearance over the vertical control points, the vertical alignment will be elevated for the necessary clearance with a reasonable approach grades. A minimum grade of 0.3 % was maintained where the vertical alignment can be completely flat to provide minimum drainage gradient.

A summary of design features for vertical alignment is shown in Table 9.5.2.

Table 9.5.2: Summary of Design Features of Vertical Alignment of the Projects

| Item                                     | Unit | K-G Expressway<br>(Kundli IC - JCT) | G-M Expressway<br>(Ghaziabad IC-Meerut IC) |
|------------------------------------------|------|-------------------------------------|--------------------------------------------|
| Design Speed                             | km/h | 120                                 | 120                                        |
| Expressway Length                        | km   | 41.2 (including JCT)                | 40.0                                       |
| Maximum Gradient                         | %    | 2 %                                 | 2 %                                        |
| Minimum Vertical Curve<br>Length (crest) | m    | 300                                 | 300                                        |
| Minimum Vertical Curve<br>Radius (crest) | m    | 15,800                              | 16,700                                     |
| Minimum Vertical Curve<br>Length (sag)   | m    | 200                                 | 200                                        |
| Minimum Vertical Curve<br>Radius (sag)   | m    | 9,500                               | 8,300                                      |

# 9.5.2 Preliminary Design of Interchanges, Toll Plaza and Rest Facilities

# (1) Interchanges

The five interchanges of Kundli, Khekra, Mcerut, Modinagar, Ghaziabad, and Ghaziabad North Junction are designed based on the result of discussion in Section 9.3.3.

Ghaziabad IC is necessary for FNG Expressway, and has been already designed as a partial-cloverleaf type interchange by the FNG Expressway Study. However, as is discussed in Section 9.3.3, an alternative recommendation is to change this interchange to a double-trumpet type to avoid throughway toll plazas. The designed Ghaziabad IC, therefore, is an alternative proposal against the FNG Expressway Study, the cost of which is not included in the K-G or G-M Expressway Projects.

The base case is assuming that FNG will construct Ghaziabad IC by the cloverleaf type, and K-G and G-M Expressway will provide a throughway toll plaza between Ghaziabad IC and Ghaziabad North Junction, which will be the boundary toll gates for the expressways.

The designed number of toll gates at each interchange and toll plaza is computed by the following method indicated in Design Guideline-C.

$$N = V \times Sm / 3600$$

where, N: Required number of toll gate lanes

V: Total number of vehicles using toll gates (vehicle/hour)

Sm: Average transaction time per vehicle (seconds)

# (1) Exit Ramp

 $Sm = (6.0 \times Ve + 8.8 \times Vp + 12.0 \times Ve) / V$ 

Where, Ve: Estimated number of passenger vehicles with exact change

Vp: Estimated number of passenger vehicles without exact change

Vc: Number of trucks and buses

# (2) Entrance Ramp

Sm = 6.0 sec.

The designed number of toll gates are shown in Table 9.5.3 for year 2026 and 2016.

Table 9.5.3: Required Number of Toll Gate Lanes (Year 2026/2016)

| TO-M Code Learning |                    |          | ADT     | DHV    | Ve       | Vp       | Vc       | V        | Sm   | ١     | <del></del> |
|--------------------|--------------------|----------|---------|--------|----------|----------|----------|----------|------|-------|-------------|
|                    | Toll Gate Location |          | pcu/day | pcu/hr | vehicles | vehicles | vehicles | vehicles | sec  | lan   | ics         |
|                    | Kundli IC          | Exit     | 69,900  | 5,243  | 916      | 1,831    | 1,389    | 4,136    | 9.25 | 10.63 | 11          |
|                    | Kulluli IC         | Entrance | 69,900  | 5,243  |          |          |          | 4,012    | 6.00 | 6.69  | 7           |
|                    | Khekra IC          | Exit     | 24,300  | 1,823  | 318      | 637      | 483      | 1,438    | 9.25 | 3.70  | 4           |
| Year               | Mickia ic          | Entrance | 24,300  | 1,823  |          |          |          | 1,395    | 6.00 | 2.32  | 3           |
| 2026               | Merrut IC          | Exit     | 33,840  | 2,538  | 443      | 887      | 673      | 2,002    | 9.25 | 5.15  | 6           |
|                    | Mentalic           | Entrance | 33,840  | 2,538  |          |          |          | 1,942    | 6.00 | 3.24  | 4           |
|                    | Modinagar IC       | Exit     | 23,880  | 1,791  | 313      | 626      | 475      | 1,413    | 9.25 | 3.63  | 4           |
|                    | modinagat iC       | Entrance | 23,880  | 1,791  |          |          |          | 1,371    | 6.00 | 2.28  | 3           |
|                    | Ghaziabad IC       | Exit     | 71,580  | 5,369  | 938      | 1,875    | 1,423    | 4,236    | 9.25 | 10.89 | 11          |
|                    | Oliaziavau IC      | Entrance | 71,580  | 5,369  |          |          |          | 4,109    | 6.00 | 6.85  | 7           |
|                    | Kundli IC          | Exit     | 47,040  | 3,528  | 616      | 1,232    | 935      | 2,784    | 9.25 | 7.16  | 8           |
|                    | Kulluli IC         | Entrance | 47,040  | 3,528  |          |          |          | 2,700    | 6.00 | 4.50  | 5           |
|                    | Khekra IC          | Exit     | 14,940  | 1,121  | 196      | 391      | 297      | 884      | 9.25 | 2.27  | 3           |
| Year               | KIICKIAIC          | Entrance | 14,940  | 1,121  |          |          |          | 858      | 6.00 | 1.43  | 2           |
| 2016               | Merrut IC          | Exit     | 18,420  | 1,382  | 241      | 483      | 366      | 1,090    | 9.25 | 2.80  | 3           |
|                    | Menuic             | Entrance | 18,420  | 1,382  |          | _        |          | 1,057    | 6.00 | 1.76  | 2           |
|                    | Modinagar IC       | Exit     | 8,640   | 648    | 113      | 226      | 172      | 511      | 9.25 | 1.31  | 2           |
|                    | Modinagar IC       | Entrance | 8,640   | 648    |          |          |          | 496      | 6.00 | 0.83  | 1           |
|                    | Ghaziabad IC       | Exit     | 42,840  | 3,213  | 561      | 1,122    | 851      | 2,535    | 9.25 | 6.52  | 7           |
|                    | Ghaziavao IC       | Entrance | 42,840  | 3,213  |          |          |          | 2,459    | 6.00 | 4.10  | 5           |

Note: 1) Ghaziabad IC is optional against Ghaziabad Toll Plaza

2) Vehicle Composition: Car (52.4%), Mini Bus (3.0%), Large Bus (9.3%), LCV (13.4%), 2-Axle Truck (19.8%), Multi-Axle Truck (9.2%)

3) K=7.5%, D=60%

Source: JICA Study Team

The design layout and the features for the interchanges are summarized in Figure 9.5.1  $(1)^{\sim}(5)$ , and the same for the junction are summarized in Figure 9.5.2.

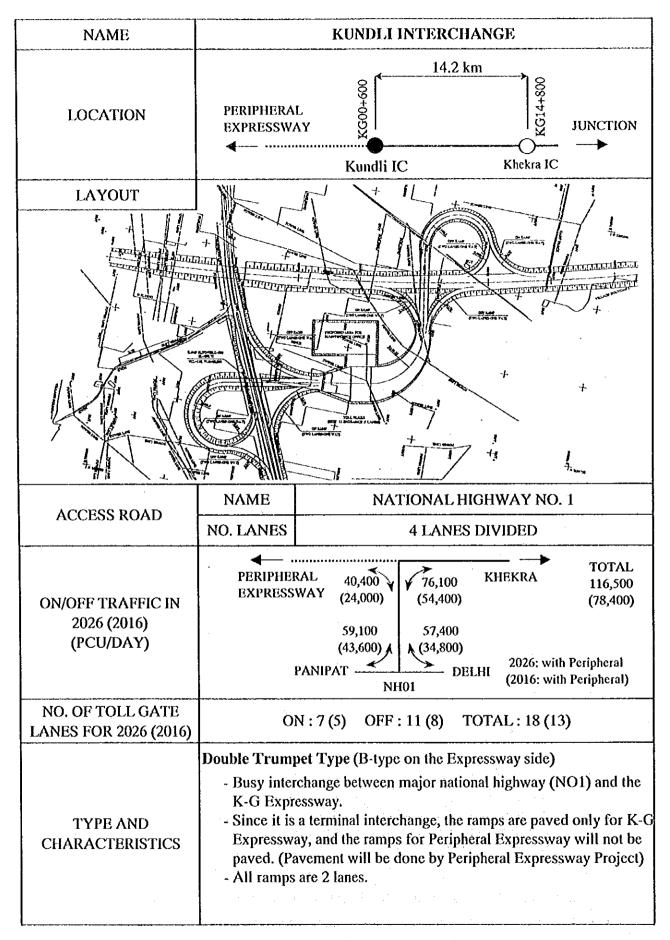



Figure 9.5.1: Interchange Layout (1)

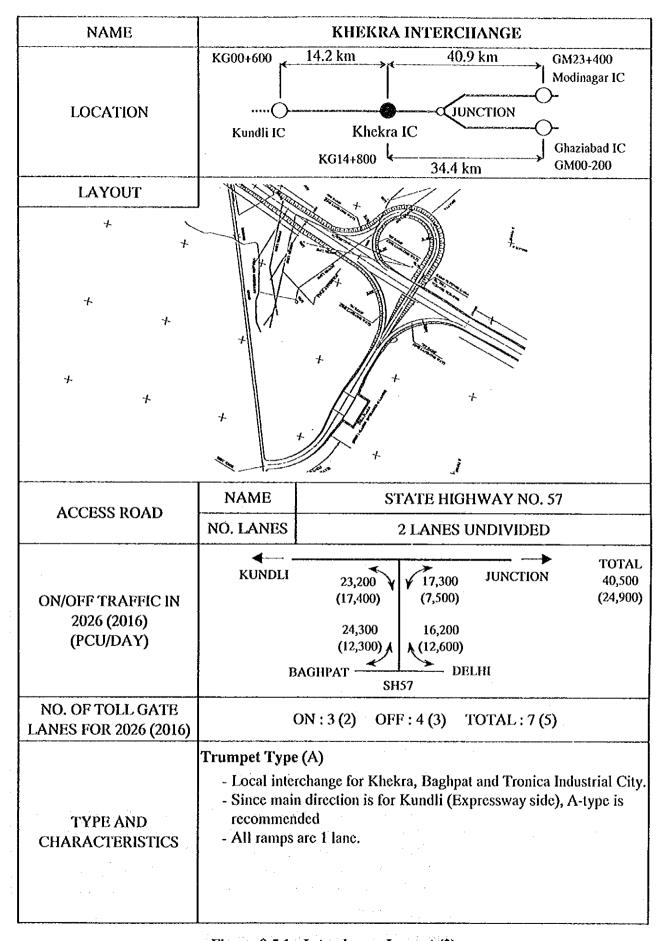



Figure 9.5.1: Interchange Layout (2)

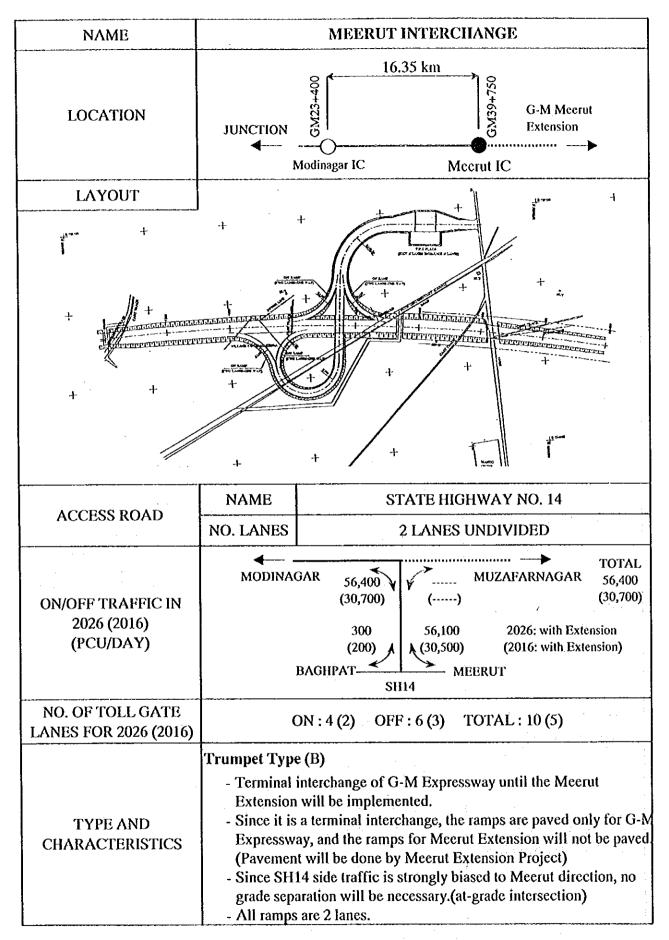



Figure 9.5.1: Interchange Layout (3)

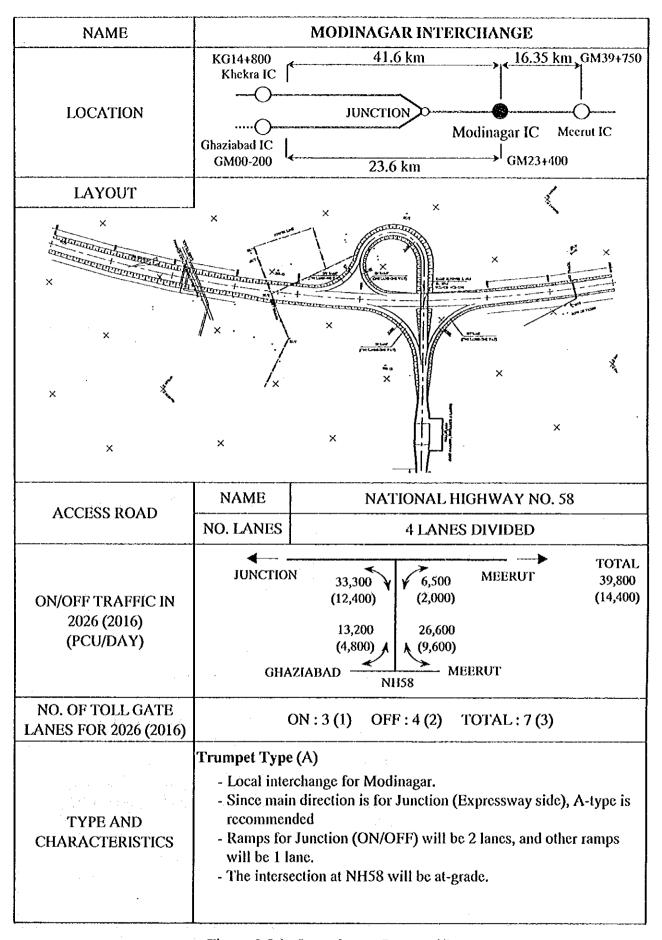



Figure 9.5.1: Interchange Layout (4)

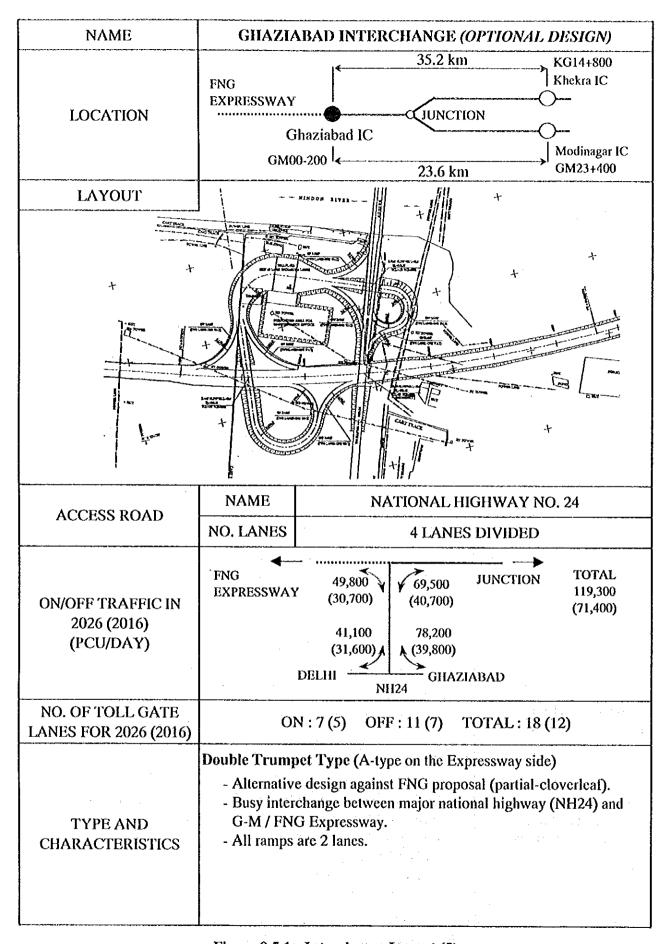



Figure 9.5.1: Interchange Layout (5)

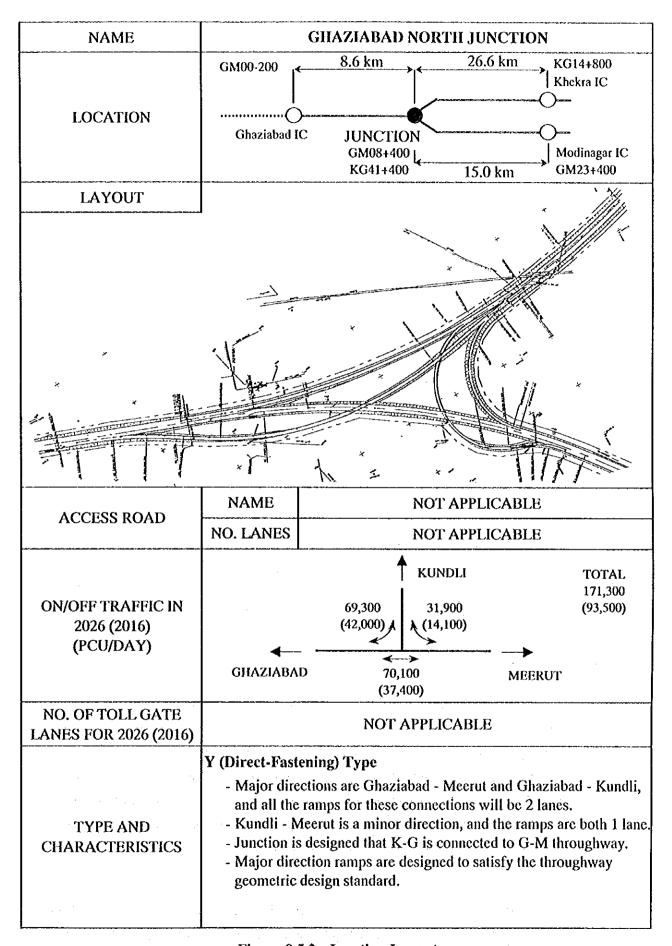



Figure 9.5.2: Junction Layout

### (2) Toll Plaza

The term of Toll Plaza is being used in this study to mean toll gates on the throughway. The toll plaza should be avoided wherever possible on expressways to create a traffic bottleneck at peak hours, and the interchanges were designed with trumpet type to provide the toll gates off the throughway. If FNG Expressway adopts the partial cloverleaf design for Ghaziabad IC with NH24, however, a toll plaza (Ghaziabad Toll Plaza) should be provided as a boundary toll gate with FNG. For the purpose of identifying the area, facility and cost, a typical plan drawing is prepared for the toll plaza design. A recommended location would be around GM6+700, however, the exact location is not indicated on the plan and profile drawings.

The Ghaziabad Toll Plaza is designed to have the following number of gates. The computation method is as same as in the interchange toll gate design.

Table 9.5.4: Required Number of Toll Plaza Lanes (Year 2026/2016)

|                    | *****      |            |         |          |          |          |          |       |      |       |    |
|--------------------|------------|------------|---------|----------|----------|----------|----------|-------|------|-------|----|
| Toll Gate Location |            | ADT        | DHV     | Ve       | Vp       | Ve       | V        | Sm    | N    |       |    |
|                    |            | pcu/day    | pcu/hr  | vehicles | vehicles | vehicles | vehicles | sec   | lan  | es    |    |
| 2026               | Ghaziabad  | Throughway | 132,300 | 5,954    | 1,040    | 2,080    | 1,578    | 4,687 | 9.25 | 12.08 | 13 |
|                    | Toll Plaza | Throughway | 132,300 | 5,954    | 1,040    | 2,080    | 1,578    | 4,687 | 9.25 | 12.03 | 13 |
| 2016               | Ghaziabad  | Throughway | 74,400  | 3,348    | 585      | 1,170    | 887      | 2,642 | 9.25 | 6.79  | 7  |
| 2010               | Toli Plaza | Throughway | 74,400  | 3,348    | 585      | 1,170    | 887      | 2,642 | 9.25 | 6.79  | 7  |

Note: 1) The computation process is the same as in Table 9.5.3.

Source: JICA Study Team

### (3) Rest Facility

There are different terminology in different countries for exclusive rest facility on expressway. Guideline-C, however, recommend two types of facilities for Indian expressways, which are a) Rest Areas, and b) Service Areas. The rest area is recommended to have about 10,000 m<sup>2</sup> area with facilities of benches, tables, shelters, drinking fountains, telephones and toilets. The service area is a larger in size (about 60,000 to 100,000 m<sup>2</sup>) and more service facilities of fuel station, service station, work shop, restaurant, rest facilities (as above), snack bars, dormitory, motel, telephones and tourist information center.

For K-G and G-M Expressways, it is recommended that a rest area be provided on both of the expressways. Due to the balance of kilometrage, one should be located between Khekra IC and Junction (Rataul Rest Area) on K-G Expressway, and the

<sup>2)</sup> Vehicle Composition: Car (52.4%), Mini Bus (3.0%), Large Bus (9.3%), LCV (13.4%), 2-Axle Truck (19.8%), Multi-Axle Truck (9.2%)

<sup>3)</sup> K=7.5%, D=60%

other should be located between Modinagar IC and Junction (Muradnagar Rest Area) on G-M Expressway. For the purpose of identifying the area, facility and cost, a typical plan drawing is prepared for the rest area design. Recommended locations would be around KG29+000 (Rataul RA) and GM17+500 (Muradnagar RA), however, the exact location is not indicated on the plan and profile drawings.

By Guideline-C, the necessary parking lots are computed as follows:

$$NPS = (AADT \times DDF \times SF \times VR \times RF) / R$$

where,

NPS: Number of parking spaces

AADT: Annual average daily traffic (vehicles/day)

DDF: Directional distribution factor (60%)

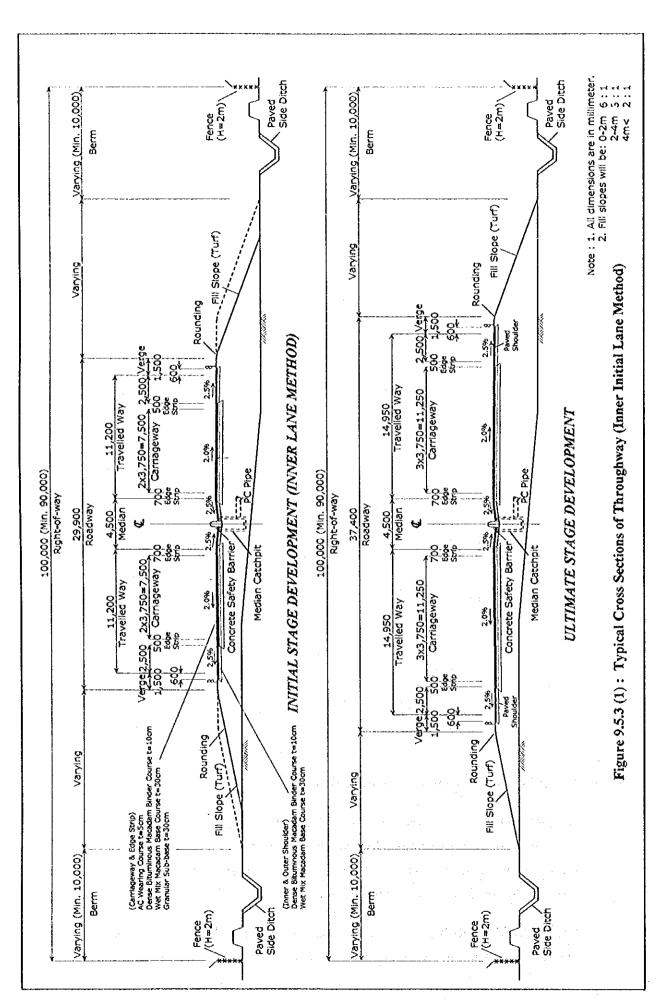
SF: Seasonal factor (1.25)

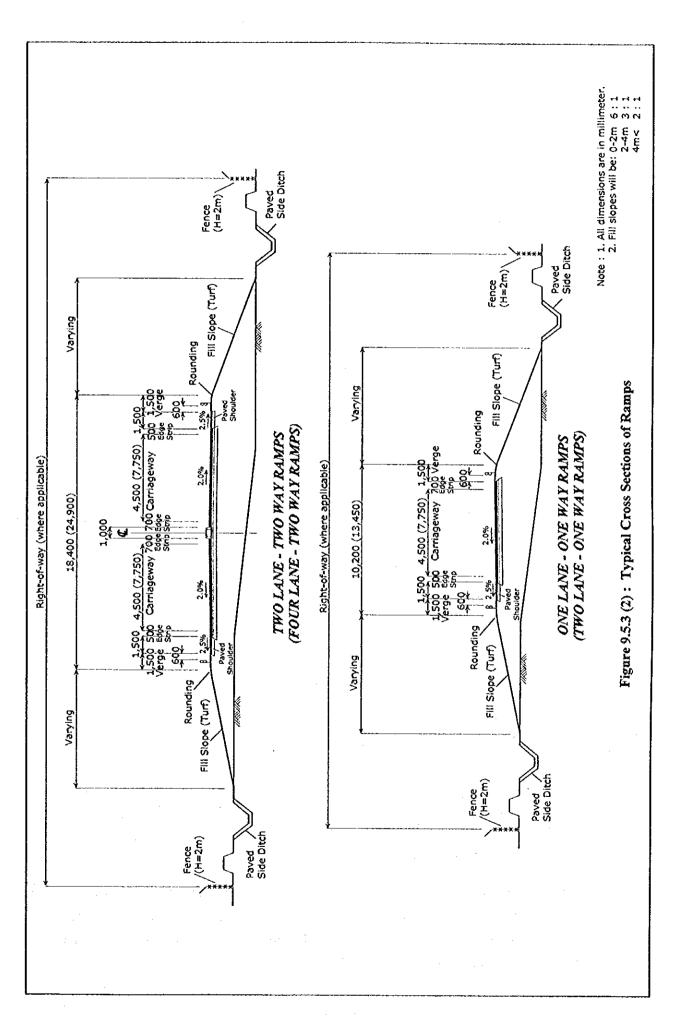
R: Rotation rate

VR: Visitation rate, number of visiting vehicles to traffic volume RF: Rush factor, number of visiting vehicles to traffic volume

The computation for parking requirements are shown in Table 9.5.5.

Table 9.5.5: Parking Lot Numbers for Rest Area (Year 2026/2016)


|            | .,   | Vena Veliale  |           | DT      |      | D.D.                                                                                   | ъ. | NIDO |
|------------|------|---------------|-----------|---------|------|----------------------------------------------------------------------------------------|----|------|
| Name       | Year | Vehicle       | Total pcu | veh/day | VR   | RF  0.100  0.125  0.100  0.100  0.125  0.100  0.125  0.100  0.125  0.100  0.100  0.100 | R  | NPS  |
|            |      | Саг           |           | 53,030  | 0.05 | 0.100                                                                                  | 4  | 50   |
|            | 2026 | Bus           | 98,100    | 4,660   | 0.05 | 0.125                                                                                  | 4  | 6    |
| Pataul     |      | Goods Vehicle |           | 19,760  | 0.06 | 0.100                                                                                  | 3  | 30   |
| Rataul     |      | Car           |           | 29,400  | 0.05 | 0.100                                                                                  | 4  | 28   |
|            | 2016 | Bus           | 52,900    | 2,580   | 0.05 | 0.125                                                                                  | 4  | 4    |
|            |      | Goods Vehicle |           | 10,960  | 0.06 | 0.100                                                                                  | 3  | 17   |
|            |      | Car           |           | 53,450  | 0.05 | 0.100                                                                                  | 4  | 51   |
|            | 2026 | Bus           | 101,300   | 4,690   | 0.05 | 0.125                                                                                  | 4  | 6    |
| Munaduana  |      | Goods Vehicle |           | 19,920  | 0.06 | 0.100                                                                                  | 3  | 30   |
| Muradnagar |      | Car           |           | 26,780  | 0.05 | 0.100                                                                                  | 4  | 26   |
|            | 2016 | Bus           | 50,700    | 2,350   | 0.05 | 0.125                                                                                  | 4  | 3    |
|            |      | Goods Vehicle |           | 9,980   | 0.06 | 0.100                                                                                  | 3  | 15   |


Source: JICA Study Team

### 9.5.3 Typical Cross Sections and Right-of-way

Recommended typical cross sections of the Expressways are shown in Figure 9.4.2, including typical cross sections for interchange ramps. The typical cross section was prepared for initial inner lane method (Figure 9.5.3 (1)) for stage construction. The typical cross sections for interchange ramps are shown in Figure 9.5.3 (2).

The lane width will be 3.75 m with a paved outer shoulder of 2.5 m plus a verge. The fill slopes will have varying grade depending on the height of the embankment.





The side ditches will be provided for drainage, and the berm will be at least 10 m width.

It is recommended that the right-of-way be 100 m for normal section of the entire expressway corridor, with a minimum width of 90 m in special cases.

# 9.5.4 Preliminary Earthwork Design

### (1) Borrow Pit Materials

The major portion of K-G and G-M Expressways will be in embankment structure. The necessary earthwork volume will be 12 million m<sup>3</sup>. To cover this amount of embankment material, possible borrow areas have been investigated along the routes of the both expressway. The location of the proposed borrow areas is shown in Table 9.5.6. The location map is also shown in Appendix 9.1.

Table 9.5.6: Location of Borrow Materials

| Name          | Location                   | Depth (m) | Position |
|---------------|----------------------------|-----------|----------|
| K-G expresswa | у                          |           |          |
| KGBA-1/1      | 2 km from Kundli IC        | 1         | Left     |
| KGBA-1/2      | 2 km from Kulton IC        | 2         | Left     |
| KGBA-2/1      | 10 km from Kundli IC       | 1         | Left     |
| KGBA-2/2      |                            | 2         | Left     |
| KGBA-3/1      | 14 km from Kundli IC       | 1         | Right    |
| KGBA-3/2      |                            | 2         | Right    |
| KGBA-4/1      | 28 km from Kundli IC       | 1         | Center   |
| KGBA-4/2      | ZO KIII HOIII KUHUII IC    | 2         | Center   |
| KGBA-5/1      | 34 km from Kundli IC       | 1         | Center   |
| KGBA-5/2      | 34 km nom kundn ic         | 2         | Center   |
| G-M expresswa | ay                         |           |          |
| GMBA-6/1      | 2 km from Ghaziabad IC     | 1         | Left     |
| GMBA-6/2      | 2 KIII HOIII GHAZIAUAU IC  | 2         | Left     |
| GMBA-7/1      | 10 km from Ghaziabad IC    | 1         | Left     |
| GMBA-7/2      | 10 kili Holli Ghaziabad IC | 2         | Left     |
| GMBA-8/1      | 14 km from Ghaziabad IC    | 1         | Right    |
| GMBA-8/2      | 14 KIII HOIII GHAZIAUAU IC | 2         | Right    |

Source: JICA Study Team

Laboratory tests for these borrow materials have been conducted to confirm the quality of the materials. These tests includes specific gravity tests, density tests, grain size analysis, compaction tests and California bearing ratio tests. A summary of these test results are shown in Table 9.5.7.

Table 9.5.7: Summary of Test Results for Borrow Materials

|              | Description | Density | Comp | action | CBR |
|--------------|-------------|---------|------|--------|-----|
|              | Description | ton/m3  | MDD  | OMC    | %   |
| K-G Expressy | vay         |         |      |        |     |
| KGBA-1/1     | Silty clay  | 1.67    | 2.01 | 11     | 12  |
| KGBA-1/2     | Silty sand  |         | 1.73 | 12     | 27  |
| KGBA-2/1     | Silty clay  | 1.90    | 1.88 | 13     | 8   |
| KGBA-2/2     | Silty clay  |         | 1.88 | 13     | 4   |
| KGBA-3/1     | Silty clay  | 1.90    | 1.88 | 13     | 8   |
| KGBA-3/2     | Silty clay  |         | 1.99 | 14     | 4   |
| KGBA-4/1     | Silty clay  | 1.90    | 1.99 | 11     | 9   |
| KGBA-4/2     | Silty clay  |         | 1.78 | 14     | 10  |
| KGBA-5/1     | Silty sand  | 1.89    | 2.05 | 8      | 16  |
| KGBA-5/2     | Silty sand  |         | 1.94 | 12     | 12  |
| G-M Express  | way         |         |      |        |     |
| GMBA-6/1     | Silty clay  | 1.90    | 1.88 | . 13   | 8   |
| GMBA-6/2     | Silty clay  |         | 1.99 | 14     | 4   |
| GMBA-7/1     | Silty clay  | 1.90    | 1.99 | 11     | 9   |
| GMBA-7/2     | Silty clay  |         | 1.78 | 14     | 10  |
| GMBA-8/1     | Silty clay  | 1.89    | 2.05 | 8      | 16  |
| GMBA-8/2     | Silty clay  |         | 1.94 | 12     | 12  |

The test results show that the borrow area soils are mostly silty but reasonably in good quality, and no major construction problem is expected.

### (2) Embankment Stability

The necessary height of expressway embankment are from 2 m to 11 m. The lowest height of 2 m will happen where no crossing facility is necessary. The highest height of 11 m will happen at the edge of major grade separation bridge abutments. To confirm the stability of these embankment structures, a stability analysis was performed for the embankment height of 5, 7, 9, 11 m. The slope of the embankment is set to be 1:2 (1 vertical to 2 horizontal). The width of embankment is 37 m. The stability was examined for the embankment stability and the existing ground stability.

The physical properties of embankment and layers are estimated based on the performed soil investigation data because direct shearing tests were not carried out at this stage. The estimated physical properties are shown in Table 9.5.8.

Table 9.5.8: Value of soil layers for analyzing embankment stability

|            | Thickness of layer (m) | Unit weight<br>(tonf/m3) | Angle of internal friction | Cohesion (tonf/m2) | Ground water level |
|------------|------------------------|--------------------------|----------------------------|--------------------|--------------------|
|            |                        |                          | (degree)                   |                    |                    |
| Embankment | 5, 7, 9, 11            | 1.9                      | 25                         | 2.0                |                    |
| Layer-1    | 5                      | 1.8                      | 20                         | 2.0                | -2 m from top      |
| Layer-2    | 10                     | 1.9                      | 30                         | 2.0                |                    |

A typical slope failure and ground failure are shown in figure 9.5.4.

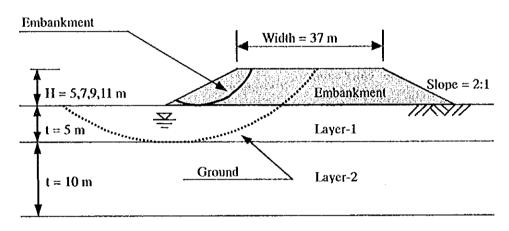



Figure 9.5.4: A Typical Slope Failure and Ground Failure

The result of embankment stability calculation are shown in Appendix 9.2. Minimum safety factor is 1.676 in the case of 11 m height of ground failure. The computed safety factors are shown in Table 9.5.9.

Table 9.5.9: Safety Factors

|                      | Minimum safety factor |                   |  |  |  |
|----------------------|-----------------------|-------------------|--|--|--|
| Embankment<br>height | Embankment<br>failure | Ground<br>failure |  |  |  |
| 5                    | 2.987                 | 2.582             |  |  |  |
| 7                    | 2,456                 | 2.097             |  |  |  |
| 9                    | 2.168                 | 1.836             |  |  |  |
| 11                   | 1.977                 | 1.676             |  |  |  |

Source: JICA Study Team

The result shows that the embankment structure will not have a major problem in stability with the designed height.

### 9.5.5 Preliminary Design of Bridges and Culverts

By frequent site surveys, observations and interviews with State and National Government officials, contractors and consultants, the followings are the assessment on the conditions of road bridges in the study area in general.

- The superstructure of road bridges are almost all PC or RC girders or PC or RC box girders. As far as the Study Team has investigated, there is no steel bridge in the study area.
- The foundation of road bridges are almost all caisson type.
- Yamuna River flows have been shifted partially during the last 30 years.
- Erosion is observed at many riverside locations both along Yamuna and Hindan Rivers.

The basic policies for bridge type selection are as follows:

- 1) the selected bridge type should be reasonably economical,
- 2) the materials for constructing the selected type of bridge can be easily procured near the site,
- 3) the construction method should be reasonably easy and safe.

The superstructure is recommended to be prestressed concrete composite girder type for medium span ( $L = 20m \sim 50m$ ) bridges, and reinforced concrete slab girder type for shorter span (L = 20m or less) bridges. Steel bridges are more costly, the comparison of which against PC girder bridges would be obviously in favor of PC girder bridges in the study area.

The foundation should be piles or caissons for all the bridges, except box culverts, due to the characteristics of the alluvial soil at all over the study area. The foundation for river bridges is recommended to be a caisson type. This is because caisson type is historically the only accepted foundation for river bridges in the study area. There is a possibility that pile foundations will be economically competitive against caisson type, however, they are not usually accepted because of their lower reliability against local scoring. The foundation for grade separation bridges is recommended to be a reverse circulation type cast-in-situ piles.

The pier type is recommended to be wall type or single column type since these types are most common, most economical and most effective against erosion. The reverse T type is recommended for abutment for the same reason.

For the typical width of the bridges, the longer bridges (L = 100m or more) are designed to have no outer shoulder width (2.5m) to save the cost. The shorter bridges (L = less than 100m) are designed to have the same width as that of the embankment section.

The planned bridges are categorized as in Table 9.5.10. The list of the bridges are shown in Appendix 9.3.

Table 9.5.10: The Number of Bridges and Culverts by Category

| Category                     | K-G Expressway | G-M Expressway |
|------------------------------|----------------|----------------|
| Major River Bridge           | 2              |                |
| Canal/Drain Overpass Bridge  | 6              | 9              |
| Highway Overpass Bridge      | 2              | 1              |
| Railway Overpass Bridge      | 1              |                |
| Village Road Overpass Bridge | 11             | 10             |
| Canal/Drain Box Culvert      | 3              | 2              |
| Cart Track Box Culvert       | 36             | 30             |

Source: JICA Study Team

The design considerations are described as follows:

# (1) Major River Bridges (Yamuna and Hindan River Bridges)

The two major river bridges are the longest bridges on the expressway routes. Though the total width of Yamuna River is about 2 km, other existing Yamuna River bridges are all about 600 m. The planned Yamuna River Bridge, therefore, is designed to have 600 m length as same as other bridges with 100-year return period.

Hindan River Bridge is also designed with 100-year return period, and it is designed to be 240 m length to accommodate the flood level of the 100-year return period.

The foundation is designated to be a caisson type. The result of the Hydrological Survey reveals that no scouring is observed at existing Yamuna and Hindan bridge foundations, the observed tendency is rather sedimentary. Therefore, the top of the caisson is designed to be 1 m below the low water levels in the river bed, and 1 m below the ground level in the no-running water area.

# (2) Canal/Drain Overpass Bridges

There are a number of irrigation canals, drains and distributaries along the expressways, and overpassing bridges were to be designed. The major canals are tried not to be detoured, and the existing flow lines are maintained as much as possible.

# (3) Overpass Bridges for Existing Major Highways

The major grade separation bridges are National Highway No. 1 at Kundli and State Highway No. 57 near Khekra on K-G Expressway, and State Highway No. 14 on G-M Expressway. The bridge lengths are designed to consider possible future widening of the existing highways.

## (4) Railway Overpass Bridge

There is one railway flyover near Khekra with the Northern Railway. Although the future plan for double tracking is unknown, the overpass bridge is designed so that it can accommodate either side of double tracking in the future. The bridge type is prestressed concrete composite girder, and the bridge length is 40 m.

# (5) Village Roads Overpass Bridge

The number of bridges overpassing existing village roads are the highest number among the categories. For local services and their future functions, these bridges are designed to have a 3.75 m lane with  $2 \times 1.875$  m shoulder, which can also accommodate future two-lane roads  $(2 \times 3.75 \text{ m})$ . The bridge type is prestressed concrete slab type with the all-staging method.

#### (6) Cart Track Overpass

The cart track is defined as a local service road mostly for non-motorized vehicles and walking people. The location of these existing cart tracks was identified by the topographic survey and interviews with local people. To secure the transportation,  $3 \text{ m} \times 3 \text{ m}$  box culvert is designed for the crossing facility of this type of road.

# 9.5.6 Preliminary Design of Pavement

# (1) Pavement Type Analysis

Flexible pavement (asphalt or bituminous pavement) has been widely used for road pavement in India. Today most of urban or inter-urban highways are paved by asphalt pavement. In recent years, however, there have been efforts to develop rigid pavement (cement concrete pavement) for major highways in the country. One recent major example around Delhi area is the National Highway No. 2 upgrading project in Faridabad District in the State of Haryana. It is an ADB loan assistance project, and adopted 44 km of cement concrete pavement, which was completed in May 1997. Another major example is the on-going Mumbai-Pune Expressway Project in the State of Maharashtra, which adopts cement concrete pavement for the entire corridor of about 100 km. It is therefore considered necessary to rationally analyze the pavement type between flexible and rigid pavement to recommend which is more appropriate for these projects.

Selection of pavement type is generally a controversial issue. Major characteristics in selecting the pavement type on expressways can be discussed as follows:

Table 9.5.11: Comparison of Characteristics of Flexible and Rigid Pavements

| Item                                 | Flexible Pavement                                                                     | Rigid Pavement                                                                                                                                                                                                                                 |
|--------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design Life                          | Target design period of 10 years. The life will be extended by proper rehabilitation. | Target design period of 20 years.                                                                                                                                                                                                              |
| Resistance against<br>Rutting & Wear | Deformed rutting is likely.                                                           | Deformation or rutting is unlikely. Wear resistance is large.                                                                                                                                                                                  |
| Noise & Vibration                    | Less than rigid pavement.                                                             | Noise due to joints and vibration due to rough surface sometimes cause public nuisance                                                                                                                                                         |
| Brightness                           | Surface reflection is weak and inferior.                                              | Brighter in darkness.                                                                                                                                                                                                                          |
| Surface Smoothness                   | Better than rigid pavement and provide more comfortable riding condition.             | Need more sensitive quality control to achieve acceptable level of surface smoothness.                                                                                                                                                         |
| Characteristics in<br>Construction   | Less constraints in construction. Constructing speed is faster.                       | The following constraints should be taken into account for continuous construction since equipment fleet is generally larger than that of flexible pavement.  1) Subgrade is prepared in smooth condition.  2) Less bridge/viaduct structures. |
| Maintenance                          | Frequent maintenance is required but the method is simple.                            | Once damage occurs, heavier and longer repair is required.                                                                                                                                                                                     |
| Construction                         | Initial stage construction cost is lower                                              | Initial construction cost is higher than                                                                                                                                                                                                       |
| Economy  Source HCA Study            | than rigid pavement. More frequent rehabilitation is necessary.                       | flexible pavement due to longer life. The cost of repair is higher.                                                                                                                                                                            |

Source: JICA Study Team

Pavement should be analyzed by a life cycle cost analysis to evaluate the performance of total analysis period. AASHTO design guideline<sup>3</sup> suggests a design method for a life cycle cost analysis, and it is a recommended design guideline for this purpose. The following two important terms should be defined for life cycle cost analysis.

- Analysis Period: the length of time for which an economic analysis is made.
- Performance (Design) Period: the period of time that an initial or rehabilitated pavement structure will last before reaching its terminal serviceability.

This means that an analysis period is a combination of single or multiple performance periods. This relationship is shown in Figure 9.5.5.

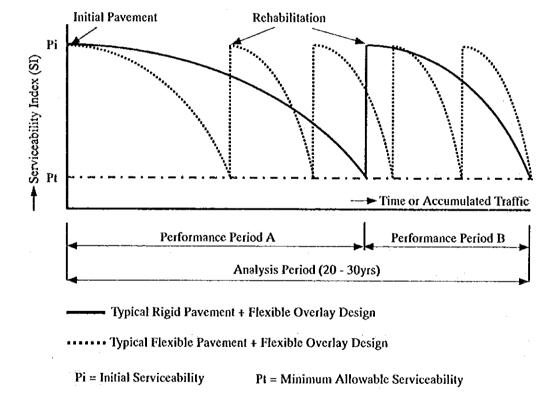



Figure 9.5.5: Pavement Life Cycle

The analysis period is designated to be 30 years considering the expected concession period. The performance period combination will be analyzed by design comparison. A reasonable comparison between flexible and rigid pavements can be done by performing optimum pavement design for the entire analysis period for both pavement types, and comparing the net present value of such optimum design combinations.

<sup>&</sup>lt;sup>3</sup> AASHTO Guide for Design of Pavement Structures 1993, American Association of State Highway and Transportation Officials, Washington, D.C., U.S.A.

The comparative design is summarized as follows.

### Axle Load Model

The Load Equivalency Factor (ESAL Factor) for 18 kips is computed as in Table 9.5.12 based on the result of the Axle Load Survey data conducted in February 1999.

Table 9.5.12: Load Equivalency Factors by Axle Load Survey

| 17.1.1.1.        | Average Maxin | num Axte Load | ESAL Factor |             |  |
|------------------|---------------|---------------|-------------|-------------|--|
| Vehicle          | ton           | kips          | Asphalt 2)  | Concrete 3) |  |
| Large Bus        | 7.53          | 16.6          | 0.63        | 0.61        |  |
| LCV 1)           | 5.27          | 11.6          | 0.19        | 0.18        |  |
| 2-axle Truck     | 9.85          | 21.7          | 2.18        | 2.34        |  |
| Multi-axle Truck | 10.60         | 23.4          | 0.26        | 0.44        |  |

Source: JICA Study Team

Note: 1) Light Commercial Vehicle

2) Pt=2.5, SN=5 (in)

3) Pt=2.5, D=9 (in)

# Cumulative 18-kip ESAL

The 18-kip equivalent single axle load is computed for the four kinds of vehicles with the ESAL Factors in Table 9.5.12 based on the traffic demand forecast result. The computation result is summarized in Appendix 9.4. The result shows that 2-axle trucks are dominant by their volume and their heavy average axle load.

### Flexible Pavement Design Computation

Flexible pavement input data, computed SN and the pavement layer design are summarized as follows:

#### Initial Payement Layer Design:

R=0.95, 
$$S_0$$
=0.45,  $M_R$ =10500,  $\Delta$  PSI=2.1,  $W_{18}$ =49.0 $\times$ 10<sup>6</sup>  $\rightarrow$  SN<sub>0</sub>=5.5

D1= 15cm: AC Wearing Course + Dense Bituminous Macadam Binder Course (a<sub>1</sub>=0.176)
D2= 30cm: Wet Mix Macadam Base Course (a<sub>2</sub>=0.055)
D3= 30cm: Granular Sub-base (a<sub>3</sub>=0.043)

Total Pavement Thickness = 75 cm (SN<sub>0</sub>=5.58)

Bituminous Overlay Design:  $(SN_{OL} = SN_y - F_{RL} \times SN_{xeff})$ 

R=0.95, 
$$F_{RL}$$
=0.575,  $SN_{xefi}$ = $C_X \times SN_0$ =0.85 × 5.58,  $W_{18}$ =42.0 × 10<sup>6</sup> →  $SN_{0L}$ =2.6  
D1= 15cm: AC Wearing Course + Dense Bituminous Macadam Binder Course (a<sub>1</sub>=0.176)  
Total Overlay Thickness = 15 cm (SN<sub>0L</sub>=2.64)

By the computed cumulative ESAL (W<sub>18</sub>), the optimum overlay plan is expected as follows:

the 1st Overlay: 11th year, the 2nd Overlay: 17th year, the 3rd Overlay: 21st year, the 4th Overlay: 25th year, the 5th Overlay: 28th year

The 30 year analysis period will consist of seven performance periods. The compound reliability for this design will be:

$$R_{OVERALL} = (0.95)^6 = 0.735$$

### Rigid Pavement Design Computation

Rigid pavement input data, computed  $D_0$ , SN for overlay and the pavement layer design are summarized as follows:

# Initial Pavement Layer Design:

R=0.80, S<sub>0</sub>=0.35, k=900(Cement-treated Sub-base),  $\triangle$  PSI=2.0, E<sub>c</sub>=3.6 × 10<sup>6</sup>, S'c=640, J=3.1, Cd=1.15, W<sub>18</sub>=135.0×10<sup>6</sup>  $\rightarrow$  D<sub>0</sub>=11.8 in  $\rightarrow$  30cm

D1= 30cm: Pavement Quality Concrete (PQC)

D2= 15cm: Dry Lean Concrete Sub-base (DLC)

Total Pavement Thickness = 45 cm

Bituminous Overlay Design:  $(SN_{OL} = SN_y - F_{RL} \times (a_{2r}D_0 + SN_{xeff-rp}))$ R=0.92,  $F_{RL}$ =0.575,  $a_{2r}$ =0.54,  $SN_{xeff-rp}$ =0.84,  $W_{18}$ =108.0×10<sup>6</sup> →  $SN_{OL}$ =1.76 D1= 10cm: AC Wearing Course (a<sub>1</sub>=0.176) Total Overlay Thickness = 10 cm (SN<sub>OL</sub>=1.76)

By the computed cumulative ESAL (W<sub>18</sub>), the optimum overlay plan is expected as follows:

the 1st Overlay: 21st year,

The 30year analysis period will consist of two performance periods. The compound reliability for this design will be:

$$R_{OVERALL} = 0.80 \times 0.92 = 0.736$$

### Economic Analysis and Pavement Type Selection

Unit prices for each pavement layer were collected from the NH No. 2 Upgrading Project, Faridabad as a recent example, and used in this analysis. The pavement costs are as follows:

|                     |                         | (Rs./m²) |
|---------------------|-------------------------|----------|
| Flexible Pavement:  | 05 cm AC Wearing Course | 152      |
|                     | 10 cm DBM Binder Course | 251      |
|                     | 30 cm WMM Base course   | 300      |
|                     | 30 cm Granular Sub-base | 122      |
|                     | Total                   | 825      |
| Bituminous Overlay: | 15 cm AC W.C.           | 455      |
|                     |                         | (Rs./m²) |
| Rigid Pavement:     | 30 cm PQC               | 1,365    |
|                     | 15 cm DLC               | 288      |
|                     | Total                   | 1,653    |
| Bituminous Overlay: | 10 cm AC W.C.           | 303      |

The net present values for each design combination are computed by the discount rate of 12.0% as follows:

| NPV (Flexible Pavement): | Rs.1,110/m <sup>2</sup> |
|--------------------------|-------------------------|
| NPV (Rigid Pavement):    | Rs.1,681/m <sup>2</sup> |

The economic analysis shows that the flexible pavement has a distinct economical advantage against the rigid pavement with this level of discount rate. This is because the high discount rate makes the initial pavement predominant compared with the future rehabilitation frequency and costs. A sensitivity analysis shows that the rigid pavement would be economical only if the discount rate were 4.5% or less.

It is therefore recommended that the pavement type for K-G and G-M Expressway Projects be a flexible pavement. The economic analysis shows an economical advantage of flexible pavement against rigid pavement at higher discount rate. It should also be considered that flexible pavement has smooth surface for high speed traffic, and is easier to be rehabilitated, which are both important factors for expressway pavement.

### Flexible Pavement Design ---- Summary

The flexible pavement layer design is the same as designed in the pavement type analysis, which is as follows:

| AC Wearing Course           | 5.0 cm               |
|-----------------------------|----------------------|
| Dense Bituminous Macadam Bi | inder Course 10.0 cm |
| Wet Mix Macadam Base Course | e 30.0 cm            |
| Granular Sub-base           | 30.0 cm              |

| Total Pavement Thickness | 75.0 cm |
|--------------------------|---------|

### Pavement Design for Shoulders

Empirical data in Japanese inter-urban expressway operation suggest that SN=3.5 (in) or more is recommendable for shoulder pavement design. Based on that data, the following layer design is recommended for the inner and outer shoulder pavement:

| Dense Bituminous Macadam Binder Course | 10.0 cm |
|----------------------------------------|---------|
| Wet Mix Macadam Base Course            | 30.0 cm |
| Total Pavement Thickness               | 40.0 cm |

It is recommended that the wearing course not be provided to save the cost, and also to restrain shoulder driving by setting a rounded gap between the carriageway and the shoulder.

# 9.6 Construction Planning

### 9.6.1 Basic Conditions for Construction Planning

# (1) Construction Segments

The Expressway corridors will be mostly an embankment structure except river bridges and grade separation structures of bridges, culverts and underpasses. There are two major river bridges on K-G Expressway, Yamuna River Bridge (L = 600 m) and Hindan River Bridge (L = 240 m). On G-M Expressway a major river bridge of Upper Ganga Canal Bridge (L = 90 m) will be necessary.

For the purpose of construction planning, the Expressways are divided into five construction segments shown in Table 9.6.1. The previous engineering analysis and design considered that Kundli IC - Ghaziabad N. Junction was designated to be K-G Expressway, and Ghaziabad IC - Meerut IC was to be G-M Expressway including the stationing due to engineering reasons and convenience. The construction segmentation, however, have considered the Junction - Ghaziabad IC section to be an independent section so that it can be included either expressway project. This is because there is an opinion that the Junction - Ghaziabad IC section is more desirable to be constructed as a part of the circumferential network consisting of FNG Expressway and K-G Expressway.

Table 9.6.1: Construction Segments for Preliminary Construction Planning

| Expressway        | No.       | Segment                                                  | Length   | Remarks                            |
|-------------------|-----------|----------------------------------------------------------|----------|------------------------------------|
| K-G               | Segment 1 | Kundli IC - Yamuna Br.<br>(KG00+600) (KG12+900)          | 12.30 km | include Yamuna Br.                 |
| Expressway        | Segment 2 | Yamuna Br Ghaziabad N. JCT (KG12+900) (KG39+800)         | 28.50 km | include Hindan Br.                 |
|                   | Segment 3 | Ghaziabad IC - Ghaziabad N. JCT (GM00-200) (GM8+000)     | 8.20 km  |                                    |
| G-M<br>Expressway | Segment 4 | Ghaziabad N. JCT- Modinagar IC<br>(GM8+000) - (GM23+600) | 15.60 km | include Modinagar IC<br>& Junction |
|                   | Segment 5 | Modinagar IC - Meerut IC (GM23+600) (GM39+750)           | 16.15 km |                                    |
| Sub-total         | Total     |                                                          | 80.75 km |                                    |

# (2) Stage Construction

As discussed in Section 9.4 a stage construction scheme should be introduced for K-G and G-M Expressway projects. The stage construction methodology should be as follows:

Initial Stage: The sections of Kundli IC - Ghaziabad North JCT and Ghaziabad North JCT - Meerut IC will be constructed as a 2 + 2 = 4 lane expressway. The section of Ghaziabad IC - Ghaziabad North JCT will be constructed as a 3 + 3 = 6 lane expressway. Initial opening year is estimated to be year 2006.

Ultimate Stage: To accommodate the increasing traffic demand the sections of Kundli IC - Ghaziabad North JCT and Ghaziabad North JCT - Meerut IC will be widened to 3 + 3 = 6 lanes, and the section of Ghaziabad IC - Ghaziabad North JCT will be widened to 4 + 4 = 8 lanes. The expected time of the widening is year 2021 - 2026.

The embankment structure should be the initial inner lane method as discussed in Section 9.4.3. The bridges should also be constructed for the initial number of lanes for the initial stage, and should be widened to the ultimate number of lanes at the time of widening. This will be achieved by the following method:

Initial Stage: constructing the substructures of the bridges for the ultimate lanes, and the superstructure will be for the initial lanes.

Ultimate Stage: constructing the remaining additional outer lane superstructure on the existing substructure.

The right-of-way will be acquired for the ultimate structure, that is, 100 m width for the throughway.

## 9.6.2 Construction Features, Methods and Procedures

The construction works will include hauling, laying and compaction of a large quantity of embankment, pavement, bridge and other concrete structure works, and construction and installation of required architectural, mechanical, and electrical facilities for tollway operation.

The existing vertical alignment is quite flat. The embankment height is designated as 3 - 4 m above the ground level, and raised to be 10 - 11 m in maximum at grade separation for crossing facilities in accordance with the necessary clearance. The required earthwork volume will be approximately 12 million m<sup>3</sup>. To minimize the hauling of borrow materials, a partial supply of the embankment should be from the side borrow excavation of about 50 cm - 1 m depth within the right-of-way. The rest of the borrow materials for embankment is assumed to come from shallow excavation of local borrow pits reasonably close to the embankment site along the roadway within 5 - 10 km hauling distance as shown in Table 9.5.6.

For construction of major river bridge foundations, an open caisson will be used. For other bridge foundations, cast-in-situ piles will be used if necessary. The river bridge foundations will be constructed by providing temporary islands in the river during dry season from October to June, which is roughly 9 months. It is anticipated that the major river bridge construction will be the critical path for construction schedule, and it is recommended that the jack down method for forcing the caisson body to sink down be adopted to minimize the construction time of the foundations. The prestressed concrete girders will be precast on stable throughway embankment areas. For the erection of precast prestressed concrete beams the steel erection girder will be used.

Fine and coarse aggregates for concrete and paving works will be supplied from the quarry sites. The available quarry sites are mostly located at the south of Delhi from where the hauling distance to the site will be approximately 100 km. These sites are shown in Appendix 9.5.

#### 9.6.3 Construction Time Schedule

The climate of the study area is basically divided into two seasons, which are a dry season (October to June) and a rainy season (July to September). In accordance with available rainfall data the efficiency of construction works in the study area is estimated as in Table 9.6.2.

Table 9.6.2: Estimated Working Efficiency for Construction in the Study Area

| Item                                 | Dry Season<br>Oct-Jun (9 months) | Rainy Season Jul-Sep (3 months) | Annual<br>Figure |
|--------------------------------------|----------------------------------|---------------------------------|------------------|
| 1. No. of Rainy Days                 | · 3 days/month                   | 13 days/month                   | 66 days          |
| 2. Working Efficiency on a Rainy Day | 80 %                             | 40 %                            | 70 %             |
| 3. No. of Holidays                   | 6.0 days/month                   | 5.0 days/month                  | 69 days          |
| 4. No. of Working Days               | 23.4 days/month                  | 17.2 days/month                 | 262 days         |
| 5. Working Efficiency                | 78 %                             | 57 %                            | 72 %             |

For toll road construction, for which the most of the cost is covered by loan or other forms of money bearing interests, the most desirable schedule is to commence the construction as late as possible to complete the total segments at the same time (the opening) to minimize the interests during construction. Based on the above assumptions the construction time schedule for each segment is estimated as follows:

Figure 9.6.1: Overall Construction Time Schedule

|           |     | 1st | Year |     |     | 2nd | Year |     |     | 3rd | Year |     |     | 4th | Year |     |
|-----------|-----|-----|------|-----|-----|-----|------|-----|-----|-----|------|-----|-----|-----|------|-----|
| Segment   | 1/4 | 2/4 | 3/4  | 4/4 | 1/4 | 2/4 | 3/4  | 4/4 | 1/4 | 2/4 | 3/4  | 4/4 | 1/4 | 2/4 | 3/4  | 4/4 |
| Segment 1 |     |     |      |     |     |     |      |     |     |     |      |     |     |     |      |     |
| Segment 2 |     |     |      |     |     |     |      |     |     |     |      |     |     |     |      |     |
| Segment 3 |     |     |      |     |     |     | ·    |     |     | -   |      |     |     |     |      |     |
| Segment 4 |     | •   |      |     |     |     |      |     |     |     |      |     |     |     |      |     |
| Segment 5 |     |     |      |     |     |     |      |     |     |     |      |     |     |     |      |     |

# 9.6.4 Implementation Schedule

The total implementation schedule including the above construction time schedule in the earliest case is presented in Figure 9.6.2.

Figure 9.6.2: Implementation Schedule

|                          | 1999 | 2000 | 2001 | 2002 | 2003     | 2004      | 2005      | 2006 |
|--------------------------|------|------|------|------|----------|-----------|-----------|------|
| Feasibility Study        |      |      |      |      | 15 74-15 | 4. j. 344 | 11.1.21   |      |
| Final Engineering Design |      |      |      |      |          |           |           | ·    |
| Land Acquisition         |      |      |      |      |          |           | 7 L. 7 L. |      |
| Construction             |      |      |      |      |          |           |           |      |
| Opening to Traffic       |      |      |      |      |          |           |           |      |

# 9.7 Project Cost Estimate

### 9.7.1 Basic Conditions for Project Cost Estimate

The estimate of the project cost is based on the results of the preliminary engineering design and quantity take-off of each work item, a study on construction methods described in the preceding chapters.

The project cost discussed here consists of the following items (operation and maintenance cost of the project will be discussed separately with operation and maintenance plan in the later stage).

- (1) Initial Investment Cost
  - Construction Cost
  - Land Acquisition and Compensation Cost
  - Administration Cost
  - Engineering Cost
  - Contingency
- (2) Additional Investment Cost
  - Pavement Rehabilitation (Overlay) Cost
  - Widening Cost

The basic premises in estimating the project cost is as follows:

- All the construction works will be executed by contractors to be employed by the toll road development corporation of the expressway projects, whichever form of the corporation is going to be formed.
- 2) The unit price of each cost component was determined based on the economic conditions prevailing in August 1999.
- 3) Contractor's profit and overhead are assumed to be 15 % of the direct cost.
- 4) For the construction works, the Indian sales tax (5 %) is imposed on the contractor.
- 5) Engineering cost, consisting of final engineering design and construction supervision, is assumed to be 10 % of the construction cost.
- 6) Administration cost is assumed to be 5 % of the construction cost.
- 7) Physical contingency is estimated to be 10 % of the total of the construction cost, the land acquisition and compensation costs, the administration cost and the engineering cost.

### 9.7.2 Boundary Conditions

Since K-G and G-M Expressways are a part of the NCR Expressway Network, the boundary conditions for construction should be defined to determine the project construction cost. The following is the boundary conditions of each terminal interchange of the expressway.

## (1) Kundli IC

Peripheral Expressway Project is expected to be implemented later than K-G Expressway. The embankment and pavement of the throughway, therefore, is up to the edge of the interchange bridge located at KG00+600. The interchange bridge will not be constructed by K-G Expressway side. The on/off ramps for K-G Expressway will be constructed, however, the on/off ramps for Peripheral Expressway will not be necessary. The embankment of these Peripheral Expressway ramps will be substantially constructed for the embankment balance. The westward portion of the throughway from KG00+600 including NH No. 1 flyover bridge will not be constructed by K-G Expressway either. (A reference should be made to Figure 9.3.2 (1): Kundli IC: Alternative 2)

#### (2) Meerut IC

The Extension of G-M Expressway after Mccrut IC is expected to be implemented later than G-M Expressway. The embankment and pavement of the throughway, therefore, is up to the edge of the interchange bridge located at GM39+750. The interchange bridge will not be constructed by G-M Expressway side. The on/off ramps for G-M Expressway will be constructed, however, the on/off ramps for the Mccrut Extension will not be necessary. The embankment of these Mccrut Extension ramps will be substantially constructed for the embankment balance. The northward portion of the throughway from GM39+750 will not be constructed by G-M Expressway either. (A reference should be made to Figure 9.3.2 (2): Mecrut IC: Alternative 1)

# (3) Ghaziabad IC

Since FNG Expressway is expected to be constructed earlier than K-G and G-M Expressways, Ghaziabad IC will be constructed by FNG Expressway side. For construction cost estimate, Ghaziabad boundary is set to be at NH No. 24, and the throughway cost only is included. If FNG Expressway constructs the Ghaziabad IC with the partial cloverleaf design, K-G and G-M Expressways will need a throughway

tall plaza between Ghaziabad IC and Ghaziabad North JCT, which will not be necessary if FNG Expressway adopts the double trumpet design recommended by us. The boundary condition of Ghaziabad IC, therefore, is to consider the throughway from NH No. 24 with the throughway toll plaza. The cost of the optional double trumpet interchange is independently estimated for the recommendation.

#### 9.7.3 Estimated Construction Cost

#### (1) Initial Construction Cost

The estimated initial stage construction cost is Rs.7,322 million for the total segments as shown in Table 9.7.1. In the construction cost, pavement (27.0 %), bridge/flyover construction (27.2 %) and embankment (18.2 %) constitute the dominant portions.

# (2) Widening and Overlay Cost

The project expressway will be widened from 4-lane at the initial stage (6-lane for Ghaziabad IC - Junction) to 6-lane at the ultimate stage development (8-lane for Ghaziabad IC - Junction) presumed between year 2021 and year 2026 in accordance with the results of the traffic demand forcast.

For pavement overlay, it is assumed that overlays will be executed five times as follows in the 30-year concession period of the project as discussed in Section 9.5.6.

```
the 1st Overlay: 11th year (2016; for initial number of lanes), the 2nd Overlay: 17th year (2022; for initial number of lanes), the 3rd Overlay: 21st year (2026; for ultimate number of lanes), the 4th Overlay: 25th year (2030; for ultimate number of lanes), the 5th Overlay: 28th year (2033; for ultimate number of lanes).
```

The estimated construction cost for the widening and overlay is shown in Table 9.7.2.

#### 9.7.4 Land Acquisition and Compensation Cost

Based on the result of the environmental and social surveys, the land acquisition cost in the project area is estimated to be Rs.962,000 per ha on average. The required land area for the right-of-way is 916 ha, of which 572 ha is village area, 186 ha is agriculture area, and 158 ha is vacant land. An additional 30 % of the cost is added for solatium.

The compensation costs for private properties, such as buildings, brick kilms and orchards, and relocation of temples or schools are estimated as follows:

Table 9.7.1: Construction Cost (Initial Stage Construction)

|                                        |           | 0000000    | Cec mont  | 1 (may)       | Secondor? | (1=28.50km)                             | Segment 3                               | (L=8,20km)  | Segment 4                    | (L=15,60km)   | Segment 5 ( | (t=16.15km)   | TOTAL (L    | TOTAL (L=80.75km) |
|----------------------------------------|-----------|------------|-----------|---------------|-----------|-----------------------------------------|-----------------------------------------|-------------|------------------------------|---------------|-------------|---------------|-------------|-------------------|
| Item                                   | Ç         | (85)       | 200       | Amount        | è         | Amount                                  | ο<br>Α                                  | Amount      | ς<br>O                       | Amount        | O.S.        | Amount        | ر<br>د<br>د | Amount            |
| 1. Preparatory Works                   | S         |            | 1         | 80,000,000    | 7         | 000'000'96                              | ĭ                                       | 27,000,000  | 1                            | 000'000'19    | н           | 50,000,000    | 7           | 324,000,000       |
| 2. Earthwork                           |           |            |           |               |           | 0000                                    | ć                                       | 0.7         | ě                            | 00.00         | 7           | 000           | 210         | 4 676 700         |
| Cleaning & Grubbing                    | P (       | 5,100      | 157       | 800,700       | 730 000   | 000000000000000000000000000000000000000 | 600                                     | 80,000      | 1 00<br>1 00<br>1 00<br>1 00 | 420,000       | 9           | 200           | 149.000     | 7,450,000         |
| EXCOVATION-Unclassified                | ĒĒ        | 25         | 2 480 300 | 272 823 000   | 3 957 800 | 435,358,000                             | 1,319,000                               | 145,090,000 | 2,074,400                    | 228,184,000   | 2,307,100   | 253,781,000   | 12,138,600  | 1,335,246,000     |
|                                        | 1         | 2          | 230,200   | 2307,000      | 488,100   | 4.881,000                               | 103,700                                 | 1,037,000   | 454,900                      | 4,549,000     | 337,500     | 3,375,000     | 1,623,900   | 16,239,000        |
| Alone Protection Rivers                | 1 E       | 300        | 24.500    | 1 2           |           | 15,270,000                              |                                         | 1,530,000   | o                            | 0             | O           | Ö             | 110,500     | 33,150,000        |
| SUB-TOTAL                              |           |            |           | 292           |           | 463,887,000                             |                                         | 148,155,200 |                              | 234,229,100   |             | 258,109,700   |             | 1,396,761,700     |
| 3. Pavement                            | Ĺ         |            |           |               |           |                                         | _                                       |             |                              | •             |             |               | 1           |                   |
| Bituminous Concrete (t=50mm)           | Ë         | 3,120      | 10,700    |               |           | 73,008,000                              | 10,200                                  | 31,824,000  | 11,740                       | 36,628,800    | 14,000      | 43,680,000    | 70,040      | 2.8,524,800       |
| Dense Bituminous Macadam (t=100mm)     | Ë         | 3,100      |           |               |           | 222,301,000                             | 28,200                                  | 87,420,000  | 36,310                       | 112,561,000   | 43,300      | 134,230,000   | 210,990     | 654,069,000       |
| Wet Mix Macadam Base (t=300mm)         | Ë         | 1,050      |           |               |           | 225,897,000                             | 84,620                                  | 88,851,000  | 108,940                      | 114,387,000   | 129,920     | 136,416,000   | 633,030     | 004,681,500       |
| Granular Sub-base (t=300mm)            | Ë         | 1,000      | 61,070    | 61,070,000    | 139,160   | 139,150,000                             | 61,250                                  | 61,250,000  | 70,470                       | 70,470,000    | 9,000       | 200,000,48    | 000,000     | 200,000,000       |
| Sub-grade Preparation                  | 35<br>125 | 57         | 203,500   | •             | Ī         | 0007/5679                               | 204,100                                 | 2007,000    | 1008/462                     | 002,020,000   | 10077007    | 2007 1007     | 7257        | 974 071 300       |
| SUB-TOTAL                              |           |            |           | - 1           | 1         | 000,525,000                             | 1                                       | 272,405,500 | 1                            | 337,370,300   | 1           | *VE, 321, 3VV | †           | 2007-107-167-     |
| 4. Major Bridges                       | ,         | 6          |           | 000           |           | 020 300 500                             |                                         | C           |                              | Č             |             | C             | 14,616      | 340,991,280       |
| Superstructure                         | È         | 73,550     | 3 3       | 245,565,265   | 1,1,0     | 000,024,76                              |                                         | <b>O</b>    |                              | 0.0           |             | 0             | 20.916      | 153,523,440       |
| Spostructure                           | 2 (       | 000,000    |           | 000'600'601   |           | 0000000                                 |                                         | C           |                              | · c           |             | 0             | 4           | 496,984,000       |
|                                        | 3 8       | 000,400,01 | ć         | 000,047,040   | α         | 27 808 000                              |                                         |             |                              | ō             | -           | 0             | 2,800       | 97,328,000        |
| Cincate Bunds (Up & Cownstream)        |           | 20/7/25    | 2007      | 768 477 800   |           | 320.352.926                             | *************************************** | 0           |                              | 0             | 1           | 0             | -           | 1,088,826,720     |
| 14101-006                              |           |            |           | 222/21/201    | <u> </u>  | 2000/200                                |                                         |             |                              |               |             |               |             |                   |
| Superstructure                         | E 25      | 20,420     |           | 47,129,360    | 6,452     | 131,749,840                             | 1,316                                   | 26,872,720  | 4,346                        | 88,745,320    | 4,188       | 85,518,960    | 18,610      | 380,016,200       |
| Substructure & Foundation              | Ë         | 21,000     | 3,080     | 64,680,000    |           | 180,852,000                             |                                         | 34,566,000  | 5,800                        | 121,800,000   | 5,592       | 117,432,000   | 24,730      | 519,330,000       |
| SUB-TOTAL                              |           |            |           | 111,809,360   |           | 312,601,840                             |                                         | 61,438,720  |                              | 210,545,320   |             | 202,950,960   |             | 899,346,200       |
| 6. Ditches and Cuiverts                |           |            |           |               |           |                                         |                                         |             | •                            | -             |             |               |             |                   |
| Sox Cuivert - 3.0m × 3.0m              | ٤         | 48,100     | 640       | 30,784,000    | 1,286     | 61,856,600                              | 569                                     | 12,938,900  | 501                          | 24,098,100    | 816         | 39,249,600    | 3,512       | 168,927,200       |
| Pipe Culvert - D. 1.0m                 | £         | 2,000      |           | 0             | 108       | 540,000                                 | 65                                      | 325,000     | 0 9                          | 0 60          | 616         | 3,080,000     | 587         | 3,945,000         |
| Side Ditch                             | ٤.        | 320        | 25,6      | 8,960,000     | 52,300    | 18,305,000                              | 25,700                                  | 000,484,4   | 004,04                       | 15,240,000    | 000,52      | 682 500       | 273,000     | 3 265 500         |
| Median Drainage                        | 2         | 005701     | /*        | 493,500       | 101       | 0001807                                 | İ                                       | 0000        |                              | 000 000 00    | 2           | 222,722       | 10          | 002 798 356       |
| SUB-TOTAL                              |           |            |           | 40,237,500    | 1         | 81,783,100                              | 1                                       | 19,105,400  | Ì                            | 000,888,04    |             | 202,2,7,      |             | 20,023            |
| 7. Interchange / Junction              | 1         | ;          | 000       | 000 016 79    |           | 000 000 00                              |                                         | c           | 000 906 1                    | 137 060 000   | 351 000     | 38.610.000    | 2.384.000   | 262,240,000       |
| Contraction                            | 2 6       | 077 77     | 202,000   | 000,000,000   | 2,000     | 22 580 800                              |                                         | C           | 882                          | 41 136 480    | ,           | C             | 1,602       | 74.717.280        |
| Grade Separation Scructures            | 2 8       | 43.650     |           | ) C           |           |                                         |                                         | 5           | 8 80                         | 12,210,250    |             | 0             | 1           | 12,210,250        |
| Box Calvert - 7.5mx5.0m                | 5 5       | 214,900    |           | ō             |           | 9 0                                     |                                         | ō           | 8                            | 19,341,000    |             | Ö             |             | 19,341,000        |
|                                        | í         | 200        | 002 18    | 89 242 500    | 38.300    | 41,938,500                              |                                         | ó           | 151,700                      | 166,111,500   | 48,000      | 52,560,000    | 319,500     | 349,852,500       |
| Toli Gate                              | į v       | 2.250,000  |           | 2.250.000     |           | 2,250,000                               | <del></del>                             | ō           | rf                           | 2,250,000     | <b>+</b>    | 2,250,000     | 7           | 9,000,000         |
| SUB-10TAL                              |           |            |           | 155,842,500   |           | 99,989,300                              |                                         | o           | _                            | 378,109,230   |             | 93,420,000    |             | 727,361,030       |
| 8. Rest Area                           | Ëð        | 19,447,600 | 0         | Ö             | 2         | 38,895,200                              | 0                                       |             | 2                            | 38,895,2001   | 0           | O             | 4           | 77,790,400        |
| 9. Toll Plaza                          | Ε3        | 46,927,300 | 0         | ō             |           | О                                       | 1                                       | 46,927,300  | o                            | ō             | 0           | 0             | 7           | 46,927,300        |
| 10. Relocation of Road / Drain / Canal |           |            |           | 1             |           |                                         |                                         | •           | (                            |               | -           |               | c           | 000               |
| Relocation of Village Road             | Ę         | 2,067,500  | H V       | 2,2/4,250     |           | 2,014,100                               |                                         | 200         | 1 o                          | 2,454,000     | 7 (         | 2 165 400     | 5.0         | 284.400           |
| Relocation of Cart Track               | £ !       | 602,000    |           | 000,000,1     |           | 000,020,0                               | <b>&gt;</b> C                           | 23.000      | ic                           | 945 000       | i c         | 2,625,000     | 4           | 5.145.000         |
| Kelocation of Urain / Canal            | 1         | 20070507   |           | 3 767 450     |           | 8 494 550                               |                                         | 555,600     | +                            | 4,764,400     |             | 4,790,400     |             | 22,372,400        |
| 11. Utility Relocation                 |           |            |           |               |           |                                         |                                         |             |                              |               |             |               |             |                   |
|                                        | 8         | 1,200,000  | н         | 1,200,000     | H         | 1,200,000                               | 0                                       | 0           | . 7                          | 2,400,000     | 0           | 0             |             | 4,800,000         |
| Relocation of Power Line               | B         | 100,000    | 23        | 2,300,000     | 99        | 6,600,000                               | 12                                      | 1,200,000   | 8                            | 800,000       | 11          | 1,100,000     | 120         | 12,000,000        |
| SUB-TOTAL                              | _[        |            |           | 3,500,000     |           | 7,800,000                               |                                         | 1,200,000   |                              | 3,200,000     |             | 1,100,000     |             | 16,800,000        |
| 12. Road Appurtenances                 |           | 000 5      |           | 000 836 88    |           | 73 657 800                              | 9 600                                   | 25 972 000  | 24 970                       | 75.409.400    | 15.640      | 47,232,800    | 101.500     | 306.530,000       |
| Cocio Acio                             | 5 5       | 2,020      | 11,700    | 5,733,000     |           | 13.034,000                              |                                         | 4,018,000   | 15.600                       | 7,644,000     | 16.100      | 7,889,000     | 78,200      | 38,318,000        |
| DOW BACK OF THE                        |           | 1.030      |           | 22.866.000    | 50,900    | 52,427,000                              | 16,400                                  | 16,892,000  | 27,900                       | 28,737,000    | 34,500      | 35,535,000    | 151,900     | 156,457,000       |
| Road Signs                             | Ē         | 110,000    |           | 1,353,000     |           | 2,959,000                               |                                         | 880,000     | 22                           | 2,409,000     | 16          | 1,760,000     | 85          | 9,361,000         |
| Road Markings                          | Ę         | 15,000     | 74        | 1,104,000     |           | 2,112,000                               | 49                                      | 738,000     | 105                          | 1,567,500     | 87          | 1,299,000     | 455         | 6,820,500         |
| SUB-TOTAL                              |           |            |           | 115,314,000   |           | 144,189,800                             |                                         | 48,500,000  |                              | 115,766,900   |             | 93,715,800    |             | 517,486,500       |
| 13. tandscaping                        | Ĕ         | 25,000     | 24.6      | 615,000       | 53.8      | 1,344,000                               | 16.0                                    | 399,000     | 31.2                         | 779,000       | 32.3        | 806,500       | 157.9       | 3,943,500         |
| TOTAL CONSTRUCTION COST                |           |            |           | 1,866,132,000 |           | 2,242,661,000                           | 1                                       | 625,687,000 |                              | 1,425,859,000 |             | 1,162,192,000 | ō           | 7,322,531,000]    |
| Source: JICA Study Team                |           |            |           |               | ٠         |                                         |                                         |             |                              |               |             |               |             |                   |

Table 9.7.2 (1): Widening and Overlay Costs (K-G Expressway; Segment 1, 2, 3)

| The state of the s |      | Unit Price | Winening in 2022 | z in 2022     | Overlay (Initial Width) (2016 & 2022) | H                                       | Overlay (Ultimate Width) (2026, 2030 & 2033 | h) (2026, 2030 & 2033) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------------------|---------------|---------------------------------------|-----------------------------------------|---------------------------------------------|------------------------|
| Tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cint | (Rs.)      | Oty              | Amount        | άδ                                    | Amount                                  | Oty                                         | Amount                 |
| 1. Preparatory Works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SI   |            | 1                | 52,000,000    |                                       | 16,000,000                              | 1                                           | 23,000,000             |
| 2. Earthwork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |            |                  |               |                                       |                                         |                                             |                        |
| Excavation-Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m3   | 50         | 337,500          | 16,875,000    | 1                                     | 1                                       |                                             |                        |
| Embankment-Borrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m3   | 110        | 1,939,200        | 213,312,000   | ľ                                     |                                         | 3 3 8 8<br>8                                | :                      |
| Slope Protection, Turfing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m2   | 10         | 831,600          | 8,316,000     | ***                                   | -                                       | •                                           | 2<br>5<br>6<br>6       |
| Slope Protection, Rip-rap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m2   | 300        | 110,600          | 33,180,000    | 1                                     |                                         | 1                                           | i                      |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 271,683,000   |                                       |                                         |                                             |                        |
| 3. Major Bridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |                  |               |                                       |                                         |                                             |                        |
| Superstructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m2   | 25,663     | 6,300            | 161,676,900   | İ                                     | 1                                       |                                             |                        |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 161,676,900   | 11111                                 |                                         |                                             |                        |
| 4. Minor Bridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |                  |               |                                       |                                         |                                             |                        |
| Superstructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m2   | 22,462     | 3,262            | 73,271,044    |                                       | !                                       |                                             | 1                      |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 73,271,044    |                                       |                                         |                                             |                        |
| 5. Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |            |                  |               |                                       |                                         |                                             |                        |
| Binuminous Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m3   | 3,120      | 17,770           | 55,442,400    | 43,580                                | 135,969,600                             | 61.040                                      | 190,444,800            |
| Dense Bituminous Macadam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m3   | 3,100      | 59,250           | 183,675,000   | 87,160                                | 270,196,000                             | 122,080                                     | 378,448,000            |
| Wet Mix Macadam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m3   | 1,050      | 177,750          | 186,637,500   |                                       |                                         |                                             |                        |
| Granular Sub-base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m3   | 1,000      | 106,650          | 106,650,000   | 1                                     | 1 1 1                                   |                                             | ·                      |
| Subgrade Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m2   | 15         | 355,500          | 5,332,500     | ļ                                     | -                                       |                                             |                        |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 537,737,400   |                                       | 406.165.600                             |                                             | 568.892.800            |
| 6. Toll Plaza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |            |                  |               |                                       |                                         |                                             |                        |
| Embankment-Borrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m3   | 110        | 009'09           | 6,666,000     |                                       | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                             |                        |
| Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m2   | 1,095      | 60,600           | 66,357,000    |                                       | 1                                       | -                                           |                        |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 73,023,000    |                                       |                                         |                                             |                        |
| 7. Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |                  |               |                                       |                                         |                                             |                        |
| Guard Rail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ľ    | 3,020      | 56,400           | 170,328,000   | -                                     |                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | i                      |
| Road Markings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ĕ    | 15,000     | 142              | 2,130,000     | 245                                   | 3,675,000                               | 287                                         | 4,305,000              |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                  | 172,458,000   |                                       | 3,675,000                               |                                             | 4,305,000              |
| TOTAL CONSTRUCTION COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |            |                  | 1,341,849,000 |                                       | 425,840,000                             |                                             | 596,197,000            |
| Source: JICA Study Team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 3          |                  |               |                                       |                                         |                                             |                        |

9 - 57

Table 9.7.2 (2): Widening and Overlay Costs (G-M Expressway; Segment 4, 5)

|                           |      |            |                  | 0000        | (2000) (444) Whitely (2000) |             | Overlay (Illtimate Width) (2026, 2030 & 2033) | ) (2026, 2030 & 2033)                   |
|---------------------------|------|------------|------------------|-------------|-----------------------------|-------------|-----------------------------------------------|-----------------------------------------|
| ,                         | 1,41 | Unit Price | Winening in 2022 | In 2022     | Overlay (minial win         |             | 1                                             |                                         |
| Item                      |      | (Rs.)      | Qty              | Amount      | Oty                         | Amount      | Q.                                            | Amount                                  |
| 1. Preparatory Works      | Z.I  |            | F                | 25,000,000  | F                           | 15,000,000  | <b>F</b>                                      | 0                                       |
| 2. Earthwork              |      |            |                  |             |                             |             |                                               |                                         |
| Excavation-Unclassified   | ш3   | 30         | 214,600          | 10,730,000  | #<br>#<br>#                 |             |                                               | 1                                       |
| Embankment-Borrow         | m3   | 110        | 1,095,400        | 120,494,000 | !                           | ****        | 1                                             |                                         |
| Slope Protection, Turfing | m2   | 10         | 623,300          | 6,233,000   | 1                           | 1           | •                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Slope Protection, Rip-rap | m2   | 300        | 0                | 0           |                             |             |                                               |                                         |
| SUB-TOTAL                 |      |            |                  | 137,457,000 |                             | ***         | -                                             |                                         |
| 3. Major Bridges          |      |            | •                |             |                             |             |                                               |                                         |
| Superstructure            | m2   | 25,663     |                  |             |                             | *****       |                                               |                                         |
| SUB-TOTAL                 |      |            |                  |             |                             |             | 9                                             |                                         |
| 4. Minor Bridges          |      |            |                  |             |                             |             |                                               |                                         |
| Superstructure            | m2   | 22,462     | 2,858            | 64,196,396  |                             |             |                                               |                                         |
| SUB-TOTAL                 |      |            |                  | 64,196,396  | -                           |             |                                               | -                                       |
| 5. Pavement               |      |            |                  |             |                             | :           | 9                                             |                                         |
| Binuminous Concrete       | m3   | 3,120      | 11,100           | 34,632,000  | 29,980                      | 93,537,600  | 41,080                                        | 128,169,600                             |
| Dense Bituminous Macadam  | m3   | 3,100      | 37,000           | 114,700,000 | 29,960                      | 185,876,000 | 82,160                                        | 254,696,000                             |
| Wet Mix Macadam           | m3   | 1,050      | 111,000          | 116,550,000 | •                           | E           |                                               | •                                       |
| Granular Sub-base         | m3   | 1,000      | 66,600           | 66,600,000  | }                           | 1           |                                               |                                         |
| Subgrade Preparation      | m2   | 15         | 222,000          | 3,330,000   |                             |             |                                               |                                         |
| SUB-TOTAL                 |      |            |                  | 335,812,000 |                             | 279,413,600 |                                               | 382,865,600                             |
| 6. Toll Plaza             |      |            |                  |             |                             |             |                                               |                                         |
| Emhankment-Borrow         | m3   | 110        |                  |             |                             | 4           |                                               | 1                                       |
| Pavement                  | m2   | 1,095      |                  |             |                             | 41111       |                                               |                                         |
| SUB-TOTAL                 |      |            |                  | ••••        | •                           |             |                                               | 7                                       |
| 7. Miscellaneous          |      |            |                  |             |                             |             |                                               |                                         |
| Guard Rail                | Į,   | 3,020      | 29,400           | 88,788,000  | 9                           | 1           |                                               |                                         |
| Road Markings             | ķ    | 15,000     | 88               | 1,320,000   | 168                         | 2,520,000   | 198                                           | 2,970,000                               |
| SUB-TOTAL                 | <br> |            |                  | 90,108,000  |                             | 2,520,000   |                                               | 2,970,000                               |
| TOTAL CONSTRUCTION COST   |      |            |                  | 652,573,000 |                             | 296,933,000 |                                               | 385,835,000                             |
|                           |      |            |                  |             |                             |             |                                               |                                         |

Compensation Cost for

**Buildings:** 

Rs.417,825,000

Brick Kilms: Orchards:

Rs.38,045,000 Rs.27,320,000

Relocation Cost for Temples and Schools:

Rs.99,225,000

**Total** 

Rs.582,415,000

# 9.7.5 Estimated Project Cost

Based on the result of the construction cost estimate, the initial investment cost for K-G and G-M Expressways, widening and overlay costs are estimated as in Table 9.7.3.

Table 9.7.3: Summary of Investment Costs

| 240.0011                                       |               | ary or mitcat       |               | <u> </u>          |                |
|------------------------------------------------|---------------|---------------------|---------------|-------------------|----------------|
| ltem                                           | K-G Expresswa | y (Segment 1, 2, 3) | G-M Expressw  | ay (Segment 4, 5) | TOTAL          |
|                                                | Local Portion | Foreign Portion     | Local Portion | Foreign Portion   |                |
| 1. Initial Construction Cost                   | 4,413,090,000 | 321,390,000         | 2,432,769,000 | 155,282,000       | 7,322,531,00   |
| 2. Land Acquisition and Compensation Cost      | 1,199,911,000 | 0                   | 449,502,000   | 0                 | 1,649,413,00   |
| 3. Engineering Cost ((1.+2.) x 10%)            | 474,749,000   | 118,686,000         | 243,003,000   | 60,750,000        | 897,188,00     |
| 4. Administration Cost ((1.42.) x 5%)          | 296,718,000   | 0                   | 151,877,000   | . 0               | 448,595,000    |
| 5. Contingency ((1.+2.+3.+4.) x 10%)           | 638,532,000   | 43,924,000          | 327,849,000   | 20,968,000        | 1,031,273,000  |
| TOTAL INITIAL INVESTMENT COST                  | 7,023,000,000 | 484,000,000         | 3,605,000,000 | 237,000,000       | 11,349,000,000 |
| 5. Widening Construction Cost                  | 1,234,501,000 | 107,348,000         | 613,418,000   | 39,155,000        | 1,994,422,000  |
| 6. Engineering Cost (5. x 10%)                 | 107,347,000   | 26,838,000          | 52,205,000    | 13,052,000        | 199,442,000    |
| 7. Contingency ((5.+6.) x 10%)                 | 134,152,000   | 12,814,000          | 66,377,000    | 4,793,000         | 218,136,000    |
| TOTAL WIDENING COST                            | 1,476,000,000 | 147,000,000         | 732,000,000   | 57,000,000        | 2,412,000,000  |
| 8. Overlay Construction Cost (Initial Width)   | 383,256,000   | 42,584,000          | 267,239,000   | 29,694,000        | 722,773,000    |
| 9. Contingency (10 %)                          | 38,744,000    | 3,416,000           | 26,761,000    | 2,306,000         | 71,227,000     |
| TOTAL OVERLAY (Initial Width) COST             | 422,000,000   | 46,000,000          | 294,000,000   | 32,000,000        | 794,000,000    |
| 10. Overlay Construction Cost (Ultimate Width) | 536,577,000   | 59,620,000          | 347,251,000   | 38,584,000        | 982,032,000    |
| 11. Contingency (10 %)                         | 53,423,000    | 5,380,000           | 34,749,000    | 4,416,000         | 97,968,000     |
| TOTAL OVERLAY (Ultimate Width) COST            | 590,000,000   | 65,000,000          | 381,000,000   | 42,000,000        | 1,080,000,000  |
|                                                |               |                     |               |                   |                |

Source: JICA Study Team

# 9.7.6 Yearly Cash Flow of the Project Cost

The yearly cash flow of the project is estimated as shown in Table 9.7.4, assuming the implementation schedule as shown in Figure 9.6.2.

Table 9.7.4: Yearly Cash Flow of the Project

|                                 |         |         | Ini       | Initial Investment | nt        |           |                      | Overlay | Overlay | Widening  | Overlay   | Overlay   | Overlay   |
|---------------------------------|---------|---------|-----------|--------------------|-----------|-----------|----------------------|---------|---------|-----------|-----------|-----------|-----------|
| Item                            | 2000    | 2001    | 2002      | 2003               | 2004      | 2005      | Total                | 2016    | 2022    | 2022      | 2026      | 2030      | 2033      |
| Construction Cost               |         |         | 373,226   | 1,104,596          | 2,877,662 | 2,967,047 | 7,322,531            | 722,773 | 722,773 | 1,994,422 | 982,032   | 982,032   | 982,032   |
| Land Acquisition & Compensation |         | 659,765 | 659,765   | 329,883            |           |           | 1,649,413            | 0       | 0       | 199,442   | 0         | 0         | 0         |
| Engineering with Supervision    | 149,531 | 149,531 | 149,531   | 149,531            | 149,531   | 149,533   | 897,188              | 0       | 0       | 0         | 0         | 0         | 0         |
| Administration                  |         | 89,719  | 89,719    | 89,719             | 89,719    | 89,719    | 448,595              | 0       | 0       | 0         | 0         | 0         | 0         |
| SUB-TOTAL                       | 149,531 | 899,015 | 1,272,241 | 1,673,729          | 3,116,912 | 3,206,299 | 10,317,727           | 722,773 | 722,773 | 2,193,864 | 982,032   | 982,032   | 982,032   |
| Contingency                     | 14,953  | 89,901  | 127,223   | 167,372            | 311,690   | 320,631   | 1,031,770            | 71,227  | 71,227  | 218,136   | 97,968    | 97,968    | 97,968    |
| CASH OUT FLOW TOTAL             | 164,484 | 988,916 | 1,399,464 | 1,841,101          | 3,428,602 | L         | 3,526,930 11,349,497 | 794,000 | 794,000 | 2,412,000 | 1,080,000 | 1,080,000 | 1,080,000 |
|                                 |         | 7       |           |                    |           |           |                      |         |         |           |           |           |           |

ANNUAL CASH INFL.
(not accummulated)
Source: JICA Study Team

ANNUAL CASH INFLOW

Year

Unit: Rs.×1,000

2,961,000 | 3,622,200 | 4,221,800

2,428,000

899,300 1,813,300

2033

2030

2026

2022

2016

2006

 $2000{\sim}2005$  (Project Preparation and Construction)

Ą Z

#### CHAPTER 10:

# EXPRESSWAY OPERATION AND MAINTENANCE PLAN

# 10.1 Expressway Operation and Maintenance Works

# 10.1.1 Scope of Operation and Maintenance Works

The scope of Expressway operation and maintenance works is broadly divided into three major components; (1) Expressway Maintenance, (2) Traffic Management, and (3) Toll Collection.

# (1) Expressway Maintenance

The basic objectives of expressway maintenance are to secure traffic safety, smooth traffic flow and user comfort. The activities for maintenance can be categorized as routine maintenance, periodic maintenance and incidental maintenance by their frequency and characteristics.

Routine maintenance is based on routine (daily) inspection of the pavement conditions, embankment slope conditions, drainage, bridges and other structures and facilities to monitor any defects and damages on them. The results of routine inspection will be promptly reported to the operation and maintenance office for follow-up maintenance works as required.

Periodic maintenance is based on detailed inspection to be performed at certain time intervals of weekly, monthly or yearly depending on the type of facilities, including checking and testing of the conditions of structures and facilities. Defects and damages will be reported for repairs or remedies. Periodic maintenance also covers such works as cleaning of pavement, guardrail and sign boards, mowing and trimming of landscape plantation, and repair of road marking and painting.

Incidental maintenance is basically the works to be carried out to restore the expressway and the related facilities to their normal operating conditions after they are

substantially damaged by road accidents or natural causes.

Major maintenance works except inspection will be either performed by the expressway operator, or performed on contract basis. On contract basis of maintenance works, the necessary work package will be contracted to contractors by small tender or appointments depending on the scale of the works. This is because it is often economically more reasonable than possessing own performing units by their frequency. Work items can be categorized as follows:

- a) Cleaning of pavement
- b) Mowing and trimming of plantation
- c) Cleaning of ditches and culverts
- d) Pavement repair as patching and resurfacing
- e) Repair of expansion joints of bridges and viaducts
- f) Repair of embankment slopes
- g) Repair of damages on facilities caused by traffic accidents
- h) Pavement overlay, road markings and kerb stone repairs.

### (2) Traffic Management

Traffic management includes activities of traffic control, towing of disabled cars involved in accidents, and furnishing users with expressway and traffic information. Highway patrol will be performed to find damages on road facilities, traffic accident, illegal parking, disabled cars and other extraordinary conditions which disturb traffic safety. Information and report will be dispatched to the operation and maintenance office through radio communication equipped on patrol cars. Services as rescue, ambulance and emergency treatment to the injured by accidents, towing of disabled cars will also be executed.

Traffic control includes general control of speed, overloading and emergency lane use under unusual conditions of accidents, abnormal weather and maintenance work performance. Control and omission of illegally overloaded trucks will be conducted in cooperation with traffic police. Axle load meters will be installed at entries of interchanges for weighing, so that such illegal overloaded trucks can be prevented from entering the expressway.

Traffic surveillance including information collection and dissemination is also an important part of traffic management especially when the traffic volume is approaching the expressway capacity. Installation of such facilities as CCTV, radio broadcast, variable message signs and emergency telephone should be programmed in

the future for better service for users. These higher level of traffic information services than ordinary highway is required for toll expressway since the users are charged for using the facility, and will expect to obtain better services.

### (3) Toll Collection

Toll levy system can be either flat toll system or proportional toll system from the system viewpoint. The result of the toll levy system for K-G and G-M Expressways, however, is more in favor of proportional (distance-based) toll system.

The number of tollgates will depend heavily on whether they are throughway tollgates at toll plazas or access tollgates at interchanges. The necessary number of tollgates will generally depend on traffic amount that the tollgates will manage. Since the toll collectors (booth attendants) will handle a large amount of cash on daily basis, security system for the collector, and for the cash will be critical.

### 10.1.2 Maintenance of Roadway, Structures and Facilities

# (1) Inspection System

Inspection of road facilities is to recognize and evaluate the physical conditions of the roadway facilities by observations so that the roadway will be maintained in appropriate conditions for traffic flows, and maintained harmless to general public. The inspection is a main part of maintenance activities as well as repair works which will be done if the inspection finds it necessary. As same as the maintenance categorization, inspection activities are categorized as follows:

Routine (Daily) Inspection: Daily inspection of road conditions and usage by driving observation.

**Periodic Inspection:** General inspection of structures in the designated area including details of structures which cannot be done in routine inspection.

Incidental Inspection: Special inspection when an evaluation is difficult by routine and periodic inspections, when an abnormal weather condition is expected, when the roadway has or expected to have any abnormal conditions.

Table 10.1.1 shows the scope of inspection works for each category of the inspection system. It is recommended that the periodic inspection be broken down into three different levels for different level of details.

Table 10.1.1: The Scope of Inspection Works

|             |                          |                                                            | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11                                                    |                                                             |                                                         |                  |
|-------------|--------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------|
|             | Inspection Category      | Routine                                                    | Periodic (Class A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periodic (Class B)                                      | Periodic (Class C)                                          | Incidental                                              | Remarks          |
|             | Frequency                | Once/day                                                   | Once/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Once/1 - 3years                                         | Once/1 - 5years                                             | Upon necessity                                          |                  |
| Items       | Definition               | Definition Daily inspection mainly by driving observations | General overall<br>Inspection for all<br>bridges & culverts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | More particular<br>inspection for<br>bridges & culverts | Detailed inspection for selected part of bridges & culverts | Supplemental<br>inspection upon<br>particular necessity |                  |
| Roadway     | Pavement                 | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                             |                                                         |                  |
|             | Kerb                     | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                             |                                                         |                  |
| Slope       | Cut Slope                | *                                                          | •_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                       | •                                                           |                                                         | * within driving |
| -177-75     | Special Cut Slope        | •                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         | observation      |
|             | Embankment Slope         |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | *                                                           |                                                         | ** Specified     |
|             | Special Embankment Slope |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | *                                                           |                                                         | location only    |
| Drainage    | Shoulder Drainage        | •                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       |                                                             |                                                         |                  |
| ·           | Median Drainage          | *                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                       |                                                             |                                                         |                  |
|             | Slope Drainage           |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           | Bank C. Bryade .d                                       |                  |
| <del></del> | Bridge Drainage          |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | ROW Boundary Drainage    |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       |                                                             | Necessary Items                                         |                  |
| Bridge      | Concrete Superstructure  |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | Concrete Substructure    |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | Bearings                 |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | Joints                   | •                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | Rails                    | *                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
| Culverts    | Box Culverts             |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
|             | Pipe Culverts            |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
| Traffic     | Traffic Signs            | •                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                       | •                                                           |                                                         |                  |
| Control     | Road Markings            | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                             |                                                         |                  |
| Devices     | Delineators              | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                             |                                                         |                  |
| Others      | Fences                   |                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                             |                                                         |                  |
| ),,         |                          |                                                            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                | 10. 11. 11. 10.1                                            | C. J. T.                                                |                  |

Source: "Construction Supervision on Expressways; Maintenance Version" Japan Highway Public Corporation, Modified by JICA Study Team

### (2) Repair Works

The inspection system does not conclude by itself, but continues to the next step of further investigation, continuing observation or repair works depending on the necessity. Particularly the decision of repair works is an important engineering decision to be made by the operation and maintenance office.

Figure 10.1.1 shows a flowchart for summarizing a decision making process on repair works and other alternatives following the inspection result.

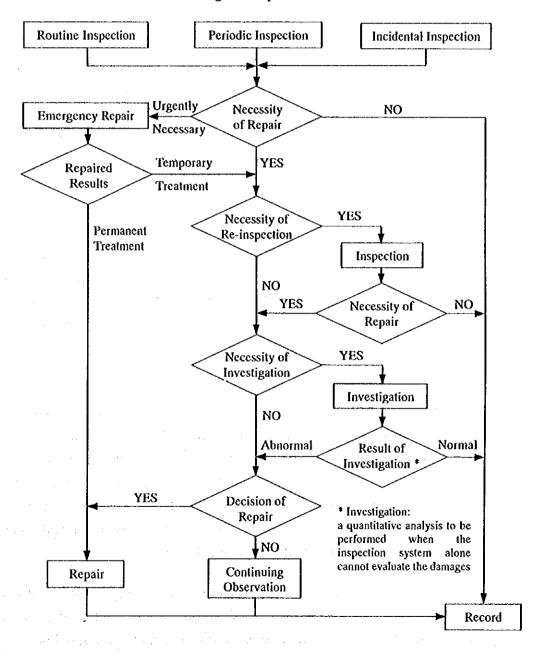



Figure 10.1.1: Flowchart for Inspection and Repair Works

### 10.1.3 Traffic Management and Accident Measures

Traffic management on expressways needs a more sophisticated system than that on arterial roads. An expressway is an access-controlled, thus a segregated space from at-grade road network. Once an accident occurs, it may take longer time for ambulance or police to reach the site than at-grade roads; even the information of such accidents may not be transmitted immediately without a systematic traffic management system. Yet expressway users expect higher level of service in traffic management, as well as the physical quality of the facility, because they are paying money for using the facility.

That is why an expressway operation requires a centralized traffic management system. Figure 10.1.2 shows a diagram for centralized traffic management and accident measures on expressway. A centralized traffic management system is to collect all of traffic information including accident information to the Traffic Control Center, and the Traffic Control Center will make all the necessary decisions to cope with the traffic situations on all over the expressway sections they are responsible. In the normal operational conditions, information on expressway is collected through traffic patrol cars provided by the tollway operator itself, police patrol cars, engineering patrol cars for facility inspections, toll gate patrol and roadway cleaning operators. These people are supposed to have a radio communication device to report any conditions at the site to the traffic control center. The traffic control center also collect information on weather conditions through meteorological observation units, and information on current traffic volume through automatic traffic counter, both of which are to be furnished on the roadway.

When an traffic accident occurs, the accident party or general road users should be able to inform the situation to the Traffic Control Center by emergency telephones along the roadway. The emergency telephone is furnished at the road side by a certain interval, ideally by about 1 km each, so that the users can immediately access to one of them when necessary. The accident information is also supposed be reported by patrol cars and other parties on duty on the expressway. The information can also be transmitted from the Traffic Control Center to the traffic and police patrol so that they can be dispatched to the site immediately.

As soon as the Traffic Control Center has known the accident situation, it will make decisions on to what extent the accident should be managed. It will dispatch traffic police and maintenance clues to the site, request ambulance for injured persons or fire station to dispatch their forces, and request for towing services for the damaged

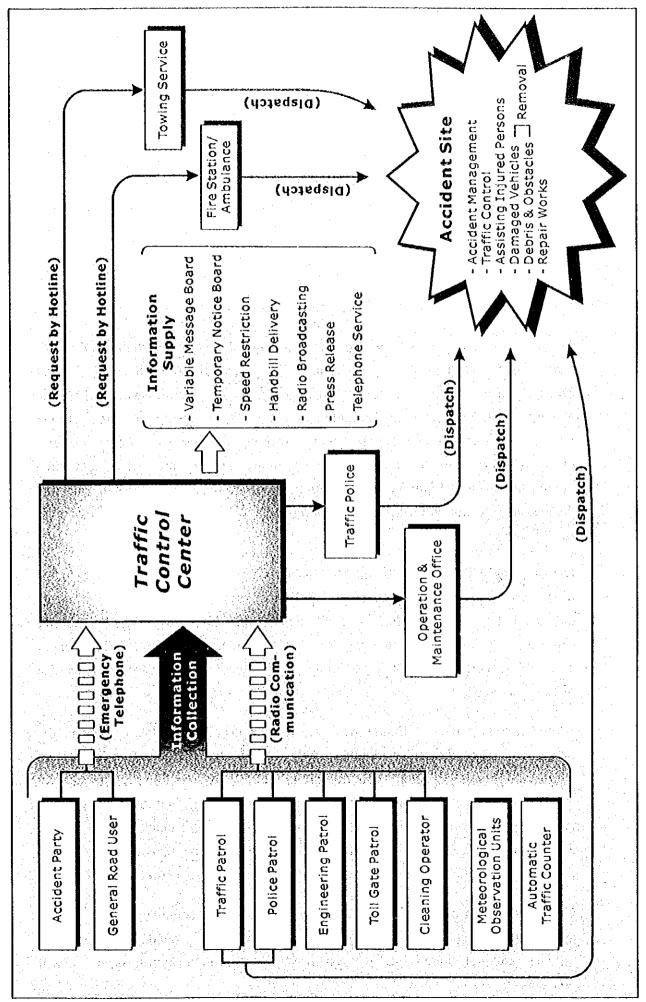



Figure 10.1.2: Diagram for Centralized Traffic Management & Accident Measures

vehicles. The center will also be responsible for the supply of the accident information to other expressway users, and general public, depending on the necessity.

The facility for the centralized traffic management system may vary depending on the length of the responsible expressway, and the level of service the operator will plan. The idea of centralized control, however, should be realized on every access controlled expressway system.

# 10.1.4 Toll Collection System

### (1) Flat Toll System versus Distance-based Toll System

The decision on whether the toll expressway adopts the Flat Toll System or Distance-based Toll System will affect the road user's usage patterns and toll revenue. Flat Toll System is effective and convenient to users for urban expressways, where the average trip distance is relatively shorter and the average frequency of usage per user is higher. Urban expressways are usually crowded, many users often enter and exit on daily basis, and the operator handles many similar short trips. In such circumstances, a flat toll system is preferable because the operator can save the collection cost, shorten the service time at payment, and the user can easily remember the toll amount.

Distance-based Toll System, on the other hand, is effective and fair to users for interurban expressways, where the average trip distance is longer, and frequency of usage per user is less. If the difference in distance between longer trip users and shorter trip users become large, the distance-based toll creates unfairness. The longer service time, normally less than ten seconds, is not a major problem when the average distance is longer.

Although K-G and G-M Expressways are located near the capital region and the neighborhood is expected to rapidly urbanized in the future, the nature of the two expressways are both inter-urban expressways. The average interchange interval will be 24 km, and the interchange interval varies depending on each section. According to our traffic demand forecast, the average trip distance will be 38 km. The nature of the network is multi-directional with a junction, which necessitates complete "issuing at entrance and collecting at exit" type of collection system.

Considering such nature of the expressway system, it is recommended that the toll system on K-G and G-M Expressways be Distance-based. By adopting the access tollgate system at interchanges, the system can avoid throughway toll plaza. It will

enhance the less-crowded, barrier-free toll road system.

## (2) Computerized Toll Collection System

Since K-G and G-M Expressways are not a single road stretch but constitute part of a network, a computerized toll collection system is recommended. A single and simple toll road stretch can be operated by a simple system of issuing a small piece of paper at the entrance and collecting the necessary toll at the exit. In a network, however, it needs to identify all of the vehicles on the system. The system will need a reliable cash management which enables the complete matching between registered or computed toll data and actually collected cash amount. Also the system should be able to acquire complete data of traffic volume and revenue, origin-destination (OD) data, peak-hour, weekly, monthly and seasonal traffic volume fluctuations for better traffic management system.

Figure 10.1.3 shows a schematic diagram for computerized distance-based toll collection system. When a vehicle entering the expressway receives a ticket, the ticket should have information such as the serial number, vehicle type, entrance IC number, date and time of entrance, and the booth attendant's number, etc. This information will be used when the vehicle exits the expressway; the toll price will be computed, payment will be confirmed and the statistical data will be registered. The number of vehicle passing the gate is also confirmed by automatic vehicle sensors located in front of the entrance and exit tollbooth. This confirms the complete matching of registered toll data and actually collected cash amount. Those toll collecting data will be all registered in the central computer, which enables a reliable revenue & cash management, and is an interest of not only the operator, but also the investors to the operating corporation.

The computerized toll collection system has optional functions, which should not necessarily be adopted at the initial opening stage, but can be future integrated services. These optional functions are:

- 1) Prepaid Card system for quicker payment at the exit gate,
- 2) Permanent Plate for frequent users for deferred payment, and
- 3) Automatic Toll Collection (ETC) system (a system automatically identifying a vehicle at a gate and the toll amount, and deducting the amount from the user's bank account without stopping the vehicle at the gate).

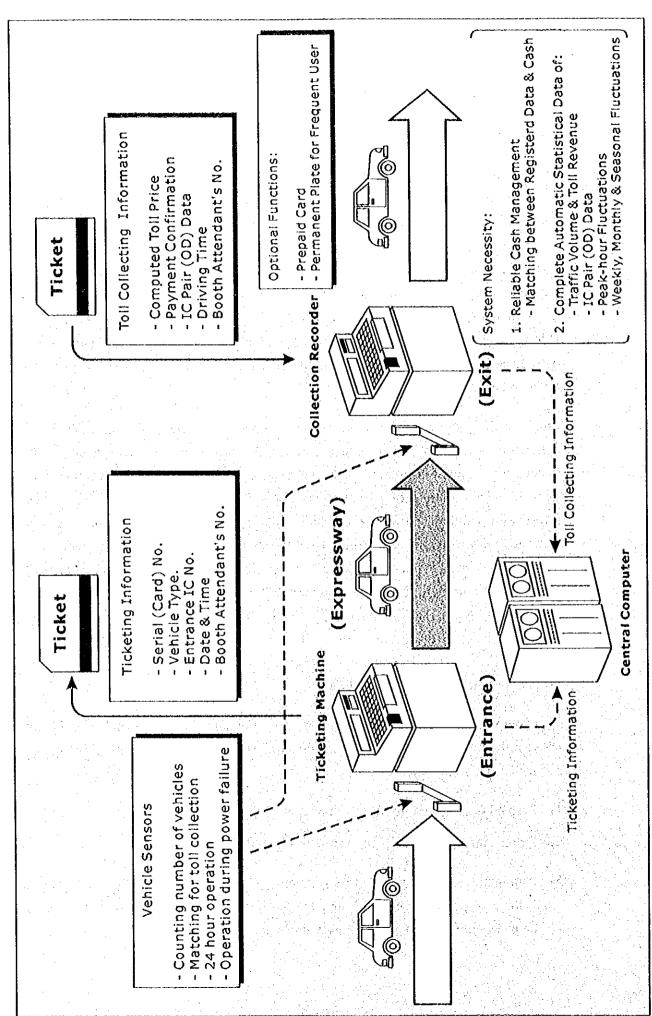



Figure 10.1.3: Distance-based Toll Collection System

### 10.2 Organization for Expressway Operation and Maintenance

### 10.2.1 Basic Organization Hierarchy

For the assumed expressway operation period, the organization for operation and maintenance should be self-sufficient. The basic organization structure will be composed of a head office, an operation and maintenance (O&M) office and tollgate offices. Figure 10.2.1 shows an example of organization charts for the head office and the O&M office.

The head office will be directed by a board of directors of the corporation to operate the tollway. It will be responsible for overall management of the organization including decision making related to basic policies on operation and maintenance of the expressway, budgetary control, short-term financing, etc. The function of the traffic control center should also directly belong to the head office because of its importance in decision making, although it should be located at the O&M office for better communication. The head office generally has the functions of technical, administration, operation and accounting. The head office should be able to ensure smooth and easy access to the related government agencies, financial institutions and business opportunities.

The O&M office will be responsible for the actual execution of operation and maintenance works for the expressway including the supervision of contracted maintenance works. The total length of Ghaziabad - Meerut and Kundli - Ghaziabad Expressways will be about 80 km. This can be operated by one O&M office if the two projects are operated by a single expressway corporation. If the expressways are divided into two different projects, it is natural to set up each regional O&M office for each project by each entity. For the maintenance activities, however, it can be performed by a single O&M office through entrustment of the maintenance of the one project to the other since this is economically a better solution for both entities.

The tollgate offices will be provided at every interchange and toll plaza location. The tollgate offices will be operated for 24 hours, 365 days a year. The toll collector (booth attendant) will work, in common practice, in three shifts. The tollgate offices will be responsible for the control of the number of open tollgates depending on the fluctuation of the traffic volume. When the amount of traffic is small, it is better to operate fewer number of tollgates to save the operation cost. On the other hand, it will create a congestion if the amount of traffic is too large compared with the number of tollgates.

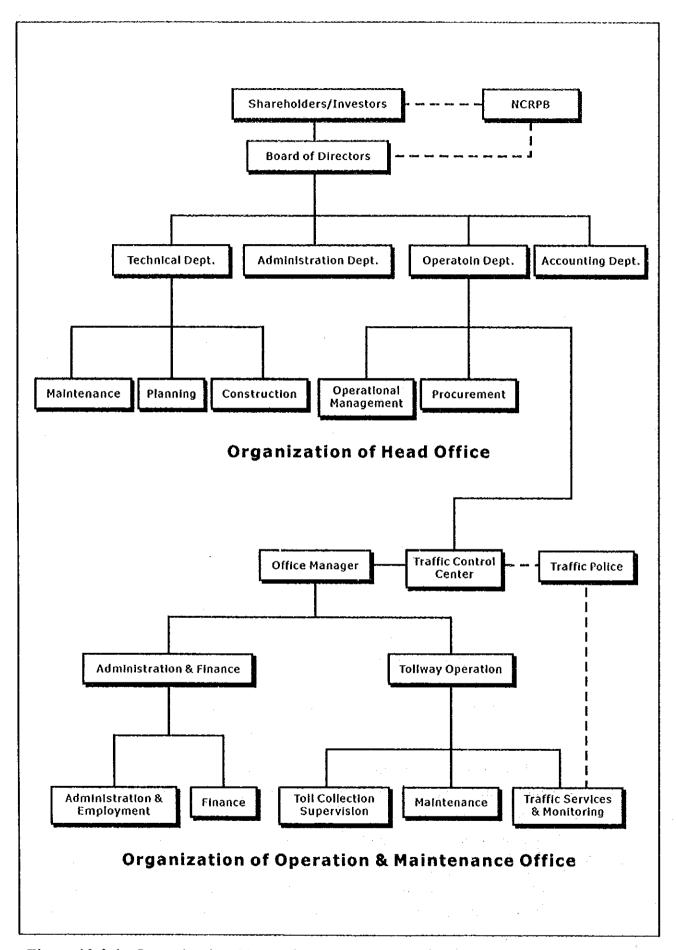



Figure 10.2.1: Organization Chart of Head Office and Operation & Maintenance Office

#### 10.2.2 Office Location Plan

The location of the head office depends on several conditions beyond the scope of the study for K-G and G-M Expressways only. If the expressway corporation is formed for implementing K-G and G-M Expressways only, for example, it is recommended that the head office be located together with the O&M office in one of the interchange areas. This is because the responsible portion of the expressway is the same between the head office and the O&M office. On the other hand, if the expressway corporation is formed for FNG Expressway and K-G, G-M Expressways altogether, it might be better to locate the head office in the city of Delhi sceking smoother and easier access to the related government agencies, financial institutions and business opportunities, especially if FNG Expressway and K-G/G-M Expressways has independent O&M offices.

The location of the O&M office should be in one of the interchange areas since it can utilize the acquired land area for the operation, and it can have an easy access both to the expressway and other urban functions outside of the expressway area. It is desirable to reach the farthest point of the expressway approximately within 30 minutes from the office. For K-G and G-M Expressways, it is recommended that the O&M office be located in the interchange of Ghaziabad. This is because among the possible five interchanges where the operation and maintenance office can be located, Khekra IC and Modinagar IC are small and do not have a good access to urban area. Kundli IC is too far from G-M Expressway, and Meerut IC is too far from K-G Expressway at the time of emergency. The O&M office in Ghaziabad could also function for FNG Expressway if the corporate condition allows because of its ideal midway location for entire FNG, K-G and G-M Expressway system.

The tollgate offices should be located at each of the five interchanges at the side of tollgates. The tollgate offices will manage a lot of cash everyday, and the security for carrying the cash is strictly important. Hence, the physical distance between the tollgates and the office should be as short as possible. The tollgate office of Ghaziabad IC can share the space with the O&M office if it is located in the same interchange area.

#### 10.3 Facilities and Equipment for Operation and Maintenance

#### 10.3.1 Operation and Maintenance Office

The facilities of the O&M office should basically consist of the office space, parking

lot, electrical rooms and others. The required office area is approximately around 10,000 to 20,000 m<sup>2</sup>. The office space includes the spaces for office manager and other staff, meeting rooms and other necessary facilities. The parking lot space should be able to accommodate all the necessary vehicles for maintenance. The electrical rooms includes a computer room, a power supply and generator room, a telecommunication control room, and other storage spaces.

The necessary equipment for maintenance activities are ordinary sedans and vans, light and heavy trucks, lift trucks, water trucks, backhoes, portable generators, chain saws, electric welders, air compressors, tampers, concrete mixers, concrete vibrators, and other hand tools, etc. Introducing special types of vehicles such as a road cleaner should be considered upon necessity.

### 10.3.2 Tollgate Offices

The tollgate office facilities should basically consist of the tollbooths, islands and their roofs, the office space including a cash calculation room, ticket storage, electrical rooms, and others. Since the office is operated on 24-hour basis, the office facilities should equip a minimum accommodations for resting and temporary sleeping facilities for booth attendants and other employees. The required office area is approximately around 3,000 to 5,000 m<sup>2</sup>. The tollgate office that is located in the interchange where the O&M office is also located, the two offices can share a space in the interchange.

The tollgate office should be able to observe the gate area well, and if the interchange design allows, it is desirable to be located at the exit gate side of the tollgate area. This is to minimize the distance for carrying cash. On K-G and G-M Expressways, Khekra IC, Modinagar IC can achieve this design; however, Kundli IC, Meerut IC and Ghaziabad IC locate the tollgate office at the entrance side due to the ramp design reasons. It would be better, if it is deemed necessary, to provide a direct underground walking tunnel for carrying cash from the booths to the office.

The tollgates should be equipped with barricades to be able to close all of the gates when necessary. Normally these are used when some of the booths are closed, but they can be used when the operator need to control the number of vehicles entering the expressway on emergency or abnormal traffic saturation, etc.

#### 10.4 Operation and Maintenance Cost

The operation and maintenance cost consists of roadway maintenance materials cost, maintenance equipment and fuel costs, facility and utility running cost, and manpower

cost. The maintenance materials are for incidental pavement repairs, replacement of broken facilities and their parts. The equipment consists of the machines and tools mentioned in Section 10.3.1. For estimating the necessary cost, it is assumed that the equipment necessary for routine and periodic maintenance activities will be owned by the expressway operator. The facility and utility running cost is for office buildings, toll plaza and rest area facilities including lighting and other utilities. The manpower cost includes all of the necessary personnel for the head office, O&M office, and tollgate offices.

The estimated operation and maintenance cost (1999 prices) for all of K-G and G-M Expressways (Total O&M Length = 80.75 km) is as follows:

Table 10.4.1: Annual Operation and Maintenance Cost

| No. | Item                               | Annual Cost    |
|-----|------------------------------------|----------------|
| 1.  | Maintenance Material Cost          | Rs. 6,000,000  |
| 2.  | Maintenance Equipment & Fuel Costs | Rs. 6,500,000  |
| 3.  | Facility and Utility Cost          | Rs. 5,700,000  |
| 4.  | Manpower Cost                      | Rs. 14,800,000 |
|     | Total Annual Cost                  | Rs. 33,000,000 |

Source: JICA Study Team

Note: Annual equipment cost is computed based on the assumption that all machines and tools will be purchased and depreciated (used up) in ten years.

For a summary, all of "non-initial project costs," that means the costs arising after the initial construction is completed and the expressways are open to traffic, are summarized in Table 10.4.2. These are also all 1999 prices.

Table 10.4.2: Summary of "Non-initial Project Costs" of the Expressways

|                     | Item                             | Cost                    |
|---------------------|----------------------------------|-------------------------|
| Operation and Ro    | outine/Periodic Maintenance Cost | Rs. 33,000,000 /year    |
| Pavement            | (For Initial Number of Lanes)    | Rs. 792,000,000 /each   |
| Rehabilitation Cost | (For Ultimate Number of Lanes)   | Rs. 1,078,000,000 /each |
| Expre               | ssway Widening Cost              | Rs. 2,412,000,000       |

Source: JICA Study Team

### CHAPTER 11:

## ECONOMIC ANALYSIS

# 11.1 Vehicle Operating Cost and Time Cost

## 11.1.1 Vehicle Operating Cost(VOC)

#### (1) Vehicles for the estimation of VOC

When the project is implemented, vehicle speeds will tend to increase, consequently, all vehicles are able to enjoy benefit of the saving in vehicle operating costs. Figure 11.1.1 shows 6 kinds of vehicles selected for calculation of VOC; 1) passenger car, 2) small size bus, 3) large size bus, 4) small size truck, 5) large size truck, and 6) motorcycle.

These 6 kinds of vehicles are grouped into 4 categories in the stage of economic evaluation to match the estimated traffic volume. Slow moving vehicles such as auto rickshaw, agriculture tractors/trailers, cycles and cycle-rickshaw are excluded from the calculation.

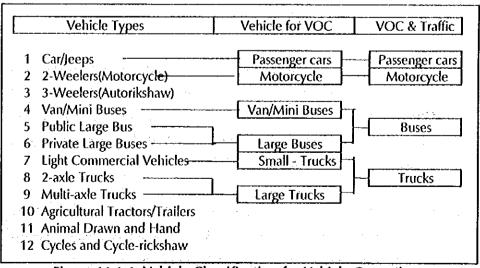



Figure 11.1.1 Vehicle Classification for Vehicle Operating

# (2) Component of Vehicle Operating Cost

Vehicle operation cost (VOC) can be divided into two major components; 1) running cost and 2) fixed cost. Vehicle running cost changes in proportion to vehicle running conditions and vehicle usage conditions. Fixed cost accrues in the purchase of a vehicle while running cost accrues by driving vehicles. Figure 11.1.2 shows running cost consisting of 5 items and fixed cost consisting of 4 items.

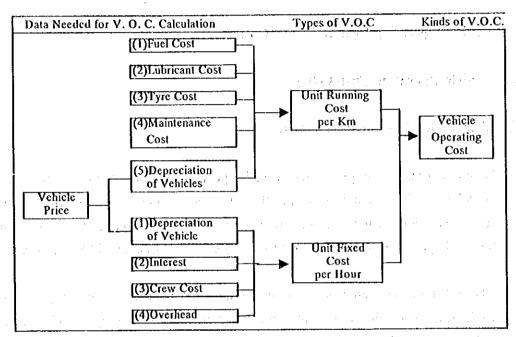



Figure 11.1.2 Diagram of Vehicle Operating Cost Estimation Procedure

# (3) Economic Price of Vehicles

The price of the vehicle affects VOC greatly. Table 11.1.1 shows the calculation of financial cost and economic cost of a passenger car. The selected car is the product of MARUTI UDYOG TD, which occupies 80% to 85% of market share. The average retail price of the car is estimated at 182,775 Rs. And the economic cost is found to be 140,550Rs, deducting 23% for tax and duties.

For other vehicles refer to 1) Appendix Table 11.1.1 for small bus, 2) Appendix Table 11.1.2, for large bus, 3) Appendix Table 11.1.3 for small truck, Appendix Table 11.1.4 for large size truck, and Appendix 11.1.5 for motorcycle.

Table 11.1.1 Calculation of Financial /Economic Price of Vehicles

- The Case of Passenger Car -

|                                 |               | Economic Cost |          | Financial Cost |
|---------------------------------|---------------|---------------|----------|----------------|
| Item                            | Calculation   | Cost          | Tax/duty | Cumulative     |
| a) CKD & Assembly Costs         |               | 135,586       |          | 135,586        |
| b) Excise Duty(Include Cess)    | 14.31%        |               | 22,642   | 158,228        |
| c) Whole sale price             |               |               |          | 158,228        |
| d) Dealer Commission            | 3.04%         | 4,964         |          | 4,964          |
| e) Retail price                 |               |               |          | 163,192        |
| f)Sales Tax                     | 8%            |               | 13,055   | 176,248        |
| g) Registration Tax             | 4% of Item(e) |               | 6,528    | 182,775        |
| On the road price(Financial Cos | 1)            | 140,550       | 42,226   | 182,775        |
| Cost Component %                |               | 77 %          | 23 %     | 100 %          |

Note: CKD: Complete Knock Down

Source: Association of India Automobile Manufactures

# (4) Prices of Input Items for Vehicle Operating Cost Estimation

Table 11.1.2 shows cost by items by vehicle types. Cost data of items in the table are obtained through various trade organizations. The items are 1) vehicle price, 2) fuel price/litter, 3) tyre unit price, 4) lubricant price/litter, 5) maintenance labor cost, 6) overhead cost, and 7) crew unit cost. Diesel oil price of fuel for vehicles increased from 9.94 Rs/Litter to 11.67 Rs/Litter in October 1999 thus affecting running cost and VOC.

Other items in the table are taken from data of IBRD and AASHTO with consideration to actual data obtained in study area. Data are also based on the ADB financed "Study for Updating Road User Cost Data" prepared by Dr.L.R.Kadiyali and Associates.

Table 11.1.2 Input Data for Unit Vehicle Operating Cost at Base Speed

Unit: Rupee

|                                        |           |         |         |         | Unit: Rupee | ;      |
|----------------------------------------|-----------|---------|---------|---------|-------------|--------|
| Items                                  | Passenger | Small   | Large   | Small   | Large       | Motor- |
|                                        | Car       | Bus     | Bus     | Truck   | Truck       | cycle  |
| 1) Vehicle Price(Excl.Tyres)Fin-Rs.    | 182,775   | 350,328 | 449,967 | 332,512 | 572,633     | 38,376 |
| Vehicle Price(excl.Tyres)Econ-Rs.      | 140,550   | 227,722 | 343,103 | 246,119 | 436,736     | 28,507 |
| Vehicle Life(Years)                    | 8         | 9       | 8       | 8       | 8           | 6      |
| Vehicle Life Km                        | 104,000   | 382,500 | 320,000 | 224,000 | 322,500     | 90,000 |
| Vehicle Annual Km                      | 13,000    | 45,000  | 40,000  | 28,000  | 43,000      | 15,000 |
| Vehicle Life Operating Hours           | 4,000     | 12,750  | 12,800  | 9,600   | 11,250      | 3,600  |
| Vehicle Annual Operating Hours         | 500       | 1,500   | 1,600   | 1,200   | 1,500       | 600    |
| 2) Fuel Price (Fin-Rs./Liter)          | 25.86     | 13.91   | 13.91   | 13.91   | 13.91       | 13.91  |
| Fuel Price (Econ-Rs./Liter)            | 21.72     | 11.68   | 11.68   | 11.68   | 11.68       | 11.68  |
| Fuel Consumption (Liter/Km)            | 0.13      | 0.18    | 0.25    | 0.27    | 0.30        | 0.03   |
| 3) Tyre Unit Price (Fin-Rs./Piece)     | 1,550     | 4,800   | 10,020  | 10,020  | 12,000      | 480    |
| Tyre Unit Price (Econ-Rs./Piece)       | 1,054     | 3,264   | 6,814   | 6,814   | 8,160       | 326    |
| Number of Tyres                        | 4         | 4       | 6       | 6       | 10          | 2      |
| Tyre Life -Km                          | 40,000    | 30,000  | 40,000  | 40,000  | 40,000      | 30,000 |
| 4) Lubricants Price(Fin-Rs./Liter)     | 75.00     | 75.00   | 75.00   | 75.00   | 75.00       | 75.00  |
| Lubricants Price(Econ-Rs./Liter)       | 63.00     | 63,00   | 63.00   | 63.00   | 63.00       | 63.00  |
| Lubri.OilConsumpt.(Liter/100km)        | 1.2       | 2.0     | 2.2     | 3.0     | 3.4         | 0.2    |
| 5) Maintenance Spares/Year (%)         | 7         | 8       | 10      | 8       | 8           | 3      |
| MaintenanceLabor(Hour/1000km)          | 3         | 15      | 15      | 12      | 15          | 2      |
| Maintenance LaborCost(Fin-Rs/h)        | 23.88     | 23.88   | 23.88   | 23.88   | 23.88       | 23.88  |
| Maintenance LaborCost(Econ-Rs.)        | 23.67     | 23.67   | 23.67   | 23.67   | 23.67       | 23.67  |
| 6) Depreciation.Distance Related(%)    | 60        | 80      | 85      | 70      | 70          | 60     |
| Depreciation.Time Related(%)           | 40        | 20      | 15      | 30      | 30          | 40     |
| 7) Real Rate of Interest of Capital (% | 13.5      | •       | •       | 13.5    | 13.5        | 8.5    |
| Opportunity Cost of Capital(%)         | 12        | 12      | 12      | 12      | 12          | 12     |
| 8) Overhead cost(Annum Fin-Rs.)        | 0         | 38,095  | 38,095  | 38,095  | 38,095      | 0      |
| Overhead cost(Annum Econ-Rs.)          | 0         | 38,095  | 38,095  | 38,095  | 38,095      | . 0    |
| 9) Crew-Number(Driver)                 | 0         | 1       | 1       | 1       | 1           | 0      |
| Crew-Number(Assistant)                 | 0         | 1       | 1       | 1       | 1           | 0      |
| Crew Unit Cost (Fin-Rs./Hour)          | 0         | 23.88   | 23.88   | 23.88   | 23.88       | • 0    |
| Crew Unit Cost(Econ-Rs./Hour)          | 0         | 23.67   | 23.67   | 23.67   | 23.67       | 0      |

## (5) Estimation Procedure

Vehicle operating costs by vehicle types are estimated by the following formula by using the input data of Table 11.1.2 namely:

- 1) Fuel cost/km: Fuel price/litter x fuel consumption /km by speed
- 2) Lubricant cost/km: lubricant price/litter x lubricant consumption/100km
- 3) Tyre cost/km: Tyre unit price / tyre life km
- 4) Maintenance

Spares portion/km: Vehicle price / vehicle life km x % of maintenance spare cost /year as % of vehicle price

Labor portion/km: (working hour/1000km x labor cost/hour) 1000

### 5) Depreciation

Distance related/km: Vehicle price / vehicle life km x distance Ratio (60%) Time related/km: Vehicle price / vehicle life hour x time related ratio (40%)

6) Overhead cost/km: Annual labor cost x annual working hour

7) Crew cost/km: Annual crew cost x time cost/hour

## (6) Result of Calculation of Running Cost

Running cost of vehicles contain five factors such as 1) fuel cost, 2) lubricant cost, 3) tyre cost, 4) maintenance cost, and 5) depreciation cost related to running distance. Table 11.1.3 shows the result of the calculation. The share between large and small bus and truck is taken from traffic survey.

Table 11.1.3 Summary of Running Cost Per km by Base Speed (Economic Price)

Unit: Rupees/km

| Items                          |           | Bus       |           | Truck       |             |        |
|--------------------------------|-----------|-----------|-----------|-------------|-------------|--------|
|                                | Pass, Car | Small Bus | Large Bus | Small Truck | Large Truck | M.Cycl |
|                                |           |           |           |             |             | c      |
| Fuel Costs                     | 2.82      | 2.10      | 2.92      | 3.15        | 3.50        | 0.35   |
| Lubricant Costs                | 0.08      | 0.13      | 0.14      | 0.19        | 0.21        | 0.01   |
| Tyre Costs                     | 0.11      | 0.44      | 1.02      | 1.02        | 2.04        | 0.02   |
| Maintenance Spares Costs       | 0.09      | 0.05      | 0.11      | 0.09        | 0.11        | 0.01   |
| Maintenance Labor Costs        | 0.07      | 0.36      | 0.36      | 0.28        | 0.36        | 0.05   |
| Depreciation Costs             | 0.81      | 0.48      | 0.91      | 0.77        | 0.95        | 0.19   |
| Total Running Costs/vehicle-km | 3.98      | 3.54      | 5.45      | 5.51        | 7.17        | 0.63   |
| Vehicle Component              | 100%      | 33%       | 67%       | 48%         | 52%         | 100%   |
| Weighted                       | 3.98      | 1.17      | 3.65      | 2.64        | 3.73        | 0.63   |
| Running Costs/vehicle-km       | 3.98      | 4.82      |           | 6.          | 37          | 0.63   |

The relationship between running speed and running cost by vehicle types is expressed in following formulas where Y is running cost, and X is running speed on city road.

1) Passenger car  $Y = 0.000902x^2 - 0.139788x + 8.440934$ 

2) Bus  $Y = 0.000984x^2 - 0.123030x + 8.166583$ 

3) Truck  $Y = 0.001804x^2 - 0.235464x + 12.901529$ 

4) Motorcycle  $Y = 0.000179x^2 - 0.016251x + 0.996781$ 

# (7) Fixed Cost

There are 5 items in the fixed cost such as 1) depreciation cost related to time consumed, 2) interest cost, 3) overhead cost, 4) crew cost, and 5) Usage cost that is accruing from car utilization. Details of unit VOC by item is presented in Table 11.1.4.

Table 11.1.4 Summary of Fixed Costs per Km at Base Speed (Economic Price)

Unit: Rupecs/km

| Rems                             |           | Bus       |           | Truck       |             |         |
|----------------------------------|-----------|-----------|-----------|-------------|-------------|---------|
|                                  | Pass. Car | Small Bus | Large Bus | Small Truck | Large Truck | M.Cycle |
| Capital Costs(Dep-Time Relation) | 14.06     | 3.57      | 4.02      | 7.69        | 11.65       | 3.17    |
| Opportunity Cost of Capital      | 33.73     | 18.22     | 25.73     | 24.61       | 34.94       | 5.70    |
| Overhead Cost                    | 0.00      | 25.40     | 23.81     | 31.75       | 25.40       | 0.00    |
| Crew Costs                       | 0.00      | 47.34     | 47.34     | 47.34       | 47.34       | 0.00    |
| Fixed Costs, All                 | 47.79     | 94.53     | 100.90    | 111.39      | 119.32      | 8.87    |
| Factor (%)                       | 0.30      | 0.65      | 0.65      | 0.70        | 0.70        | 0.30    |
| Total Fixed Costs/Vehicle-hour   | 14.34     | 61.44     | 65.59     | 77.97       | 83.53       | 2.66    |
| Total Fixed Costs/Vehicle-km     | 0.32      | 1.37      | 1.64      | 1.95        | 2.09        | 0.07    |
| Vehicle Composition              | 100%      | 33%       | 67%       | 48%         | 52%         | 100%    |
| Weighted                         | 0.32      | 0.45      | 1.10      | 0.94        | 1.09        | 0.07    |
| Fixed Costs/Vehicle-km           | 0.32      | 1.:       | 55        | 2.          | 02          | 0.07    |

# (8) Summary of Unit VOC

As shown in Table 5.1.3 and 5.1.4, following is the unit VOC at basic speed, which ranges from 50km/h for passenger car to 40km/h for other vehicles.

Charles of the Charles and Charles And the Charles

| <u>Vehicles:</u> | Running Cost | Fixed Cost  |
|------------------|--------------|-------------|
| Passenger car    | 3.98 Rs./km  | 0.32 Rs./km |
| Bus              | 4.82 Rs/km   | 1.55 Rs/km  |
| Truck            | 6.37 Rs/km   | 2.02 Rs/km  |
| Motorcycle       | 0.63 Rs/km   | 0.07 Rs/km  |

grade to the contract of the specific contract of

#### 11.1.2 Travel Time Cost

# (1) Wage Rate Approach

Traveling hours saving of persons as a result of the project is considered as an economic benefit of the expressway. Estimation of travel time cost was done on the basis of wage rate approach. The wage rate and trip purpose is function of the passenger time value. Therefore, time value is obtained by the following procedures:

- 1) Estimation of income per worker by income level;
- 2) Estimation of working time value by vehicle user; and
- 3) Estimation of travel time value of passenger by vehicle type.

# (2) Income Level

Data of Gross Regional Domestic Product (GRDP), population, employee are based on the socio-economic analysis in Chapter 5. Table 11.1.5 shows the income distribution by income level. Detail is shown in Appendix Table 11.1.6.

As shown in the table the number of employee in the study area is 7,577,000 in 1999 and the annual average income per employee is 83,962 Rupee for the same year

Table 11.1.5 Distribution of Annual Income by Groups of Study Area in 1999

| ltems                                    | Lowest | Second | Third   | Fourth  | Highest | Ave.or Total |
|------------------------------------------|--------|--------|---------|---------|---------|--------------|
| Distribution of Employee by Income Level | 20.04% | 39.43% | 18.38%  | 10.75%  | 11.40%  | 100%         |
| Number of Employee Year 1999(1000)       | 1,518  | 2,987  | 1,393   | 814     | 864     | 7,577        |
| Distribution of Income by Income Level   | 3.84%  | 11.46% | 19.52%  | 28.18%  | 37.01%  | 100%         |
| Amount of Income Year 1999(Rs)           | 24,406 | 72,895 | 124,191 | 179,266 | 235,422 | 636,180      |
| Annual Income per Employee(Rs)           | 16,073 | 24,401 | 89,162  | 220,120 | 272,518 | 83,962       |

Source: JICA Study Team and Statistical Outline of India 1998-99, P214

Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

# (3) Working Time Value

Working time value for workers should differ by the level of income. As shown in the Table 11.1.6, the annual income level of the lowest class, which amounts to 20% of the total workers, is 6.70 Rs/h. Conversely, that of the highest class, approximately 11% of total workers, is 84.22 Rs/h., which is about 14 times higher than the lowest income level.

Table 11.1.6 Unit Working Time Value by Income Level (Economic)

Unit: Rupee

| Level of Income by Group   | Lowest | Second | Third  | Fourth  | Highest |
|----------------------------|--------|--------|--------|---------|---------|
| Annual Income per Employee | 16,073 | 24,401 | 89,162 | 220,120 | 272,518 |
| Tax Liability              | 0      | 0      | 3,300  | 29,150  | 70,400  |
| Annual Income after Tax    | 16,073 | 24,401 | 85,862 | 190,970 | 202,118 |
| Working Hour /Year         | 2,400  | 2,400  | 2,400  | 2,400   | 2,400   |
| Working Time Value/Hour    | 6.70   | 10.17  | 35.78  | 79.57   | 84.22   |

Source: 1)Statistical Outline of India 1998-99, P214

# (4) Time Value by Vehicles

It is assumed that the income group lowest and the second lowest income group use bus, the second and third groups use motorcycle, whilst the fourth and the highest income groups use passenger car. Occupancy rate of vehicles is adjusted by non-employment ratio. Table 11.1.7 shows the working time value by vehicle type.

Table 11.1.7 Working Time Value by Type of Vehicle Users

| Grouping by Vehicle                     | Bus Passenger | M.cycle | Passenger Car |
|-----------------------------------------|---------------|---------|---------------|
| No. of Passengers                       | 45.0          | 1.4     | 1.60          |
| Adjustment by Non-Employment Ratio (7%) | 31.5          | 0.98    | 1.04          |
| Time Value /Vehicle.Hour (Rs.)          | 265.61        | 22.51   | 85.17         |
| Time Value /Vehicle.Minute              | 4.43          | 0.38    | 1.42          |

Source: Occupancy rate of vehicles & Income level of M.cycle by Interview Survey ,JICA Study Team

# (5) Summary of Travel Time Cost

There is a difference between the working time value and the transportation (trip) time value. Trips from origin to destination by using project expressway or by using ordinary streets are not always made for productive purposes. According to the results of the traffic survey, about 20% of trips are for leisure purpose, which is not included in time value calculation. Business trips are valued at 100% of wage while non-work related trips are valued at around 50%.

Table 11.1.8 Travel Time Value by the Type of Vehicle User

Unit: Rupee

| Usage of Vehicle   | Trip Purpose |            |         | Time Productivity |             |         |       | TimeValue/minute |       |
|--------------------|--------------|------------|---------|-------------------|-------------|---------|-------|------------------|-------|
| Types by Passenger | Work         | NonLeisure | Leisure | Work              | Non-Leisure | Leisure | Total | Working          | Trip  |
| ·                  | A            | В          | С       | D                 | E=Bx0.50    | F       | G=D+E | H                | I=GxH |
| Passenger Car      | 35%          | 45%        | 20%     | 35%               | 23%         | 0%      | 58%   | 1.42             | 0.82  |
| Motorcycle         | 35%          | 45%        | 20%     | 35%               | 23%         | 0%      | 58%   | 0.38             | 0.22  |
| Bus                | 20%          | 55%        | 25%     | 20%               | 28%         | 0%      | 48%   | 4.43             | 2.10  |

Source: Interview Survey by JICA Study Team

As Table 11.1.8 shows, the time value estimated by working income is 1.42 Rs/minute in the case of passenger car, but the time value adjusted by non-employment ratio and trip purpose is 0.82 Rs /minute.

The following travel time value will be used for the time saving benefit calculation of the project as follows:

The increase in time value as a result of the growth of GRDP is not considered because all cost and benefit are compared at present value by constant price for the calculation of Internal Rate of Return.

#### 11.2 Network and Cost

#### 11.2.1 Project Network and Cost Components

## (1) Network for Evaluation

A total length of the project expressway network, 80.75 km, is defined to be the following groups for economic evaluation namely:

| 1) Whole Expressway Network                 | 80.75km  |
|---------------------------------------------|----------|
| 2) Section of Kundli - Ghaziabad Expressway | 49.00km  |
| 2) Section of Ghaziabad – Meerut Expressway | 39.95 km |

Each group is evaluated separately to determine 1) scale of investment, 2) timing of investment, and 3) priority of investment using economic analysis.

The three alternatives are considered to be constructed initially as 4 lanes with 6 lanes for the section between Ghaziabad I.C and Ghaziabad junction. Alternatives of widening to 6 lanes are considered when traffic demand reaches the capacity in year 2022, 17 years after the opening. The upgrading of parallel national highways is not considered as an alternative.

# (2) Project Cost

Table 11.2.1 shows initial investment cost for each section. The cost figures in the table are based on the calculation in Chapter 9. Total investment cost of the whole network, K-G and G-M, is 11,350 million Rs.

Table 11.2.1 Component of Construction Cost of Sections

Unit: Million Rs.

| Items                | K-G Section | G-M Section | (K-G)+(M-G) |
|----------------------|-------------|-------------|-------------|
| Length (km)          | 49.00km     | 39.55km     | 80.75km     |
| Construction         | 5,445       | 3,696       | 8,422       |
| Land Acquisition     | 1,384       | 1,071       | 1,902       |
| Engineering Services | 678         | 473         | 1,025       |
| Total                | 7,507       | 5,240       | 11,350      |

The investment cost includes physical contingency but does not include price contingency. The price is shown in 1999 prices. More details of initial investment cost by segment are shown in Appendix Table 11.2.1. The cost of maintenance and cost of widening are shown in Appendix 11.2.2.

#### 11.2.2 Estimation of Economic Costs

In the economic analysis of the project, the financial cost, which is estimated in market price, was converted to an economic price. Economic cost expresses the real value of expressway investment cost in monetary unit. This economic cost is compared with the economic benefit to justify the project. The following 6 items estimated by market price are converted into economic cost.

### (1) Foreign and Local Portion

Economic cost of the project is estimated separately for, 1) construction cost, 2) engineering cost and 3) land acquisition cost. Cost components of foreign and local portion are as follows:

|                          | <ol><li>Foreign portion</li></ol> | <ol><li>2) Local portion.</li></ol> |
|--------------------------|-----------------------------------|-------------------------------------|
| 1) Construction cost     | 6%                                | 94%                                 |
| 2) Engineering cost      | 19%                               | 81%                                 |
| 3) Land acquisition cost | 0%                                | 100%                                |

The local portion is further divided into following 5 items; 1) tradable goods, 2) non-tradable goods, 3) skilled labor, 4) non-skilled labor, and 5) tax.

#### (2) Economic Price of Foreign and Tradable Goods

Economic prices of foreign and tradable goods are the same with market price. The price of those goods shows the real value by the free competitive international market.

#### (3) Economic Price of Non-Tradable Goods

Non-tradable goods used in the project are considered not to show their real value because of piece distortion. The shadow (real value) exchange coefficient are calculated by the

following formula by using data in Table 11.2.2 namely:

= 1.07

Shadow exchange coefficient is calculated as 1.07, which means the price of non-tradable goods is separated from the international market price as a result of high import duties.

Table 11.2.2 Shadow Exchange Coefficient for Non-Tradable Goods

Unit: Million Rs.

|              | 1993-94 | 1994-95 | 1995-96   | 1996-97   | 1997-98   | Average   |
|--------------|---------|---------|-----------|-----------|-----------|-----------|
| Import (CIF) | 731,010 | 899,710 | 1,465,420 | 1,737,530 | 1,902,670 | 1,347,268 |
| Import Tax   | 2,265   | 27,145  | 36,066    | 370,164   | 400,389   | 167,206   |
| Export (FOB) | 696,558 | 826,740 | 1,084,810 | 1,211,940 | 1,295,160 | 1,023,042 |
| Export Tax   | 660     | 850     | 1,080     | 1,172     | 1,410     | 1,034     |
| Subsidy      | Na.     | Na.     | Na.       | Na.       | 20        | 20        |

Source:1)Statistical Outline of India 1998-99,p114

### (4) Economic Price of Right of Way

The total cost of land acquisition is estimated at 1,900 million Rs in market price for required land of 916 ha. Regardless, the land belongs to the government or even if the government finances total land acquisition cost, the cost should be included in the economic project cost. Economic cost of right of way is estimated by the productivity of the land.

The area produces mainly wheat, rice, cotton, repseed, bajra, gram and sugarcane. Those productions are estimated by area, by volume, and by amount of production. The amount of productivity of average agriculture land is obtained at 688,842 Rs. per hectare in 1999 price under the assumption of market interest rate of 10%. Details are shown in Appendix Table 11.2.3, Land Productivity of the Study Area.

<sup>2)</sup> Statistical abstract India 1997, p255,p490

<sup>3)</sup> Data by Internet, Ministry of Finance

The right of way consists of 1) village land, 2) agriculture land, and 3) vacant land. As shown in Table 11.2.3, for the amount of land productivity 2 times is applied to village land and only 10% for vacancy land against agriculture land to get economic price. Shadow rate, which is the conversion factor for economic price is obtained as follows:

Shadow rate of right of way: 927 Million Rs / 1,332 Million Rs = 69.6%

Table 11.2.3 Economic Price of Right of Way of the Expressway

Unit:1000Rs.

| r=                |               |            |                |                             | Cint.10001ts. |        |
|-------------------|---------------|------------|----------------|-----------------------------|---------------|--------|
| Kinds of Land for |               | Marl       | cet Price      | Eco                         |               |        |
| Land Acquisition  | Required Area | Total Cost | Adjusted Cost  | PresentValueof Productivity |               | Shadow |
|                   | (ha)          |            | Solatium(-30%) | 688,842/ha                  | Adjustment    | Rate   |
| Village Area      | 572           | 1,187,954  | 831,568        | 394,018                     | 788,035       |        |
| Agriculture Arca  | 186           | 386,293    | 270,405        | 128,125                     | 128,125       |        |
| Vacant land       | 158           | 328,141    | 229,699        | 108,837                     | 10,884        |        |
| Total             | 916           | 1,902,388  | 1,331,672      | 630,979                     | 927,043       | 69.6%  |

#### (5) Economic Price of Labor

Economic price of skilled labor and unskilled labor are different. Skilled labor is assumed the same with market price and economic price, assuming free competitive condition.

Economic price of unskilled labor is calculated by the comparison between number of workable unskilled labor and number of unemployment. Based on the socio-economic data, the shadow wage rate is estimated at 72% in this analysis

#### (6) Tax and Duties

Amount of tax included assumed to be 10% in financial cost though there are many kinds and different levels of taxes. The tax is assumed, as the cost needed for the Government to operate as country. The figure of 10% is used in normal feasibility studies. These taxes and duties are removed from financial cost for they are not real costs of the economy, but are only transfer of payments.

# (7) Summary of Economic Cost of the Project

The following overall conversion factors are applied to the financial cost to estimate the economic cost namely:

| 1) | Construction cost         | 90.5% |
|----|---------------------------|-------|
| 2) | Engineering cost          | 88.9% |
| 3) | Land acquisition cost     | 69.6% |
| 4) | Routine maintenance cost  | 75.3% |
| 5) | Periodic maintenance cost | 83.1% |

Table 11.2.4 shows economic costs converted from financial cost of initial investment. Calculation in details is found in Appendix Tables 11.2.4, 11.2.5, and 11.2.6. Economic cost of routine works and widening are shown in Appendix Table 11.2.2.

Table 11.2.4 Summary of Conversion from Financial Costs to Economic Cost

Unit: 1000 Rs.

| Classification   | K-G&G-M 80.75km |           | K-G Sectio | n 49.00km | G-M Section 39.55km |           |  |
|------------------|-----------------|-----------|------------|-----------|---------------------|-----------|--|
|                  | Financial       | Economic  | Financial  | Economic  | Financial           | Economic  |  |
| Construction     | 8,421,751       | 7,620,656 | 5,444,845  | 4,926,920 | 3,696,084           | 3,344,505 |  |
| Engineering      | 1,025,358       | 911,168   | 678,238    | 602,705   | 473,340             | 420,626   |  |
| Land Acquisition | 1,902,388       | 1,324,348 | 1,383,913  | 963,411   | 1,071,145           | 745,678   |  |
| Total            | 11,349,497      | 9,856,172 | 7,506,996  | 6,493,036 | 5,240,569           | 4,510,808 |  |

#### (8) Yearly Allocation of the Project Cost

It reacquires 6 years for the construction at the earliest. Table 11.2.5 shows yearly allocation of investment cost by sections. The yearly investment ratio on average is as follows:

| 1%      | for the 1st year             |
|---------|------------------------------|
| 9 ~ 10% | for the 2nd year             |
| 10~15%  | for the 3rd year             |
| 10~20%  | for the 4th year             |
| 27~33%  | for the 5 <sup>th</sup> year |
| 28~35%  | for the 6 <sup>th</sup> year |

**Table 11.2.5 Yearly Allocation of Investment Cost (Economic Cost)** 

Unit: 1000 Rs.

| Year  | K-G &G-M 80.75km |      | K-G Sec   | K-G Section 49.00km |      | G - M Section 39.55km |           |      |           |
|-------|------------------|------|-----------|---------------------|------|-----------------------|-----------|------|-----------|
|       | Financial        | %    | Economic  | Financial           | %    | Economic              | Financial | %    | Economic  |
| 2000  | 164,484          | 1%   | 142,842   | 108,795             | 1%   | 94,100                | 75,949    | 1%   | 65,373    |
| 2001  | 988,916          | 9%   | 858,798   | 702,033             | 9%   | 607,210               | 530,283   | 10%  | 456,440   |
| 2002  | 1,399,464        | 12%  | 1,215,328 | 1,112,581           | 15%  | 962,306               | 530,284   | 10%  | 456,441   |
| 2003  | 1,841,101        | 16%  | 1,598,856 | 1,478,838           | 20%  | 1,279,093             | 500,175   | 10%  | 430,525   |
| 2004  | 3,428,602        | 30%  | 2,977,479 | 2,003,208           | 27%  | 1,732,637             | 1,752,777 | 33%  | 1,508,699 |
| 2005  | 3,526,930        | 31%  | 3,062,870 | 2,101,541           | 28%  | 1,817,689             | 1,851,101 | 35%  | 1,593,331 |
| Total | 11,349,497       | 100% | 9,856,172 | 7,506,996           | 100% | 6,493,036             | 5,240,569 | 100% | 4,510,808 |

#### 11.3 Estimation of Benefit

#### 11.3.1 Users Benefit and Toll Level

## (1) Economic Benefit and Users Benefit

Economic benefit which is used for project evaluation consists of two groups; (1) benefit from direct user of expressway by using expressway + city road, (2) benefit from non-users of expressway by using only city street. Toll is related only to the direct users benefit of expressway.

### (2) Users Benefit and Users Surplus

In the traffic analysis, it is clear that the toll level of 1.5 Rs /PCU-km makes the highest toll revenue. The highest revenue is the key factor to cover the high cost and quick completion of expressway by user charge. Therefore, following three items should be clear when 1.5Rs/PCU-km is charged to users:

- 1) Amount of users benefit
- 2) Level of benefit users obtained
- 3) Ratio between toll fee and users surplus

#### (3) Users Benefit

Table 11.3.1 shows the result of the calculation of financial (not economic) user benefit by 42,600-vehicle per day on the expressway in 2006. Result can be summarized as follows:

Total users' vehicle operating cost saving 3,414,000 Rs
Total time cost saving 2,884,000 Rs
Total 6,298,000 Rs

Table 11.3.1 Amount of Financial Users Benefits in 2006

| Items               | 3                    | Unit   | Passenger Car | Bus   | Truck  | Total  |
|---------------------|----------------------|--------|---------------|-------|--------|--------|
|                     | Without              | 1000Rs | 33,548        | 1,519 | 17,010 | 52,077 |
| voc                 | With                 | 1000Rs | 31,207        | 1,451 | 16,006 | 48,663 |
|                     | Users Saving Benefit | 1000Rs | 2,341         | 68    | 1,004  | 3,414  |
|                     | Without              | 1000Hr | 282           | 9     | 71     | 362    |
| Travel              | With                 | 1000Hr | 185           | 7     | 57     | 249    |
| Time Cost           | Travel Hour Saving   | 1000Hr | 97.0          | 2.0   | 14.0   | 113.0  |
|                     | Time value/hour      | Rs     | 61.2          | 126.0 | 0.0    |        |
|                     | Users Saving Benefit | 1000Rs | 5,936         | 252   | 0      | 6,188  |
| Total Users Benefit |                      | 1000Rs | 8,277         | 320   | 1,004  | 9,602  |

## (4) Toll Charge and Surplus

Table 11.3.2 shows relationship between financial users' benefit and toll fee, 1.5 Rs per PCU-km. The convert rate of PCU-km to vehicle-km for passenger car is 1.0, bus is 2.7, and for truck is 1.9. Therefore, when 1.5 Rs per PCU-km is applied to vehicle types, passenger car is 1.5 Rs/km, bus is 4.0 Rs/km, and truck is 2.8 Rs/km. The result can be summarized as follows:

- 1) The level of toll, 1.5 Rs./pcu-km represents a Toll Charge Ratio of 32 % of users' benefit on average.
- 2) Users can get 68 % of surplus benefit by using the expressway on average.
- 3) Amount of surplus benefit by vehicle types is passenger car; 77 %, bus; 41 % and truck; 2 %. A lower surplus of trucks accrued from the negligence of such time values of cargoes in the user benefit calculation.

Level of toll must be less than road users' benefit. Even the case where only vehicle operating cost saving is considered as the benefit, toll of 1.5 Rs/pcu-km account for 90 % of the benefit, but users still receive 10 % of surplus benefit on average.

Table 11.3.2 Level of Toll and Users Surplus in 2006

| Item                     | Passenger Car | . Bus | Truck | Total |
|--------------------------|---------------|-------|-------|-------|
| Total User Benefit       | 8,277         | 320   | 1,004 | 9,602 |
| Total PCU-km(1000)       | 1,260         | 126   | 658   | 2,044 |
| Users Benefit/PCU-km     | 6.57          | 2.54  | 1.53  | 4.7   |
| Toll 1.5Rs/PCU-km        | 1.5           | 1.5   | 1.5   | 1.5   |
| Total Vehicle-km(1000)   | 1,260         | 47    | 356   | 1,663 |
| Users Benefit/Vehicle-km | 6.57          | 6.81  | 2.82  | 5.8   |
| PCU/Vehicle Covert Ratio | 1.0           | 2.7   | 1.9   | •••   |
| Toll /Vehicle-km         | 1.5           | 4.0   | 2.8   |       |
| Toll Charge Ratio        | 23%           | 59%   | 98%   | 32%   |
| Users Surplus to 1.5Rs   | 77%           | 41%   | 2%    | 68%   |

### 11.3.2 Estimation of Economic Benefit

## (1) Kinds of Benefit

Table 11.3.3 shows the kinds of benefits derived from the construction of expressway.

#### (2) Benefit Used for Economic Evaluation

The following three major direct users' benefits are selected and measured for economic evaluation of the project:

- 1) Benefits of Driving Cost Saving (or Vehicle Operating Cost Saving);
- 2) Benefits of Driving Time Saving (or Time Cost Saving); and
- 3) Decrease of Traffic Accident

Increase of land productivity and utilization especially in the area located near the interchanges of the project, is benefit from the project. The quick movement of commodities ensures smaller inventory costs and results in economic operations. Also there is an investment cost saving of the parallel highway by the construction of the Expressway. There are other measurable benefits as listed in the table, such as decrease of spoiling loss of agricultural products.

## Table 11.3.3 Kinds of Benefit of Expressway Project

- 1) Benefits of Traveling Cost Saving (or Vehicle Operating Cost Saving)
- 2) Benefits of Traveling Time Saving (or Time Cost Saving)
- 3) Decrease of Traffic Accident
- 4) Other Indirect Benefits
  - 1) Benefits from Increase of Land Productivity
  - 2) Time and Interest Saving by Quick Movement of Commodities
  - 3) Decrease of Spoiling Loss of Agricultural Products
  - 4) Investment Cost Saving of Parallel Highway
  - 5) Enhancement of Urban Development
  - 6) Strengthening the Function as the Capital City
  - 7) Decrease of Social Cost by Improvement of Environments
  - 8) Enhancement of Social Development
  - 9) Integration of the Region

But this amount is relatively small compared with benefits mentioned above and often there are many uncertain factors. Therefore, they are not included in the main calculation as benefit but will be considered in sensitivity analysis.

# (3) Estimation of VOC Saving Benefit

Vehicle operating cost saving benefit is estimated to 1) passenger car, 2) bus, 3) truck, and 4) motorcycle. Benefits to motorcycle are included, though they are not allowed on the expressway but motorcycles still obtain benefit as indirect beneficiaries. The number of trips, trip distance, travel speed and VOC of 4 kinds of vehicles are compared with and without project from the year 2006, opening year, to the year 2033.

Table 11.3.4 shows calculated result of benefit of the vehicle operating cost saving. Appendix 11.3.1 shows more details.

Table 11.3.4 Benefit of the Vehicle Operating Cost Saving by Vehicle Types

Unit: 1000 Rs/Day

| Oint, 1000  |               |     |       |            |                    |  |  |  |
|-------------|---------------|-----|-------|------------|--------------------|--|--|--|
| Target Year | Passenger Car | Bus | Truck | Motorcycle | Total (1000Rs/yer) |  |  |  |
| 2006        | 1,155         | -22 | 148   | 414        | 508,243            |  |  |  |
| 2016        | 3,347         | 5   | 922   | 3,560      | 2,350,192          |  |  |  |
| 2026        | 10,947        | 299 | 7,879 | 6,596      | 7,716037           |  |  |  |

Total VOC saving benefit of bus is calculated at -22,000Rs in year 2006, because of the number of bus-km with project is estimate higher than the case of without project namely:

Without project: 982,000veh-km x 8.0Rs/veh-km(Unit VOC) = 7,846,000Rs/day With project: 1,004,000veh-km x 7.8 Rs/veh-km(Unit VOC) = 7,868,000Rs/day Without — with = -22,000Rs/day

# (4) Estimation of Time Cost Saving Benefit

The benefit of time cost saving is calculated by the difference of running speed between the existing city road and the project road. Beneficiaries of time cost saving are users of passenger cars, buses and motorcycles. The time saving benefit of trucks is not included here because it is calculated in running cost benefit as fixed cost saving.

Time benefit is estimated by using the same data used in VOC except the data of unit time value. Following unit time value is used as presented in the previous section namely:

| 1) | Passenger car | 0.82 Rs/minute | 49.2 Rs/hour  |
|----|---------------|----------------|---------------|
| 2) | Bus           | 2.10 Rs/minute | 126.0 Rs/hour |
| 3) | Motorcycle    | 0.22 Rs/minute | 13.2 Rs/hour  |

Tables 11.3.5 shows the result of estimation of time cost saving benefit. Details are in Appendix Table 11.3.2.

Table 11.3.5 Time Cost Saving Benefit of the Project

Unit: Million Rs/year

| Target Year | ar Passenger car Bus Motorcycle |     | Total |        |
|-------------|---------------------------------|-----|-------|--------|
| 2006        | 1,742                           | 189 | 1,267 | 3,198  |
| 2016        | 4,649                           | 454 | 2,934 | 8,037  |
| 2026        | 8,782                           | 869 | 6,332 | 15,984 |

The amount of benefit from time cost saving is higher than the VOC saving. The main reason is the project is located in the city and the big effect comes from the time saving of indirect beneficiaries.

# (5) Benefit of Traffic Accident Saving

# 1) Accident Rate of Expressway

Accidents include death, injury, damage of vehicles and others. Around 60,000 people die of road accidents a year recently in India, but there is no data of accident rate in relation with vehicle kilometer. A comparison of various accident rates on expressways and on all roads in Japan shows that the death accident rate on expressway is about 1/7th of the total road. Appendix Table 11.3.3 shows the statistical data in the case of Japan. The decrease of accidents as a result of the expressway is considered as a monetary benefit by applying the data of Japan.

# 2) Cost of Fatal Road Accident .

Decrease of fatal road accident is counted as project benefit. Decrease of injury, loss of property and of damage of vehicles are not included here since those data are hard to obtain. The Road User Cost Study in India, financed by Asian Development Bank undertaken in 1990 estimated the fatal accident cost for 1978,1981 and 1990. Data of average income of the victim in this study was taken from result of insurance companies. Table 11.3.6 shows the result of the study.

Table 11.3.6 Estimation of the Cost of A Fatal Road Accident

Unit: Rs

| Items                                               | 1978   | 1981    | 1990    |
|-----------------------------------------------------|--------|---------|---------|
| Average age of the fatal victim (years)             |        | 31      | 31      |
| Average life expectancy (years)                     | 54     | 59      | 59      |
| Curtailment of the earning (years)                  |        | 28      | 28      |
| Average income of the victim (Rs/year)              | 4,200  | 15,720  |         |
| Present value of the loss of output of the victim   | 39,220 | 157,200 | 171,820 |
| Additional cost of hospital, lawyer and police, etc | 10,584 | 39,300  | 38,734  |
| Total                                               | 49,804 | 196,500 | 210,554 |

Source: RUDS(Study for Updating Road User Cost Data), financed by ADB in 1990.

Based on the study, the fatal accident cost is estimated at 250,000 Rs in 1999 price, under the following assumptions:

1) Average age of the fatal victim
2) Average life expectancy
60 year old

3) Curtailment of the earning 29 years

4) Average income of the victim 20,000 Rs per year

5) Present value of the loss of output after victim 200,000 Rs (Discounted future income rate at 10%)

6) Additional cost of hospital fee, legal expense and, police expense, etc (+ 25%)

50,000 Rs

7) Total 250,000Rs

## 3) Benefit of Fatal Accident

Table 11.3.7 shows the benefit of fatal accident saving by expressway. By applying the data taken from the case of Japan, total saving of person's life is estimated at 540 in year 2006, which is estimated at 125 million Rs in monetary term. Details are shown in Appendix Table 11.3.4.

Table 11.3.7 Fatal Road Accident Saving of the Project

| Target Year | Without(Person) | With(Person) | Saving(Person) | Million Rs |
|-------------|-----------------|--------------|----------------|------------|
| 2006        | 617             | . 77         | 540            | 125        |
| 2016        | 1,243           | 155          | 1,088          | 253        |
| 2026        | 1,824           | 228          | 1,596          | 371        |

# 11.4 Economic Evaluation of Project

#### 11.4.1 Base and Alternative Network Studies

## (1) Cost Benefit Comparison

Table 11.4.1 includes the following costs and benefits comparison of the project namely:

- 1) Project life: 2000 -2033 34 years
- 2) Construction period: 6 years
- Cost component: capital cost, routine maintenance and operation cost, periodic maintenance cost and widening cost.
- 4) Salvage value: 270 million Rs is deducted year 2033 as salvage value of widening cost which is taken at 48.5% of the widening cost with 30 years depreciation period.

Table 11.4.1 Cost Benefit Analysis for Investment Justification

|     |      |          | 80.75km    |        |             |               |          |         | and the second second | Unit: Mil | mon v2  |
|-----|------|----------|------------|--------|-------------|---------------|----------|---------|-----------------------|-----------|---------|
|     |      |          | nomic Cost |        |             | onomic Benefi | its      |         | Pres                  | ent Worth | 1       |
| No. | year | Capital  | Routine &  | Total  | Passenger   | Vehicle       | Traffic  | Total   | Discount              | Cost      | Benefit |
|     |      | Periodic | Operation  |        | Time Saving | VOC Saving    | Accident |         | Factor                | 1         |         |
|     |      |          |            |        |             |               |          |         |                       |           |         |
| 1   | 2000 | 143      |            | 143    |             |               |          |         | 0.79                  | 113       |         |
| 2   | 2001 | 859      | 0          | 859    |             |               |          |         | 0.63                  | 538       |         |
| 3   | 2002 | 1,215    | 0          | 1,215  |             |               |          |         | 0.50                  | 602       |         |
| 4   | 2003 | 1,599    | 0          | 1,599  |             |               |          |         | 0.39                  | 627       |         |
| 5   | 2004 | 2,977    | 0          | 2,977  |             |               |          |         | 0.31                  | 924       |         |
| 6   | 2005 | 3,063    | 0          | 3,063  |             |               |          |         | 0.25                  | 752       | ļ       |
| 7   | 2006 | 0        | 25         | 25     | 1,599       | 508           | 125      | 2,233   | 0.19                  | 5         | 434     |
| 8   | 2007 | 0        | 25         | 25     | 1,762       | 672           | 135      | 2,569   | 0.15                  | 4         | 395     |
| . 9 | 2008 | 0        | 25         | 25     | 1,940       | 844           | 144      | 2,928   | 0.12                  | 3         | 356     |
| 10  | 2009 | 0        | 25         | 25     | 2,133       | 1,020         | 155      | 3,307   | 0.10                  | 2         | 318     |
| 11  | 2010 | 0        | 25         | 25     | 2,342       | 1,200         | 166      | 3,708   | 0.08                  | 2         | 282     |
| 12  | 2011 | 0        | 25         | 25     | 2,568       | 1,384         | 178      | 4,130   | 0.06                  | 1         | 249     |
| 13  | 2012 | 0        | 25         | 25     | 2,814       | 1,571         | 191      | 4,576   | 0.05                  | 1         | 218     |
| 14  | 2013 | 0        | 25         | 25     | 3,080       | 1,761         | 205      | 5,047   | 0.04                  | 1         | 191     |
| 15  | 2014 | 0        | 25         | 25     | 3,369       | 1,955         | 220      | 5,543   | 0.03                  | 1         | 166     |
| 16  | 2015 | 0        | 25         | 25     | 3,681       | 2,151         | 236      | 6,068   | 0.02                  | 1         | 143     |
| 17  | 2016 | 660      | 25         | 685    | 4,019       | 2,350         | 253      | 6,622   | 0.02                  | 13        | 124     |
| 18  | 2017 | Ó        | 25         | 25     | 4,324       | 2,709         | 262      | 7,295   | 0.01                  | 0         | 108     |
| 19  | 2018 | 0        | 25         | 25     | 4,647       | 3,098         | 271      | 8,017   | 0.01                  | 0         | 94      |
| 20  | 2019 | 0        | 25         | 25     | 4,989       | 3,521         | 282      | 8,791   | 0.01                  | 0         | 82      |
| 21  | 2020 | 0        | 25         | 25     | 5,350       | 3,980         | 292      | 9,622   | 0.01                  | 0         | 71      |
| 22  | 2021 | 0        | 25         | 25     | 5,732       | 4,478         | 303      | 10,514  | 0,01                  | 0         | 61      |
| 23  | 2022 | 2,840    | 25         | 2,865  | 6,136       | 5,021         | 315      | 11,472  | 0.00                  | 13        | 53      |
| 24  | 2023 | 0        | 25         | 25     | 6,562       | 5,611         | 328      | 12,501  | 0.00                  | 0         | 45      |
| 25  | 2024 | 0        | 25         | 25     | 7,013       | 6,253         | 342      | 13,607  | 0.00                  | 0         | 39      |
| 26  | 2025 | 0        | 25         | 25     | 7,489       | 6,953         | 356      | 14,798  | 0.00                  | 0         | 34      |
| 27  | 2026 | 898      | 25         | 923    | 7,992       | 7,716         | 371      | 16,079  | 0.00                  | 2         | 29      |
| 28  | 2027 | 0        | 25         | 25     | 8,523       | 8,549         | 387      | 17,458  | 0.00                  | 0         | 25      |
| 29  | 2028 | 0        | 25         | 25     | 9,083       | 9,458         | 404      | 18,945  | 0.00                  | 0         | 21      |
| 30  | 2029 | 0        | 25         | 25     | 9,674       | 10,452        | 422      |         | 0.00                  | . 0       | 18      |
| 31  | 2030 | 898      | 25         | 923    | 10,298      | 11,538        | 442      | 22,278  | 0.00                  | ì         | 16      |
| 32  | 2031 | 0        | 25         | 25     | 10,957      | 12,727        | 463      | 24,146  | 0.00                  | Ó         | 13      |
| 33  | 2032 | Õ        | 25         | 25     | 11,651      | 14,029        | 485      | 26,165  | 0.00                  | ŏ         | 12      |
| 34  | 2033 | 228      | 25         | 253    | 12,384      | 15,455        | 508      | 28,347  | 0.00                  | ŏ         | 10      |
| 0   | 0    | 15,380   | 696        | 16,075 | 162,110     | 146,963       | 8,241    | 317,315 | 26.37%                | 3,607     | 3,607   |

1) Passenger time cost saving: 50% to the total is used as benefit.

2) Total economic benefit: of which time saving is 51%, VOC saving 46%, and

accident saving 3%.

(2) Result of Economic Analysis

Total present value of cost and benefit (million Rs.) become equal when discounted at

26.37%, which means economic internal rate of return (EIRR) is 26.37%.

When the Net present value (NPV) and benefit cost ratio (BC ratio) is calculated,

discounted at 12% of the opportunity cost of capital the result is as follows:

1) Net Present Values (NPV):

Benefit 24,549 million Rs - Cost 6,414 million Rs = 18,134 million Rs.

2) Cost Benefit Ratio (B/C):

Benefit 24,549 million Rs / Cost 6,414 million Rs = 3.85

Economic analysis will be made to ensure the level of investment scale, investment of

timing and investment priority of alternatives optimize use of national resources.

EIRR is the discounted rate in which total discounted present value of benefits equals to

the total discounted present value of costs. The higher the internal rate of return is, the

higher is the priority of project. If the internal rate of return turns out higher than the

opportunity cost of capitals, that is 12% in the economic analysis, investment is proved

to be feasible.

26.37% of EIRR is much higher than the opportunity cost of capital. Therefore project is

judged feasible and proves economically feasible from the national point of view.

(3) Economic Analysis of K-G and G-M Section

Analysis is made for Kundli - Ghaziabad section and for Gaziabad - Meerut section

separately. Following are the results of the analysis:

Kundli - Ghaziabad section

EIRR 27.06%; and

Gaziabad -- Meerut section

EIRR 25.29%

11 - 24

EIRR of both sections are over 12% of opportunity cost of capital, which means both are economically feasible. Since the degree of EIRR is similar, project implementation does not need to be conducted by stage. Details are given in Appendix 11.4.1 and 2.

# 11.4.2 Sensitivity Analysis of Base Case

#### (1) Cost increase and Benefit Decrease

Table 11.4.2 shows possible change of EIRR due to future uncertainty in cost increase and benefit decrease of the project for the base case. Followings are the results of the sensitivity analysis.

- 1) Project is feasible even if the cost increases around 20%;
- 2) Project is feasible even if the benefit decreases around 20%; and
- 3) Project is feasible even if benefit decreases 20% and cost increases 20%.

Table 11.4.2 Sensitivity Analysis of the Project

| Conditions |      | Investment | Cost Increase |        |        |
|------------|------|------------|---------------|--------|--------|
|            |      | 0          | 10%           | 15%    | 20%    |
| Benefit    | 0    | 26.37%     | 25.07%        | 24.49% | 23.93% |
| Decrease   | -10% | 24.93%     | 23.68%        | 23.14% | 22.62% |
|            | -15% | 24.15%     | 22.97%        | 22.42% | 21.91% |
|            | -20% | 23.38%     | 22.21%        | 21.69% | 21.20% |

## (2) Effect of Time Cost

Percentage of time saving benefit in the total benefits is relatively high. It amounts to 51% of the total benefit. The economic viability of transport project is sometimes analyzed excluding time saving costs. In this case the benefits are as follows:

Not including time saving benefit EIRR is 15.97%

EIRR, not including time cost saving benefit is 15.97% which is much less comparable with the case of the base case, 26.37%. But the project is still economically feasible.

### (3) Effect of FNG

Faridabad – Noida – Ghaziabad expressway (FNG) is considered to be completed by year 2006 in the base case analysis. The case where the FNG is not completed by 2006 is analyzed, and resulted as follows:

The number of traffic using the project will decrease marginally from 42,497 to 41,823 in 2006. This implies whether FNG exist or not does not affect the feasibility of the KG GM Expressway.

### (4) Conclusion

Results of the sensitivity analysis proves the project is economically feasible from national viewpoint, because EIRR is found to be more than the opportunity cost of capital in spite of many uncertain conditions. These uncertain conditions are namely:

- 1) Cost increase;
- 2) Benefit decrease due to toll system and to toll level;
- 3) Possible improvement of running condition on roads;
- 4) Change of time cost during project life; and
- 5) Traffic increase reaching to the capacity earlier than estimation.

There are many other benefits which will contribute to an increase in EIRR such as:

- 1) Benefits from increase of land productivity, especially utilization near the interchange area.
- 2) Enhancement of urban development.
- 3) Strengthening of the function as the capital city.
- 4) Decrease of social costs such as noise and vibration

Those benefits are not included here for EIRR calculation. EIRR is found to be more than 12 %, calculating only measurable benefits. If other benefits are included, EIRR will be higher. Therefore, it is concluded that this project is economically feasible and needs to be implemented as soon as possible.