

Station GPS Nam	e Latitude (N)	longitude (W)	· ·	Sample	······
			Water	Quality	Sediment
			Basic parameter		
Panuco River		L	Parallel Parallel		L
PR - 1 PR1	22° 15.20'	97° 48.36'	Ø	0	0
PR - 2 PR2	22' 14.15'	97° 49.90'	0		
PR - 3 PR3	22' 12.40'	97°51.08'	O	0	0
PR - 4 PR4	22' 13.61'	97° 53.84'	0		
PR - 5 PR5	22' 13.35'	97° 53.98' -	Ø	O ^N	0
Pueblo Viejo Lago	on				
PL - 1 PL1	22' 12.14'	97° 50.79'	0		
PL - 2 PL2	22°11.20'	97° 50.79'	0	0	0
PL - 3 PL3	22° 11.15'	97°55.00'	0		
PL - 4 PL4	22' 09.61'	97° 53.30'	O 1	0	0
PL - 5 PL5	22°06.75'	97° 52.50'	0	0	0
El Conejo Lagoon		·····			
CL - 1 CL1	22°25.50'	97° 53.05'	0	0	0
<u>CL - 2 CL2</u>	22 25.08	97° 52.80'	0		L
Altamira Industriat					
AP - 1 AP1	22° 29.82'	97° 51.10'	0		
AP + 2 AP2	22° 29.19'	97' 51.10'	© O	0	0
AP - 3 AP3	22°28.54' 22°29.19'	97° 51.10'	0 Ø	· .	
AP - 4 AP4 AP - 5 AP5	22°29.19' 22°29.19'	97°52.11' 97°53.11'	0	о	0
AP - 5 AP5 Coastal Area	22 29.19	97 55.11		<u>U</u>	<u> </u>
SL1 - 1 SL11	22' 31.88'	97° 50.95'	0	0	0
SL1 - 13L11 SL1 - 2 SL12	22 31.88	97° 49.70'	ŏ		Ĭ
SL2 - 1 SL21	22' 29.19'	97 50.55	Ø	0	0
SL2 + 2 SL22	22" 29.19	97° 49.29'	ŏ	ŏ	ŏ
SL3 - 1 SL31	22° 26.28'	97 50.51	Ö	Ŭ	
SL3 - 2 SL32	22' 26.60'	97 49.30	Ŏ		
SL4 1 SL41	22' 23.64'	97 49.85'	Ø	O O	0
SL4 - 2 SL42	22 23.95	97 48.69	Ø	0	
SL5 - 1 SL51	22°20.99'	97°49.07'	. O		}
SL5 - 2 SL52	22°21.28'	97° 47.95'	• O		
SL6 - 1 SL61	22° 18.35'	97° 47.91'	Ø	O O	0
SL6 - 2 SL62	22° 18.80'	97° 46.81'	O		0
SL7 - 1 SL71	22' 15.92'	97° 46.25	O	O O	
SL7 - 2 SL72	22 16.04	97° 45.80'	Ø		
SL7 - 3 SL73	22 16.16	97° 45.20'	Ø	0	0
SL7 - 4 SL74	22 16.55	97° 43.50'	0		
SL8 - 1 SL81	22° 13.03'	97° 46.85') O	Ó	0
SL8 - 2 SL82	22° 13.13'	97° 45.60'	0		
PM - 1 PM1	22° 16.99'	97° 47.05'	Ø	0	0
PM - 2 PM2	22° 16.50'	97° 46.80'	Ø	ł	1
PM - 3 PM3	22° 15.38'	97° 46.50'			
PM - 4 PM4	22° 14.87'	97° 46.60'		0	0
SLA- 1 SLA1	22° 16.40'	97° 46.09'			
SLA - 2 SLA2	22° 16.85' 22° 18.23'	97° 45.80' 97° 44.71'		4 19 19 19 19 19 19 19 19 19 19 19 19 19	
SLA - 3 SLA3 SLB - 1 SLB1					
	22° 15.52' 22° 15.20'			(19.,141) 	
SLB - 2 SLB2 SLB - 3 SLB3	22 15.20	97° 45.41' 97° 43.95'			
orn alorno	22 14.20	91 40.90		I	<u></u>

6

. .

Table C.1(1) Sampling Location for Monitoring Survey

©: 2 layers sampling point

O : 1 layer sampling point Δ : For only measurement using STD

and the second 1. 1. 1. 1. 1. 1.

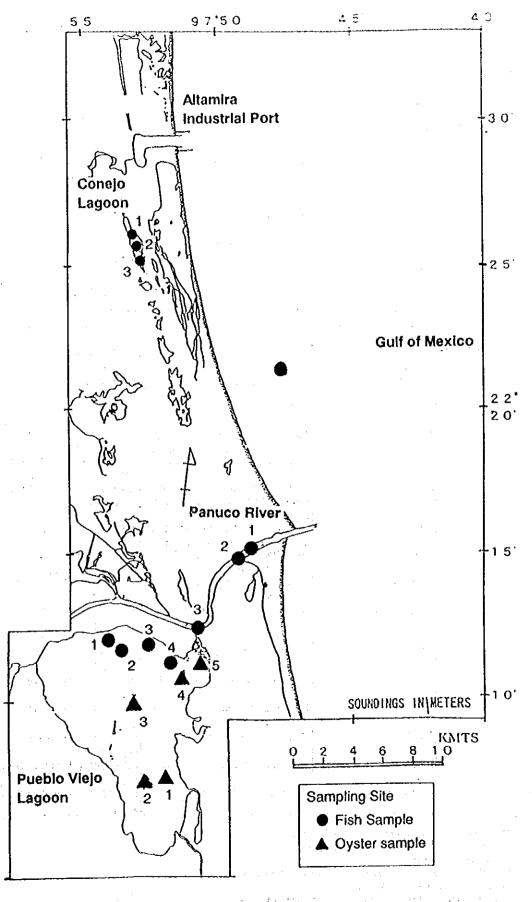


Figure C.2 Sampling Site for Biological Accumulation Analysis

	Parameter	Method	Reference
asic Parameter		Secchi disc on boat	
	Water temperature	STD on boat	
	Salinity	STD on boat	
	рН	Glass-electrode method	JIS K 0102 12, EPA 150.1
	DO	Winkler-sodium azide	PHSA I-3, JIS K 0102 32.1
	COD	Alkaline-iodine method	JIS K 0102 19
	TOC	Non purgeable organic carbon	JIS K 0102 22, EPA 415.1
		rnethod	By TOC Analyzer
	SS	Gravimetric method	JIS K 0102 14
	NH4-N	Indophenol blue absorptiometry	PHSA II-9
	NO2-N	Naphthylethlen diamine	PHSA II-7, JIS K 0102 43.1,
	10211	absorptiometry	EPA 354.1
	NO3-N		
	1803-18	Ca-Cu column reduction method	PHSA II-6, JIS K 0102 43.2,
	T-N	Cd-Cu column reduction method	EPA 353.3
	PO4-P		JIS K 0102 45.4
	<u>гочър</u> Т-Р	Molybdenum blue absorptiometry Molybdenum blue absorptiometry	110 K 0102 40.1, PFI3A -2
	Chlorophyll-a	Spectrophotometric	JIS K 0102 46.3 PHSA IV-3-1
	Total coliform, Fecal	Membrane filter method	
	coliform		SMEWW 922A, 922D
invic Parameter	Hexane extracts	Liquid-liquid extraction,	JIS K 0102 24
UNUT drameter			
	Phenols	4-aminoantipyrine absorptiometry	
	Cyanide	4-pyridine carboxylic acid -	JIS K 0102 38
		pyraxolone_absorptiometry	
	Cr	Diphenylcarbazide	JIS K 0102 65.1.1
	Cr ⁶ '	Diphenylcarbazide	JIS K 0102 65.2.1, ÉPA 71964
	Cd	Atomic absorption spectrometry	JIS K 0102 55, EPA 7131A
	Pb	Atomic absorption spectrometry	JIS K 0102 54, EPA 7421
	Cu	Atomic absorption spectrometry	JIS K 0102 52, EPA 7211
	Zn	Atomic absorption spectrometry	JIS K 0102 53, EPA 7521
	Ni	Atomic absorption spectrometry	JIS K 0102 59, EPA 7951
	As	Atomic absorption spectrometry	JIS K 0102 61.2, EPA 7062
	7.11.	usina hvdride system	
	T-Hg	Atomic absorption spectrometry	JIS K 0102 66.1, EPA 7470A
		_using vapor reduction system	
	Alkyl mercury	Gas chromatography with ECD	JIS K 0102 66.2
	Organo phosphorus	Gas chromatography with FID	Notification No.46 ⁽¹⁾
	Trichloroethylene	Gas chromatography with ECD	JIS K 0125 5.5, EPA 8021B
	Tetrachloroethylene	Gas chromatography with ECD	JIS K 0125 5.5, EPA 8021B
	Carbon tetrachloride	Gas chromatography with ECD	JIS K 0125 5.5, EPA 8021B
	РСВ	Gas chromatography with ECD	EPA 8082, JIS K
	·		0093(Pretreatment)
•	НСВ	Gas chromatography with ECD	EPA 8081A, Tentative Survey
		·. · · · · · · · · · · · · · · · · · ·	Manual ⁽²⁾
	Aldrin	Gas chromatography with ECD	EPA 8081A, Tentative Survey
			Manual ⁽²⁾
	Endrin	Gas chromatography with ECD	EPA 8081A, Tentative Survey
			Manual ⁽²⁾
	Dieldrin	Gas chromatography with ECD	EPA 8081A, Tentative Survey
	C.OUTIT	Guo on on alogiaphy that LOD	
· · · ·	DDT	Gas chromatography with ECD	Manual ⁽²⁾ EPA 9091A Tantativa Suprav
			EPA 8081A, Tentative Survey
			Manual ⁽²⁾
	Chlordane	Gas chromatography with ECD	EPA 8081A, Tentative Survey
	1	1	Manual ⁽²⁾

Monitoring Parameters and Analytical Methods for Water Quality Table C.2

STD : Salinity, Temperature, Depth Measuring System

PHSA : A Practical Handbook on Seawater Analysis

JIS : Japan Industrial Standard

SMEWW : Standard Method for Examination of Water and Wastewater

EPA : Environmental Protection Agency

(1) Notification No. 46, 1971 of the Japanese Environmental Agency

(2) Tentative Survey Manual of External Factor Endocrine Disturbance Chemical Substance

TOC was analyzed in dry season.

starge A

Parameter	Method	Reference
article Size	Separation method with sleve	
NRP	Glass-electrode method on boat	
nition Loss	Gravimetric Method at 600	HBSS .4
OD		MAGWP 5.6
OC		By TOC Analyzer
		MAOWO # 11
unde		MAGWP 5.11 EPA 9071A (Use hexane),
exane extracts		MAGWP 5.11
Nanido	d-pyridioa carboradio acid -	H8SS 11.14
yanioe		1000 1.14
х Х	Acid digestion Diohenvicarbazide	HBSS II.12.1, EPA 3050B,
•	absorotiometry	3051, 3052 (Pretreatment)
xd	Acid digestion, Atomic absorption	EPA 3050B (Digestion),
-	spectrometry	HBSS II.6. EPA 7131A
ò.	Acid digestion, Atomic absorption	EPA 3050B (Digestion),
	spectrometry	HBSS IL7, EPA 7421
)u	Acid digestion, Atomic absorption	EPA 3050B (Digestion)
	spectrometry	HBSS II.8. EPA 7211
'n		EPA 3050B (Digestion),
	spectrometry	HBSS II.9. EPA 7951
. S		EPA 3050B (Digestion),
·	spectrometry using hydride system	HBSS II.13
-ng		1055 0.5, EFA 747 1A
lat more unt		JIS K 0102 66.2,
anyranoicury	cas chiomatography min coo	Notification No. 127 ⁽³⁾
raapophoenhorus	Gas chromatography with FID	Notification No.46 ⁽¹⁾
		JJIS K 0125 5.5, EPA 80211
nchioroearyiene	Cas citolitalography that LOD	Notification No.46 ⁽¹⁾
etrachloroethylene	Gas chromatography with ECD	JJIS K 0125 5.5, EPA 80211
Carbon tetrachloride	Gas chromatography with ECD	Notification No.46 ⁽¹⁾ JJIS K 0125 5.5, EPA 80211
	· · · · · · · · · · · · · · · · · · ·	Notification No.46 ⁽¹⁾
РČВ	Gas chromatography with ECD	JIS K 0093, EPA 8082,
		Notification No.127 ⁽³⁾
ICB	Gas chromatography with ECD	EPA 8081A, Tentative Surve
		Manual ⁽²⁾
Jdrin	Gas chromatography with ECD	EPA 8081A, Tentative Surve
	Coo obsomotoosobu with ECD	Manual ²⁾ EPA 8081A, Tentative Surve
:0060	Gas chiomalography with ECO	
Dieldrin	Gas chromatography with ECD	Manual ⁽²⁾ EPA 8081A, Tentative Surve
		Manual ⁽²⁾
DE	Gas chromatography with ECD	EPA 8081A, Tentative Surve
		Manual ⁽²⁾
Iniordane	Gas chromatography with ECD	EPA 8081A,Tentative Surve Manual ⁽²⁾
lexane extracts	Liquid-liquid extraction, Gravimetric	JIS K 0102 24
Vanide		JIS K 0102 38
Janoo	pyraxolone absorptiometry	
۶ ⁶⁺	Diphenylcarbazide absorptiometry	JIS K 0102 65.2.1, EPA
// Cd	Atomic absorption spectrometry	JIS K 0102 55, EPA 7131A
	Atomic absorption spectrometry	JIS K 0102 54, EPA 7421
°b		
26 Cu	Atomic absorption spectrometry	JIS K 0102 52, EPA 7211
	Atomic absorption spectrometry	JIS K 0102 53, EPA 7521
<u>Cu</u>	Atomic absorption spectrometry	JIS K 0102 53, EPA 7521
Zu Zn As	Atomic absorption spectrometry Atomic absorption spectrometry Atomic absorption spectrometry using hydride system	JIS K 0102 53, EPA 7521 JIS K 0102 61.2, EPA 7062
2u Zn	Atomic absorption spectrometry Atomic absorption spectrometry Atomic absorption spectrometry using hydride system Atomic absorption spectrometry using	JIS K 0102 53, EPA 7521 JIS K 0102 61.2, EPA 7062
2u Za As F-Hg	Atomic absorption spectrometry Atomic absorption spectrometry Atomic absorption spectrometry using hydride system Atomic absorption spectrometry using yapor reduction system	JIS K 0102 53, EPA 7521 JIS K 0102 61.2, EPA 7062 JIS K 0102 66.1, EPA 7470/
Zu Zn As F-Hg Alkyl-mercury	Atomic absorption spectrometry Atomic absorption spectrometry Atomic absorption spectrometry using hydride system Atomic absorption spectrometry using yapor reduction system Gas chromatography with ECD	JIS K 0102 53, EPA 7521 JIS K 0102 61.2, EPA 7062 JIS K 0102 66.1, EPA 7470/ JIS K 0102 66.2
2u Za As F-Hg	Atomic absorption spectrometry Atomic absorption spectrometry Atomic absorption spectrometry using hydride system Atomic absorption spectrometry using yapor reduction system	JIS K 0102 53, EPA 7521 JIS K 0102 61.2, EPA 7062 JIS K 0102 66.1, EPA 7470/
	ulfide exane extracts yanide r d d b u n s -Hg lkyt-mercury riganophosphorus richloroethytene etrachloroethytene etrachloroethytene cB CB Jdrin indrin bieldrin DT chlordane	organic carbon method Heating Distillation Methodexane extractsLiquid-tiquid extraction, Gravimetric methodyanide4-pyridine carboxylic acid - oyraxolone absorptiometryrAcid digestion, Diphenylcarbazide absorptiometrydAcid digestion, Atomic absorption spectrometrybAcid digestion, Atomic absorption spectrometryuAcid digestion, Atomic absorption spectrometryuAcid digestion, Atomic absorption spectrometrynAcid digestion, Atomic absorption spectrometrysAcid digestion, Atomic absorption spectrometry using hydride systemHgAcid digestion, Atomic absorption spectrometry using hydride systemHgAcid digestion, systemHgAcid digestion spectrometry using vapor reduction systemIkyl-mercuryGas chromatography with ECDichloroethyleneGas chromatography with ECDCBGas chromatography with ECDCBGas chromatography with ECDIdrinGas chromatography with ECDidrinG

Table C.3 Monitoring Parameters and Analytic Methods for Sediment

Notes:

9

9

HBSS : The Handbook of Bottom Sediment Survey, Japanese Standard

JIS : Japan Industrial Standard

EPA : Environmental Protection Agency MAGWP : The Method of Analysis Guideline of Water Pollution

(1) Notification No. 46, 1971 of the Japanese Environmental Agency

(2) Tentative Survey Manual of External Factor Endocrine Disturbance Chemical Substance

(3) Notification No. 127 issued by Water Quality Control Section, Water Protection Department, Environmental Agency

TOC was analyzed in dry season.

	Parameter	Method	Reference
Foxic Paramete	Cd	Atomic absorption	EPA 3050B (Digestion),
		spectrometry	HBSS .6, EPA 7131A
	Pb	Atomic absorption	EPA 3050B (Digestion),
	· · · · · · · · · · · · · · · · · · ·	spectrometry	HBSS .7, EPA 7421
	Cu	Atomic absorption	EPA 3050B (Digestion),
		spectrometry	HBSS8, EPA 7211
	Zn	Atomic absorption	EPA 3050B (Digestion),
		spectrometry	HBS\$.9. EPA 7951
	T-Hg	Atomic absorption	HBSS .5, EPA 7471A
		spectrometry using vapor	
	PCB	Gas chromatography with	JIS K 0093, EPA 8082,
		ECD	Notification No.127 ⁽²⁾
	HCB	Gas chromatography with	EPA 8081A, Tentative Survey
		ECD	Manual ⁽¹⁾
	Aldrin	Gas chromatography with	EPA 8081A, Tentative Survey
-		ECD	Manual ⁽¹⁾
	Endrin	Gas chromatography with	EPA 8081A, Tentative Survey
		ECD	Manual ⁽²⁾
	Dieldrin	Gas chromatography with	EPA 8081A, Tentative Survey
		ECD	Manual ⁽¹⁾
	DDT	Gas chromatography with	EPA 8081A, Tentative Survey
		ECD	Manual ⁽¹⁾

C

6

Table C.4 Analytical Method for Biological Accumulation Test

Note:

JIS : Japan Industrial Standard

EPA : Environmental Protection Agency
(2) "Tentative Survey Manual of External Factor Endocrine Disturbance Chemical Substance"
(3) Notification No.127 issued by Water Quality Control Section, Water Protection Department, EPA

C-6

Point	Sampling	Depth	Transpare		Water	Salinity	pН	DO	COD mg/l	SS
No.	Depth (m)	(m)	ncy (m)	Color No	Temperat			(mg/1)		(mg/i)
	(04)		(0))		ure ()					
PR-1	0.5	10	0.5	17	23.9	12.56	8.2	9.2	2.7	27
	9.0				22.7	33.83	8.0	5.9	0.8	16
PR-2	0.5	12	0.7	17	23.7	14.09	8.3	10	4.1	15
PR-3	0.5	9.5	0.7	16	24.2	6.27	8.5	13	7.2	21
	8.5				22.7	33.91	8.1	5.2	1.0	11
PR-4 PR-5	0.5 0.5	7.2 9.0	0.6	16	24.4	7.21	8.5	13	3.9	11
ru-9	0.5 8.0	9.0	0.8	18	25.1 22.8	3.06 33.31	8.6 8.0	15 4.2	7.8	25
PL-1	0.0	5.8	0.6	18	24.4	13.85	8.3	7.7	1.0	<u>13</u> 25
PL-2	0.5	1.3	0.1	20	24.1	17.16	8.1	7.5	2.4	130
PL-3	0.5	1.0	0.3		25.6	18.82	8.2	7.2	1.0	63
PL-4	0.5	1.2	0.2	19	25.6	18.00	8.2	7.6	2.3	68
PL-5	0.5	1.1	0.4	20	26.4	16.40	8.3	11	2.2	71
AP-1	0.5	3.0	1.6		23.3	35.96	8.1	6.6	0.2	3
AP-2	0.5 10	14	6.0	6	23.7	35.64	8.1	7.1	0.5	6
AP-3	0.5	7.2	2.1	6	22.5 24.0	36.05 35.59	<u>8.1</u> 8.1	6.4 6.8	0.5	9 3
AP-4	0.5	13	5.0	6	23.5	35.53	8.1	6.9	0.5	5
	10		0.0	Ť	22.6	36.06	8.1	7.5	1.1	8
AP-5	0.5	13	1.5	6	23.5	35.47	8.2	7.2	0.3	5
	10				22.9	35.59	8.2	6.4	1.3	2
CL-1	0.5	2.3	0.7	16	25.9	1.23	8.1	5.8	8.2	13
CL-2	0.5	0.7	0.5	17	26.0	1.24	8.0	3.1	8.7	22
SL1-1	0.5 10	11	1.5	9	23.7	36.14	8.1	6.5	0.9	6
SL1-2	0.5	15	2.5	9	22.9 23.7	36.22 36.10	8.1 8.2	6.2 7.0	1.2 1.0	5 5
SL2-1	0.5	13	1.5	10	23.7	36.15	8.2	6.7	1.1	4
•== •	10				23.0	36.22	8.2	5.9	0.8	9
SL2-2	0.5	18	2.6	8	23.8	36.14	8.2	6.5	0.8	3
	10				22.7	36.30	8.3	6.3	1.3	4
SL3-1	0.5	9.5	2.0	10	23.5	36.18	8.2	6.6	2.4	4
010.0	8.5				22.8	36.29	8.2	6.1	1.4	14
SL3-2 SL4-1	0.5	20 13	<u>2.5</u> 2.0	8 13	23.5 23.2	36.02	8.2	6.4	1.4	3
014-1	10	15	<i>2.</i> Ų	15	23.2	36.21 36.29	8.2 8.2	6.9 6.4	0.7 0.6	8 7
SL4-2	0.5	17	2.7	8	24.1	36.04	8.2	6.9	0.9	45
	10				22.8	36.29	8.2	5.9	0.8	26
SL5-1	[•] 0.5	8.0	2.0	8	23.4	36.10	8.2	6.6	1.5	6
	7.0				22.7	36,28	8.2	5.7	0.6	4
SL5-2	0.5	20	2.5	8	24.0	36.08	8.2	6.6	1.8	5
SL6-1	0.5	11	2.7	10	23.4	36.02	8.2	6.5	1.1	5
SL6-2	<u>10</u> 0.5	20	1.7	10	22.7	36.28 35.72	8.2	6.0	1.5	4
010-2	10	εŲ	1.1	10	24.7 22.8	35.72	8.2 8.2	6.7 5.9	0.9 0.7	7 10
SL7-1	0.5	15	1.0	16	24.9	33.41	8.2	6.6	1.6	20
	10				24.3	36.08	8.2	6.1	0.8	14
SL7-2	0.5	14	1.0	14	25.2	33.11	8.2	7.1	1.5	22
	10		······		24.1	36.25	8.2	6.7	1.3	11
SL7-3	0.5	14	2.1	10	24.2	36.25	8.2	6.5	0.9	4
017 4	10				23.9	36.27	8.3	6.8	0.7	10
SL7-4 SL8-1	0.5	25 6.8	4.0 1.5	6 10	24.0	36.27	8.3	6.6	0.8	1 7
010-1	0.5 5.8	Ų.Q	1.0	νı	24.5 24.3	36.27 36.26	8.3 8.2	6.7 6.5	1.6	7
SL8-2	0.5	12	2.0	8	24.3	36.27	8.2 8.2	4.8	0.4	14
PM-1	0.5	12	2.0	10	23.4	36.11	8.2	6.2	0.4	6
	10				22.6	36.30	8.2	6.0	1.3	8
PM-2	0.5	9.0	1.1	13	23.6	36.17	8.2	6.3	1.3	12
	8.0				22.7	36.29	8.2	6.0	1.2	14
PM-3	0.5	5.4	1.1	16	24.7	36.22	8.2	6.8	. 1.4	18
	4.4		. 1.2	- 15	24.6 24.5	36.21 36.23	8.2 8.2	<u>6.8</u> 6.7	0.8	27 50
PM-4	0.5	6.0								

Table C.5(1) Result of Water Quality Analysis in Dry Season [Basic Parameters]

۲

6

5.0 Note: Sampling Dates: March 1, 1999 at PR-1 to PR-5, PL-1 to PL-5 March 2, 1999 at AP-1 to AP-5, CL-1 to CL-2 March 8, 1999 at SL6-1 to SL8-2, PM-1 to PM-4 March 9, 1999 at SL1-1 to SL5-2

Point	Sampting	NH ₄ -N	NO ₂ -N	NO ₃ -N	Total	POrP	Total	Chiorophy	Total	Fecal
No.	Depthໍ (m)	(mg/i)	(mg/l)	(mg/l)	Nitrogen (mg/l)	(mg/i)	Phosphor us (mg/l)	l⊦a (g.¹)	Coliform (Col/100	Coliform (Col./100
	14	:							mi)	m)
PR-1	0.5	<0.01	0.01	0.16	0.72	0.07	0.12	42	2.3×10 ³	4.7×10 ²
	9.0	0.06	0.01	0.03	0.41	0.01	0.17	16	4.9×10 ³	40.103
PR-2 PR-3	0.5 0.5	0.02	0.02	0.18 0.16	0.65 0.56	0.07 0.07	0.23 0.25	38 49	5.8×10 ²	4.0×10 ³ 5.7×10 ¹
rn-3	0.5 8.5	0.02	0.02	0.05	0.39	0.07	0.23	49 5.0		9.7810
PR-4	0.5	0.01	0.01	0.21	0.60	0.06	0.15	46	1.8×10 ²	4.2×10 ¹
PR-5	0.5	0.04	0.01	0.17	0.57	0.08	0.23	73	3.0×10 ⁰	3.0×10 ⁰
	8.0	0.04	0.01	0.09	0.37	0.10	0.12	12		
PL-1	0.5	0.04	0.01	0.13	0.65	0.07	0.11	22	1.6×10 ⁴	1.6×10 ⁴
PL-2	0.5	0.03	0.01	0.14	0.42	0.06	0.10	13	2.3×10 ³ 7.0×10 ⁹	8.3×10 ²
PL-3 PL-4	0.5	0.03 <0.01	<0.01 <0.01	0.01	0.27 0.65	0.07	0.12	15 11	9.8×10 ²	ND 9.8×10 ²
PL-5	0.5 0.5	<0.01	<0.01	<0.01 <0.01	0.65	0.05	0.08	3.2	6.0×10 ⁹	2.0×10 ⁹
AP-1	0.5	<0.01	< 0.01	0.01	0.13	0.02	0.04	2.7	1.5×10 ¹	1.0×10°
AP-2	0.5	<0.01	<0.01	0.01	0.16	0.02	0.15	0.2	4.0×10 ⁰	ND
	10	<0.01	<0.01	<0.01	0.09	0.01	0.05	2.2		
AP-3	0.5	<0.01	<0.01	<0.01	0.13	0.01	0.09	1.2	8.0×10 ⁹	1.0×10 ⁰
AP-4	0.5	<0.01	<0.01	<0.01	0.09	0.01	0.08	2.9	1.4×10 ¹	1.0×10 ⁹
AP-5	10 0.5	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.12	0.01 0.03	0.05	0.6 0.7	1.1×10 ¹	5.0×10 ⁰
A3	10	<0.01	<0.01	<0.01	0.18	0.01	0.03	2.7	1.1210	0.0210
CL-1	0.5	0.02	<0.01	<0.01	1.4	0.07	0.12	38	3.8×10 ¹	2.9×10 ¹
CL-2	0.5	0.02	<0.01	<0.01	1.6	0.15	0.17	62	1.8×10 ²	3.2×10 ¹
SL1-1	0.5	<0.01	<0.01	0.05	0.09	0.05	0.08	0.1	ND	ND
SL1-2	10 0.5	<0.01 <0.01	<0.01 <0.01	0.02	0.17	0.06	0.11	2.0 0.7	NÐ	ND
SL2-1	0.5	0.01	<0.01	0.02	0.14	0.02	0.03	1.8	ND	ND
	10	0.01	<0.01	0.03	0.08	0.04	0.10	1.4		
SL2-2	0.5	<0.01	<0.01	0.04	0.24	0.04	0.04	1.9	ND	ND
SL3-1	10 0.5	0.01	<0.01 <0.01	0.03	0.23	0.04	0.03	1.6	ND	ND
010-1	8.5	0.01	<0.01	0.02	0.20	0.05	0.09	1.2	ind.	
SL3-2	0.5	<0.01	<0.01	0.02	0.02	0.08	0.15	2.1	ND	ND
SL4-1	0.5	0.01	< 0.01	0.02	0.13	0.02	0.07	2.1	ND	ND
SL4-2	10 0.5	<0.01 <0.01	<0.01 <0.01	0.02	0.15	0.03	0.11	4.0 0.6	ND	ND
OLIL	10	0.01	<0.01	0.02	0.16	0.05	0.11	0.1		
SL5-1	0.5	0.01	<0.01	0.02	0.13	0.04	0.06	2.3	NÐ	ND
	7.0	<0.01	<0.01	0.03	0.13	0.04	0.09	1.8		
SL5-2	0.5	0.02	<0.01	0.03	0.14	0.04	0.05	0.9	1.4×10 ¹ 5.0×10 ⁹	9.0×10 ⁰
SL6-1	0.5 10	<0.01 0.01	<0.01 <0.01	0.03 0.04	0.18 0.21	0.03	0.07	1.4 0.2	9.0X10"	ND
SL6-2	0.5	<0.01	<0.01	0.04	0.12	0.00	0.07	1.0	1.0×10 ⁹	ND
	10	<0.01	<0.01	0.03	0.18	0.03	0.08	0.7		
SL7-1	0.5	<0.01	<0.01	0.01	0.35	0.05	0.10	0.5	9.1×10 ¹	6.7×10 ¹
	10	0.01	<0.01	0.02	0.32	0.03	0.07	1.8		
SL7-2	0.5 10	<0.01 <0.01	<0.01 <0.01	0.03	0.36	0.10	0.13	2.4	1.4×10 ¹	8.0×10 ⁰
SL7-3	0.5	<0.01	<0.01	0.01	0.01	0.02	0.04	0.8	ND	ND
	10	<0.01	<0.01	0.01	0.15	0.04	0.08	0.5		
SL7-4	0.5	<0.01	<0.01	0.01	0.12	0.03	0.05	0.5	ND	ND
SL8-1	0.5	<0.01	<0.01	0.01	0.20	0.03	0.04	0.6	ND.	ND
SL8-2	5.8 0.5	<0.01 0.01	<0.01 <0.01	0.03	0.04	0.07	0.10	0.6	ND	ND
PM 1	0.5	0.01	<0.01	0.02	0.13	0.03	0.04	2.8	3.0×10°	ND
	10	0.02	<0.01	0.03	0.05	0.04	0.04	1.0		
PM-2	0.5	0.01	<0.01	0.02	0.11	0.04	0.20	3.7	1.6×10 ¹	NĎ
nu o	8.0	0.01	<0.01	0.04	0.10	0.04	0.13	2.9		·····
PM 3	0.5	<0.01 <0.01	<0.01 <0.01	0.03	0.19	0.03	0.04	1.4	- I	- I
	44									
PM-4	<u>4.4</u> 0.5	0.01	<0.01	0.11	0.30	0.04	0.06	3.7	ND	ND

Table C.5(2) Result of Water Quality Analysis in Dry Season [Basic Parameters]

Note:

Sampling Dates:

March 1, 1999 at PR-1 to PR-5, PL-1 to PL-5

March 2, 1999 at SL6-1 to SL8-2, PM-1 to PM-4 March 9, 1999 at SL6-1 to SL8-2, PM-1 to PM-4 March 9, 1999 at SL1-1 to SL5-2

C

	•••••					•	-	-		•			-
Point	Sampling	Hexane	Phenols	Cyanide	Cr	Cr ⁶⁺	60	Pb	Cu	Zn	Ni	As	Hg
No.	Dopth	Extract	(mg/l)	(mg/l)	(mg/l)	(mg/i)	(mg/l)	(mg/l)	(mg/i)	(mg/l)	(mg/i)	(mg/i)	(mg/1)
	(m)	(mg/1)											
PR-1	0.5	1.2	<0.001	< 0.006	<0.01	<0.01	<0.002	0.01	< 0.005	0.033	<0.005	0.002	<0.001
PR-2	0.5	1.5		-	•	-	•	-	-	-	-	-	-
PR-3	0.5	1.4	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.019	<0.005	0.004	<0.001
PR-4	0.5	1.7	•	-	-	-	-	•	-	-	•	•	•
PR-5	0.5	1.9	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.023	<0.005	0.004	<0.001
PL-2	0.5	1.3	<0.001	<0.006	0.02	<0.01	<0.002	<0.01	<0.005	0.049	<0.005	0.004	<0.001
PL-4	0.5	1.7	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.050	<0.005	0.002	<0.001
PL-5	0.5	1.9	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.037	<0.005	0.001	<0.001
AP-2	0.5	1.7	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.041	<0.005	<0.001	<0.001
AP-4	0.5	2.0	•	•	-		•	-	•	-		•	•
<u>AP-5</u>	0.5	1.5	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.045	<0.005	0.002	<0.001
<u>CL-1</u>	0.5	2.8	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.023	<0.005	<0.001	<0.001
SL1-1	0.5	1.0	< 0.001	<0.006	< 0.01	< 0.01	<0.002	<0.01	<0.005	0.004	0.006	<0.001	<0.001 <0.001
SL2-1	0.5	0.7	< 0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005 <0.005	0.010 0.006	<0.005	<0.001 <0.001	<0.001
SL2-2	0.5	2.2	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.000	<0.000	<0.001	<0.001
SL3-1 SL4-1	0.5 0.5	1.4 1.2	- <0.001	<0.006	<0.01	<0.01	- <0.002	<0.01	<0.005	0.011	<0.005	<0.001	<0.001
SL4-1 SL4-2	0.5	1.2	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.010	<0.005	<0.001	<0.001
SL6-1	0.5	1.2	<0.001	<0.000	<0.01	<0.01	<0.002	<0.01	<0.005	0.004	<0.005	<0.001	<0.001
SL6-2	0.5	1.0	< 0.001	<0.006	< 0.01	<0.01	<0.002	<0.01	<0.005	0.002	<0.005	<0.001	<0.001
SL7-1	0.5	1.1	<0.001	<0.006	< 0.01	<0.01	< 0.002	<0.01	<0.005	0.016	<0.005	<0.001	<0.001
SL7-3	0.5	0.9	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.002	<0.005	<0.001	<0.001
SL8-1	0.5	0.7	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	< 0.005	0.002	0.005	<0.001	<0.001
PM-1	0.5	0.6	<0.001	< 0.006	<0.01	<0.01	<0.002	< 0.01	< 0.005	0.004	0.007	<0.001	<0.001
PM-4	0.5	1.2	<0.001	<0.006	<0.01	<0.01	<0.002	<0.01	<0.005	0.007	<0.005	<0.001	<0.001
Point	Sampling	Alkyl-Hg	Organo	Trichloro	Tetrachl	Carbon	PC8	HC8	Aldrin	Endrin	Dieldrin	DDT	Chlordane
No.	Depth	(mg/l)	Phospho	ethylene	-010	Tetrachior	(mg/i)	(mg/l)	(mg/l)	(mg/i)	(mg/l)	(mg/l)	(mg.1)
	(m)		rous	(mg/l)	ethylene	îdə							
			(mg/i)		(mg/l)	(mġ/i)							
PR-1	0.5	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
PR-2	0.5	-	-	•	-	· ·	•	-	-	-	-	-	-
PR-3	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ
PR-4	0.5	•	•	-	•		-		-	· •	-		
PR-5	0.5	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-2	0.5	NÐ	NÐ	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
PL-4	0.5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NÐ ND	ND ND
<u>PL-5</u> AP-2	0.5	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
AP-2 AP-4	0.5		nD							-		-	-
AP-5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CL-1	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SL1-1	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SL2-1	0.5	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
SL2-2	0.5	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
SL3-1	0.5	-	-	-	•,	•	-	-	-	•	·	-	
SL4-1	0.5	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SL4-2	0.5	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
SL6-1	0.5	ND	ND	GM	ND	ND	ND	ND	ND	ND	ND	ND	ND
SL6-2	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SL7-1	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
SL7-3	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	NÐ ND	ND ND
SL8-1 PM-1	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
	0.5												
PM-4 Note	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table C.6 Result of Water Quality Analysis in Dry Season [Toxic Parameters]

8

Sampling Dates: March 1,1999 at PR-1 to PR -5, PL-2, PL-4, PL-5

March 2,1999 at AP-2, AP-4, AP-5, CL-1 March 8,1999 at SL6-1, SL6-2, SL7-1, SL7-3, SL8-1, PM-1, PM-4

March 9,1999 at SL1-1, SL2-1, SL2-2, SL3-1, SL4-1, SL4-2 ND means 'Not Detected'.

•

Point No.	Sampling Depth(m)	Depth (m)	Transpare ncy (m)	Foret Color No	Water Temperat ure	Salinity	pH	DO (mg/l)	COD mg/ I)	TOC (mg/l)	SS (mg/l)
PR-1	0.5	9.1	0.3	20	() 27.3	<2	7.6	5.2	3.6	6.5	280
111-1	8.1	9.1	0.5	20		~2		5.1	4.1	5.9	370
				10	27.2		7.8			3.2	210
PR-2	0.5	5.5	0.3	18	26.9	<2	7.7	5.2	3.6		
PR-3	0.5	13	0.4	20	26.8	<2	7.6	5.5	3.9	2.5	310
	10				26.7	<2	7.8	5.2	5.4	4.2	560
PR-4	0.5	6.9	0.3	17	29.2	<2 <2	7.6	4.9	4.4	7.5	43
PR-5	0.5	9.1		19			7.6	5.5	4.4	6.5	380
		(Uncollect	ed)								
PL-1	0.5	5.4	0.3	18	27.1	~2	7.0	5.8	1.8	2.3	130
PL-2	0.5	1.1	0.5	12	27.7	<2	7.0	5.9	1.3	2.2	30
PL-3	0.5	1.0	0.6	17	28.9	10.60	8.0	6.0	4.3	6.8	21
PL-4		1.3		17	28.7	8.36	8.3	6.0	5.2	7.6	55
	0.5		0.5								
PL-5	0.5	1.3	0.7	19	28.7	6.96	8.0	6.4	6.8	10	13
AP-1	0.5	4.1	2.6	8	27.9	31.97	8.2	6.8	3.4	1.6	5
AP-2	0.5	8.5	2.5	9	28.4	29.75	8.2	7.4	1.0	2.3	4
	7.5		<u> </u>	1	24.7	34.45	8.0	4.0	1.0	1.7	10
AP-3	0.5	4.7	1.0	9	27.3	32.51	8.2	6.3		1.7	11
AP-4	0.5	11	1.3	9	27.0	32.85	8.2	8.2	1.6	2.5	10
	10		1	-	22.7	36.12	7.9	3.6	0.9	1.2	13
AP-5	0.5	13	1.1	21	26.5	32.12	8.2	8.9	4.8	5.1	12
	10		1	l ''	20.5	36.09	7.9	3.3	2.6	1.3	10
CL-1	0.5	2.1	0.4	12	29.3	0.92		3.3	8.2	1.5	24
				12			7.3				
CL-2	0.5	1.2	0.4	<u> </u>	29.6	0.86	7.2	<0.5	8.9	13	20
MA-1	0.3	0.2	0.2	15	32.5	13.31	9.0	12	10	32	100
MA-2	1.0	0.5	0.3	16	31.1	12.25	9.0	10	10	35	37
MA-3	0.5	0.2	0.3	14	31.3	12.80	8.9	44	10	33	30
SL1-1	0.5	9.1	3.1	8	27.8	32.12	8.1	7.0	0.8	2.8	1
	8.1				24.2	35.13	8.0	4.7	2.1	2.3	5
SL1-2	0.5	15	4.0	6	27.8	32.38	8.2	8.3	2.2	2.5	5
SL2-1	0.5	11	4.0	8	28.0	32.37	8.2	7.2	1.9	2.5	2
			T.V					3.8	3.0		6
~ ~ ~	10		+		22.5	36.30	7.9			2.5	
SL2-2	0.5	18	3.8	6	27.6	32.47	8.2	7.1	. 1.5	2.2	3
	10				22.9	36.29	8.0	6.0	0.9	1.8	1
SL3-1	0.5	9.4	3.5	8	27.0	33.05	8.2	6.0	- 1.7	2.8	3
	8.4			1	23.2	36.08	7.3	3.2	1.8	2.6	22
SL3-2	0.5	17	4.0	7	27.0	32.76	8.2	7.0	1.4	2.5	2
SL4-1	0.5	9.6	3.6	8	27.2	32.16	8.2	6.9	2.0	2.5	2
	8.6		· ·	1	23.3	35.98	8.0	4.9	1.7	2.3	3
SL4-2	0.5	17	4.6	7	27.0	33.01	8.2	7.0	2.5	2.3	1
	10	1			23.4	36.27	8.1	6.0	1.1	1.7	1
SL5-1	0.5	9.3	2.8	8	27.5	32.65	8.2	9.0	1.3	3.3	3
000 1	8.3	0.0	E.V	ľ	23.0	36.17		7.2		3.0	
SL5-2		47					8,1		1.7		5
	0.5	17	3.0	6	27.7	33.15	8.2	8.6	1.6	3.1	3
SL6-1	0.5	12	2.1	17	27.8	32.57	8.3	9.2	1.9	3.2	
	10				22.8	36.25	8.1	5.6	1.1	2.5	5
SL6-2	0.5	20	2.3	16	27.1	33.40	8.1	8.5	3.8	2.8	4
	10				22.7	36.27	8.0	5.6	1.0	2.3	3
SL7-1	0.5	14	1.0	17	26.4	19.77	8.1	6.8	2.9	3.5	19
	10	I	1	1	22.7	36.31	8.0	5.6	1.7	2.3	3
SL7-2	0.5	15	1.5	14	25.8	33.01	8.1	6.9	3.0	3.4	15
	10	1	1	1	22.6	36.31	8.1	5.9	0.7	2.2	3
SL7-3	0.5	14	1.0	16	26.2	32.10	8.2	7.5	2.3	3.5	16
521-3	10		1	1 "							3
6177		~~~~	4 6 5	1.7	22.7	36.26	8.1	6.5	1.7	2.4	
SL7.4	0.5	21	1.5	17	26.5	35.53	8.2	8.6	1.7	3.2	9
SL8-1	0.5	5.7	1.2	17	26.8	34.69	8.3	8.7	2.0	3.4	13
	4.7				26.1	35.25	8.1	6.6	1.5	2.3	3
SL8-2	0.5	9.7	1.3	15	26.8	34.94	8.2	8.1	2.0	3.1	11
PM-1	0.5	14	1.9	14	27.3	31.72	8.2	8.9	2.1	3.0	5
	10		1	1	22.9	36.24	8.1	5.8	2.6	2.4	6
PM-2	0.5	12	2.5	17	26.9	31.63	8.3	8.8	3.8	2.6	5
1 111-12		16	£.5	1 "							
011.0	10				22.9	36.17	8.1	6.0	1.2	2.4	5
PM-3	0.5	5.8	1.0	18	26.7	30.99	8.0	6.3	1.8	3.2	22
	4.8				26.0	34.79	8.0	6.0	0.8	2.2	7
PM-4	0.5	4.1	0.9	17	27.3	26.45	8.1	8.4	2.7	3.1	31
	3.1	1	E	1	26.5	35.05	8.2	6.7	2.4	3.3	- 13

Table C.7(1) Result of Water Quality Analysis in Rainy Season [Basic Parameters]

Note Bottom sample at PR-5 could not be taken because of strong flow. Sampling Dates: July 19, 1999 at SL6-1 to SL8-2, PM-1 to PM-4 July 20, 1999 at SL1-1 to SL5-2 July 21, 1999 at PR-1 to PR-5, PL-1 to PL-5, AP-1 to AP-5 July 22, 1999 at CL-1 to CL-2

Point	Sampling	NH N	NO ₂ N	NO ₃ -N	Total	PO ₄ -P	Total	Chlorophy	Total	Fecal
No.	Depth(m)	(mg.1)	(mg/1)	(mg/1)	Nitrogen	(mg/1)	Phosphor		Cotiform	Coliform
					(mg/l)		us (mg/1)	(91)	(Col /100 ml)	(Cot./100 ml)
PR-1	0.5	0.007	0.01	0.84	1.2	0.10	0.10	5.8	3.67101	2. 9710
	8.1	0.020	0.011	0.34	0.54	0.12	0.13	5.1		
PR-2	0.5	<0.007	0.007	0.49	0.64	0.10	0.11	4.5	2.75101	2. 1510 ³
PR-3	0.5	<0.007	0.007	0.44	0.88	0.11	0.11	4.7	3. 05103	1. 85103
	10	0.008	0.006	0.93	1.1	0.11	0.30	7.0		
PR-4	0.5	0.020	0.007	0.19	0.37	0.060	0.086	18	2. 4710 ²	1. 2510
PR-5	0.5	0.010	0.007	0 35	1.1	Q.13	0.17	4.8	3. 5510 ³	2. 4 <u>7</u> 10 ³
PL-1	0.5	<0.007	0.007	0.61	0.68	0.091	0.10	2.7	1. 7510 ¹	1. 3510 ³
PL·2	0.5	<0.007	0.006	0.48	0.51	0.10	0.11	3.7	1. 3310)	5. 53102
PL-3	0.5	0.020	<0.002	0.01	0.51	0.044	0.067	12	1. 4510	1. 1510
PL-4	0.5	0.030	0.005	0.04	0.55	0.048	0.053	16	1. 8310	7. 0310 ⁴
PL-5	0.5	<0.007	0.006	0.01	0.35	0.062	0.072	13	5. 8510	1. 85101
AP-1	0.5	<0.007	<0.002	0.01	0.34	0.005	0.038	1.1	ND	ND
AP-2	0.5	<0.007	<0.002	0.02	0.36	0.010	0.048	3.4	8.05105	2.0510 ⁵
AD 2	7.5	0.010	0.002	0.01	0.17	0.013	0.030	<u>6.7</u> 1.8	3. 0710"	1. 03105
AP-3 AP-4	0.5 0.5	<0.007 <0.007	0.001	0.01	0.32 0.42	0.007	0.022	1.8 4.7	6. 0510 ¹	2. 0510
74F * 7	10	0.030	0.002	0.01 0.02	0.42	0.026	0.037	4.7		
AP-5	0.5	0.010	0.003	0.01	0.54	0.12	0.13	6.8	1. 3510 ²	1. 1510
	10	0.040	0.007	0.02	0.37	0.017	0.030	1.3		1
CL-1	0.5	<0.007	<0.002	0.01	0.77	0.067	0.20	90	6. 1510 ²	1. 85102
CL-2	0.5	0.010	0.007	0.02	1.3	0.12	0.51	103	2. 0510	ND
MA-1	0.3	0.010	0.004	0.03	1.2	0.03	0.19	120	ND	NO
MA-2	1.0	0.007	0.004	0.08	0.1	0.04	0.36	160	ND ND	NO
MA-3 SL1-1	0.5	0.007	0.015	0.04	<u>1.1</u> 0.19	<0.003	0.35	140 0.5	1 0510	ND
SLIFI	0.5 8.1	<0.007	0.002	0.02	0.19	<0.003	0.024	2.6	1. 0710	
SL1-2	0.5	<0.007	<0.002	0.01	0.32	0.004	0.042	0.8		-
SL2-1	0.5	<0.007	<0.002	0.01	0.32	0.007	0.033	0.5	ND	NÐ
	10	0.009	0.002	0.01	0.38	0.007	0.053	6.0		
SL2-2	0.5 10	<0.007 <0.007	<0.002 <0.002	0.01 0.01	0.18	<0.003 0.005	0.011	1.1 0.8	ND	NÐ
SL3-1	0.5	<0.007	0.001	0.01	0.29	0.004	0.025	0.8	ND	ND
	8.4	<0.007	<0.002	0.01	0.37	<0.003	0.037	6.1		
SL3-2	0.5	<0.007	<0.092	0.01	0.24	<0.003	0.027	1.3	NO	ND
SL4-1	0.5	<0.007	<0.002	0.02	024	<0.003	0.030	1.4	1.0510	ND
<u>.</u>	8.6	<0.007	<0.002	0.01	0.33	<0.003	0.040	5.5	1. 0510	
SL4-2	0.5 10	<0.007 <0.007	<0.002 <0.002	0.01 0.01	0.29	0.009	0.023	2.5 0.6	1. 0710	ND
SL5-1	0.5	<0.007	0.002	0.02	0.27	<0.003	0.050	3.2	1.0510	ND
000-1	8.3	<0.007	<0.002	0.01	0.04	<0.003	0.055	7.3		
SL5-2	0.5	<0.007	<0.002	0.08	0.27	< 0.003	0.041	3.0	3. 0510	ND
SL6-1	0.5	<0.007	<0.002	0.03	0.35	<0.003	0.065	4.3	1.0510	ND
	10	<0.007	<0.002	0.04	0.15	<0.003	0.055	6.0	· ·	
SL6-2	0.5	<0.007	<0.002	0.01	0.34	<0.003	0.042	5.5	ND	ND
6174	10	<0.007	<0.002	0.02	0.22	< 0.003	0.046	1.6	3.8510 ³	3.0510
SL7-1	0.5 10	0.030	0.003	0.13	0.13	<0.008 <	0.085	6.5 1.5	3.8710	1
SL7-2	0.5	0.030	0.003	0.02	0.24	0.020	0.036	7.5	4.8510 ³	4. 1510
527 6	10	<0.007	<0.002	0.02	0.21	<0.003	0.076	1.2		
SL7-3	0.5	<0.007	<0.002	0.15	0.57	0.007	0.080	9.0	3. 25103	2. 0510
	10	<0.007	<0.002	0.02	0.28	<0.003	0.081	0.7		
SL7-4	0.5	<0.007	0.002	0.09	0.43	0.005	0.070	8.5	3.67102	2. 8510
SL8-1	0.5	0.010	0.003	0.08	0.22	0.006	0.092	17	2.0510	1. 0510
	4.7	<0.007	<0.002	0.02	0.16	<0.003	0.026	4.0		
SL8-2	0.5	<0.007	0.003	0.13	0.15	0.004	0.024	13	1.1510	7.0710
PM-1	0.5	<0.007	<0.002	0.01	0.33	<0.003	0.028	4.6	5.0310	ND
D11 -	10	<0.007	<0.002	0.01	0.36	<0.003	0.007	8.5	3.0510	3. 0510
PM-2	0.5	<0.007	<0.002	0.01	0.39	<0.003	0.18	4.1	3. 0710	a. 07(0.
011.2	10	<0.007 <0.007	<0.002	0.01	0.18	<0.003	0.047	8.4	2.67102	2. 13102
РМ-З	0.5 4.8	<0.007	0.003	0.14 0.02	0.53 0.24	0.022 <0.003	0.024	21		
PM-4	0.5	<0.007	0.003	0.04	0.58	0.013	0.081	20	2. 0510	ND
	v.v						1 0.001			

Table C.7(2) Result of Water Quality Analysis in Rainy Season [Basic Parameters]

Note

)

9

,

Sampling Dates: July 19, 1999 at SL6-1 to SL8-2, PM-1 to PM-4

July 20, 1999 at SL1-1 to SL5-2

July 21, 1999 at PR-1 to PR-5, PL-1 to PL-5, AP-1 to AP-5 July 22, 1999 at CL-1 to CL-2

C-11

Point	Camplina	Hexane	Phenois	Cyanide	Cr	Cr ⁶	Cd	Pb	Cu	Zn	Ni	As	Hg
No.	Sampling Depth	Extract	(mg/l)	(mg/i)	(mg/l)		(mg/l)						
NQ.	(m)	(mg/l)	(mâti)	(0.94)	61.90	(mg/i)	(11.977)	1	01/9/0	11.2.0	(1	(
											0.0001		0.0000
PR-1	0.5	<0.5	<0.001	<0.01	<0.003	< 0.003	< 0.0005	0.0014	0.0056	0.0017	0.0034	<0.02	< 0.0003
PR-3	0.5	<0.5	<0.001	<0.01	< 0.003	< 0.003	<0.0005	0.0046	0.0058	0.0017	0.0050	<0.02	<0.0003
PR-5	0.5	<0.5	<0.001	< 0.01	< 0.003	< 0.003	< 0.0005	0.0049	0.0034	0.0021	0.0010	<0.02 <0.02	<0.0003 <0.0003
PL-2	0.5	<0.5	<0.001	<0.01	< 0.003	< 0.003	<0.0005	0.0016	0.0043	0.0012 <0.0005	0.0002	<0.02	<0.0003
PL-4	0.5	<0.5	< 0.001	<0.01	<0.003 <0.003	<0.003 <0.003	<0.0005 <0.0005	0.0006	0.0036 0.0035	<0.0005	0.0003	<0.02	<0.0003
PL-5 AP-2	0.5 0.5	<0.5 <0.5	<u><0.001</u> <0.001	<0.01 <0.01	<0.003	<0.003	< 0.0005	0.0004	0.0033	< 0.0005	0.0001	<0.02	<0.0003
AP-2 AP-5	0.5	<0.5 <0.5	<0.001	<0.01	<0.003	< 0.003	<0.0005	0.0004	0.0025	0.0018	0.0002	<0.02	<0.0003
	0.5	<0.5	< 0.001	< 0.01	<0.003	< 0.003	< 0.0005	0.0006	0.0002	0.0013	0.0011	<0.02	<0.0003
MA-2	0.5	<0.5	< 0.001	<0.01	< 0.003	< 0.003	< 0.0005	0.0003	< 0.0002	< 0.0005	0.0004	<0.02	< 0.0003
SL1-1	0.5	<0.5	<0.001	<0.01	< 0.003	< 0.003	< 0.0005	0.0005	0.0021	<0.0005	0.0008	< 0.02	< 0.0003
SL2-1	0.5	<0.5	<0.001	<0.01	< 0.003	<0.003	< 0.0005	0.0004	0.0031	0.0011	0.0002	<0.02	<0.0003
SL2-2	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0003	0.0031	0.0008	0.0003	<0.02	<0.0003
SL4-1	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0003	0.0006	0.0013	0.0010	<0.02	<0.0003
SL4-2	0.5	<0.5	<0.001	<0.01	< 0.003	<0.003	<0.0005	0.0003	0.0003	0.0010	0.0004	<0.02	<0.0003
SL6-1	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0002	<0.0002	0.0009	0.0018	<0.02	<0.0003
SL6-2	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0004	<0.0002	0.0011	0.0007	<0.02	<0.0003
SL7-1	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0013	<0.0002	0.0016	0.0020	<0.02	<0.0003
SL7-3	0.5	<0.5	<0.001	<0.01	< 0.003	<0.003	<0.0005	0.0005	<0.0002	0.0017	0.0016	< 0.02	<0.0003
SL8-1	0.5	<0.5	<0.001	< 0.01	< 0.003	<0.003	< 0.0005	0.0005	<0.0002	< 0.0005	0.0007	<0.02	<0.0003
PM-1	0.5	<0.5	<0.001	< 0.01	< 0.003	<0.003	<0.0005	0.0003	<0.0002 <0.0002	<0.0005 0.0020	0.0005	<0.02 <0.02	<0.0003 <0.0003
<u>PM-4</u>	0.5	<0.5	<0.001	<0.01	<0.003	<0.003	<0.0005	0.0011	<0.0002	0.0020	0.0011	<0.02	20.0005
_						·							
Point	Sampling	Akyl Hg	Organo	Trichloro	Tetrachi	Carbon	PC8	HCB	Aldrin	Endrin	Dieldrin	DOT	Chlordane
No.	Depth	(mg/l)	Phospho	ethylene	-010	Tetrachlor	(mg/l)	(mg/l)	(mg-1)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
			Phospho rous		oro- ethylene	Tetrachlor ide							
No.	Depth (m)	(mg/l)	Phospho rous (ma/i)	ethylena (mg/l)	oro- ethylene _(ma/l)	Tetrachlor ide (mo/lì	(mg/l)	(mg/l)	(mg/1)	(mg/l)	(mg/l)	(ng/l)	(mg/l)
No. PR-1	Depth (m) 0.5		Phospho rous	ethylene	oro- ethylene	Tetrachlor ide							
No. PR-1 PR-2	Depth (m) 0.5 0.5	(mg/l) ND	Phospho rous (ma/l) ND	ethylene (mg/l) ND	oro- ethylene _(ma/l)	Tetrachlor ide (mo/l) ND -	(mg/l)	(mg/l)	(mg/1)	(mg/l)	(mg/l)	(ng/l)	(mg/l)
No. PR-1 PR-2 PR-3	Depth (m) 0.5 0.5 0.5	(mg/l)	Phospho rous (ma/i)	ethylena (mg/l)	oro- ethylene (ma/l) ND -	Tetrachlor ide (mo/lì	(mg/l) ND	(mg/l) ND	(mg/l) ND -	(mg/l) ND	(mg/l) ND	(mg/l) ND -	(mg/l) ND -
No. PR-1 PR-2	Depth (m) 0.5 0.5	(mg/l) ND	Phospho rous (mo/l) ND - ND	ethylene (mg/l) ND	oro- ethylene (ma/t) ND - ND	Tetrachlor ide (mo/l) ND -	(mg/l) ND	(mg/l) ND	(mg/l) ND -	(mg/l) ND ND	(mg/l) ND	(mg/l) ND - ND - ND	(mg/l)
No. PR-1 PR-2 PR-3 PR-4	Depth (m) 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND	Phospho rous (mo/i) ND - ND - ND ND	ethylene (mg/l) ND ND ND ND ND	oro- ethylene (mo/l) ND - ND - ND ND ND	Tetrachlor ide MD - ND - ND - ND ND	(mg/l) ND ND ND ND ND	(mg/l) ND ND ND ND ND	(mg/l) ND ND ND ND	(mg/l) ND ND ND ND ND	(mg/l) ND - ND ND ND	(mg/l) ND - ND - ND ND	(mg/l) - ND - ND - ND ND
No. PR-1 PR-2 PR-3 PR-4 <u>PR-5</u> PL-2 PL-2 PL-4	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND - ND ND ND ND	Phospho rous (mont) ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND	oro- ethylene (mo/l) ND - ND - ND ND ND ND	Tetrachlor ide (mo/ii ND - ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND	(mg/l) ND ND ND ND 0.0008	(mg/) ND - ND - ND ND ND	(mg/l) ND - ND - ND ND ND	(mg/l) ND - ND - ND ND ND ND
No. PR-1 PR-2 PR-3 PR-3 PR-3 PR-3 PL-2 PL-2 PL-4 PL-5	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND ND ND ND	Phospho rous (mon) ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND	oro- ethylene _(mo/l) ND - ND - ND ND ND ND	Tetrachlor ide <u>Imo/h</u> ND - ND - ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND	(mg/l) ND ND ND ND 0.0008 ND	(mg/) ND ND ND ND ND ND	(mg/l) ND - ND - ND ND ND ND	(mg/l) - ND - ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND - ND ND ND ND	Phospho rous (mont) ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND	oro- ethylene (mo/l) ND - ND - ND ND ND ND	Tetrachlor ide (mo/ii ND - ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND	(mg/l) ND ND ND ND 0.0008	(mg/) ND - ND - ND ND ND	(mg/l) ND - ND - ND ND ND	(mg/l) ND - ND - ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-4 PL-5 AP-2 AP-4	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND ND ND ND ND ND	Phospho rous (ma/l) ND ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND ND	oro- ethylene MD ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND - ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND ND ND ND ND ND ND	Phospho rous (mo/l) ND ND ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND ND ND	oro- ethylene MD ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide (mo/h ND - ND - ND ND ND ND ND - ND - ND - N	(mg/l) ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND 0.0008 ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND - ND - ND - ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-2 AP-5 CL-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND ND ND ND ND ND ND	Phospho rous (maf) ND ND ND ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND ND ND ND	oro- ethylene (ma/b) ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide (mo/h ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND ND ND - ND 0.002	(mg/l) ND ND ND ND 0.0008 ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND - ND - ND - ND - ND -
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/l) ND ND ND ND ND ND ND ND ND	Phospho rous (not) ND ND ND ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND ND ND ND ND	oro- ethylene (mo/b) ND - ND - ND ND ND - ND - ND - ND - ND	Tetrachlor ide (mo/i) ND - ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND 0,0008 ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL1-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND ND - ND - ND - ND - ND	Phospho rous (math ND - ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene _(mal) ND - ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide /mo/ti ND - ND - ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND - ND - ND - ND - ND -
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL1-1 SL2-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND - ND - ND - ND - ND -	Phospho rous (nod) ND ND ND ND ND ND ND ND	ethylene (mg/l) ND ND ND ND ND ND ND ND ND ND	oro- ethylene (mo/b) ND - ND - ND ND ND - ND - ND - ND - ND	Tetrachlor ide /mo/li ND - ND - ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND 0,0008 ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL1-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND ND - ND - ND - ND - ND	Phospho rous (moft) ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene (mal) ND - ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide /mo/ti ND - ND - ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 <u>CL-1</u> MA-2 SL2-1 SL2-2	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND - ND - ND - ND - ND -	Phospho rous (moft) ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene (mal) ND - ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide /mo/li ND - ND - ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND - ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-2 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL1-1 SL2-1 SL2-1 SL3-1 SL4-1 SL4-2	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (math ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene _(mal) ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL1-1 SL2-1 SL2-1 SL2-2 SL3-1 SL4-1 SL4-2 SL6-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (math ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene _(mal) ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PL-2 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 SL2-1 SL2-1 SL2-1 SL2-2 SL3-1 SL4-1 SL4-2 SL6-1 SL6-2	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (mof) ND ND ND ND ND ND ND ND ND ND ND ND ND	ethytene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene _(mal) ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 SL2-1 SL2-1 SL2-1 SL2-2 SL3-1 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND - ND - ND ND ND ND ND ND ND ND ND ND	Phospho rous (moft) ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene _(ma/b ND - ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL2-1 SL2-1 SL2-1 SL2-2 SL3-1 SL4-1 SL4-2 SL4-1 SL4-2 SL4-1 SL4-2 SL5-1 SL4-2 SL7-1 SL7-3	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (maf) ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene (ma/b ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-4 AP-5 CL-1 MA-2 SL1-1 SL2-2 SL3-1 SL2-2 SL3-1 SL2-2 SL3-1 SL2-2 SL3-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL2-1 SL2-1 SL2-2 SL3-1 SL2-2 SL2-1 SL2-2 SL2-1 SL2-2 SL3-1 SL3-1 SL	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (maf) ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene (ma/b ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND
No. PR-1 PR-2 PR-3 PR-4 PR-5 PL-2 PL-4 PL-5 AP-2 AP-4 AP-5 CL-1 MA-2 SL2-1 SL2-1 SL2-1 SL2-2 SL3-1 SL4-1 SL4-2 SL4-1 SL4-2 SL4-1 SL4-2 SL5-1 SL4-2 SL7-1 SL7-3	Depth (m) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	Phospho rous (maf) ND ND ND ND ND ND ND ND ND ND ND ND ND	ethylene (mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	oro- ethylene (ma/b ND ND ND ND ND ND ND ND ND ND ND ND ND	Tetrachlor ide MD ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/t) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/l) ND ND ND ND ND ND ND ND ND ND ND ND ND

6

Table C.8 Result of Water Quality Analysis in Rainy Season [Toxic Parameters]

Note

Sampling Dates: July 19, 1999 at \$16-1, SL6-2, SL7-1, SL7-3, SL8-1, PM-1, PM-4 July 20, 1999 at SL1-1, SL2-1, SL2-2, SL3-1, SL4-1, SL4-2 July 21, 1999 at PR-1 to PR-5, PL-2, PL-4, PL-5, AP-2, AP-4, AP-5

July 22, 1999 at CL-1 ND means "Not Detected".

Point No.	Condition of	Odor	Particle Size:	Particle Size:	Sediment	ORP	Ignition	COD
	Sediment		75-425 µ m	Under 75 μ m	Temperatur	(mV)	Loss	(mg/g)
			(%)	(%)	0	•	(%)	
PR-1	Mud	No	9	91	23.1	-139	14	18
PR-3	Mud	No	13	87	23.1	-146	15	17
PR-5	Mud	No	10	90	23.0	-150	19	22
PL-2	Mud	No	11	87	23.6	-125	15	12
PL-4	Mud	No	5	94	23.8	-114	° 14	14
PL-5	Mud	No	4	95	23.8	-118	22	12
AP-2	Sand	No	86	13	26.5	-132	6.9	1.2
AP-5	Mud	No	28	65	26.5	-137	13	7.9
CL-1	Muđ	No	77	22	•	-97	7.8	28
SL1-1	(uncollected)			•				
SL2-1	Sand	No	28	69	23.8	79	1.4	0.5
SL2-2	Sand	No	96	2	24.8	78	1.9	0.8
SL4-1	Sand	No	88	1	24.0	110	1.5	0.6
SL4-2	(uncollected)							
SL6-1	Sand	No	99	1	22.5	119	1.5	0.8
SL6-2	(uncollected)						ł	
SL7-1	Muddy sand	No	-	-	24.0	-171	2.8	3.0
SL.7-3	Mud	Sulfide smell	24	76	24.2	-218	11	15
SL8-1	Sand	No	100	0	24.4	169	2.2	0.5
PM-1	Sand	No	100	0	24.6	111	1.5	0.5
PM-4	Sand	No	100	0	24.3	147	1.6	<0.5

Table C.9(1) Result of Sediment Analysis in Dry Season [Basic Parameters]

Note Sampling Date

)

9

March 1, 1999 at PR-1, PR-3, PR -5, PL-2, PL-4, PL-5

March 2, 1999 at AP-2, AP-5, CL-1

March 8, 1999 at SL6-1, SL6-2, SL7-1, SL7-3, SL8-1, PM-1, PM-4 March 9, 1999 at SL1-1, SL2-1, SL2-2, SL4-1

Table C.9(1) Result of Sediment Analysis in Rainy Season [Basic Parameters]

Point No.	Condition of	Odor	Particle Size:	Particle Size:	Sediment	ORP	Ignition	COD	TOC
	Sediment		75-425 µ m	Under 75 µ m	Temperatur	(mV)	Loss	(mg/g)	(mg/g)
			(%)	(%)	8.		(%)		
PR-1	Mud	No	1	99	27.0	-186	14	25	13
PR-3	Mud	No	17	82	30.0	-321	21	19	13
PR-5	Sand	No	92	8	29.0	-115	1.7	1.0	0.9
PL-2	Mud	No	9	91	28.0	-298	10	17	9.0
PL-4	Mud 🕔	No	11	85	29.0	-231	12	11	6.6
PL-5	Mud	No	6	94	28.5	-286	12	8.7	7.2
AP-2	Mud	Sulfide smell	9	91	23.0	-236	16	18	9.3
AP-5	Mud	No	28	67	24.0	-189	12	6.8	2.6
CL-1	Mud	No	39	57	28.7	-371	28	160	84
SL1-1	Sand	No	.95	3	25.5	-5	1.6	0.7	1.3
SL2-1	Sand	No	94	5	25.0	-181	1.9	<0.5	1.3
SL2-2	Sand	Nö	93	2	26.5	-195	2.0	1.0	1.3
SL4-1	Sand	No	96	: 4	24.5	131	1.5	0.8	1.3
SL4-2	(uncollected)								
SL6-1	Sand	No	· 99	1	24.5	105	2.5	1.2	1.3
SL6-2	Sandy Mud	No	53	43	23.0	111	7.3	7.2	2.6
SL7-1	Mud	No	1	99	22.5	-189	15	20	13
SL7-3	Mud	Sulfide smell	20	79	24.0	-227	13	17	10
SL8-1	Sand	No	94	2	25.5	-111	2.4	0.6	1.0
PM-1	Sand	No	.96	3	24.0	102	1.5	0.6	2.6
PM-4	Sand	No	91	5	27.0	111	1.7	0.5	2.6

Noté Sampling Date

July 19, 1999 at SL6-1, SL6-2, SL7-1, SL7-3, SL8-1, PM-1, PM-4

July 20, 1999 at SL1-1, SL2-1, SL2-2, SL4-1

July 21, 1999 at PR-1, PR-3, PR-5, PL-2, PL-4, PL-5, AP-2, AP-5

July 22, 1999 at CL-1

Table C.10(1) Result of Sediment Analysis in Dry Season [Toxic Parameters]

	t - Content Te		·····					· · · · ·			-	
Point	Hexane	Cyanide	Cr	Cd	Pb	Cu	Zก	As	Hg	Alkyl-Hg		
No.	Extract	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg-kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	(mg.kg)											
PR-1	650	<0.12	30	<1	27	24	110	8.2	0.78	ND		
PR-3	1400	<0.12	25	<1	34	26	150	9.0	1.0	ND		
PR-5 PL-2	1100	<0.12	25	<1	27	21	120	5.8	0.69	ND	-	
PL-2 PL-4	570 970	<0.12 <0.12	26	<1	34 34	22	120	8.4	1.8 0.95	ND ND		
PL-5	440	<0.12	25 25	<1 <1	27	16 11	78 78	4.3 3.4	0.95	ND		
CL-1	1100	<0.12	5.2	<1	<10	2.9	25	1.2	0.04	ND	-	
AP-2	410	<0.12	14	<1	<10	2.7	17	3.7	< 0.03	ND	•	
AP-5	130	<0.12	25	<1	10	8.8	37	3.2	<0.03	ND		
SL1-1			1 .	-		-		•		•	•	
SL2-1	72	<0.12	2.9	<1	<10	<2.5	9.1	2.3	<0.03	ND		
SL2-2	400	<0.12	5.5	<1	<10	<2.5	12	2.2	<0.03	ND		
SL4-1	82	<0.12	8.4	<1	<10	<2.5	11	1.7	0.04	ND		
SL4-2	-	-	•	-	-	-	-	-	-	-		
SL6-1	140	<0.12	4.0	<1	<10	<2.5	11	2.3	0.03	ND		
SL6-2	- 10		-		-		•					
SL7-1 SL7-3	72 220	<0.12 <0.12	6.0 11	<1	<10	4.1 17	30	4.3	0.10 0.76	ND ND		
518-1	240	<0.12	7.8	<1 <1	13 <10	4.8	65 41	3.3 2.0	0.76	ND		
PM-1	290	<0.12	<2.5	<1	<10	<2.5	10	2.3	<0.03	ND	-	
PM-4	210	<0.12	<2.5	<1	<10	2.5	26	3.0	0.12	ND		
	I - Content Te			· · · · · · · · · · · · · · · · · · ·				<u></u>	<u></u>			
Station	Organo	Trichloro	Tetrachloro	Carbon	PCB	НСВ	Alorin	Enorin	Dielorin	DDT	Chlordane	-
DIGSON	~							E				
	Phosphorous (malka)	ethylene (maxe)	ethylene (make)	Tetrachiiride	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ALC:							
PR-1 PR-3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND.	ND ND	
PR-5	ND	NÐ	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND NÖ	
PL-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
PL-4	ND	NÐ	ND	ND	ND	В	ND	ND	ND	ND	ND	
PL-5	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	
CL-1	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	-
AP-2	ND	ND	NO	ND	ND	ND	ND	ND	ND	NÐ	ND	•
AP-5	ND	ND	ND	ND	ND	NÐ	ND	ND	NÓ	ND	ND	_
SL1-1	-	•	-	-	-		-		-	•	• .	-
SL2-1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
SL2-2	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	NÓ	
SL4-1	ND	· ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	
SL4-2			-	-	-	-					· -	
SL6-1	ND	NÐ	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND	
SL6-2 SL7-1	ВИ	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND.	
SL7-3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	
SL8-1	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	
PM-1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•
PM-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
												-
Sedimer	nt - Elution Te	. 1										
Point	Hexane	Cyanide	Cr [£]	Cd	Pb	Cu	Zn.	As	Нg	Alkyl-Hg	Creane	PCB
No.		(mg/kg)		(mg/kg)							Organo	
	(0)9/kg)	(ng ng)	(mg/kg)	((1919)	(99)	((0.9/9)	(1919)	(0.94×9)	Phosphorous (mg/kg)	(mg/kg
PR-1	<170	<0.2	<0.1	<0.1	<0.3	0.3	1.3	0.13	<0.04	ND	ND	ND
PR-3	<170	<0.2	<0.1	<0.1	<0.3	0.3	1.5	0.07	<0.04	ND	ND	NĎ
PR-5	<170	<0.2	<0.1	<0.1	1.0	0.7	5.7	0.27	<0.04	ND	ND	ND.
PL-2	<170	<0.2	<0.1	<0.1	1.1	0.9	6.0	0.27	<0.04	ND	ND	ND
PL-4	<170	<0.2	<0.1	<0.1	< 0.3	0.3	1.5	0.13	<0.04	ND	ND	ND
PL-5	<170	<0.2	<0.1	<0.1	1.7	0.6	5.7	0.01	<0.04	ND	ND	ND
CL-1	<170	<0.2	<0.1	<0.1	< 0.3	0.2	1.5	0.03	<0.04	ND	ND	ND
AP-2	<170	<0.2	<0.1	<0.1	< 0.3	0.3	1.4	0.13	<0.04	ND	ND	ND
AP-5	<170	<0.2	<0.1	<0.1	<0.3	0.2	1.3	0.03	<0.04	ND	ND	ND
SL1-1	-			-	-			•	•		•	-
	<170	<0.2	<0.1	<0.1	<0.3	<0.2	<0.1	<0.03	<0.04	ND	ND	ND
			<0.1	<0.1	<0.3	<0.2	0.1	<0.03	<0.04	ND	ND	ND
SL2-2	<170	<0.2		<0.1	<0.3	<0.2	<0.1	<0.03	<0.04	ND	ND	DN
SL2-2 SL4-1	<170	<0.2	<0.1				0.1	<0.03	<0.04	ND	NÐ	10
SL2-2 SL4-1 SL4-2	<170 -	<0.2	-	-0.1		100						ND
SL2-2 SL4-1 SL4-2 SL6-1	<170	<0.2		<0.1	<0.3	<0.2	9.1	<0.05	10.00		nio -	
SL2-2 SL4-1 SL4-2 SL6-1 SL6-2	<170 <170	<0.2 <0.2	<0.1	-	<0.3		-	. .	1. .	-	-	ND
SL2-2 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1	<170 -	<0.2 <0.2 <0.2	<0.1 <0.1	- <0.1	<0.3 <0.3	- 0.2	<0.1 <0.1	0.03	<0.04	ND	NÐ	ND ND
SL2-2 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1 SL7-3	<170 <170 <170	<0.2 <0.2	<0.1	-	<0.3		<0.1	0.03 0.03	<0.04 <0.04	ND ND	NÐ NO	NÒ
SL2-2 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1 SL7-3 SL8-1	<170 <170 <170 <170	<0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1	- <0.1 <0.1	<0.3 <0.3 <0.3	0.2 <0.2	<0.1 0.1	0.03	<0.04	ND	NÐ ND ND	NĎ ND
SL2-1 SL2-2 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1 SL7-3 SL7-3 SL8-1 PM-1 PM-1 PM-4	<170 <170 <170 <170 <170 <170 <170	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3	0.2 <0.2 <0.2 <0.2	<0.1 0.1 <0.1 0.2	0.03 0.03 0.03 0.03 0.07	<0.04 <0.04 <0.04 <0.04 <0.04	ND ND ND ND	ND ND ND ND	ND ND ND
SL2-2 SL4-1 SL4-2 SL6-1 SL6-2 SL7-1 SL7-3 SL8-1 PM-1 PM-4 Note SampEng March March March	<170 - - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.3	<0.3 <0.3 <0.3 <0.3	0.2 <0.2 <0.2	<0.1 0.1 <0.1	0.03 0.03 0.03	<0.04 <0.04 <0.04	ND ND ND	NÐ NO ND	NĎ ND
L2-2 L4-1 L4-2 L6-1 L7-1 L7-3 L8-1 M-1 M-1 March March March	<170 - - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.3	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3	0.2 <0.2 <0.2 <0.2 <0.2 0.2	<0.1 0.1 <0.1 0.2	0.03 0.03 0.03 0.03 0.07	<0.04 <0.04 <0.04 <0.04 <0.04	ND ND ND ND	ND ND ND ND	NÖ ND ND

63

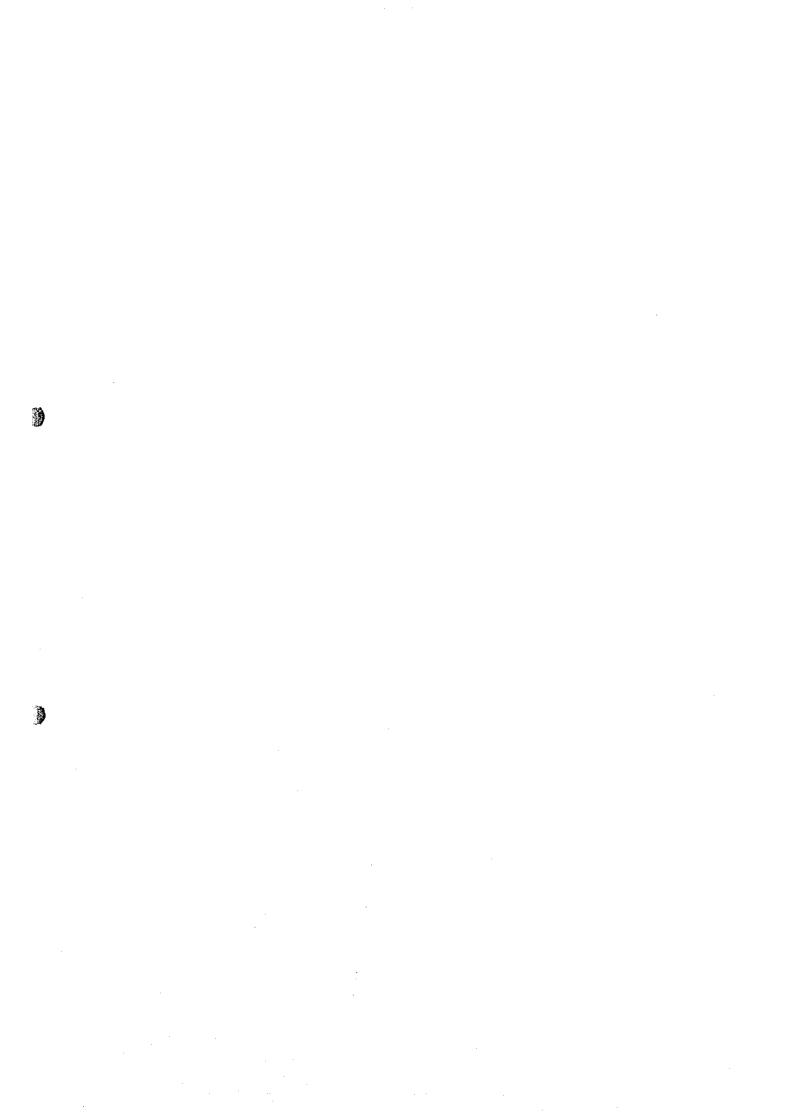
Table C.10(2) Result of Sediment Analysis in Dry Season [Toxic Parameters]

Sedimen	t - Content Te	sl										
Point	Hexane	Cyanide	Cr	Cd	Pb	Cu	Zn	As	Нg	Alkyl-Hg		
No.	Extract	(mg kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	(mg/kg)		······································						~			
PR-1 PR-3	20 23	<0.1 <0.1	58 41	0.57 0.94	5.1 6.2	8.9 34	89 18	21 8	0.82 0.77	<0.005 <0.005		
PR-5	- 33	<0.1	15	0.07	1.6	1.7	21	6	0.14	<0.005		
PL-2	16	<0.1	52	0.45	5.7	4.0	88	18	1.2	<0.005		
PL-4	18	<0.1	40	1.1	4.0	18	62	17	0.74	<0.005		
PL-5 AP-2	<u>6.2</u> 91	<u><0.1</u> <0.1	<u>. 56</u> 57	0.13 0.27	4.6 6.4	1.7 15	64 67	12 26	0.71	<0.005 <0.005		
AP-5	9.3	<0.1	28	0.38	1.0	7.6	37	8	0.05	<0.005		
CL-1	220	<0.1	28	0.53	3.0	24	93	14	1.0	<0.005		
SL1-1	3.0	<0.1	5.1	0.01	0.68	0.4	9.5	6	0.09	<0.005		
SL2-1 SL2-2	14 7.3	<0.1 <0.1	5.9 7.2	0.02 0.01	1.1 0.81	6.5 3.8	12 13	6	0.06 <0.05	<0.005 <0.005		
SL4-1	5.9	<0.1	5.6	0.02	0.57	2.3	10	9	<0.05	<0.005		
SL6-1	2.3	<0.1	6.1	. 0.01	0.39	1.9	12		<0.05	<0.005		
SL6-2	14	<0.1	27	0.08	5.2	8.4	49	8	0.14	<0.005		
SL7-1 SL7-3	15 3.7	<0.1 <0.1	33 32	0.98 0.18	4.8 4.1	21 39	87 81	18 7	0.61 0.60	<0.005 <0.005		
SL8-1	120	<0.1	8.6	0.33	1.4	9.6	19	6	0.35	< 0.005		
PM-1	7.8	<0.1	2.6	0.05	0.73	0.2	6	11	0.13	<0.005		
PM-4	70	<0.1	5.4	0.37	0.69	6.3	18	6	<0.05	<0.005		
	t - Content Te			Orten	000		Norin	Endrin	Dieldrin	DOT	Chloren	-
Point No.	Organo Phosphorous	Trichloro- ethylene	Tetrachloro- ethylene	Carbon Tetrachliride	PCB (mg/kg)	HCB (mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	Chlordane (mg/kg)	
110.	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(109/10)	(6	10.9.20	(maria)	((1979)	
PR-1	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	•
PR-3	ND	ND	ND	ND	NO	ND	ND	ND	ND	NÐ	ND	
PR-5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DM	-
PL-2 PL-4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NÐ ND	ND ND	
PL-5	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	
CL-1	ND	ND	NÖ	ND	ND	ND	ND	ND	ND	ND	ND	-
AP-2	ND	ND .	ND .	ND	ND	ND	NO	ND	ND	ND	ND	
AP-5 SL1-1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-
SL2-1	ND	ND	ND	NÐ	NO	ND	ND	ND	ND	ND	ND	
SL2-2	ND	ND	NÐ	ND	NO	ND	NÐ	ND	ND	ND	ND	
SL4-1 SL4-2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
SL6-1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
SLE 2	ND	ND	NO	ND	NÐ	ND	ND	ND	ND	ND	ND	
SL7-1	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	•
SL7-3 SL8-1	ND ND	ND ND ·	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
PM-1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
FM-4	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	-
	•											
Cadlman	A Electron Tree											
Point	rt - Elution Tes Hexane	Cyanide	Cr ⁵	Cđ	Pb	Cu	Zn	As	Hg	Alkyl-Hg	Organo	PCB
No.	Extract	(៣១.៥១)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	~	(mg/kg)	Phosphorous	
	(mg/kg)	(((0.3.3/	(***3***3)	(** 3 **3)	(***3**3)	(** 9 **\$/	((mg/kg)	1.3.37
PR-1	<170	<0.1	<0.1	<0.02	<0.03	<0.17	< 0.03	<1	< 0.03	ND	ND	ND
PR-3	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1	<0.03	<0.03	ND	ND
PR-5	<170	<0.1	<0.1	<0.02	<0.03 <0.03	<0.17	<0.03	<1	<0.03	<0.03	ND ND	ND ND
PL-2 PL-4	<170 <170	<0.1 <0.1	<0.1 <0.1	<0.02 <0.02	< 0.03	<0.17 <0.17	<0.03 <0.03	<1 <1	<0.03 <0.03	<0.03 <0.03	ND	NO
PL-5	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1	< 0.03	<0.03	ND	ND
CL-1	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1	<0.03	< 0.03	ND	ND
AP-2 AP-5	<170	<0.1	<0.1 <0.1	<0.02 <0.02	<0.03 <0.03	<0.17	<0.03 <0.03	<1	<0.03 <0.03	<0.03 <0.03	ND ND	ND ND
SL1-1	<170 <170	<0.1 <0.1	<0.1	<0.02	< 0.03	<0.17 <0.17	<0.03	<u>ব</u> ব	<0.03	<0.03	ND	ND
SL2-1	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1	<0.03	<0.03	ND	NÐ
SL2-2	<170	<0.1	<0.1	<0.02	<0.03	<0.17	<0.03	<1	<0.03	<0.03	ND	ND
SL4-1	<170	<0.1	<0.1	<0.02	<0.03	<0.17	<0.03	<1	<0.03	<0.03	ND	ОИ
SL4-2 SL6-1	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	- <1	<0.03	- <0.03	ND	ND
SL6-1	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1 <1	<0.03	<0.03	ND	ND
SL7-1	<170	<0.1	<0.1	<0.02	< 0.03	<0.17	<0.03	<1	< 0.03	< 0.03	ND	ND
SL7-3	<170	<0.1	<0.1	< 0.02	<0.03	<0.17	<0.03	<1	< 0.03	< 0.03	ND	DN ND
SL8-1 PM-1	<170 <170	<0.1 <0.1	<0.1 <0.1	<0.02 <0.02	<0.03 <0.03	<0.17 <0.17	<0.03 <0.03	ব ব	<0.03 <0.03	<0.03 <0.03	ND ND	ND ND
PM-1	<170	<0.1	<0.1	<0.02	<0.03	<0.17	<0.03	<1	<0.03	<0.03	ND	NO
Note										· · · · · · · · · · · · · · · · · · ·		
Samolion	dela											

)

à

Note Samping date July 19, 1999 at St.6-1, St.6-2, St.7-1, St.7-3, St.8-1, PM-1, PM-4 July 20, 1999 at St.1-1, St.2-1, St.2-2, St.4-1 July 21, 1999 at PR-1, PR-3, PR-5, PL-2, PL-4, PL-5, AP-2, AP-5 July 22, 1999 at Ct-1 ND means "Not Detected".


. • ÷

Indust (marking) (Z	Samole Site	Species	Dd Dd	đ	Cu	Zn	PH	PCB	HCB HCB	Aldrin	Endrin	Dieldrin	DOT
Coast South South South South Coast C				(ma/ka)	(ma/ka)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(6x/6u)	(mg/kg)	(mg/kg)	(b¼/Sɯ)	(13/kg)
Colding South South Willing Thickin South So	ľ		00100	50	5 c		i u	370	CZ	CZ	CZ	QZ	CN	Q
Coast South Decision Coast South Decision Decisio Decision Decision Decision Decision Decision Decision Decision De		Coast south		20.5		20	n (22	22	2			Ş
Codest South Decision EURPANICA Internet Note Codest South InterNetWork EURPANICA South Pressource South Pressource South Pressource South Pressource Legeona (LEPEANICHA Pressource Legeona (LEPEANICHA Codest South Pressource Legeona (LEPEANICHA Codest Legeona (LE	N	Coast South	THOCHA	¥0.2	0. V	\$. \$	5.0	2	2	2	22	2	2	22
Coast South Periol Viejo Lagoon 1 EIEPANCHA Coast South EIEPANCHA FLONCO Coast South EIEPANCHA MD ND Obset South EIEPANCHA ND N	Ϋ́.	Coast South	GURRUBATA	° °	o V	<0.25	8'S	0.66	S	Ž	2	Ž	2	2
Coarse South Busio Viejo Lagoon1 HUXCHANGA -0.2 -1.0 -0.25 ND ND <th< td=""><td>4</td><td>Coast South</td><td>RONCO</td><td>40.2</td><td>0.17</td><td>0.37</td><td>9 0 0</td><td>0.97</td><td>Q Z</td><td>Ż</td><td>z</td><td>2</td><td>2</td><td>2</td></th<>	4	Coast South	RONCO	40.2	0.17	0.37	9 0 0	0.97	Q Z	Ż	z	2	2	2
Presito Viege Lagoon1 ElePandon Culture	ŝ	Coast South	HUACHINANG	<0'5 <0'5	<1.0 <1.0	<0.25	2.0	<0.25	2	Q	OZ Z	g	Q Z	Q
Pression Verge Lagoon CulterUBATY 402 110 117 100 10		Pueblo Vieio Laccon 1	LEBRANCHA	40.2 40.2	<1.0	0.35	2.9	<0.25	0 Z	0 Z	2	2	2	2
Public Vielo Lagoon 1 EERANCHA Cols 11 Cols Cols <thcols< th=""></thcols<>	1 (Dichle Vicie Lease		ç	Ċ		0	1.7	22	0 Z	g	g	92	Q
Problem (ve)o Lagoon 3 LEBANCHA C/2 C/10 D/3 Problem (ve)o Lagoon 3 LEBANCHA C/2 C/10 D/3 Problem (ve)o Lagoon 1 D/3 C/2 C/10 D/3 D/3 Problem (ve)o Lagoon 1 D/3 C/10 D/3 C/2 C/10 D/3 Problem (ve)o Lagoon 1 D/3 C/2 C/10 D/3 C/2 C/2 D/3 D/3 Problem (ve)o Lagoon 1 D/3 C/2 C/10 D/3 C/2 D/3 D/3<	~ '	Lueulo Vielo			20		, ; ;	200				Z	2	2
Proble Weige Lgebornis LEEPANICHA 6.02 710 0.05 17 6.02 710 0.05 17 6.02 0.00 0.0	00		LEBHANCHA	vi Vi		3	<u> </u>	Ş	2	29	29	29	2	
Pression Visjo Lagoon1 LEEPANCHA -0.2 -1.0 0.38 2.0 -0.25 ND ND <td>σ</td> <td></td> <td>LEBRANCHA</td> <td>ې 9</td> <td>0.10</td> <td>0.51</td> <td>17</td> <td>40.25 40.25</td> <td>2</td> <td>2</td> <td>2</td> <td>Z</td> <td>2</td> <td></td>	σ		LEBRANCHA	ې 9	0.10	0.51	17	40.25 40.25	2	2	2	Z	2	
Preebo Vrigo Lagoon 1 LEBRANCHA -0.2 -1.0 0.68 62 -0.25 ND	0 0		[LEBRANCHA	0.0 V	0. 7	0.38	50	40.25 40.25	Q 2	Q Z	n Z	g	2 Z	B
Pueblo Vrigio Lagoona LEBRANCHA 602 7.10 0.26 5.2 6.02 ND		Pueblo Vieio	LEBRANCHA	<0.2	0.1v	0.68	23	<0.25	g	Q	2	g	<u>9</u>	Q
One LEBRANCHA 602 710 0.44 710 0.45 710 <t< td=""><td>12</td><td></td><td>LEBRANCHA</td><td>50.2 20.2</td><td>0</td><td>0.56</td><td>5.2</td><td><0.25</td><td><u>0</u>2</td><td>0 Z</td><td>Q</td><td>g</td><td>0 Z</td><td>0 Z</td></t<>	12		LEBRANCHA	50.2 20.2	0	0.56	5.2	<0.25	<u>0</u> 2	0 Z	Q	g	0 Z	0 Z
Sound Jensey Const Jensey Cost Jensey <thcost jensey<="" th=""> <thcost jensey<="" th=""></thcost></thcost>			· · ·	-								1	!	ļ
Sound ONSTER O.4 C10 9.8 5.5 0.4 C10 9.8 5.5 0.4 C10 0.8 0.5 <th0.5< th=""> 0.5 0.5 <th0.5<< td=""><td>¥</td><td>Pueblo Vieio Lagoon 4</td><td>LEBRANCHA</td><td>40.2 V</td><td>0.12</td><td>0.49</td><td>5,0</td><td><0.25</td><td>Q2</td><td>02 Z</td><td>0 Z</td><td>2</td><td>9 Z</td><td></td></th0.5<<></th0.5<>	¥	Pueblo Vieio Lagoon 4	LEBRANCHA	40.2 V	0.12	0.49	5,0	<0.25	Q2	02 Z	0 Z	2	9 Z	
0001 0001 <th< td=""><td>· ~</td><td>Pueblo Vieio I annon 1</td><td>OVSTER-</td><td>4.0</td><td>0 12</td><td>8.6</td><td>ទួក</td><td><0.25 <0.25</td><td>2</td><td>9</td><td>g</td><td>g</td><td>9</td><td>0 Z</td></th<>	· ~	Pueblo Vieio I annon 1	OVSTER-	4.0	0 12	8.6	ទួក	<0.25 <0.25	2	9	g	g	9	0 Z
0.000 0.000 <th< td=""><td>10</td><td>Buoble Visio Lagon 2</td><td></td><td></td><td>Q V</td><td>0</td><td>~</td><td>0.26</td><td>22</td><td>Q</td><td>02 Z</td><td>QZ</td><td>92</td><td>g</td></th<>	10	Buoble Visio Lagon 2			Q V	0	~	0.26	22	Q	02 Z	QZ	92	g
9000000000000000000000000000000000000) (1.	2 <	1 6	: ;	20.01	ç		Ż	CZ	C	ç
Solution Constraint Constraint <thconstraint< th=""> Constraint Constraint</thconstraint<>	4	- Leono viejo Lagoon 3	220107	t i	2	3	21	3	29	2	2		2	2
Solution Constreme Solution	4D	Pueblo Viejo Lagoon 4	OVSTER	0	0, ⊽	7.8	6/	Ş. Ş	2		2	2	2	2
TILAPA 402 416 6025 446 6025 416 6025 416 6025 416 6025 416 6025 610 6025 6025 6025 <th< td=""><td>φ</td><td>R Pueblo Viejo Lagoon 5</td><td>OVSTER</td><td>40.2 V</td><td>0.12</td><td>5.0 0</td><td>ß</td><td><0.25</td><td>9</td><td>Q</td><td>ŝ</td><td>Q2</td><td>2</td><td>2</td></th<>	φ	R Pueblo Viejo Lagoon 5	OVSTER	40.2 V	0.12	5.0 0	ß	<0.25	9	Q	ŝ	Q2	2	2
TillAPIA 402 TillAPIA 402 TillAPIA 602 710 622 710 622 710 602 710 711	~	Coneio Lagoon 1	TILAPIA	40.2 40.2	0.15	<0.25	4.6	\$0.5k	Q Z	Ð	g	g	ð	2
ТІLAPIA ТІLAPIA ТІLAPIA 11.2.2.2 ТІLAPIA 4.02 11.2.2.5. 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.00 4.02 4.10 4.02 4.10 4.02 4.10 4.02 4.10 4.02 4.10 4.02 4.10 4.02 4.10 4.02 4.10 4.22 4.10 4.12 4.	ø	Conejo Lagoon 2	TILAPIA	40.2 V	0.12	<0.25	с. С	<0.25	02 Z	P	g	2	9	2
Tilapa -0.2 -1.0 -0.25 -1.0 -0.25 -1.0 -0.25 -1.0 -0.25 -1.0 -0.25 -0.0 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05	ത	Coneio Lacoon 3	TILAPIA	<0.2	0.12	<0.25	36	<0.25	Q	9	02	8	9	02
Til.APIA <th< td=""><td>¢ F</td><td>Coneio Laccon 1</td><td>TILAPIA</td><td><0.2 <0.2</td><td>0.15</td><td><0.25</td><td>100</td><td><0.25</td><td>Q</td><td>Đ</td><td>g</td><td>2</td><td>92</td><td>2</td></th<>	¢ F	Coneio Laccon 1	TILAPIA	<0.2 <0.2	0.15	<0.25	100	<0.25	Q	Đ	g	2	92	2
11.4PLA 40.2 11.5 40.2 11.6 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.7 40.2 11.8 40.2 11.9 40.2 11.9 40.2 11.9 40.2 11.9 40.2 11.9 40.2 11.9 40.) T - T		TIL ADIA			1001	5	20.02	CZ	Q	CZ	g	Q	2
Conejo Lagoon 2 BAGRE				90					22	22		22	ç	Ş
Conejo Lagoon 2 BAGRE Conejo Lagoon 3 Panuco River 1 Panuco River 1 Panuco River 1 Panuco River 1 Cenejo Lagoon 3 Panuco River 1 LEBRANCHA Panuco River 1 LEBRANCHA Panuco River 1 LEBRANCHA Panuco River 1 LEBRANCHA Panuco River 1 LEBRANCHA Panuco River 1 LEBRANCHA CO25 C1:0 C0	21	Conejo Lagoon 3		202	2.7	67:02	-	C7.02	2	2	2	2	2	2
Conejo Lagoon 2 BAGRE <0.2 <1.0 <0.25 4.8 <0.25 NU						1				-	9	(4	Ç
Conejo Lagoon 3 BAGRE <0.2 <1.0 <0.25 1.7 <0.25 ND		Conejo Lagoon 2	BAGRE	N V V		40.75 V	4	<0.20 <	2	Ž	2 S		2	Ş
Panuco River 1 LEBRANCHA <0.2 <1.0 <0.25 0.90 <0.25 ND	2	Coneio Lagoon 3	BAGRE	40.2 V	0. 7	<0.25	1.7	<0.25	2	g	QZ	Q		D N
Panuco River 1 LEBRANCHA <0.2 <1.0 <0.25 1.0 <0.25 ND	e	Panuco River 1	LEBRANCHA	\$0 20 20	0	<0.25	06.0	<0.25	Q	Q	g	<u>0</u> 2	Q	2
Panuco River 1 LEBRANCHA <0.2 <1.0 <0.25 0.56 <0.25 ND	4	Panuco River 1	I FBRANCHA	40 2 V	0.12	<0.25	0.1	<0.25	02	Q	Q	Q	ĝ	o 2
Panuco River 1 LEBRANCHA <0.2 <1.0 <0.25 <1.0 <0.25 <1.0 ND	' Y		AHCHARAR I	ç		<0.25	0.56	<0.25	QZ	0 Z	0 Z	22	2	9
Panuco River CLEBRANCHA COL COL CLEBRANCHA COL COL COL CLEBRANCHA COL COL COL COL COL COL COL CLEBRANCHA COL COL <thcl< th=""> <thc< td=""><td>, 4</td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>20.04</td><td>ç</td><td>Z</td><td>Z</td><td>Q</td><td>Q</td><td>Q</td></thc<></thcl<>	, 4						25	20.04	ç	Z	Z	Q	Q	Q
Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 1.3 <0.25 ND	וט				2 Q) () /		22	22			ç	Ş
Panuco River GURRUBATA <0.2 <1.0 <0.25 3.1 0.29 ND				N C	, • ⊽ '	3	ה נ - נ	0.5		22				22
Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 3.1 0.29 ND	æ	Banuco River	GURRUBATA	N 09	0	<0.20×	0.0	\$0.59	2	Z	2	2:	29	29
Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 5.2 0.90 ND ND ND ND ND ND ND ND Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 3.5 0.33 ND ND ND ND ND ND ND Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 100 0.39 ND	с Л	Panuco River 3	GURRUBATA	<0 2 2 2 2 2	0 V	<0.25	3.1	62.0	2			2	2	Z
Ралисс River 3 GURRUBATA <0.2 <1.0 <0.25 3.5 0.33 ND ND ND ND ND ND ND Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 100 0.39 ND ND ND ND ND ND	9	Panuco River 3	GURRUBATA	0 0	o ⊽	<0.25	5.2	60			2	2	29	2
Panuco River 3 GURRUBATA <0.2 <1.0 <0.25 100 0.39 ND ND ND ND ND	***	Panuco River 3	GURRUBATA	<0'5' <0'5'	0 V	<0.25	3.5	0,33	C I	R	2	2	2	2
		2 Panuco River 3	GURRUBATA	<0 2 20 2	<1.0 1	<0.25	100	0.39	Q	QN	QN	Q	Q	Q

Table C.11 Result of Biological Accumulation Test

1

C-16

.

6