Appendix A

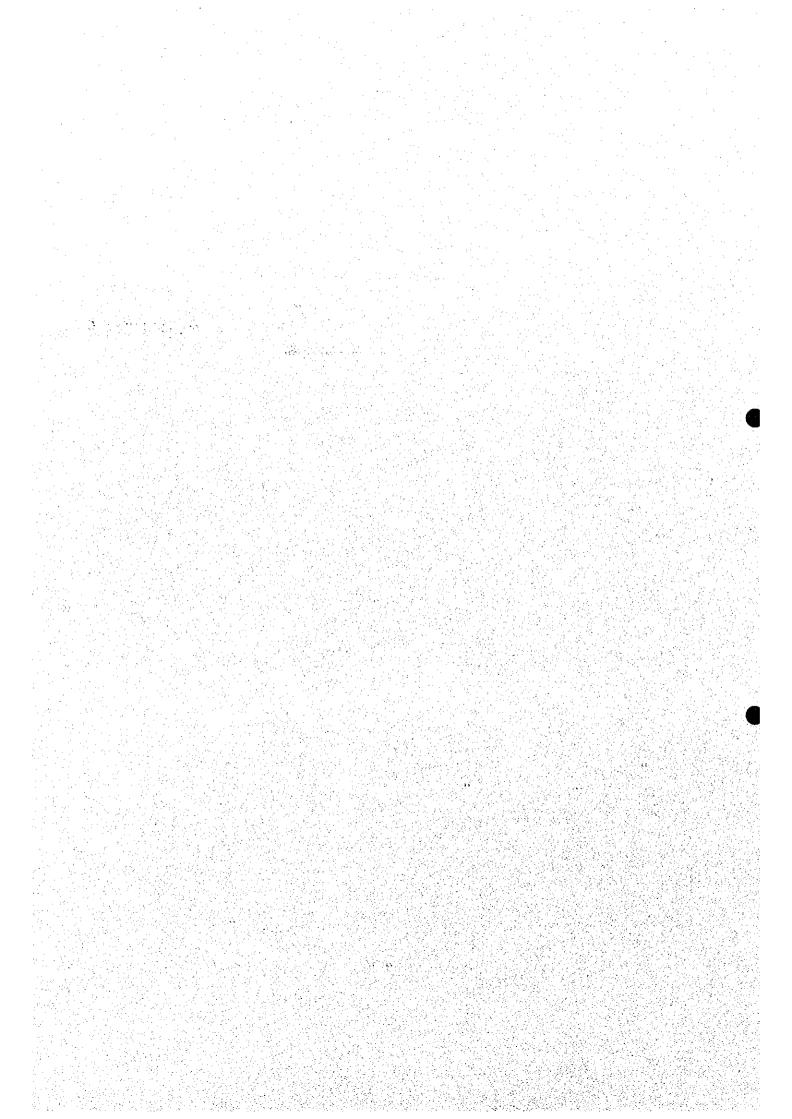


Table A.1 Maximum Permissible Level for Contaminants in the Discharge of Wastewater into the Water Body

(NOM-001-ECOL-1996, Ministry of Environment, Natural Resources and Fishery)

Parameter	River						Natural a	nd Artificial	Reservo	oirs
	use for ag	ricultural	urban pi	ublic	Protection	on of	use for ag	ricultural	urban public	
	irrigation		use		Aquatic biota		irrigation		use	
	РМ	PD	PM	PD	PM	PD	PM	PD	PM	PD
Temperature (°C)	NA	NA	40	40	40	40	40	40	40	40
Grease and Oil (mg/l)	15	25	15	25	15	25	15	25	15	25
Floating Material	absent	absent	absent	absent	Absent	absent	absent	absent	absent	absent
Settleable Solid (mVI)	1	2	1	2	1	2	1	2	1	2
Total Suspended Solid (mg/l)	150	200	75	125	40	60	75	125	40	60
BOD5 (mg/l)	150	200	75	150	30	60	75	150	30	60
Total Nitrogen (mg/i)	40	60	40	60	15	25	40	60	15	25
Total Phosphorus (mg/l)	20	30	20	30	5	10	20	30	5	10
Arsenic (mg/l)	0.2	0.4	0.1	0.2	0.1	0.2	0.2	0.4	0.1	0.2
Cadmium (mg/l)	0.2	0.4	0.1	0.2	0.1	0.2	0.2	0.4	0.1	0.2
Cyanide (mg/l)	2	3	1	2	1	2	2	3	1	2
Copper (mg/l)	4	6	4	6	4	6	4	6	4	6
Chromium (mg/l)	1	1.5	0.5	10	0.5	10	i	1.5	0.5	1
Mercury (mg/l)	0.01	0.02	0.005	0.01	0.005	0.01	0.01	0.02	0.005	0.01
Nickel (mg/l)	2	4	2	4	2	4	2	4	2	4
Lead (mg/l)	0.5	1	0.2	0.4	0.2	0.4	0.5	1	0.2	0.4
Zinc (mg/L)	10	20	10	20	10	20	10	20	10	20

Parameter	Coastal Water								
	fish explo	itation,	recreation	on	Estuary				
	navigation	n and	İ						
	other use			_	1				
	PM	PD	РМ	PĐ	РМ	PD			
Temperature (°C)	40	40	40	40	40	40			
Grease and Oil (mg/l)	15	25	15	25	15	25			
Floating Material	absent	absent	absent	absent	Absent	absent			
Settleable Solid (mVI)	1	2	1	2	1	2			
Total Suspended Solid (mg/l)	100	175	75	125	75	125			
BOD5 (mg/l)	100	200	75	125	75	125			
Total Nitrogen (mg/l)	NA	NA	NA	NA	15	25			
Total Phosphorus (mg/l)	NA .	NA	NA	NA	5	10			
Arsenic (mg/l)	0.1	0.2	0.2	0.4	0.1	0.2			
Cadmium (mg/l)	0.1	0.2	0.2	0.4	0.1	0.2			
Cyanide (mg/l)	2	2	2	3	1	2			
Copper (mg/l)	4	6	4	6	4	6			
Chromium (mg/l)	0.5	1	1	1.5	0.5	1			
Mercury (mg/l)	0.01	0.02	0.01	0.02	0.01	0.02			
Nickel (mg/l)	2	4	2	4	2	4			
Lead (mg/l)	0.2	0.4	0.5	1	0.2	0.4			
Zinc (mg/L)	10	20	10	20	10	20			
			 	•	* ,				

PD: daily average, PM: monthly, NA: not applicable

Note:

· The permissible range of hydrogen potential (pH) is from 5 to 10.

The maximum permissible limit of fecal coliform in effluent which is discharged into national water and land is 1,000 and 2,000 (MPN/100 ml) for monthly mean, and daily mean, respectively.
The maximum permissible limit of eggs of helminth in wastewater which is discharged into irrigation land is one egg per

• The maximum permissible limit of eggs of helminth in wastewater which is discharged into irrigation land is one egg per liter for all the agricultural products and five eggs per liter for the agricultural products except legumes and vegetables which are uncookedly consumed.

Table A.2 (1) Environmental Criteria of Water Quality (CE-CCA-001/89; Ministry of Urban Development and Ecology (SEDUE)) (mg/l for parameters without indication)

	Supply Source	Recreation with	Agricultural	Pasture	Protection of a	nuatic hiota
Substance or Parameter	of Potable Water		Irrigation	1 23(4)0	Freshwater	Coastal Area
Acenaphthene	0.02				0.02 (1)	0.01 (l)
2,4-dichlorophenoxyacetic acid	0.1	-	-		-	
Acrylnitrile	0.0006 (III)	i			0.07 (I)	-
Alkalinity (as CaCO ₃)	400	•	-	-	(N)	(IV)
Aldrin	0.00003 (III)	0.00005	0.02	-	0.003	0.001
Aluminum	0.02		5	5	0.05	0.2
Antimony	0.1	-	0.1	-	0.09(1)	-
Arsenic (II)	0.05 (III)	-	0.1	0.2	0.2 (as As III)	0.2 (as As III)
Asbestos (fibers/I)	3000 (III)			-	-	-
Esthetic Aspects	(V)	(V)	(V)	(V)	(V)	(V)
Barium	1	•	1 :		0.01	0.5
Benzene (ii)	0.01 (III)	-	T		0.05 (I)	0.005
Benzidine (II)	0.000001 (III)		-	-	0.02 (i)	
Beryllium	0.00007 (11)	-	(VI)	0.1	0.001	-
PCB (II)	0.0000008 (III)	•	-		0.00001	0.000003 (I)
BHC (II) (VII)	•	-	-	-	0.001 (1)	0.000003 (I)
BHC (Lindane)	* 0.003 (III)	-	-	-	0.002	0.0002
bis(2-chloroethyl) ether	0.0003 (iii)	-	-	-	(VIII)	•
bis (2-chloroisopropyl) ether	0.03 (III)	-	-	-	(VIII)	-
bis (2-ethylhexyl) phthalate	32		T		(iX)	(X)
4-bromophenyl phenyl ether		-	-		0.01	
Boron	i	[0.7 (XI)	. 5	-	0.009 (XII)
Bromoform	0.002 (III)	-	-	•	•	-
Bromomethane	0.002	-			-	- .
Cadmium (II)	0.01	-	0.01	0.02	(XIII)	0.0009
Organic Carbon	-	-		-	-	-
(Extraction with alcohol)	1.5	<u>-</u>	-	-	-	-
(Extraction with chlorofrom)	3	<u> </u>	•	-	-	-
Cyanide (as CN)	0.2	0.02	0.02	-	0.005 (XIII)	0.001 (XIV)
Chlordane (II)	0.003 (III)	0.00002	0.003	-	0.002	0.00009
(technical mix of Metabolitos)	ļ <u> </u>					
Residual chlorine		ļ <u>-</u>	 	<u> </u>	0.011 (XII)	0.0075 (XII)
Chlorobenzene	0.02	<u> </u>	ļ		((V)	(XVI)
2-Chloro-ethyl vinyl ether	200	÷	 	-	0.5 (f)	
2-Chlorophenol	0.03	<u> </u>	<u> </u>	· -	0.04	0.1
Chloroform (ii)	0.03 (III)	•	<u> </u>		0.3 (1)	-
Chlorida (a.a.Ch)		·	-		0.02 (1)	0.00007 (1)
Chloride (as Cf) Dichloromethane	250	<u> </u>	147.5		250	• .
Chloromethane	0.002 (III)	-	<u> </u>		<u> </u>	-
Vinyl chloride	0.002 (11)					
Copper	0.02 (III)	<u> </u>	-	-	<u>-</u>	-
Fecal Coliform (MPN/100ml)	1 1000		0.2	0.5	(XVII)	0.003 (XIV)
Color (Pt-Co unit)	1000	(XVIII)	1000		(XVIII)	(XVIII)
Electric Conductivity (mmho/cm)	75	<u> </u>			(XIX)	(XIX)
Hexavalent Chromium	0.05	<u> </u>	1 (XX)			-
DDD (II)	0.0000002 (III)		1 1	1	0.01 (XII)	0.05 (XII)
DDE (II)	0.000002 (III)	<u> </u>	0.004		0.000006 (I)	0.00004 (1)
DDT (II)	0.001 (III)	0.000000	0.004		0.01 (I)	0.0001 (i)
Dichlorobenzenes	0.001 (iii)	0.000005		-	0.001	0.0001
1,2-dichloroethane (II)	0.005	•	· ·		0.01	0.02
1,1-dichloroethylene (II)	0.0003		·		1.2 (1)	1.1 (1)
1,2-dichloroethylene (II)		<u>-</u>			(XXI)	(XXI)
2,4-dichlorophenol	0.0003	•	·		(XXI)	(XXI)
Diektrin (II)	0.03 0.0000007 (III)	0.000000	•	-	0.06 (I)	0.008 (I)
Diethyl phthalate		0.000003	0.02	-	0.002	0.0007
1,2-diphenilhydrazine (II)	350	<u> </u>		-	(IX)	(X)
2,4-dimethylphenol	0.0004 (iii)			-	0.003	<u> </u>
Dimethyl phthalate	0.4 313	<u> </u>	-	-	0.02	
2,4-dinitrophenol		•			(iX)	(X)
	0.07	-	<u> </u>	•	0.002 (I)	0.05
dinitro-o-cresol	0.01 (III)	-		-	• .	0.01
2,4-dinitrotoluene (II)	0.001 (III)	<u>.</u>		•	1 + 1	0.01
2,6-dinitrotoluene	<u> </u>	-]	-	(XXIII)	(XXIV)
Contanulfana falabar an til i til 100	0.03		1			
Endosulfane (alpha and beta) (II) Endrin	0.07	•		-	0.0002	0.00003

Table A.2 (2) Environmental Criteria of Water Quality (CE-CCA-001/89; Ministry of Urban Development and Ecology (SEDUE)) (mg/l for parameters without indication)

	Supply Source	Recreation with	Agricultural	Pasture	Protection of ac	uatic biota
Substance or Parameter	of Potable Water		Irrigation		Freshwater	Coastal Area
Ethylbenzene	1.4	-		-	-	0.5
Phenol	0.3	0.001	-	-	0.1 (i)	0.06 (1)
Iron	0.3		5	-	1	0.05
Fluorene	0.04	-		-	0.04 (1)	0.0004 (1)
Fluoride (as F)	1.5	•	1	2	1	0.5
Phosphate (as PO ₄)	0.1	-	-	•	(XXV)	0.002
Elemental phosphorus (as P)	•	-		-	0.0001	0.0001
Dissolved gases	-	-	-	-	(XXVI)	(XXVI)
Grease and oil	Absent					-
Halomethane	0.002 (III)	-	1 -		0.1 (1)	-
Heptachlor (II)	0.0001 (III)	0.000002	0.02		0.0005	0.0005
Hexachlorobenzene	0.00001 (III)	_	-		(XV)	(XVI)
Hexachlorobutadiene (II)	0.004 (III)				0.0009 (1)	0.0003 (I)
Hexachloropentadiene	0.001			-	0.00007 (1)	0.00007 (I)
Hexachloroethane	0.02 (III)			-	0.01 (l)	0.009 (l)
Polynucleric Aromatic Hydrocarbon	0.00003 (III)	-				0.1
Isophorone	5.2	-	-	-	1.2 (i)	0.1 (f)
Manganese	0.1	-		-		-
Floating Material	V.2	V.2	V.2	V.2	V.2	V.2
Mercury (Hg) (II)	0.001	•	 	0.003	0.00001 (XII)	0.00002 (XII)
Methoxychlor	0.03		 		-	-
Naphthalene		-	-	-	0.02 (i)	0.02 (i)
Nickel	0.01	-	0.2	1	(XXVII)	0.002 (XII)
Nitrates (NO ₃) (as N)	5	-	-	90	-	0.04
Nitrites (NO ₂) (as N)	0.05			10		0.002
Nitrobenzene	20				0.3 (1)	0.07 (l)
2-Nitrophenol and 4-nitrophenol	0.07		-	-	0.002 (l)	0.05 (I)
Ammonium nitrogen	•		-		0.06	0.01
N-Nitrosodiphenylamine (II)	0.05 (III)				(XXVIII)	(XXIX)
N-Nitrosodimethylamine (II)	0.00001 (III)		-	<u> </u>	(XXVIII)	(XXIX)
N-Nitroso N-propylamine			1		(XXVIII)	(XXIX)
Dissolved oxygen (XXX)	4	-	-		5	5
Paration	0.00003		-		0.00004	0.00004
Odor	Absent	-	-			
Pentachlorophenol	0.03	-	-	-	0.0005 (i)	0.0005 (l)
pH (XXXI)	5-9	-	4.5-9	-	(XXXII)	(XXXII)
Silver	0.05	-			(XXXIII)	0.002
Lead	0.05	-	5	0.1	(XXXIV)	0.006 (XII)
Taste	characteristics		-	-	,	-
Selene (as Selenate ?)	0.01	-	0.02	0.05	0.008	0.4
Dissolved Solid	500	•	500	1000	-	•
Suspended Solid	500		50	-	(XIX)	(XIX)
Total solid	1000	-	-	-	-	-
Active substance to Methylene blue	0.5	-	-	-	0.1	0.1
Sulphate (SO ₄ ²)	500	-	170	-	?	-
Sulphide (as H ₂ S)	0.2				0.002	0.001
Tatium	0.01	-	•	-	0.01 (I)	0.02 (I)
Temperature (°C)	Natural condition	-	-	-	Natural	Natural
	+2.5	L	1	L	condition + 1.5	condition + 1.5
2,3,7,8-Tetrachlorobenzo-p-dioxyne	0.0000000001	-	-	-	-	-
4.4.0.0 Takaablasth (10)	(III)	 	 	 	0.00.70	0000
1,1,2,2-Tetrachloroethane (II)	0.002 (III)	· · · · · · · · · · · · · · · · · · ·	 	· ·	0.09 (1)	0.09 (I)
Tetrachloroethylene (II)	0.008 (III)	· · · · · · · · · · · · · · · · · · ·	- 	-	0.05 (i)	0.1 (1)
Toluene	14.3	0.00000		-	0.2 (f)	0.06 (1)
Toxaphen	0.000007	0.00003	0.005	•	0.0000002 (XII)	0.0000002 (XII)
1,1,1-Trichloroethane (II)	18.4 (III)	-		-:	0.2 (1)	0.3 (i)
1,1,2-Trichloroethane (II)	0.006 (III)	-	-	-	0.2 (1)	· · · · · · · · · · · · · · · · · · ·
Trichloroethylene (II)	0.03 (III)		<u> </u>		0.01	0.02
	0.01 (III)	•	†	-	0.01	† <u> </u>
2.4.6-Trichiorophenol (II)				1	J. U.U.	
2,4,6-Trichlorophenol (II) Turbidity (Unit scale of silicate)				-	(XIX)	ואוא ו
Turbidity (Unit scale of silicate)	Natural condition	-		50	(XIX)	(XIX) 0.09 (XII)
			2 0.1	50 0.1	(XIX) (XXXVI) 0.1	(XIX) 0.09 (XII) 0.1

Note:

- (f) the limit value of this substance is obtained from multiplying the reported acute toxicity by 0.01.
- (ii) the substance which has persistence, bioaccumulation or risk of cancer, so that human exposition should at least be reduced.
- (III) the limit value has be extrapolated with the mathematical model, so that posterior revision could be modified to the less strict
- (IV) the reduction on natural alkalinity of water body should not be more than 25%, when this natural alkalinity is equal or less than 20 mg/l the reduction on natural alkalinity of water body should not be admitted.
- (V) the water body should be free from substances attributed to wastewater or other discharges which:
- 1. form deposits which adversely change the physical characteristics of water;
- 2. contain floating material like particles, oil or other residues which appear unpleasant.
- 3. produce color, odor, taste or turbidity; or
- 4. make aquatic blota undesirable or unpleasant.
- (VI) for continuing irrigation of soil, water should not contain more than 0.1 mg/l of beryllium, except for the case of alkaline soil and of fine texture where it can be applied under the concentration to 0.5 mg/l.
- (VII) the data indicated as BHC includes the mixture of isomers alpha, beta and epsilon.
- (VIII) the value obtained from multiplying the acute toxicity for freshwater organisms by 0.01 indicates that chloroalkyl esters should not be larger than 2.38 mg/l.
- (IX) the value obtained from multiplying the acute toxicity for freshwater organisms by 0.01 indicates that the concentration of esters of phthalic acid should not be greater than 0.0094 mg/l.
- (X) the value obtained from multiplying the acute toxicity for estuarine or coastal organisms by 0.01 indicates that the concentration of esters of phthalic acid should not be larger than 0.02944 mg/l.
- (XI) For irrigation of crops which is sensitive to boron, the water should not contain larger than 0.75 mg/l of this substance, except for other crops for which the concentration to 3 mg/l can be applicable.
- (XII) the average concentration of this substance during 4 days should not exceed this level more than once each three years.
- (XIII) the average concentration of cadmium (micro-g/l) during 4 days should not exceed the calculated value from the following equation more than once each three years:

(0.7852*in(hardness) - 3.490)

Cd (micro-g/l) = e

hardness =mg/l as CaCO3

- (XIV) the average concentration of this substance during one hour should not exceed this level more than once—each three years.
- (XV) the value obtained from multiplying the acute toxicity of chlorobenzenes by 0.01 indicates that the concentration of these (except dichlorobenzenes) should not be larger than 0.00250 mg/l in order to protect the freshwater organisms.
- (XVI) the value obtained from multiplying the acute toxicity of chlorobenzenes by 0.01 indicates that the concentration of these (except dichlorobenzenes) should not be larger than 0.00250 mg/l in order to protect the estuarine and coastal organisms.
- (XVII) the average concentration of copper (micro-g/l) during 4 days should not exceed the calculated value from the following equation more than once each three years:

(0.8545*in(hardness) - 1.465)

Cu (mlcro-g/l) = e

hardness =mg/l as CaCO3

(XVIII) the organisms should not exceed 200 (MPN/100ml) in freshwater or estuariné and coastal water, and more than 10% of monthly samples should not exceed 400 (MPN/100 ml).

- (XIX) suspended solid (including settleable) in combination with color should not reduce the depth of compensation level of light for the photosynthetic activity to more than 10% from the natural value.
- (XX) this level is considered from the use of water under medial condition of soil texture, velocity of infiltration, drainage, lamina of used irrigation, climate and tolerance of the crops towards salts. Considerable deviations of this parameter make the use of this water insecure.
- (XXI) the value obtained from multiplying the acute toxicity of dichloroethylenes by 0.01 indicates that the concentration of these

should not be larger than 0.116 mg/l in order to protect the freshwater organisms.

(XXII) the value obtained from multiplying the acute toxicity of dichloroethylenes by 0.01 indicates that the concentration of these should not be larger than 2.24 mg/l in order to protect the estuarine and coastal organisms.

(XXIII) the value obtained from multiplying the acute toxicity of dinitrotoluenes by 0.01 indicates that the concentration of these should not be larger than 0.0033 mg/l in order to protect the freshwater organisms.

(XXIV) the value obtained from multiplying the acute toxicity of dinitrotoluenes by 0.01 indicates that the concentration of these should not be larger than 0.0033 mg/l in order to protect the freshwater organisms.

(XXV) total phosphate, a measure of phosphorus, should not exceed 0.05 mg/l for influents into takes or reservoirs nor exceed 0.025 mg/l in takes or reservoirs in order to prevent them from development of undesirable biological species and to control accelerated eutrophication. For the case of rivers or streams, the concentration should not exceed 0.1 mg/l.

(XXVI) total concentration of dissolved gases should not be 1.1 times more than saturation level under the condition of prevalent hydrostatics and atmosphere.

(XVII) the average concentration of nickel (micro-g/l) during 4 days should not exceed the calculated value from the following equation more than once each three years:

(0.8460*In(hardness) - 1.1645)

Ni (micro-g/l) = e

hardness =mg/l as CaCO3

(XXVIII) the value obtained from multiplying the acute toxicity of N-nitrosoamines by 0.01 indicates that the concentration of these should not be larger than 0.0585 mg/l in order to protect the freshwater organisms.

(XXXX) the value obtained from multiplying the acute toxicity of N-nitrosoamines by 0.01 indicates that the concentration of these should not be larger than 0.0585 mg/l in order to protect the estuarine and coastal organisms.

(XXX) for dissolved oxygen, indicated levels should be considered as minimum.

(XXXI) for hydrogen potential (pH), indicated levels should be considered as maximum and minimum.

(XXXII) The variation more than 0.2 unit of pH from seasonal natural value should not be exceeded.

(XXXIII) the average concentration of silver (micro-g/l) during 4 days should not exceed the calculated value from the following equationmore than once each three years:

(1.72*In(hardness) - 6.52)

Ag (micro-g/l) = e

hardness =mg/l as CaCO3

(XXXIV) the average concentration of lead (micro-g/l) during 4 days should not exceed the calculated value from the following equation more than once each three years:

(1.273*In(hardness) - 4.705)

Pb (micro-g/i) = e

hardness =mg/l as CaCO3

(XXXV) the concentration of dissolved solid which does not have toxic effects for any crops is 500 mg/l, is between 500 and 1000 mg/l for sensible crops, is between 1000 and 2000 mg/l for high productivity which demands special treatment, and is between 2000 and 5000 mg/l for tolerant crops in permeable soil which requires special treatment.

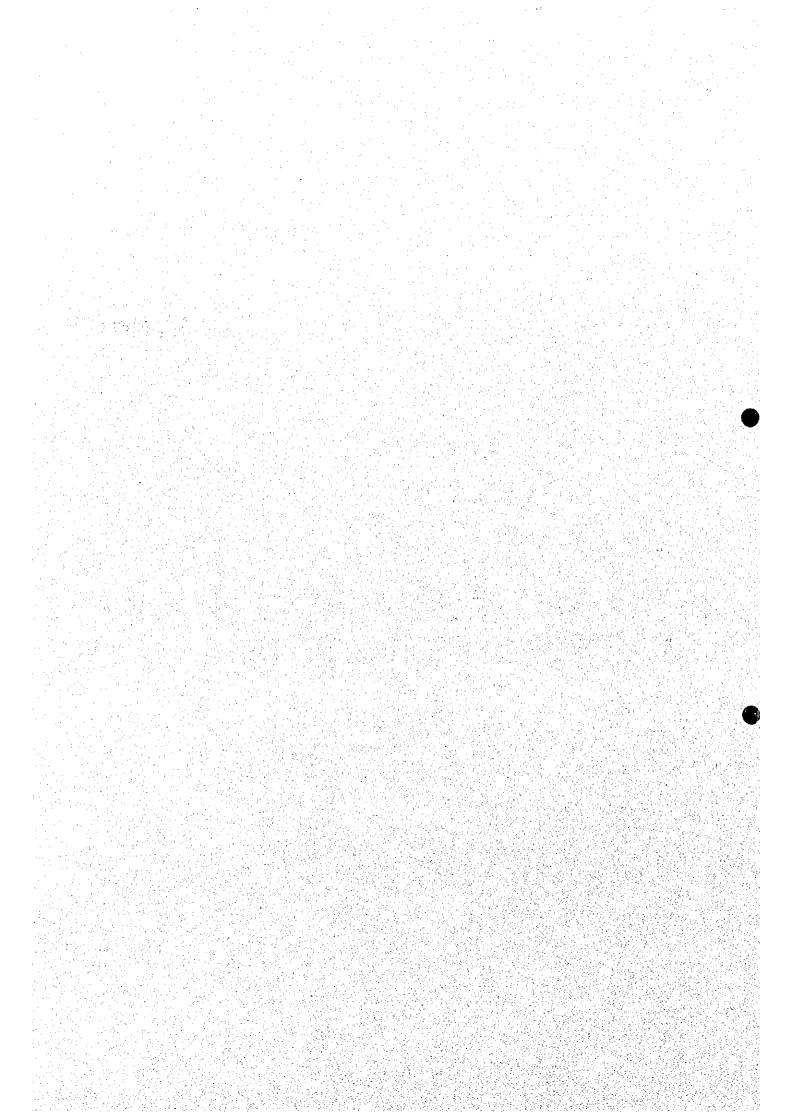
For other part, in the production of sensible fruits, ratio of absorption of sodium (RAS) should be less than or equal to 4 and for pasture should be between 8 and 18.

(XXXIII) the average concentration of zinc (micro-g/l) during 4 days should not exceed the calculated value from the following equation more than once each three years:

(0.8473*In(hardness) - 10.3604)

Zn (micro-g/l) = e

hardness =mg/l as CaCO3


Table A.3 Environmental Criteria of Water Quality for Aquiculture (CE-CCA-001/89, SEDUE)

Parameter	Unit	Species			, OLDO	/	·· - · · · ·	
or Substance		Tilapia	Carp	Barge	Trout Arco-iris	Langostino	Shrimp	Mollusk Bivalve
Color	-		Green -	Bluegreen		J	1	<u> </u>
Transparent	cm	45	30-50	45	45	15-25		
Turbidity	Unit of Jackson Turbidity	100	-		-	15	-	<u>*</u>
Temperature	°C	24-30	20-30	20-30	10-15	18-34	26-30	15-30
рН		7-8	7-8.5	6.5-8	7-8.5	7.5-8.8		-
Suspended Solid	mg/l		-	25-70	-	-	-	-
Dissolved Solid	mg/l	-	-	-	400	-	-	-
Dissolved Oxygen	mg/l	2.1	5	4	7.8	75% of saturation Level	6	-
Salinity	ppm	-	15	-	-	12-14	27-35	23-28
Alkalinity	mg/l	54-200	100	20-200	5-31	-	-	-
Hardness	mg/l	50-100	300	20-150	5-200	150	-	· ·
Carbon dioxide	mg/l	-	-	25	-	-	-	-
Ammonia	mg/l	-	-	0.42	-	-	0.1	-
Nitrogen of nitrite	mg/l		-	-	0.55	<u> </u>	2	-
Nitrogen of nitrate	mg/l		† · · · · ·	 	-	-	5	
Total phosphate	mg/l	-		-		-	5	-
Fecal Coliform	MPN/100ml	•			-	-		no more than of 10% of the samples should be larger of 43
Total Coliform	MPN/100ml	-		-	-			70 no more than of 10% of the samples should be larger of 230
Aluminum	mg/l	-	0.2	0.5	-	•	-	
Arsenic	mg/l	-	1	-	-	-	-	-
Barium	mg/l	-	5	0.6	1 -	1 -		
Cadmium	mg/l		0.05	·		•	0.005	-
Chromium (VI)	mg/l	·	0.5	-	-	-		-
Chromium (III)	mg/l	-	1	-	-	-		-
Copper	mg/l		0.02	0.025	0.06	-	0.005	-
Cyanide	mg/l	 	0.025		† ·	1	1 -	
kon	mg/l		0.5	0.5	1	-	-	-
Lead	mg/l		0.1	0.1	-	-	0.005	
Silicates	mg/l	-	1 -	· -	· -	-	100	•

Appendix B

Appendix B.1 Pollution Load Analysis

B.1.1 Coastal Water, Rivers, and Lagoons

(1) Coastal Water

Table B.1 Water Quality of Sea Water at Altamira Port and River Mouth of Panuco River

(average value between August and November in 1998)

Surface layer	•	Ŭ			Ü		Unit:mg/l	1
			Samplin	g Point				***************************************
	Altamira Port River M				iver Mouth of Panuco River			
Items	1	2	3	1	2	3	4	5
Total Suspended Solid	28.8	15.1	18.3	20.2	25.2	23.8	153.7	78.2
Phosphate	0.21	0.16	0.30	0.14	0.12	0.03	0.03	0.12
Inorganic Nitrogen	0.41	0.30	0.63	0.48	0.59	0.48	0.76	0.41
BOD ₅	1.50	1.60	1.57	0.50	1.00	0.50	1.05	1.10

Intermediate depth Unit:mg/						l			
Item		Sampling Point							
	Altamira	Altamira Port			River Mouth of Panuco River				
	1	2	3	1	2	3	4	5	
Total Suspended Solid	26.1	18.0	12.0	18.5	21.0	21.5	78.2	46.8	
Phosphate	0.19	0.12	0,29	0.08	0.16	0.03	0.03	0.15	
Inorganic Nitrogen	0.40	0.30	0.38	0.44	0.39	0.36	0.60	0.40	
BOD ₅	1.25	1.18	1.20	0.60	0.80	0.50	0.70	0.50	

Source: Secretary of Marine

(2) Rivers and Lakes

a) Panuco River Upstream (C/1)

Table B.2 Water Quality of Panuco River at El Alamo Station

		Average value from 1990 to 1997						
Parameter	Unit	Dry Season (from Nov to May)	Rainy Season (from Jun to Oct)	Whole Year				
Fecal Coliform	MPN/100ml	100	456	245				
BOD ₅	mg/l	1.81	1.02	1.51				
COD	mg/l	20.7	24.7	22.3				
Ammonia-N	mg/l	0.037	0.057	0.044				
Nitrate-N	mg/l	0.381	0.448	0.408				
Nitrite-N	mg/l	0.006	0.006	0.006				
Organic-N	mg/i	0.370	0.525	0.421				
Total N	mg/i	0.788	1.036	0.835				
Soluble P	mg/i	0.090	0.149	0.114				
Ortho P	mg/i	0.042	0.101	0.067				

Rainy Season: Jun – Oct Dry Season: Nov – May

Source: CNA (Water Quality Monitoring Station)

Table B.3 Water Quality of Upstream Part of Panuco River System

(Average Value, July 1997)

BACON ELEMENTARIO DE LA CASALONA DE		Tampeon	Moclezuma	Las	Upstream		Downstream of	
Parameter	Unit	River	River	Adjuntas	h -	of Nanuco	Chicayan River	'
Total suspended solid	mg/l	76	53	91	25	33	46	17
Total hardness	mg CaCO ₂ /I	798	289	413	563	408	385	526
Total alkalinity	mg CaCO ₃ /I	157	264	184	193	206	191	196
Chloride	mg/l	6.5	80	33	49	55	50	443
Phosphate	mg/l	0.13	0.43	0.21	0.17	0.21	0.22	0.19
Grease and oil	mg/l	1.7	1.6	0.92	1.06	0.4	1.16	1
Sulphate	mg/l	724	161	520	395	364	402	448
Kjeldhal nitrogen	mg/l	2.34	1.78	2.27	2.17	1.69	2.33	2.27
Organic nitrogen	mg/l	1.82	1.32	1.77	1.68	1.21	1.76	1.75
NH ₃ nitrogen	mg/l	0.54	0.45	0.5	0.49	0.41	0.57	0.53
Nitrite nitrogen	mg/l	0.0027	0.005	0.005	0.012	0.01	0.015	0.019
Nitrate nitrogen	mg/l	0.12	1.9	0.42	1.34	0.91	0.85	0.86
COD (dichromate)	mg/l	41.8	41	34.3	30.3	37	34.3	55.5
BOD ₅	mg/l	3	1.25	2	2.3	4	2.5	2.5
Fecal coliform	UFC/100ml	670	581	677	49	1617	78	89
Total coliform	UFC/100ml	11152	3317	7922	19529	9841	1446	319
Electric conductivity	Micro S/cm	1450	1483	1450	1387	1600	1190	2740
Water temperature	°C	32.7	32	32.8	30.9	31.3	31.8	31.5
PH		7.77	8.1	8	7.75	7.88	7.9	7.98
Dissolved oxygen	mg/l	7.82	7.56	8.19	8.16	9.27	9.25	9.18

Source: Estudio de Clasificasion del Rio Panuco, Segundo Informe (1997)

b) Tamesi River and its Freshwater Lakes (C/2)

Table B.4 Water Quality Data (average value in 1992-1997) for Tamesi Stations and Freshwater Lakes

				Station			
Item Unit		Tamesi R.	Champayan L.	- · · · · · · · · · · · · · · · · · · ·	Puerta L.	Chairel L.	Tancol L.*
		Tamesi	Altamira	CFE'	Pigmentos	Toma de Agua	1
Electric Conductivity	micro S/cm	895	967	811	1199	884	1034
Hardness	mg/l	378	316	249	378	346	34
Calcium	mg/l	85.5	77.6	61.7	86.4	68.6	80.4
Magnesium	rng/l	40.3	30.0	23.7	38.8	42.3	34.
Potassium	mg/i	2.53	4.79	4.06	6.13	3.74	4.37
Sodium	mg/i	56.4	78.3	75.4	103.8	57.7	88.8
Chloride	mg/l	. 58	118	119	193	76	150
Bicarbonate	mg/l	232	166	154	178	202	200
Sulfate	mg/l	228	186	108	201	195	137
Total Nitrogen	mg/l	0.875	0.608	0.545	0.754	0.575	1.02
Total Phosphorus	mg/l	0.095	0.052	0.035	0.048	0.053	0.08
Disolved Oxygen	mg/l	8.5	3.9	4.79	5.51	5.91	4.0
Grease and Oil	mg/l	4.2	5.1	4.1	5.0	4.7	<u> </u>
TSS	mg/l	654	785	607	858	670	75
BOD ₅	mg/l	1.6	1.2	1.4	2.2	1.6	3.1
COD	mg/i	14.5	21.6	20.1	25.7	17,1	35.2
Detergent	mg/l	0.12	0.12	0.13	0.12	0.12	0.14
Fecal Coliform	MPN/100ml	260	273	94		4 5 5	

*data from 1992 to 1995

(Source: Water Quality Monitoring Data Base of CNA)

c) Marismas Lagoon (B)

Table B.5 Water Quality Data of Marismas Lagoon

Item	unit	May 10, 1996
Electric Conductivity	micro S/cm	62,510
Hardness	mg/l	7,480
Calcium	mg/l	221
Magnesium	mg/l	1,690
Potassium	mg/l	11,900
Sodium	mg/l	11,900
Chloride	mg/l	18,700
Bicarbonate	mg/l	188
Sulfate	mg/l	6,330
Ammonium-N	mg/l	<0.03
Total Phosphorus	mg/l	0.09
Disolved Oxygen	mg/l	0.6
Grease and Oil	mg/l	4.7
TSS	mg/l	125
BOD _s	mg/l	22.9
Delergent	mg/l	0.1
Fecal Coliform	MPN/100ml	8

Source: CNA

B.1.2 Quality and Quantity of Industrial Wastewater

(1) Altamira Industrial Port (A)

a) Administracion Portuaria Integral de Altamira (A/1)

Table B.6 Water Quality of Wastewater (Administracion Portuaria Integral de Altamira)

	Property of W	astewater
Parameter	Unit	
pH	-	7.6
Temperature	°C	26
Settleable solid	mi/l	1
Floating material	-	Absent
Grease and oil	mg/l	12
Color	Pt-Co scale	45
COD	mg/l	117.6
Total suspended solid	mg/i	37
BOD	mg/l	28
Active substance toward methylene blue	mg/l	0.01
Total coliform	MPN/100ml	110000
Electric Conductivity	micro S/cm	1048
Claimed annual discharge volume	m³/year	4000 (28,000*)

Source: Document on Wastewater Quality and Discharge (CNA)

b) Pittsburgh Plate Glass (PPG) Industries (A/2)

Table B.7 Water Quality of Wastewater of Pittsburgh Plate Glass (PPG) Industries

Parameter	Unit	Value	Parameter	Unit	Value
рH	-	6.06	Volatiles		
Temperature	°C		1,1- Dichloro Ethylene	mg/l	<0.05
Settleable solid	ml/l	0.1	1,2-Dichloro Ethane	mg/l	<0.05
Floating material	-	Absent	Benzene	mg/l	<0.05
Grease and oil	mg/l	5	Tetrachlorocarbon	mg/l	<0.05
Color	mg/l	22.1	Chloro Benzene	mg/l	<0.05
COD*	mg/l	17	Chloroform	mg/l	<0.05
Total suspended solid	mg/l	1,000	Methyl Ethyl Ketone	mg/l	<0.10
BOD*	mg/l	1.2	Tetrachloroethylene	mg/l	<0.05
Extractable arsenic	mg/l	<0.1	Trichloroethylene	mg/l	<0.05
Extractable barium	mg/l	2.6	Vinyl chloride	mg/l	<0.10
Extractable cadmium	mg/l	<0.005	Reactive cyanide	mg/kg	<0.5
Extractable chromium	mg/l	0.01	Reactive sulfide	mg/kg	<5
Extractable lead	mg/l	< 0.05	Flow rate	l/s	34.9
Extractable mercury	mg/l	0.0011	Authorized annual volume	1000m ³ /year	1,100
Extractable silver	mg/l	<0.01	Monthly volume	m³/month	91,600
Extractable selenium	mg/l	<0.1			<u> </u>

---: not measured, *COD and BOD were analyzed on different day

^{*} worker number has increased to 7 times as many as that on reported day, and therefore, the discharge volume is corrected

e) POLYCYD (C/3/1)

Table B.8 Monthly Average of Wastewater Quality of POLYCYD in 1996-1998

THE RESIDENCE AND ADDRESS OF THE PARTY OF TH		wall was below. To be				****				1996-1		
		1996										
Parameter	Unit	Apr	Jun	Jul	Aug	\$ер	Oct	Nov	Dec			
Temperature	°C	32.8	32.0	35.0	33.3	33.7	30.3	32.4	31.3			
рH		6.88	7.10	7.03	6.98	7.10	6.89	7.13	6.94			
Phenois	mg/l	0.007	0.003	0.014	<0.008	<0.006	<0.006	0.010	0.010			
Settleable solid	rnt/I	0.47	<0.1	<0.1	<0.1	<.1	<0.1	<0.1	<0.1			
TSS	mg/l	24.1	19.7	10.3	13.3	15.7	25.5	22.0	13.0			
Grease and oil	mg/l	13.8	7.1	12.6	9.0	16.6	<5	<5	<5			
Floating material		Absent	Absent		Absent		Absent	Absent	Absent			
COD	mg/l	47.6	54.7	46.1	21.2	35.1	46.0	32.7	56.0			
BOD ₅	mg/l	15.4	26.0	26.1	12.8		16.5	13.8	17.8			
Total Coliform	MPN/100m1		5.50		0.00		1.14	4.57	8.43			
Discharge volume	m³/month	33,400	26,600	25,500	24,900	23,000	16,800	35,300	18,400			
		1997							,			
Parameter	Unit			Mar		May			Sep			Dec
Grease and Oil	mg/l	<5	4.4	7.8	13.7	5.26	<2.5	6.9	14.1	7.5	14.3	34.9
Floating Material	-	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Settleable Solid	mVI	0.2	0.5	0.3	0.8	0.2	0.1	<0.1	0.2	0.4	0.2	<0.1
TSS	mg/l	13.2	22.5	11.0	17.7	21.3	16.0	13.8	16.5	17.1	13.3	8.5
BOD _s	mg/l	11.3	14.8	39.8	34.2	17.7	18.2	19.5	19.0	17.0	10.4	15.5
Total Nitrogen	mg/l	-	1.18	1.1	1.65	1.52	0.05	1.49	1.51	1.52	0.77	1.68
Nitrate	mg/l		-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrite	mg/l	-	_	-	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Total Phosphorus	mg/l	-	0.24	0.05	0.07	0.11	0.34	0.09	0.99	0.31	0.52	7.83
Cyanide	mg/l] -	-	<0.001	< 0.001	<0.001	<0.001	<0.01	<0.1	<0.01	< 0.01	<0.01
PH	·	_		7.43	7.22	7.08	6.95	7.51	6.88	7.48	7.2	6.69
Fecal Coliform	UFC/100ml	6.81	6.57	3.5	9.5	0	1	19	2.34	215	2430	11
Discharge volume	rn³/month	36,500	33,800	7,000	35,500	35,600	29,200	19,800	25,500	37,900	34,700	16,700
Operation days	days/month		47	37	34	37	31	22	32	37	24	15
Arsenic	mg/l	-		<0.005	-	-	0.0055	ار ا	<0.1	-	-	<0.01
Cadmium	mg/l	-	-	<0.01	-	-	<0.01	-	<0.1		-	<0.01
Copper	mg/l	_	-	<0.04			< 0.04		<0.04	_	-	< 0.04
Chromium	mg/I	-	-	<0.1	-	-	<0.1	-	<0.1		-	<0.1
Mercury	mg/i	-		< 0.005		-	<0.005	-	<0.1			<0.01
Nickel	mg/l	-	_	<0.1	-		<0.01	-	<0.1		-	<0.1
Lead	mg/l	-	· · · · · · · ·	< 0.07		<u> </u>	< 0.07	-	<0.1		•	<0.1
Zinc	mg/I			0.06			0.15		0.20			< 0.05
Temperature	ŀc	29.3	30.3	32.3	34.3	33.5	36.2	39.1	37.6	35.8	33.3	31.6
COD	mg/I	32.7	-	-	-	! .	-			.		_
Flow											1 -	
	Vs.	-	18	-	l -	-	-	-	-		-	
Phenois	l/s mg/l	- <0.006	L	-	-	-	-	-	-	-	-	-
Phenois Total Coliform			-	-	-	- -	-	-	-	-	-	-
	rng/l		-	- -		- - -	-	-		-	-	-
	rng/l	5000	-		May	- - Jun	Jul	Aug	Sep	Oct	Nov	Dec
Total Coliform Parameter	rng/l UFC/100ml Unit	5000 1998 Jan	Feb	Apr							2.00	
Total Coliform Parameter Grease and Oil	mg/l UFC/100ml	5000 1998 Jan 7.50	Feb 7.25	Apr <5	7.25	6.33	<5.0	5.25	<5	5	9.25	7.56
Parameter Grease and Oil Floating Material	mg/l UFC/100ml Unit mg/l	5000 1998 Jan 7.50 Absent	Feb 7.25 Absent	Apr <5 Absent	7.25 Absent	6.33 Absent	<5.0 Absent	5.25 Absent	<5 Absent	5 Absent	9.25 Absent	7.56 Absent
Parameter Grease and Oil Floating Material Settleable Solid	rng/l UFC/100ml Unit mg/l - ml/l	5000 1998 Jan 7.50 Absent 0.2	Feb 7.25 Absent 1.6	Apr <5 Absent <0.1	7.25 Absent 0.4	6.33 Absent 0.2	<5.0 Absent <0.1	5.25 Absent <0.1	<5 Absent <0.1	5 Absent 0.2	9.25 Absent <0.1	7.56 Absent <0.1
Parameter Grease and Oil Floating Material Settleable Solid TSS	rng/l UFC/100ml Unit mg/l - ml/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5	Feb 7.25 Absent 1.6 19.1	Apr <5 Absent <0.1 9.3	7.25 Absent 0.4 52.1	6.33 Absent 0.2 20.0	<5.0 Absent <0.1 15.7	5.25 Absent <0.1 22.2	<5 Absent <0.1 15.0	5 Absent 0.2 59.5	9.25 Absent <0.1 7.5	7.56 Absent <0.1 20.0
Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅	rng/l UFC/100ml Unit mg/l - ml/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4	Feb 7.25 Absent 1.6 19.1 6.2	Apr <5 Absent <0.1 9.3 6.2	7.25 Absent 0.4 52.1 7.4	6.33 Absent 0.2 20.0 23.0	<5.0 Absent <0.1 15.7 7.4	5.25 Absent <0.1 22.2 23.6	<5 Absent <0.1 15.0 18.8	5 Absent 0.2 59.5 21.4	9.25 Absent <0.1 7.5 25.2	7.56 Absent <0.1 20.0 37.6
Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5	Feb 7.25 Absent 1.6 19.1 6.2	Apr <5 Absent <0.1 9.3 6.2	7.25 Absent 0.4 52.1 7.4 2.33	6.33 Absent 0.2 20.0 23.0	<5.0 Absent <0.1 15.7 7.4	5.25 Absent <0.1 22.2 23.6 11.74	<5 Absent <0.1 15.0 18.8 4.02	5 Absent 0.2 59.5 21.4	9.25 Absent <0.1 7.5 25.2	7.56 Absent <0.1 20.0 37.6
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4	Feb 7.25 Absent 1.6 19.1 6.2	Apr <5 Absent <0.1 9.3 6.2 1.60 <0.05	7.25 Absent 0.4 52.1 7.4 2.33 <0.05	6.33 Absent 0.2 20.0 23.0 1.44 <0.05	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1	5.25 Absent <0.1 22.2 23.6 11.74 0.11	<5 Absent <0.1 15.0 18.8 4.02 <0.05	5 Absent 0.2 59.5 21.4 1.86 <1.0	9.25 Absent <0.1 7.5 25.2 1.63 <1.0	7.56 Absent <0.1 20.0 37.6 4.20 <1.0
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4	Feb 7.25 Absent 1.6 19.1 6.2	Apr <5 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04
Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus	mg/l UFC/100ml Unit mg/l - mV/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62	Feb 7.25 Absent 1.6 19.1 6.2 1.38	Apr <5 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04 0.36	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 0.84	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01	Feb 7.25 Absent 1.6 19.1 6.2 1.38 0.53 <0.01	Apr <5 Absent <0.1 1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 0.84 <0.002	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17	Feb 7.25 Absent 1.6 19.1 6.2 1.38 0.53 <0.01 7.10	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002	<55 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 0.84 <0.002 7.00	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 0.84 <0.002 7.00 54.5	55 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.22 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absente <0.1 15.0 18.8 4.02 <0.05 <0.04 <0.84 <0.002 7.00 54.5 24,300	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.2 20.00 23.0 1.444 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 <0.84 <0.002 7.00 54.5 24,300 27	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.22 20.0 23.0 1.444 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 <0.84 <0.002 7.00 54.5 24,300 27 <0.005	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BODs Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.22 20.00 23.00 1.444 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 <0.84 <0.002 7.00 54.5 24,300 <0.005 <0.005	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.2 20.00 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005 <0.05	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.01 15.0 18.8 4.02 <0.05 <0.04 <0.84 <0.002 7.00 54.5 24,300 27 <0.005 <0.05 <0.16	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BODs Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper Chromium	mg/l UFC/100ml Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.44 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.2 20.00 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005 <0.05 <0.16 <0.5	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<55 Absent <0.1 15.0 18.8 4.02 <0.05 <0.04 0.84 <0.002 7.00 54.5 24,300 27 <0.005 <0.05 <0.16 <0.5	5 Absent 0.22 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BODs Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide PH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper Chromium Mercury	mg/l UFC/100ml Unit mg/l - ml/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.2 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 39,600 <0.05 <0.05 <0.05 <0.05 <0.05	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.1 15.0 18.8 <0.05 <0.04 <0.84 <0.002 7.00 54.5 <24,300 <0.05 <0.05 <0.05 <0.16 <0.5 <0.005	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper Chromium Mercury Nickel	mg/l UFC/100ml Unit mg/l - mV/l mg/l mg/l mg/l mg/l mg/l days/month days/month mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.22 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005 <0.05 <0.05 <0.05 <0.28	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.1 15.0 18.8 <0.05 <0.04 <0.84 <0.002 7.00 54.5 <24,300 <27 <0.005 <0.05 <0.05 <0.16 <0.5 <0.05 <0.28	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 6.94
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper Chromium Mercury Nickel Lead	mg/l UFC/100ml Unit mg/l - mV/l mg/l mg/l mg/l mg/l mg/l mg/l days/month mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 - 0.53 <0.01 7.10 73.8 36,400	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000	6.33 Absent 0.22 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005 <0.05 <0.16 <0.5 <0.28 <0.26	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500	<5 Absent <0.1 15.0 18.8 <0.05 <0.04 <0.84 <0.002 7.00 54.5 <24,300 <0.05 <0.05 <0.05 <0.05 <0.05 <0.28 <0.26	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.4 45,600
Total Coliform Parameter Grease and Oil Floating Material Settleable Solid TSS BOD ₅ Total Nitrogen Nitrate Nitrite Total Phosphorus Cyanide pH Fecal Coliform Discharge volume Operation days Arsenic Cadmium Copper Chromium Mercury Nickel	mg/l UFC/100ml Unit mg/l - mV/l mg/l mg/l mg/l mg/l mg/l days/month days/month mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5000 1998 Jan 7.50 Absent 0.2 18.5 10.4 1.62 0.34 <0.01 7.17 8.5 45,500	Feb 7.25 Absent 1.6 19.1 6.2 1.38 0.53 <0.01 7.10 73.8 36,400 37	Apr <55 Absent <0.1 9.3 6.2 1.60 <0.05 <0.04 0.12 <0.01 6.40 14.6 36,500	7.25 Absent 0.4 52.1 7.4 2.33 <0.05 <0.04 3.61 <0.01 6.22 120 31,000 28	6.33 Absent 0.22 20.0 23.0 1.44 <0.05 <0.04 0.36 <0.01 7.14 0 39,600 35 <0.005 <0.05 <0.05 <0.28 <0.28	<5.0 Absent <0.1 15.7 7.4 1.49 0.6 - 1 <0.04 0.18 0.0046 6.60 46.6 42,400 31	5.25 Absent <0.1 22.2 23.6 11.74 0.11 <0.04 0.42 <0.002 6.77 149 31,500 28	<5 Absent <0.1 15.0 18.8 <0.05 <0.04 <0.84 <0.002 7.00 54.5 <24,300 <27 <0.005 <0.16 <0.5 <0.05 <0.05 <0.05 <0.10 <0.28 <0.26 0.19	5 Absent 0.2 59.5 21.4 1.86 <1.0 <0.04 1.59 0.075 6.55 378 35,000 37	9.25 Absent <0.1 7.5 25.2 1.63 <1.0 <0.04 0.53 0.047 6.57 418 25,600 23	7.56 Absent <0.1 20.0 37.6 4.20 <1.0 <0.04 0.54 0.045 6.94 4.5,600 41

d) Thermal Power Plant of Comision Federal de Electricidad (A/3/2)

Table B.9 Wastewater Quality of Thermal Power Plant of CFE in 1993, 1995 and 1998

Parameter	Unit	May-93	Jun-93	Aug-93	Jul-95	Aug-98	Dec-98
PH	-	7.0	7.8	8.3	8.3	8.0	7.9
Total suspended solid	mg/l	44.5	87.0	86.0	242.0	25.0	33.0
Grease and oil	mg/l	5.26	5.76	6.70	19.50	4.16	5.90
Copper	mg/l	0.63	0.35		-	0.08	0.10
Iron	mg/l	1.00	0.80	-	-	0.07	0.10
Phosphates	mg/l	. 0.13	0.12	-	0.33	1.10	2.20
Temperature	°C	31.8	34.8	43.0	35.0	32.0	24.0
COD	mg/l	64	32	147	125	-	-
Total coliform	MPN/100ml	2,400	2	-	3,280	280	300
Total nitrogen	mg/l	-	-	-	4.31	-	-
BOD	mg/i	-	-	-	41.8	5.6	4.8
Monthly discharge volume	m³/month	185,902	182,640	-		191,883	103,929

Source: Document on Wastewater Quality and Discharge (CNA)

e) NEGROMEX (A/3/3)

Table B.10(a) Monthly Average of Wastewater Quality of Industrial NEGROMEX in 1995 to 1999

· · · · · · · · · · · · · · · · · · ·		1995		1996			
Parameter	Unit	Jun	Nov	Jan	Feb	Jul	Dec
Temperature	်င	34.3	31.5	25.1	28.6	33.9	23.0
рH	-	7.18	7.35	7.11	6.96	7.00	· 7.23
Total coliform	MPN/100m1	5,960	9,120	18,700	4,250	404	1,880
Color	Pt-Co scale	12	16	14	25	10	17
Phenol	mg/l	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Active substance toward methylene blue	mg/l	0.07	0.064	0.05	0.06	0.09	0.13
BOD ₅	mg/i	24.3	21.0	19.7	20.8	8.2	40.5
COD	mg/i	51.2	53.6	37.7	48.7	35.5	114.3
Hexavalent chromium	mg/l	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Settleable solid	mVI	<0.1	0.4	<0.1	<0.1	<0.1	<0.1
Total suspended solid	mg/I	25.0	20.8	12.9	20.8	26.5	8.5
Grease and oil	mg/I	3.63	4.19	3.75	4.19	3	1.23
Acidity	mg/l	10.4	10.5	9.0	7.6	10.2	18.1
Alkalinity	mg/l	55.1	65.5	51.8	28.0	36.3	129.6
Electric Conductance	micro S/cm	5,880	2,870	3,260	4,290	4,860	1,280
Floating material	-	Absent	Absent	Absent	Absent	Absent	Absent
Monthly discharge volume	m³/month	21,100	16,000	35,400	6,880	29,000	22,400

		1997					
Parameter	Unit	May	Jun	Jul	Oct	Nov	Dec
Temperature	°C	32.0	34.1	34.0	32.0	29.7	28.5
pH	j -	6.98	7.15	7.79	7.49	7.12	7.78
Fecal coliform	MPN/100ml	493	229	572	210	460	200
BOD _s	mg/l	49.8	41.1	47.7	14.1	14.5	10.0
Settleable solid	ml/l	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1
Total suspended solid	mg/l	12.5	19.1	10.0	6.5	9.7	9.0
Grease and oil	mg/I	3.0	2.0	2.1	1.4	1,0	1.1
Floating material	-	Absent	Absent	Absent	Absent	Absent	Absen
Total phosphorus	mg/i	<0.2	3.0	1.2	1.5	20.7	3.2
Total nitrogen	mg/l	3.3	3.1	0.6	0.2	.0.8	0.2
Cyanides	mg/l	<0.001	<0.001	<0.001	<0.0175	<0.0175	< 0.0175
Arsenic	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Cadmium	mg/I	0.0384	0.0021	0.0064	< 0.05	<0.1	<0.08
Copper	mg/I	0.0096	0.0078	0.0051	< 0.12	< 0.22	< 0.22
Chromium	mg/l	0.0132	0.0270	<0.007	< 0.06	< 0.32	<0.08
Mercurie	mg/l	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	mg/l	0.0224	0.0127	< 0.05	< 0.25	< 0.69	< 0.175
Lead	mg/l	0.0550	0.0270	0.0344	<0.2	< 0.15	< 0.132
Zinc	mg/l	0.0389	0.0107	0.0556	< 0.2	< 0.95	< 0.175
Monthly discharge volume	m³/month	7,864	11,785	15,000	15,000	15,000	15,000
				Flow me	er is not t	unctioned	

Table B.10(b) Monthly Average of Wastewater Quality of Industrial NEGROMEX in 1995 to 1999

		1998		-	Anna Services		THE PERSON NAMED IN COLUMN			1999
Parameter	Unit	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Jan
Temperature	°C	21.5	25.9	25.9	29.3	30.9	32.8	31.5	31.0	26.3
pH	-	8.12	7.25	8.65	8.08	7.95	7.40	7.64	7.27	7.70
Fecal coliform	MPN/100	42	122	305	134	268	335	135	780	25.5
	ml									1
BOD ₅	mg/l	5.5	6.1	8.6	2.2	9.4	3.0	7.8	11.2	5.0
Settleable solid	mVI	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total suspended solid	mg/l	4.5	14.5	14.0	7.0	6.5	5.0	4.0	5.5	8.5
Grease and oil	lmg/l	1.3	2.6	1.2	0.8	1.8	0.6	0.9	1.0	2.3
Floating material	- I	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Total phosphorus	mg/I	0.91	1.49	2.89	1.40	1.31	0.68	<0.1	1.10	< 0.56
Total nitrogen	mg/I	0.28	0.76	0.35	0.37	0.61	0.31	0.13	0.70	0.91
Cyanides	mg/l	< 0.0175	< 0.0175	< 0.0175	<0.0175	< 0.004	< 0.004	<0.0039	< 0.0039	<0.002
Arsenic	mg/l	< 0.007	<0.007	<0.007	< 0.007	<0.002	<0.01	< 0.01	<0.01	<0.02
Cadmium	mg/l	< 0.015	<0.1	<0.094	<0.1	<0.062	<0.02	<0.02	<0.02	<0.02
Copper	mg/l	<0.45	< 0.24	< 0.13	<0.2	<0.8	<0.08	<0.084	<0.084	<0.087
Chromium	lmg/l	< 0.47	<0.5	<0.23	<0.3	< 0.43	<0.035	<0.052	< 0.035	<0.059
Mercurie	mg/l	<0.005	< 0.005	<0.007	< 0.005	<0.0007	<0.0007	< 0.0007	<0.0007	< 0.003
Nickel	mg/l	< 0.83	<0.85	<0.85	<1	<0.15	<0.17	< 0.05	<0.05	<0.14
Lead	mg/l	<0.11	< 0.15				<0.08			
Zinc	mg/l	<0.57	< 0.33							
Monthly discharge volume	m³/month	15,000	15,000	15,000	15,000	9,618	1,871	21,530	20,075	15,486
		Flow meter is not functioned								

Source: Document on Wastewater Quality and Discharge (CNA)

(2) Conejo Lagoon (B/1)

a) BASF (B/1/1)

Table B.11(a) Wastewater Quality of BASF Mexicana in 1996-1998

		1996						
Parameter .	Unit	Apr	Jui	Aug	Sep	Oct	Nov	Dec
Grease and Oil	mg/l	2.9	13.2	11.9	9.1	10.2	15.0	18.5
Sedimentable Solid	ml/I	0.2	0.3	0.1	0.2	0.2	0.1	<0.1
Total Suspended Solid	mg/i	46.7	24.6	18.1	38.6	40.7	37.0	25.0
BOD _s	mg/I	20.7	5.4	32.0	4.4	6.0	6.0	4.0
рН	_	7.47	7.07	7.16	7.79	7.34	6.91	7.07
COD	mg/l	100	186	206	169	97	170	96
Phenois	mg/l	< 0.001	0.002	0.010	0.003	0.002	0.001	< 0.05
Total Coliform	UFC/100ml	29,100	21,700	17,700	11,000	1,840	19,500	10,600
Monthly Discharge Volume	m³/month	5,790	19,938	17,062	14,585	14,632	17,495	15,023
operation days	Days/month	9	30	30	30	30	30	29

Table B.11(b) Wastewater Quality of BASF Mexicana in 1996-1998

Parameter Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Grease and Oal Ing/I 20.0 14.0 10.5 11.3 11.8 7.5 46.0 4.5 4.8 8.8 13.5 13.3 13.5		IOIC D. I				ci Que	-	*******		*****				
Floting	Parameter	Unit	1997 Jan	Feb	Mar	Λpr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Material Solid mg/l	Grease and Oil	mg/l	20.0	14.0	10.5	11.3	11,8	7.5	46.0	4.5	4.8	8.8	13.5	13.3
Material Solid mg/l	Floting	. ~		Absent	Absent	Absent	Absent				Absent	Absent	Absent	Absent
Solid Total Suspended Susp	Material	Ĭ												
Total	Settleable	m/l	<0.1	<0.1	0.6	0.3	0.2	1.0	3.8	<0.1	0.3	1.3	2.4	1.3
Suspended SONJ mg/l	Solid	1				İ								
Solid BOD, mg/l	Total	mg/l	36	33	120	152.5	52	120	334	115.5	62.5	53.5	26.3	59.5
BOD_N	Suspended	1												
Total Nintrigen mg/l	Solid					[
Total Nintrigen mg/l	BOD ₅	mg/l	4.7	10.6	5.2	8.5	114.6	30.1	9.6	19.8	13.7	10.9	27.4	47.0
Total mg/l		mg/l	5.68	•	•	-	-	-	-	-	-			-
Phosphorus Cyanide mg/l . 0.11 0.12 0.10 0.001	Total	mg/l		_	-									
Pit Fecal Coliforn UFC	Phosphorus	ľ				l				'				
Pit Fecal Coliforn UFC	Cyanide	mg/l		0.11	0.12	0.10	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Assenic 100ml	ρĤ	<u>.</u>	6.75	6.98	7.28	7.40	7.38	7,47	7.65	7.26	7.09	6.95	6.00	7.30
Acsenic 100ml	Fecal Coliform	UFC/	43,200	27,900	313	443	38.5	5.29	731	67.1	14.4	5.98	19.7	8.45
Cadmium mg/l 0.01		100m1	1								i i			
Cadmium mg/l 0.01	Arsenic	mg/l	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
Copper	Cadmium				0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium mg/l 0.02 0.01 0.02 0.01 0.0	Copper		0.016	0.021	0.033	0.028	<0.04	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.05
Nickel ng/l 0.05 0.06 0.07 0.06 0.01 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	Chromium		0.02	0.01	0.02	0.02	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lead	Mercury		< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	0.0065	<0.005	<0.005	< 0.005	< 0.005	< 0.005
Lead	Nickel		0.05	0.06	0.07	0.06	<0.1	<0.1	< 0.1	<0.1				<0.1
Zinc	Lead	1 ~									t			
Temperature	Zinc													0.073
Flow Phenols Flow Phenols Flow Phenols Flow Phenols Flow Phenols Flow	Temperature	ľ	20	23										23
Phenois Total Coliform UFC/ 138250 100ml nd nd nd nd nd nd nd n	COD	mg/i	155		-	-				-	-	_	-	
Phenois Total Coliform UFC/ 138250 100ml nd nd nd nd nd nd nd n	Flow	Vs	8.9	8.8	8.3	9.7	9.7	9	10.85	11.1	11.1	11.1	11.1	11.1
Total Coliform UFC/ 138250	Phenols	mg/i	0.002		_]		_		•		_
Egg of Helmintox Helmintox	Total Coliform									_				_
Helmintos		100ml								ŀ	l			
Heimintos Monthly Mo	Egg of	org/I	nd	nd	nd	nd								.
Discharge Month Volume Operation days/ days 23 22 24 21 21 29 25 27 24 27 21 20 20 20 21 20 20 20	Helmintos	ľ	1			1				1	1			•
Discharge Month Volume Operation days days month 1998 22 24 21 21 29 25 27 24 27 21 20 20 20 25 27 24 27 21 20 20 20 25 27 24 27 21 20 20 20 20 20 20 20	Monthly	m³/	15,427	15,109	15,515	16,317	16,666	21,579	17,838	20,530	19,040	23,945	25,213	26,173
Operation days/ 23 22 24 21 21 29 25 27 24 27 21 20 20 25 27 24 27 21 20 20 20 20 20 20 20	Discharge	month	'	'	'			.,		,	,		,,	
Parameter Unit Jan Feb Mar Apr May Jun Jul Oct Nov Dec-98 Jan-99	Volume			ļ						1				l
Parameter Unit Jan Feb Mar Apr May Jun Jul Oct Nov Dec-98 Jan-99	Operation	dáys/	23	22	24	2i	21	29	25	27	24	27	21	20
Parameter Unit Jan Feb Mar Apr May Jun Jul Oct Nov Dec-98 Jan-99	days	month	i .						· ·	1.				
Crease and Oil mg/l Masent Absent Abse			1998							· · · · · · · · · · · · · · · · · · ·			·	
Crease and Oil mg/l Masent Absent Abse	Parameter	Unit	Jan	Feb	Mar	Apr	May	Jun	Jul	Oct	Nov	Dec-98	Jan-99	· '
Floating mg/l Absent A	Grease and Oil	mo/l	17.5											,
Material Settleable Settleable Settleable Settleable Solid Total May Ga.5 Ca.5 C														
Settleable	•										1,200111	1.000///	1	
Solid Total mg/l 63.5 23.5 35.5 58.5 66.0 64.5 41.0 11.0 44.0 24.0 27.5		mVI	0.075	<0.1	<0.1	< 0.1	0.73	0.125	<01	<01	1 1	<0.1	0.05	
Total Suspended Solid Suspended Solid				••••	"	'''	••	0.1.20		•	l '		0.00	
Suspended Solid BOD ₅ mg/l 17.5 16.9 6.7 29.8 269.3 9.0 22.8 9.7 64.0 25.0 20.0		lma/l	63.5	23.5	35.5	58.5	66.0	64.5	410	110	440	24 0	27.5	
Solid BOD ₅ mg/l 17.5 16.9 6.7 29.8 269.3 9.0 22.8 9.7 64.0 25.0 20.0 Cyanide pH mg/l <0.01			"		""		""	••	''''	''''	'''			
Cyanide pH mg/l oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH	Solid								I	i				
Cyanide pH mg/l oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.01 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.028 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH < 0.025 oH		mg/i	17.5	16.9	6.7	29.8	269.3	9.0	22.8	9.7	64.0	25.0	20.0	•
pH Fecal Coliform - UFC/ 100ml 6.53 2 2 2 2 2 6.65 2 2 2 2 7.08 2 2 2 2 7.05 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
Fecal Coliform UFC/		-	r .											
Arsenic mg/l	•	UFC/							ł .				1	
Cadmium mg/l <0.015 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025						_	'''				ľ	~	ľ	
Cadmium mg/l <0.015 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.030 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025	Arsenic	1	<0.028	<0.028	<0.028	<0.028	<0.028	< 0.028	<0.028	<0.028	<0.028	<0.028	<0.028	
Copper Chromium mg/l mg/l mg/l <0.025 on 0.035 on 0.019 on 0.025 on 0.036 on 0.025 on 0.030 on 0.025 on 0.02								1	,	1			4	
Chromium Mercury Mg/I Mercury Mercury Mg/I Mercury Co.1 Mercury Mg/I Mercury Mercury Mg/I Mercury Co.1 Mercury Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mercury Co.002 Mickel Mg/I Mickel Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I	Cooper													
Mercury Nickel mg/l ng/l ng/l <0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		1 -		1						1			4	
Nickel mg/l 0.1 <0.1 0.1 0.1 0.1 0.1 <0.1 0.1 <0.1 0.1 0.0 lead mg/l 0.08 0.04 0.07 0.08 0.09 0.08 0.09 <0.068 0.10 0.09 0.07 0.07 0.07 0.08 0.09 condens on the second mg/l 0.07 0.03 0.03 0.07 0.38 0.41 <0.05 0.07 0.39 0.47 0.07 0.07 0.09 condens on the second mg/l 0.07 0.03 0.03 0.07 0.38 0.41 <0.05 0.07 0.39 0.47 0.07 0.07 0.09 condens on the second mg/l 0.07 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 condens on the second mg/l 0.08 0.09 conde				1 .			1							
Lead mg/l 0.08 0.04 0.07 0.08 0.09 0.08 0.09 <0.068 0.10 0.09 0.07 Zinc mg/l 0.07 0.03 0.03 0.07 0.38 0.41 <0.05							1		l .		ľ			
Zinc mg/l 0.07 0.03 0.03 0.07 0.38 0.41 <0.05 0.07 0.39 0.47 0.07														
Temperature - 23 22.5 24 26.5 29.5 32.5 31 22 27.5 25 21.5 Flow Vs 11.1 11.1 11.1 11.1 11.1 10.4 11.1 11.1														
Flow I/s 11.1 11.1 11.1 11.1 11.1 10.4 11.1 11.1														
Monthly m³/ 23,812 25,701 20,961 26,268 18,644 25,020 26,891 19,017 33,528 24,170 23,992 month Volume Operation days/ month wonth month		l/s	,											
Discharge month Volume Coperation days/ 19 21 20 19 22 20 20 23 18 19 18 18 19 18 18														
Volume Operation days/ 19 21 20 19 22 20 20 23 18 19 18 days month			1 -0,012	"','''	20,001	20,200	1.0,044	-3,020	20,031	1.2,517	05,520	27,110	20,332	
Operation days/ 19 21 20 19 22 20 20 23 18 19 18 days month			1								l			
days month		days/	10	21	20	10	22	20	20	22	1Ω	10	10	
			I '	l "'			``	ן בי	'' ا	"	l '`	,,,	l '°	
			aslewala	Ouality	and Die	charge f	CNAL	<u>. </u>		L	<u> </u>	L		-

Source: Document on Wastewater Quality and Discharge (CNA)

nd: not detected

b) Grupo Primex (B/1/2)

Table B.12 Wastewater Quality of Grupo Primex in 1994-1995 and 1998

<u>and and the second a</u>		1994*			1995*		**************************************
Parameter	Unit	Oct	Nov	Dec	Jan	Feb	Mar
Temperature	.с	31	31	29	26	25	26
pН	j -	8.1	7.6	7.3	7	6.6	7.3
Electric conductance	Micro S/cm	2,780	2,681	2,674	1,695	2,232	2,008
Total suspended solid	mg/l	95	53	63	69	238	122
Settleable solid	ml/l	0.99	0.1	0.11	0.14	0.99	0.79
Color	Pt-Co scale	12	13	12	16	18	18
Phosphates	mg/l	2.05	1.7	0.83	0.64	1.19	1.33
Grease and oil	mg/l	13	34	32	29.5	17.7	62.4
Total nitrogen	mg/l	1.37	0.54	0.2	0.12	0.62	1.07
Hexavalent chromium	mg/l	0.005	0.005	0.005	0.005	0.005	0.005
Active substance toward	mg/l	0.09	0.25	0.13	0.1	0.1	0.2
methylene blue	İ			İ			
Cadmium	mg/l	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Phenols	mg/I	0.044	0.062	0.059	0.111	0.072	0.093
BOD ₅	mg/l	255	287	345	357	181	349
Total coliform	MPN/100ml	112,700	233,750	192,250	112,000	46,850	34,000
COD	mġ/l	508	482	685	572	462	912

		1998**					
Parameter	Unit	Jan⋅Mar	Apr-Jun	Oct-Dec			
Fecal coliform	MPN/100ml	2.3	11.8	92.2			
рН	-	7.31	6.5	6.5			
Grease and oil	mg/l	7.66	17.3	17.38			
Total suspended solid	mg/l	105	38.3	70.2			
BOD ₅	mg/I	600	301	609			
Total nitrogen	mg/l	1.09	1	6.96			
Total phosphorus	mg/l	0.18	-0.54	0.7			
Arsenic	mg/i	0.003	0.0025	0.005			
Cadmium	mg/l	0.027	0.025	0.026			
Cyanides	mg/l	0.005	0.005	0.025			
Copper	mg/l	0.08	0.18	0.08			
Chromium	mg/l	0.25	0.25	0.24			
Mercury	mg/i	0.003	0.0025	0.005			
Nickel	mg/l	0.14	0.14	0.13			
Lead	rng/l	0.13	0.18	0.25			
Zinc	mg/l	0.721	0.68	0.304			
Three months volume	m³/3month	369,409	300,288	310,066			

^{*} Monthly average

^{**} Quarterly average

e) Internacional de Papeles del Golfo (B/1/3)

Table B.13 Water Quality of Wastewater (Internacional de Papeles del Golfo)

Parameter	Unit	Concentration
рН	-	7.7
Temperature	.с	30
Settleable solid	mVI	5
Floating material		Absent
Grease and oil	mg/l	22.5
Color	mg/l	70
COD	mg/l	400
Total suspended solid	. mg/l	154
BOD ₅	mg/l	172
Active substance toward methylene blue	mg/l	1.3
Toatal coliform	NMP/100ml	110,000
Electric conductivity	micro S/cm	1298
Flow rate	l/s	3.425
Authorized annual volume	m³/year	108,000
Monthly discharge volume	m³/month	9,000

Source: Document on Wastewater Quality and Discharge (CNA)

d) Fibras Nacionales de Acrilico (Finacril) (B/1/4)

Table B.14 (a) Wastewater Quality of Fibras Nacionales de Acrilico in 1996-1998

		1996*							1997*		
Parameter	Unit	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Temperature	°C	25.0	24.7	25.6	25.3	24.5	22.1	19.6	20.7	21.7	23.2
pН	-	6.96	7.6	8.35	8.14	7.54	7.65	8.02	7.51	7.70	7.12
Electric	Micro	4,770	5,506	4,274	3,248	2,909	2,272	2,378	1,882	1,781	2,606
conductivity	S/cm						·				
Color	-	1.40	1.45	3.91	2.14	1.61	1.18				. 19 2
Total phosphates	mg/l	0.11	0.40	0.14	0.09	0.11	0.18	0.29	0.43	0.40	0.42
Total nitrogen	mg/l	2.64	1.22	2.84	2.09	3.60	2.98	2.36	3.70	2.88	1.58
BOD	mg/l	26.4	46.6	45.8	49.8	51.0	39.2	50.0	39.8	47.8	36.1
COD	mg/l	85	95	112	120	108	100	106	75	105	100
Grease and oil	mg/l	6.1	6.7	6.2	9.4	4.7	3.3	7.7	7.1	4.8	9.9
Total suspended solid	mg/l	42.0	55.0	59.5	69.3	55.1	57.9	54.5	40.5	43.1	41.0
Phenois	mg/l	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Settleable solid	ml/l	0.6	0.9	0.6	0.7	8.0	0.3	0.5	. 0.8	0.6	.0.8
Cyanides	mg/l	0.013	0.020	0.018	0.009	0.020	0.017	0.020	0.019	0.018	0.018
Coliform	MPN/10 0ml	1,230	3,520	3,170	3,890	4,050	2,960	2,900	3,150	2,750	3,240
Floating matter	-	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absen
Monthly discharge	m³/mont h	95,466	92,310	84,282	82,214	81,891	74,910	82,720	87,307	64,858	77,497
Volume							1			ļ	

^{*} Monthly average

^{**} Quarterly average

Table B.14 (b) Wastewater Quality of Fibras Nacionales de Acrilico in 1996-1998

10000 0.14 (Maximum limit	1997**	THE PROPERTY NAMED OF TAXABLE	1998**		Participated Visital Property and Company	and the residence of the second secon
Parameter	Unit	Monthly average	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec
Fecal coliform	MPN/100ml	1,000	403	96	286	309	4,450	7
р	-	5-10	6.78	7.00	6.30	7.80	7.15	7.35
Temperature	°C	40	23.5	21.2	22.4	25.7	26.5	20.1
Grease and oil	mg/l	15	5.6	66	7.5	<5	<5	10.5
Floating material	-	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Settleable solid	mVI	1.0	3.3	0.8	0.1	0.2	0.2	<0.1
Total suspended	mg/l	75	96.2	33.1	21.0	32.7	17.0	24.0
sotid		7.	00.0		حيه ا	40.0	72.1	27.4
BOD ₅	mg/l	75		I	1			27.1
Total nitrogen	mg/i	40	1		!	1		
Total phosphorus		20						
Arsenic	mg/l	0.2	1	<0.01	0.005			
Cadmium	mg/l	0.2	<0.01	<0.01	0.052	<0.05	<0.05	
Cyanides	mg/l	2	<0.01	<0.01	0.01	<0.01	<0.002	0.045
Copper	mg/l	4	< 0.04	0.06	0.17	<0.16	<0.16	<0.08
Chromium	mg/l	1	0.055	<0.1	0.5	L		< 0.24
Mercury	mg/l	0.01	< 0.01	<0.01	0.01	< 0.005	< 0.005	< 0.005
Nickel	mg/l	2	<0.1	<0.1	0.28	<0.28	<0.28	0.147
Lead	mg/l	0.5	<0.1	<0.1	0.26	<0.26	<0.26	<0.26
Zinc	mg/l	10	0.471	0.35	0.23	0.23	0.185	0.26
Discharge	m³/3month	-	294,282	241,127	189,923	262,935	195,116	122,815
Volume	<u> </u>		L					

Source: Document on Wastewater Quality and Discharge (CNA)

e) GE Plastics (Polimar) (B/1/5)

Table B.15 Monthly Average of Wastewater Quality of GE Plastics (Polimar) in 1995

		1995						
Parameter	Unit ·	Jan	Feb	Маг	Apr	May	Ju n	
Temperature	°C	21.6	23.4	25.8	25.1	26.3	25.9	
рН	:	8.26	8.20	8.65	8.77	8.43	8.35	
Total suspended solid	mg/I	36.5	31.5	41.5	40.5	27.1	34.0	
COD	mg/l	52.1	36.3	45.9	36.3	44.6	54.3	
BOD₅	mg/I	17.8	4.3	5.5	7.8	7.5	8.2	
Settleable solid	ml/I	<0.1	<1.0	<1	<1		<0.1	
Fluorides	mg/I	0.34	0.41	0.31	0.28	0.08	0.34	
Grease and oil	mg/l	5.9	6.1	2.8	6.7	0	6.8	
Phenois	mg/l	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	
Flow rate	Vs	9.81	8.00	8.60	9.25	9.18	8.71	
Monthly discharge volume	m³/month	26,275	19,354	23,034	23,976	24,588	22,576	

^{*} Monthly average

^{**} Quarterly average

f) Industries in Small and Medium Scale Industrial Estate (B/1/6)

Table B.16 Wastewate Quality of Industries in Small and Medium Scale Industrial Estate

Parameter	Unit	Operadora y	Johns Manville	Tectno Asfalto	Asfaltos y
		Comercializa-	Industrial	del Golfo	Derivados
		dora Trevi Plus	(B/1/6 (2))	(B/1/6 (3))	Mexicanos
		(B/1/6 (1))			(B/1/6 (4))
Total coliform	MPN/100ml	0	-	360,000	110,000
Fecal coliform	MPN/100ml	-	2		-
Cofor	Pt-Co scale	10	-	>500	30
Electric conductivity	micro S/cm	3,020	2,423	1,559	956
BOD ₅	mg/l	0.81	26.4	125	4.2
COD	mg/l	36.1	197	261	30
Grease and oil	mg/I	17.5	5	24	1.9
Floating material		Absent	Absent	Absent	Absent
pH	-	7.8	5.8	7.5	7.7
Active substance	mg/I	<0.1	3.90	7.43	0.09
toward methylene blue					
Settleable solid	mg/l	-	-	5.0	0.1
Total suspended solid	mg/l	6.0	19.5	150	20.0
Temperature	°C	29	33	30	30
Annual discharge volume	m³/year	-	2,765	303	438

Source: Document on Wastewater Quality and Discharge (CNA)

(3) Panuco River (C)

a) Sea-food Processing Industries (C/3/1)

Table B.17 (a) Wastewater Quality of Sea-food Processing Industries

				Basilio Rey	naga	Restaurant
		Camarones	de Golfo	Martinez		el Pollo
Parameter	Unit	discharge	discharge	Discharge	discharge	Marino
		1	2	1	2	
рН	-	7.26	7.87	7.60	7.40	8.52
Temperature	င	30	25	28	29	27
Settleable solid	ml/I	<0.1	1.5	0.2	0.9	0.2
Floating material	-	Absence	Absence	Absence	Absence	Absence
Grease and oil	mg/I	<1.0	1.0	9.8	20.8	2.3
Color	units	20	10	10	10	10
COD	mg/l	312	564	1,008	484	69
Total suspended solid	mg/l	67	146	109	96	76
BOD ₅	mg/l	287	545	935	467	
Active substance	mg/l	3.8	40.8	2.5	4.7	0.3
toward methylene blue				erio La erio La erio de fer		
Total coliform	MPN/100	110,000	110,000	110,000	110,000	11,000
Electric conductivity	ml micro S/cm	1,348	24.1	4,330	2,220	950
Total phosphorus	mg/l					Ι
Ammonia N	mg/l	١.	-		_	
Kjeldhal N	mg/l					
Fecal coliform	MPN/100 ml		-	•	-	-
Annual discharge Volume	m³/year	207	2,193	1,683	4,862	3,636

Table B.17 (b) Wastewater Quality of Sea-food Processing Industries

14010 5.17 (0)	C3 / Z. (C 4. / 44 / 44 / 4	Luis	Impulsora	Exportadores	Pescafina	Francisco
:		Gonzalez	de Pescados	Associados	Tampico	Javier
Parameter	Unit	Aranda	y Mariscos	[Marquez
рН			7.85	7.50	7.10	7.79
Temperature	c		-	-	18] -
Settleable solid	m1/1	-	0.1	0.1	3.0	-
Floating material		Absence	Absence		Absence	-
Grease and oil	mg/l	10.9	11.5	6.3	3.9	<5
Color	units	-	-	95	60	-
COD	mg/l	258	203	1,440	2,526	-
Total suspended solid	mg/l	67	5	1	170	I .
BOD ₅	mg/l	234	37	405	1,860	8.1
Active substance	mg/l	5.9	-	0.0	0.2	-
toward methylene blue						
Total coliform	MPN/100	>110,000	-	110,000	4	388
Electric conductivity	ml micro S/cm		•	1,420	1,895	-
Total phosphorus	mg/l	11.8	-	32.5	•	-
Ammonia N	mg/l	<0.1] -			
Kjeldhal N	mg/l	64.1		-		-
Fecal coliform	MPN/100	2,295				-
Annual discharge Volume	mi m³/year	455	14,602	2,400	3,600	2,090

Source: document on Wastewater Quality and Discharge (CNA)

b) Refineria Madero (PEMEX) (C/10)

Table B.18 (a) Monthly Average of Wastewater Quality of Siete y Media (Refineria Madero, PEMEX) in 1996-1999

		1996	1997					
Parameter	Unit	Jul	Aug	Sep	Oct	Nov	Jan	
BOD ₅	mg/l	27.5	22.0	28.0	22.9	32.6	33.5	
COD	mg/l	447	297	227	343	418	558	
Grease and Oil	mg/l	21.8	6.3	20.0	11.6	50.8	17.3	
Ammonia N	mg/I	1.4	0.7	1.5	2.2	3.0	5.2	
TSS	mg/I	20.4	30.3	26.0	34.8	31.2	34.3	
Phenois	mg/l	1.57	0.10	0.11	0.10	0.20	0.27	
Monthly discharge	m³/month	60,197	42,346	42,995	40,504	30,622	58,754	
Volume								

Table B.18 (b) Monthly Average of Wastewater Quality of Siete y Media (Refineria Madero, PEMEX) in 1996-1999

	Commission of Albert Black	1998	# ## # # # # # # # # # # # # # # # # #	rapparis and a Section College			and "Official In Columbia	7 1000	C-0170 - 1010	THE PERSON NAMED IN		1999
Parameter	Unity	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Nov	Dec	Jan
Grease and Oil	mg/l	131	10.5	14.5	9.0	41.5	18.0	27.2	80.0	20.0	51.5	73.5
Floating Material	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Settleable Solid	ml/i	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TSS	mg/l	33.0	27.4	30.9	55.3	110.0	23.0	44.5	102.7	29.0	69.2	64.0
BOD ₅	mg/l	25.3	18.4	27.9	33.4	48.2	58.8	31.0		53.0	45.8	74.5
Total Nitrogen	mg/i	8.2	6.6	7.2	12.6	22.4	7.7	11.8	7.4	12.4	10.7	12.4
Total Phosphorus	mg/l	0.23	1.90	0.48	0.67	0.50	1.38	1.24	0.28	1.16	0.85	2.81
Cyanide	mg/i	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.025	<0.01	<0.02
рН	-	7.4	7.5	7.8	7.95	7.4	6.9	7.45	7.4	7.4	7.7	7.7
Fecal Coliform	UFC/100	7,676	9,160	4,129	8,782	2,411	2,408	329	3,920	1,656	5,957	
Arsenic	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.006	<0.01	0.007
Cadmium	mg/l	<0.054	<0.054	<0.054	<0.05	<0.05	<0.05	<0.05	<0.05	<0.038	<0.01	<0.026
Copper	mg/l	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	0.12	<0.04	0.116
Chromium	mg/i	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.037	<0.1	<0.024
Mercury	mg/l	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.01	0.009
Nickel	mg/l	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.47	<0.21	<0.1	<0.14
Lead	mg/l	<0.259	<0.1	<0.1	<0.1	<0.1	<0.1	<0.18	<0.2	<0.2	<0.1	<0.2
Zinc	mg/I	0.19	0.39	0.40	0.41	0.61	0.47	0.17	0.31	<0.05	0.32	0.56
Temperature	င	51.6	27.4	25.3	28.0	32.8	31.3	30.7	31.0	27.0	25.0	19.0
Monthly discharge	m³/month	42,075	20,417	22,632	24,106	23,032	22,418	27,668	39,196	40,574	22,072	30,922
Volume		1	1	1			1			i		}

Source: Document on Wastewater Quality and Discharge (CNA)

Table B.19 (a) Monthly Average of Wastewater Quality of Varadero (Refineria Madero, PEMEX) (in 1996-1998)

		1996	1997				
Parameter	Unit	Jul	Aug	Sep	Oct	Nov	Jan
BOD _s	mg/l	75.8	72.3	81	73.4	65	100
COD	mg/l	451	367	383	630	700	1,078
Grease and Oil	mg/l	30.3	29.8	135	84.1	172	47
Ammonia N	mg/l	18.4	17.2	10.1	35.7	32.5	50.9
TSS	mg/I	30.1	20.7	26.3	56.5	141	54
Phenois	mg/l	5.2	2.9	4.0	3.8	3.4	5.9
Monthly discharge Volume	m³/month	368,586	381,426	293,432	277,405	253,251	179,323

Table B.19 (b) Monthly Average of Wastewater Quality of Varadero (Refineria Madero, PEMEX) (in 1996-1998)

Contract when the Contract and the Contr		1998									*************************
Parameter	Unity	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98	Jul-98	Aug-98	Nov-98	Dec-98
Grease and Oil	mg/l	164	9.5	26.5	12.5	21.5	29.5	22.4	18.5	29	89
Floating Material	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Settleable Solid	ml/li	<0.1	0.25	0.2	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.2
TSS	mg/l	44.0	11.0	25.0	18.0	50.3	37.4	43.5	30.5	27.5	44.2
BOD ₅	mg/l	56.0	23.4	80.2	84.9	168.4	69.5	106.6	68.3	170.0	74.2
Total Nitrogen	mg/l	42.3	34.9	73 9	73.1	100.1	27.3	49.6	33.4	69.9	34.2
Total Phosphorus	mg/i	0.23	0.50	0.63	0.91	0.52	1.77	1.68	0.20	1.60	1.90
Cyanide	mg/i	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.07	<0.01
pH	-	7.9	8.9	8.5	9.0	8.4	8.8	8.8	7.2	8.7	9.0
Fecal Coliform	UFC/100ml	6,742	162	109	71.5	614	38	438	161	147	2,672
Arsenic	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01
Cadmium	mg/l	<0.054	<0.0054	<0.054	<0.05	<0.05	<0.05	<0.05	<0.05	<0.039	<0.01
Copper	mg/l	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	< 0.16	<0.12	<0.04
Chromium	mg/i	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.38	<0.1
Mercury	mg/l	<0.005	<0.005	<0.005	<0.005	0.009	<0.005	<0.005	<0.005	<0.005	<0.01
Nickel	mg/l	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.21	<0.1
Lead	mg/l	<0.259	<0.1	<0.1	<0.1	<0.1	<0.1	<0.18	<0.2	<0.2	<0.1
Zinc	mg/i	0.24	0.08	0.33	1.90	0.24	0.25	0.27	0.19	<0.21	0.19
Temperature		32.8	32.0	31.3	33.5	31.5	39.6	34.2	34.0	31.5	31.5
Monthly Discharge	m³/month	109,720	135,739	160,200	166,525	190,364	152,323	183,032	179,335	276,984	108,016
Volume											

Source: Document on Wastewater Quality and Discharge (CNA)

(4) Coastal Water of Gulf of Mexico

· a) Petrocel (D)

Table B.20 Monthly Average of Wastewater Quality of Petrocel (D) in 1995-1997

Parameter	Unit	1995		1996				1997
		Nov-95	Dec-95	Sep-96	Oct-96	Nov-96	Dec-96	Jan-97
pH	-	7.29	7.56	7.51	7.69	7.54	7.06	7.06
Temperature	°C	33.0	31.1	33.1	33.8	33.3	33.4	31.5
Color	Pt-Co scale	18	19	30	34	31	33	31
Settleable solid	mVI	0.5	0.4	0.2	0.2	0.2	0.5	0.1
Grease and oil	mg/t	5.0	5.9	6.0	5.0	4.8	6.9	7.3
Kjeldahl nitrogen	mg/l	1.28	1.4	0.34	0.29	0.31	0.36	0.19
Total suspended solid	mg/i	31.4	27.5	19.8	27.5	23.8	26.9	31.1
COD	mg/l	87.4	91.1	83.8	88.1	62.4	70.6	93.1
BOD ₅	mg/I	43.0	42.6	34.3	38.5	27.4	29.8	37.1
Active substance toward methylene blue	mg/l	0.02	0.04	<0.001	<0.001	<0.001	<0.001	0.02
Total coliform	MPN/100ml	0	0	0	0	0	0	0
Total chromium	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Hexavalent chromium	mg/l	< 0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001
Floating material	-	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Sulfides	mg/l	0.34	0.24	0.17	0.08	0.12	0.17	0.20
Copper	mg/l	0.0036	0.0044	< 0.001	<0.001	<0.001	<0.001	< 0.001
Zinc	mg/l	0.0066	0.0075	0.003	0.0031	0.0028	0.0035	0.0035
Nickel	mg/l	0.0046	0.006	< 0.001	<0.001	< 0.001	<0.001	< 0.001
Phenois	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Flow rate	Vs ·	108	111	65	94	111	125	118
Monthly discharge volume	m³/month	265,626	173,053	178,233	179,092	320,143	212,952	432,579

b) NOVAQUIM (E)

Table B.21 Monthly Average of Wastewater Quality of NOVAQUIM in 1996

Parameter	Unit	1996											
	<u> </u>	Jan	Feb	Mar	Apr	May	Jun	Jul	Λug	Sep	Oct	Nov	Dec
Temperature	°C	28.5	30.5		31.6	32.9	35.3	36.4	35.3	35.0	33.3	31.9	26.0
PH	-	7.80	7.05	7.49	8.33	7.74	7.30	6.54	5.92	5.80	7.44	6.63	6.81
Floating material	-	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Settleable solid	mVI	0.0	0.3	1.3	0.1	3.6	1.8	2.7	0.2	0.2	0.7	0.1	0.1
Total suspended solid	mg/l	86	92	48	75	95	66	67	85	50	84	39	101
Grease and oil	mg/l	43.0	25.7	18.0	11.0	6.4	27.0	6.7	9.0	10.2	8.0	20.3	23.1
COD	mg/l	716	701	466	463	540	616	628	670	431	464	596	639
BOD ₅	mg/i	267	372	427	239	365	288	268	293	280	281	318	152
Color	Pt-Co scale	6.9	15.6	6.9	15.5	12.5	19.4	7.5	6.3	9.4	7.5	6.3	8.9
Total nitrogen	mg/l	93	80	113	71	75	25	27	37	38	35	32	38
Hexavalent Chromium	mg/l	0.03	0.04	0.03	0.02	0.17	0.12	0.13	0.11	0.08	0.12	0.05	0.02
Active substance toward methylene blue	mg/l	1.22	0.29	0.21	0.05	0.05	2.24	2.82	3.62	2.74	2.3	3.53	8.75
Total coliform	MPN/100 ml	-	30	30	30	30	30	30	30	30	30	30	30
Copper	mg/l	0.43	0.04	0.08	0.08	0.03	0.09	0.1	0.34	0.29	0.22	0.15	0.24
Flow rate	Vs	3.22	4.85	5.30	5.12	3.36	4.16	3.91	4.16	4.66	4.51	4.10	2.35
Monthly discharge volume	m³/month	10,637	12,795	13,100	11,667	9,797	9,336	8,305	10,667	12,441	11,821	10,061	6,593

Source: Document on Wastewater Quality and Discharge (CNA)

c) NEGROMEX (F(1))

Table B.22 Monthl Average of Wastewater Quality of NEGROMEX (Hules Mexicanos) in 1995

Parameter	Unit	1995				
		Apr	Мау	Jun	Sep	Oct
Temperature	°C	34.8	37.5	36.5	26.3	34.9
рН] -	7.55	7.90	7.10	7.35	7.63
Color	Co-Pt	58	49	78	86	113
	scale		i			i
Settleable solid	mVI	<0.1	<0.1	<0.1	<0.1	<0.1
Suspended solid	mg/I	103.1	124.3	55.0	63.8	68.3
Grease and oil	mg/l	15.0	32.7	15.4	13.5	20,1
Floating material	-	Absent	Absent	Absent	 Absent 	Absent
BOD _s	mg/I	66.3	74.2	. 51.3	67.5	57.8
Total coliform	MPN/100	35,600	24,300	18,000	33,400	33,500
	m! .				ĺ	
COD	mg/I	335	627	458	496	511
Total nitrogen	mg/l	23.1	25.8	17.0	21.7	19.6
Active substance toward	mg/l	1.22	0.87	1.08	0.86	0.95
Methylene blue				·		
Cyanides	mg/l	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Phenois	mg/l	0.030	0.060	0.084	0.078	0.038
Hexavalent chromium	mg/l	< 0.001	< 0.001	<0.001	< 0.001	<0.001
Fluorides	mg/l	0.21	0.21	0.20	0.25	9
Lead	mg/l	< 0.01	< 0.01	< 0.01	1	<0.01
Monthly discharge volume	m³/month	86,610		1		

f) NHUMO (F(2))

Table B.23 Wastewater Quality of NHUMO

1411				
Parameter	Unit	Value		
pH	-	6-9		
Temperature	°C	35		
Settleable solid	ml/l	1		
Floating material	 	Absent		
Grease and oil	mg/l	15		
Color	Pt-Co scale	100		
COD	mg/l	100		
Total suspended solid	mg/I	70		
BOD ₅	mg/l	50		
Active substance toward	mg/l	1		
Methylene blue				
Total coliform	MPN/100ml	100,000		
Electric conductivity	micro S/cm	4,000		
Nitrogen	mg/l	3		
Phenols	mg/l	0.1		
Source: Document on	Wastewater	Quality and		

Source: Document on Wastewater Qu Discharge (CNA)

e) Dupont (G)

Table B.24 (a) Wastewater Quality of Dupont in 1992-1993 and 1997-1999

		1992	1993	
Parameter	Unit	Dec	Jan-Mar	Apr-May
ρН	-	1.9	1.0	1.15
Settleable solid	mVI	4.8	1.3	3.2
TSS	mg/t	653	314	480
BOD _s	mg/l	20.4	22.5	19.05
COD*	mg/l	1,250	1,280	1,510
Grease and oil	mg/l	2.0	1.1	2.3
Hexa-valent chromium	mg/l	0.0	0.0	0
Vanadium	mg/I	114	169	106
Chromium	mg/I	31.2	43.7	30.6
Manganese	mg/I	398	428	412
Iron	mg/l	4,240	6,880	7,170
Titanium	mg/I	175	242	211
Aluminum	mg/l	178	191	272
Discharge volume	m³	174,028	522,084	348,056

Table B.24 (b) Wastewater Quality of Dupont in 1992-1993 and 1997-1999

The state of the s		1997	1998		P. C. S. S. S. C. S. S. S. S. S. S. S. S. S. S. S. S. S.	oers volumetr	
Parameter	Unit	Dec	Mar	Apr	May	Jun	Jul
Iron	mg/l	8,330	12,500	11,400	10,500	11,000	12,200
Manganese	mg/l	394	613	521	460	616	74
Chromium	mg/l	53.3	82.6	70.1	65.7	108	129
Vanadium	mg/l	79.1	42.6	72.0	70.4	94.5	279.5
Titanium	mg/l	205	116	138	141	191	167
Aluminum	mg/l	196	236	201	239	298	584
Monthly discharge volume	m³/month	187,790	288,800	651,700	213,300	221,200	231,800

		1998		1999			
Parameter	Unit	Aug	Sep	Oct	Nov	Dec	Jan
Iron	mg/l	12,300	10,700	11,900	11,100	12,000	11,300
Manganese	mg/l	495	481	509	462	520	391
Chromium	mg/l	143.1	80.7	87.3	84.4	98.2	142.9
Vanadium	mg/l	77.1	57.7	44.7	55.4	63.7	60.1
Titanium	mg/l	150.6	39.9	43.2	54.5	115.2	173.3
Aluminum	mg/l	262	277	216	176	249	317
Monthly discharge volume	m³/month	174,200	245,400	238,000	256,300	223,600	164,200

Source: Document on Wastewater Quality and Discharge (CNA)

B.1.3 Quality and Quantity of Municipal Wastewater

(1) Altamira Oxidation Pond

Table B.25 Water Quality of Influent to Oxidation Pond in Altamira

Parameter		Feb-3-95	Mar-8-95	Apr-11-95	Jun-5-95	Jul-10-95	Aug-16-95	Nov-9-95	Apr-8-95	Average
TSS	Influent	176	184	196	128	144	320	136	237	190
(mg/l)	Effluent	108	180	176	78	136	36	96	164	121
	r*	0.614	0.978	0.898	0.609	0.944	0.113	0.706	0.692	0.694
BOD,	Influent	209	180	505.8	172	288	102	451	318	278
(mg/l)	Effluent	95.5	41.9	156.8	67.4	94.5	34.7	85	89.4	83
• • •	[r*	0.457	0.233	0.31	0.392	0.328	0.34	0.188	0.281	0.316
COD	Influent	549	455	823	489	593	194	459	563	516
(mg/l)	Effluent	274	285	348	348	257	131	216	277	267
	r*	0.499	0.626	0.423	0.712	0.433	0.675	0.471	0.492	0.541
Fecal	Influent	4.0E+07	4.0E+07	9.3E+07	4.4E+07	3.4E+07	-	4.6E+08	6.0E+07	1.1E+08
Coliform	Effluent	4.9E+06	4.3E+06	5.9E+06	7.9E+05	5.9E+05	-	1.0E+05	6.7E+05	2.5E+06
(MPN/100	l.	0.122	0.108	0.064	0.018	0.017	-	0	0.011	0.049
mi)			ŀ		İ	-	i l			· ·
Grease	Influent	34.2	29.6	68.5	14.8	17.8	12.4	69.1	55.4	37.7
and oil	Effluent	19.2	12.6	12.3	2.7	3.9	5.7	42.4	16.5	14.4
(mg/l)	l.,	0.561	0.426	0.18	0.182	0.219	0.46	0.614	0.298	0.368

Source: Memorandum of CNA

^{*} r = (effluent)/(influent)

(2) Tieranegra Oxidation Pond

Table B.26 Water Quality of Influent and Effluent of Tieranegra Oxidation Pond

				Apr-11-95 Jun-6-95 Jul-6-95 Sep-6-95 Nov-9-95 Feb-13-95 Average						TAXABLE PARTY.
Parameter		Jan-18-95	Mar-8-95	Apr-11-95	Jun-6-95	Jul-6-95	Sep-6-95	Nov-9-95	Feb-13-95	Average
TSS	Influent	145	66	116	160	211	104	112	110	128
(mg/L)	Effluent	43	130	128	136	120	124	87	120	111
	r*	0.297	1.970	1.103	0.850	0.569	1.192	0.777	1.091	0.867
BOD ₅	Influent	35.8	141	135	154	172	268	162	155	153
(mg/L)	Effluent	116	84.8	121.4	97.3	125	76.4	201	143	121
	I*	3.240	0.601	0.899	0.632	0.727	0.285	1.241	0.923	0.789
COD	Influent	98	232	300	314	385	440	198	230	275
(mg/L)	Effluent	186	223	310	268	198	210	207	260	233
	lr*	1.898	0.961	1.033	0.854	0.514	0.477	1.045	1.130	0.848
Fecal Coliform	Influent	2.3E+06	2.5E+07	7.9E+07	3.7E+07	4.4E+07	5.1E+07	2.0E+07	4.8E+07	3.8E+07
(MPN/100ml)	Effluent	2.2E+07	1.2E+07	4.2E+07	3.6E+06	2.8E+07	5.4E+06	1.6E+07	8.5E+06	1.7E+07
•	r.	9.466	0.476	0.529	0.098	0.642	0.106	0.787	0.179	0.449
Grease and oil	Influent	6.2	13.4	11.2	1.6	20.3	19.5	18.3	29	14.9
(mg/L)	Effluent	9.9	11.1	12.1	1.2	4.5	9.8	39	29.7	14.7
· · ·	r*	1.597	0.828	1.080	0.750	0.222	0.503	2.131	1.024	0.982

Source: Memorandum of CAN:

(3) Municipal Wastewater flowing into Panuco River

Table B.27 Quality of Municipal Wastewater which flows into the Panuco River

		C/4/1, M	C/4/2, M	C/4/3, M	C/4/4, M	C/4/5, M
		Planta	Carcamo	Carcamo	Carcamo	Bonbas
Parameter	Unit	Altavista	No.1	No.2	No.3	No.6
Grease and oil	mg/l	31.3	65.1	77.4	50	89.2
COD	mg/l	80	470	400	440	870
TSS	mg/I	130	140	86	92	364
BOD₅	mg/l	55.4	202	188.33	166.33	599
Detergent	mg/l	0.187	21.36	16.8	5.99	24.88
Total coliform	MPN/100 ml	9,300	240,000	240,000	240,000	240,000
Flow	m³/day	7,580	3,161	4,827	2,067	3,751
	m³/sec	0.088	0.037	0.056	0.024	0.043

		C/5/1, M	C/5/2, M	C/5/3, M	C/5/4, M	C/8/1, M	C/8/2,M
		Bombas	Bombas	Bombas	Grav.	Grav.	Bombas
Parameter	Unit	No.1	No.7	No.8	No.12	No.11	No.9
Grease and oil	mg/l	61.7	71.8	81.7	75.1	71.7	86.8
COD	rng/l	430	550	450	280	470	420
TSS	mg/l	140	150	140	82	170	126
BOD ₅	mg/l	320	398	415	125.3	207.33	205
Detergent	mg/I	17.15	28.82	15.31	14.97	8.62	8.77
Total coliform	MPN/100 ml	240,000	240,000	240,000	240,000	240,000	·
Flow	m³/day	34,884	9,725	7,218	1,383	11,383	11,675
	m³/sec	0.404	0.113	0.084	0.016	0.132	0.135

^{*} r = (concentration of parameter in effluent)/(concentration of parameter in influent)

(3) Wastewater from Altamira and Puerta Water Supply Plants

Table B.28 Wastewater Quality of Altamira and Puerta Water Supply Plants

Parameter	Unit	Altamira	Puerta	
рН	-	7.6	7.4	
Temperature	°С	26	24	
Settleable solid	mVI	0.5	1	
Floating material	-	Absent	Absent	
Grease and oil	mg/l		20.2	
Color	Co-Pt scale	70	65	
COD (dichromate)	mg/l	30	80	
Total suspended solid	mg/l	46	104	
BOD ₅	mg/l	-	56	
Active substance toward methylene blue	rng/l	-	0.1	
Total coliform	MPN/100 ml	<2	2	
Electric Conductivity	micro S/cm	859	940	
Annual discharge volume	m³/year	154395	506255	

Source: Wastewater Quality and Discharge (CNA)

B.1.4 Pollution Loads

(1) Point Pollution Source

a) Altamira Industrial Port Area (A)

Table B.29 shows the daily discharge volume and the daily pollution loads in the Altamira Industrial Port (A).

Table B.29 Flow Rate and Daily Pollution Load into Altamira Industrial Port

Code	Name		BOD₅ kg/day		Total Nitrogen kg/day	Total Phosphate kg/day	Reference Table
A1, S	Administracion Portuaria Integral del Altamira	0.00091	2.15	9.03	-		Table B.6
A/2, I	Pittsburgh Plate Glass (PPG) Industry	0.035	3.6				Table B.7
A/3/1, I	POLICYD	0.012	18.5	41.0	2.21	0.77	Table B.8
A/3/2, I	Comision Federal de Electricidad	0.055	25.0	386	2.50	7.09	Table B.9
A/3/3, I	NEGROMEX (Planta Solucion)	0.005	6.73	18.9	0.34	1.25	Table B.10

b) Marismas Lagoon (B) and Conejo Lagoon (B/1) Table B.30 shows the daily discharge volume and daily pollution loads, which flow into Conejo Lagoon.

Table B.30 Flow Rate and Daily Pollution Loads into Conejo Lagoon

Pollution	Point Pollution Source	Flow rate	BOD₅	COD	Total	Total	Reference Data
source		m³/s	kg/oay	kg/day	Nitrogen	Phosphorus	
number		İ	l		kg/day	kg/day	
B/1/1, I	BASF Mexicano	0.0083	24.4	110*	15.1**	0.62**	Table B.11
B/1/2, I	Grupo Primex	0.0415	1836	3441***	10.4	1.64	Table B.12
B/1/3, 1	Internacional de Papeles del Golfo	0.0034	52.1	117.8	-		Table B.13
B/1/4, I	Fibras Nacionales de Acrilico	0.0276	170	329****	46.6	7.95	Table B.14
B/1/5, I	GE Plastic	0.0089	6.8	35.6	-	-	Table B.15 (1995)
B/1/6(1)	Operadora y Comercializadora Trevi Plus	-	-		-		Table B.16
	Johns Manville Industry	0.000088	0.200	1.479			Table B.16
	Tecno Asfalto del Golfo	0.000010	0.104	0.216		-	Table B.16
	l Asfaltos y Derivados Mexicanos	0.000014	0.005	0.036		-	Table B.16

c) Panuco River Upstream(C/1)

The daily pollution loads at El Alamo Station (between Las Adjuntas in the upstream and Panuco City in the downstream of Panuco River) are shown in Table B.31.

Table B.31 Daily Pollution Loads from Panuco River Upstream

		Average value from 1	990 to 1997	
		Dry Season	Rainy Season	Annual
Parameter	Unit	Unit (from Nov to May) (from Jun to Oct)		
(Concentration)				
BOD ₅	mg/l	1.81	1.02	1.51
COD	mg/I	20.7	24.7	22.3
Total N	mg/l	0.788	1.036	0.835
Soluble P	mg/l	. 0.09	0.149	0.114
	1	Average value from 1	975 to 1994	
Flow rate	m³/s	185.2	771	421
Daily dicharge volume	1000 m³/day	16001	66614	36374
(Pollution Load)				
BOD _s	kg/day	29,000	68,000	45,300
COD	kg/day		1,645,000	882,000
Total N	kg/day	12,600	17,500	36,300
Soluble P	kg/day	1,440	9,930	5000

d) Tamesi River and Freshwater Lagoons (C/2)

The daily pollution loads from Tamesi River are shown in Table B.32.

Table B.32 Daily Pollution Loads from Freshwater Area (Tamesi River) to Estuarine Area (Panuco River)

	Dry Season	(from Novemb	per to May)						
Parameter	BOD5	COD	T-nitrogen	Phosphale					
Concentration (mg/l)				····					
Chairel Lagoon (Toma de agua)	1.6	16.2	0.64	0.06					
Tamesi River (Tamesi)	2.2	14.3	0.97	0.089					
Average value	1.9	15.25	0.805	0.0745					
Flow rate (m ³ /s)	13.9								
Daily discharge volume (m³/day)	1,201,000			-					
Daily pollution load (kg/day)	2,282	18,315	967	89					
	Rainy Seas	on (from June	to October)						
Parameter	BOD5	COD	T-nitrogen	Phosphate					
Concentration (mg/l)		<u> </u>							
Chairel Lagoon (Toma de agua)	1.6	17.9	0.49	0.046					
Tamesi River (Tamesi)	0.75	14.8	0.75	0.1					
Average value	1.175	16.35	0.62	0.073					
Flow rate (m ³ /s)	42	L		<u></u>					
Daily discharge volume (m³/day)	3,629,000								
Daily pollution load (kg/day)	4,264	59,331	2,250	265					

e) Sea-food Processing Industries (C/3/1)

The daily pollution loads by each sea-food processing factory are shown in Table B.33.

Table B.33 Daily Pollution Loads from Sea-food Processing Industries

Sea-food Processing Industry	Discharge	COD	BOD₅	Kjeldhal N	Total phosphorus
	l/s	kg/day	Kg/day	kg/day	kg/day
Camarones del Golfo	0.055	2.58	2.48	-	_
Basilio Reynaga Martinez	0.161	9.16	8.66	-	_
Restaurant et Pollo Marino	0.093	0.552	-	-	-
Luis Gonzalez Aranda	0.015	0.343	0.311	0.085	0.016
Impulsora de Pescados y Mariscos	0.463	8.12	1.47	_	-
Exportadores Asociados	0.200	24.9	7.00	-	<u>-</u>
Pescafina Tampico	0.116	25.3	18.6	~	-
Francisco Javier Marquez Zapata	0.066	-	0.046	` -	•
Average	0.146	10.1	5.51		-
Total (=20*average)	2.92	202	110		-

^{*20} is the number of pier in the Sea-food Process Industry Zone

f) Municipal Wastewater (the southern part of Tampico and southern part of Madero)
The daily pollution loads from each discharge point of municipal wastewater from the southern part of Tampico and southern part of Madero are shown in Table B.34.

Table B.34 Daily Pollution Loads from Municipal Wastewater into Panuco River

		C/4/1, M	C/4/2, M	C/4/3, M	C/4/4, M	C/4/5, M
		Planta	Carcamo	Carcamo	Carcamo	Bombas
Parameter	Unit	Altavista	No.1	No.2	No.3	No.6
Daily discharge volume	m³/day	7,580	3,161	4,827	2,067	3,751
Flow rate	m³/sec	0.0877	0.0366	0.0559	0.0239	0.0434
Daily pollution loads	<u>• </u>		·	·	! .,	. ·
COD	kg/day	606	1,486	1,931	909	3,263
BOD ₅	kg/day	420	639	909	344	2,247
Total nitrogen	kg/day	-	202	276	116	587
Total phosphorus	kg/day	-	25	35	14	73

		C/5/1, M	C/5/2, M	C/5/3, M	C/5/4, M	C/8/1, M	C/8/2,M
		Bombas	Bombas	Bombas	Grav.	Grav.	Bombas
Parameter	Unit	No.1	No.7	No.8	No.12	No.11	No.9
Daily discharge volume	m³/day	34,884	9,725	7,218	1,383	11,383	11,675
Flow rate	m³/sec	0.4038	0.1126	0.0835	0.0160	0.1317	0.1351
Daily pollution loads							
COD	kg/day	15,000	5,349	3,248	387	5,350	4,904
BOD ₅	kg/day	11,163	3,871	2,995	173	2,360	2,393
Total nitrogen	kg/day	2,840	994	712	54	739	716
Total phosphorus	kg/day	356	124	89	6.8	92	90

g) Refineria Madero (C/10)

The daily pollution loads from Refineria Madero are shown in Table B.35.

Table B.35 Daily Pollution Loads from Refineria Madero

	Average co	oncentration		4		
Parameter	Unit	Siete y Media	Vanadero	-		
BOD ₅	mg/l	43.1	99.7			
COD*	mg/l	mg/l 599 1,0				
Total Nitrogen	mg/l	10.5	57.0			
Total Phosphorus	mg/l	0.81	1.03			
Flow rate	m³/s	0.0108	0.0633			
	m³/day	935	5,468			
	Daily pollu	tion load				
Parameter	Unit	Siete y Media	Vanadero	Total		
BOD₅	kg/day	40	545	586		
COD*	kg/day	560	5,979	6,539		
Total Nitrogen	kg/day	9.8	311.6	321		
Total Phosphorus	kg/day	0.75	5.61	6.37		

h) Gulf of Mexico

The daily pollution loads which flow into the Gulf of Mexico are shown in Table B.36.

Table B.36 Daily Pollution Loads from Industries which Discharge Wastewater into Coastal Water

Pollution		Flow rate	Daily pollution load								
Source	Pollution Source		BOD₅	COD	Total N	Total P					
Number		(m³/s)	(kg/day)	(kg/day)	(kg/day)	(kg/day)					
D	Petrocei*	0.096	296	681	4.5	-					
E	Novaquim**	0.004	106	199	20.2	-					
F(1)	Negromex (Emulcion)***	0.031	167	1290	57	<u> </u>					
F(2)	NHUMO		34.05	68.1	2.04	-					
G	Dupont****	0.099	120	-	-	-					

^{*} Data from Nov/95 to Jan/97

^{**} Data from Jan/96 to Dec/96

^{***} Data from Apr/95 to Oct/95

^{****} Data from Dec/92 to Mar/93

(2) Non-point Pollution Sources

Pollution loads from the following non-point pollution sources are estimated:

a) Watershed of Garrapatas Stream (A/3/4)

The daily pollution loads in dry and rainy season are shown in Table B.37.

Table B.37 Daily Pollution Loads from Watershed of Garrapatas Stream (Dry Season)

Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year))	Pollution load (kg/dry season)				Daily pollution load (kg/day)			
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	6,550	0.2	7.29	1.08	11.9	36	2,005	298	3,285	9,856	9.46	1.40	15.50	46
Low density	50	0.6	4.72	0.61	13.2	25	30	4	83	158	0.14	0.02	0.39	1
Residential	1	1												
Industrial	240	0.6	14.67	2.54	78.68	149	444	77	2379	4520	2.09	0.36	11.22	21.32
Total	6,840						2,478	378	5,748	14,534	12	2	27	69
(Rainy Season)														
Туре	Area	(1-R')	Loading	rate (kg/	(ha*year)))	Pollutio	n load (k	g/rainy s	season)	Da	ly pollut	ion load	(kg/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	6,550	0.2	7.29	1.08	11.9	36	7,541	1,120	12,359	37,076	49.3	7.3	80.8	242.3
Low density	50	0.6	4.72	0.61	13.2	25	112	14	313	595	0.7	0.1	2.0	3.9

149

1,669

9,322

289

1,423

8,950 17,005

54,677

21,622

10.9

61

1.89

58

141

111

357

240

6,840

Residential Industrial

Total

b) Area around Conejo Lagoon (B/1/7)

14.67

The daily pollution loads in dry and rainy seasons are shown in Table B.38.

78.68

Table B.38 Daily Pollution Loads from Watershed of Conejo Lagoon

(Dry Season)														
Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year))	Pollutio	n load (k	g/dry se	ason)	Daily po	ollution le	oad (kg/c	Jay)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	260	0.2	7.29	1.08	11.9	36	80	12	130	391	0.38	0.06	0.62	1.85
Industrial	80	0.6	14.67	2.54	78.68	149	148	26	793	1,507	0.70	0.12	3.74	7.11
Total	340					<u> </u>	227	37	923	1,898	1.07	0.18	4.36	9
(Rainy Season)		1.71												
Туре	Area	(1-R*)	Loading	rale (kg/	(ha*year)))	Pollutio	n load (k	g/rainy s	season)	Da	iy pollul	on load	(kg/day)
	(ha)		T-N	T-P	BOD	COD	T-N	Т-Р	BOD	COD	T∙N	T-P	BOD	COD
Crop/Pasture	260	0.2	7.29	1.08	11.9	36	299	44	491	1,472	1.96	0.29	3.21	9.62
Industrial	80	0.6	14.67	2.54	78.68	149	556	96	2,983	5,668	3.64	0.63	19.50	37.05

856

141

3,474

7,140

5.59

0.92

22.71

47

340

Total

^{*}R: Reduction Parameter

^{*}R: Reduction Parameter

c) Watershed of Costa Lagoon (C/2/1)

The daily pollution loads in dry and rainy season are shown in Table B.39.

Table B.39 Daily Pollution Loads from Watershed of Costa Lagoon

Туре	Area	(1-R*)) Loading rate (kg/(ha*year))			Pollution load (kg/dry season)				Daily pollution load (kg/day)				
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	4,000	0.2	7.29	1.08	11.9	36	1,224	182	2,006	6,019	5.77	0.86	9.46	28
Wetland	1,700	0.6	3.72	0.44	10.9	33	797	95	2,340	7,021	3.76	0.45	11.04	33
Lagoon	300	0.6	6.75	0.57	8.8	26	255	21	331	994	1.20	0.10	1.56	5
Low density Residential	60	0.6	4.72	0.61	13.2	25	36	5	100	190	0.17	0.02	0.47	1
Total	6,060						2,312	303	4,778	14,223	10.91	1.43	22.54	67

Season)

Туре	Area	(1-R*)	Loading	Pollution	n load (k	g/rainy s	eason)	Daily pollution load (kg/day)						
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	4,000	0.2	7.29	1.08	11.9	36	4,605	684	7,547	22,642	30.1	4.5	49.3	148.0
Wet land	1,700	0.6	3.72	0.44	10.9	33	2,998	357	8,804	26,412	19.6	2.3	57.5	172.6
Lagoon	300	0.6	6.75	0.57	8.8	26	960	80	1,246	3,738	6.3	0.5	8.1	24.4
Low density Residential	60	0.6	4.72	0.61	13.21	25	134	17	376	714	0.88	0.11	2.5	4,7
Total	6,060						8,698	1,138	17,973	53,506	56.9	7.4	117.5	349.7

^{&#}x27;R: Reduction Parameter

d) Morelos (Tampico) (C/3/1)

The daily pollution loads in dry and rainy seasons are shown in Table B.40.

Table B.40 Daily Pollution Sources in Morelos

(Dry Season) (1-R*) Loading rate (kg/(ha*year)) Pollution load (kg/dry season) Daily pollution load (kg/day) Туре Area T-P BOD BOD COD T-P BOD (ha) Low density 150 13.21 Residential

(Rainy Season))					•		100			<u>.</u>			
Туре	Area	(1-R')	Loading rate (kg/(ha*year))				Pollutio	n load (k	g/rainy s	eason)	Daily pollution load (kg/day)			
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Low density	150	0.6	4.72	0.61	13.21	25	336	43	939	1,785	2.19	0.28	6.1	11.7
Residential		1	1		i				1					1.

^{*}R: Reduction Parameter

e) Tampico Solid Waste Landfill Site (C/4/7)

Tampico Solid Waste Landfill Site (approximately 32 ha) and its surrounding (18 ha) are regarded as one of the industial land use. The daily pollution loads in dry and rainy season is shown in Table B.41.

Table B.41 Daily Pollution Sources around Tampico Solid Waste Landfill Site (Dry Season)

Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year)))	Pollutio	n load (k	g/dry se	ason)	Dait	ily Pollution Load (kg/day)			
	(ha)		T-N	T-P	BOD	COD	T-N	T ∙P	BOD	COD	T-N	T-P	BOD	COD	
Industrial	50	0.6	14.67	2.54	78.7	149	92	16	496	942	0.44	0.08	2.34	4.44	
Recreation/op en	50	0.6	2.26	0.10	2.62	5	14	1	17	31	0.07	0.00	0.08	0.15	
Total	100						107	17	512	973	0.50	0.08	2.42	5	
(Rainy Season	`		· · · · · · · · · · · · · · · · · · ·				•			•	 -			·	
(Itality Ocasoli	,														
Туре		(1 R')	Loading	rate (kg/	(ha*year)))	Pollutio	n load (k	g/rainy s	season)	Dai	ly polluti	on load	(kg/day)	
<u> </u>		(1-R*)	Loading T-N	rate (kg/ T-P) COD		n load (k T-P		eason) COD	Dai T∙N			(kg/day) COD	
<u> </u>	Area		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T∙N	T-P	BOD	COD	
Туре	Area (ha)	0.6	T-N 14.67	T-P 2.54	BOD 78.7	COD 149	T-N	T-P 60	BOD 1,865	COD 3,543	T-N 2.27	T-P 0.39	BOD 12.19	COD	

^{*}R: Reduction Parameter

f) Southwest Part of Tampico City (C/4/6)

The daily pollution loads in dry and rainy seasons are shown in Table B.42.

Table B.42 Daily Pollution Loads from Southwestern Part of Tampico (Dry Season)

Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year)))	Pollutio	n load (k	g/dry se	ason)	Dail	y Pollution	on Load	(kg/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Low density Residential	510	. 0.6	4.72	0.61	13.21	-25	303	39	849	1,613	1.43	0.18	4.00	7.61
(Rainy Seaso	n)		·		 	*								
,,	• • •													
Туре		(1 R)	Loading	rate (kg/	(ha*year)))	Pollutio	n load (k	g/rainy s	eason)	Dai	ly pollut	ion load	(kg/day)
		(1-R*)	Loading T-N		(ha*year) BOD	COD		<u> </u>	<u> </u>	cod	Dai T-N	ly pollut		(kg/day) COD

^{*}R: Reduction Parameter

g) Southern Part of Tampico City and Southern Part of Madero City (C/5/5 and C/8/3) The daily pollution loads in dry and rainy seasons are shown in Table B.43.

Table B.43 Non-point Pollution Loads from Southern Part of Tampico and Southern part of Madero

(Dry Season) Type	Area	(1-R*)	Loading	rate (kg/	ha'year))	Pollutio	n load (k	g/dry se	ason)	Dai	ly polluti	on load ((kg/day)
•	(ħa)					COD	L	T-P			T-N	T-P	BOD	COD
Low density Residential	1278	0.6	4.72	0.61	13.21	25	760	98	2,128	4,042	3.59	0.46	10.04	19.07
Medium density Residential	267	0.6	8.28	1.34	30.51	58	278	45	1,026	1,950	1.31	0.21	4.84	9.20
Commercial	106	0.6	17.29	2.57	107.29	204	231	34	1,433	2,723	1.09	0.16	6.76	12.84
Industrial	304	0.6	14.67	2.54	78.68	149	562	97	3,014	5,726	2.65	0.46	14.22	27.01
Recreational/o pen	126	0.6	2.26	0.10	2.62	5	36	2	42	79	0.17	0.01	0.20	0.37
Lake	80	0.6	6.75	0.57	8.76	26	68	6	88	265	0.32	0.03	0.42	1.25
Total	2,161	0.6					1,936	282	7,730	14,785	9.13	1.33	36.46	- 70

(Rainy Season) Daily pollution load (kg/day) Туре Area (1-R*) Loading rate (kg/(ha*year)) Pollution load (kg/rainy season) BOD COD COD (ha) BOD COD BOD Low density 1,278 0.6 4.72 0.61 13.21 25.10 2,860 367 8,004 15,207 18.7 2.40 52 99 Residential 3,861 25 48 Medium 267 0.6 8.28 1.34 30.51 58 1,048 169 7,336 6.8 1.11 density Residential 5,391 10,242 0.85 Commercial 106 0.6 17.29 2.57 107.29 204 869 129 5.7 35 67 11,337 21,540 2.39 Industrial 304 0.6 14.67 2.54 78.68 149 2,114 366 13.8 74 141 0.04 2 Recreational/o 126 0.6 2.26 0.10 2.62 135 157 298 0.9 pen 997 7 80 0.6 6.75 0.57 8.76 26 256 21 332 1.7 0.14 Lake Total 2,161 0.6 7,282 1,059 2,9081 55,620 6.92 190 364

h) Northern Part of Pueblo Viejo Municipality (C/6)

The daily pollution loads in dry and rainy seasons are shown in Table B.44.

Table B.44 Daily Pollution Loads from the Northern Part of Pueblo Viejo (Dry Season)

Туре	Area	(1 R*)	Loading	rate (kg/	(ha*year))	Pollutio	n load (k	g/dry se	ason)	Dai	ly pollut	ion load	(kg/day)
	(ha)	na)	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	580	0.2	7.29	1.08	11.9	36	169	25	277	831	0.80	0.12	1.31	4
Wetland	25	0.6	3.72	0.44	10.9	33	11	1	33	98	0.05	0.01	0.15	0
Low density Residential	140	0.6	4.72	0.61	13.2	25	79	10	222	422	0.37	0.05	1.05	2
Industrial	120	0.6	14.67	2.54	78.68	149	211	37	1,133	2,153	1.00	0.17	5.34	10
Total	865						471	73	1,665	3,504	2.22	0.35	7.85	17

(Rainy Season) (1-R*) Loading rate (kg/(ha*year)) Pollution load (kg/rainy season) Daily pollution load (kg/day) Туре Area T-P BOD COD T-P BOD COD T-N T-P BOD COD T.N (ha Crop/Pasture 11.9 36 1,108 3,325 4.42 0.66 7.2 22 0.2 7.29 1.08 100 580 676 0.6 3.72 0.44 10.9 33 45 131 393 0.29 0.03 0.9 $\overline{3}$ Wetland 25 77 Low density 0.6 4.72 0.61 13.2 25 317 41 888 1,687 2.07 0.27 5.8 140 Residential Industrial 120 0.6 14.67 2.54 78.68 149 845 146 4,532 8,610 5.52 0.96 29.6 56 6,659 92 865 1,883 293 14,015 12.31 1.91 43.5 Total

^{*}R: Reduction Parameter

^{*}R: Reduction Parameter

i) Watershed of Pueblo Viejo Lagoon (C/7/1)

The daily pollution loads in dry and rainy seasons are shown in Table B.45.

Table B.45 Daily Pollution Loads from Watershed of Pueblo Viejo Lagoon (Dry Season)

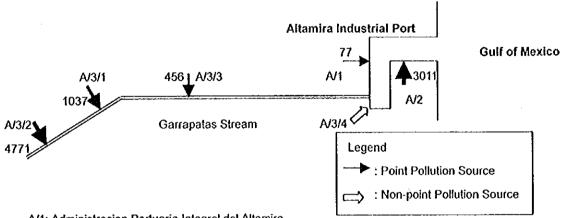
Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year))	Pollution	i load (kg	/dry seas	оп)	Daily p	ollution	load (kç	J/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	94100	0.1	7.29	1.08	11.9	36	13,713	2,036	22,475	67,425	64.69	9.60	106	318
Wetland	4,160	0.6	3.72	0.44	10.9	33	1,858	221	5,454	16,362	8.76	1.04	26	77
Low density Residential	310	0.6	4.72	0.61	13.2	25	176	23	492	934	0.83	0.11	2.32	4.40
Tolal	98570						15,746	2,280	28,421	84,721	74.28	10.75	134	400
(Rainy Season)						<u> </u>	L	'		<u> </u>	·		
Туре	Area	(1-R*)	Loading	rate (kg/	(ha*year)))	Pollution	load (kg	/rainy se	ason)	Daily p	ollution	load (kg	/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	94100	0.1	7.29	1.08	11.9	36	54,853	8,145	89,900	269699	359	53	588	1,763
Wetland	4160	0.6	3.72	0.44	10.9	33	7,430	884	21,816	65,449	49	5.78	143	428
Low density Residential	310	0.6	4.72	0.61	13.2	25	702	90	1,966	3,735	5	0.59	13	24
Total	98570			<u> </u>	1		62,986	9,119	113693	338883	412	60	7/3	2.215

^{*}R: Reduction Parameter

j) Chijol Channel (C/9)

The daily pollution loads in dry and rainy seasons are shown in Table B.46.

Table B.46 Non-point Pollution Loads from Watershed of Chijol Channel (Dry Season)


Туре	Area	(1-R*)	Loading	rate (kg/	(ha year))	Pollution	load (kg	dry seas	son)	Daily p	ollution	load (kg	g/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	T-P	BOD	COD
Crop/Pasture	2,130	0.2	7.29	1.08	11.9	36	621	92	1,017	3,052	2.93	0.43	4.80	14
Wetland	370	0,6	3.72	0.44	10.9	33	- 165	20	485	1,455	0.78	0.09	2.29	7
Lagoon	60	0.6	6.75	0.57	8.8	26	49	4	63	189	0.23	0.02	0.30	1
Low density Residential	90	0.6	4.72	0.61	13.2	25	51	7	143	271	0.24	0.03	0.67	1
Total	2,650						886	122	1,708	4,968	4.18	0.58	8.06	23
(Rainy Season)			·		•	· · · · · · · · · · · · · · · · · · ·		<u> </u>		·			<u> </u>
Туре	Area	(1-R*)	Loading	rate (kg/	(ha*vear)	,	D-16-0-	1 1 1 1	1		D			
	1				,,	7	Ponution	load (kg	mainy se	ason)	lnana b	ollution	load (kg	/day)
	(ha)		T-N	T-P	BOD	COD	T-N	T-P	BOD Sea	COD	T-N	Ollution T-P		/day) COD
Crop/Pasture	(ha) 2,130	0.2		T-P	BOD	COD	T-N	T-P	BOD	COD	T-N	Т-Р	BOD	COD
Crop/Pasture Wetland	` '		T-N 7.29	T-P 1.08	BOD 11.9	COD .36	T-N 2,483	T-P	BOD 4,070	COD 12,210	T-N	Т-Р	BOD	COD
	2,130	0.6	T-N 7.29 3.72	T-P 1.08 0.44	BOD 11.9	36 33	T-N 2,483 661	T-P 369 79	BOD 4,070 1,940	COD 12,210	T-N 16.23	T-P 2.41	BOD 26.60	COD 80
Wetland	2,130 370	0.6 0.6	T-N 7.29 3.72 6.75	T-P 1.08 0.44 0.57	BOD 11.9 10.9 8.8	GOD 36 33	T-N 2,483 661 194	T-P 369 79	4,070 1,940 252	COD 12,210 5,821	T-N 16.23 4.32 1.27	T-P 2.41 0.51 0.11	BOD 26.60 12.68	COD 80 38

^{*}R: Reduction Parameter

Total Amount of Pollution Load B.1.5

(1) Altamira Industrial Port (A)

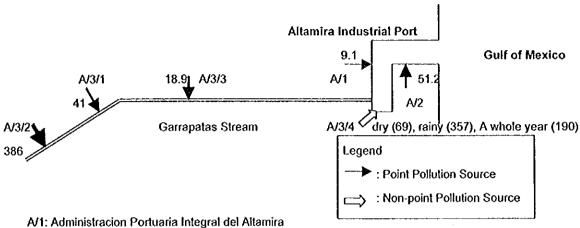
Daily Discharge Volume (m³/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

A/3/2: Thermal Power Plant (Comision Federal Electricidad)


A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream

Pollution	Туре	Daily Discharge Volume	
Source		(m³/day)	(%)
A/1	Point	77	0.8
AJ2	Point	3011	32.2
Á/3/1	Point	1037	11.1
A/3/2	Point	4771	51.0
A/3/3	Point -	456	4.9
Total	<u> </u>	9352	100.0

Daily Discharge Volume into Altamira Industrial Port Figure B.1

COD (kg/day)

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

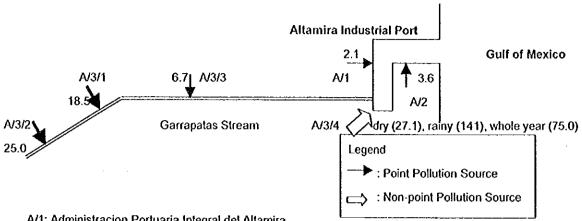
A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream

(Ury	'Season)	
------	----------	--

Pollution	Туре	Daily Pollution	Ratio
Source		Loads (kg/day)	(%)
A/1	Point	9.1	1.6
A/2	Point	51.2	8.9
A/3/1	Point	41.0	7.1
A/3/2	Point	386.0	67.1
A/3/3	Point	18.9	3.3
A/3/4	Non-point	69.0	12.0
Total		575.2	100.0

(Rainy Season)


Pollution	Туре	Daily Pollution	Ratio
Source		Loads (kg/day)	(%)
A/1	Point	9.1	1.1
A/2	Point	51.2	5.9
A/3/1	Point	41.0	4.7
A/3/2	Point	386.0	44.7
A/3/3	Point	18.9	2.2
A/3/4	Non-point	357.0	41.4
Tolal		863.2	100.0

(A Whole Year)

Pollution	Туре	Daily Pollution	Ratio
Source		Load (kg/day)	(%)
A/1	Point	9.1	1.3
A/2	Point	51.2	7.4
A/3/1	Point	41.0	5.9
A/3/2	Point	386.0	55.4
A/3/3	Point	18.9	2.7
A/3/4	Non-point	190.0	27.3
Total		696.2	100.0

Figure B.2 Daily Pollution Load of COD into Altamira Industrial Port

BOD₅ (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

N3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream

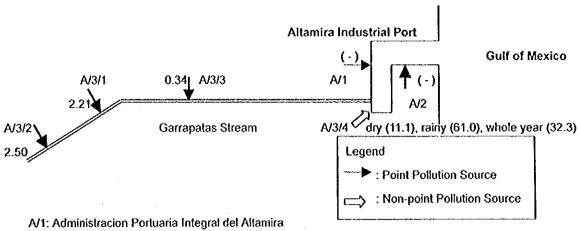
Ratio

Pollution	Туре	Daily Pollution
Source		Load (kg/day)
A/1	Point	2
A/2	Point	(

(Dry Season)

Source	1	Load (kg/day)	(%)
A/1	Point	2.1	2.5
A/2	Point	3.6	4.3
A/3/1	Point	18.5	22.3
A/3/2	Point	25.0	30.1
A/3/3	Point	6.7	8.1
A/3/4	Non-point	27.1	32.7
Total		83	100.0

(Rainy S	eason)
----------	--------


from A	casunj			
Pollution	Туре	Daily Pollution Ratio		
Source		Load (kg/day)	(%)	
A/1	Point	2.1	1.1	
A/2	Point	3.6	1.8	
A/3/1	Point	18.5	9.4	
A/3/2	Point :	25.0	12.7	
A/3/3	Point	6.7	3.4	
A/3/4	Non-point	141	71.6	
Total		196.9	100.0	

(A Whole Year)

Pollution	Туре	DailyPollution Ratio	
Source		Load (kg/day)	(%)
A/1	Point	2.1	1.6
A/2	Point	3.6	2.8
A/3/1	Point	18.5	14.1
A/3/2	Point	25.0	19.1
A/3/3	Point	6.7	5.1
N3/4	Non-point	75.0	57.3
Total		130.9	100.0

Figure B.3 Daily Pollution Load of BODs into Altamira Industrial Port

Total Nitrogen (kg/day)

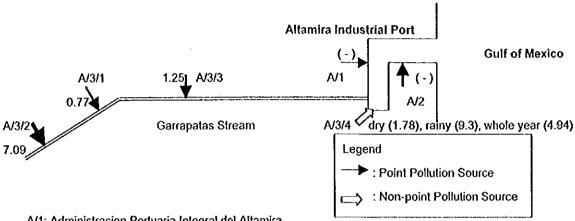
A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

N3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream


(Dry Sea	ason)		·
Pollution	Туре	Daily Pollution	Ratio
Source		Load (kg/day)	(%)
A/1	Point		
A/2	Point		-
A/3/1	Point	2.2	13.2
A/3/2	Point	2.5	14.9
A/3/3	Point	0.3	2.0
A/3/4	Non-point	11.7	69.9
Total		16.8	100.0

(Rainy S	eason)		
Pollution	Туре	Daily Pollution	Ratio
Source		Load (kg/day)	(%)
A/1	Point	-	-
AJ2	Point	-	-
A/3/1	Point	2,2	3.3
A/3/2	Point	2.5	3.8
A/3/3	Point	0.3	0.5
A/3/4	Non-point	61.0	92.4
Total		66.1	100.0

(A Whole	e Year)			
Pollution Source	Туре	Daily Pollution Load (kg/day)	Ratio (%)	
A/1	Point	-	-	
A/2	Point	-	-	
A/3/1	Point	2.2	5.9	
A/3/2	Point	2.5	-6.7	
A/3/3	Point	0.3	0.9	
A/3/4	Non-point	32.3	86.5	
Total		37.4	100.0	

Figure B.4 Daily Pollution Load of Total Nitrogen into Altamira Industrial Port

Total Phosphorus (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

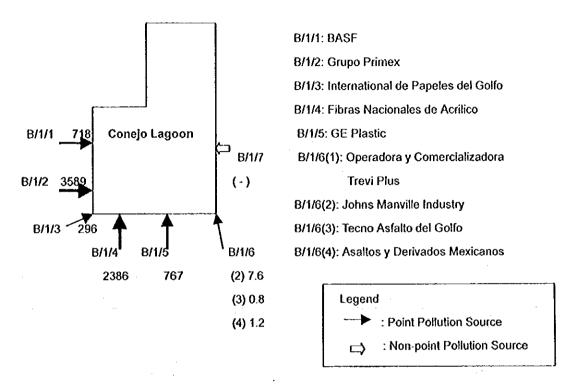
A/3/1: Polycyd

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

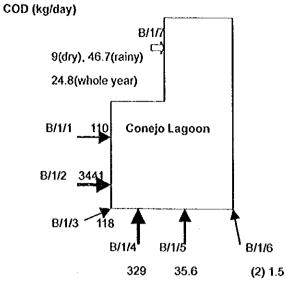
A/3/4: Non-point sources of Watershed of Garrapatas Stream

(Dry Sea	ison)		
Pollution Type Daily Pollut		Daily Pollution	Ratio
Source		Load (kg/day)	(%)
A/1	Point	-	-
A/2	Point	-	-
A/3/1	Point	0.77	7.1
A/3/2	Point	7.09	65.1
A/3/3	Point	1.25	11.5
A/3/4	Non-point	1.78	16.3
Total	<u> </u>	10.89	100.0


(Rainy S	eason)		
Pollution	Туре	Daily Pollution	
Source	: '	Load (kg/day)	(%)
A/1	Point	-	
AJ2	Point		-
A/3/1	Point	0.77	4.2
A/3/2	Point	7.09	38.5
A/3/3	Point	1.25	6.8
A/3/4	Non-point	9.3	50.5
Total		18.41	100.0
A/3/1 A/3/2 A/3/3 A/3/4	Point Point Point	7.09 1.25 9.3	38 6 50

(Whole '	Year)			
Pollution Source	Туре	Daily Pollution Load (kg/day)	Ratio (%)	
A/1	Point	-	* i -	
AJ2	Point	-	* ** , -	
A/3/1	Point	0.77	5.5	
A/3/2	Point	7.09	50.5	
A/3/3	Point	1.25	8.9	
A/3/4	Non-point	4.94	35.2	
Total		14.05	100.0	

Figure B.5 Daily Pollution Load of Total Phosphorus into Altamira Industrial Port


(2) Conejo Lagoon

Discharge Volume (m³/day)

Pollution	Туре	Discharge Volume	Ratio
Source		(m3/day)	(%)
B/1/1	Point	718	9.2
8/1/2	Point	3,589	46.2
B/1/3	Point	296	3.8
8/1/4	Point	2,386	30.7
B/1/5	Point	767	9.9
B/1/6(1)	Point	-	-
B/1/6(2)	Point	7.6	0.1
B/1/6(3)	Point	0.8	0.0
B/1/6(4)	Point	1.2	0.0
B/1/7	Non-point	-	
Total		7,766	100.0

Figure B.6 Daily Discharge Volume into Conejo Lagoon

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(3) 0.2

(4) 0.036

(Dry Season)

B/1/6(4)

B/1/7

Total

Point

Non-point

Туре	Pollution Load (kg/day)		Ratio (%)
Point		110	2.7
Point	· .	3441	85.1
Point		118	2.9
Point	1	329	8.1
Point		35.6	0.9
Point		-	-
Point	ļ	1.5	0.0
Point]	0.2	0.0
	Point Point Point Point Point Point Point Point Point	(kg/day) Point Point Point Point Point Point Point Point	(kg/day) Point 110 Point 3441 Point 118 Point 329 Point 35.6 Point - Point 1.5

(Rainy Season)

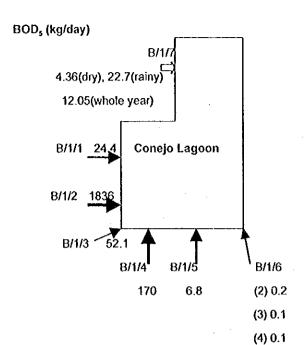
Pollution	Туре	Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	110	2.7
B/1/2	Point	344	84.3
B/1/3	Point	118	3 2.9
B/1/4	Point	32	8.1
B/1/5	Point	35.4	0.9
B/1/6(1)	Point		
B/1/6(2)	Point	1.5	5 0.0
B/1/6(3)	Point	0.3	0.0
B/1/6(4)	Point	0.03	0.0
B/1/7	Non-point	46.	7 1.1
Total		408	100.0

(Whole Year)

9.0

4044

0.036


0.0

0.2

100.0

Pollution	Туре	Pollution Load		Ratio
Source		(kg/day)		(%)
B/1/1	Point	1	10	2.7
B/1/2	Point	34	41	84.8
B/1/3	Point	1	18	2.9
B/1/4	Point	3	29	8.1
B/1/5	Point	35	5.6	0.9
B/1/6(1)	Point	-	-	
B/1/6(2)	Point	· 1	i.5	0.0
B/1/6(3)	Point	().2	0.0
B/1/6(4)	Point	0.0	36	0.0
B/1/7	Non-point	24	1.8	0.6
Total		40	60	100.0

Figure B.7 Daily Pollution Load of COD into Conejo Lagoon

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

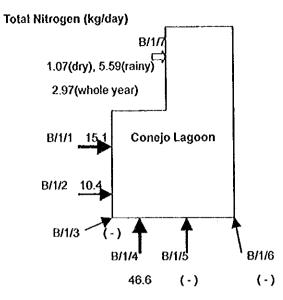
Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(Dry Season)


ason) (Rainy Season)

Pollution	Туре	Pollution Load		Ratio
Source		(kg/day)		(%)
B/1/1	Point		24.4	1.2
B/1/2	Point		1836	87.7
B/1/3	Point		52.1	2.5
B/1/4	Point		170	8.1
B/1/5	Point		6.80	0.3
B/1/6(1)	Point	· · · · · ·	٠.	<u> </u>
B/1/6(2)	Point		0.20	0.0
B/1/6(3)	Point	į	0.10	0.0
B/1/6(4)	Point		0.01	0.0
B/1/7	Non-point		4.36	0.2
Total		1	2094	100.0

Pollution	Туре	Pollution Load	Rat	io
Source		(kg/day)	(%)	
B/1/1	Point	2	4.4	1.2
B/1/2	Point	18	36	86.9
B/1/3	Point	5	2.1	2.5
B/1/4	Point	. 1	70	8.0
B/1/5	Point	6	.80	0.3
B/1/6(1)	Point		- -	•
B/1/6(2)	Point	0	.20	0.0
B/1/6(3)	Point	0	.10	0.0
B/1/6(4)	Point	.] 0.	.01	0.0
B/1/7	Non-point	2	2.7	1.1
Total		21	12	100.0

Pollution	Туре	Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	24	4 1.2
B/1/2	Point	183	6 87.4
B/1/3	Point	52.	.1 2.5
B/1/4	Point	17	0 8.1
B/1/5	Point	6.8	0 0.3
B/1/6(1)	Point		•
B/1/6(2)	Point	0.2	0.0
B/1/6(3)	Point -	0.1	0.0
B/1/6(4)	Point	0.0	1 0.0
B/1/7	Non-point	12.0	5 0.6
Total		210	2 100.0

Figure B.8 Daily Pollution Load of BOD₅ into Conejo Lagoon

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

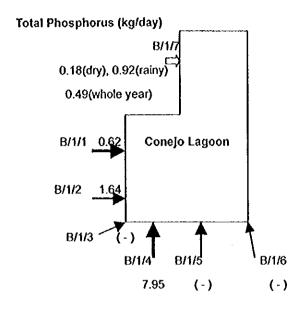
Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(Dry Season)


Pollution	Туре	Pollution Load		Ratio
Source	İ	(kg/day)		%
B/1/1	Point		15.1	20.6
B/1/2	Point		10.4	14.2
B/1/3	Point		-	-
B/1/4	Point		46.6	63.7
B/1/5	Point		-	-
B/1/6(1)	Point			-
B/1/6(2)	Point		-	-
B/1/6(3)	Point	1	-	-
B/1/6(4)	Point		-	-
B/1/7	Non-point	†	1.07	1.5
Total			73.2	100.0

(Rainy Season)

Pollution	Туре	Pollution Load	Ratio
Source		(kg/day)	%
B/1/1	Point	15.	1 19.4
B/1/2	Point	· 10.	13.4
B/1/3	Point		
B/1/4	Point	46.	60.0
B/1/5	Point		-
B/1/6(1)	Point		-
B/1/6(2)	Point		
B/1/6(3)	Point		-
B/1/6(4)	Point		-
B/1/7	Non-point	5.5	9 7.2
Total		77.	7 100.0

Pollution	Туре	Pollution Load		Ratio
Source	·	(kg/day)		%
B/1/1	Point		15.1	20.1
B/1/2	Point		10.4	13.9
B/1/3	Point		-	-
B/1/4	Point		46.6	62.1
B/1/5	Point			-
B/1/6(1)	Point		-	-
B/1/6(2)	Point		•	-
B/1/6(3)	Point			-
B/1/6(4)	Point			
B/1/7	Non-point		2.97	4.0
Total			75.1	100.0

Figure B.9 Daily Pollution Load of Total Nitrogen into Coneno Lagoon

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(Dry Season)

Pollution	Туре	Pollution Load		Ratio
Source		(kg/day)		(%)
B/1/1	Point		0.62	6.0
B/1/2	Point		1.64	15.8
B/1/3	Point		-	-
B/1/4	Point		7.95	76.5
B/1/5	Point		-	-
B/1/6(1)	Point		-	-
B/1/6(2)	Point		-	-
B/1/6(3)	Point		-	-
B/1/6(4)	Point		-	-
B/1/7	Non-point	1	0.18	1.7
Total		1	10.39	100.0

(Rainy Season)

Pollution	Туре	Pollution Load		Ratio
Source		(kg/day)		(%)
B/1/1	Point	C	.62	5.6
B/1/2	Point	1	.64	14.7
B/1/3	Point		-	
B/1/4	Point	7	7.95	71.4
B/1/5	Point		-	• •
B/1/6(1)	Point		-	
B/1/6(2)	Point		-	
B/1/6(3)	Point		-	
B/1/6(4)	Point		-	
B/1/7	Non-point).92	8.3
Total	<u></u>	11	.13	100.0

Pollution Source	Туре	Pollution Load (kg/day)	Ratio (%)
8/1/1	Point	0.6	
B/1/2	Point	1.6	4 15.3
8/1/3	Point		
B/1/4	Point	7.9	5 74.3
B/1/5	Point		
B/1/6(1)	Point		-
B/1/6(2)	Point		
B/1/6(3)	Point		
B/1/6(4)	Point	-	
B/1/7	Non-point	0.4	9 4.6
Total		10.	7 100.0

Figure B.10 Daily Pollution Load of Total Phosphorus into Conejo Lagoon

(3) Panuco River

a) Dry Season

Table B.47 Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point and Non-Point Pollution Sources to Panuco River in Dry Season

Pollution	Pollution Source	Daily Poll	ution Load	s		Flow rate	Daily Discharge
Source		BOD₅	COD	Total nitrogen	Total phosphorus		Volume
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River	29,000	332,000	12,600	1,440	185	16,000
	(Las Adjuntas, El Alamo)						
C/2	Tamesi River System	2,285	18,315	967	89	13.9	1,201
C/3/1	Sea-food Process Industries Area	110	202	30.2	5.4	0.0029	0.25
C/4/1	Altavista Water Supply Plant	420	606	-	<u> </u>	0.088	7.58
C/4/2-5 C/5/1-4 C/8/1-2	Municipal Waste- Water of Tampico And Madero	27,100	41,800	7,240	. 906	1.043	90.12
C/10	Refineria Madero (PEMEX)	586	4,490	321	6.4	0.074	6.4
•	Total	59,501	397,413	21,158	2,447	200	17,305

Non-point Pollution Sources

Pollution	Pollution Source	Daily Pollution Loads						
Source Number		BOD5 (kg/day)	COD (kg/day)	Total nitrogen (kg/day)	Total phosphorus (kg/day)			
C/3	Morelos	1.18	2.24	0.42	0.05			
C/4/6	Tampico Solid Waste Landfill Site	2.42	4.59	0.5	0.08			
C/4/7	Southwest Part of Tampico	4	7.61	1.43	0.18			
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero	36.5	70	9.13	1.33			
C/6	Northern Part of Pueblo Viejo	7.85	17	2 22	0.35			
	Total	51.95	101.44	13.7	1.99			

Table B.48 Ratio of Daily Pollution Load from each Pollution Source (Including Rivers) in Total Daily Pollution Load from Pollution Sources into Panuco River in Dry Season

Pollution	Water System	Туре	BOD ₅	COD	Total nitrogen	Total phosphorus
Source			}	•		
Number			(%)	(%)	(%)	(%)
C/1	Panuco River	River	48.70	83.52	59.51	58.80
	(Las Adjuntas,	1		j		
	El Alamo)					
C/2	Tamesi River	River	3.84	4.61	4.57	3.63
	System	1	1			
C/3/1	Sea-food Process	Point	0.18	0.05	0.14	0.22
	Industries Area					:
C/4/1	Altavista Water Supply	Point	0.71	0.15		
	Plant	1				
C/4/2-5	Municipal Waste-	Point	45.51	10.52	34.20	37.00
C/5/1-4	Water of Tampico					
C/7/1-2	And Madero			-		
C/10	Refineria Madero	Point	0.98	1.13	1.52	0.26
	(PEMEX)					
C/3	Morelos	Non-point	0.00	0.00	0.00	0.00
C/4/6	Tampico Solid Waste	Non-point	0.00	0.00	0.00	0.00
	Landfill Site					
C/4/7	Southwest Part of	Non-point	0.01	0.00	0.01	0.01
	Tampico					
C/5/5 and	Southern Part of Tampico	Non-point	0.06	0.02	0.04	0.05
C/8/3	Southern Part of Madero		}			
C/6	Northern Part of Pueblo	Non-point	0.01	0.00	0.01	0.01
	Viejo					
	Total	1.	100.00	100.00	100.00	100.00

Table B.49 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River in Dry Season

*		BOD ₅	COD	Total nitrogen	Total phosphorus
Season	Туре	(%)	(%)	(%)	(%)
Dry	Rivers	52.53	88.13	64.08	62.44
	Point Pollution Sources	47.38	11.85	35.86	37.48
	Non-point Pollution Sources	0.09	0.03	0.06	0.08

b) Rainy Season

Table B.50. Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point and

Table 5.50 Flow Rate (Daily Discharge Volume)	and Daily I olidilon Load Ironi I olili and
Non-point Pollution Sources to Panuc	o River in Rainy Season
Point Pollution Sources	

Pollution	Pollution Source	Daily Poll	ution Loads			Flow rate	Daily Discharge
Source	1	BOD ₅	COD	Total nitrogen	Total phosphorus		Volume
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River	68,000	1,646,000	17,490	9,930	771	66,600
	(Las Adjuntas,			E	1		
	El Alamo)						
C/2	Tamesi River	4,264	59,331	2,250	265	42	3,630
	System						
C/3/1	Sea-food Process	110	202	30.2	5.4	0.0029	0.25
	Industries Area				İ		
C/4/1	Altavista Water Supply	420	606	-	-	0.088	7.58
	Plant						
C/4/2-5	Municipal Waste-	27,100	41,800	7,240	906	1.043	90.1
C/5/1-4	Water of Tampico	•					
C/8/1-2	And Madero	j					
C/10	Refineria Madero	586	4,490	321	6.4	0.074	6.4
	(PEMEX)						
	Total	100,480	1,752,429	27,331	11,113	814	. 70,334

	i Sources	

Pollution	Pollution Source	Daily Pollution Loads						
Source Number		BOD₅ (kg/day)	COD (kg/day)	Total nitrogen (kg/day)	Total phosphorus (kg/day)			
C/3	Morelos	6.1	11.7	2.19	0.28			
C/4/6	Tampico Solid Waste Landfill Site	12.6	23.9	2.62	0.41			
C/4/7	Southwest Part of Tampico	20.9	40	7.5	0.96			
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero	190	364	47.6	6.92			
C/6	Northern Part of Pueblo Viejo	43.5	92	12.3	1.9			
	Total	273.1	531.6	72.21	10.47			

Table B.51 Ratio of Daily Pollution Load from each Pollution Source (Including Rivers) in Total Pollution Load from Pollution Sources into Panuco River in Rainy Season

	in Rainy Season					
Pollution	Water System	Туре	BOD _s	COD	Total nitrogen	Total phosphorus
Source						
Number			(%)	(%)	(%)	(%)
C/1	Panuco River	River	67.49	93.90	63.82	89.27
	(Las Adjuntas,					
	El Alamo)				l	
C/2	Tamesi River	River	4.23	3.38	8.21	2.38
	System				}	
C/3/1	Sea-food Process	Point	0.11	0.01	0.11	0.05
	Industries Area					
C/4/1	Altavista Water Supply	Point	0.42	0.03	•	-
	Plant					
C/4/2-5	Municipal Waste-	Point	26.90	2.38	26.42	8.15
C/5/1-4	Water of Tampico		į			
C/8/1-2	And Madero					
C/10	Refineria Madero	Point	0.58	0.26	1.17	0.06
	(PEMEX)		ľ			
C/3	Morelos	Non-point	0.01	0.00	0.01	0.00
C/4/6	Tampico Solid Waste	Non-point	0.01	0.00	0.01	0.00
	Landfill Site	-		İ		
C/4/7	Southwest Part of	Non-point	0.02	0.00	0.03	0.01
	Tampico					
C/5/5 and	Southern Part of Tampico	Non-point	0.19	0.02	0.17	0.06
C/8/3	Southern Part of Madero					
C/6	Northern Part of Pueblo	Non-point	0.04	0.01	0.04	0.02
	Viejo					
	Total	1	100	100	100	. 100

Table B.52 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River in Rainy Season

		BOD₅	COD	Total nitrogen	Total phosphorus
Season	Туре	(%)	(%)	(%)	(%)
Rainy	Rivers	71.72	97.28	72.03	91.65
	Point Pollution Sources	28.01	2.69	27.70	8.25
	Non-point Poliution Sources	0.27	0.03	0.26	0.09

c) A Whole Year

Table B.53 Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point and Non-Point Pollution Sources to Panuco River in Whole Year Point Pollution Sources

Pollution	Pollution Source	Daily Poll	ution Load	\$		Flow	Daily Discharge
Source		BOD,	COD	Total nitorgen	Total phosphorus	Rate	Volumė
Number		(kg/đay)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River	45,300	883,000	14,600	5,000	431	37,200
	(Las Adjuntas,					ļ	}
	El Alamo)						
C/2	Tamesi River	3,110	35,500	1,500	163	25.7	2,220
	System			1			
C/3/1	Sea-food Process	110	202	30.2	5.4	0.0029	0.25
	Industries Area						
C/4/1	Altavista Water Supply	420	606		-	0.088	7.58
	Plant				,		
C/4/2-5	Municipal Waste-	27,100	41,800	7,240	906	1.043	90.12
C/5/1-4	Water of Tampico				·		
C/8/1-2	And Madero						
C/10	Refineria Madero	586	4,490	321	6.4	0.074	6.4
	(PEMEX)				1		
	Total	76,626	965,598	23,691	6,081	458	39,524

Non-point Pollution Sources

Pollution	Pollution Source	Daily Pollution Loads						
Source		BOD ₅	COD	Total nitrogen	Total phosphorus			
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)			
C/3	Morelos	3.24	6.21	1.16	0.146			
C/4/6	Tampico Solid Waste Landfill Site	6.69	12.7	1.39	0.218			
C/4/7	Southwest Part of Tampico	11.1	21.2	3.97	0.507			
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero	101	193	25.3	3.67			
C/6	Northern Part of Pueblo Viejo	22.8	48.4	6.45	1			
	Total	144.83	281.51	38.27	5.541			

Table B.54 Ratio of Daily Pollution Load from each Pollution Source (Including Rivers) in Total Daily Pollution Load from Pollution Sources into Panuco River in Whole Year

Pollution	Water System	Туре	BOD,	COD	Total nitrogen	Total phosphorus
Source						
Number			(%)	(%)	(%)	(%)
C/1	Panuco River	River	59.01	91.42	61.53	82.15
	(Las Adjuntas,					
	El Alamo)					
C/2	Tamesi River	River	4.05	3.68	6.32	2.68
	System					
C/3/1	Sea-food Process	Point	0.14	0.02	0.13	0.09
	Industries Area					
C/4/1	Altavista Water Supply	Point	0.55	0.06	-	-
	Plant			,		
C/4/2-5	Municipal Waste-	Point	35.30	4.33	30.51	14.89
C/5/1-4	Water of Tampico			ļ		
C/7/1-2	And Madero					
C/10	Refineria Madero	Point	0.76	0.46	1.35	0.11
· •	(PEMEX)					
C/3	Morelos	Non-point	0.00	0.00	0.00	0.00
C/4/6	Tampico Solid Waste	Non-point	0.01	0.00	0.01	0.00
	Landfill Site					
C/4/7	Southwest Part of	Non-point	0.01	0.00	0.02	0.01
	Tampico					
C/5/5 and	Southern Part of Tampico	Non-point	0.13	0.02	0.11	0.06
C/8/3	Southern Part of Madero					;
C/6	Northern Part of Pueblo	Non-point	0.03	0.01	0.03	0.02
	Viejo					
	Total		.100.00	100.00	100.00	100.00

Table B.55 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River

		BOD _s	COD	Total nitrogen	Total phosphorus (%)	
Season	Туре	(%)	(%)	(%)		
Whole	Rivers	63.06	95.09	67.85	84.83	
Year	Point Pollution Sources	36.75	4.88	31.99	15.08	
	Non-point Pollution Sources	0.19	0.03	0.16	0.09	

Table B.56 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Dry Season

Pollution	Pollution Source	BOD₅	COD	Total N	Total P	Daily Discharge
Source						Volume
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(1000 m³/day)
A	Altamira Industrial Port	83	575	17.1	11.1	
D	Petrocel	296	681	4.5	-	8.27
E	Novaquim	106	199	20.2	-	0.349
F(1)	Negromex (Emulcion)	167	1,290	57	-	2.65
F(2)	NHUMO	34	68.1	2.04	-	0.681
G	Dupont	120	-	-	-	5.72
С	Panuco River	59,600	398,000	21,200	2,450	17,300

Table B.57 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Rainy Season

Pollution	Pollution Source	BOD₅	COD	Total N	Total P	Daily Discharge
Source						Volume
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(1000 m³/day)
A	Altamira Industrial Port	197	863	66	18.4	-
D	Petrocel	296	681	4.5	-	8.27
E	Novaquim	106	199	20.2	-	0.349
F(1)	Negromex (Emulcion)	167	1,290	57	-	2.65
F(2)	NHUMO	34	68.1	2.04		0.681
G	Dupont	120		-	-	5.72
C	Panuco River	101,000	1,750,000	27,400	11,100	70,300

Table B.58 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Whole Year

Pollution	Pollution Source	BOD₅	COD	Total N	Total P	Daily Discharge
Source					,	Volume
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(1000 m ³ /day)
A	Altamira Industrial Port	131	696	37.4	14.1	-
D	Petrocel	296	681	4.5	-	8.27
Ε	Novaquim	106	199	20.2	-	0.349
F(1)	Negromex (Emulcion)	167	1,290	57	-	2.65
F(2)	ИНИМО	34	68.1	2.04	-	0.681
G	Dupont	120	-	-	-	5.72
C	Panuco River	76,800	966,000	23,700	6,090	39,500

B.1.6 Pollution Load Analysis by Each Pollution Source in Future

(1) Point Pollution Sources

a) Altamira Industrial Port Area (A)

Table B.59 shows the daily discharge volume and daily pollution load into the Altamira Industrial Port Area in 2010.

Table B.59 Daily Discharge Volume and Daily Pollution Loads into Altamira Industrial Port in 2010

Pollutio	Name	Discharge	BOD _s	COD	Total	Total
n Source Number		Volume M³/s	kg/day	kg/day	Nitrogen kg/đay	Phosphorus kg/đay
A/1, S	Administracion Portuaria Integral del Altamira	0.0015	3.58	15.1	. -	-
A/2, I	Pittsburgh Plate Glass (PPG) Industry	0.0580	6.0	85.2	•	-
A/3/1, I	POLICYD	0.0200	30.8	68.2	3.68	1.28
A/3/2, I	Comision Federal De Electricidad	0.0552	25.0	386.0	2.50	7.09
A/3/3, I	NEGROMEX (Planta Solucion)	0.0088	11.20	31.42	0.57	2.08
A/4	New thermal plant (Comision Federal De Electricidad)	0.0552	25.0	386.0	2.50	7.09

b) Conejo Lagoon (B/1) and Marismas Lagoon (B)

Table B.60 shows the daily discharge volume and daily pollution loads in 2010, which flow into Conejo Lagoon.

Table B.60 Daily Discharge Volume and Daily Pollution Load into Conejo Lagoon in 2010

		اري د احد	1000	IOOD.	17.0.1	(T)
Pollution	Point Pollution Source		BOD₅	COD	Total	Total
Source	1	Volume		1	Nitrogen	Phosphorus
Number		m³/s	kg/day	kg/day	kg/day	kg/day
B/1/1, I	BASF Mexicano	0.0138	40.6	182.8	25.1	1.03
B/1/2, I	Grupo Primex	0.0692	314	588	1.79	0.28
B/1/3, I	Internacional de Papeles Del Golfo	0.0057	25.9	60.1	-	-
B/1/4, I	Fibras Nacionales de Acrilico	0.0460	209	405	57.2	4.88
B/1/5, I	GE Plastic	0.0148	11.4	59.3	-	-
B/1/6(1), I	Operadora y Comercializadora Trevi Plus	•	•	-		
B/1/6(2), I	Johns Manville Industry	0.000146	0.332	2.48	-	-
B/1/6(3), I	Tecno Asfalto del Golfo	0.000016	0.073	0.15	-	-
B/1/6(4), I	Asfaltos y Derivados Mexicanos	0.000023	0.008	0.06	-	-

c) Panuco River Upstream (C/1)

The daily discharge volume and daily pollution loads in 2010 which pass at El Alamo Station are shown in Table B.31.

d) Tamesi River and Freshwater Lagoons (C/2)

The daily discharge volume and daily pollution loads from Tamesi River in 2010 is shown in Table B.32.

e) Sea-food Processing Industries (C/3/1)

The daily pollution loads by sea-food processing factories are shown in Table B.33.

f) Municipal Wastewater (Tampico City, Madero City and Miramar)

The daily discharge volume and daily pollution loads of municipal wastewater from Tampico City, Madero City and Miramar in 2010 are shown in Table B.61.

Table B.61 Daily Discharge Volume and Daily Pollution Loads of Wastewater from Tampico, Madero and Miramar in 2010

Item	Unit	Tampico City and Madero City	Miramar	
Daily discharge volume	m³/day	182,164	18,100	
Flow rate	m³/s	2.11	0.19	
Daily BOD ₅ load	kg/day	41,000	4,030	
Daily COD load	kg/day	63,300	7,440	
Daily total nitrogen load	kg/day	11,000	688	
Daily total phosphorus load	kg/day	1,380	. 82	

g) Cuauhtemoc Oxidation Pond (C/7/2)

The daily discharge volume and daily pollution loads of municipal wastewater from Pueblo Viejo Municipality in 2010 are shown in Table B.62. Coverage of drainage system is 11% (only in Cuauhtemoc Area).

If wastewater treatment facility is reinforced and most of treated wastewater is infiltrated into underground as in 1999, the pollution loads from the Cuauhtemoc oxidation pond into Pueblo Viejo Lagoon is negligible.

Table B.62 Daily Discharge Volume and Daily Pollution Loads of Wastewater from Pueblo Vieio in 2010

Item	Unit	Pueblo Viejo	+ 54 %
Daily discharge volume	m³/day		1,390
Flow rate	m³/s		0.0161
Daily BOD ₅ load	kg/day		355
Daily COD load	kg/day		647
Daily total nitrogen load	kg/day		60
Daily total phosphorus load	kg/day		7

h) Refineria Madero (C/10, I)

The flow rate and daily pollution loads from Refineria Madero in 2010 are shown in Table B.63.

Table B.63 Flow Rate and Daily Pollution Loads From Refineria Madero in 2010

Pollution Load											
Parameter	Unit	Siete y Media	Vanadero	Total							
BOD ₅	kg/day	67	168	235							
COD	kg/day	932	1,830	2,762							
Total nitrogen	kg/day	16.4	95.6	112							
Total phosphorus	kg/day	1.17	1.73	2.90							
Flow rate	m³/s	0.0180	0.105	0.123							

i) Quimica del Mar (C/11, I)

This factory is supposed not to be operated in 2010.

i) Gulf of Mexico

The discharge volume and pollution loads which flow into the coastal water of Gulf of Mexico are shown in Table B.64.

Table B.64 Flow Rate and Daily Pollution Load from Industries which Discharge Wastewater into Coastal Water of Gulf of Mexico in 2010

Pollution		Pollution Load								
Source	Pollution Source	Flow rate	BOD ₅	COD	Total N	Total P				
Number		(m³/s)	(kg/day)	(kg/day)	(kg/day)	(kg/day)				
D	Petrocel	0.160	494	1,136	6.9	-				
Ε .	Novaquim	0.0067	30.5	57	5.8	-				
F(1)	Negromex (Emulcion)	0.0531	241	1,859	82.2	-				
F(2)	NHUMO	0.0131	57.6	113	3.39	-				
G	Dupont	0.124	224	-	-					

(2) Non-point Pollution Sources

Pollution loads from the following non-point pollution sources are estimated:

- Watershed of Conejo Lagoon (B/1/7): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.38.
- Watershed of Garrapatas Stream (A/3/4, R): the pollution loads in dry and rainy season are shown in Table B.65.
- Watershed of Costa Lagoon (C/2/1): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.66.

Non-point Pollution Loads from Watershed of Garrapatas Stream in 2010 Table B.65

(Dry Season)														المعار السروين وي
Туре	Area	(1-R*)	Pollution	n	Load	Unit	Pollutio	n Load (kg/dry s	eason)	Daily Pollution Load (kg/day)			
* -			(kg/(ha*								=	r======		-
	На		T-N	Т-Р	BOD₅	COD	T-N	T-P	BOD₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	6,520	0.2	7.29	1.08	11.9	36	1,995	296	3,270	9,811	9.41	1.40	15.43	i
Low density	80	0.6	4.72	0.61	13.2	25	47.6	6.1	133	253	0.22	0.03	0.63	1.19
Residential								1						
Industrial	240	0.6	14.67	2.54	78.68	149	444	77	2,379	4,520	2.09	0.36	11.22	21.32
Total	6,840						2,487	379	5,783	14,584	11.7	1.79	27.3	69.5
(Rainy Season)	!	L	<u> </u>					4					
Туре	Area	(1-R')	Pollutio	n	Load	Unit	Pollutio	n Lo	ad (kg/rainy	Daily P	oliution I	oad (kg	/day)
71		ľ	(kg/(ha*year))			season	season)							
	Ha		T-N	T-P	BOD,	COD	T-N	T-P	BOD₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	6,520	0.2	7.29	1.08	11.9	36	7,506	1,115	12,302	36,907	49.1	7.3	80.4	241.2
Low density	80	0.6	4.72	0.61	13.2	25	179	23	501	952	1.2	0.2	3.3	6.2
Residential	1		1		1]		İ						
Industrial	240	0.6	14.67	2.54	78.68	149	1,669	289	8,950	17,005	10.9	1.89	58	111
Total	6.840		1	1		T	9,354	1,427	21,753	54,864	61	9.4	142	359

R: Reduction Parameter

Туре	Area	(1-R*)	Pollution (kg/(ha*		Load	Unit	Pollution	n Lóad (I	kg/dry se	eason)	Daily Po	ollution L	oad (kg/	day)
	Ha		T-N	T∙P	BOD _s	COD	T-N	T-P	BOD ₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	3,990	0.2	7.29	1.08	11.9	36	1,221	181	2,001	6,004	5.76	0.86	9.44	28
Wetland	1,700	0.6	3.72	0.44	10.9	33	797	95	2,340	7,021	3.76	0.45	11.04	33
Lagoon	300	0.6	6.75	0.57	8.8	26	255	21	331	994	1.20	0.10	1.56	5
Low density	70	0.6	4.72	0.61	13.2	25	42	5	117	221	0.20	0.03	0.55	1
Residential						j			<u> </u>					
Total	6,060						2,315	303	4,789	14,240	10.92	1.43	22.59	67
(Rainy Season)													
Туре	Area	(1-R')	Pollutio		Load	Unit	Pollutio season		ad (kg/rainy	Daily Po	ollution l	oad (kg	/day)
	Ha		T-N	T.P	BOD,	COD	T-N	T-P	BOD₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	3,990	0.2	7.29	1.08	11.9	36	4,594	682	7,528	22,585	30.0	4.5	49.2	147.6
Wet land	1,700	0.6	3.72	0.44	10.9	33	2,998	357	8,804	26,412	19.6	2.3	57.5	172.6
	300	0.6	6.75	0.57	8.8	26	960	80	1,246	3,738	6.3	0.5	8.1	24.4
Lagoon	1 000				 	25	157	20	438	833	1.02	0.13	2.9	5.4
Lagoon Low density Residential	70	0.6	4.72	0.61	13.21	25	191	20	1 430	033	1.02	V. 13		

*R: Reduction Parameter

- Morelos (Tampico) (C/3/1, U): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.40.
- Area around Tampico Solid Waste Landfill Site (C/4/7, M): Tampico Solid Waste Landfill Site (approximately 32 ha) and its surrounding (18 ha) will be transformed into public park for recreation. However, its area will be regarded as one of the industrial land use until 2010. The pollution loads in dry and rainy season in 2010 is shown in Table B.41.
- Southwest Part of Tampico City (C/4/6, U): the pollution loads in dry and rainy

seasons in 2010 are shown in Table B.42.

- Southern Part of Tampico City and Southern Part of Madero City (C/5/5, U and C/8/3, U): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.43.
- Northern Part of Pueblo Viejo Municipality (C/6): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.67.

Table B.67 Non-point Pollution Loads from the Northern Part of Pueblo Viejo in 2010 Dry Season)

(Dry Season)														
Туре	Area	(1-R*)	Pollutio		Load	Unit	Pollutio	n Load (kg/dry s	eason)	Daily P	ollution I	.oad (kg	/day)
			(kg/(haʻ				<u> </u>		Taran			r=		1222
	Ha]	T-N	T-P	BOD₅	COD	T-N	T-P	BOD ₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	555	0.2	7.29	1.08	11.9	36	162	24	265	795	0.76	0.11	1.25	4
Wetland	25	0.6	3.72	0.44	10.9	33	11	1	33	98	0.05	0.01	0.15	0
Low density	165	0.6	4.72	0.61	13.2	25	93	12	262	497	0.44	0.06	1.23	2
Residential					1	Ì		l]			
Industrial	120	0.6	14.67	2.54	78.68	149	211	37	1,133	2,153	1.00	0.17	5.34	10
Total	865						478	74	1,692	3,543	2.25	0.35	7.98	17
(Rainy Season)	<u></u>		!	 	•		<u></u>		•	· · · · · · · · · · · · · · · · · · ·			
Туре	Area	(1-R')	Pollutio	n	Load	Unit	Pollutio	n Lo	ad (kg/rainy	Daily P	ollution l	Load (kg	/day)
• •	1	1	(kg/(ha				season	<u> </u>						
	Ha	l	T-N	Т-Р	BOD₅	COD	T-N	T-P	BOD ₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	555	0.2	7.29	1.08	11.9	36	647	96	1,060	3,181	4.23	0.63	6.9	21
Wetland	25	0.6	3.72	0.44	10.9	33	45	5	131	393	0.29	0.03	0.9	3
Low density	165	0.6	4.72	0.61	13.2	25	374	48	1,046	1,988	2.44	0.31	6.8	13
Residential			İ											
Industrial	120	0.6	14.67	2.54	78.68	149	845	146	4,532	8,610	5.52	0.96	29.6	56
Total	865	+			1		1,911	296	2 3 3 3	14,173	12.49	1.93	44.2	93

^{*}R: Reduction Parameter

• Watershed of Pueblo Viejo Lagoon (C/7/1): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.68.

Table B.68 Non-point Pollution Loads from Watershed of Pueblo Viejo Lagoon in 2010 (Dry Season)

Туре	Area	(1-R*)	Pollutio (kg/(ha		Load	Unit	Pollutio	n Load (kg/dry se	ason)	Daily Po	ollution l	Load (kg	/day)
	Ha		T-N		BOD _s	COD	T-N	T-P	BOD₅	COD	T-N	Т-Р	BOD ₅	COD
Crop/Pasture	94,044	0.1	7.29	1.08	11.9	36	13,705	2,035	22,462	67,385	64.65	9.60	106	318
Welland	4,160	0.6	3.72	0.44	10.9	33	1,858	221	5,454	16,362	8.76	1.04	26	77
Low density Residential	366	0.6	4.72	0.61	13.2	25	207	27	580	1,103	0.98	0.13	2.74	5.20
Total	98,570						15,770	2,283	28,496	84,849	74.39	10.77	134	400
(Rainy Season)			<u> </u>			<i>-</i>								
Туре	Area	(1-R*)	Pollutio (kg/(ha		Load	Unit	Pollutio	n Load (kg/rainy s	eason)	Daily Po	ollution l	oad (kg	/day)
	Ha		T-N		BOD,	COD	T-N	T∙P	BOD,	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	94,044	0.1	7.29	1.08	11.9	36	54,820	8,140	89,846	269,538	358	53	587	1,762
Wetland	4,160	0.6	3.72	0.44	10.9	33	7,430	884	21,816	65,449	49	5.78	143	428
Low density Residential	366	0.6	4.72	0.61	13.2	25	829	107	2,321	4,410	5	0.70	15	29
Total	98,570	1			l		63,080	9,130	113,984	339,398	412	60	745	2,218

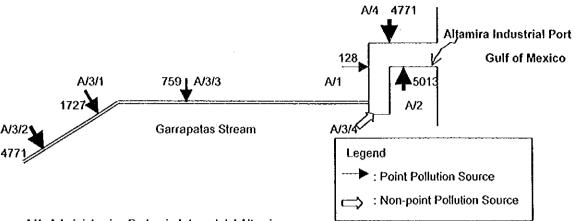
*R: Reduction Parameter

 Chijol Channel (C/9): the pollution loads in dry and rainy seasons in 2010 are shown in Table B.69.

Table B.69 Non-point Pollution Loads from Watershed of Chijol Channel in 2010 (Dry Season)

Туре	Area	,	(Pollution Load Unit (kg/(ha*year))				Pollution Load (kg/dry season)			Daily Pollution Load (kg/day)				
	Ha	ł	T-N	T-P	BOD ₅	COD	T-N	T.P	BOD ₅	COD	T-N	T-P	BOD₅	COD
Crop/Pasture	2,114	0.2	7.29	1.08	11.9	36	616	91	1,010	3,029	2.91	0.43	4.76	14
Wetland	370	0.6	3.72	0.44	10.9	33	165	20	485	1,455	0.78	0.09	2.29	7
Lagoon	60	0.6	6.75	0.57	8.8	26	49	4	63	189	0.23	0.02	0.30	1
Low density Residential	106	0.6	4.72	0.61	13.2	25	60	8	168	319	0.28	0.04	0.79	2
Total	2,650		· · · · ·				890	123	1,726	4,993	4.20	0.58	8.14	24

(Rainy	Season)
--------	---------


Туре	Area	(1-R')	Pollutio	n	Load	Unit	Pollutio	n Lo	ad (kg/rainy	Daily Po	ollution t	oad (kg	/day)
			(kg/(ha	(g/(ha*year))		season)						
	Ha		T-N	T-P	BOD ₅	COD	T-N	T-P	BOD₅	COD	T-N	T-P	BOD _s	COD
Crop/Pasture	2,114	0.2	7.29	1.08	11.9	36	2,465	366	4,039	12,118	16.11	2.39	26.40	79
Wetland	370	0.6	3.72	0.44	10.9	33	661	79	1,940	5,821	4.32	0.51	12.68	38
Lagoon	60	0.6	6.75	0.57	8.8	26	194	16	252	757	1.27	0.11	1.65	5
Low density Residential	106	0.6	4.72	0.61	13.2	25	240	31	672	1,277	1.57	0.20	4.39	8
Total	2,650						3,560	492	6,904	19,973	23.27	3.21	45.13	131

^{&#}x27;R: Reduction Parameter

(3) Total Amount of Pollution Load

a) Altamira Industrial Port (A)

Discharge Volume (m³/day)

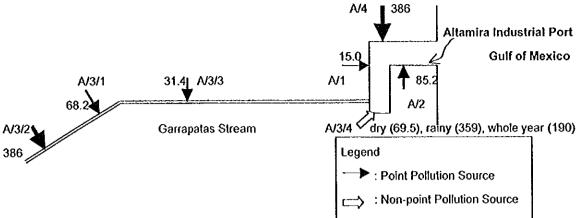
A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)


A/3/4: Non-point sources of Watershed of Garrapatas Stream

A/4: New Thermal Power Plant

Pollution	Туре	Daily Discharge Volume	Ratio
Source		(m³/day)	%
A/1	Point	128	0.7
A/2	Point	5013	29.2
A/3/1	Point	1727	10.1
A/3/2	Point	4771	27.8
A/3/3	Point	759	4.4
A/4	Point	4771	27.8
Total		17169	100.0

Figure B.11 Daily Discharge Volume into Altamira Industrial Port in 2010

COD (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

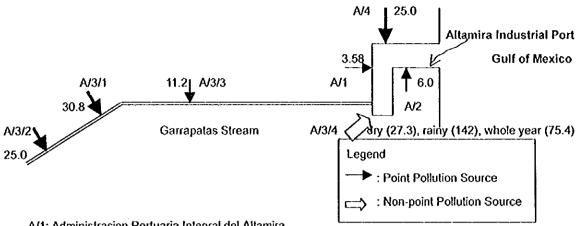
A/3/4: Non-point sources of Watershed of Garrapatas Stream

A/4: New Thermal Power Plant

Dry S	Season)	
-------	---------	--

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	15.1	1.4
A/2	Point	85.2	8.2
A/3/1	Point	68.2	6.5
A/3/2	Point	386.0	37.1
A/3/3	Point	31.4	3.0
N3/4	Non-point	69.5	6.7
A/4	Point	386.0	37.1
Total		1041.4	100.0

(Rainy Season)


Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
A/1	Point	15.1	1.1
A/2	Point	85.2	6.4
A/3/1	Point	68.2	5.1
A/3/2	Point	386.0	29.0
A/3/3	Point	31.4	2.4
A/3/4	Non-point	359.0	27.0
A/4	<u> </u>	386.0	29.0
Total	.l	1330.9	100.0

(Whole Year)

Pollution	Туре	Daily Pollution Load	
Source		(kg/day)	%
A/1	Point	15.1	1.3
A/2	Point	85.2	7.3
A/3/1	Point	68.2	5.9
A/3/2	Point	386.0	33.2
A/3/3	Point	31.4	2.7
A/3/4	Non-point	190.0	16.4
A/4	Point	386.0	33.2
Total		1161.9	100.0

Figure B.12 Daily Pollution Load of COD into Altamira Industrial Port in 2010

BOD₅ (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

(Dry Season)

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

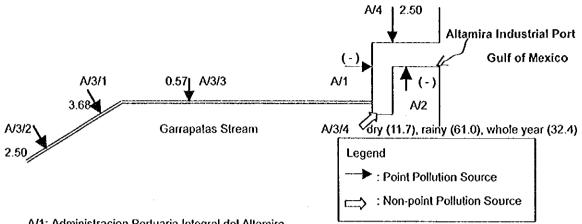
A/3/4: Non-point sources of Watershed of Garrapatas Stream

A/4: New Thermal Power Plant

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	3.58	2.
A/2	Point	6	4.
A/3/1	Point	30.8	23

2.8 4.7 23.9 Point 25.0 19.4 A/3/2 A/3/3 Point 11.2 8.7 21.2 A/3/4 Non-point 27.3 19.4 A/4 Point 25 Total 128.88 100.0

(Rainy	Season)
--------	---------


Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	3.58	1.5
A/2	Point	6	2.5
A/3/1	Point	30.8	12.6
A/3/2	Point	25.0	10.3
A/3/3	Point	11.2	4.6
A/3/4	Non-point	142	58.3
A/4	Point	25	10.3
Total		243.58	100.0

(Whole Year)

Pollution -	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	3.6	2.0
A/2	Point	6.0	3.4
A/3/1	Point	30.8	17.4
A/3/2	Poińt -	25.0	14.1
A/3/3	Point	11.2	
A/3/4	Non-point	75.4	42.6
A/4	Point	25.0	14.1
Total		177.0	100.0

Figure B.13 Daily Pollution Load of BODs into Altamira Industrial Port in 2010

Total Nitrogen (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

N3/2: Thermal Power Plant (Comision Federal Electricidad)

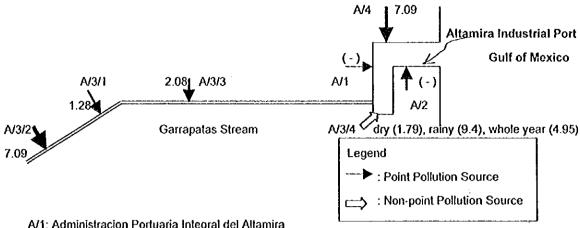
A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream

A/4: New Thermal Power Plant

(U	угу	Sea	asor	1)
_				

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	-	
A/2	Point	-	-
A/3/1	Point	3.68	17.6
A/3/2	Point	2.50	11.9
A/3/3	Point	0.57	2.7
A/3/4	Non-point	11.7	55.8
A/4	Point	2.50	11.9
Total	. I	21.0	100.0


(Rainy Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point		-
A/2	Point		-
A/3/1	Point	3.68	5.2
A/3/2	Point	2.50	3.6
A/3/3	Point	0.57	0.8
A/3/4	Non-point	. 61.0	86.8
A/4	Point	2.50	3.6
Total	1	70.3	100.0

Dallution	Truck	Daily Daily Condition	Date.
Pollution	Туре .	Daily Pollution Load	
Source		(kg/day)	%
A/1	Point	-	-
AJ2	Point	-	-
A/3/1	Point	3.68	8.8
A/3/2	Point	2.50	6.0
A/3/3	Point	0.57	1.4
A/3/4	Non-point	32.4	77.8
A/4	Point	2.50	6.0
Total	•	41.7	100.0

Figure B.14 Daily Pollution Load of Total Nitrogen into Altamira Industrial Port in 2010

Total Phosphorus (kg/day)

A/1: Administracion Portuaria Integral del Altamira

A/2: Pittsburgh Plate Glass (PPG) Industry

A/3/1: Polycyd

Point

(Dry Season)

A/4

Total

A/3/2: Thermal Power Plant (Comision Federal Electricidad)

A/3/3: Negromex (Planta Solucion)

A/3/4: Non-point sources of Watershed of Garrapatas Stream

A/4: New Thermal Power Plant

Pollution	Туре	Daily Pollution Load	Ratio	
Source		(kg/day)	%	
A/1	Point	-	-	
AJ2	Point			
A/3/1	Point	1.28	6.6	
A/3/2	Point [.]	7.09	36.7	
A/3/3	Point	2.08	10.8	
A/3/4	Non-point	1 79	93	

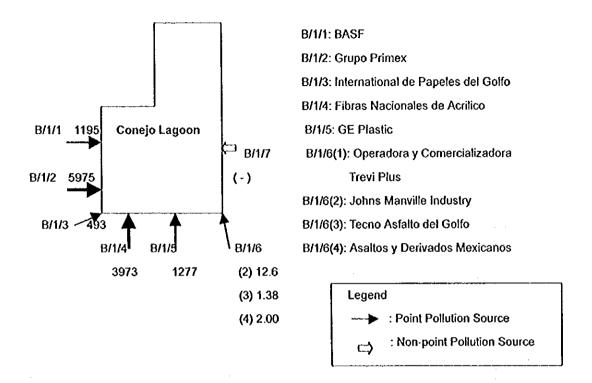
(Rainy	Seas	on)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	%
A/1	Point	-	-
A/2	Point		-
A/3/1	Point	1.28	4.8
A/3/2	Point	7.09	26.3
A/3/3	Point	2.08	7.7
A/3/4	Non-point	9.4	34.9
A/4	Point	7.09	26.3
Total		26.94	100.0

(W	no:	le Y	ea	r)
----	-----	------	----	----

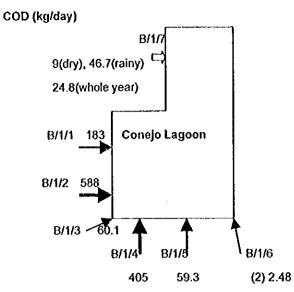
7.09

36.7


100.0

Todiy			
Туре		Ratio %	
	(kg/day)	70	
Point		-	
Point	-	-	
Point	1.28	5.7	
Point	7.09	31.5	
Point	2.08	9.2	
Non-point	4.95	22.0	
Point	7.09	31.5	
L.	22.49	100.0	
	Point Point Point Point Point Point Non-point	Type Daily Pollution Load (kg/day) Point - Point 1.28 Point 7.09 Point 2.08 Non-point 4.95	

Figure B.15 Daily Pollution Load of Total Phosphorus into Altamira Industrial Port in 2010


b) Conejo Lagoon

Discharge Volume (m³/day)

Pollution	Туре	Daily Discharge Volume	Ratio
Source	1	(m3/day)	(%)
B/1/1	Point	1195	9.2
B/1/2	Point	5975	46.2
B/1/3	Point	493	3.8
B/1/4	Point	3973	30.7
B/1/5	Point	1277	9.9
B/1/6(1)	Point		-
8/1/6(2)	Point	12.6	0.1
B/1/6(3)	Point	1.4	0.0
B/1/6(4)	Point	2.0	0.0
B/1/7	Non-point		• • -
Total		12929.0	100.0

Figure B.16 Daily Discharge Volume into Conejo Lagoon in 2010

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acritico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

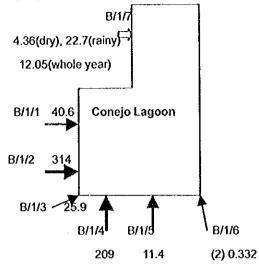
B/1/6(4): Asaltos y Derivados Mexicanos

(3) 0.15

(4) 0.06

(Dry Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	183	14.0
B/1/2	Point	588	45.0
B/1/3	Point	60.1	4.6
B/1/4	Point	405	31.0
B/1/5	Point	59.3	4.5
B/1/6(1)	Point	-	
B/1/6(2)	Point	2.48	0.2
B/1/6(3)	Point ·	0.15	0.0
B/1/6(4)	Point	0.06	0.0
B/1/7	Non-point	9.0	0.7
Total		1306.8	100.0


(Rainy Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	183	13.6
B/1/2	Point	588	43.7
B/1/3	Point	60.1	4.5
B/1/4	Point	405	30.1
B/1/5	Point	59.3	4.4
B/1/6(1)	Point	-	-
B/1/6(2)	Point	2.48	0.2
B/1/6(3)	Point	0.15	0.0
B/1/6(4)	Point	0.06	0.0
B/1/7	Non-point	46.7	3.5
Total	· · · · · · · · · · · · · · · · · · ·	1344.5	100.0

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	183	13.8
8/1/2	Point	588	44.5
B/1/3	Point	60.1	4.5
B/1/4	Point	405	30.6
B/1/5	Point -	59.3	4.5
B/1/6(1)	Point	-	
B/1/6(2)	Point`	2.48	0.2
B/1/6(3)	Point	0.15	0.0
B/1/6(4)	Point	0.06	0.0
B/1/7	Non-point	24.8	1.9
Total		1322.6	100.0

Figure B.17 Daily Pollution Load of COD into Conejo Lagoon in 2010

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

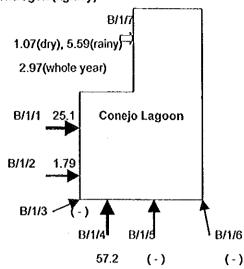
B/1/6(4): Asaltos y Dérivados Mexicanos

(3) 0.073

(4) 0.008

(Dry Season)

(Dry Season)				
Pollution	Туре	Daily Pollution Load	Ratio	
Source		(kg/day)	(%)	
B/1/1	Point	40.6	6.7	
B/1/2	Point	314	51.8	
B/1/3	Point	25.9	4.3	
B/1/4	Point	209	34.5	
B/1/5	Point	11.4	1.9	
B/1/6(1)	Point	-	_	
B/1/6(2)	Point	0.332	0.1	
B/1/6(3)	Point	0.073	0.0	
B/1/6(4)	Point	0.008	0.0	
B/1/7	Non-point	4.36	0.7	
Total		605.67	100.0	
	Non-point		L	


(Rainy Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	40.6	6.5
B/1/2	Point	314	50.3
B/1/3	Point	25.9	4.2
B/1/4	Point	209	33.5
B/1/5	Point	11.4	1.8
B/1/6(1)	Point		-
B/1/6(2)	Point	0.332	0.1
B/1/6(3)	Point	0.073	0.0
B/1/6(4)	Point	0.008	0.0
B/1/7	Non-point	22.71	3.6
Total		624.02	100.0

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	40.6	6.6
B/1/2	Point	314	51.2
B/1/3	Point	25.9	4.2
B/1/4	Point	209	34.1
B/1/5	Point	11.4	1.9
B/1/6(1)	Point	-	-
8/1/6(2)	Point .	0.332	0.1
B/1/6(3)	Point	0.073	0.0
B/1/6(4)	Point	0.008	0.0
B/1/7	Non-point	12.05	2.0
Total		613.36	100.0

Figure B.18 Daily Pollution Load of BOD₅ into Conejo Lagoon in 2010

Total Nitrogen (kg/day)

B/1/1: BASF

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

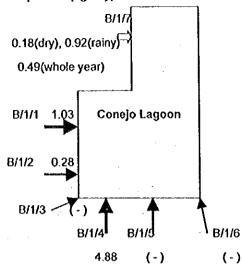
B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(Dry Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source	•	(kg/day)	%
B/1/1	Point	25.1	29.5
B/1/2	Point	1.79	2.1
B/1/3	Point		-
B/1/4	Point	57.2	67.2
B/1/5	Point	-	
B/1/6(1)	Point		-
B/1/6(2)	Point		
B/1/6(3)	Point	,	· -
B/1/6(4)	Point		-
B/1//	Non-point	1.07	1.3
Total	, .	85.16	100.0


(Rainy Season)

Туре	Daily Pollution Load .	Ratio
	(kg/day)	%
Point	25.1	28.0
Point	1.79	2.0
Point		-
Point	57.2	63.8
Point		-
Point		
Point		-
Point		
Point		
Non-point	5.59	6.2
	89.68	100.0
	Point Point Point Point Point Point Point Point Point Point Point	Point 25.1 Point 1.79 Point 57.2 Point 57.2 Point S.59

Pollution	Type	Daily Pollution Load	Ratio
Source	İ	(kg/day)	%
B/1/1	Point	25.10	28.8
B/1/2	Point	1.79	2.1
B/1/3	Point	•	-
B/1/4	Point	57.20	65.7
B/1/5	Point	-	-
B/1/6(1)	Point	-	-
B/1/6(2)	Point		-
B/1/6(3)	Point	-	-
B/1/6(4)	Point	•	-
B/1/7	Non-point	2.97	3.4
Total		87.06	100.0

Figure B.19 Daily Pollution Load of Total Nitrogen into Coneno Lagoon in 2010

Total Phosphorus (kg/day)

B/1/1: BASF

B/1/2: Grupo Primex

B/1/3: International de Papeles del Golfo

B/1/4: Fibras Nacionales de Acrilico

B/1/5: GE Plastic

B/1/6(1): Operadora y Comercializadora

Trevi Plus

B/1/6(2): Johns Manville Industry

B/1/6(3): Tecno Asfalto del Golfo

B/1/6(4): Asaltos y Derivados Mexicanos

(Dry Season)

Season)				
Pollution	Туре	Daily Pollution Load	Ratio	
Source .		(kg/day)	(%)	
B/1/1	Point	1.03	16.2	
B/1/2	Point	0.28	4.4	
B/1/3	Point	· -	-	
B/1/4	Point	4.88	76.6	
B/1/5	Point		-	
B/1/6(1)	Point	-	<u> </u>	
B/1/6(2)	Point		-	
B/1/6(3)	Point	-	-	
B/1/6(4)	Point .	-	-	
B/1/7	Non-point	0.18	2.8	
Total		6.37	100.0	

(Rainy Season)

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	1.03	14.5
B/1/2	Point	0.28	3,9
B/1/3	Point		· -
B/1/4	Point	4.88	68.6
B/1/5	Point		-
B/1/6(1)	Point		-
B/1/6(2)	Point		-
B/1/6(3)	Point		
B/1/6(4)	Point		-
B/1/7	Non-point	0.92	12.9
Total		7.11	100.0

Pollution	Туре	Daily Pollution Load	Ratio
Source		(kg/day)	(%)
B/1/1	Point	1.03	15.4
B/1/2	Point	0.28	4.2
B/1/3	Point		
B/1/4	Point	4.88	73.1
B/1/5	Point		
B/1/6(1)	Point		-
B/1/6(2)	Point		. -
B/1/6(3)	Point		
B/1/6(4)	Point	:	-
B/1/7	Non-point 4	0.49	7.3
Tolal		6.68	100.0

Figure B.20 Daily Pollution Load of Total Phosphorus into Conejo Lagoon in 2010

c) Panuco River

Table B.70 Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point and Non-Point Pollution Sources to Panuco River in Dry Season in 2010

Point Pollution Sources

Source	Pollution Source	Daily Poll	ution Load	Flow rate	Daily Discharge		
Number		BOD₅	COD	Total nitrogen	Total Phosphorus	1	Volume
		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River (Las Adjuntas, El Alamo)	29,000	332,000	12,600	1,440	185	16,000
C/2	Tamesi River System	2,285	18,315	967	89	13.9	1,201
C/3/1	Sea-food Process Industries Area	110	202	30.2	5.4	0.0029	0.25
C/4/1	Altavista Water Supply Plant*	720	1,040	-		0.151	13.0
C/4/2-5 C/5/1-4 C/8/1-2	Municipal Waste- water of Tampico and Madero	21,400	33,000	5,730	704	1.10	95.0
C/10	Refineria Madero (PEMEX)	235	2,760	112	2.90	0.116	10.0
	Total	53,750	387,317	19,439	2,241	200	17,319

Non-point Pollution Sources

Pollution	Pollution Source	Daily Poll	ution Load	ds	
Source Number		BOD ₅ (kg/day)	COD (kg/day)	Total nitrogen (kg/day)	Total phosphorus (kg/day)
C/3	Morelos	1.18	2.24	0.42	0.05
C/4/6	Tampico Solid Waste Landfill Site	2.42	4.59	0.5	0.08
C/4/7	Southwest Part of Tampico	4	7.61	1.43	0.18
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero		70	9.13	1.33
C/6	Northern Part of Pueblo Viejo	7.98	17	2.25	0.35
*::1	Total	52.08	101.44	13.73	1.99

^{*} Daily discharge volume and pollution loads of Altavista water supply plant is supposed to be in proportion to the discharge volume of Municipal Wastewater from Tampico and Madero.

Table B.71 Ratio of Daily Pollution Loads from each Pollution Source (Including Rivers) In Total Daily Pollution Load from Pollution Sources into Panuco River in Dry Season in 2010

Pollution	Water System	Туре	BOD₅	COD	Total nitrogen	Total phosphorus
Source				i I		
Number			(%)	(%)	(%)	(%)
C/1	Panuco River	River	53.90	85.70	64.77	64.19
-	(Las Adjuntas,					
	El Alamo)		·			
C/2	Tamesi River	River	4.25	4.73	4.97	3.97
	System					
C/3/1	Sea-food Process	Point	0.20	0.05	0.16	0.24
	Industries Area					
C/4/1	Altavista Water Supply	Point	1.34	0.27		-
	Plant					
C/4/2-5	Municipal Waste-	Point	39.78	8.52	29.46	31.38
C/5/1-4	water of Tampico		- [1		
C/7/1-2	and Madero			ļ		
C/10	Refineria Madero	Point	0.44	0.71	0.58	0.13
	(PEMEX)					
C/3	Morelos	Non-	0.00	0.00	0.00	0.00
		point	1			
C/4/6	Tampico Solid Waste	Non- point	0.00	0.00	0.00	0.00
	Landfill Site	point .]	
C/4/7	Southwest Part of	Non-	0.01	0.00	0.01	0.01
		point	· ·			·
	Tampico	<u> </u>		<u> </u>		
C/5/5 and		Non-	0.07	0.02	0.05	0.06
C/8/3	Tampico Southern Part of Madero	point				
C/6	Northern Part of Pueblo	Non-	0.01	0.00	0.01	0.02
010	Viejo	point	0.01	0.00	1 0.01	0.02
	Total		100.00	100.00	100.00	100.00

Table B.72 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River in Dry Season in 2010

		BOD₅	COD	Total nitrogen	Total phosphorus	
Season	Туре	(%)	(%)	(%)	(%)	
Dry	Rivers	58.15	90.42	69.74	68.16	
	Point Pollution Sources	41.75	9.55	30.19	31.75	
	Non-point Pollution Sources	0.10	0.03	0.07	0.09	

Table B.73 Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point And Non-point Pollution Sources to Panuco River in Rainy Season

Point Pollution Sources

Pollution Source	Pollution Source	Daily Po	lution Load	S		Flow rate	Daily Discharge
Number		BOD₅	COD	Total nitrogen	Total phosphorus	Volume	
		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River	68,000	1,646,000	17,490	9,930	771	66,600
	(Las Adjuntas,						
	El Alamo)						
C/2	Tamesi River	4,264	59,331	2,250	265	42	3,630
	System						·
C/3/1	Sea-food Process	110	202	30.2	5.4	0.0029	0.25
	Industries Area			1			
C/4/1	Altavista Water	720	1,040	-	-	0.151	13.0
	Supply Plant*						
C/4/2-5	Municipal Waste-	21,400	33,000	5,730	704	1.10	95.0
C/5/1-4	Water of Tampico				ļ		
C/8/1-2	And Madero						
C/10	Refineria Madero	235	2,762	112	2.90	0.123	10.7
	(PEMEX)						
	Total	94,729	1,742,335	25,612	10,907	814	70,349

Non-point Pollution Sources

	Pollution Source	Daily Discharge Volume						
Source Number		BOD₅ (kg/day)	COD (kg/day)	Total nitrogen (kg/day)	Total phosphorus (kg/day)			
C/3	Morelos	6.1	11.7	2.19	0.28			
C/4/6	Tampico Solid Waste Landfill Site	12.6	23.9	2.62	0.41			
C/4/7	Southwest Part of Tampico	20.9	40	7.5	0.96			
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero		364	47.6	6.92			
C/6	Northern Part of Pueblo Viejo	44.2	93	12.49	1.93			
•	Total	273.8	532.6	72.4	10.5			

Daily discharge volume and pollution loads from Altavista water supply plant is Supposed to be in proportion to the discharge volume of Municipal Wastewater from Tampico and Madero.

Table B.74 Ratio of Daily Pollution Loads from each Pollution Source (Including Rivers) in Total Daily Pollution Load from Pollution Sources into Panuco River in Rainy Season in 2010

Pollution	Water System	Туре	BOD₅	COD	Total nitrogen	Total phosphorus
Source						
Number			(%)	(%)	(%)	(%)
C/1	Panuco River (Las Adjuntas, El Alamo)	River	71.58	94.44	68.10	90.95
C/2	Tamesi River System	River	4.49	3.40	8.76	2.43
C/3/1	Sea-food Process Industries Area	Point	0.12	0.01	0.12	0.05
C/4/1	Altavista Water Supply Plant	Point	0.76	0.06	-	-
C/4/2-5	Municipal Waste-	Point	22.53	1.89	22.31	6.45
C/5/1-4	Water of Tampico					
C/8/1-2	And Madero					
C/10	Refineria Madero (PEMEX)	Point	0.25	0.16	0.44	0.03
C/3	Morelos	Non- point	0.01	0.00		
C/4/6	Tampico Solid Waste Landfill Site	Non- point	0.01	0.00	0.01	0.00
C/4/7	Southwest Part of Tampico	Non- point	0.02	0.00	0.03	0.01
C/5/5 and C/8/3	Southern Part of Tampico Southern Part of Madero	Non- point	0.20	0.02	0.19	0.06
C/6	Northern Part of Pueblo Viejo	Non- point	0.05	0.01	0.05	0.02
	Total		100	100	100	100

Table B.75 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River in Rainy Season in 2010

		BOD₅	COD	Total nitrogen	Total phosphorus	
Season	Туре	(%)	(%)	(%)	(%)	
Rainy	Rivers	76.07	97.85	76.86	93.38	
	Point Pollution Sources	23.65	2.12	22.86	6.52	
	Non-point Pollution Sources	0.29	0.03	0.28	0.10	

Table B.76 Flow Rate (Daily Discharge Volume) and Daily Pollution Load from Point and Non-Point Pollution Sources to Panuco River in Whole Year in 2010 Point Pollution Sources

Pollution Source	Pollution Source	Daily Poll	ution Load	is		Flow rate	Daily Discharge
Number		BOD₅	COD	Total nitrogen	Total phosphorus	1	Volume
		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(m³/s)	(1000m³/day)
C/1	Panuco River	45,300	883,000	14,600	5,000	431	37,200
	(Las Adjuntas,						
	El Alamo)						
C/2	Tamesi River	3,110	35,500	1,500	163	25.7	2,220
	System						
C/3/1	Sea-food Process	110	202	30.2	5.4	0.0029	0.25
	Industries Area						
C/4/1	Altavista Water	720	1,040	•	<u>.</u>	0.151	13.0
	Supply Plant						
C/4/2-5	Municipal Waste-	21,400	33,000	5,730	704	1.10	95.0
C/5/1-4	water of Tampico						
C/8/1-2	and Madero		,				
C/10	Refineria Madero	235	2,760	112	2.9	0.123	10.7
	(PEMEX)	•					
	Total	70,875	955,502	21,972	5,875	458	39,539

Non-point Pollution Sources

Pollution	Pollution Source			Daily Pollution Loads						
Source				BOD₅	COD	Total nitrogen	Total phosphorus			
Number				(kg/day)	(kg/day)	(kg/day)	(kg/day)			
C/3	Morelos			3.24	6.21	1.16	0.146			
C/4/6	Tampico Soli Landfill Site	id Was	te	6.69	12.7	1.39	0.218			
C/4/7	Southwest P Tampico	art of		11.1	21.2	3.97	0.507			
C/5/5 and	Southern Tampico	Part	of	101	193	25.3	3.67			
C/8/3	Southern Madero	Part	of	•						
C/6	Northern Pueblo Viejo	Part	of	23.2	48.5	6.55	1.01			
	Total			145.23	281.61	-38.37	5.551			

^{*} Daily discharge volume and pollution loads from Altavista water supply plant is supposed to be in proportion to the discharge volume of Municipal Wastewater from Tampico and Madero.

Table B.77 Ratio of Daily Pollution Load from each Pollution Source (Including Rivers) in Total Daily Pollution Load from Pollution Sources into Panuco River in Whole Year in 2010

Pollution	Water System	Туре	BOD5	COD	Total nitrogen	Total phosphorus
Source	<u> </u>					
Number			(%)	(%)	(%)	(%)
C/1	Panuco River	River	63.78	92.38	66.33	85.02
	(Las Adjuntas,					
	El Alamo)					·
C/2	Tamesi River	River	4.38	3.71	6.81	2.77
	System					
C/3/1	Sea-food Process	Point	0.15	0.02	0.14	0.09
	Industries Area					
C/4/1	Altavista Water Supply	Point	1.01	0.11	-	-
	Plant					
C/4/2-5	Municipal Waste-	Point	30.13	3.45	26.03	11.97
C/5/1-4	water of Tampico					. *
C/7/1-2	and Madero					
C/10	Refineria Madero	Point	0.33	0.29	0.51	0.05
	(PEMEX)				·	
C/3	Morelos	Non-point	0.00	0.00	0.01	0.00
C/4/6	Tampico Solid Waste	Non-point	0.01	0.00	0.01	0.00
	Landfill Site					
C/4/7	Southwest Part of	Non-point	0.02	0.00	0.02	0.01
	Tampico					
C/5/5 and		Non-point	0.14	0.02	0.11	0.06
C/8/3	Tampico Southern Part of Madero					
C/6	1	Non-point	0.03	0.01	0.03	0.02
Cio			0.03	0.01	0.03	0.02
	Viejo Total		100.00	100.00	100.00	100.00
	IVIai	<u> </u>	100.00	100.00	100.00	100.00

Table B.78 Contribution of Rivers, Point Pollution Sources, and Non-point Pollution Sources on Pollution Loading into Panuco River in Whole Year in 2010

		BOD5	COD	Total nitrogen	Total phosphorus	
Season	Туре	(%)	(%)	(%)	(%)	
Whole	Rivers	68.16	96.10	73.15	87.79	
Year	Point Pollution Sources	31.63	3.87	26.68	12.11	
	Non-point Pollution Sources	0.20	0.03	0.17	0.09	

d) Coastal Water of Gulf of Mexico

Table B.79 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Dry Season in 2010

Pollution	Pollution Source	Pollution Source Daily Pollution Loads											
Source		BOD₅	COD	Total N	Total P	Volume							
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(1000 m3/day)							
Α	Altamira Industrial Port	129	1,040	21.0	19.3	-							
D	Petrocel	494	1,140	6.9		13.8							
E	Novaquim	30.5	57	5.8	-	0.58							
F(1)	Negromex (Emulcion)	241	1,860	82.2	-	4.59							
F(2)	NHUMO	57.6	113	3.39	-	1.13							
G	Dupont	224	-		-	10.7							
C	Panuco River	53,800	387,000	19,400	2,240	17,300							

Table B.80 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Rainy Season in 2010

Pollution	Pollution Source	Daily Pollut	ion Loads		······································	Daily Discharge		
Source	y	BOD _s	COD	Total N	Total P	Volume		
Number		(kg/day)	(kg/day)	(kg/day)	(kg/day)	(1000 m3/day)		
A	Altamira Industrial Port	244	1,331	. 70.3	26.9	-		
D	Petrocel	494	1,140	6.9		13.8		
E	Novaquim	30.5	57	5.8		0.58		
F(1)	Negromex (Emulcion)	241	1,860	82.2	-	4.59		
F(2)	NHUMO	57.6	113	3.39		1.13		
G	Dupont	224	-			10.7		
C	Panuco River	94,700	1,740,000	25,600	10,900	70,300		

Table B.81 Daily Discharge Volume and Daily Pollution Loads from Pollution Sources and Rivers to Coastal Area in Whole Year in 2010

Pollution	Pollution Source	Daily Pollul	tion Loads			Daily Discharge		
Source Number		BOD ₅ (kg/day)	COD (kg/day)	Total N (kg/day)	Total P (kg/day)	Volume (1000 m3/day)		
A	Altamira Industrial Port	177	1,162	41.7	22.5	-		
D	Petrocel	494	1,140	6.9	-	13.8		
E	Novaquim	30.5	57	5.8	-	0.58		
F(1)	Negromex (Emulcion)	241	1,860	82.2	-	4.59		
F(2)	NHUMO	57.6	113	3.39	-	1.13		
G	Dupont	224	13. F	-		10.7		
C	Panuco River	71,000	955,000	22,000	5,880	39,500		

i galera di Bertago di Salari e de La Salari e de la Salari e de la Salari e de la Salari e de la Salari e de Establica di Salari e de la Salari e de la Salari e de la Salari e de la Salari e de la Salari e de la Salari

and a strong and the control of the

Appendix B.2 Estimation of Flow Rate from Freshwater Part to Salt Water Part of Tamesi River

B.2.1 Artificial Dikes in Tamesi River and its Lagoons

The freshwater part of Tamesi River and its Lagoons are separated from the salt water part of Tamesi River and its Lagoons with dikes in order to prevent the freshwater from mixing with the salt water as shown in Figure 2.9 in Data Book Chapter 2. Dikes No.4, No.5, No.6, No.7 and El Bull are used in order to protect the freshwater system from the intrusion of salt water. And Dikes El Bull, Camalote, and Mata de la Monteada are used in order to store the water as shown in Table B.82.

Table B.82 Dikes of Tamesi River and Freshwater Lagoons

Dikes	Location	Function
Code No.4	Tamesi River	Protection for Sea Water's Intrusion
Code No.5	Chairel Lagoon	Protection for Sea Water's Intrusion
Code No.6	Chairel Lagoon	Protection for Sea Water's Intrusion
Code No.7	Western Side of	Protection for Sea Water's Intrusion
	American Channel	
El Bull	Tamesi River	Protection for Sea Water's Intrusion and Storage
Camalole	Camalote Wetland	Storage
Mata la Moteada	Camalole Lagoon	Storage

Source: Estudio Para La Restauracion Ecologica Del Sistema Lagunario del Rio Tamesi, CNA (1992)

B.2.2 Water Level of Chairel Lagoon and Discharge Volume at Tamesi

Artificial constructions such as dikes changed the discharge volume of Tamesi River from the freshwater part to the estuarine part. Now the discharge volume is neither measured nor calculated. It is necessary to estimate the discharge volume in order to calculate the pollution loads from Tamesi River. In Chairel Lagoon, its water level has been measured. The water level of Chairel Lagoon from Jan 1st 1994 to Dec 31st 1998 and the discharge volume of Tamesi Hydrological Station from Jan 1st 1994 to Dec 31st 1997 are shown in Figure B.21.

B.2.3 Estimatio of Discharge Volume from Preshwater Part to Salt Water Part

A pattern of water level variation indicates that the water level is strongly related with the discharge volume at Tamesi Hydrological Station. After a high peak of discharge volume, the water level decreases with the reduction of discharge volume. But a constant water level during several days is observed as shown in Figure B.22.

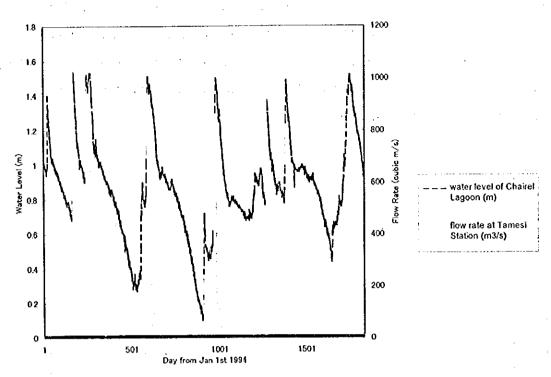


Figure B.21 Water Level of Chairel Lagoon and Flow Rate at Tamesi Station

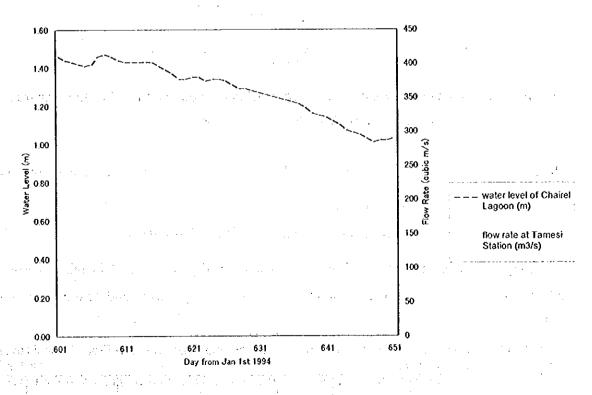


Figure B.22 Water Level of Chairel Lagoon and Flow Rate at Tamesi Station from 601st day to 651 st day

The constant water level indicates that the water discharge volume entering into Tamesi River and its freshwater lagoons is equal to that leaving from this system. Therefore discharge volume at Tamesi Hydrological Station during these days, when the water level is constant, is averaged and the obtained value is estimated as a discharge volume from the freshwater part of Tamesi River to the salt water part. A plot of this discharge volume vs. water level of Chairel Lagoon is shown in Figure B.23.

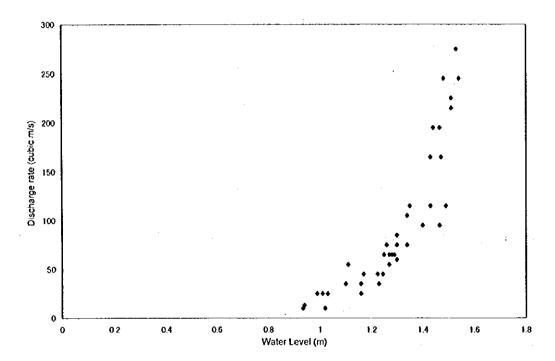


Figure B.23 Relation between Water Level of Chairel Lagoon and Obtained Discharge Volume from Tamesi River to Panuco River

The following relation between discharge volume (V, m³/s) and water level (h, m) is obtained:

$$V = 259 (h - 0.617)^3$$
(a correlation coefficient of V^{1/3} and h is 0.937)

Using equation (1), the average discharge volumes in dry season and in rainy season are calculated. The average discharge volume is 13.9 m³/s in dry season and 42.0 m³/s as shown in Table B.83.

Table B.83 Average Discharge Volume in Dry Season and Rainy Season From Tamesi River to Panuco River Unit: m³/s

		· · ·					10. 11. 10
	Jan-94 to Oct-94	Nov-94 to Oct-	Nov-95 to	Nov-96 to Oct-	Nov-97 to Oct-98	Nov-98 to Dec-98	Average
		95, ,	Oct-95	97		Since Police	5.22. i
Dry season	15.1	4.5	2.7	2.4	10.3	43.9	13.9
Rainy season	69.6	40.6	29.9	29.5	40.5	-	42.0

Appendix B.3 Municipal Wastewater Projection in Tampico Area

In section 2.5.1 (1), population, coverage of drainage system, daily discharge volume per capita, and daily pollution loads per capita in 1999 were estimated for Altamira Municipality, Tampico and Madero Cities, and Pueblo Viejo Municipality. Furthermore, annual growth rate of population, daily discharge volume per capita, and daily pollution loads per capita were estimated. Coverage of drainage system from 1999 to 2010 is also supposed.

In Table B.84, population, coverage of drainage, daily discharge volume per capita, daily BOD₅ load per capita, daily COD load per capita, daily total nitrogen load per capita, daily total phosphorus load per capita, daily discharge volume, daily BOD₅ load, daily COD load, daily total nitrogen load, and daily total phosphorus load for Altamira Municipality from 1999 to 2010 are shown.

Table B.84 Municipal Wastewater Projection for Altamira Municipality

- 1	Annual Growth	Үеаг									· · · · · ·		
-	Rate (%)	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008		
Population	-	136,339	142,890	149,529	156,211	162,927	169,690	176,515	183,416	190,406	197,496	204,705	212,054
Coverage of drainage (%)		75	76.5	78	79.5	81	82.5	84	85.5	87	- 88	89	90
Daily discharge volume per capita(Vcapita /day)	3	195	201	207	213	219	226	233	240	247	254		270
Daily BOD5 load per capita (g/capita/day)		51	51.8	52.5	53.3	54.1	54.9	55.8	56.6	57.5			60.1
Daily COD load per capita(g/capit a/day)	1.5	94	95.4	96.8	98.3	99.8	101.3	102.8	104.3	105.9	107.5	109.1	110.7
Daily total-N load per capita(g/capit a/day)	1.5	8.7	8.8	9.0	9.1	9.2	9.4	9.5	9.7	9.8	9.9	10.1	10.2
Daily total-P load per capita (g/capita/day)	1.5	1.04	1.06	1.07	1.09		1.12	1.14	1.15	1.17	1.19		1.23
Daily discharge Volume (m3/day)		19,940	21,955	24,128	26,462	28,964			37,610	-			
Daily BOD5 load (kg/day)	-	5,215	·			<u> </u>	7,691	8,269	8,876	-	10,135	ļ .	
Daily COD load (kg/day)	-	9,612	10,429						-			'	
Daily total-N Load (kg/day)	-	890	965	.					1,514	1,623	1,729	1,839	1,956
Daily total-P Load (kg/day)	-	106	115	125	135	146	157	169	181	194	207	220	234

Those parameters for the South Part of Altamira (near Miramar) are shown in Table B.85.

Table B.85 Municipal Wastewater Projection for the South Part of Altamira Municipality (near Miramar)

		(near	Miran	iar)									
	Annual Growth	Year											
	Rate (%)	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Population	1.5	60,000	60,900	61,814	62,741	63,682	64,637	65,607	66,591	67,590	68,603	69,632	70,677
Coverage of drainage (%)	-	80	81.5	83	84.5	86	87.5	89	90.5	92	93	94	95
Daily discharge volume per capita (l/capita/	3	195	201	207	213	219	226	233	240	247	254	262	270
day) Daily BODs load per capita (g/capita/ day)	1.5	51	51.8	52.5	53.3	54.1	54.9	55.8	56.6	57.5	58.3	59.2	60.1
Daily COD load per capita (g/capita/ day)	1.5		95.4	96.8	98.3	99.8	101.3	102.8	104.3	105.9	107.5	109.1	110.7
Daily total-N load per capita (g/capita/ day)	1.5	8.7	8.8	9.0	9.1	9.2		9.5	9.7	9.8	9.9	10.1	10.2
Daily total-P load per capita (g/capita/ day)	1.5			1.07	1.09						1.19	1.21	1.23
Daily discharge volume (m³/day)		9,360	9,969	10,614	11,297	12,020	12,785						18,124
Daily BOD ₅ load (kg/day)		2,448								3,572			4,034
Daily COD load (kg/day)		4,512								6,585		7,140	7,435
Daily total-N load (kg/day)		418											688
Daily total-P load (kg/day)		- 50	52	55	58	60	63	66	70	73	76	79	82

Those parameters for the North Part of Altamira are shown in Table B.86.

Table B.86 Municipal Wastewater Projection for the North Part of Altamira Municipality

lable B	0.00	Willing	Jai vya	Stewar	CITIO	Jection	HOL UI	e more	nran	UI Alla	HIHAIV	unicip	anty
	Annual	Ĭ											
	growth	Year											
	rate (%)	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Population		76,339	81,990	87,716	93,470	99,245	105,05 3	110,90 8	116,82 5	122,81 6	128,89 3	135,07 3	141,37 7
Coverage	· · · · · ·	71.1	72.8	74.5	76.1	77.8	79.4	81.0	82.6	84.2	85.3	86.4	87.5
of drainage (%)													
Daily discharge volume per capita	3	195	201	207	213	219	226	233	240	247	254	262	270
(l/capita/ day)	!												
Daily BODs	1.5	51	51.8	52.5	53.3	54.1	54.9	55.8	56.6	57.5	58.3	59.2	60.1
load per capita (g/capita/ day)													
Daily COD load per capita (g/capita/	1.5	94	95.4	96.8	98.3	99.8	101.3	102.8	104.3	105.9	107.5	109.1	110.7
day)		<u> </u>						<u></u>					
Daily total-N	1.5	8.7	8.8	9.0	9.1	9.2	9.4	9.5	9.7	9.8	9.9	10.1	10.2
load per capita (g/capita/ day)													
Daily total-P	1.5	1.04	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2
load per capita (g/capita/ day)													
Daily discharge Volume (m³/day)		10,580								25,559			
Daily BOD₅ load (kg/day)		2,767	3,089		3,796	4,179							
Daily COD load (kg/day)		5,100	5,694	6,326	6,996	7,703	8,449	9,238	10,073	10,957	11,822	12,734	13,698
Daily total-N load (kg/day)	1	472	527	586	647	713			932	1,014	1,094	1,179	1,268
Daily total-P load (kg/day)		- 56	63	70	77	85	93	102	111	121	131	141	152

Those parameters for Tampico and Madero Cities are shown in Table B.87.

Table B.87 Municipal Wastewater Projection for Tampico and Madero

	labi	e 8.87	Muni	cipai vv	asiewa	ter Pro	jectioi	1 101 13	ambico	anu	nauero		
Children and the American Control	Annual												
	rowth	Year											
	rate (%)	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Population													
Madero	-	179,721	181,873	183,961	185,992	187,970	189,900	191,793	193,648	195,464	197,234	198,956	200,625
Tampico	-	285,765	287,176	288,451	289,613	290,667	291,625	292,503	293,303	294,021	294,649	295,184	295,622
Total		465,486	469,049	472,412	475,605	478,637	481,525	484,296	486,951	489,485	491,883	494,140	496,247
Coverage	-	95	95	95	95	95	95	95	95	95	95	95	95
of drainage (%)													
Daily discharge volume per	4	251	261	271	282	294	305	318	330	344	357	372	386
capita (l/capita/day)					,					:			
Daily BODs load per capita	2	70.0	71.4	72.8	74.3	75.8	77.3	78.8	80.4	82.0	83.7	85.3	87.0
(g/capita/ day)										_			
Daily COD load per capita	2	108	110.2	112.4	114.6	116.9	119.2	121.6	124.1	126.5	129.1	131.7	134.3
(g/capita/ day)			•										
Daily total-N	2	18.7	19.1	19.5	19.8	20.2	20.6	21.1	21.5	21.9	22.3	22.8	23.3
load per capita (g/capita/ day)	:				-								. *
Daily total-P	1 2	2.35	2.40	2.44	2.49	2.54	2.59	2.65	2.70	2.75	2.81	2.86	2.92
load per capita (g/capita/ day)													
Daily discharge volume (m³/day)		110,995	116,319	121,839	127,569	133,517	139,696	146,120	152,797	159,736	166,940	174,414	182,164
Daily BOD _s load (kg/day)	<u> </u>	30,955	31,816	32,685	33,564	34,453	35,354	36,269	37,197	38,138	39,092	40,057	41,032
Daily COD load (kg/day)		47,759	49,087	50,428	51,784	53,156	54,547	55,958	57,390	58,842	60,313	61,802	63,306
Daily total-N load (kg/day)		8,269	8,499		."							10,701	10,961
Daily total-P load (kg/day)		1,039	1,068	1,097	1,127	1,157	1,187	1,218	1,249	1,280	1,312	1,345	1,377

Those parameters for Pueblo Viejo Municipality are shown in Table B.88.

Table B.88 Municipal Wastewater Projection for Pueblo Viejo Municipality

10	avie D.e)U 11	numon	ai vva	siewai	CITIO	CCHOH	IUI F U	ignio A	ICJU IVI	umcipe	HILY	
	Annual	.,											
	Growth	Year						· · · · · · · · · · · · · · · · · · ·					
	Rate (%)	1999	2000	2001	2002	2003		2005	2006	2007	2008	2009	2010
Population	-	52,820	53,679	54,513	55,318	56,095	56,845	57,570	58,272	58,951	59,610	60,249	60,871
Coverage	-	5.7	6	6.5	7	7.5	8	8.5	9	9.5	10	10.5	11
of drainage													
(%)													
Daily	3	150	155	159	164	169	174	179	184	190	196	202	208
discharge volume per										1			
							:						
capita								!					
(Vcapita/day											,		
Daily BODs	1.5	45	45.7	46.4	47.1	47.8	48.5	49.2	49.9	50.7	51.5	52.2	53.0
load per													
capita	1	i											
(g/capita/ day)													
Daily COD	1.5	82	83.2	84.5	85.7	87.0	88.3	89.7	91.0	92.4	93.8	95.2	96.6
load	"							, ,,,,,					İ
per capita		1				· ·							1
(g/capita/										<u> </u>			ŀ
day)		7.0		7.8	7.9			- 6.3	8.4	8.6	8.7	8.8	9.0
Daily total-N load per	1.5	7.6	7.7	7.8	7.9	8.1	8.2	8.3	0.4	0.0	0.7	0.0	9.0
capita	İ									1			
(g/capita/							i]			
day)							<u> </u>	<u> </u>					
Daily total-P	1.5	0.91	0.92	0.94	0.95	0.97	0.98	1.00	1.01	1.03	1.04	1.06	1.07
load per						i	Ì			İ		İ	
capita (g/capita/						1							
day)]	ļ							1				
Daily	-	452	498	564	635	710	791	876	968	1,064	1,167	1,275	1,390
discharge				1	İ	ļ		ļ		Ì			
volume (m³/day)		ŀ]		1		•		1				
Daily BODs	 	135	147	164	182	201	220	241	262	284	307	330	355
load		100	'''	104	'02	~	1	- "	-~-	-0.	00.	""	"
(kg/day)]]						
Daily COD	1	247	268	299	332	366	402	439	477	517	559	602	647
load		ŀ								ļ			
(kg/day)	<u> </u>			 _			<u> </u>						
Daily total-N	-	23	25	28	31	34	37	41	44	48	52	56	60
ioad (kg/day)						l		1]		
Daily total-P		3	3	3	4	4	4	5	5	6	6	7	7
load]		ľ				ľ	l ĭ	ľ	ľ	. '	'
(kg/day)	1				1		Ì]
	A		•			·							