ANNEX I

TECHNICAL REPORT

FOR

EXPERIMENT FOR USE OF ELODEA AS GREEN FERTILIZER

FOR THE

STUDY ON REGIONAL ENVIRONMENTAL IMPROVEMENT PLAN

FOR THE BASIN OF LAKE FUQUENE

EXPERIMENT FOR USE OF ELODEA AS GREEN FERTILIZER

1. General

The objectives of the experiment, experimental cases and observed parameter are as mentioned in Chapter III, Subsection 3.3.1.

2. Results of Field Observation

2.1 Initial Condition of Experiment

The observed initial condition of experiment are shown in Table I.1-Table I.2 (block control data). On the other hand, Chemical analysis results of each land are shown below.

Classification	Item	Block-1: Fertile	Block-2: Infertile		
		Land	Land		
	Sand (%)	36	16		
Physical	Silt (%)	18	52		
Property	Clay (%)	46	32		
	Texture	Ar*	FArL**		
	PH	4.2	5.5		
	Organic Matter (%)	9.95	1.22		
	C/C (meq/100g)	52.4	14.1		
	Al (meq/100g)	7.4	0.4		
	Saturation of Al	48.4	7.0		
Chemical	(meq/100g)				
	Na (meq/100g)	0.15	0.11		
Property	S.B (%)	15.0	38.1		
	Ca (meq/100g)	6.05	3.75		
	Mg (meq/100g)	1.34	1.18		
	K (meq/100g)	0.34	0.31		
	Na (meq/100g)	0.15	0.11		
	P (mg/kg)	8.3	3.3		

^{*}Ar: Sandy, **Silty Sand

Chemical fertilizer was added in the land of Case 4 (Fertilizer) as shown follows; Ca(OH)₂-Calcium Hydroxide 1,000kg/ha, chemical fertilizer 10-20-20 250kg/ha, Urea 100kg/ha

2.2 Results of the First Experiment

(1) Results of First Harvesting (Block-1)

In block No.1, the following results of the first stage experiment are obtained.

Production of Kikuyo grass in block No.1, Fertile Land											
Repetitions	Case1 (75cm)	Case2 (50cm)	Treatment Case3 (25cm)	Case4	Case5						
1	1.30	10.29	9.80	(Fertilizer) 8.72	(Nothing) 7.34						
2	2.00	7.81	8.25	10.59	13.50						
3	1.80	8.50	12.87	10.38	5.84						
Total	5.10	26.70	30.92	29.69	26.68						
Average	1.70	8.90	10.31	9.90	8.89						

(Unit: ton/m²)

The above data on pasture production per square meter were shown below.

Treatment	Pasture yield (ton/ha)
Case3 (25cm)	21.67
Case4 (Fertilizer)	20.81
Case2 (50cm)	18.71
Case5 (Nothing)	18.70
Case1 (75cm)	8.5

(2) Results of First Harvesting (Block-2)

	Production	of Kikuyo grass	in block No.2, Int Treatment	fertile Land	
Repetitions	Case1 (75cm)	Case2 (50cm)	Case3 (25cm)	Case4 (Fertilizer)	Case5 (Nothing)
1	0.92	2.45	13.45	6.11	6.11
2	0.76	1.53	11.01	8.25	4.59
3	1.22	1.83	14.06	9.17	9.78
Total	2.90	5.81	38.52	23.54	20.48
Average	0.97	1.94	12.84	7.85	6.83

(Unit: ton/m²)

The above data on pasture production per square meter were shown below.

Treatment	Pasture yield (ton/ha)
Case3 (25cm)	12.84
Case4 (Fertilizer)	7.85
Case2 (50cm)	1.94
Case5 (Nothing)	6.83
Case1 (75cm)	0.97

2.3 Results of the Second Stage Experiment

(1) Results of First Harvesting (Block-1)

In block No.1, the following results of the second stage experiment are obtained.

Production of Kikuyo grass in block No.1,Fertile Land Treatment										
Repetitions	Case1 (75cm)	Case2 (50cm)	Case3 (25cm)	Case4 (Fertilizer)	Case5 (Nothing)					
1	3.67	211.71	36.99	27.51	23.23					
2	3.60	19.11	32.10	21.09	13.76					
3	3.74	18.65	26.90	19.87	12.84					
Total	11.07	59.46	95.99	68.48	49.83					
Average	3.67	19.82	32.00	22.83	16.61					

(Unit: ton/m²)

The above data on pasture production per square meter were shown below.

Treatment	Pasture yield (ton/ha)
Case3 (25cm)	32.00
Case4 (Fertilizer)	22.83
Case2 (50cm)	19.82
Case5 (Nothing)	16.61
Case1 (75cm)	3.67

(2) Results of First Harvesting (Block-2)

In block No.2, the following results of the second stage experiment are obtained.

Production of Kikuyo grass in block No.2, Infertile Land											
			Treatment								
Repetitions	Case1 (75cm)	Case2 (50cm)	Case3 (25cm)	Case4	Case5						
				(Fertilizer)	(Nothing)						
1	3.06	5.20	30.57	5.50	7.64						
2	1.22	2.14	21.09	7.34	6.11						
3	2.45	4.28	33.02	11.01	7.95						
Total	6.73	11.62	84.68	23.85	21.71						
Average	2.24	3.87	28.23	7.95	7.24						

(Unit: ton/m²)

The above data on pasture production per square meter were shown below.

Treatment	Pasture yield (ton/ha)
Case3 (25cm)	28.23
Case4 (Fertilizer)	7.95
Case2 (50cm)	3.87
Case5 (Nothing)	7.24
Case1 (75cm)	2.24

2.4 Nutrients Content of Harvested Kikuyo

After harvesting, nutrients and heavy metals in Kikuyo of each lot were analyzed by the Study Team as shown below.

Item	Unit*		Harveste	d Kikuyo		Remarks
Tiem	Oint	Case B1	Case B1	Case B1	Case B1	Kemarks
Moisture Content	(%)	83.3	79.2	76.5	77.2	
Ash Content	(%)	11.1	13.2	7.46	7.86	
N	(%)	3.20	2.81	2.82	2.37	
Protein	(%)	20.0	17.5	17.7	14.8	
Crude Fiber	(%)	17.9	19.6	23.9	25.2	
P	(%)	0.26	-	-	-	
Ca	(%)	0.42	-	-	-	

^{*}Dry Weight Base

3. Evaluation of Results

3.1 Block-1 (Fertile Land)

It was clearly noticed that lots of Kikuyo cover of 75 cm and 50 cm were more delayed in reaching their development, maybe because the lack of light on the grass reduced its growth rate. In lots with 25 cm of Elodea, grass grew faster and its recovery time was lower. For this reason, on fertile lands, it is advisable to deposit on the grass, amounts no greater than 25 cm, if you want to obtain production within the normal recovery periods.

On the other hand, fertilization with Elodea and with chemical fertilizer did not show significant differences in the production of grass. This allows recommending the surface fertilization with fresh Elodea as a viable alternative for cattlemen of the region, based on costs.

An additional benefit of organic fertilization, would be the conservation of the land quality. It is well known that the use of chemical fertilizers for a long period of time reduces the quality of the land, while organic fertilizers keep the quality and times, improve it.

3.2 Block-2 (Infertile Land)

Compared to lots that received chemical fertilizer and to Nothing lots which did not receive any fertilizer, lots that received Elodea, showed that Kikuyo presents a higher development, its stems are thicker and its green color is more intense. Therefore, production results can be excepted to be better. However, recovery time is higher than in fertile lands.

It is evident that infertile lands present a higher benefit, with fresh Elodea as green fertilizer, than fertile lands, as expressed by the owner of the corresponding land who states that he had never had a grass with the quality of the grass produced in lots that received Elodea.

Table I.1 Block-1 Control Data: High Organic Matter Content Soil

Lot No.	Depth of Elodea(cm)	Depth of Elodea(cm) Elodea Addition Date	Fertilizer Addition Date	Fertilizer Quantity per Number of Transportation Lot by Dump Truck	Number of Transportation by Dump Truck	Width of Lots
Case2	50	23-Jun	1	,	8	10 X 10
Case3	25	24-Jun	•	_	5	10X10
Case3	25	24-Jun		ı	S	10X10
Case4	Fertilization	1	2-Jul	Calcium Hydroxide 2.45kg, 10-20-20 1.225kg,, Urea 0.49kg		TXT
Case1	75	25-Jun	1	,	7	7X7
Case2	50	28-Jun	1	ı	5	7X7
Case5	Nothing	ı	ı	ł		7X7
Case4	Fertilization	1	2-Jul	Calcium Hydroxide 2.45kg, 10-20-20 1.225kg,, Urea 0.49kg	1	7X7
Case5	Nothing	1	I		•	7X7
Case1	75	29-Jun	ı		7	7X7
Case5	Nothing	-	1		1	TXT
Case4	Fertilization	ı	2-Jul	Calcium Hydroxide 2.45kg, 10-20-20 1.225kg,, Urea 0.49kg		TXT
Case3	25	30-Jun	ı	1	3	7X7
Case2	50	30-Jun	ı	1	\$	7X7
Case1	75	1-Jul	1	ı	7	7X7
Autonomous R	Autonomous Regional Cundinamarca Corporation-CAR	Scientific Sub-Direction Research Division	on Research Division	Superficial Fertilization Evaluation (With Elodea) at Kikuyo Prairies	Block Control Site Sheet	Block-No.1 July 1999 HAP

Table I.2 Block-2 Control Data: Low Organic Matter Content Soil

Width of Lots	10X10	10 X 10	10 X 10	10 X 10	10 X 10	10 X 10	10X10	10X10	10 X 10	10X10	10 X 10	10 X 10	10 X 10	10 X 10	10X10	Block-No.2	July 1999 HGP
	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	Bloc	July 19
Number of Transportation by Dump Truck	8	-	9	1	8	ı	∞	,	1	1	9	3	9	3	3	Block Control Site	Sheet
Fertilizer Quantity per Lot	-	-	I	Calcium Hydroxide 10g, 10- 20-20 2.5kg., Urea 1kg	•	-	1	Calcium Hydroxide 10g, 10- 20-20 2.5kg., Urea 1kg	1	•	1	Calcium Hydroxide 10g, 10- 20-20 2.5kg., Urea 1kg	1	,		Superficial Fertilization Evaluation (With Elodea)	at Kikuyo Prairies
Fertilizer Addition Date	1	2-Jun	,	2-Jul	1	,	ţ		2-Jun	1	ı		1	,	1	Scientific Sub-Direction Research Division	
Elodea Addition Date	2-Jun	ı	3-Jun	1	8-Jun	ı	8-Jun	-	1	ı	0-Jun	10-Jun	10-11 Jun	15-Jun	15-Jun	Scientific Sub-Directi	
Depth of Elodea(cm)	75	Fertilization	50	Fertilization	75	Nothing	75	Nothing	Fertilization	Nothing	50	25	50	25	25	Autonomous Regional Cundinamarca	Corporation-CAR
Lot No.	Case1	Case4	Case2	Case4	Case1	Case5	Case1	Case5	Case4	Case5	Case2	Case3	Case2	Case3	Case3	Autonomous Re	Corpo

ANNEX II

TECHNICAL REPORT

FOR

EXPERIMENT FOR COMPOSTING OF AQUATIC PLANTS

FOR THE

STUDY ON REGIONAL ENVIRONMENTAL IMPROVEMENT PLAN

FOR THE BASIN OF LAKE FUQUENE

EXPERIMENT FOR COMPOSTING OF AQUATIC PLANTS

1. General

The objectives of the experiment, experimental cases and observed parameter are as mentioned in Chapter III, Subsection 3.3.2.

2. Analysis Results of the Aquatic Plants at the Initial Stage

Chemical content of each aquatic plant used for this experiment are shown below.

Item	Unit*	Elodea	Water	Bulrush	Remarks
			Hyacinth		
Moisture Content	(%)	92.2	91.0	76.9	
Ash Content	(%)	20.8	16.8	7.4	
N	(%)	2.85	1.84	1.03	
P	(%)	0.23	0.13	0.05	
N/P Ratio	-	12.4	14.2	20.6	
K	(%)	2.81	1.91	0.97	
Ca	(%)	1.21	1.09	0.11	
Mg	(%)	0.17	0.18	0.05	
Fe	(%)	1.10	1.86	0.01	
Pb	(mg/kg)	N.D.	N.D.	N.D.	
Hg	(mg/kg)	0.45	0.45	0.71	
Cr	(mg/kg)	0.74	1.75	0.47	
Cu	(mg/kg)	.6.4	7.3	2.0	
Zn	(mg/kg)	137.3	47.9	20.2	
As	(mg/kg)	1.4	1.5	1.1	

^{*}Dry Weight Base ,** N.D.: Non-detected

3. Results of Field Observation

3.1 Initial Change of Weight and Volume

The observed initial condition of experiment of weight and volume are shown in Table II.1.

3.2 Midterm and Final Change of Condition

The observed change of experimental condition is shown in Table II.2–Table II.11. Reduction rate in volume of aquatic plants is illustrated in Fig II.1–Fig II.2. Temperature change of each experimental lots is shown in Fig II.3–Fig II.4.

4. Chemical Contents of Aquatic Plants at the final Stage

Sampling for chemical analysis of compost quality was done at the end of experiment, and 17 experimental lots are analyzed. Analysis results are shown in Table II.12

5. Evaluation of the experimental Results

5.1 Volume and Weight Reduction

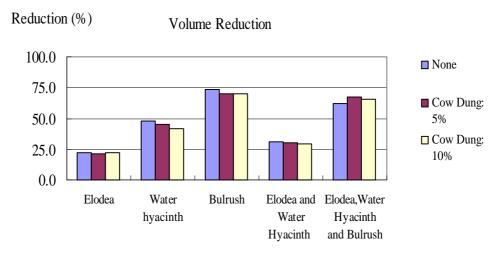
Comparison between initial and final condition of weight and volume are shown in Table II.13. According to these tables and figures, in many cases, volume was reduced in a short period except the cases contained Bulrush. It is considered due to that Bulrush is much more fibrous

than other aquatic plants, and can be hardly dehydrated. Therefore, Elodea and Water hyacinth are useful for raw material of compost.

5.2 Temporal Change of Condition

Temporal change of each condition of experimental cases are mentioned below.

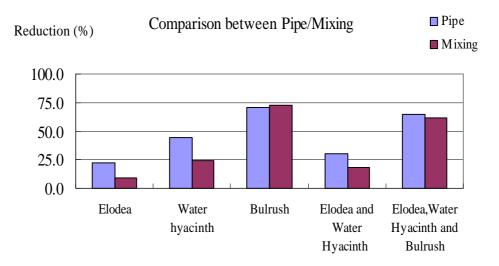
(1) Physical Properties and Appearance


The appearance of aquatic plants was significantly changed in the experimental period. Especially, in the case of Elodea, much reduction of volume was observed. On the other hand, many flies swarmed in the experimental boxes after one (1) month from starting the experiment. These phenomenon is reminded of the decomposition of organic matter proceeded by fermentation.

(2) Odor Emission

According to the field observation, throughout the experimental period, any odor emission from experimental lots was not conscious. It is considered that all of the experimental lots fermented under aerobic condition. Therefore, even if composting works will be applied near by the residential area, it will hardly occur the problem of odor.

(3) Sub-material


There are few significant difference between each quantity of additive as shown below figure.

Experimental Case

(4) Effect of Aeration by Ventilation Pipes/Mixing the Materials

The case of mixing the materials is more decreased the volume than the ones by ventilation pipes, according to the below figure.

Experimental Case

As shown in the above figure, mixing of materials efficiently increases volume reduction, especially in experimental cases of Elodea and Water hyacinth. However, actual plan of composting will be executed by ventilation pipe.

5.3 Change of Chemical Properties

Temporal change of each condition of experimental cases are mentioned below.

(1) Chemical Content

After the composting, chemical content of aquatic plants vary the one of raw matter because of the decomposition. Change of nutrient content is summarized below.

Case	Item	Initial	Dung:0%,Pipe	Dung:10%,Pipe	Dung:10%,Mixing	Remarks
	N(%)	2.85	4.73	2.80	1.15	
Elodea	P(%)	0.23	0.72	0.61	0.12	
	K(%)	2.81	1.99	1.88	0.38	
	N(%)	1.84	1.77	4.95	1.68	
Water hyacinth	P(%)	0.13	0.25	0.34	0.30	
	K(%)	1.91	0.98	1.99	0.82	
	N(%)	1.03	0.75	-	-	
Bulrush	P(%)	0.05	0.19	-	-	
	K(%)	0.97	1.12	-	-	
E1 1 W	N(%)	2.35*	2.81	2.00	1.97	
Elodea, Water	P(%)	0.18*	0.14	0.25	0.45	
hyacinth	K(%)	2.36*	1.90	1.70	1.59	
Elodea, Water	N(%)	1.91*	1.54	1.77	1.05	
hyacinth,	P(%)	0.14*	0.26	0.31	0.09	
Bulrush	K(%)	1.90*	1.71	1.25	1.33	

Notice *: Assumed value from mixing ratio

(2) Possible Compost use

As mentioned before, at present the trials to revitalize agriculture by harvesting and recycling aquatic plants have been implemented throughout of the world as compost. Especially, Water

Hyacinth is used as raw material of compost. Then, according to this results of experiment, Elodea is also possible to employ as raw material of compost. Because;

- (a) There are many actual results for compost use produced by aquatic plants around the globe.
- (b) It is not necessary to consider toxicity of composting products, because concentration of heavy metals are much lower than the required quality.
- (c) Reduction rate of weight and volume is sufficiently enough for composting.
- (d) Atmospheric temperature in the Study Area is sufficiently enough for composting under the full scale condition.
- (e) Regarding to this experimental results, nutrients content of nitrogen (N) and potassium (K) are adequate to use as compost. On the other hand, final condition of phosphorus (P) is lower than required concentration, therefore, after addition of phosphorus, Water Hyacinth and Elodea can be used as compost.

Layout of Experimental Equipment

Case-	
Case-19	
Case-17	
Case-18	
Case-16	

Table II.1 Initial Condition of Composting Experiment

Case-15	
Case-10	
Case-14	
Case-12	
Case-9	
Case-13	
Case-7 Case-8 Case-11 Case-13 Case-9 Case-12 Case-14 Case-10 Case-15	
Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

		:																				

		Treatment	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	With Pipe	Manual Mix									
	n Rate (%)	Bulrush (%)			79.01	1	79.01	1		79.01	1	71.33			79.01		71.33	I	L	79.01		79.01
•	Initial Weight Reduction Rate (%)	Water hyacinth (%)		99.02		7001	7001		99.02		80.90	96.39		80.90		80.90	96.39		80.90		80.90	80.90
•	Initial Wei	Elodia (%)	20.26			95.01	95.01	95.07			95.07	48.52	95.07			95.07	48.52	95.07			95.07	95.07
		Initial Height (m)	1.00	1.01	1.01	1.03	1.05	1.02	1.07	1.03	86.0	1.00	1.02	1.02	1.00	66'0	86'0	1.00	86.0	0.94	0.95	0.97
		Initial Weight (Lib)	311.8	556.75	126.5	406.0	240.5	368	655.5	136.0	420.0	160.0	326.5	500.5	137.5	440.0	211.0	336.0	543.5	143.0	409.5	232
		Initial Date	1999/9/15	1999/9/15	1999/9/15	1999/9/15	51/6/6661	1999/9/15	21/6/6661	\$1/6/6661	1999/9/17	12/6/661	1999/9/16	1999/9/17	91/6/6661	1999/9/17	1999/9/21	1999/9/16	1999/9/17	1999/9/16	1999/9/17	1999/9/17
		Dung (%)						\$	5	5	5	5	10	10	10	10	10	10	10	10	10	10
	Composition	Bulrush (%)			100		EE			100		33			100		33			100		33
	Comp	Water hyacinth (%)		100		50	33		100		09	33		100		50	33		100		50	33
		Elodia (%)	100			95	33	100			920	33	100			920	33	100			20	33
		Case No.	1	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20

Fuquene	Lake
Ţ	

Layout of Experimental Equipment

Case-20
Case-19
Case-17
Case-18
Case-16

$\overline{}$
$\overline{}$
$\overline{}$
periment
Ξ
5.0
postin
Comp
_
0
Data
믕
Field
Ŋ
11.2
Table 1

Case-15
4 Case-10 Case-15
Case-14
3 Case-9 Case-12 Case-14
Case-9
Case-13
Case-11 Case-13
Case-8
Case-7
Case-6
Case-5
Case-4
Case-3
Case-2
Case-1

, , , , , , , , , , , , , , , , , , ,	Kemarks																				
	Volume (m³)	0.935	0.888	0.893	0.840	0.893	0.850	0.940	0.903	0.855		0.873	0.915	0.903	0.883		0.797	0.850	0.905	0.810	0.928
	Odor	normal		normal	normal	normal	normal		normal	normal	normal	normal	normal								
	Hd	7.05	7.07	7.09	7.10	7.10	7.10	7.11	7.11	7.08		7.10	7.09	7.14	7.09		7.11	7.06	7.06	7.06	7.05
	Temp (°C)	17.0	19.0	19.0	19.0	18.5	18.5	19.0	17.0	20.0		18.5	17.0	16.0	18.0		27.0	27.0	28.0	29.0	33.0
d Data	Height-4 (m) Av.Height(m)	0.935	0.888	0.893	0.840	0.893	0.850	0.940	0.903	0.855		0.873	0.915	0.903	0.883		0.797	0.850	0.905	0.810	0.928
Field	Height-4 (m)	96'0	0.87	0.83	08.0	96.0	08.0	0.93	98.0	0.82		0.80	0.93	0.89	0.88		0.84	0.86	0.95	0.80	06:0
	Height-3 (m)	0.93	0.82	0.87	0.82	0.80	0.89	0.93	0.85	0.84		0.82	06.0	0.88	0.87		.0.85	0.87	06.0	0.82	0.93
	Height-2 (m)	0.94	0.89	0.89	0.84	0.87	98.0	0.94	0.94	06:0		0.90	0.93	0.91	06.0		0.72	0.84	0.00	0.82	96.0
	Height-1 (m)	0.91	0.97	86'0	06.0	0.94	0.85	96.0	96.0	98.0		0.97	06.0	0.93	0.88		0.83	0.83	0.87	08.0	0.92
	Date	1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21		1999/9/21	1999/9/21	1999/9/21	1999/9/21		1999/9/21	1999/9/21	1999/9/21	1999/9/21	1999/9/21
ON ear	Case INO.	1	7	8	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Layout of Experimental Equipment

Case-16 Case-18 Case-17 Case-19 Case-20

Case-15	
Case-10	
Case-14	
Case-9 Case-12 Case-14 Case-10 Case-15	
Case-9	
Case-13	
Case-11 Case-13	
Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

				Taure III		1	9		,	
j				Field	ld Data					Romarks
Ξ	Height-1 (m)	Height-2 (m)	Height-3 (m)	Height-4 (m)	Height-4 (m) Av.Height(m)	Temp (°C)	pH	Odor	Volume (m ³)	INCLIENT INS
	0.655	0.605	09:0	0.55	0.603	27.0	7.02	normal	09'0	Many small flies swarmed
	0.87	0.895	0.79	0.885	098.0	20.0	7.05	normal	098.0	Many small flies swarmed
_	0.00	0.935	0.855	0.895	968'0	21.0	7.05	normal	968'0	
	0.685	0.735	99.0	69'0	0.693	20.0	7.04	normal	669'0	
-	0.91	0.87	0.865	98.0	928.0	21.0	7.05	normal	928'0	
1999/9/29	0.535	0.46	0.51	0.445	0.488	25.0	7.04	normal	0.488	Many small flies swarmed
1999/9/29	0.915	506.0	88.0	98.0	0.891	23.0	7.03	normal	0.891	Many small flies swarmed
1999/9/29	0.915	0.875	0.84	0.93	0.890	18.0	7.03	normal	0.890	
1999/9/29	0.675	99.0	29.0	565'0	059'0	24.0	7.02	normal	0.650	
1999/9/29	0.91	06.0	0.895	88'0	968'0	23.0	7.03	normal	968.0	
62/6/6661	0.635	995.0	0.585	0.54	0.581	26.0	7.03	normal	0.581	Many small flies swarmed
1999/9/29	0.85	0.87	98.0	598'0	098'0	20.0	7.02	normal	098.0	Many small flies swarmed
1999/9/29	0.99	0.88	68.0	9835	668'0	18.0	7.00	normal	668.0	
1999/9/29	0.73	0.635	0.745	62.0	0.725	24.0	7.02	normal	0.725	
1999/9/29	0.92	0.895	0.865	08'0	0.870	24.0	7.00	normal	0.870	
62/6/6661	0.45	0.40	0.415	9£"0	0.406	22.0	7.03	normal	0.406	
1999/9/29	0.78	0.75	0.775	0.755	992'0	24.0	7.02	normal	0.765	
1999/9/29	0.88	0.79	0.84	0.77	0.820	24.0	7.02	normal	0.820	
1999/9/29	0.525	0.505	0.51	0.515	0.514	29.0	7.02	normal	0.514	
1999/9/29	0.855	28 U	V 87	0.815	2180	0.46	7.07	normal	0.843	

Layout of Experimental Equipment

Case-20
Case-19
Case-17 Case-19
Case-18
Case-16

Table II.4 Field Data of Composting Experiment (3)

	1
Case-15	
Case-10	
Case-14	
Case-12	
Case-9	
Case-7 Case-8 Case-11 Case-13 Case-9 Case-12 Case-14 Case-10 Case-15	
Case-11	
Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

Domoste	reillai KS	Many small flies swarmed	Many small flies swarmed				Many small flies swarmed	Many small flies swarmed				Many small flies swarmed	Many small flies swarmed					9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
	Volume (m³)	0.418 M	M 867.0	0.893	0.546	808.0	0.353 M	0.829 M	0.846	0.534	0.831	0.420 M	0.789 M	0.841	0.540	0.825	0.226	0.650	0.750	0.383	992.0
	Odor	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal
	Hd	-	-	-	٠	-	-	-	-	-	-	ı	,	ı	-	,	,		-	•	ŀ
	Temp (°C)	23.0	18.5	15.0	23.0	16.0	18.0	19.0	15.5	20.0	19.0	19.0	19.0	16.0	20.5	19.0	23.0	21.0	21.0	21.0	22.0
Data	(m) Av.Height(m)	0.418	0.798	0.893	0.546	0.808	0.353	0.829	0.846	0.534	0.831	0.420	0.789	0.841	0.540	0.825	0.226	0.650	0.750	0.383	0.766
Field Data	Height-4 (m)	0.40	0.81	0.88	0.53	0.75	0.345	0.805	0.83	0.49	0.815	0.39	0.77	0.82	0.52	0.82	0.22	0.72	0.72	0.450	0.780
	Height-3 (m)	0.435	0.74	0.925	0.49	0.815	0.355	0.795	0.815	0.565	0.845	0.435	0.79	0.855	0.535	0.75	0.275	0.58	0.77	0.37	0.72
		0.435	0.83	0.865	0.59	0.845	0.355	68.0	0.895	0.55	0.82	0.465	0.795	0.82	0.585	0.87	0.21	69.0	0.79	0.38	0.78
	Height-1 (m) Height-2 (m)	0.40	0.81	06.0	0.575	0.82	0.355	0.825	0.845	0.53	0.845	0.395	08.0	0.87	0.52	98.0	0.205	0.61	0.725	0.330	0.785
	Date	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	1999/10/6	9/01/6661	9/01/6661	1999/10/6	1999/10/6	1999/10/6	1999/10/6	9/01/6661	1999/10/6
Con No	Case INO.	1	2	3	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20

Layout of Experimental Equipment

Case-20	
Case-19	
Case-17	
Case-18	
Case-16	

Case-12 | Case-14 | Case-10 | Case-15

Case-9

Case-8 Case-11 Case-13

Case-7

Case-6

Case-5

Case-4

Case-3

Case-2

Case-1

Table II.5 Field Data of Composting Experiment (4)

0 14 0 0 0 C					Field	d Data					5
Case INO.	Date	Height-1 (m)	Height-1 (m) Height-2 (m) Height-3 (m)	Height-3 (m)	Height-4 (m)	Height-4 (m) Av.Height(m) Temp (°C)	Temp (°C)	Hd	Odor	Volume (m ³)	Kemarks
1	1999/10/13	0.35	0.33	0.360	0.35	0.348	18.0	,	normal	0.418	Many small flies swarmed
2	1999/10/13	0.74	29.0	0.765	0.75	0.731	17.0	-	normal	0.798	Many small flies swarmed
3	1999/10/13	0.795	0.84	0.83	0.875	0.835	15.0	•	normal	0.893	
4	1999/10/13	0.495	0.495	0.425	0.51	0.520	18.0	1	normal	0.546	
5	1999/10/13	0.74	0.81	0.740	0.725	0.754	15.0		normal	0.808	
9	1999/10/13	0.26	0.335	0.29	0.310	0.299	17.0	•	normal	0.353	Many small flies swarmed
7	1999/10/13	0.72	0.755	92.0	0.78	0.754	19.0		normal	0.829	Many small flies swarmed
8	1999/10/13	0.81	8.0	98.0	0.865	0.834	14.0	,	normal	0.846	
6	1999/10/13	0.476	0.50	0.46	0.48	0.479	17.0	1	normal	0.534	
10	1999/10/13	0.76	0.82	0.83	0.785	0.799	14.0	1	normal	0.831	
11	1999/10/13	0.31	0.405	0.395	0.37	0.370	17.0	-	normal	0.420	Many small flies swarmed
12	1999/10/13	0.69	0.725	0.72	0.725	0.715	19.0	-	normal	0.789	Many small flies swarmed
13	1999/10/13	0.755	0.73	0.72	0.725	0.733	16.0		normal	0.841	
14	1999/10/13	0.47	0.510	0.53	0.45	0.490	19.0	-	normal	0.540	
15	1999/10/13	0.815	0.775	0.79	0.82	0.800	14.0		normal	0.825	
16	1999/10/13	0.195	0.20	0.16	0.125	0.170	16.0	ı	normal	0.226	
17	1999/10/13	0.495	0.53	0.53	99.0	0.554	19.0	ı	normal	0.650	
18	1999/10/13	0.705	0.75	0.685	0.74	0.720	17.0	-	normal	0.750	
19	1999/10/13	0.290	0.255	0.24	0.330	0.279	19.0	ı	normal	0.383	
20	1999/10/13	0.765	0.715	0.735	0.730	0.736	17.0	1	normal	992'0	

Layout of Experimental Equipment

Case-20	
Case-19	
Case-17	
Case-18	
Case-16	

Case-15	
Case-12 Case-14 Case-10 Case-15	
Case-14	
Case-12	
Case-9	
Case-13	
Case-11 Case-13 Case-9	
Case-7 Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

	Damaele	Nelliai KS	Many small flies swarmed	Many small flies swarmed				Many small flies swarmed	Many small flies swarmed				Many small flies swarmed	Many small flies swarmed								
(5)		Volume (m³)	0.268	0.683	0.791	0.436	0.744	0.266	0.711	0.791	0.436	0.753	0.316	0.678	0.784	0.448	0.759	0.154	0.460	0.725	0.265	0.675
.6 Field Data of Composting Experiment (5)		Odor	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal
osting Ex		Hd	-	-	-	-	-	-	•			•	-	•	ı	,	1	ı	ı	•	ı	1
a of Comp		Temp (°C)	19.0	19.0	20.0	18.0	18.0	18.0	21.0	19.0	19.0	21.0	18.0	21.0	18.0	20.0	19.0	17.0	21.0	16.0	20.0	17.0
Field Dat	ield Data	(m) Av.Height(m)	0.268	0.683	0.791	0.436	0.744	0.266	0.711	0.791	0.436	0.753	0.316	829.0	0.784	0.448	0.759	0.154	0.460	0.725	0.265	0.675
Table II.6	Field	Height-4 (m)	0.23	0.715	0.775	0.44	0.71	0.250	0.68	0.77	0.39	0.735	0.29	0.63	0.74	0.435	0.79	0.15	0.44	0.67	0.280	0.663
T		Height-3 (m)	0.280	0.755	0.815	0.455	082.0	0.255	0.745	0.835	0.47	0.77	0.355	0.72	8.0	0.465	0.75	0.175	0.465	0.765	0.24	99.0
		Height-1 (m) Height-2 (m)	0.28	0.635	0.785	0.465	0.73	0.275	0.715	0.79	0.44	0.74	0.290	0.67	0.83	0.450	0.765	0.12	0.465	0.74	0.25	0.685
		Height-1 (m)	0.28	0.625	0.790	0.385	0.755	0.285	0.705	0.77	0.445	0.77	0.335	69.0	0.765	0.44	0.73	0.175	0.468	0.725	0.290	69:0
		Date	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20	1999/10/20
	Case No	Case INO.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Layout of Experimental Equipment

Case-20
Case-19
Case-17
Case-18
Case-16

Table II.7 Field Data of Composting Experiment (6)

Case-15	
Case-10	
Case-14	
Case-12	
Case-9	
Case-13	
Case-7 Case-8 Case-11 Case-13 Case-9 Case-12 Case-14 Case-10 Case-15	
Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

Danielo	Nellial IN																				
	Volume (m ³)	0.288	899.0	608.0	0.425	0.732	0.275	0.671	0.807	0.415	0.743	0.322	0.631	0.772	0.412	0.727	0.157	0.439	0.736	0.239	0.656
	Odor	normal	normal	normal	normal	normal	normal	lamron	normal	leunou	normal	leunou	normal	normal	normal	normal	normal	leunou	normal	normal	normal
	Hd	ı	•	ı	1		•	ŀ	ŀ	P	-	Þ	ı	1	ì	1	ŀ	. 1		1	
	Temp (°C)	18.0	20.0	19.0	18.0	19.0	18.0	21.0	20.0	19.0	23.0	19.0	21.0	19.0	20.0	24.0	18.0	21.0	19.0	17.0	18.0
Field Data	Height-1 (m) Height-2 (m) Height-3 (m) Height-4 (m) Av.Height(m) Temp (°C)	0.288	0.668	608.0	0.425	0.732	0.275	0.671	0.807	0.415	0.743	0.322	0.631	0.772	0.412	0.727	0.157	0.439	0.736	0.239	0.656
Field	Height-4 (m)	90:00	0.655	0.830	0.430	0.733	0.265	0.720	0.820	0.450	0.745	0.313	0.640	0.775	0.405	0.735	0.108	0.470	0.705	0.260	0.680
	Height-3 (m)	008.0	0.630	0.805	0.390	0.763	0.295	099.0	0.803	0.450	0.750	0.360	0.635	0.730	0.458	0.753	0.163	0.420	0.763	0.240	0.650
	Height-2 (m)	0.285	0.690	0.820	0.445	0.725	0.255	0.625	0.860	0.363	0.760	0.305	0.650	0.780	0.405	0.740	0.215	0.475	0.750	0.240	0.685
	Height-1 (m)	0.260	0.695	0.780	0.435	0.708	0.285	0.680	0.745	0.398	0.715	0.310	0.600	0.803	0.380	0.680	0.143	0.390	0.725	0.218	0.610
	Date	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27	1999/10/27
Cago Mo	Case INO.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Fuquene	Lake
1	

Layout of Experimental Equipment

Case-20	
Case-19	
Case-17	
Case-18	
Case-16	

Ĺ	٠,
eriment (
N.	
postino	
Comm)
5	,
Data	
Z div	1
× =	•
3 h	
-	4

Case-15	
Case-10	
Case-14	
Case-9 Case-12 Case-14	
Case-9	
Case-13	
Case-11	
Case-8 Case-11	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

	Domostics	Neillai No																				
		Volume (m³)	0.251	0.618	0.785	98£.0	0.694	0.243	0.635	622.0	0.382	0.719	60£.0	625.0	0.741	0.370	689'0	0.139	986.0	0.703	0.217	0.638
		Odor	Normal																			
		Hd	ı	ı	-	1	-		1	ı	1	-	_	1	-	-	-	-	-	ı	ī	1
1		Temp (°C)	17.0	19.0	20.0	18.0	21.0	18.0	22.0	20.0	20.0	24.0	19.0	21.0	19.0	21.0	25.0	19.0	21.0	19.0	20.0	20.0
	Field Data	m) Av.Height(m)	0.251	0.618	0.785	0.386	0.694	0.243	0.635	0.779	0.382	0.719	0.309	625.0	0.741	0.370	689'0	0.139	986.0	0.703	0.217	0.638
	Field	Height-4 (m)	0.225	0.615	092.0	0.410	0.715	0.248	0.685	0.820	0.363	0.708	0.343	0.595	0.788	0.430	092.0	0.180	0.393	0.720	0.193	0.655
		Height-3 (m)	0.300	0.590	092.0	0.330	0.650	0.290	0.610	0.728	0.408	0.738	0.320	0.568	0.738	0.383	0.710	0.148	0.395	0.710	0.238	0.620
		Height-1 (m) $\left \text{Height-2 (m)} \right \text{Height-3 (m)}$	0.245	0.665	0.810	0.410	0.715	0.225	0.650	0.793	0.415	0.740	0.325	0.605	0.768	0.368	0.650	0.125	0.380	0.668	0.188	0.675
		Height-1 (m)	0.235	0.603	0.810	0.395	869.0	0.210	0.595	0.775	0.343	0.690	0.248	0.550	0.673	0.300	0.635	0.103	0.375	0.715	0.250	0.603
		Date	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4	1999/11/4
	Coso Mo	CASC INC.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Layout of Experimental Equipment

Case-20	
Case-19	
Case-17	
Case-18	
Case-16	

Table II.9 Field Data of Composting Experiment (8)

Case-15
Case-9 Case-12 Case-14 Case-10 Case-15
Case-14
Case-12
Case-9
S Case-11 Case-13
Case-11
Case-7 Case-8
Case-7
Case-6
Case-5 Case-6
Case-4
Case-3
Case-2
Case-1

	Kemarks																				
	Volume (m ³)	0.20375	0.554	0.754	0.339	899.0	0.232	0.570	0.701	60£.0	0.691	0.251	0.510	0.695	0.328	659.0	0.109	0.310	0.691	0.161	0.622
	Odor	Normal																			
	Hd	į.	1	,	,	,	-		,	,	,	,		ı	1	1	,	. 1			_
	Temp (°C)	16.0	17.0	17.0	16.0	16.0	17.0	19.0	17.0	17.0	20.0	17.0	18.0	17.0	18.0	19.0	17.0	18.0	16.0	18.0	17.0
eld Data	m) Av.Height(m)	0.204	0.554	0.754	0.339	899'0	0.232	0.570	0.701	0.306	0.691	0.251	0.510	0.695	0.328	0.659	0.109	0.310	0.691	0.161	0.622
Field		0.195	0.570	0.745	0.320	0.665	0.240	0.575	099.0	0.300	0.700	0.255	0.505	0.705	0.343	0.670	0.070	0.250	0.650	0.190	0.595
	Height-1 (m) Height-2 (m) Height-3 (m) Height-4 (0.225	0.560	092.0	0.383	0.625	0.215	0.555	0.668	0.278	0.670	0.220	0.485	0.615	0.275	0.605	0.178	0.350	0.743	0.160	0.643
	Height-2 (m)	0.16	0.535	0.760	0.365	0.685	0.185	0.585	092.0	0.330	0.685	0.310	0.530	0.755	0.345	0.675	0.095	0.320	0.690	0.170	0.625
	Height-1 (m)	0.235	0.550	0.750	0.290	0.695	0.288	0.565	0.715	0.330	0.710	0.220	0.520	0.705	0.350	0.685	0.095	0.320	0.080	0.125	0.625
	Date	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17	1999/11/17
Coco No	Case INO.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Fuquene	Lake
1	

Layout of Experimental Equipment

Case-16 Case-18 Case-17 Case-19 Case-20

Table II.10 Field Data of Composting Experiment (9)

0 Case-15	
t Case-10	
Case-14	
Case-12 Case-14	
Case-9	
Case-13	
Case-8 Case-11 Case-13 Case-9	
Case-8	
Case-7	
Case-6	
Case-5	
Case-4	
Case-3	
Case-2	
Case-1	

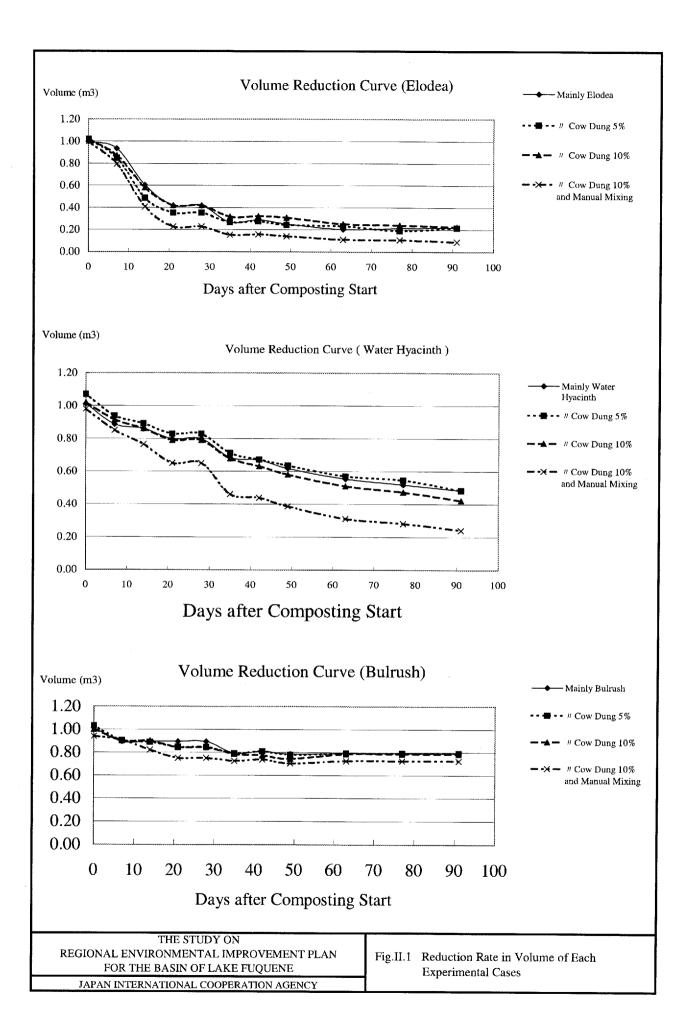
Layout of Experimental Equipment

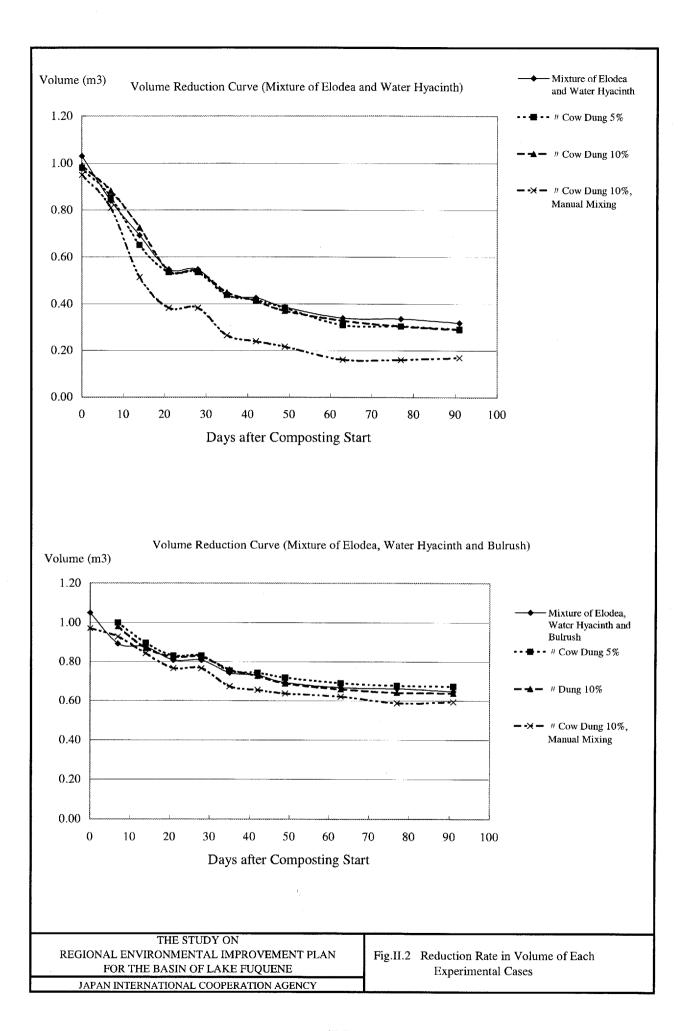
Case-16 Case-18 Case-17 Case-19 Case-20

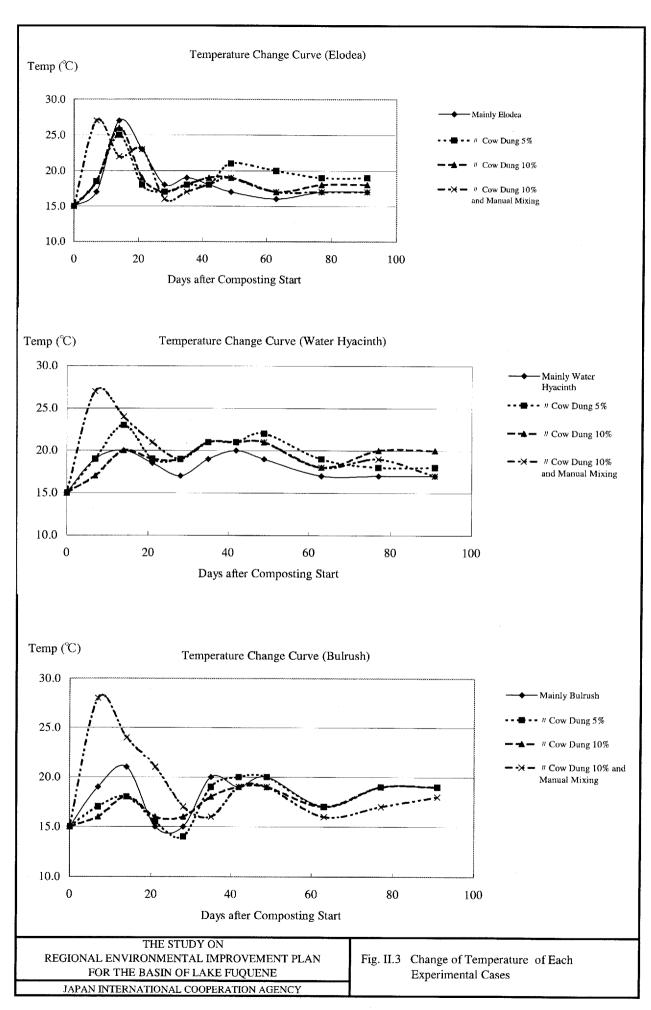
Table II.11 Field Data of Composting Experiment (10)

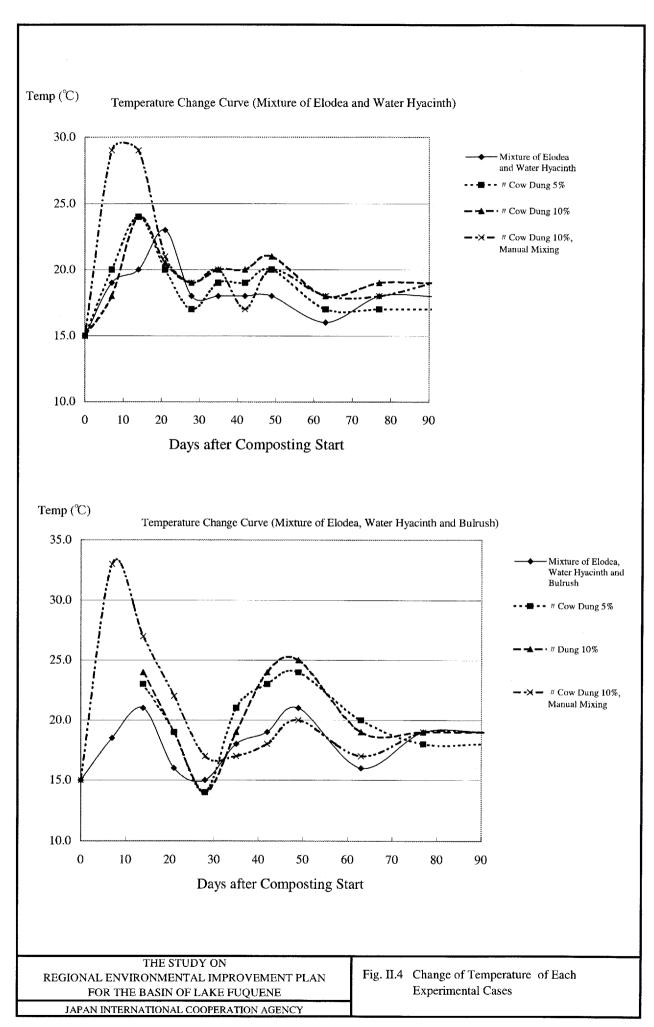
Case-15
Case-10
Case-14
Case-12
Case-9
Case-7 Case-8 Case-11 Case-13 Case-9 Case-12 Case-14 Case-10 Case-15
Case-11
Case-8
Case-7
Case-6
Case-5
Case-4
Case-3
Case-2
Case-1

Domoste	NCHIAI NO																				
	Volume (m³)	0.219	0.484	0.740	0.319	0.649	0.217	0.483	0.720	0.292	0.674	0.226	0.422	0.703	0.290	0.639	0.089	0.241	0.684	0.170	0.594
	Odor	Normal																			
	Hd	1	-	-	ı	1	-	-	-	-	-		-	ı	1	ŀ	1	,	ŀ	ı	•
	Temp (°C)	17.0	17.0	19.0	18.0	19.0	19.0	18.0	19.0	17.0	18.0	18.0	20.0	19.0	19.0	19.0	17.0	17.0	18.0	19.0	19.0
d Data		0.219	0.484	0.740	0.319	0,649	0.217	0.483	0.720	0.292	0.674	0.226	0.422	0.703	0.290	0.639	0.089	0.241	0.684	0.170	0.594
Field	Height-4 (m) Av.Height(m)	0.230	0.465	0.725	0.345	0.670	0.178	0.465	0.728	0.335	0.610	0.208	0.395	0.735	0.270	0.640	080'0	0.255	0.650	0.145	0.620
	Height-3 (m)	0.280	0.480	0.770	0.345	0.673	0.275	0.458	099:0	0.285	0.695	0.245	0.410	0.780	0.328	0.638	0.075	0.233	0.795	0.185	0.585
	Height-2 (m)	0.195	0.515	0.750	0.325	0.630	0.195	0.520	0.723	0.265	0.710	0.270	0.433	0.675	0.273	0.620	0.163	0.275	0.640	0.175	0.615
	Height-1 (m) Height-2 (m) Height-3 (m)	0.170	0.475	0.715	0.263	0.625	0.220	0.488	0.770	0.283	0.680	0.180	0.450	0.620	0.290	099.0	0.038	0.200	0.650	0.175	0.555
	Date	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17	1999/12/17
O. M.	Case No.		2	т	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20


Table II 12 Analysis Data of Each Experimental Cases


Bacteria	Number	(MPN/100g)	2.4×10^4	4.0×10^4	4.6×10^4	9.3×10^3	2.4×10^4	4.0×10^4	4.0×10^4	1.1×10^{5}	4.0×10^4	4.0×10^4	9.0×10^4	2.1×10^3	2.4×10^4	7.0×10^4	2.4×10^4	9.0×10^4	4.0×10^4
	Mg (%)		0.52	0.19	0.20	0.27	0.27	0.42	0.38	0.49	0.49	0.42	0.26	0.39	0.23	0.12	9.02	0.46	0.15
	K (%)		1.99	86.0	1.12	1.90	1.71	3.43	0.87	2.48	2.58	1.88	10.99	1.70	1.25	0.38	0.82	1.59	1.33
	P (%)		0.72	0.25	0.19	0.14	0.26	0.71	0.08	0.44	0.3	0.61	3.43	0.25	0.31	0.12	0.30	0.45	60'0
	N (%)		4.73	1.77	0.75	2.81	1.54	5.58	2.73	2.73	3.06	2.80	4.95	2.00	1.77	1.15	1.68	1.97	1.05
	C(%)		22.3	19.6	3.2	15.1	10.3	14.0	20.9	16.4	14.2	20.6	13.0	16.2	8.0	20.9	18.4	16.3	4.9
Ach Content	(%)	(07.)	61.7	66.2	94.5	74.1	82.3	75.9	64.0	71.7	75.5	64.5	77.6	72.1	86.2	64.0	68.3	71.9	91.6
Moieture	Content (%)	Colliciii (70)	87.9	85.5	13.4	85.7	77.8	88.4	84.4	77.0	40.3	84.4	87.7	60.4	57.9	41.9	68.5	0.09	10.1
	Case No.		1	2	3	4	5	9	7	6	10	11	12	14	15	16	17	19	20


*Dry Weight Base


Table II.13 Comparison between Initial Condition and Final Condition of Weight and Volume

				Initial C	Initial Condition of Weight and Volume	Veight and V	/olume	Final C	ondition of V	Final Condition of Weight and Volume	olume,	Reduction
Š.	Material for Composting	Additive	Condition		(1 week after sampling)	sampling)			3 months art	(3 months after sampling)		Katio of Weight
				Weight (Lib)	Weight (kg)	Volume (m³)	Density (kg/m³)	Weight (Lib)	Weight (kg)	volume (m ³)	Density (kg/m³)	(%)
Т	Mainly Elodea	None	1-	311.8	155.9	0.995	155.9	107.0	53.5	0.219	244.6	34.3
2	Mainly Water Hyacinth	None	-1	556.75	278.4	1,005	275.6	326.0	163.0	0.484	337.0	58.6
ε	Mainly Bulrush	None	1.	126.5	63.3	1.010	62.6	62.3	31.1	0.740	42.1	49.2
4	Mixture of Elodea and Water Hyacinth	None		406	203.0	1.030	197.1	177.0	88.5	0.319	277.1	43.6
5	Mixture of Elodea, Water Hyacinth and Small Emergent Plants	None	1-	240.5	120.3	1.045	114.6	131.5	65.8	0.649	101.3	54.7
9	Mainly Elodea	Cow Dung: 5%	17	368	184.0	1.020	180.4	85.0	42.5	0.217	196.0	23.1
7	Mainly Water Hyacinth	Cow Dung: 5%	1-	655.5	327.8	1.070	306.3	362.0	181.0	0.483	375.1	55.2
∞	Mainly Bulrush	Cow Dung: 5%	-1	136	0.89	1.033	6.59	59.0	29.5	0.720	41.0	43.4
6	Mixture of Elodea and Water Hyacinth Cow Dung: 5%	Cow Dung: 5%	-1	420	210.0	0.980	214.3	170.0	85.0	0.292	291.2	40.5
10	Mixture of Elodea, Water Hyacinth and Small Emergent Plants	Cow Dung: 5%	7-	160	80.0	1.000	80.0	69.5	34.8	0.674	51.6	43.4
11	Mainly Elodea	Cow Dung: 109	-1	326.5	163.3	1.020	160.0	122.5	61.3	0.226	271.5	37.5
12	Mainly Water Hyacinth	Cow Dung: 109	-1	500.5	250.3	1.020	245.3	284.0	142.0	0.422	336.6	56.7
13	Mainly Bulrush	Cow Dung: 109	-1	137.5	8.89	1.000	68.8	60.5	30.3	0.703	43.1	44.0
14	Mixture of Elodea and Water Hyacinth Cow Dung: 109	Cow Dung: 109	-1	440	220.0	0.985	223.4	173.0	86.5	0.290	298.3	39.3
15	Mixture of Elodea, Water Hyacinth and Small Emergent Plants	Cow Dung: 109	1-	211	105.5	0.978	107.9	0.66	49.5	0.639	77.4	46.9
16	Mainly Elodea	Cow Dung: 109	-2	336	168.0	1.003	167.6	35.0	17.5	0.089	197.2	10.4
17	Mainly Water Hyacinth	Cow Dung: 109	-2	543.5	271.8	0.983	276.6	171.0	85.5	0.241	355.3	31.5
18	Mainly Bulrush	Cow Dung: 109	-2	143	71.5	0.940	76.1	63.5	31.8	0.684	46.4	44.4
19	Mixture of Elodea and Water Hyacinth Cow Dung: 109	Cow Dung: 109	-2	409.5	204.8	0.953	215.0	70.0	35.0	0.170	205.9	17.1
20	Mixture of Elodea, Water Hyacinth and Small Emergent Plants	Cow Dung: 109	-2	232	116.0	0.965	120.2	88.0	44.0	0.594	74.1	37.9

