APPENDIX E

WATER QUALITY AND POLLUTION MECHANISM

APPENDIX E

WATER QUALITY AND POLLUTION MECHANISM

Table of Contents

CHAPTER	I	EXISTING RIVER AND LAKE WATER QUALITY			
	1.1	1.1 Available Water Quality Data			
		1.1.1 Sampling Location and Frequency			
		1.1.2 Water Quality in the Past			
	1.2	Supplementary Water Quality Observation in Rainy Season			
		1.2.1 Water Quality Observation			
		1.2.2 Deposit Quality Observation			
		1.2.3 Biological Observation in the Lake			
		1.2.4 Transparency, Releasing, Production and Settling Test			
		1.2.5 Wastewater Quality Observation of Sewerage			
		and Factories			
	1.3	Supplementary Water Quality Observation in Dry Season			
		1.3.1 Water Quality Observation			
		1.3.2 Biological Observation in the Lake			
		1.3.3 Transparency, Production and Settling Test			
		1.3.4 Wastewater Quality Observation of Sewerage			
		and Factories			
	1.4	Evaluation of Supplementary Observation Results			
		1.4.1 River and Lake Water Quality			
		1.4.2 Deposit Quality			
		1.4.3 Plankton and Benthos			
		1.4.4 Settling, Releasing and Production Rate			
		1.4.5 Wastewater Quality			
	1.5	Standards of Surface Water Quality and Wastewater Effluents			
		1.5.1 National Standards			
		1.5.2 CAR Standards			
CHAPTER	II	EXISTING POINT POLLUTION LOAD GENERATION			
	2.1	Inventory of Existing Point Pollution Sources			
		2.1.1 Sewerage System			
		2.1.2 Slaughterhouse			
		2.1.3 Industrial Establishment			
	2.2	Existing Pollution Load Generation/Effluent			
		2.2.1 Generated/Effluent Pollution Load			

		2.2.2	Point Pollution Load Effluent to Rivers	E-31
	2.3	Future	Pollution Load Generation/Effluent	E-32
		2.3.1	Domestic Pollution	E-32
		2.3.2	Slaughterhouse	E-32
		2.3.3	Industry	E-33
		2.3.4	Future Point Pollution Load to Rivers	E-34
CHAPTER		WAT	ER POLLUTION MECHANISM	E-35
	3.1	Polluti	on Load Runoff Mechanism	E-35
		3.1.1	General	E-35
		3.1.2	Modeling of the Basin	E-35
	3.2	Exist	ing Pollution Load Generation and Runoff	E-36
		3.2.1	Existing Pollution Load Generation	E-36
		3.2.2	Existing Pollution Load Runoff	E-38
	3.3	Futur	re Pollution Load Generation and Runoff	E-43
		3.3.1	Future Pollution Load Generation	E-43
		3.3.2	Future Pollution Load Runoff	E-44
	3.4	Wate	r Quality Simulation	E-48
		3.4.1	Methodology	E-48
		3.4.2	Simulated River Water Quality	E-51
		3.4.3	Simulated Lake Water Quality	E-51
REFERENCI	ES	•••••		E-58

List of Tables

E-T5
E-T7
is E-T10
E-T11
E-T12
E-T13
E-T16
E-T17
E-T18
E-T19
E-T20
E-T21
is E-T25
E-T26
E-T29
E-T30
E-T31
E-T32
E-T34
E-T35
E-T36
E-T37
E-T38
E-T39
E-T40
E-T41
E-T43
E-T44
E-T45
E-T46
E-T47

Table E.2.13	Future Pollution Load Effluent from Dairy Industry	E-T48
Table E.2.14(1)	Future Influent to Sewerage System without Project	E-T50
Table E.2.14(2)	Future Influent to Sewerage System with Project	E-T51
Table E.2.15	Future Pollution Load Effluent from Sewerage System	E-T52
Table E 2.16(1)	Future Point Pollution Load Effluent Flowing into Rivers without Project	E-T53
Table E.2.16(2)	Future Point Pollution Load Effluent Flowing into Rivers with Project	E-T54
Table E.3.1	Livestok, Land Area and Rural Population Data of Each Sub-Basin	E-T55
Table E.3.2	Unit Pollution Load Generation of Non-point Sources	E-T56
Table E.3.3	Existing Pollution Load Generation	E-T57
Table E.3.4	Existing Pollution Load Runoff in Rainy Season	E-T58
Table E.3.5	Existing Pollution Load Runoff in Dry Season	E-T59
Table E.3.6	Future Pollution Load Generation (Without Project)	E-T60
Table E.3.7	Future Pollution Load Generation (With Project)	E-T61
Table E.3.8	Future Pollution Load Runoff in Rainy Season (Without Project)	E-T62
Table E.3.9	Future Pollution Load Runoff in Dry Season (Without Project)	E-T63
Table E.3.10	Future Pollution Load Runoff in Rainy Season (With Project)	E-T64
Table E.3.11	Future Pollution Load Runoff in Dry Season (With Project)	E-T65
	<u>List of Figures</u>	
Fig. E.1.1	Sampling Location of Available Data	E-F1
Fig. E.1.2	Sampling Location of Supplementary Water Quality Observation	E-F2
Fig. E.1.3	Water Quality and Transparency-Water Depth Curve in Rainy Season	E-F3
Fig. E.1.4	Water Quality and Transparency- Water Depth Curve in Dry Season	E-F4
Fig. E.1.5	Monthly Change of Phytoplankton Population in Lake, Japan	E-F5
Fig. E.1.6	Water Quality Classification of River Sections in the Study Area	E-F6
Fig. E.2.1	Municipalities in Study Area	E-F7
Fig. E.2.2	Relationship of BOD to COD, T-N and T-P in Dairy Industry	E-F8
Fig. E.2.3	Relationship of BOD to COD, T-N and T-P in Sewerage Effluent	E-F9
Fig. E.3.1	Location of the Objective Basin and Divided Sub-Basin	E-F10
Fig. E.3.2	Schematic Diagram for the Simulation of Pollution Load Runoff and Water Quality	E-F11
Fig. E.3.3	Pollution Load Generation of Each Sub-Basin	E-F12
Fig. E.3.4	Ratio of Each Pollution Load Generation in the Upper Area of the Fuqune Lake	E-F13
Fig. E.3.5	Pollution Load Runoff of Each Sub-Basin in Rainy Season	E-F14
Fig. E.3.6	Pollution Load Runoff of Each Sub-Basin in Dry Season	E-F15
Fig. E.3.7	Ratio of Each Pollution Load Runoff in the Upper Area of the Fuqune Lake in Rainy Season	E-F16

Fig. E.3.8	Ratio of Each Pollution Load Runoff in the Upper Area	
	of the Fuqune Lake in Dry Season	E-F17
Fig. E.3.9	Metabolic Process in the Fuquene Lake	E-F18

APPENDIX E WATER QUALITY AND POLLUTION MECHANISM

CHAPTER I EXISTING RIVER AND LAKE WATER QUALITY

1.1 Available Water Quality Data

1.1.1 Sampling Location and Frequency

CAR has analyzed the river and lake water quality of the Study Area since 1993 only on ad hoc basis. The analysis has been done under the direct management only when abnormal water quality was noticed and its analysis was requested from the local people. Apart from this, CAR entrusted a local consultant to analyze the water quality one (1) time in May, 1997. However, the sampling locations and frequency are not sufficient and then, existing available data are limited.

The sampling locations and frequency in the past are shown below.

No.	River	Location	Frequency	Sampling Date
	Ubate River			
1	Main	Lower End	4	Aug. 96, July 97, Dec. 98, Mar. 99
2	Lenguazaque	Before Prodeco	1	Jan., 93
	Other Inflow Rivers			
3	Q. Honda	Lower End	2	Dec. 98, Mar. 99
4	Q. Monroy	Lower End	1	May 97
5	Q. Tagusa	Lower End	1	May 97
6	Q. Calaboza	Lower End	1	May 97
7	Q. Cucunuba	Lower End	1	May 97
8	Q. Malvinas	Lower End	1	May 97
	Suarez River			
9	Main	Before Tolon Gate	4	Dec. 93, Oct.96, Dec. 98, Mar. 99
10	Main	Balsa Bridge	1	Dec. 93
11	Simijaca	Lower End	1	Oct. 96
12	Susa	Lower End	1	Oct. 96
	Lake Fuquene			
13		Near Port	1	Dec. 96,
14		Near Ubate Mouth	5	Dec. 96, May 97, July 97, Dec. 98, Mar. 99
15		Center	3	Dec. 96, May 97, July 97
16		Island	3	May 97, Dec. 98, Mar. 99
17		Near Suarez Outlet	5	Dec. 96, May 97, July 97, Dec. 98, , Mar. 99

The above sampling locations are shown in Fig. E.1.1.

1.1.2 Water Quality in the Past

The analyzed water quality parameters are as follows.

Water Temperature, EC, pH, DO (Dissolved O₂), BOD (DBO), COD (DQO), SS, Heavy Metals (Cd, Pb, Cr, Zn, Hg), NH₄, NO₃, NO₂, Kje-N, T-N, PO₄, T-P, T-Fe, Mg, Hardness (CaCO₃), Fecal Coli.

The water quality data at the above 17 sampling locations during 1993-1999 are shown in

Table E.1.1.

Among the above 17 locations, Ubate River (lower end), Suarez River (before Tolon Gate) and Lake Fuquene are the key locations for evaluation of the water quality in the Study Area. The average water quality of the three (3) key locations in the past are shown in Table E.1.1. The average water quality in major parameters are summarized as shown below.

Parameter	Ubate River (Lower End)	Suarez River (Before Tolon)	Lake Fuquene
Water Temp.(°C)	16.3	17.5	17.7
PH	7.1	6.7	7.2
$DO(O_2)$	4.1	3.9	6.4
BOD (DBO)	3.8	2.0	2.5
COD (DQO)	31.1	46.0	25.6
NH_4	0.76	0.58	0.52
T-N	3.11	3.68	1.98
T-P	0.18	0.18	0.10
T-Fe	1.45	2.73	0.75
Heavy Metals	N.D. or Negligible	N.D. or Negligible	N.D. or Negligible

As shown in the above table, the water quality are characterized as follows.

- (1) The water temperature is moderate and little varies throughout the year
- (2) T-Fe is considerably high.
- (3) COD (DQO) is also high.
- (4) NH₄ is very high. It is considered mainly due to the large wastewater of cattle raising.
- (5) Lake Fuquene is considered highly eutrophic, judging from that T-N and T-P much exceed the ordinary criteria of lake eutrophication (T-N>0.2 mg/l, T-P>0.02 mg/l).

1.2 Supplementary Water Quality Observation in Rainy Season

Observations of the river/lake water quality, deposit quality in the river/lake, biological features in the Lake, transparency/releasing/production/settling rates in the Lake and wastewater quality of sewerage and factories in rainy season were conducted during April to May, 1999 to supplement the existing available data. The observed locations, parameters and frequency are described below.

1.2.1 Water Quality Observation

(1) Water Quality Observation in the Lake

The water quality of the Lake was observed at the four (4) locations for 34 quality parameters. The observation was done at both fine and rainy weathers one (1) time each. The observed locations are as follows.

Sampling Location	Code No.
Near Ubate River Mouth	QL-1
Near Port	QL-2
Center	QL-3
Near Suarez Outlet	QL-4

For locations, see Fig. E 1.2

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Color, Odor, EC, Turbidity, pH, DO (O ₂), Temperature	
Organic Substances	COD (DQO)	
Eutrophication	T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄	
Suspended Solid	SS, Particle Size Distribution, V-SS	
Toxic Substances	Phenol, As, Cd, CN, Cr, Cu, Hg, Ni, Pb, Zn,	Fine weather only
	Pesticides (3 kinds)	
General Metal	Fe, Mn	Fine weather only
Coliform Bacillus	Total, Fecal	Fine weather only

The observed water quality is shown in Table E.1.2.

(2) Water Quality Observation at the Principal River Stations

The river water quality at the seven (7) principal stations was observed for 36 quality parameters. The observation was done at fine weather one (1) time and rainy weather two (2) times.

The observed locations are as follows.

River	Sampling Location	Code No.
Hato River	Outlet of Hato Dam	QS-4
Ubate Main River	Before Meeting of Lenguazaque River	QR-1
Lenguazaque River	Vereda Punta Gande	QR-2
Ubate Main River	Colorado (Lower End)	QR-3
Suarez Main River	Before Meeting of Simijaca River	QR-4
Chiquinquira River	Upstream of Chiquiquira City	QR-5
Suarez Main River	Before Tolong Gate	QR-6

For locations, see Fig. E 1.2.

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Discharge, Color, Odor, EC, Turbidity, pH,	*: Fine weather only
	DO $(O_2)^*$, Temperature	
Organic Substances	BOD (DBO), COD (DQO)	
Eutrophication	T-N, NH ₄ ,* NO ₃ ,* NO ₂ ,* T-P, PO ₄ *	*: Fine weather only
Suspended Solid	SS, Particle Size Distribution,* V-SS	*: Fine weather only
Toxic Substances	Phenol, As, Cd, CN, Cr, Cu, Hg, Ni, Pb, Zn,	Fine weather only
	Pesticides (3 kinds)	
General Metal	Fe, Mn	Fine weather only
Coliform Bacillus	Total, Fecal	Fine weather only

The observed water quality is shown in Table E.1.3.

(3) Water Quality Observation at the Secondary River Stations

The river water quality at 10 secondary river stations was observed for 13 quality parameters to analyze non-point pollution load runoff. The observation was done at rainy weather two (2) times.

The observed locations are as follows.

River	Sampling Location	Code No.
Leanguazaque River	Lower End	AD-1
Q. Obejeras	Lower End	AD-2
Q. Mojica	Lower End	AD-3
Suta River	Lower End	AD-4
Q. La Playa	La Malilla	AD-6
Fuquene River	Chinzaque	AD-8
Q. Honda	Virgen Punta Pena	AD-9
Q. Mina	Tica. Munaz	AD-10
Ubate River	La Bayera	AD-11
Vallado Madre Norte	Vereda Taquila	QS-3

For locations, see Fig. E.1.2.

The observed parameters are shown below.

Classification	Parameter
General Item	Discharge, Color, Odor, EC, Turbidity, pH, Temperature
Organic Substances	BOD (DBO), COD (DQO)
Eutrophication	T-N, T-P
Suspended Solid	SS, V-SS

The observed water quality is shown in Table E.1.4

(4) Continuous Water Quality Observation at Ubate River

The river water quality at Colorado (lower end) of the Ubate River was continuously observed during a flood to analyze the relationship between river discharge and pollution load inflow to the Lake. For locations, see Fig. E.1.2.

The observed parameters are shown below.

Classification	Parameter
General Item	Discharge, *EC
Organic Substances	COD (DQO)
Eutrophication	T-N, T-P
Suspended Solid	SS, Particle Size Distribution, V-SS

^{*:} EC observation was carried out for one (1) month by an automatic recorder every one (1) hour .

The observed water quality is shown in Table E.1.5.

1.2.2 Deposit Quality Observation

The deposit quality in the lake bed was observed at the same locations as water quality observation. The deposit quality in the river was also observed at the principal stations of water quality observation (excluding the outlet of Hato Dam). The observation was done in a fine weather. The observed parameters are 26 ones as shown below.

Classification	Parameter
General Item	Color, Odor, pH
Organic Substances	COD (DQO)
Eutrophication	T-N, T-P
Toxic Substances	Phenol, As, Cd, CN, Cr, Cu, Hg, Ni, Pb, Zn, Pesticides (3 kinds)
General Metal	Fe, Mn
Others	Moisture Content, Sulfide, Oxygen Reproduction Potential,
	Particle Size Distribution, V-SS

The observed deposit quality is shown in Table E.1.6

1.2.3 Biological Observation in the Lake

The biological observation was done at the same locations as water quality observation in the Lake at a fine weather. The observation includes the following sampling/analyses.

The observation results are shown in Table E 1.7

1.2.4 Transparency, Releasing, Production and Settling Test

(1) Transparency Test

The transparency test of the lake water was done at the same locations as water quality observation in a fine weather. The observation results are shown in Fig E.1.3

(2) Releasing Test

The releasing test of substances from the lake bed was done at a location near the Port. The tested substances are as follows.

Tested Substances	COD (DQO), T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄
-------------------	--

The observation results are shown in Table E.1.8.

(3) Production Test

Primary production of phytoplankton (absorption and emission of oxygen) was observed at the same locations as water quality observation in the Lake.

The observation results are shown in Table E 1.9.

(4) Settling Test

Settling of detritus (including inorganic particles) was observed at the same locations as water quality observation in the Lake. Analyzed parameters are shown below.

The observation results are shown in Table E.1.10

1.2.5 Wastewater Quality Observation of Sewerage and Factories

The wastewater quality of sewerage and factories was observed at 13 locations for 17 quality parameters. The observation was done at fine weather one (1) time each. The sampling locations, factory activities and wastewater receiving body are as follows.

Municipality	Sampling Location	Activities	Receiving Body
Ubate	Lacteos San Andres	Dairy Processing	Irrigation
Ubate	Lacteos Ubate	Dairy Processing	Sewerage
Ubate	Ubate Slaughterhouse	Slaughterhouse	Sewerage
Ubate	Parmalat	Milk Cooling	Sewerage
Ubate	Dona Leche	Dairy Processing	Ubate River
Ubate	Ubate Sewerage after Treatment	Sewerage	Suta River
Ubate	Ubate Sewerage before Treatment	Sewerage	Suta River
Fuquene	Colfrance	Dairy Processing	Irrigation
Simijaca	Alpina	Milk Cooling	Sewerage
Simijaca	Delay	Milk Cooling	Q. Capitplio
Simijaca	Simijaca Slaughterhouse	Slaughterhouse	Sewerage
Cucunuba	Cucunuba Sewerage after Treatment	Sewerage	Q.Buida
Saboya	Saboya Sewerage after Treatment	Sewerage	Suarez River

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Discharge, Color, Odor, EC, Turbidity, pH,	_
	Temperature	
Organic Substances	BOD (DBO), COD (DQO)	
Eutrophication	T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄	
Suspended Solid	SS	
Coliform Bacillus	Total, Fecal	Sewerage System only

The observed water quality is shown in Table E.1.11.

1.3 Supplementary Water Quality Observation in Dry Season

Observations of the river/lake/groundwater water quality, biological features in the Lake, transparency/production/settling rates in the Lake and wastewater quality of sewerage and factories in dry season were conducted during July to September, 1999 to supplement the existing available data. The observed locations, parameters and frequency are described below.

1.3.1 Water Quality Observation

(1) Water Quality Observation in the Lake

The water quality of the Lake was observed at the four (4) locations for 37 quality parameters. The observation was done at fine weathers one (1) time. The observed locations are as follows.

Sampling Location	Code No.
Near Ubate River Mouth	QL-1
Near Port	QL-2
Center	QL-3
Near Suarez Outlet	QL-4

For locations, see Fig. E 1.2

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Color, Odor, EC, Turbidity, pH, DO (O ₂), Temperature	
Organic Substances	COD (DQO),COD(Mn),TOC,Humic acid	
Eutrophication	T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄	
Suspended Solid	SS, Particle Size Distribution, V-SS	
Toxic Substances	Phenol, As, Cd, CN, Cr, Cu, Hg, Ni, Pb, Zn,	
	Pesticides (3 kinds)	
General Metal	Fe, Mn	
Coliform Bacillus	Total, Fecal	

The observed water quality is shown in Table E.1.12.

(2) Water Quality Observation at the Principal River Stations and Groundwater Stations

The river water quality at the ten (10) principal river stations and the groundwater quality at the two (2) stations were observed for 39 quality parameters. The observation was done at fine weather two (2) times.

The observed locations are as follows.

River	Sampling Location	Code No.
Hato River	Outlet of Hato Dam	QS-4
Ubate Main River	Before Meeting of Lenguazaque River	QR-1
Lenguazaque River	Vereda Punta Gande	QR-2
Ubate Main River	Colorado (Lower End)	QR-3
Suarez Main River	Before Meeting of Simijaca River	QR-4
Chiquinquira River	Upstream of Chiquiquira City	QR-5
Suarez Main River	Before Tolong Gate	QR-6
Suarez Main River	After Sewerage Effluent of Chiquinquira City	QR-7
Susa River	Lower End	QR-8
Simjaca River	Lower End	QR-9
Groundwater-1	Ubate River Basin (Near Colorado)	QU-1
Groundwater-2	Suarez River Basin (Saboya)	QU-2

For locations, see Fig. E 1.2.

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Discharge, Color, Odor, EC, Turbidity, pH,	
	DO $(O_2)^*$, Temperature	
Organic Substances	BOD (DBO), COD	
	(DQO) ,COD(Mn),TOC,Humic acid	
Eutrophication	T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄	
Suspended Solid	SS, *Particle Size Distribution, V-SS	* Main points only
Toxic Substances	Phenol, As, Cd, CN, Cr, Cu, Hg, Ni, Pb, Zn,	Main points only
	Pesticides (3 kinds)	
General Metal	Fe, Mn	
Coliform Bacillus	Total, Fecal	

The observed water quality is shown in Table E.1.13.

(3) Water Quality Observation at the Secondary River Stations

The river water quality at 10 secondary river stations was observed for 13 quality parameters to analyze non-point pollution load runoff. The observation was done at fine weather two (2) times.

The observed locations are as follows.

River	Sampling Location	Code No.
Leanguazaque River	Lower End	AD-1
Q. Obejeras	Lower End	AD-2
Q. Mojica	Lower End	AD-3
Suta River	Lower End	AD-4
Q. La Playa	La Malilla	AD-6
Fuquene River	Chinzaque	AD-8
Q. Honda	Virgen Punta Pena	AD-9
Q. Mina	Tica. Munaz	AD-10
Ubate River	La Bayera	AD-11
Vallado Madre Norte	Vereda Taquila	QS-3

For locations, see Fig. E.1.2.

The observed parameters are shown below.

Classification	Parameter
General Item	Discharge, Color, Odor, EC, Turbidity, pH, Temperature
Organic Substances	BOD (DBO), COD (DQO)
Eutrophication	T-N, T-P
Suspended Solid	SS, V-SS

The observed water quality is shown in Table E.1.14

(4) Water Quality Observation in relation to the Sewerage Effluent

The river water quality at 5 stations was observed for 5 quality parameters to know the effect of sewerage effluent. The observation was done at fine weather one (1) time.

The observed locations are as follows.

River	Sampling Location	Remarks
Ubate River	Before Meeting Suta River	
Suta River	Lower End	
Ubaete River	After Meeting of Suta River	
Ubaete River	Before Cubio Gate	
Suarez River	After Chiquinquira City	

The observed parameters are shown below.

Classification	Parameter
General Item	Discharge,
Organic Substances	BOD (DBO), COD (DQO)
Eutrophication	T-N, T-P
Reduction substance	H_2S^*

^{*:} only observed at Suta River

The observed water quality is shown in Chapter I Sub-section 1.4.1.

1.3.2 Biological Observation in the Lake

The biological observation was done at the same locations as water quality observation in the Lake at a fine weather. The observation includes the following sampling/analyses.

Sampling/Applyeic	Chlorophyl-a, Phytoplankton, Zooplankton, Benthos
Samping/Anarysis	Chiolophyr-a, Fhytopiankton, Zoopiankton, Benthos

The observation results are shown in Table E 1.15

1.3.3 Transparency, Production and Settling Test

(1) Transparency Test

The transparency test of the lake water was done at the same locations as water quality observation in a fine weather. The observation results are shown in Fig E.1.4

(2) Production Test

Primary production of phytoplankton (absorption and emission of oxygen) was observed at the same locations as water quality observation in the Lake.

The observation results are shown in Table E 1.16.

(3) Settling Test

Settling of detritus (including inorganic particles) was observed at the same locations as water quality observation in the Lake. Analyzed parameters are shown below.

The observation results are shown in Table E.1.17

1.3.4 Wastewater Quality Observation of Sewerage and Factories

The wastewater quality of sewerage and factories was observed at 13 locations for 17 quality parameters. The observation was done at fine weather one (1) time each. The sampling locations, factory activities and wastewater receiving body are as follows.

Municipality	Sampling Location	Activities	Receiving Body
Ubate	Lacteos San Andres	Dairy Processing	Irrigation
Ubate	Lacteos Ubate	Dairy Processing	Sewerage
Ubate	Ubate Slaughterhouse	Slaughterhouse	Sewerage
Ubate	Parmalat	Milk Cooling	Sewerage
Ubate	Dona Leche	Dairy Processing	Ubate River
Ubate	Ubate Sewerage after Treatment	Sewerage	Suta River
Ubate	Ubate Sewerage before Treatment	Sewerage	Suta River
Fuquene	Colfrance	Dairy Processing	Irrigation
Simijaca	Alpina	Milk Cooling	Sewerage
Simijaca	Delay	Milk Cooling	Q. Capitplio
Simijaca	Simijaca Slaughterhouse	Slaughterhouse	Sewerage
Cucunuba	Cucunuba Sewerage after Treatment	Sewerage	Q.Buida
Saboya	Saboya Sewerage after Treatment	Sewerage	Suarez River

The observed parameters are shown below.

Classification	Parameter	Remarks
General Item	Discharge, Color, Odor, EC, Turbidity, pH,	
	Temperature	
Organic Substances	BOD (DBO), COD (DQO)	
Eutrophication	T-N, NH ₄ , NO ₃ , NO ₂ , T-P, PO ₄	
Suspended Solid	SS	
Coliform Bacillus	Total, Fecal	Sewerage System only

The observed water quality is shown in Table E.1.18.

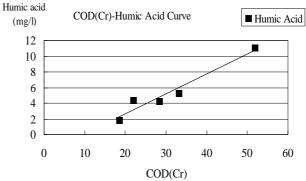
1.4 Evaluation of Supplementary Observation Results

1.4.1 River and Lake Water Quality

(1) Average Water Quality

The average water quality at the major river stations (Hato Dam Outlet, Pte Colorado in Ubate River and Tolon Gate in Suarez River) and the Lake Fuquene (average at 4 locations) in the rainy season and dry season of 1999 are summarized below. These summarized data can be further compared to the existing raw water quality standards of CAR which are mentioned in pages E-16,17 and Table E 1.20.

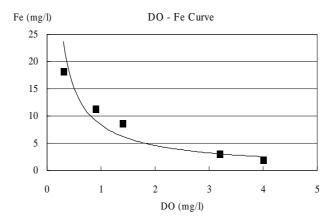
		Rainy Saeson Dry Season							
Item	Unit	Average	Hato	Ubate	Suarez	Average	Hato	Ubate	Suarez
		Lake	Dam	River Pte	River	Lake	Dam	River Pte	River
		Water	Outlet	Colorado	Tolon Gate	Water	Outlet	Colorado	Tolon Gate
PH	-	6.68	7.04	7.00	6.90	6.74	7.60	6.95	6.70
DO	mg/l	3.3	6.0	6.3	0.3	4.5	6.2	0.7	2.3
BOD_5	mg/l	-	2.5	3.5	1.5	-	1.0	6.2	2.3
(DBO_5)									
COD (DQO)	mg/l	34.3	17.7	22.70	51.7	28.5	21.5	64.0	41.1
T-N	mg/l	2.10	1.12	2.18	2.44	1.55	3.25	6.9	2.5
T-P	mg/l	0.10	0.08	0.30	0.12	0.04	0.14	0.78	0.07
$\mathrm{NH_4}^+$	mg/l	0.88	0.77	0.32	1.24	0.54	0.43	2.34	0.53
NO_3	mg/l	0.25	0.16	0.32	0.33	0.04	0.25	0.40	0.25
NO_2	mg/l	0.01	0.05	0.00	0.00	0.00	0.007	0.001	0.001
Turbidity	UJT	20.0	39	43.8	117.3	4.6	7.1	5.7	31.0
Fe	mg/l	1.46	1.68	3.46	18.3	1.72	1.46	2.84	5.89
Total coli.	MPN	37×10^2	70	$>24 \times 10^6$	15×10^2	29×10	$<20 \times 10^{2}$	$^{2} 16 \times 10^{4}$	17×10^2
Fecal coli.	MPN	37×10^{2}	70	93×10^5	9×10^{2}	12 × 10	$<30 \times 10^{2}$	2 11 × 10 ⁴	16×10^2


As shown from the above table, the river and lake water quality are characterized as follows.

- (a) pH of both river and lake water is normal in both seasons.
- (b) Both the river and lake water are highly turbid and the turbidity exceeds the raw water standard of CAR for drinking in rainy season. On the other hand ,turbidity in dry season becomes lower than in rainy season, and the river water does not exceed the water standard of CAR for drinking, only Suarez River turbidity exceeds CAR standards.
- (c) DO (O₂) in the Lake and Tolon Gate is low and do not satisfy the raw water CAR standard for drinking at any season. DO in the Lake excluding the central area is even lower (2.8mg/l). This low DO is probably caused mainly to the fact that decomposition of the withered aquatic plants (especially Elodia) and detritus consumes a lot of the dissolved oxygen in the lake water. DO (O₂) in Ubate River Pte Colorado is very low in dry season. DO before Cubio Gate becomes much lower. It is due to sewerage inflow of Ubate City and low river discharge.
- (d) BOD (DBO) in the river water is comparably low. However, COD (DQO) in both river and lake water is very high. It is probably due to a high content of humic acid in the water. The cause of this high COD (DQO) content is confirmed as below with analysis results in dry season. Generally COD (DQO) value is

multiplying 2.5-2.8 by COD(Mn) value. The relation of COD (DQO) and COD(Mn) is calculated about 5 times by the analysis results at dry season, it is probably due to the presence of many acid resistant organic compounds. On the other hand, TOC and humic acid are relative high concentration. These data indicates that high COD (DQO) value is due to high humic acid concentration. These relation of COD (DQO), COD(Mn) and Humic acid are shown below.

Ordinary humic acid is not detected in colorless river water and indicated nearly zero (0). Humic acid is not toxic substance, and it is not necessary to consider it regarding water use in Suarez River.


River	Point	COD (DQO) (mg/l)	Humic acid (mg/l)
Hato Dam	Outlet of Dam	22.0	4.4
Ubate River	Downstream of Ubate	15.0	7.0
	City		
Lenguazaque River	Vereda Punta Gande	28.3	4.3
Ubate River	Pte Colorado	33.2	6.3
Suarez River	Balsa Bridge	50.0	3.3
Chiquinquira River	Upstream of	18.5	1.9
	Chiquinquira City		
Suarez River	Tolon Gate	51.8	11.1

(e) Fe concentration in both river and take water is also high. It is probably due to that the geology of the Study Area contains a high degree of Iron. This can be proved from the fact that groundwater in the Study Area shows a high concentration of Fe as shown below.

No.	Location	Well Name	Ave. Fe
			(mg/l)
QU-1	Near Colorado	Albaida II (Pozo No.4)	94.0
QU-2	Saboya	Sugamuxi Pozo	66.9

Fe in the rivers of Ubate, Lenguazaque, Susa, Simijaca and Chiquinquira shows a comparatively small variation of 0.59 - 3.46 mg/l (average: 1.99 mg/l). It is considered to be due to the comparatively high content of DO (average: 5.1 mg/l) in the rivers. However, Fe in the Suarez River (lake outlet - Tolon gate) considerably varies ranging from 1.75 mg/l to 18.30 mg/l (average: 7.50 mg/l). The Fe value indicates a sudden increase according to the decrease of DO as shown

It is considered due to that the deposits in the River are under a high anaerobic condition.

- (f) High contents of NH₄ and Coliforms are observed in both river and lake water at both seasons. It is considered to be mainly due to the large wastewater of livestock in the Study Area.
- (g) T-N and T-P in the Lake exceed by far the ordinary criteria of lake eutrophication (T-N>0.2 mg/l, T-P>0.02 mg/l) despite season. Especially in dry season, T-N and T-P in the river highly increase at Ubate River Pte Colorodo.
- (h) T-N, NH₄-N, and T-P concentration in groundwater are high at Ubate River sub-basin. The average water quality analysis data of groundwater are summarized below.

Item	Unit	Ubate River sub-basin ALBAIDA-II	Suarez River sub-basin SUGAMXI
PH	-	6.4	6.9
DO	mg/l	0.0	1.7
BOD	mg/l	23.7	1.6
COD	mg/l	260	44.0
T-N	mg/l	36.1	2.85
NH_4-N	mg/l	29.8	2.23
NO_3-N	mg/l	0.5	0.2
NO_2 -N	mg/l	ND	ND
T-P	mg/l	3.02	0.40

(2) Specific Water Quality Problem

(a) The wastewater from the sewerage systems of Ubate and Chiquinquira cities considerably affects the water quality in the downstream river sections at a drought time. The observed water quality at a drought time is summarized below. The water in the river sections immediately after the sewerage effluents of Ubate and Chiquinquira cities is highly polluted with black color and bad odor, then emitting a toxic substance (H₂S).

Location	Q	DO	BOD	COD	H ₂ S
	(m^3/s)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Ubate River before Suta River Confluence	0.47	6.3	2.0	5.8	<u> </u>
Suta River after Ubate Sewerage Effluent	0.08	0.9	183.0	403.0	3.00
Ubate River after Suta River Confluence	0.55	5.3	24.1	44.1	
Ubate River after Lenguazaque River Confluence		4.5	3.1	24.5	
Suarez River after Chiquinquira Sewerage	0.68		137.0	399.0	
Effluent					

(b) Decomposition of the withered aquatic plants and detritus consumes a lot of oxygen in the lake water, resulting in making the water anaerobic. A wide water area is anaerobic in the Lake at present. In such area, the lake water is colored black, emitting a highly concentrated toxic substance (H₂S) as shown below.

Location	Lake	e Surface	Lake Bottom		
	DO (mg/l)	DO (mg/l) H_2S (mg/l)		H ₂ S (mg/l)	
St-1	0.0	1.20			
St-2	0.4	0.40	0.0	0.50	
Near Suarez Outlet	1.9	0.01	0.0	2.60	

(3) Relationship between Water Quality and Water Depth in the Lake

The relationship between the water quality and water depth in the Lake Fuquene is summarized below.

- (a) Temperature of the lake water is nearly constant (16-18 $^{\circ}$ C) regardless of water depth and season.
- (b) In rainy season, turbidity of the lake water is 20 mg/l regardless of water depth except near the Ubate river mouth. The surface water near the Ubate river mouth is as turbid as 60 mg/l, however, it decreases to less than 30 mg/l at a depth of 2.0 m
- (c) Transparency of the lake water decreases at a high rate according as the water depth increases. The relative illumination rate decreases to 1.0% of the surface one at approximately 1.0 m depth. However, transparency of the lake water in dry season was relative different with rainy season, decreasing at a high rate as the water depth increased. The relative illumination rate decreases to 1.0% of the surface one at approximately 1.5-3.5 m depth.
- (d) DO (O_2) at the locations of near Port and center is constant at 4-5 mg/l regardless of water depth. However, near Ubate river mouth and Suarez outlet, it suddenly decreases as water depth increases and becomes nearly zero at 2.0 m depth.
- (e) DO (O₂) values in the daytime and at night were compared in a location near the Port. The DO in the daytime was constant regardless of water depth. On the other hand, the DO at night decreased at a high rate according to the increase of water depth and it became zero at 2.5 m depth. It is probably due to the respiration effects of Elodea at night.

For the above, see Fig E.1.3 and Fig E 1.4.

1.4.2 Deposit Quality

The deposit quality of the river and lake beds at the principal river stations (Ubate River at Pte Colorado and Suarez River at Tolon Gate) and the Lake (average at 4 locations) are summarized below.

Item	Unit	Average Lake Deposit	Ubate River Pte Colorado	Suarez River Tolon Gate
Color	-	Black/Dark Gray	Dark Brown	Dark gray
COD (DQO)	mg/dry-g	87,1	208.2	99.4
T-N	mg/dry-g	4.60	1.01	3.80
T-P	mg/dry-g	0.148	0.454	0.037
Ignition Loss	%	16.4	45.2	17.8
Sulfide.	mg/dry-g	0.98	0.84	1.24
ORP*	MV	-132	-95	-142

^{*} ORP: Oxidation- Reduction Potential

- (1) Ignition loss of both river and lake deposits are more than 15%. It means that the deposits contain a high content of organic substances. It is also confirmed by the high contents of COD, T-N and T-P in the deposits.
- (2) Oxidation-Reduction Potential (ORP) of the river and lake deposits is as low as 95 to 100 mV. It indicates a high anaerobic condition of the deposits. The deposits contain much sulfide (H₂S) and are colored black or dark gray.
- (3) Among the nine (9) major heavy metals (As,Cd,CN,Cr⁶⁺,Cu,Hg,Ni,Pb,and Zn), Cd, CN, Cr⁶⁺ and Hg are not detected in the river and lake deposits, while a certain concentration level of As, Cu, Ni, Pb and Zn are identified. However, this concentration level is as low as that of ordinary soils, causing no problems on the water environments.
- (4) No pesticides are detected in both river and lake deposits.

1.4.3 Plankton and Benthos

(1) Plankton

(a) The existing phytoplankton in the Lake counts 32 species in rainy season and 28 species in dry season with an average population density (number of cells) of 6,525 cells/ml in rainy season and 4,290 cells/ml in dry season. Each species and average population are very similar despite of the seasons. The average concentration of Chlorophyll-a is estimated to be 0.75 mg/m³ in rainy season and 1.08 mg/m³ in dry season. The population density and Chlorophyll-a concentration at the respective stations at both seasons are shown below.

Observation	Rainy Se	eason	Dry Season		
Station	Population	Chlorophyll-a	Population	Chlorophyll-a	
	Density (cells/ml)	(mg/m^3)	Density (cells/ml)	(mg/m^3)	
QL-1	3,470	0.31	2,110	0.41	
QL-2	1,825	0.07	2,175	0.31	
QL-3	11,025	0.30	1,650	0.26	
QL-4	9,775	2.30	11,225	3.35	
Average	6,525	0.75	4,290	1.08	

- (f) Population of the existing zooplankton is very small in both seasons. It counts only four (4) species with an average population density of 4 cells/ml in rainy season, and only three (3) species with an average population density of 0.01cells/ml in dry season,
- (g) The phytoplankton population and Chlorophyll-a concentration in the Lake Fuquene are compared with those in the typical eutrophic lakes in Japan as shown below. The population in the Lake Fuquene is very few compared to those in the lakes of Japan although the Lake Fuquene contains more nutrients. This is considered due to that the water temperature of the Lake Fuquene stays around 17 throughout the year and it never reaches 20.

Lake	Phytoplankton	Chlorophyll-a	Water	Average	Average
	Cell Number	(mg/m ³)	Temperature ()	T-N (mg/l)	T-P (mg/l)
Lake Fuquene	6525	0.75	16.8	1.83	0.07
South Biwa	650-79,000	3.6-30.3	5.0-30.2	0.40	0.02
Lake in Japan ⁻¹⁾					
Kasumigaura	10,000-270,000	56-110	4.5-30.2	0.86	0.08
Lake in Japan ⁻²⁾					

The monthly change of phytoplankton in South Biwa Lake and Kasumigaura Lake, Japan are shown in Fig E.1.5. As shown in this figure, warm water temperature causes an explosive increase of population when it exceeds 20 in summer season and the population returns to the original level when the water temperature lowers in winter season.

(2) Benthos

Through both seasons, no benthos is identified in the deposits of the Lake since even the surface layer of the lake bed is under an anaerobic condition. This anaerobic condition may be caused by decomposition of the deposited aquatic plants and detritus on the lake bed. Generally, clean lakes contain oxygen in the surface layer of the bed where shellfish and various species of benthos live.

1.4.4 Settling, Releasing and Production Rate

(1) Settling Rate of Particles

The settling rate of particles in the Lake is considered especially large near the river mouth of Ubate (QL-1 station). However, neither QL-1 station could be observed during the first and second field survey, not Near Port (Ql-2 station) in dry season. The average settling rate at the remaining stations in the Lake is calculated as shown below.

Parameter	Rainy Season	Dry Season
$SS (g/m^2/d)$	2.32	1.09
Ratio of Organic Substances((%)	34	22

(2) Releasing Rate of COD, T-N and T-P

The deposited chemical elements on the lake bed dissolve in the water again. The releasing rate of COD, T-N and T-P from the lake bed was observed at the station (QL-2). From these observation results, the releasing rates of COD, T-N and T-P in the Lake through both seasons are estimated as follows.

Parameter	Releasing Rate
COD	900 mg/m ² /d
T-N	$60 \text{ mg/m}^2/\text{d}$
T-P	$0.55 \text{ mg/m}^2/\text{d}$

(3) Production Rate of Phytoplanton

The production rates of phytoplankton through both seasons were estimated by the field tests at the four (4) stations of the Lake as shown below.

Observation	Daily	Daily Primary Production (Cg/m²/d)						
Station	Rainy Season	Dry Season	Average					
QL-1	3.16	2.35	2.76					
QL-2	2.73	1.04	1.89					
QL-3	0.95	2.80	1.88					
QL-4	3.42	1.56	2.49					
Average	2.57	1.94	2.23					

1.4.5 Wastewater Quality

The effluent wastewater quality and pollutant load were observed at the representative milk processing factories (7 factories), slaughterhouses (2 houses) and sewerage systems (4 systems) in the Study Area. The average pollutant concentration and load through both seasons of the factories, slaughterhouse and sewerage are summarized below.

Item	Parameter	Unit	Milk Factory*	Slaughterhouse	Sewerage**
Effluent Wastewater	BOD	mg/l	522.7	402.8	49.3
Quality	COD	mg/l	943.9	647.0	116.3
	T-N	mg/l	44.4	61.4	20.2
	T-P	mg/l	22.0	7.1	2.5
Effluent Pollutant	BOD	kg/d	8.8	3.7	175.3
Load	COD	kg/d	16.4	8.0	427.9
	T-N	kg/d	0.7	0.6	82.7
	T-P	kg/d	0.4	0.1	10.9

^{*:} Excluding the observed data of Colfrance factory since the factory produces different products from the other ones

^{**:} Excluding the observed data of Ubate sewerage treatment system in dry season since the treatment system stopped Effluent Pollutant Load is calculated only for rainy season.

1.5 Standards of Surface Water Quality and Wastewater Effluents

1.5.1 National Standards

The Government of Colombia stipulated the national standards of surface water quality (permissive water quality concentration for domestic, agriculture, stockbreeding and recreation uses) and wastewater effluents (permissible wastewater concentration into river and sewerage) through the Decree 1594/84 The national standards give the minimum values to be conformed nationwide. They are shown in Table E.1.19.

1.5.2 CAR Standards

CAR stipulated the standards of surface water and wastewater effluents to be applied for their administration region through the Agreement 58/87, based on national standard. They are shown in Table E.1.20. Further, CAR categorized the target river water quality into four (4) classes of A,B,C,D in accordance with the water use level of rivers and designated the class of the rivers under their jurisdiction through the Agreement 58/87. The target water quality of each class is shown below. The river section in the Study Area are classified as shown in Fig E 1.6.

No.	Parameter	Unit	Permi	ssible Con	centration	(mg/l)	Remarks
110.	1 di ainietei	Oiiit	Class-A	Class-B	Class-C	Class-D	Kemarks
1	pН	(-)	6.5-8.5	5.0-9.0	4.5-9.0	4.5-9.0	
2	DO	O ₂ mg/l	6.0	5.0	2.0	-	
3	$BOD_5 (OBO_5)$	O ₂ mg/l	5.0	10.0	30.0	100.0	
4	Cobalt	Co mg/l	0.05	0.05	0.05	0.05	
5	Total Cyanide	CN mg/l	0.2	-	-	-	
6	Molybdenum	Mo mg/l	0.01	0.01	0.01	0.01	
7	Vanadium	V mg/l	0.1	0.1	0.1	0.1	
8	Boron	B mg/l	0.3-4.0	0.3-4.0	0.3-4.0	0.3-4.0	
9	Fluorine	F mg/l	1.0	1.0	1.0	1.0	
10	Phenol	C ₆ H ₅ OH mg/l	0.002	-	-	-	
11	Diphenyl	mg/l	0.0001	0.0001	-	-	
12	Chlorophenol	C ₆ H ₅ OHClmg/l	0.5	0.5	-	-	
13	Hydrogen Sulfide	H ₂ S mg/l	0.002	0.002	-	-	
14	Lithium	Li mg/l	2.5	2.5	2.5	2.5	
15	Aluminum	Al mg/l	5.0	5.0	5.0	5.0	
16	Magnesium	Mg mg/l	0.2	-	-	-	
17	Nitrate	NO ₃ -N mg/l	10.0	-	-	-	
18	Nitrite	NO2-N mg/l	1.0	10.0	10	-	
19	Nitrate + Nitrite	N mg/l	-	100	100	-	
20	Chloride	Cl-mg/l	250.0	-	-	-	
21	Color	Real Color	75	-	-	-	
22	Total Substance	mg/l	500.0	500.0	1,000	-	
23	Turbidity	UJT	2.0	-	-	-	
24	Total coliform	NMP	5,000	5,000	10,000	-	
25	Fecal coliform	NMP	1,000	1,000			

However, other heavy metals (Pb,Hg,Cr,As,Cd,Se) and toxic organic compounds (Organic mercury compounds, Trichloroethylene, etc) are not included in table above, because these parameters are regulated as toxic methodology.

CHAPTER II EXISTING POINT POLLUTION LOAD GENERATION

2.1 Inventory of Existing Point Pollution Sources

2.1.1 Sewerage System

The study Area covers totally or partially 17 municipalities, namely, Carmen de Carupa, Ubate, Tausa, Sutatausa, Suesca, Villapinzon, Lenguazaque, Guacheta, San Miguel de Sema, Raquira, Fuquene, Susa, Simijaca, Caldas, Chiquinquira, and Saboya as shown in Fig. E.2.1.

Out of those municipalities, the urban centers of 14 municipalities, excluding Suesca, Villapinzon and Raquira are located in the Study Area and are equipped with the sewerage system. Inventory of the existing sewerage systems of these municipalities in the Study Area was prepared through questionnaire and interviews (conducted in April, 1999) with the related personnel of each municipality and available data in the CAR. The results are tabulated in Table E.2.1 and shown below.

(1) Carmen de Carupa

The population of Carmen de Carupa urban area is 1,320 (305 households) and no industries exist in the urban area. The sewerage with combined collection system is located in the urban area and domestic wastewater of 1,300 persons (300 households) and slaughterhouse are combined and discharged into Q. Suchinica without treatment. The remaining five (5) households of 20 persons have their own septic tanks. The Carmen de Carupa municipality has no data of total pipe length of the sewerage system but diameters of the system are 30.5 cm (max.) and 15.2 cm (min.). Sewerage charge is not collected.

(2) Ubate

16,750 persons of 3,350 households live in the urban area of Ubate Municipality. The sewerage with combined collection system covers all the persons in the urban area and receives also 88 industrial establishments. The length of pipe is 36 km in total and pipe diameter is 61.0 cm in max, and 20.3 cm in min.

The treatment plant was completed in 1995 beside the Suta River. The wastewater from the households and industrial establishments are treated through anaerobic process (R.A.P) and discharged into the Suta River. Designed service population is 18,000. Design discharge and BOD concentration for the treatment plant are 45 L/s and 290 mg/L. However, due to inflow of wastewater from the dairy industry, which exceeds the design condition, the treatment plant is operated under an overloading condition.

The sewerage charge of Ubate is collected based on water use volume and unit charge is different for households ($42.58~peso/m^3$) and factories ($64.11~peso/m^3$). The average charge per household is 1,700~peso/month.

The following table tabulates average water quality observation results in 1998 (Sep.22, Oct.30 and Nov. 20) and in 1999 (Feb. 04 and Feb. 18).

	T 4:	Volume		BOD_5	COD _(Cr)	SS	Coliforms (M	PN/100ml)
Year	Location	(1/s)	pН	(mg/l)	(mg/l)	(mg/l)	Total	Fecal
1998	Influent	42.7	6.8	285	645	257	11 x 10 ⁸	24×10^7
	Effluent	39.7	6.7	107	241	88	11×10^7	93×10^{5}
1999	Influent	54.8	6.9	776	1,018	282	46×10^7	46×10^7
	Effluent	49.5	7.3	122	565	103	75×10^6	31×10^{5}
Ave.	Influent	47.5	6.8	481	7,942	267	11 x 10 ⁸	46×10^7
	Effluent	43.6	7.0	113	370.	94	11×10^{7}	93×10^5

(3) Tausa

Urban area of Tausa is 10 ha where 955 persons of 191 families live and no industry is located. Tausa has sewerage system in its urban area with diameter of 40.6 cm to 20.3 cm. The Tausa sewerage system receives wastewater of 955 persons and discharges into the Suta River without treatment and collection system is separate. In Tausa, sewerage charge of 400 peso/month is collected at present.

(4) Sutatausa

The sewerage with combined collection system of Sutatausa urban area receives wastewater from 582 persons (155 households) but receives no industrial wastewater. Total pipe length of the system is 3.5 km. Max. diameter of the pipe is 25.4 cm, while min. diameter is 15.2 cm. The collected wastewater is discharged into the Suta River without treatment. The sewerage charge is 900 peso/month.

(5) Cucunuba

Sewerage with combined collection system is installed in urban area of Cucunuba municipality. Service population is 1,153 (310 households) and in its service area, no industry exists. The pipe length is 13.5 km with max. diameter of 25.4 cm and min. diameter of 15.2 cm. Stabilization ponds to treat wastewater from households and slaughterhouse was completed in 1992 which discharges effluent into the San Isidro River. No charge is collected from households at present.

(6) Lenguazaque

In Lenguazaque, the sewerage system covers urban area of 49 km² with pipe length of 5.1 km (max. diameter 25.4 cm and min. diameter 20.3 cm). Collection system is separate and service population is 1,800 (410 households). Domestic wastewater is discharged into Lenguazaque River after treating with activated sludge plant. This plant was constructed in 1998, financed with 280 million peso. The system receives no wastewater from industry. In Lenguazaque, no sewerage charge is collected form households connecting to the sewerage system.

(7) Guacheta

Urban area of Guacheta is 43 ha where 3,366 persons of 625 families live and five (5) dairy industries are located. Guacheta has sewerage with combined collection system and pipe length of 6.0 km and diameter varies from 61.0 cm to 20.3 cm. The Guacheta sewerage system, which receives wastewater of 3,366 persons and slaughterhouse, discharges into the Q. Gualacia without treatment. In Guacheta, sewerage charge of 450 peso/month is collected from each household at present

(8) San Miguel de Sema

The sewerage system installed in the urban area of San Miguel de Sema receives wastewater from approx. 500 persons (116 households) and one (1) dairy factory. The total pipe length of the system is approx. 2.8 km with max. diameter of 25.4 cm and min. diameter of 20.3 cm. In 1994, stabilization ponds, which treat the wastewater, were completed. The effluent is discharged into the Q. Santa Ana. The sewerage charge is 240 peso/month both for a household and a dairy factory.

The following table tabulates average water quality observation results of the San Miguel de Sema Treatment Plant conducted in 1998 (Sep. 02, Sep. 30, Nov.05 and Nov.26) and in 1999 (Jan.26 and Feb.09).

Vacan	Location	Volume	pН	BOD_5	COD _(Cr)	SS	Coliforms (MI	PN/100ml)
Year	Location	(l/s)		(mg/l)	(mg/l)	(mg/l)	Total	Fecal
1000	Influent	2.47	7.3	970	1,985	706	11 x 10 ⁹	24×10^8
1998	Effluent	3.10	7.2	89	249	125	15×10^6	43×10^6
1000	Influent	1.35	6.6	89	245	45	24×10^6	36×10^5
1999	Effluent	1.40	7.0	47	160	57	93 x 10 ⁶	43×10^6
	Influent	2.10	7.0	676	1,404	486	11 x 10 ⁹	24×10^8
Ave.	Effluent	2.53	7.1	75	219	103	93 x 10 ⁶	43×10^6

(9) Fuquene

In this municipality, there are two (2) sewerage with separate collection system; one is in the urban area of Capellania and the other is in the urban area of Fuquene. The Capellania system has service population of 500 (150 households). Its total pipe length is 4.0 km with max. diameter of 30.5 cm and min. diameter of 20.3 cm. The Capellania system discharges the collected water to the Q. Bautista without treatment. The Fuquene system receives wastewater of 300 persons (45 households) with total pipe length of 1.5 km (max. diameter: 30.5 cm and min. diameter: 20.3 cm). The collected wastewater of the Fuquene system is utilized for irrigation water of pastureland. Both systems receive no industrial wastewater. Sewerage charge is not collected in both systems.

The following table summarizes the water quality observation results of the center of Fuquene and Capellania conducted in 1997.2.3 and 2.4, respectively.

Locaation	BOD ₅	COD _{(Cr}	Oil	TS	TSS	VSS	Coliforms (MF	PN/100ml)
Location	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Total	Fecal
Fuquene	255	397	93.1	331	124	100	$>24 \times 10^6$	$>24 \times 10^6$
Capellania	348	607	128.4	671	165	135	$>24 \times 10^6$	$>24 \times 10^6$

(10) Susa

The sewerage system of Susa urban area receives wastewater from 400 households and one factory and collection system is separate. Total pipe length of the system is 2.5 km. Max, diameter of the pipe is 40.6 cm, while min. diameter is 20.3 cm. The collected wastewater is discharged into the Susa River without treatment. 800 peso is collected from each

household every two (2) months. In urban area of Susa, 100 households have septic tanks to treat their wastewater.

(11) Simijaca

Urban area of 62 ha. is covered by the sewerage system with combined collection system, which receives wastewater of 4,500 persons (1,340 households) and five (5) dairy factories. Total pipe length of the system is 19.0 km (max. diameter of 40.6 cm and min. diameter of 20.3 cm). The collected wastewater is discharged into the Simijaca River without treatment. The wastewater quality is tabulated below.

PH	BOD ₅	COD _(Cr)	TSS	SS	Oil	Total Coliform
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(MPN/100ml)
6.9	210	320	522	172	49	$>24 \times 10^6$

The sewerage charge in residential area is different from that in industrial area. The average charge of each area is 275 peso/month and 8,125 peso/month, respectively.

(12) Caldas

Urban area of Cardas is 4 ha where 100 persons of 50 families live and no industry is located. Cardas has sewerage system with pipe length of 1.0 km and diameter of 30.5 cm to 20.3 cm and collection system is combined. The Cardas sewerage system receives wastewater of 86 persons (43 households) and discharges into the Q. La Playa without treatment. Out of 7 households, which are not connected to the sewerage system, two (2) households have septic tank and others are latrines. In Cardas, no sewerage charge is collected at present.

(13) Chiquinquira

In Chiquinquira, the sewerage system covers a service area of 20 km² with pipe length of 60 km (max. diameter 147 cm and min. diameter 25.4 cm). Collection system is combined. Service population is 42,000 (8,400 households) and the system receives wastewater of 12 dairy industries. Domestic wastewater is discharged into Suárez River without treatment. The sewerage charge depended on the quantity and unit charge is 105 peso/m3/month. The average charge of household is 5,405 peso/month.

Average quality of wastewater is as follows.

								(unit: mg/l)
PH	BOD ₅	COD _{(Cr}	TSS	T-N	T-P	Oil	Pesticide (Cl)	Pesticide (P)
	- 3	· (CI						,
)						
6.77	415	850	702	13	10	18	116	5.0

(14) Saboya

Saboya has sewerage system with service population of 1,098 (183 households) with pipe length of 12.0 km (max. diameter of 40.6 cm and min. diameter of 20.3 cm). Collection system is separate and the collected waster water from households is treated by the stabilization ponds and then discharged into the Q. La Ruda. The treatment plant was

constructed in 1991. The sewerage charge for the connection to the system is 2,125 peso/month.

2.1.2 Slaughterhouse

There are 14 urban centers located in the Study Area and all the urban centers have their own slaughterhouses.

Inventory of the existing sewerage systems of these wastewater treatment of the 14 urban centers mentioned above was prepared through questionnaire and interviews (conducted in April and September, 1999) with the related personnel of each municipality/slaughterhouse and also data provided by the CAR. The results are tabulated in the following table.

No.	Name of Municipality	Animal	Number of Animals (Head/Week)	Water Use Volume	Treatment Plant*	Discharging Point
1	Carmen de Carupa	Cow	15		Bl + Sc + Gr + Se	Sewerage
2	Ubate	Cow Pig Sheep	150 72 72	650 m ³ /M	Bl + Sc + Se + An	Sewerage
3	Tausa	Cow	18		Bl + Sc + Gr + Se	Sewerage
4	Sutatausa	Cow	11		Bl + Sc + Gr + Se	Q. Chiritoque
5	Cucunuba	Cow	5		Bl + Sc + Gr + Se	Sewerage
6	Lenguazaque	Cow	24	$27 \text{ m}^3/\text{W}$	Bl + Sc + Gr + Se	Sewerage
7	Guacheta	Cow	21		Bl + Sc + Gr + Se	Sewerage
8	San Miguel de Sema	Cow	2		Bl + Sc + Gr + Se	Q. Los Cerezos
9	Fuquene	Cow	21		Bl + Sc	Fuquene
10	Susa	Cow	22		Bl + Sc + Gr + Se	Sewerage
11	Simijaca	Cow	35	180 m ³ /M	Bl + Sc + Gr + Se	Q. El Capitodio
12	Caldas	Cow	4		Bl + Sc	Q. La Praya
13		Cow	115		Bl + Sc + Gr + Se	Rio.Chiquinquira
14	Saboya	Cow	21		Bl + Sc + Gr + Se	Q.El Cantoco

Note: Bl: Blood Well, Sc: Screen, Gr: Grease Remover, Se: Septic tank, An: Anaerobic Treatment Process.

2.1.3 Industrial Establishment

Table E.2.2 tabulates industrial establishments in the Study Area, composing of (1) dairy processing, (2) milk cooling, (3) gas stations and (4) others consisting of taxi, beverage production and flowers listed by the CAR. Number of establishments according to activities is tabulated below.

Dairy Processing	Milk Cooling	Gas Station	Others	Total
44	6	8	5	63

In addition to the industrial establishments mentioned above, there are approx. 280 mining industries in the Study Area. Out of the above industrial establishments, only dairy processing and milk cooling factories are considered to discharge a significant amount of pollution load, which may affect water quality of the Fuquene Lake and rivers in the Study Area.

In order to estimate pollution load from these two (2) kinds of industrial activities,

questionnaire survey was made. First, dairy processing and milk cooling factories in the Study Area are classified into large, medium and small from the size of factories as indicated in Table E.2.2. Then 14 factories from dairy processing and 4 factories from milk cooling are selected, covering all the large and medium-sized factories. They are also tabulated in Table E.2.2.

Followings are the summary of answers of the questionnaires from the dairy processing and the milk cooling factories.

(1) Dona Leche

Activity	:	Dairy Processing	
Size	:	Large	
Municipality	:	Ubate	
Milk Processed (l/day)	:	60,000	
Production		Cheese (kg/day)	: 100 (including Yogurt)
		Yogurt (kg/day)	:
		Others	: Milk Cooling 40,000 l/day
Water Use Volume :		650 m ³ /month (Mu	nicipal Water)
Treatment Plant :		3 grease Traps	
Discharging Point :		Ubate Sewerage Sy	stem

(2) Fabrica de Quesos San Jose

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	250
Production		Cheese (kg/day) : 31.8
		Yogurt (kg/day) :
		Others :
Water Use Volume	:	0.2 m ³ /day (Municipal Water)
Treatment Plant		None
Discharging Point	:	Ubate Sewerage System

(3) La Gran Vaquita

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	400
Production		Cheese (kg/day) : 31.8
		Yogurt (kg/day) :
		Others :
Water Use Volume	:	$0.2 \text{ m}^3/\text{day}$
Treatment Plant	:	None
Discharging Point	:	Ubate Sewerage System

(4) Lacteos Don Luis

Activity	:	Dairy Processing	
Size	:	Small	
Municipality	:	Ubate	
Milk Processed (l/day)	:	800	
Production		Cheese (kg/day)	: 13.6
		Yogurt (kg/day)	:
		Others	: Light cheese 200 ps/day
Water Use Volume	:	$0.2 \text{ m}^3/\text{day}$	
Treatment Plant		None	
Discharging Point	:	Ubate Sewerage Sys	stem

(5) Lacteos el Manatial

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	800
Production		Cheese (kg/day) : 72.6
		Yogurt (l/day) : 40
		Others :
Water Use Volume	:	6 m ³ /day
Treatment Plant		2 Grease Traps + 1 Anaerobic Pond
Discharging Point	:	Irrigation

(6) Lacteos Hato Chips

:	Dairy Processing
:	Small
:	Ubate
:	600
	Cheese (kg/day) : 47.6
	Yogurt (1/day) : 80
	Others :
:	85 m ³ /month (Municipal Water
	None
:	Ubate Sewerage System
	:

(7) Lacteos La Pirinola

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	250
Production		Cheese (kg/day) : 15.9
		Yogurt (kg/day) :
		Others :
Water Use Volume	:	0.2 m ³ /day (Municipal Water)
Treatment Plant		None
Discharging Point	:	Ubate Sewerage System

(8) Lacteos San Andres

Activity	:	Dairy Processing	
Size	:	Medium	
Municipality	:	Ubate	
Milk Processed (l/day)	:	2,800	
Production		Cheese (kg/day) : 63.5	
		Yogurt (kg/day) :	
		Others : Butter 18.1 kg/week	
Water Use Volume	:	1.125 m ³ /day (Municipal Water)	
Treatment Plant		5 Grease Traps	
Discharging Point	:	Irrigation	

(9) Lacteos Ubate

Activity	:	Dairy Processing	
Size	:	Medium	
Municipality	:	Ubate	
Milk Processed (l/day)	:	4,000	
Production		Cheese (kg/day) : 200	
		Yogurt (L/week) : 600	
		Others :	
Water Use Volume	:	160 m ³ /month (Municipal Water)	
Treatment Plant	,	1 Grease Trap + 1 Sedimentation Tank	
Discharging Point	:	Ubate Sewerage System	

(10) Quesos el Candad

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	800
Production		Cheese (kg/day) : 68.0
		Yogurt :
		Others :
Water Use Volume	:	0.2 m ³ /day (Municipal Water)
Treatment Plant		None
Discharging Point	:	Ubate Sewerage System

(11) Quesos los Alpes

Activity	:	Dairy Processing
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	400
Production		Cheese (kg/day) : 36.3
		Yogurt (kg/day): :
		Others :
Water Use Volume	:	$0.3 \text{ m}^3/\text{day}$
Treatment Plant		None
Discharging Point	:	Ubate Sewerage System

(12) Quesos Villa Ubate

Activity	:	Dairy Processing	
Size	:	Small	
Municipality	:	Ubate	
Milk Processed (l/day)	:	1,500	
Production		Cheese (kg/day) : 122.5	
		Yogurt (kg/day) :	
		Others :	
Water Use Volume	:	3,500 m ³ /year (Groundwater)	
Treatment Plant		None	
Discharging Point	:	Irrigation Water	

(13) Colfrance

Activity	:	Dairy Processing
Size	:	Large
Municipality	:	Fuquene
Milk Processed (l/day)	:	8,000
Production		Cheese (t/year) : 690
		Yogurt (t/year) : 576
		Others :
Water Use Volume	:	1,200 m ³ /year (Groundwater)
Treatment Plant		2 Grease Traps + 1 Sedimentation Tank + 1 Anaerobic
		Pond
Discharging Point	:	Irrigation
		O

(14) Incolacteos

Activity	:	Dairy Processing	
Size	:	Large	
Municipality	:	Simijaca	
Milk Processed (l/day)	:	180,000	
Production		Cheese (kg/day) :	
		Yogurt (kg/day) :	
		Others: Milk 100,000 /day, Jam, Juice,	
		etc.	
Water Use Volume	:	1,800 m ³ /month (Municipal Water),	
		3,000 m ³ /month (Groundwater)	
Treatment Plant		3 Grease Traps + 2 Stabilization Ponds	
Discharging Point	:	Irrigation	

(15) Alqueria

Activity	:	Milk Cooling
Size	:	Small
Municipality	:	Ubate
Milk Processed (l/day)	:	80,000
Water Use Volume	:	450 m ³ /month
Treatment Plant		None
Discharging Point	:	Ubate Sewerage System

(16) Parmalat (Ubate)

Activity	:	Milk Cooling
Size	:	Medium
Municipality	:	Ubate
Milk Processed (l/day)	:	38,500
Water Use Volume	:	500 m ³ /month
Treatment Plant		2 Grease Traps + 1 Sedimentation Tank
Discharging Point	:	Ubate Sewerage System

(17) Alpina

Activity	:	Milk Cooling
Size	:	Large
Municipality	:	Simijaca
Milk Processed (l/day)	:	80,000
Water Use Volume	:	286 m ³ /year (Municipal Water)
		10,950 m ³ /year (Groundwater)
Treatment Plant		3 Grease Traps
Discharging Point	:	Simijaca Sewerage System

(18) Delay

Activity	:	Milk Cooling
Size	:	Large
Municipality	:	Simijaca
Milk Processed (l/day)	:	37,000
Water Use Volume	:	3,000 m ³ /year (Municipal Water),
		6,000 m ³ /year (Groundwater)
Treatment Plant		None
Discharging Point	:	Q. Capitolio

2.2 Existing Pollution Load Generation/Effluent

Point pollution sources in the Study Area can be classified into (a) sewerage system, (b) slaughterhouse, and (c) industrial establishments in the urban centers of 14 municipalities. The sewerage system equipped in all the urban centers receive not only domestic wastewater but also accept the effluent from some of slaughterhouses and industrial establishments.

In this section, firstly the pollution load generated/effluent of domestic wastewater, slaughterhouse wastewater and industrial wastewater covered by sewerage system is estimated. Then, pollution load flowing directly into rivers/channels (sewerage and slaughterhouse /industrial wastewater not covered by sewerage system) is obtained to estimate water quality of the selected rivers and the Fuquene Lake together with pollution load from non-point source explained in Chapter 3.

2.2.1 Generated/Effluent Pollution Load

(1) Domestic Wastewater

Domestic wastewater in each urban center is obtained from the per capita unit wastewater discharge and per capita unit load (BOD₅), which were applied to design the existing sewerage systems in the Study Area. As for per capita unit load for COD, T-N and T-P, those used in Japan are applied after modification.

Per capita unit water consumption or wastewater discharge and per capita unit BOD5 used

for design of the existing sewerage systems are explained below.

(a) San Miguel de Sema (1992)

The following per capita water consumption, which varies by years as tabulated below was applied.

	(unit: l/day)
Year	Water Consumption
1991	100
1996	105
2001	110
2006	115
2010	120

Regarding BOD₅, 50 g/day/person was applied.

(b) Simijaca (1998)

Per capita domestic water consumption used for the design of Simijaca sewerage system is 173 l/day for the target year based on the present per capita domestic water consumption of 153 l/day. Per capita BOD₅ load is not used for the design.

(c) Chiquinquira (1993)

Followings are unit pollution generation load applied for the Chiquinquira.

		Domestic Water Consumption BOD	200 l/day (1995 and 2035) 50 g/day
(d)	Ubate		
		Domestic Discharge BOD	250 l/day (1990 and 2010) 60 g/day

Based on the above, the following unit discharge and unit pollution load (BOD₅) is applied, classifying the urban centers into 'large', 'medium' and 'small' from the point of their present population.

In the design of sewerage systems, return factor of 0.7 (Chiquinquira), 0.8 (Simijaca) and 0.85 (Ubate) were used to convert water consumption to wastewater. In this study, return factor of 0.8 is used to estimate the per capita wastewater.

Name of Town	Water	Wastewater	BOD_5
Ubate & Chiquinquira	225 l/day	180 l/day	50 g/day
Lenguazaque, Guacheta & Simijaca	170 l/day	136 l/day	50 g/day
Other 9 municipalities	110 l/day	88 l/day	50 g/day

Regarding the per capita pollution load of $COD_{(Cr)}$, T-N and T-P, following values are applied from the standards used in Japan, adjusting from the BOD value.

				(unit: mg/L)
	BOD_5	$COD_{(Cr)}$	T-N	T-P
Japan	58	73	11	1.2
Fuquene Lake Basin	50	63	9.5	1.0

Table E.2.3 tabulates the domestic pollution load generation in the urban centers in the Study Area.

(1) Slaughterhouse

Considering lack of quality and quantity data of slaughterhouse wastewater, the unit generation load used in the CAR jurisdiction is applied for this study (see, Table E.2.4). Wastewater quantity data were obtained from some of slaughterhouses, while for those with no available water consumption data, unit wastewater volume shown in Table E.2.4 is also applied.

Effluent quality of BOD, COD, T-N and T-P are obtained based on the analysis result conducted by CAR in eight (8) municipalities near Bogota, and supplementary observation by the Study Team (See, Table E.2.5). The adopted concentration of BOD, COD, T-N, T-P are as follows:

			(unit: mg/l)
Parameter	Average Result	Supplementary	Adopted
	By CAR	Observation by Study Team	Concentration
BOD ₅	2,755	605	2,500
COD	4,667	900	4,000
T-N	577.4	98.3	500
T-P	9.07	9.78	10

Table E.2.6 tabulates pollution load effluent from 14 slaughterhouses in the Study Area.

(3) Industrial Wastewater

The major industrial pollutant sources in the Study Area are dairy industry such as milk processing and milk cooling industries. The water quality data are scarce and therefore, the unit generation load shown in Table E.2.4 is applied for all of the factories with no available wastewater volume data, the unit wastewater volume in this table is used as well.

Following tables tabulate the unit wastewater volume and unit pollution generation load for milk processing and milk cooling industries.

Activities	Wastewater Volume	BOD ₅
Milk Processing	5.0 l/l of milk	2,700 mg/l
Milk Cooling	2.5 l/l of milk	800 mg/l

Table E.2.7 tabulates pollution load effluent from each dairy factory. BOD removal ratio of 0.4 is applied for the factories with treatment plant. Effluent COD, T-N and T-P loads are

estimated from BOD - COD, BOD - T-N, and BOD - T-P relationship (Fig. E.2.2) based on the supplementary water quality observation made by the Study Team.

2.2.2 Point Pollution Load Effluent to Rivers

Point pollution load effluent flowing into rivers includes the wastewater form (a) sewerage system, (b) slaughterhouse not covered by sewerage system and (c) industrial establishment not covered by sewerage system.

(1) Sewerage System

Table E.2.8 tabulates domestic, slaughterhouses and industrial pollution load flowing into the sewerage systems of 14 municipalities in the Study Area which finally pour into rivers.

Table E.2.9 shows pollution load effluent flowing into rivers from 14 sewerage systems mentioned above. For sewerage system without treatment plant, effluent pollution load is equal to influent pollution load, while effluent load with treatment plant is obtained as follows.

The effluent BOD concentration after treatment in the sewerage systems of Ubate, Cucunuba, San Miguel de Sema and Saboya are supposed to be the average effluent BOD concentration observed by the Study Team and the CAR.

COD, T-N and T-P concentration after treatment is estimated from obtained the effluent BOD concentration of each sewerage system based on the relationship of BOD to COD, T-N and T-P, which are estimated from supplementary observation by the Study Team (See Fig.E.2.3).

(2) Slaughterhouse

Effluent of slaughterhouses in Statausa, San Miguel de Sema, Fuquene, Simijaca, Caldas, Chinquinquira and Saboya is considered to flow directly into the rivers.

(3) Dairy Industry

Effluent of dairy industry located in Tausa, Guacheta, Fuquene and Simijaca is considered to flow into the rivers.

Table E.2.10 summarizes point pollution load effluent from three (3) categories mentioned above and their total in 14 urban centers.

2.3 Future Pollution Load Generation/Effluent

2.3.1 Domestic Pollution

(1) Served Population in the Study Area

The existing sewerage system of municipalities covers almost all the urban area. Hence, it is assumed that the future service of the sewerage system will cover all the urban area.

Projection of the population in municipalities in the Study Area is shown in Table A.2.1.

(2) Wastewater Quantity

Per capita unit water consumption, return factor is assumed to be the same as those of the existing ones. Consequently, the wastewater quantity per capita is also the same as the existing one.

(3) Wastewater Quality

BOD load and ratio of COD, T-N and T-P to BOD is same.

(4) Domestic Pollution Load Generation

Based on the assumption above, the domestic pollution load generation is shown in Table E.2.11.

2.3.2 Slaughterhouse

(1) The number of animals to be slaughtered

The number of animals to be slaughtered will increase in proportion to the population growth on the assumption that meet consumption weight per capita will be constant.

(2) The Wastewater Quantity

The wastewater quantity per unit described in Table E.2.4 is also applied. Consequently, the wastewater in the target year will increase in proportion to the population growth.

(3) The Wastewater Quality

The generated BOD concentration and the ratio of COD, T-N and T-P to BOD is assumed to be the same as the existing ones. At present, every municipality installs the pre-treatment plant based on their circumstance. The removal rate will be constant in spite of the increasing of wastewater. The discharge point will not change.

(4) Slaughterhouse Pollution Load Effluent

Based on the assumption above, the slaughterhouse pollution load effluent is shown in Table E.2.12.

2.3.3 Industry

(1) The Number of Factory

With regard to the dairy factory, the number of factory that discharges the effluent into sewerage system, river and irrigation are 41, 4 and 5, respectively. In this study, it is assumed that neither additional industrial establishments will be located in the Study Area nor the discharge point will be changed.

(2) The Wastewater Quantity

Based on the assumption in Section A.2.5.(1), milk industry sector will increases in proportion to the number of cows for milk. It is concluded that the milk production will increase by 4 % from the year 1998 to the target year. Per unit wastewater quantity for cooling/bottling/processing is assumed to be the same. Consequently, the wastewater in the

target year will be 1.04 times of one in 1998.

(3) The Wastewater Quality

The future generated BOD concentration and the ratio of COD, T-N and T-P to BOD is assumed to be the same as the existing ones. At present, few factories install the pre-treatment. It is assumed that in the target year, the removal rate will be the same as that of existing one though the wastewater quantity will be 1.04 times as mentioned above.

On the other hand, no more factories will install the pre-treatment plant in case of "without project" and pre-treatment plant will be installed in every factory in case of "with project".

(4) Industrial Pollution Load Effluent

Based on the assumption above, the industrial pollution load effluent with and without project is summarized in Table E.2.13.

2.3.4 Future Point Pollution Load to Rivers

(1) Sewerage System

Domestic, slaughterhouse and industrial pollution load flowing into the sewerage system of 14 municipalities in the Study Area "without project" and "with project" is tabulated in Table E.2.14 (1) and Table E.2.14 (2).

In case of "with project", every municipality will install the treatment plant till the target year. The effluent quality is assumed to be 40 mg/l, which will be proposed in Appendix F, Section 2.2.2 due to the improvement/development of sewerage treatment plant. T-N and T-P to BOD concentration after treatment is estimated by the relationship between them. The Study Team estimates the relationship from the supplementary observation. (See Fig. E.2.3).

In case of "without project", the efficiency of the existing treatment plant will become worse due to the increase of sewerage discharge. If sewerage discharge will become μ times of existing one in the future, the future retention time becomes $1/\mu$.

The future BOD concentration of sewerage effluent is calculated from the following relationship.

$$Ce'/Ci' = \mu / (\mu - 1 + Ci/Ce)$$

Where Ci: Existing influent BOD concentration

Ce: Existing effluent BOD concentration

Ci': Future influent BOD concentration

Ce': Future effluent BOD concentration

 μ : the ratio of future sewerage discharge to existing one

The BOD of sewerage discharge of effluent without treatment plant is equal to that of influent.

The Table E.2.15 tabulates future pollution load effluent.

(2) Other Pollutant Source

The discharging point of each pollution source will be same.

(a) Slaughterhouse

Effluent of slaughterhouses in Statausa, San Miguel de Sema, Fuquene, Simijaca, Caldas, Chinquinquira and Saboya will flow into the rivers.

(b) Industry

Effluent of dairy industry located in Tausa, Guacheta, Fuquene and Simijaca will flow into the rivers.

(3) Future Point Pollution Load to Rivers

Table E.2.16 (1) and Table E.2.16 (2) summarize the total future point load which will be discharged from sewerage, slaughterhouse and industry above in the Study Area in case of "without project" and "with project", respectively.

CHAPTER WATER POLLUTION MECHANISM

3.1 Pollution Load Runoff Mechanism

3.1.1 General

The pollutant sources in the Study Area are classified into point sources and non-point sources. The point sources consist of sewerage wastewater and industrial wastewater (slaughterhouses and milk processing factories). The non-point sources include livestock wastewater, wastewater from lands (farmland, pasture and shrub/forest) and household wastewater in rural area. The wastewater from urban lands is neglected since the urban are is small.

The non-point pollution loads run off on lands or through small channels/ditches to the tributaries. On the other hands, the point pollution loads are directly discharged into the tributaries or main rivers with treatment or without treatment. Thereafter, both point and non-point pollution loads run off through the tributaries to enter the main river. Finally, they flow down the main river.

In the first runoff stage, the non-point pollution load is decreased to a large extent by the natural purification effects on lands and small channels. The runoff coefficient (R_1) is generally constant for each land use category. In the second runoff stage, the point and non-point pollution loads are reduced by the natural purification effects in the tributaries. The runoff coefficient (R_2) varies according to the tributary length. In this Study, pollution load effluent is defined as the pollution load runoff to the main river. Then, the pollution load effluent is calculated by multiplying the runoff coefficients by the generated pollution load as follows:

Pollution Load Effluent = Generated Pollution Load $x R_1 x R_2$

In this Study, the pollution load generation and effluent are estimated in parameters of BOD, COD, T-N and T-P.

3.1.2 Modeling of the Basin

In this Study, the pollution load generation and effluent are estimated for the entire upstream basin of the confluence with the Chiquinquira River (1,462 km²). The objective basin is divided into nine (9) sub-basins as shown Fig E.3.1. Both point and non-point pollution load runoffs are simulated at the downstream end of the respective sub-basins. The river water quality is simulated at the three (3) principal locations: Ubate River at Pte Colorado (A), Suarez River at Tolon Gate (C) and Suarez River immediately after the confluence of Chiquinquira River (hereafter called Downstream of Chiquinquira City, (D). Further, the water quality of the Lake (B) will be simulated apart from the river water simulation.

The schematic diagram for the simulation of pollution load runoff and water quality is shown in Fig E. 3.2.

3.2 Existing Pollution Load Generation and Runoff

3.2.1 Existing Pollution Load Generation

(1) Point Pollution Load Generation

The existing generated pollution loads of sewerage and industrial wastewater are estimated in Chapter II, Subsections 2.2.1 and 2.2.2. They are directly discharged into the tributaries or main river except a very few sources.

Most of the industrial pollutant sources are discharged into the municipal sewerage and the remaining sources are directly discharged into the public water body. In this simulation study, the industrial sources covered by the sewerage are categorized into sewerage wastewater and only the remaining sources are categorized into industrial wastewater.

(2) Non-point Pollution Load Generation

The non-point pollutants are generated from livestock, land (farmland, pastureland and shrub/forest) and household in rural area.

The number of livestock, rural population and land use in each sub-basin are estimated as shown in Table E.3.1. The unit pollution load generation (BOD, COD, T-N and T-P) of each non-point source category are assumed as shown in Table E.3.2, based on the various previous studies and reports. In the above table, unit population load of household is defined as the load after septic tank treatment.

The non-point pollution load generation of BOD, COD, T-N and T-P in each sub-basin are calculated as the products of the values in Table E 3.1 and Table E 3.2.

(3) Total Existing Pollution Load Generation

The total existing pollution load generation of BOD, COD, T-N and T-P in the Study Area (simulation objective area: 1,462 km²) are summarized below.

			(unit: kg/d)
Pollution Load	Upper Basin of	Suarez River	Total
Parameter	the Lake	Basin	
BOD	68,541	44,026	112,567
COD	166,791	95,705	262,496
T-N	48,123	29,502	77,624
T-P	6,165	3,858	10,023

The total existing pollution load generation of BOD, COD, T-N and T-P by each point and non-point sources are shown below.

(a) BOD

				(unit: kg/day)
Source	Upper Area of	Suarez River	Total	(%)
	the Lake	Basin		
Point (sewerage)	846	2,619	3,464	3.08
Point (industry)*	34	140	174	0.15
Sub-total	880	2,759	3,638	3.23
Non-point (household)	266	100	366	0.33
Non-point (livestock)	62,857	38,767	101,624	90.28
Non-point (land)	4,539	2,400	6,939	6.16
Sub-total	67,661	41,267	108,929	96.77
Total	68,541	44,026	112,567	100.00

^{*:} Only the industrial wastewater discharging into river

(b) COD

				(unit: kg/day)
Source	Upper Area of	Suarez River	Total	(%)
	the Lake	Basin		
Point (sewerage)	1,410	3,284	4,694	1.79
Point (industry)*	46	196	242	0.09
Sub-total	1,456	3,480	4,936	1.88
Non-point (household)	432	160	592	0.23
Non-point (livestock)	152,592	85,841	238,433	90.83
Non-point (land)	12,311	6,224	18,535	7.06
Sub-total	165,334	92,225	257,560	98.12
Total	166,790	95,705	262,496	100.00

^{*:} Only the industrial wastewater discharging into river

(c) T-N

				(unit: kg/day)
Source	Upper Area of	Suarez River	Total	(%)
	the Lake	Basin		
Point (sewerage)	238	511	748	0.96
Point (industry)*	8	32	40	0.05
Sub-total	246	543	788	1.02
Non-point (household)	45	17	61	0.08
Non-point (livestock)	37,939	23,711	61,650	79.42
Non-point (land)	9,894	5,232	15,125	19.49
Sub-total	47,877	28,959	76,836	98.98
Total	48,123	29,502	77,624	100.00

^{*:} Only the industrial wastewater discharging into river

(d) T-P

				(unit: kg/day)
Source	Upper Area of	Suarez River	Total	(%)
	the Lake	Basin		
Point (sewerage)	28	72	100	0.99
Point (industry)*	2	9	11	0.12
Sub-total	29	81	111	1.11
Non-point (household)	7	3	10	0.10
Non-point (livestock)	5,982	3,700	9,682	96.69
Non-point (land)	147	74	220	2.20
Sub-total	6,136	3,776	9,912	98.89
Total	6,165	3,858	10,023	100.00

^{*:} Only the industrial wastewater discharging into river

The total existing pollution load generation of BOD, COD, T-N and T-P by source and by sub-basin are shown in Table E 3.3 and illustrated in Fig E 3.3.

Existing pollution load generation ratio of each source in the upper basin of the Lake Fuquene is shown in Fig E 3.4. Livestock generates the largest pollution load in the basin as follows: BOD: 92%, COD: 91%, T-N: 79% and T-P: 97%.

3.2.2 Existing Pollution Load Runoff

(1) General

The pollution load effluent to the main river or Lake is estimated by multiplying the above generated pollution load by runoff coefficients of R_1 an R_2 . Here, R_1 is the runoff ratio of pollutants generated from each sub-basin to its discharging tributary. R_2 is the self-purification ratio of pollutants in the tributary.

Among the four (4) pollutants of BOD, COD, T-N and T-P, BOD is decomposed in the streams to a considerable extent while it flows down. On the other hand, decomposition of COD, T-N and T-P in the ordinary streams is not significant. Therefore, the self-purification ratio in the tributary is evaluated for only BOD.

Among nine (9) sub-basins, seven (7) sub-basins are discharged to the main river through each discharging tributary. Those tributaries are Ubate (upstream portion), Suta, Cucunuba, Lenguazaque, Susa, Simijaca and Chiquinquira rivers. However, the Lake Fuquene sub-basin and Suarez residual sub-basin are assumed to directly be discharged into the Lake and the Suarez main river respectively. Therefore, the self purification ratio (R_2) of BOD is evaluated only for the above seven (7) rivers.

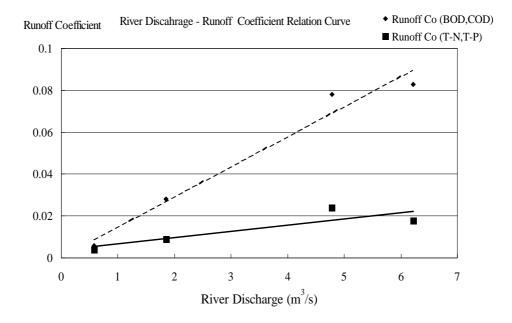
(2) Estimation of Runoff Coefficients

The runoff ratio of pollutant loads from the sub-basins generally vary depending on the topographical, geological and other environmental conditions. In this Study, the runoff coefficients R_1 and R_2 are determined so that the simulated pollution loads may coincide with the observed ones at Pte Colorado station of Ubate River (after confluence of the Suta, Cucunuba and Lenguazaque rivers).

As mentioned before, the self purification effect of the tributary on COD, T-N and T-P in the tributary is negligible, namely, $R_2 = 1.0$. Hence, the runoff coefficient of the sub-basin (R_1) of COD, T-N and T-P is determined to coincide with the measured values at Pte

Colorado station.

On the other hand, the self-purification effect of the tributaries on BOD concentration is significant. The self-purification rate of BOD in the tributaries can be estimated by the following equation.


 $dL/dt = -K \cdot L$, where, L: BOD load (kg), K: self-purification constant (1/day)

The above self-purification constant K is assumed at 1.2 (1/day), considering the river conditions of the tributaries. From the above equation, the average reduction rate of R_2 in the tributaries is estimated to be 3% per km.

The runoff coefficient (R_1) of BOD in the sub-basins is obtained through comparison of the calculated pollution load runoff with the observed one at Colorado station. In this comparison, the pollution load reduction in the tributary by the self-purification effect is duly considered.

The generated non-point pollution loads (BOD, COD, T-N and T-P) in the sub-basins easily run off to the tributaries at a rainy time, while they stay more on the lands at a dry time. There is a certain relationship between the runoff coefficients (R_1) of non-point pollution loads and the river discharge. Generally, the runoff coefficients (R_1) proportionally increase according to the river discharge. Further, BOD and COD run off more easily than T-N and T-P.

The relationship between the runoff coefficients (R_1) of non-point pollution loads (BOD, COD, T-N and T-P) and river discharge at Colorado of the Ubate River is established, based on the field observation of four (4) times as shown below.

The average river discharges at Colorado during the rainy and dry seasons are estimated at $6.21~\text{m}^3/\text{s}$ and $2.27~\text{m}^3/\text{s}$ respectively. Accordingly, the average runoff coefficients (R₁) of non-point pollution loads are estimated as follows

Non-point Load	Rainy Season	Dry season
BOD/COD	0.090	0.031
T-N/T-P	0.023	0.010

The estimated runoff coefficients of the sub-basin (R_1) and tributary (R_2) by point and non-point loads are summarized below.

Pollution Load	BOD	COD	T-N	T-P
Point Load (whole year)				
R_1	1.0	1.0	1.0	1.0
R_2	3% reduction per km	1.0	1.0	1.0
Non-Point Load (rainy season)				
R_1	0.090	0.090	0.023	0.023
\mathbb{R}_2	3% reduction per km	1.0	1.0	1.0
Non-Point Load (dry season)				
R_1	0.031	0.031	0.010	0.010
R_2	3% reduction per km	1.0	1.0	1.0

The above runoff coefficients are applied for all the sub-basins and tributaries in the Study Area (simulation objective area).

(3) Total Existing Pollution Load Runoff

The total existing pollution runoff of BOD, COD, T-N and T-P in the Study Area (simulation objective area: 1,462 km²) through both seasons are summarized below.

				(unit: kg/d)
Season	Pollution Load	Upper Basin of	Suarez River	Total
	Parameter	the Lake	Basin	
\ <u>-</u>	BOD	3,877	4,853	8,730
Rainy Season	COD	16,336	12,523	28,859
Kainy Season	T-N	1,347	1,188	2,535
	T-P	171	168	339
	BOD	1,915	3,480	5,395
Dry Season	COD	6,581	6,595	13,176
Diy Season	T-N	725	832	1,557
	T-P	91	119	210

The total existing pollution load runoff of BOD, COD, T-N and T-P by each point and non-point sources through both seasons are shown below.

(a) BOD

				(uni	t: kg/day)
Season	Source	Upper Area of the Lake	Suarez River Basin	Total	(%)
	Point (sewerage)	846	2,619	3,464	39.68
	Point (industry)*	34	140	174	1.99
	Sub-total	880	2,759	3,638	41.68
Dainy Casson	Non-point (household)	11	5	16	0.18
Rainy Season	Non-point (livestock)	2,808	1,949	4,757	54.49
	Non-point (land)	179	140	319	3.65
	Sub-total	2,997	2,094	5,092	58.32
	Total	3,877	4,853	8,730	100.0
'	Point (sewerage)	846	2,619	3,464	64.21
	Point (industry)*	34	140	174	3.23
	Sub-total	880	2,759	3,638	67.44
D C	Non-point (household)	4	2	6	0.10
Dry Season	Non-point (livestock)	967	672	1,639	30.37
	Non-point (land)	65	48	113	2.09
	Sub-total	1,035	722	1,757	32.56
	Total	1,915	3,480	5,395	100.0

^{*:} Only the industrial wastewater discharging into river

(b) COD

(unit: kg/day) Upper Area of Suarez River Total (%) Source Season the Lake Basin Point (sewerage) 1,410 3,284 4,694 16.26 Point (industry)* 46 196 242 0.84 1,456 3,480 4,936 17.10 Sub-total 39 54 0.19 Non-point (household) 15 Rainy Season Non-point (livestock) 13,733 8,525 22,258 77.13 Non-point (land) 1,108 1,611 5.58 503 Sub-total 14,880 9,043 23,923 82.90 28,859 100.0 Total 16,336 12,522 Point (sewerage) 1,410 3,284 4,694 35.62 Point (industry)* 242 46 196 1.84 1,456 3,480 4,936 37.46 Sub-total 0.14 Non-point (household) 13 18 Dry Season Non-point (livestock) 4,730 2,936 7,667 58.19 382 Non-point (land) 173 555 4.21 5,125 62.54 Sub-total 3,115 8,240 Total 6,581 6,595 13,176 100.0

^{*:} Only the industrial wastewater discharging into river

(c) T-N

				(uni	t: kg/day)
Season	Source	Upper Area of the Lake	Suarez River Basin	Total	(%)
	Point (sewerage)	238	510	748	29.49
	Point (industry)*	8	32	40	1.60
	Sub-total	246	542	788	31.09
Rainy Season	Non-point (household)	1	0	1	0.06
Kanny Season	Non-point (livestock)	873	525	1,398	55.13
	Non-point (land)	227	120	347	13.72
	Sub-total	1,101	645	1,746	68.91
	Total	1,347	1,187	2,534	100.0
	Point (sewerage)	238	510	748	48.03
	Point (industry)*	8	32	40	2.60
	Sub-total	246	542	788	50.63
Dury Coosen	Non-point (household)	0	0	0	0.04
Dry Season	Non-point (livestock)	379	237	616	39.61
	Non-point (land)	99	52	151	9.72
	Sub-total	479	289	767	49.37
	Total	725	832	1,557	100.0

^{*:} Only the industrial wastewater discharging into river

(d) T-P

				(uni	t: kg/day)
Season	Source	Upper Area of the Lake	Suarez River Basin	Total	(%)
	Point (sewerage)	28	72	100	29.35
	Point (industry)*	2	9	11	3.36
	Sub-total	30	81	111	32.71
Dainy Casson	Non-point (household)	0	0	0	0.07
Rainy Season	Non-point (livestock)	138	85	223	65.73
	Non-point (land)	3	2	5	1.50
	Sub-total	141	87	228	67.29
	Point (sewerage) Point (industry)* Sub-total Non-point (livestock) Non-point (land) Sub-total Total Point (sewerage) Point (industry)* Sub-total Non-point (household)	171	168	339	100.0
	Point (sewerage)	28	72	100	47.62
	Point (industry)*	2	9	11	5.23
	Sub-total	30	81	111	52.86
Davi Caasan	Non-point (household)	0	0	0	0.05
Dry Season	Non-point (livestock)	60	37	97	46.19
	Non-point (land)	1	1	2	1.05
	Sub-total	61	38	99	47.14
	Total	91	119	210	100.0

^{*:} Only the industrial wastewater discharging into river

The total existing pollution load runoff of BOD, COD, T-N and T-P by source and by sub-basin are shown in Table E 3.4 (rainy season)-Table E 3.5 (rainy season), and illustrated in Fig E 3.5 (rainy season)-Fig E 3.6 (dry season).

Pollution load runoff ratio of each source in the upper basin of the Lake Fuquene is shown in Fig E 3.7 (rainy season) and Fig E 3.8 (dry season). Livestock shares the largest pollution load runoff in the basin as follows: BOD: 70%, COD: 83%, T-N: 63% and T-P: 80% (rainy season) and BOD: 52%, COD: 74%, T-N: 53% and T-P: 67% (dry season).

Annual pollution load runoff of each source in the upper basin of the Lake Fuquene is shown below. It is considered rainy season includes 185 days and dry season includes 182 days a year.

							(un	it: ton/y)
	BO	DD	CO	DD	T-	-N	T	-P
Item	Pollution	Datio (0/)	Pollution	Datio (0/)	Pollution	Datio (0/)	Pollution	Datia (0/)
	Runoff	Ratio (%)						
Point (sewerage)	308.8	29.19	514.7	12.29	86.9	22.95	10.2	21.36
Point (industry)*	12.4	1.17	16.8	0.40	2.9	0.77	0.8	1.53
Sub-total	321.2	30.36	531.4	12.69	89.8	23.73	11.0	22.88
Non-point (household)	2.7	0.26	9.5	0.23	0.2	0.05	0.0	0.00
Non-point (livestock)	689.9	65.20	3374.0	80.58	228.7	60.44	36.2	75.59
Non-point (land)	44.6	4.21	272.3	6.50	59.6	15.74	0.7	1.53
Sub-total	736.8	69.64	3655.8	87.31	288.7	76.27	36.9	77.12
Total	1058.0	100.00	4187.2	100.00	378.5	100.00	47.9	100.00

^{*:} Only the industrial wastewater directly discharging into river

3.3 Future Pollution Load Generation and Runoff

3.3.1 Future Pollution Load Generation

The future generated non-point pollution loads of livestock, land and household are estimated under the future socioeconomic conditions with the increased number of livestock and rural population projected in Appendix A, Chapter II, Subsections 2.2-2.3. The future generated point pollution loads of sewerage and industrial wastewater are estimated in Chapter II, Subsections 2.3. The total future pollution load generation of BOD, COD, T-N and T-P in the Study Area (Simulation object area: 1,462 km²) is summarized below.

				(unit: kg/d)
Droject	Pollution Load	Upper Basin of	Suarez River	Total
Project	Parameter	The Lake	Basin	
	BOD	77,214	49,604	126,818
Without Project	COD	187,970	117,869	305,838
williout Froject	T-N	53,415	32,823	86,238
	T-P	6,947	4,315	11,262
	BOD	76,041	46,958	122,999
With Project	COD	185,907	114,888	300,796
willi Floject	T-N	53,065	32,380	85,445
	T-P	6,904	4,251	11,155

In the above table, with project is the case where sewerage and industry waste are treated as shown in Appendix F. The future point and non-point pollution load generation of BOD, COD, T-N and T-P are shown below.

(unit: kg/day)

Parameter	Project	Source	Upper Area of the Lake	Suarez River Basin	Total	(%)
'		Point	1,469	3,187	4,656	3.67
	Without Project	Non-Point	75,745	46,416	122,162	96.33
BOD		Total	77,214	49,603	126,818	100.00
вор		Point	296	541	837	0.68
	With Project	Non-Point	75,745	45,516	122,162	99.32
		Total	76,041	46,057	122,999	100.0
		Point	2,696	4,037	6,732	2.20
	Without Project	Non-Point	185,274	113,832	299,106	97.80
COD		Total	187,970	117,869	305,838	100.00
СОБ		Point	633	1,056	1,690	0.56
	With Project	Non-Point	185,274	113,832	299,106	99.44
		Total	185,907	114,888	300,796	100.00
		Point	462	625	1,087	1.26
	Without Project	Non-Point	52,953	32,198	85,150	98.74
T-N		Total	53,415	32,823	86,237	100.00
1-11		Point	112	162	294	0.34
	With Project	Non-Point	52,953	32,198	85,150	99.66
		Total	53,065	32,360	85,444	100.00
		Point	58	90	148	1.31
	Without Project	Non-Point	6,889	4,225	11,114	98.69
T-P		Total	6,947	4,315	11,262	100.00
1-1		Point	15	26	41	0.37
	With Project	Non-Point	6,889	4,225	11,114	99.63
	3	Total	6,904	4,251	11,155	100.00

The above table is broken down by sub-basin and by source as shown in Table E 3.6 (Without Project) and Table E. 3.7 (With Project).

Livestock is the largest source of pollution load generation in the Study Area. It shows an extremely large percentage in the upper basin of the Lake Fuquene as shown below.

Project	Pollution Load Parameter	Ratio of Livestock (%)
	BOD	92
Without Project	COD	93
without rioject	T-N	80
	T-P	97
	BOD	94
With Project	COD	94
with Hoject	T-N	81
	T-P	98

3.3.2 Future Pollution Load Runoff

The total future pollution load runoff of BOD, COD, T-N and T-P in the Study Area (simulation objective area: $1,462 \text{ km}^2$) in both seasons are summarized below. The runoff coefficients are assumed to be the same values as the existing ones.

					(unit: kg/d)
Project	Season	Pollution Load Parameter	Upper Basin of The Lake	Suarez River Basin	Total
		BOD	4,840	5,538	10,378
	Rainy Season	COD	19,370	14,282	33,652
	Kainy Season	T-N	1,680	1,366	3,046
Without Project		T-P	216	187	403
without i roject	Dry Season	BOD	2,630	3,998	6,628
		COD	8,439	7,565	16,004
		T-N	992	947	1,939
		T-P	127	132	259
		BOD	3,667	2,892	6,559
	Dainy Casson	COD	17,308	11,301	28,609
	Rainy Season	T-N	1,330	922	2,252
With Project		T-P	174	123	297
		BOD	1,457	1,351	2,808
	Der Casson	COD	6,377	4,585	10,962
	Dry Season	T-N	642	504	1,146
		T-P	84	68	152

The total future pollution load runoff of BOD, COD, T-N and T-P by each point and non-point sources in both seasons are shown below. For details of each pollution load runoff, see Table E.3.8 -Table E 3.11.

						(unit	: kg/day)		
Parameter	Project	Season	Source	Upper Area of the Lake	Suarez River Basin	Total	(%)		
		Rainy	Point	1,469	3,187	4,656	44.87		
		Season	Non-point	3,371	2,351	5,722	55.13		
	Without	Season	Total	4,840	5,538	10,378	100.00		
	Project	Desc	Point	1,469	3,187	4,653	70.25		
		Dry	Non-point	1,161	811	1,972	29.75		
BOD		Season	Total	2,630	3,998	6,628	100.00		
вор		Rainy	Point	296	541	837	12.77		
		Season	Non-point	3,371	2,351	5,722	87.23		
	With Project	Season	Total	3,667	2,892	6,559	100.00		
	will Hoject	Dry	Point	296	541	837	29.82		
		Season	Non-point	1,161	810	1,971	70.18		
		Season	Total	1,457	1,351	2,808	100.00		
		Doiny	Point	2,696	4,037	6,732	20.01		
	Without Project	Rainy Season	Non-point	16,675	10,245	26,920	79.99		
		Season	Total	19,370	14,282	33,652	100.00		
		D	Point	2,696	4,037	6,732	42.06		
		Dry	Non-point	5,743	3,529	9.272	57.94		
COD		Season	Total	8,439	7,565	16,004	100.00		
COD	With Project	D -:	Point	633	1,056	1,690	5.91		
		Rainy	Non-point	16,675	10,245	26,920	94.09		
		With Project	Season	Total	17,308	11,301	28,609	100.00	
		D	Point	633	1,056	1,690	15.41		
		;	Dry	Non-point	5,743	3,529	9.272	84.59	
			Season	Total	6,377	4,585	10,962	100.00	
		ъ.	Point	462	625	1,087	35.70		
		Rainy	Non-point	1,218	741	1,958	64.30		
	Without	Without	Without	Season	Total	1,680	1,366	3,046	100.00
	Project	ъ	Point	462	625	1,087	56.08		
	-	Dry	Non-point	530	321	852	43.92		
T N		Season	Total	992	947	1,939	100.00		
T-N		ъ.	Point	112	182	294	13.06		
		Rainy	Non-point	1,218	740	1,958	86.94		
	Wid D : (Season	Total	1,330	922	2,252	100.00		
	With Project	Ъ	Point	112	182	294	25.68		
		Dry	Non-point	530	322	852	74.32		
		Season	Total	642	503	1,146	100.00		
		ъ.	Point	58	90	148	36.60		
		Rainy	Non-point	158	97	255	63.40		
	Without	Season	Total	216	187	403	100.00		
	Project	Б	Point	58	90	148	57.04		
	J	Dry	Non-point	69	42	111	42.96		
TT D		Season	Total	127	132	259	100.00		
T-P —		ъ.	Point	15	26	41	13.77		
		Rainy	Non-point	158	97	256	86.23		
	Wal D	Season	Total	174	123	297	100.00		
	With Project	Ъ	Point	15	26	41	26.87		
		Dry	Non-point	69	42	111	73.13		
			Season	Total	84	68	152	100.00	

Livestock is the largest source of pollution load runoff in the Study Area. It shows a large percentage in the upper basin of the Lake Fuquene as shown below.

Project	Season	Pollution Load Parameter	Ratio of Livestock (%)
		BOD	66
	Rainy Season	COD	80
	Kainy Season	T-N	59
Without Project		T-P	73
williout Floject		BOD	42
	Dry Season	COD	63
	Dry Season	T-N	43
		T-P	54
		BOD	87
	Rainy Season	COD	91
	Kainy Season	T-N	75
With Project		T-P	89
with Floject		BOD	76
	Der Caasan	COD	84
	Dry Season	T-N	67
		T-P	80

Annual future pollution load runoff of each source in the upper basin of the Lake Fuquene is shown below. In the above estimation, It is assumed that rainy season covers 185 days and dry season 182 days a year.

(unit: ton/y)

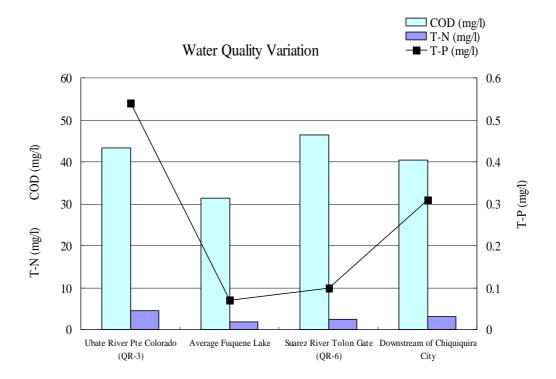
		BOI)	COI)	T-N	1	T-P)
Project	Item	Pollution	Ratio	Pollution	Ratio	Pollution	Ratio	Pollution	Ratio
		Runoff	(%)	Runoff	(%)	Runoff	(%)	Runoff	(%)
	Point (sewerage)	522.7	38.31	965.8	19.01	165.3	33.88	20.1	32.05
	Point (industry)*	13.1	0.96	18.3	0.36	3.3	0.67	1.1	1.75
	Sub-total	536.2	39.30	984.0	19.37	168.6	34.56	21.2	33.80
Without Project	Non-point (household)	2.7	0.20	10.1	0.20	0.2	0.04	0.0	0.00
williout Froject	Non-point (livestock)	779.4	57.12	3,814.4	75.08	259.2	53.13	40.6	64.75
	Non-point (land)	46.1	3.38	272.3	5.36	59.7	12.24	0.7	1.17
	Sub-total	828.2	60.70	4,096.8	80.64	319.4	65.44	41.5	66.20
	Total	1,364.4	100.0	5,080.6	100.0	488.0	100.0	62.6	100.0
	Point (sewerage)	98.2	10.49	217.5	5.03	38.7	10.74	4.7	10.07
	Point (industry)*	9.9	1.05	13.5	0.31	2.2	0.61	0.7	1.55
	Sub-total	108.0	11.54	231.0	5.34	40.9	11.35	5.5	11.62
With Project	Non-point (household)	2.7	0.29	10.1	0.23	0.2	0.05	0.0	0.00
	Non-point (livestock)	779.4	83.25	3,814.4	88.13	259.2	71.97	40.6	86.06
	Non-point (land)	45.9	4.90	272.3	6.29	59.7	16.58	0.7	1.55
	Sub-total	828.2	88.46	4,096.8	94.66	319.4	88.65	41.5	87.99
	Total	936.2	100.0	4,328.0	100.0	360.2	100.0	47.1	100.0

^{*:} Only the industrial wastewater directly discharging into river

3.4 Water Quality Simulation

3.4.1 Methodology

(1) General


The pollution load generated in the four (4) sub-basins of Upper Ubate, Suta, Cucunuba and Lenguazaque runoff to the Pte Colorado through the respective tributaries. Thereafter, they flow down the Ubate River (lower portion) to enter the Lake Fuquene. On the other hand, the pollution loads in the Lake Fuquene sub-basin is directly discharged into the Lake.

The pollution load entered the Lake are drained to the Suarez River after they are affected by the metabolic effects of the Lake.

The pollution load effluents from the Lake flow down the Suarez River to the Lower Downstream of Chiquinquira City through the Tolon Gate. On the way to the Downstream of Chiquinquira City, the pollution load generated in the sub-basins of Susa, Simijaca, Chiquinquira and Suarez residual are discharged into the Suarez River.

For the schematic diagram of the above pollution load runoff, see Fig. E 3.2.

The water quality shows complicated variations in the river course between Pte Colorado and Downstream of Chiquinquira City as shown below (Pte Colorado, Average Fuquene Lake and Tolon Gate: average observed value, Downstream of Chiquinquira City: estimated value). This mechanism is analyzed in the following Section. In this Section, the concept and methodology for the water quality simulation are presented.

(2) Water Quality Simulation of Main River

The Ubate River (Pte Colorado – Entrance to the Lake) is only 2 km in distance, therefore, no water quality change is assumed in this reach. The river water quality simulation will be made for the Suarez River (Lake Fuquene outlet – Downstream of Chiquinquira City) with a river distance of 20 km.

In the Suarez River, BOD considerably decreases, while COD increases to a significant extent between the Lake outlet and Tolong Gate. However, T-N and T-P scarcely varies.

Hence, BOD concentration is simulated at the objective point based on the following equations.

Variation speed of BOD concentration: $dC/dt = \pm K \cdot C$

BOD concentration at objective point (i): Ci = Li/Qi

Where,

C: BOD concentration (mg/l)

Ci: BOD concentration at objective point (i) (mg/l)

K: Variation speed coefficient (1/day)

Li: Pollution load at objective point (i) (kg/day)

Qi: River flow rate at objective point (i) (m³/s)

COD, T-N and T-P concentration at the objective point (i) is simply simulated by the following equation:

COD/T-N/T-P concentration at objective point (i): Ci = Li/Qi

Where,

Ci: COD/T-N/T-P concentration at objective point (i) (mg/l)

Li: Pollution load at objective point (i) (kg/day)

Qi: River flow rate at objective point (i) (m³/s)

(3) Lake Water Simulation

(a) General

The water quality of the Lake will be evaluated in the parameters of COD, T-N and T-P. COD, T-N and T-P load enter the Lake from the Ubate River and Lake Fuquene sub-basin. They are drained into the Suarez River through the metabolic process of the Lake including decomposition, settling on the bed, absorption by aquatic plants and releasing from the bed.

Such metabolic process is shown in Fig.E.3.9. In this simulation, water quality variation due to the production and decomposition of plankton is not considered since the existing plankton population is small.

The water quality of COD, T-N and T-P will be estimated by calculating the balance of inflow, outflow, decomposition, settling (sedimentation), absorption and releasing loads respectively.

(b) Adopted Lake Water Quality Simulation Formula

The Vollenweider Model was adopted for simulation of the lake water pollution in terms of COD, T-N, and T-P. The adopted formula for the lake water quality simulation is as follows.

 $C_N = L(N)/((w+N) \times V)$

 $C_P = L(N)/((w+P) \times V)$

 $C_{COD} = L(COD)/((w+COD) \times V)$

Where:

C_N: Concentration of Nitrogen of lake (mg/l)

C_P: Concentration of Phosphate of lake (mg/l)

C_{COD}: Concentration of COD of lake (mg/l)

L(N): T-N quantity of inflow into lake and releasing from lake bed sediment (g/day)

L(P): T-P quantity of inflow into lake and releasing from lake bed sediment (g/day)

L(COD): COD quantity of inflow into lake and releasing from lake bed sediment (g/day)

w: Change rate of lake water (annual inflow/lake volume or 1/retention time)

N: T-N self-purification (reduction) or production coefficient

P: T-P self-purification (reduction) or production coefficient

COD: COD self-purification (reduction) or production coefficient

V: Volume of lake

The following assumptions are made in the application of the above formula.

- (i) Lake water temperature is constant at 17 throughout the year.
- (ii) The lake water quality is completely mixed.
- (iii) The lake water is under a steady hydraulic condition.

3.4.2 Simulated River Water Quality

(1) Existing River Water Quality

The water quality of the main river at the time of 75% probable discharge is calculated as below. Runoff coefficient (R_1) of non-point pollution loads at the time of 75% probable discharge are BOD/COD: 0.017, T-N/T-P: 0.007.

		Ubate River			Suarez River*	
Item	Unit	After	Pte. Colorado	Tolon Gate	After	After
		Confluence			Chiquinquira	Chiquinquira
		of Suta River			City	City*
Discharge	m^3/s	0.60	1.14	1.15	1.50	0.35
BOD	mg/l	13.6	5.27	3.22	17.7	69.8
COD	mg/l	37.3	31.1	63.6	72.9	103.6
T-N	mg/l	5.50	4.37	5.26	7.66	15.6
T-P	mg/l	0.69	0.54	0.62	0.90	1.85

^{*:} When Tolon Gate is closed.

(2) Future River Water Quality

The future water quality of the main river at the time of 75% probable discharge is calculated as below. Runoff coefficient (R_1) of non-point pollution loads at the time of 75% probable discharge are the same values as existing case.

			Ubate	River		Suarez Rive	er*
Project	Item	Unit	After	Pte. Colorado	Tolon	After	After
Troject	Item	Omt	Confluence		Gate	Chiquinquira	Chiquinquira
			of Suta River			City	City*
	Discharge	M^3/s	0.60	1.14	1.15	1.50	0.35
	BOD	Mg/l	20.9	7.89	3.47	20.6	82.0
Without Project	COD	Mg/l	53.2	44.6	68.5	81.0	122.0
	T-N	Mg/l	8.49	6.59	5.77	8.67	18.2
	T-P	Mg/l	1.07	0.78	0.69	1.02	2.10
	Discharge	M^3/s	0.60	1.14	1.15	1.50	0.35
	BOD	Mg/l	9.59	3.94	2.77	5.31	16.0
With Project	COD	Mg/l	27,4	27.3	60.8	56.2	41.1
	T-N	Mg/l	4.02	3.58	4.56	5.01	6.51
	T-P	Mg/l	0.52	0.47	0.42	0.50	0.77

^{*:} When Tolon Gate is closed.

As shown in the above table, the future water quality with project will satisfy the standards of CAR (class-A BOD 5mg/l) at Pte Colorado and Tolon Gate. However, immediately after confluence of Suta River and after Chiquinquira City, it will not meet class-A, but meet class-B (BOD 10mg/l).

3.4.3 Simulated Lake Water Quality

(1) Existing Lake Condition

The pollution analysis of the lake was conducted under following condition.

(a) Hydrological features

Hydrological features of the Fuquene Lake are calculated blow.

Item	Value
Average Discharge at Ubate River Pte Colorado (m ³ /s)	4.24
Annual Water Inflow to the Fuquene Lake (10 ⁶ m ³ /y)	183.6
Lake Water Volume at Average Water Level (10 ⁶ m ³)	50.0
Lake Surface Area (km²)	29.8

(b) Average Water Quality

Average water quality at Ubate River Pte Colorado and Fuquene Lake are shown below.

Parameter	Average River Water Quality at Ubate River Pte Colorado (QR-3)	Average Lake Water Quality in the Fuquene Lake	Remarks
COD(mg/l)	43.4	31.4	
T-N (mg/l)	4.54	1.83	
T-P (mg/l)	0.54	0.07	

As shown above, T-N and T-P concentrations are much lower than those in the Ubate River. It is considered due to that reduction by primary/secondary sedimentation, decomposition by denitrfication of nitrogen, and absorption of the aquatic plants are all large.

(c) Pollution Load Inflow and Outflow

Annual pollution load inflow and outflow are estimated blow. Those pollution loads are obtained from the annual flow rate and average river/lake water quality.

Parameter	Annual Pollution Load Inflow (t/y)	Annual Pollution Load Outflow (t/y)	Remarks
COD	4,187	5,765	
T-N	378.5	336.0	
T-P	47.9	12.9	

(2) Pollution Load Balance

Annual pollution load balance in the lake is summarized below.

	Item	COD (t/y)	T-N (t/y)	T-P (t/y)
-	Pollution Load Inflow	4,187	369.7	47.9
Production	Releasing Pollution Load	9,789	652.6	6.0
	Total Production of Pollutants	13,976	1,031	53.9
	Pollution Load Outflow	5,765	336.0	12.9
	Nutrient Absorption by Aquatic Plants	-	25.6	1.8
Reduction	Primary Sedimentation in the Ubate River Mouth	619	179.3	36.0
Reduction	Secondary Sedimentation in the Lake	1,621	85.9	2.8
	Decomposition in the Lake	5,928	367.9	-
	Total Reduction of Pollutants	13,933	995	53.5

(a) Releasing Pollution Load from Lake Bed Sediment

Releasing rate of COD, T-N, and T-P from the lake bed sediment is calculated in Appendix E Sub-section 1.1.4. Annual releasing pollution load is estimated below.

Parameter	Deposit Quality (mg/dry g)	Releasing Rate (mg/m²/d)	Annual Releasing Pollution Load(t/y)
COD	87.1	900	9,789
T-N	4.60	60	652.6
T-P	0.15	0.55	6.0

As shown above, the releasing pollution loads of COD and T-N from the lake bed sediment are larger than the pollution load inflow. However, the releasing pollution load of T-P is smaller than the pollution load inflow.

(b) Nutrients Content of Aquatic Plants

The nutrients content of aquatic plants in the lake were analyzed by the Study Team as shown below.

No.	Aquatic Plants	Water	Ash	N	P
	_	Content(%)	Content(%)	(%)	(%)
1	Elodea	92.2	20.8	2.85	0.23
2	Water hyacinth	91.0	16.8	1.84	0.13
3	Bulrush	76.9	7.4	1.03	0.05

%: Dry Weight

In this lake water quality simulation, the nutrients content analyzed by Study Team are employed.

(c) Nutrients Absorption by Aquatic Plants

The major aquatic plants in the Lake are Water hyacinth, Elodea and Bulrush. Bulrush absorbs nutrients only from the lake bed sediments, Elodea uptakes from both the sediments and lake water, and Water hyacinth absorbs only from the lake water. In this report, only pollution load balance in the lake water is simulated. Then, Bulrush and Elodea are excluded from the simulation. Because;

(i) Bulrush does not uptake nutrients from the lake water.

(ii) The annual growth and death rates of Elodea are considered balanced. Then the releasing and absorption of nutrients to/from the lake water are balanced.

Water hyacinth is estimated to increase at a rate of 2 % of the existing area every year, see Appendix G Chapter IV Sub-section 4.2.1. The annual increasing area of Water Hyacinth at present is calculated to be 697 ha \times 0.02 =13.9 ha. Water content of Water Hyacinth is assumed as 90%.

Then, the increasing Water Hyacinth of the Fuquene Lake will consume the following N and P quantities per year.

$$N = 100 \text{ kg/m}^2 \times 13.9 \text{ ha} \times 10\% \times 1.84\% = 25.6 \text{ ton/year}$$

$$P = 100 \text{ kg/m}^2 \times 13.9 \text{ ha} \times 10\% \times 0.13\% = 1.8 \text{ ton/year}$$

(d) Primary Sedimentation in the Ubate River Mouth

Primary sedimentation is defined as the sedimentation in the Ubate River mouth. Generally, primary sedimentation rate of pollutants is relatively high in the river mouth. It is considered due to the sedimentation of particles (suspended solid) contained in the river water. Most of the large size particles are removed by sedimentation before inflow to the lake, because of the low current velocity in the river mouth. This phenomenon is observed in the typical eutrophic lakes in Japan, for instance Lake Teganuma and Lake Kasumigaura ⁻³⁾. Especially, primary sedimentation of T-P is expected to be higher than other parameters.

In this Study, primary sedimentation ratio is estimated by the comparison between the average water quality at Uabte River Pte Colorado and Fuquene Lake Ubate Mouth. Primary sedimentation ratio of pollutants is calculated below.

	Average Polluta	nts Concentration	Primary	Annual Primary
Parameter	Ubate River at	Fuquene Lake at	Sedimentation	Sedimentation
1 arameter	Pte. Colorado	Ubate Mouth	Ratio	Quantity
	QR-3 (mg/l)	QL-1 (mg/l)	(%)	(t/y)
COD	39.2	33.3	15.0	618.9
T-N	4.55	2.34	48.5	179.3
T-P	0.49	0.12	76.2	36.0

(e) Secondary Sedimentation in the Lake

Secondary sedimentation is defined as the sedimentation in the lake. Pollution load reduction by secondary sedimentation in the lake is estimated based on the results of settling test and deposit quality observation. Annual secondary sedimentation quantity is calculated below.

	Average Settling	Rate of Particles	Average Deposit	Secondary
Item	Daily	Annual Rate	Quality	Sedimentation
	$Rate(g/m^2/d)$	$(g/m^2/y)$	(mg/dry g)	Rate(t/y)
SS	1.71	624	-	-
COD	-	-	87.1	1,621
T-N	-	-	4.60	85.9
T-P	-	-	0.15	2.8

(f) Decomposition in the Lake

Organic substance concentration (COD) will be reduced by biological decomposition in the lake water. On the other hand, nitrate (NO₃) and nitrite (NO₂) concentration will be also reduced by denitrification on interface between the lake bed and the lake water. Decomposition of phosphorus is considered negligible.

(i) COD

Generally, the organic substances in the eutrophic lake are hardly biodegradable. Biological decomposition rate of COD(Mn) in the eutrophic lake is reported at 0.007 (1/day) at 20 of water temperature based on the experimental analysis ⁻⁴⁾. On the other hand, the COD decomposition rate varies depending on water temperature as shown below.

$$K=K_{20} \times \theta^{T-20}$$

Where

K : COD decomposition rate at T

K₂₀:COD decomposition rate at 20

 $\boldsymbol{\theta}$: Thermal coefficient

Thermal coefficient θ is in the range of 1.047-1.103 (average value 1.077) according to a previous study ⁻⁵⁾. Therefore, COD (Cr) decomposition rate in the Fuquene Lake is assumed as 0.0056 (1/day) at 17 . The annual decomposition quantity of COD (Cr) is calculated as 5,928 ton.

(ii) Nitrogen

T-N concentration in the lake water gradually decreases to outlet because of its denitrification. Generally, denitrification rate in the lake depends on the lake water temperature, the lake water quality, hydraulic features, and so on.

Denitrofication ratio in the Fuquene Lake is assumed as 36% referring to the case of Lake Teganuma, Japan $^{-3)}$. Using this value, annual denitrofication quantity in the Fuquene Lake is estimated at 367.9t/y.

(3) Self-Purification Coefficient in the Fuquene Lake

Based on the Vollenweider Model given in Subsection 3.4.1 (3), self-purification

coefficients for each parameter are calculated below. These coefficient values are adopted for projection of the future lake water quality.

Item	Unit	Self-purification Coefficient	Remarks
COD	(1/day)	0.014	
T-N	(1/day)	0.021	
T-P	(1/day)	0.032	

(4) Future Lake Water Quality and Pollution Load Balance

(a) Future Lake Water Quality

Future lake water quality is simulated based on the future total production of pollutants. The future total pollutant production are shown below. In this table, releasing pollution loads are assumed to be the same quantity as the existing ones.

	W	ithout Proje	ect	7	With Projec	t
Item	COD	T-N	T-P	COD	T-N	T-P
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
Pollution Load Inflow	5,081	488.0	62.6	4,328	360.2	47.1
Releasing Pollution Load	9,789	652.6	6.0	9,789	652.6	6.0
Total Production of Pollutants	14,870	1,141	68.6	14,117	1,013	53.1

The future average water quality of the Lake is calculated below.

Item	Unit	Existing Water Quality	Future Water Quality (Without Project)	Future Water Quality (With Project)
COD	mg/l	31.4	33.4	31.7
T-N	mg/l	1.83	2.02	1.79
T-P	mg/l	0.07	0.09	0.07

In this calculation, the future self-purification coefficient are assumed to be the same as the existing ones.

As shown above, the future lake water quality will be still highly eutrophic regardless the wastewater treatment of point sources. It is due to that a large pollution load of non-point sources is left untreated even in the future.

(b) Future Pollution Load Balance

Balance of the future annual pollution load in the lake is summarized blow. In this table, the future nutrient absorption by aquatic plants and secondary sedimentation in the lake are assumed to be the same as the existing ones.

		W	ithout Pro	ject	1	With Proje	ect
	Item	COD	T-N	T-P	COD	T-N	T-P
		(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
	Pollution Load Inflow	5,081	488.0	62.6	4,328	360.2	47.1
Production	Releasing Pollution Load	9,789	652.6	6.0	9,789	652.6	6.0
	Total Production of Pollutants	14,870	1,141	68.6	14,117	1,013	53.1
	Pollution Load Outflow	6,132	370.9	16.5	5,820	328.6	12.9
	Nutrient Absorption by Aquatic Plants	-	25.6	1.8	-	25.6	1.8
	Primary Sedimentation in the Ubate	762	236.7	47.7	649	174.7	35.9
Reduction	River Mouth						
	Secondary Sedimentation in the Lake	1,621	85.9	2.8	1,621	85.9	2.8
	Decomposition in the Lake	6,335	410.8	-	6,014	364.7	-
	Total Reduction of Pollutants	14,850	1,130	68.8	14,101	980	53.4

REFERENCES

- 1) Toshiko Nakamura et al, Seasonal Variation of Phitoplankton in South Biwa Lake, Journal of Water and Waste, Vol. 39 No.11 (1997)
- 2) Report of Water Quality in Kasumigaura Lake, Japan, (1995).
- 3) Masaaki Hosomi and Ryuichi Sudo, A three-year Water, Nitrogen, and Phosphorus Budget for Lake Teganuma, Journal of Japan Society on Water Environment Vol. 15 No.2 105-112 (1992)
- 4) Shigeo Fujii, Isao Somiya, and Yoshihiro Kokura, Quantitification of Bacterial Decomposition Activity in Eutrophicated Water, Journal of Japan Society on Water Environment Vol. 14 No.5 335-342 (1991)
- 5) Shigeo Fujii, Isao Somiya, and Toshiyuki Shiraki, Studies on Effect of Phytoplankton and Zooplankton on Self-Purification in Eutrophicated Water, Journal of Japan Society on Water Environment Vol. 14 No.7 469-478 (1991)

Table E.1.1 Existing Data of Water Quality Analysis (Fuquene Lake)-1/4

Year		1994				1996					10	1997		
Sampling Sitc	Center	Near Suarez Average	Average	Near Port	Near Ubate		Near Suarez Average	Average	Near Ubate Island	Island	Near Suarez Center		Near Ubate	Island
	1001	Outlet			Mouth	- 1	Outlet		Mouth	000	Outlet	- 1	Mouth	1000
Sampling Date	1994.5.25	1994.5.25		_		٦١	1996.8.20		1997.5.23	1997.5.23	1997.5.23	1997.5.23	1997.7.25	1997.7.25
Sampling Time	Surporficial	Crimonfoid		13:00	15:00	UC:SI	14.00		Characterists.	Loin Theo me. O	Curatago	Con Succession	Cris Sugar	
WaterTemperature(°C)	17.0	17.0	17.0	3upct uctar 14.5	15.7	3upet liciai 16.4	3upci IICiai 16.2	15.7	3uper II ciai	3upermena 15.4	3upernera 15.3	3upernetar 16.3	Superiiciai	Superneal
Hd	7.0	6.8	6.9	7.7	7.8	7.5	7.4	7.6	7.01	7.6	8.9	7.0	8.9	7.0
DO(Disolved O ₂ , (mg/l)	7.50	8.30	7.90	8.3	2.6	9.7	8.0	9.9	6.5	6.3	6.8	6.6		2
BOD ₅ (DBO) (mg/l)				2.0	6.2	4.2	3.0	3.9	2.0	4.0	0.1	2.0		
COD(DQO) (mg/l)				19.0	31.1	50.0	47.3	36.8	18.0	17.0	18.0	23.0		
SS(mg/l)			Action in the contract of the	4.0	10.0	2.0	0.0	4.0	2.0	2.0	1.0	4.0	44.0	16.0
Pb (mg/l)				0.03	0.02	0.03	0.03	0.03	0.00	00.00	00.00	0.00		
Zn (mg/l)				0.04	0.02	0.03	0.0	0.0						
Hg (mg/l)									0.0000	0.0000	0.0000	0.0000		
Cr (mg/l)			1						0.00	0.00	0.00	0.00		
Phenol (mg/l)									0.000	0.000	0.000	0.000		
NH4 (mg/l)				0.87	0.7	86.0	69:0	0.81	0.81	0.84	9.0	0.79	0.41	0.00
NO3(mg/l)				0.1	0.3	0.1	0.2	0.2	0.02	0.00	0.91	0.03	0.00	0.009
NO2 (mg/l)				0.004	0.003	0.005	800.0	0.005	0.00	0.00	0.00	0.00		
Kje-N (mg/l)				3.23	1.09	2.80	4.20	2.83						
Org-N (mg/l)														
T-N (mg/l)				3.33	1.39	2.91	4.41	3.01	0.90	1.20	1.90	1.30		
PO43- (mg/l)				0.04	0.01	0.03	0.03	0.03	0.02	0.00	0.00	0.00	60.0	0.00
T-P(mg/l)				0.07	0.04	0.09	0.05	90.0	0.16	0.13	0.15	0.12	0.19	0.007
T-Fe (mg/l)	1.96	2.17	2.07	1.02	0.94	1.35	0.67	1.00	0.72	0.59	0.42	0.48	1.96	0.62
Mg (mg/l)				1.98	1.90	2.41	2.42	2.18						
Mn (mg/l)													0.09	0.41
T-S (mg/l)				36	136	128	120	105.0	88	87	88	92	94	90
D-S (mg/l)				32	126	126	120	101.0	98	85	87	88		
Al (mg/l)				0.27	60.0	0.44	0.36	0.29						-
Oil/Grease(mg/l)									3.7	12.6	5.6	3.1		
Sulfate (mg/l)									3.5	7.9	12.2	6.5		
Detergent (mg/l)	0.00	0.01	0.01	0.03	00.00	0.00	0.00	0.01						
Pesticide(mg/m²)									0.000	0.000	0.000	0.000		
Total acidity(CaCO.mus/l)				2.4	5.7	3.8	1.0	3.2					4.1	1.5
Total				29.1	25.0	30.4	26.7	27.8	27.0	26.0	27.0	27.0	14.8	34.9
alkalinity(CaCO3mg/								: :	?	;	?) - 	?	<u>}</u>
EC(mS/cm)	50.0	50.0	50.0	125.0	0.68	137.0	123.0	118.5					70.6	109.3
Chloride (mg/l)				13.4	13.9	15.6	17.5	15.1					73.2	557.1
Chlorophyil (mg/m³)													2.3	6.0
Turbidity (NTU)	17.0	15.0	16.0	10.0	10.0	10.0	10.0	10.0					45.0	5.4
Total hardness				67.4	73.2	72.6	74.4	71.9	44.0	50.0	48.0	50.0	20.4	56.3
(mgCaCO ₂ /l)														
Total Coliform(MPN/100ml)				<30×10 ⁴	<30×10 ⁴	<30×10 ⁴	<30×10 ²						93×10^{2}	93×10 ²
Facal Colitorm(MPN/100ml)				<30×10 ⁴	<30×10 ⁴	<30×10 ²	<30×10 ²						93×10 ²	<30.

Table E.1.1 Existing Data of Water Quality Analysis (Fuquene Lake)-2/4

Year	19	1997		15	1998			1	1999			1994-1999	
Sampling Site	Near Suarez Average	Average	Near Ubate	Ubate Island	Near Suarez Average	Average	Near Ubate Island		Near Suarcz Average	Average	Average	Maximum	Minimum
Campling Date	Outlet		Mouth	1009 13 3	Outlet		Mouth	1000 3 75	Outlet				
Samping Time	(2)1.1.601		9.40		10.05		-		11.40				
Sampling Depth (m)	Superficial		Superficial	Superficial			Superficial	Superficial	Superficial				
WaterTemperature(°C)			19.0	19.0	19.0	19.0	20.0	18.0	20.0	193	17.7	20.0	15.3
Hd	6.7	7.2	7.3	7.2		7.0	7.4	7.1	6.9	7.1	7.2	7.9	9.9
DO(Disolved O21 (mg/l)		9.9	5.2	7.2	9.9	6.3	12.1	4.8	6.0	5.9	6.4	12.1	6.0
BOD ₅ (DBO) (mg/l)		2.3	1.8	5.5	1.2	2.8	2.8	2.1	1.1	2.0	2.5	5.5	1.0
COD(DQO) (mg/l)		19.0									25.6	47.3	17.0
SS(mg/l)	0.0	9.6	4.0	8.0	4.0	5.3	17.0	5.0	6.0	9.3	7.9	44.0	0.0
Pb (mg/l)		0.00									0.01	0.03	00.00
Zn (mg/l)											0.03	0.03	0.03
Hg (mg/l)		0.0000									0.0000	0.0000	0.0000
Cr (mg/l)		0.00									0.00	0.00	00.00
Phenol (mg/l)		0.000									0.000	0.000	0.00
NH4 (mg/l)	0.65	0.59	0.18	0.27	0.20	0.22	0.59	0.31	0.78	0.56	0.52	0.84	00.00
NO3(mg/l)	0.002	0.140	1.30	5.10	3.40	3.27	00.0	0.10	0.10	0.07	8.0	5.1	0.0
NO2 (mg/l)		0.000	0.000	0.000	0.000	0.000	0.003	0.002	0.003	0.003	0.002	800.0	0.000
Kjc-N (mg/l)			1.3	1.6	1.0	1.3	2.2	1.9	1.5	1.9	2.0	4.2	1.0
Org-N (mg/l)							1.6	1.6	0.7	1.3	1.3	1.6	0.7
T-N (mg/l)		1.33					2.20	2.00	1.60	1.94	1.98	4.41	06.0
PO43- (mg/l)	0.00	0.02	001	0.01	0.02	0.015	0.03	00.0	00.00	0.01	0.02	60:0	0.00
T-P(mg/l)	0.00	0.11	90.0	0.04	0.07	90.0	0.18	0.20	90.0	0.15	0.10	0.20	0.00
T-Fe (mg/l)	0.31	0.73									0.75	1.96	0.31
Mg (mg/l)											2.30	2.42	2.18
Mn (mg/l)	0.14	0.21									0.21	0,41	60.0
T-S (mg/l)	64	98									16	120	64
D-S (mg/l)		87									93	120	85
AI (mg/l)											0.33	0.36	0.29
Oil/Grease(mg/l)		6.3									6.3	12.6	3.1
Sulfate (mg/l)		7.53									7.5	12.2	3.5
Detergent (mg/l)											0.0	0.0	0.0
Pesticidc(mg/m³)		0.000									0.0	0.0	0.0
Total	3.9	3.2											,
acidity(CaCO ₃ mg/l)		,									2.8	4.1	1.0
Total	31.1	26.8									9,60	37.0	27.0
EC(mS/cm)	103.0	94.3	93.0	85.0	100.0	92.7	207	110	174	167	118.3	207.0	70.6
Chloride (mg/l)	296.1	308.8									211.3	557.1	15.1
Chlorophyil (mg/m ³)	0.87	3.1					14.763	8,606	1.846	8.405	5.731	14.763	0.870
Turbidity (NTU)	1.3	17.2	6.7	13.0	17.0	12.2	32.0	14.0	11.0	19.0	15.3	45.0	1.3
Total hardness	29.8	42.6	62.0	46.6	61.2	56.6	89.6	63.8	87.8	80.4	57.5	89.6	20.4
(mgCaCO ₂ /I)												?	- - - -
Total Coliform(MPN/100ml)	45×10^{2}		43×10^{2}	36×10	46×10 ²		91×10 ²	36×10^{2}	<30×10 ²				
Facal Coliform(MPN/100ml)	91×10		<30×10	<30×10	<30×10		<30×10 ²	<30×10 ²	<30×10 ²				

Table E.1.1 Existing Data of Water Quality Analysis (River)-3/4

Racin				1	oto						2	Inflore I	Section 1		
Divor Nome					Cualic					,			ivers 2 2		
NIVEI INAILIE				Obate			- 1	cnguazadu		Q.Honda	Q.Monroy	Q. Iagusa	Q. Iagusa Q. Calaboza Q. Cucunuba Q. Malvinas	Q.Cucunuba	Q.Malvinas
Sampling Sitc	Lower End	Lower End Lower End Lower End Average	Lower End	Lower End	Average	Maximum	Minimum	Before	Lower End	Lower End	Lower End	Lower End	Lower End	Lower End	Lower End
Sampling Date	1996.8.20	1997.7.25	1998.12.3	1999.3.25				1993.1.14	1999.3.25	1998.12.3	1997.5.8	1997.5.8	1997.5.8	1997.5.8	1997.5.8
Sampling Time			9:45	14:30				10:00	14:40	9:20					
Sampling Depth (m)	Superficial	Superficial	Sul	Sup				Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial
WaterTemperature(°C)	15.7	14.0	18.5	17.0	16.3	18.5	14.0	16.0	15.0	17.7					
Hd	7.8	8.9	6.9	8.9	7.1	7.8	8.9	6.4	7.0	8.9					
DO(Disolved O2, (mg/l)	2.6	3.6	3.0	7.3	4.1	7.3	2.6	4.1	9.1	7.1					
BOD ₅ (DBO) (mg/l)	6.2	and a	3.3	2.0	3.8	6.2	2.0	5.0	1.0	1.2	1.0	1.0	2.0	1.0	1.0
COD(DQO) (mg/l)	31.1				31.1	31.1	31.1	18.0			2.0	17.0	18.0	9.0	13.0
SS(mg/l)	10.0	44.0	4.0	21.0	19.8	44.0	4.0	22.0	10.0	0.9	15.0	1.0	18.0	5.0	2.0
Pb (mg/l)	0.02				0.02	0.02	0.02				0.00	0.00	00.0	00'0	0.00
Zn (mg/l)	0.02				0.02	0.02	0.02								
Hg (mg/l)											0.0000	0.0000	0.0000	0.0000	0.0000
Cr (mg/l)											0.00	00.0	00.0	0.00	0.00
Phenol (mg/l)								0.000			0.000	0.000	0.000	0.000	0.000
NH4 (mg/l)	0.70	0.41	1.08	0.85	0.76	1.08	0.41		0.63	0.34	0.87	1.00	1.59	1.24	0.76
NO3(mg/l)	0.30		3.20	0.20	1.23	3.20	0.20		00.00	5.30	0.04	0.22	00.0	0.22	0.01
NO2 (mg/l)	0.003	0.008	0.023	0.019	0.013	0.023	0.003		0.005	0.007	0.000	0.000	0.000	0.010	0.000
Kje-N (mg/l)	1.09	1.50	2.50	2.00	1.77	2.50	1.09		1.30	1.0					
Org-N (mg/l)		0.7		1.2	1.0	1.2	0.7		0.70						
T-N (mg/l)	1.39		5.72	2.22	3.11	5.72	1.39				1.00	1.50	1.70	1.90	1.00
PO43- (mg/l)	0.01	0.09	0.13	0.11	0.09	0.13	0.01		0.00	0.03	90.0	0.00	00.0	0.00	0.00
T-P(mg/l)	0.04	0.19	0.24	0.25	0.18	0.25	0.04		0.15	0.05	0.45	0.13	0.22	0.39	0.40
T-Fe (mg/l)	0.94	1.96			1.45	1.96	0.94	1.00			2.79	2.25	2.49	2.35	2.53
Mg (mg/l)	1.9	1.22			1.56	1.90	1.22								
Mn (mg/l)		0.09			0.09	0.09	0.09								
T-S (mg/l)	136	94			115	136	94	96			69	90	94	41	108
D-S (mg/l)	126				126	126	126	70			54	86	92	36	106
Al (mg/l)	0.09				0.09	0.09	0.09	22.5							
Oil/Greasc(mg/l)											2.2	0.0	2.0	1.8	1.9
Sulfate (mg/l)	0.00				0.00	0.00	0.00	8.9			0.00	0.30	0.40	0.20	9.30
Detergent (mg/1)											0000	0000	0000	0000	0000
Total	5.7	4.1			4.0	57	4.1	3.4			14.0	07.0	16.0	200.0	36.00
acidity(CaCO ₃ mg/l)	;	:			}	;	;	t i			0.+	0.12	0.01	?:	0.00
Total	25.0	14.8			19.9	25.0	14.8	20.9							
alkalinity(CaCO3mg/															
EC(mS/cm)	89.0	70.6	106	227	123.2	227.0	70.6	90.0	0.69	62.0					
Chloride (mg/l)	13.9				13.9	13.9	13.9								
Chlorophyil (mg/m³)		2.3			2.3	2.3	2.3								
Turbidity (NTU)	<10	45.0	15.0	32.0	30.7	45.0	15.0	6.7	10.0	17.0					
Total hardness	73.2	20.4	50.4	81.8	56.5	81.8	20.4	30.2	49.0	36.0	30.0	42.0	31.0	22.0	54.0
(mgCaCO ₂ /I) Total Coliform(MPN/100ml)	401.000	00102	24102	40. 7.				4-1	01:10						
Facal Coliform(MPN/100ml)	<30×10	93×10	24×10	15×10°				1×10	93×10	23×10 ²					
	0 ×0×	93×10 ²	35×10°	91×10 ⁻				11×10 [*]	73	<30×10					

Table E.1.1 Existing Data of Water Quality Analysis (River)-4/4

Basin					Su	Suarez					Π
River Name	Susa	Simijaca					Suarez				
Sampling Site	Lower End	Lower End	Before	Before		Before		Average	Maximum	Minimum	
Sampling Date	1996.10.4	1996.10.4	۵.	Tolon Gate 1996.10.4	Tolon Gate 1998.12.3	Tolon Gate 1999.3.25	Bridge 1993.12.2				
Sampling Time	15:00	13:30	14:45	12:00	10:40	13:05	14:40				
Sampling Depth (m)	Superficial	Superficial	Superficial	Su	Superficial	ial	Superficial	<i>a</i> 143 v	Ĭ	Q V	
Water Lenperature("C)	21.0	21.0	16.0		18.2		16.0	5.71	19.7	16.0	
Hα	7.7	7.3	4.0		8.9	8.9	2.5	0.7	»:/	4.0	
DO(Disolved O2, (mg/l)	1.7	0.0		5.4	5.3	1.0	,	3.9	5.4	1.0	
BOD ₅ (DBO) (mg/l)	5.0	3.0	3.0	2.0	1.5	1.6	1.0	2.0	3.0	1.5	
COD(DQO) (mg/l)	12.0	30.0	45.0	47.0			41.0	46.0	47.0	45.0	
SS(mg/l)	10.0	22.0	242.0	0.0	8.0	0.6	234.0	64.8	242.0	0.0	
Pb (mg/l)											
Zn (mg/l)											
Hg (mg/l)											
Cr (mg/l)											
Phenol (mg/l)											
NH4 (mg/l)	4.04	1.08	0.48	0.50	1.03	0.32	0.48	0.58	1.03	0.32	
NO3(mg/l)	0.44	0.50		0.73	4.30	0.10		1.71	4.30	0.10	
NO2 (mg/l)	0.000	0.000		0.000	0.000	0.004		0.001	0.004	0.000	
Kjc-N (mg/l)	5.47	2.75	1.32	2.42	1.80	1.70	1.92	1.81	2.42	1.32	
Org-N (mg/l)						1.4		1.4	1.4	1.4	
T-N (mg/l)	16.5	3.25		3.15	6.10	1.80		3.68	6.10	1.80	
PO43- (mg/l)			0.07		0.03	0.35	0.05	0.15	0.35	0.03	
T-P(mg/l)	0.70	0.37	90:0	90.0	90.0	0.52	0.05	0.18	0.52	90'0	
T-Fe (mg/l)	3.48	5.78	2.88	2.57			3.65	2.73	2.88	2.57	
Mg (mg/l)											
Mn (mg/l)								i i	i		
T-S (mg/l)	110	108	258	136			260	197	258	136	
D-S (mg/l)	100	98	16	136			26	76	136	16	
Al (mg/l)											
Oil/Grease(mg/l)			26.7	7.4			2.1	17.1	26.7	7.4	
Sulfate (mg/l)									9	0	
Detergent (mg/l)	0.46	0.07		0.00				0.00	0.00	0.00	
Total	9.1	8.1	19.0				12.2	19.0	19.0	19.0	
acidity(CaCO ₃ mg/l)		!					!		2	2	
Total			33.0				15.3	33.0	33.0	33.0	
alkalinity(CaCO3mg/											
EC(mS/cm)	245.0	220.0		257.0	116.0	172.0		181.7	257.0	116.0	
Chloride (mg/l)	56.5	56.6		39.1				39.1	39.1	39.1	
Chlorophyil (mg/m ³)											
Turbidity (NTU)					28.0	22.0		25.0	28.0	22.0	
Total hardness	49.8	111.8		46.0	0.99	82.0		64.7	82.0	46.0	
(mgCaCO ₂ /1)											
Total Coliform(MPN/100ml)	94×10 ²	36×10 ³	<36×10 ³	36×10^{2}	464×10 ²	11×10 ³	<36×10 ³				
Насат Соптоппритти/тоспцу	<30×10 ²	<36×10 ³	<36×10 ³	<36×10 ²	73×10	36	<36×10 ³				
											l

Table E.1.2 Results of Water Quality Observation in the Lake in Rainy Season -1/2

Sample No.	1	2	3	4	5	6	7	8
Lake Name	Fuque	ne Lake	Fuquer	ne Lake	Fuquene Lake		Fuquene Lake	
Sampling Site	Near Uba	ate Mouth	Near	Port	Cei	nter	Near Sua	rez Outlet
Remarks								
Code No.	Ql	L-1	QI	2	QI	₋₃	QI	4
Sampling Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer
Sampling Date	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15
Sampling Time	10:40	10:42	13:15	13:18	11:40	11:45	14:10	14:15
Climate	Cl	ear	Cl	ear	Cl	ear	Cl	ear
Point Depth (m)	2.	10	4.	20	5.	10	2.:	20
Clearance (m)	0.:	36	0.8	84	0.5	58	1.3	10
Sampling Depth (m)	0.50	1.60	0.50	3.20	0.50	4.00	0.50	1.70
WaterTemperature(°C)	17.4	17.4	17.2	17.2	17.2	17.0	18.5	15.6
Color		Light Yellow		Light Yellow			Colorless	Colorless
Odor	Odorless	Odorless	Sulfur	Sulfur	Odorless	Odorless	Odorless	Odorless
EC(mS/cm)	18.1	18.0	14.2	14.0	8.8	8.6	13.5	13.6
Turbidity	60.5	54.1	16.2	16.0	19.0	19.8	5.7	13.6
рН	6.80	6.82	6.90	6.90	6.90	6.90	6.90	6.92
Dissolved O ₂ (mg/l)	3.80	0.30	4.50	4.20	4.70	4.60	7.70	0.50
COD(Cr) (mg/l)	28.0	41.0	23.0	23.0	25.0	25.0	25.0	48.0
T-N(mg/l)	3.08	2.67	1.08	2.77	1.28	1.08	1.39	2.41
NH ₄ ⁺ -N (mg/l)	1.31	1.28	0.64	0.92	0.92	0.72	0.73	0.48
NO ₃ -N(mg/l)	0.22	0.19	0.39	0.30	0.32	0.72	0.73	0.48
NO ₂ -N(mg/l)	0.22	0.19	0.39	0.01	0.23	0.28	0.02	0.00
T-P(mg/l)	0.20	0.01	0.36			0.00		
PO ₄ -P(mg/l)	0.20	0.29	0.00	0.00	0.04		0.06	0.25
SS (mg/l)	23			0.00		0.00	0.01	
Particle size distribution(%	23	176	11	3	10	5	37	105
400-38micron)	92.0	76.6	82.2	100	100	100	85.3	98.8
V-SS (mg/l)	7	36	4	1	1	3	18	32
Phenol (mg/l)	0.000	-	0.000	-	0.000	-	0.000	-
Arsenic (mg/l)	0.000	-	0.000	-	0.000	_	0.000	-
Cadmium (mg/l)	0.00	-	0.00	-	0.00	-	0.00	-
Cyanide (mg/l)	0.0	-	0.0	-	0.0	-	0.0	-
Cr6+ (mg/l)	0.00	-	0.00	-	0.00	-	0.00	-
Copper (mg/l)	0.00	-	0.00	_	0.00	-	0.00	-
Hg (mg/l)	0.0000	-	0.0000	_	0.0000	_	0.0000	-
Ni2+ (mg/l)	0.00	-	0.00	_	0.00	-	0.00	-
Lead (mg/l)	0.00		0.00	_	0.00	_	0.00	-
Zinc (mg/l)	0.00	-	0.00	_	0.00	-	0.00	_
Iron(mg/l)	1.92	-	0.72	-	3.08	_	0.13	-
Manganese(mg/l)	0.03	_	0.08	_	0.09	-	0.00	_
Organo-chlorine Pesticide			3.00		3.02		5100	
(mg/l)	0.000	-	0.000	_	0.000	-	0.000	_
Organo-phosphorus Pesticide (mg/l) Organo corbonato Bosticida	0.000	-	0.000	_	0.000	-	0.000	-
Organo-carbonate Pesticide (mg/l)	0.000	-	0.000	-	0.000	-	0.000	
Total Coliform (MPN)	15×10 ²	23×10 ²	70	40	40	23×10 ³	40	23×10 ²
Facal Coliform (MPN)	15×10^{2}	23×10 ²	70	40	40	23×10 ³	40	23×10 ²

Table E.1.2 Results of Water Quality Observation in the Lake in Rainy Season -2/2

Sample No.	1	2	3	4	5	6	7	8
Lake Name		ne Lake		ne Lake	Fuquene Lake		-	ne Lake
Sampling Site	Near Uba	te Mouth	Near	Port	Cer	nter	Near Suarez Outlet	
Remarks					,			
Code No.	Ql	L-1	QI	2	QI	3	QI	₋₄
Sampling Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer
Sampling Date	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14
Sampling Time	13:00	13:10	14:30	14:35	13:50	14:00	14:50	15:00
Climate							'	
Point Depth (m)	2.	05	3.	50	4.	50	2.	00
Clearance (m)	0.4	45	0.9	96	1.:	20	0.5	55
Sampling Depth (m)	0.50	1.50	0.50	3.20	0.50	4.00	0.50	1.50
WaterTemperature(°C)	16.8	16.2	16.1	15.7	16.9	15.3	15.0	15.3
Color	Light Yellow	Light Yellow	Green Yellow	Green Yellow	Light Yellow	Light Yellow	Yellow	Yellow
Odor	Odorless	Odorless	Soft fishy	Soft fishy	Odorless	Odorless	Fishy	Fishy
EC(mS/cm)	170.0	200.0	140.0	140.0	90.0	90.0	170.0	170.0
Turbidity	26.0	33.0	5.8	4.1	5.3	4.8	17.0	19.0
рН	6.20	6.40	6.60	6.70	6.50	6,50	6.50	6.40
Dissolved O ₂ (mg/l)	3.5	1.0	3.8	2.4	5.1	4.7	1.4	1.0
COD(Cr) (mg/l)	35.0	47.0	30.0	46.0	25.0	48.0	28.0	52.0
T-N(mg/l)	2.62	2.94	2.25	2.02	2.07	2.33	1.65	1.97
NH ₄ ⁺ -N (mg/l)	1.31	1.36	0.69	0.71	0.79	1.08	0.68	0.64
NO ₃ -N(mg/l)	0.31	0.45	0.54	0.23	0.27	0.24	0.06	0.13
NO ₂ -N(mg/l)	0.00	0.00	0.02	0.01	0.01	0.01	0.00	0.00
T-P(mg/l)	0.08	0.05	0.05	0.04	0.04	0.02	0.06	0.04
PO ₄ 3P(mg/l)	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00
SS (mg/l)	8	17	7	3	9	3	13	16
Particle size	V	17	1		2	3	13	10
distribution(% 400-	100	99.5	100	100	100	100	100	99.0
V-SS (mg/l)	4	7	3	2	7	2	9	9
Phenol (mg/l)	-		-	-	-	-	-	-
Arsenic (mg/l)	-	-	-	-	-	-	_	
Cadmium (mg/l)	-	-	-	-	_	-	-	-
Cyanide (mg/l)	-	-	-	_	-	-	-	-
Cr6+ (mg/l)	-	-		-	-	-	-	-
Copper (mg/l)		<u>-</u>	-	-	-	-	_	-
Hg (mg/l)			-	-		-	-	-
Ni2+ (mg/l)		-	-	+	-	-	_	-
Lead (mg/l)	-	-	-	_	-	-	-	-
Zinc (mg/l)	-	-	-	_	-	-	-	-
Iron(mg/l)	-		-	_	_	-	-	-
Manganese(mg/l)	-	-	-	-	_	-	-	
Organo-chlorine Pesticide (mg/l)	0.000	-	0.000	-	0.000	_	0.000	-
Organo-phosphorus Pesticide (mg/l)	0.000	-	0.000	-	0.000	_	0.000	-
Organo-carbonate Pesticide (mg/l)	0.000	-	0.000	-	0.000		0.000	-
Total Coliform (MPN)	-	-	-	-	_	-	-	-
Facal Coliform (MPN)	-	-	-	_	-	_	_	-

Table E.1.3 Results of Water Quality Observation at the Principal River Stations in Rainy Season 1/3

Sample No.	1	2	3	4	5	6	7
River Name	Hato Dam	Ubate River	Lenguazaque River	Ubate River	Suarez River	Chiquinquira River	Suarez River
Sampling Site	Outlet of Dam	Downstream of Ubate City	Verda Punta Gande	Colorado	Balsa Bridge	Upstream of Chiquinquira Cit	Before Tolon Gate
Remarks							
Code No.	QS-4	QR-1	QR-2	QR-3	QR-4	QR-5	QR-6
Sampling Date	1999/4/16	1999/4/16	1999/4/16	1999/4/16	1999/4/16	1999/4/16	1999/4/16
Sampling Time	15:15	14:36	14:05	13:32	9:55	9:20	8:25
Climate	Clear	Clear	Clear	Clear	Clear	Clear	Clear
Discharge(m³/s)	1.60	2.62	0.62	6.22	3.88	3.11	4.02
Water Level (m)	-	0.84	0.49	0.22	5.00	5.11	39.30
Water Depth (m)	0.50	0.90	0.30	2.10	3.45	1.10	2.50
WaterTemperature(°9	14.8	15.6	15.3	15.6	16.6	15.5	17.4
Color	Light Yellow	Light Yellow	Light Yellow	Light Beige	Light Brown	Light Yellow	Light Yellow
Odor	Sulfur	Odorless	Fish	Odorless	Light Anaerobic	Ť	Odorless
EC(ms/m)	5.90	8.03	8.62	18.50	24.40	7.70	33.60
Turbidity	39.0	71.4	26.2	43.8	149.4	34.3	117.3
pH	7.08	7.04	7.03	7.02	7.02	7.01	6.99
Dissolved O ₂ (mg/l)	4.3	7.5	7.03	7.02	0.9	7.8	0.99
BOD (mg/l)	4.0	2.0	2.0	3.0	1.0	2.0	1.0
COD(Kr) (mg/l)	16.0	13.0	8.0	15.0	45.0	17.0	62.0
T-N(mg/l)	1.23	1.31	1.09	1.51	2.09	0.78	2.87
NH ₄ ⁺ -N (mg/l)	0.77	0.30		1			
NO ₃ -N(mg/l)	0.77	0.48	0.32	0.68	0.65	0.27	1.24
NO ₂ -N(mg/l)	0.16	0.48	0.20	0.32	0.18	0.17	0.33
T-P(mg/l)				0.00	0.00	0.00	0.00
PO ₄ -P(mg/l)	0.10	0.14	0.10	0.17	0.15	0.18	0.17
SS (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particle size distribution(%	15	44	14	29	113	39	83
400-38micron)							
77.00 (15)	98.5	68.5	100	2.1	37.2	75.5	88.4
V-SS (mg/l)	2.0	3.0	2.0	3.0	21.0	8.0	32.0
Phenol (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Arsenic (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cadmium (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cyanide (mg/l)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cr6+ (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copper (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hg (mg/l)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ni2+ (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lead (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zinc (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Iron(mg/l)	1.68	1.56	1.57	3.46	11.3	2.88	18.3
Manganese(mg/l)	0.00	0.00	0.09	0.08	0.19	0.00	0.28
Organo-chlorine	0.005						
Pesticide (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Organo-phosphorus Pesticide (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Organo-carbonate	1==2			2.550	2.0.00	5.555	3.50
Pesticide (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total Cloakroom (MAN)	70	11×10 ³	11×10 ³	>24×10 ⁶	23×10 ²	11×10 ³	15×10 ²
Facial Cloakroom (MAN)	70	11×10 ³	11×10 ³	93×10 ⁵	4×10 ²	11×10 ³	9×10 ²

Table E.1.3 Results of Water Quality Observation at the Principal River Stations in Rainy Season 2/3

River Name	Sample No.	1	2	3	4	5	6	7
Sampling Site Dutlet of Dam Dutlet of Dam United Sity Canade Colorado Canade Colorado Chiquingaira City Cate	River Name			Lenguazaque			Chiquinquira	Suarez River
Code No. QS-4 QR-1 QR-2 QR-3 QR-4 QR-5 QR-6	Sampling Site	Outlet of Dam	i e	Verda Punta	Colorado	Balsa Bridge	Upstream of	
Sampfing Date 1999/S/13 1999/S/12 1999/S/13	Remarks							
Sampling Time	Code No.	QS-4	QR-1	QR-2	QR-3	QR-4	QR-5	QR-6
Discharge(a ² /s)	Sampling Date	1999/5/13	1999/5/12	1999/5/12	1999/5/13	1999/5/13	1999/5/13	1999/5/13
Discharge(m) No. Oi. O	Sampling Time	15:00	17:42	15:51	14:04	9:42	8:49	8:30
Water Level (m) — 0.62 0.520 1.86 1.68 2.70 3.28 Water Depth (m) 0.22 0.75 0.25 1.90 3.34 1.03 2.50 Color 11ght Yellow Light Yellow Light Beige Beige Light From Dark Beige Light Yellow Odor Sulfur Soft Anaerobie Mud Odorless								
Water Level (m) — 0.62 0.520 1.86 1.68 2.70 3.28 Water Depth (m) 0.22 0.75 0.25 1.90 3.34 1.03 2.50 Color 11ght Yellow Light Yellow Light Beige Beige Light From Dark Beige Light Yellow Odor Sulfur Soft Anaerobie Mud Odorless	Discharge(m³/s)	0.601	1 24	0.890	4 78	3 37	2.74	4 24
Water Depth (m) 0.22 0.75 0.25 1.90 3.34 1.03 2.50 Water Temperature(*) 13.7 16.6 16.3 15.5 19.3 16.6 14.0 Color Light Yellow Light Yellow Light Beige Light Brown Dark Beige Light Frown GO Suffix Soft Anaerobic Mud Odorless Odorless Odorless EC(mS/m) 60 120 18 360 90 180 Turbidity 11 23 100 43 31 84 34 PH 7.02 6.87 6.85 6.99 6.86 6.85 6.86 Dissolved Q: (mg/l) 7.7 5.6 4.3 3 84 34 PH 7.02 6.87 6.85 6.99 6.86 6.85 6.86 Dissolved Q: (mg/l) 1.0 2.0 3.0 4.0 3.0 6.0 2.0 COD(C): (mg/l) 1.0 2.0 <th< td=""><td>` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '							
Monte March Marc	Water Depth (m)			· · · · · · · · · · · · · · · · · · ·	1			
Color	WaterTemperature(°C)							
Odor Sulfur Soft Anaerobic Mud Odorless Odorless Odorless EC(mS/cm) 60 120 120 18 360 90 180	Color							
EC(mS/cm) 60 120 120 18 360 90 180 Turbidity 11 23 100 43 31 84 34 PH	Odor							
Turbidity 11 23 100 43 31 84 34 9H 7.02 6.87 6.85 6.99 6.86 6.85 6.86 Dissolved C ₂ (mg/l) 7.7 5.6 4.3 Dissolved C ₂ (mg/l) 7.7 5.6 4.3 Dissolved C ₃ (mg/l) 1.0 2.0 3.0 4.0 3.0 6.0 2.0 COD(C) (mg/l) 22.0 18.0 33.0 27.0 48.0 84.0 62.0 T-N(mg/l) 1.00 1.54 1.16 2.87 2.70 2.27 2.00 NH ₄ 'N (mg/l) — — — — — — — — — — — — — — — — — — —	EC(mS/cm)							
pH 7.02 6.87 6.85 6.99 6.86 6.85 6.86 Dissolved O ₂ (mg/l) 7.7 5.6 6.87 6.85 6.99 6.86 6.85 6.86 Dissolved O ₂ (mg/l) 1.0 2.0 3.0 4.0 3.0 6.0 2.0 COD(Cr) (mg/l) 22.0 18.0 33.0 27.0 48.0 84.0 62.0 TN(mg/l) 1.00 1.54 1.16 2.87 2.70 2.27 2.00 NII ₄ -X (mg/l) — — — — — — — — — — — — — — — — — — —								
Dissolved O2 (mg/l)				-			 	
BOD (mg/l)	Dissolved O ₂ (mg/l)	<u> </u>	0.87	0.85			0.85	0.80
COD(G) (mg/l) 22.0 18.0 33.0 27.0 48.0 84.0 62.0 T-N(mg/l) 1.00 1.54 1.16 2.87 2.70 2.27 2.00 NH ₄ '-N (mg/l) —	- \ - /		2.0	7.0			6.0	20
T-N(mg/f) 1.00 1.54 1.16 2.87 2.70 2.27 2.00 NH ₄ '-N (mg/f)	, -,				1			
NH ₄ ' N (mg/l)					 			
NO ₃ · N(mg/l)		1.00	1.54	1.10	2.87	2.70	2.21	2.00
NO; -N(mg/l)			_		-		_	
T-P(mg/l) 0.08 0.07 0.21 0.33 0.12 0.34 0.12 PO ₄ b - P(mg/l) —<			_		_	_		_
PO ₃ - P(mg/l)				_			-	
SS (mg/l) 9 36 83 46 25 197 26 Particle size distribution(% 400-35micron)						0.12		
Particle size distribution(% 400-38micron)	` - '							<u> </u>
400-38micron) — <		9	36	83	46	25	197	26
Phenol (mg/l)			_	_	_			_
Arsenic (mg/l)	V-SS (mg/l)	4	7	10	7	12	39	3
Cadmium (mg/l)	` · ·		_	_	_	_	_	
Cyanide (mg/l)				_			_	_
Croft (mg/l)	Cadmium (mg/l)	_	_	_		_	_	_
Copper (mg/l)	Cyanide (mg/l)	+	_	_	_	_	_	
Hg (mg/l)	` - '	_	_		_	_	_	_
Ni2+ (mg/l)	Copper (mg/l)	_		_	_	_		
Lead (mg/l)	Hg (mg/l)	_	_	_			_	_
Zinc (mg/l)	Ni2+ (mg/l)	_	_	_	_	_		
Iron(mg/l)		_	_	_	_	_	_	_
Manganese(mg/l) —	Zinc (mg/l)		_	_	_	_	_	
Organo-chlorine Pesticide (mg/l) 0.000	Iron(mg/l)	-	_	_		_	_	_
Organo-chlorine Pesticide (mg/l) 0.000	Manganese/mg/N	_	_				_	
Pesticide (mg/l) 0.000								
Pesticide (mg/l) 0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
Organo-carbonate Pesticide (mg/l) 0.000								
Pesticide (mg/l) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Coliform (MPN) — — — — — — —		0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total Coliform (MPN)		0.000	0.000	0.000	0.000	0.000	0.000	0.000
			-	-	0.000	-		-
Facal Coliform (MPN)		_						_

Table E.1.3 Results of Water Quality Observation at the Principal River Stations in Rainy Season 3/3

Sample No.	1	2	3	4	5	6	7
River Name	Hato Dam	Ubate River	Lenguazaque River	Ubate River	Suarez River	Chiquinquira River	Suarez River
Sampling Site	Outlet of Dam	Downstream of Ubate City	Verda Punta Gande	Colorado	Balsa Bridge	Upstream of Chiquinquira Cit	Before Tolon Gate
Remarks							
Code No.	QS-4	QR-1	QR-2	QR-3	QR-4	QR-5	QR-6
Sampling Date	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14	1999/5/14
Sampling Time	18:45	17:20	17:45	16:10	11:20	10:30	8:35
Climate							
Discharge(m³/s)	0.55	1.01	0.780	1.85		1.59	5.05
Water Level (m)	-	0.61	0.490	1.82	1.69	_	3.29
WaterTemperature(°C)	13.4	15.2	13.7	16.9	16.8	15.6	16.8
Color	Green Yellow	Grey	Dark Beige	Brown	Honey	Beige	Light Browm
Odor	Soft Sulfur	Soft Anaerobic	Odorless	Odorless	Fish	Odorless	Odorless
EC(mS/cm)	60	120	120	18	360	90	180
Turbidity	5.8	13	34	30	50	31	34
рН	7.02	6.87	6.85	6.99	6.86	6.85	6.86
Dissolved O ₂ (mg/l)	-	_	_	_	-	_	_
BOD (mg/l)		_	_	_		_	_
COD(Cr) (mg/l)	15.0	11.0	22.0	26.0	74.0	8.0	31.0
T-N(mg/l)	_			_	_	_	_
NH ₄ ⁺ -N (mg/l)	_	_	_	_	_	_	
NO ₃ -N(mg/l)			_	_	-		
NO ₂ -N(mg/l)		_	_	_	_	_	
T-P(mg/l)	0.06	0.05	0.20	0.40	0.07	0.09	0.08
PO ₄ 3· -P(mg/l)	_	_	_	_	_	_	_
SS (mg/l)	11	14	34	51	27	33	35
Particle size distribution			_				
V-SS (mg/l)	7	4	8	12	12	5	18
Phenol (mg/l)	_	-		-	_	_	
Arsenic (mg/l)	-	_		_	_	-	-
Cadmium (mg/l)		_		<u> </u>	_	<u> </u>	
Cyanide (mg/l)		_	_		_	_	_
Cr6+ (mg/l)	_	_	_			-	
Copper (mg/l)	_				_		
Hg (mg/l)	_			-		-	
Ni2+ (mg/l)		_		_	-	-	-
Lead (mg/l)	_	_	-	_		_	_
Zinc (mg/l)		_				-	_
Iron(mg/l)	_			-			
`		-	-			_	
Manganese(mg/l) Organo-chlorine		_		_	_	_	_
Pesticide (mg/l)	_					_	_
Organo-phosphorus Pesticide (mg/l)	_	_			_		_
Organo-carbonate Pesticide (mg/l)	_	_				_	_
Total Coliform (MPN)	_	-		_	_	_	_
Facal Coliform (MPN)		<u> </u>			_		

Table E 1.4 Results of Water Quality Observation at the Secondary River Stations in Rainy Season-1/2

Sample No.	1	2	3	4	5	6	7	8	9	10
River Name	Lenguazaque	Q. Obejeras	Q.	Suta	Q. La	Fuquene	Q. Honda	Q. Mina	Ubate	Vallado
	ŀ		Mojica		Plava	•				Madre Norte
Sampling Site	Lowest	Lowest	Lowest	Lowest	La Malilla	Chinzaque	Fuquene	Tica.Munaz	La.Baiero	Vereda
						,				Taquila
Remarks										
Code No.	AD-1	AD-2	AD-3	AD-4	AD-6	AD-8	AD-9	AD-10	AD-11	QS-3
Sampling Date	1999/5/5	1999/5/5	1999/5/5	1999/5/5	1999/5/6	1999/5/6	1999/5/5	1999/5/5	1999/5/6	1999/4/16
Sampling Time	17:18	17:00	16:25	15:57	11:26	9:45	14:46	15:01	10:51	10:18
Climate										
Discharge(m³/s)	0.188	0.013	0.012	0.102	0.367	0.062	0.112	0.073	1.43	0.138
Water Level (m)										
Water Depth (m)	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial
WaterTemperature(°C)	14.7	14.4	14.4	14.8	14.2	14.3	14.5	14.6	14.3	16.0
Color	Beige	Light Gray	Light Beige	Light Yellow	Light Gray	Light Gray	Colorless	Colorless	Grayish Yellow	LightYellow
Odor	Odorless	Soft Anaerobic	Odorless	Odorless	Odorless	Odorless	Odorless	Odorless	Odorless	Light Fish
EC(mS/m)	7.37	16.70	1.66	23.50	7.37	4.63	6.98	41.9	4.63	11.99
Turbidity	70.0	150.0	15.0	1950.0	65.0	40.0	50.0	380.0	21.0	12.9
pН	6.40	6.80	6.30	6.20	7.20	6.70	6.60	7.40	7.30	7.02
BOD (mg/l)	1.0	3.0	2.0	3.0	2.0	1.0	2.0	5.0	3.0	1.0
COD(Cr) (mg/l)	11.0	18.0	19.0	75.0	18.0	11.0	18.0	27.0	21.0	15.0
T-N(mg/l)	0.15	0.71	0.28	1.00	0.78	0.38	0.40	1.21	1.54	1.23
T-P(mg/l)	0.09	0.06	0.03	0.09	0.11	0.04	0.06	0.29	0.12	0.34
SS (mg/l)	8	8	8	157	12	6	37	42	58	23
V-SS (mg/l)										

Table E 1.4 Results of Water Quality Observation at the Secondary River Stations in Rainy Season-2/2

Sample No.	1	2	3	4	5	6	7	8	9	10
River Name	Lenguazaque	Q. Obejeras	Q.	Suta	Q. La	Fuquene	Q. Honda	O. Mina	Ubate	Vallado
			Mojica		Plava					Madre Norte
Sampling Site	Lowest	Lowest	Lowest	Lowest	La Malilla	Chinzaque	Fuquene	Tica.Munaz	La.Baiero	Vereda
							-			Taquila
Remarks										
Code No.	AD-1	AD-2	AD-3	AD-4	AD-6	AD-8	AD-9	AD-10	AD-11	QS-3
Sampling Date	1999/5/12	1999/5/12	1999/5/12	1999/5/12	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13
Sampling Time	17:06	16:50	16:27	15:30	15:25	9:40	13:40	13:23	14:53	11:26
Climate										
Discharge(m ³ /s)	0.360	0.089	0.147	0.190	0.439	0.052	0.323	0.014	0.740	0.025
Water Level (m)						0.10				
Water Depth (m)	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial	Superficial
WaterTemperature(°C)	15.7	16.6	16.8	18.3	13.7	17.0	18.5	18.7	14.4	
Color	Light Yellow	Colorless	Light Brown	Honey	Light Gray	Light Yellow	Light Gray	Light Gray	Grayish Yellow	LightYellow
Odor	Odorless	Soft Anaerobic	Odorless	Iron odor	Odorless	Odorless	Odorless	Odorless	Odorless	Light Fish
EC(mS/m)	7.37	16.70	1.66	23.50	7.37	4.63	6.98	41.9	4.63	11.99
Turbidity	140.0	160.0	270.0	20.0	95.0	22.0	9.0	10.0	12.0	12.9
рH	6.80	6.70	6.60	7.00	7.40	7.10	6.70	7.70	7.50	7.02
BOD (mg/l)	3.0	2.0	2.0	2.0	2.0	1.0	1.0	2.0	3.0	1.0
COD(Cr) (mg/l)	26.0	41.0	34.0	21.0	9.0	10.0	34.0	15.0	10.0	15.0
T-N(mg/l)	0.90	1.03	1.79	0.60	0.68	0.65	0.13	1.84	1.64	1.23
T-P(mg/l)	0.18	0.35	0.33	0.07	0.09	0.07	0.03	0.25	0.05	0.34
SS (mg/l)	42	165	388	20	14	17	8	13	12	23
V-SS (mg/l)										

Table E.1.5 Results of Continuous Water Quality Observation in Ubate River -1/2

Comple Mo															
Sample 140.	1	2	33	4	2	9	7	∞	6	10	11	12	13	14	15
Sampling Site	Colorado	Colorado													
Remarks															
Sampling Date	1999/5/12	1999/5/12	1999/5/12	1999/5/12	1999/5/12	1999/5/12	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13	1999/5/13	9/L/6661
Discharge(m³/s)															
Sampling Time (:)	13:10	15:20	18:07	19:07	20:07	21:07	5:00	7:00	90:6	11:00	13:00	14:20	15:46	16:11	14:44
Water Level (m)															
Climatc															
WaterTemperature(°C)															
COD(Cr) (mg/l)	15.0	16.0	16.0	16.0	14.0	21.0	20.0	28.0	22.0	42.0	27.0	18.0	23.0	10.0	25.0
T-N(mg/l)	1.00	0.83	1.13	1.89	09.0	96.0	1.26	2.65	3.40	2.90	1.54	2.12	2.22	1.94	4.00
T-P(mg/l)	0.26	0.25	0.23	0.11	0.18	0.14	0.14	0.36	0.34	0.26	0.16	0.30	0.13	0:30	09.0
SS (mg/l)	20	22	21	22	24	19	37	37	38	33	47	14	47	32	9
Particle size															
distribution (% 400-								_			_				
38micron)				100		100	15.1		26.3						
V-SS (mg/l)				5		4	7		13						5

Table E.1.5 Results of Continuous Water Quality Observation in Ubate River -2/2

Sample No.		ţ	,	(Š										
	10	17/	18	19	20	21	22	23	24	25	92	27	28	53	30
Sampling Site	Colorado	Colorado	Colorado Colorado Colorado	Colorado	-										
Remarks															
Sampling Date	1999/7/7	1999/7/7	1999/7/7	9/L/6661											
Discharge(m ³ /s)	13:18	15:14	15:48												
Sampling Time (:)															
Water Level (m)															
Climate															
WaterTemperature(°C)															
COD(Cr) (mg/l)	25.0	28.0	16.0	14.0											
T-N(mg/l)	3.50	1.90	2.00	2.20											
T-P(mg/l)	0.57	0.48	0.35	0.42											
SS (mg/l)	19	51	48	70											
Particle size															
distribution(% 400- 38micron)														_	
V-SS (mg/l)	14	19	24	10											

Table E.1.6 Results of River/Lake Deposit Quality Observation

Lake or River Name Fuquence Lake Sampling Site Near Uba Mouth	QL-2 1 1999/4/21 4.00 Dark Gray	3 Fuquene Lake Center QL-3 1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2 0.0		5 Ubate River Downstream of Ubate City QR-1 1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11 <3.2	River	7 Ubate River Colorado QR-3 1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	8 Suarez River Balsa Bridge QR-4 1999/4/22 3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Chiquinquira River Upstream of Chiquinquira City QR-5 1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	River Before Tolon Gate QR-6 1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Sampling Site Near Uba Mouth	QL-2 1 1999/4/21 4.00 Dark Gray ic Anaerobic 6.30 59.8 3.60 0.094 90.8 13.5 0.65 <3.2 0.0	Center QL-3 1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	QL-4 1999/4/21 2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	Downstream of Ubate City QR-1 1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	Verda Punta Gande QR-2 1999/4/22 0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	QR-3 1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	Balsa Bridge QR-4 1999/4/22 3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Upstream of Chiquinquira City QR-5 1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	Before Tolon Gate QR-6 1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Mouth	QL-2 1 1999/4/21 4.00 Dark Gray 1 6 Anaerobic 6.30 59.8 3.60 0.094 90.8 13.5 0.65 <3.2 0.0	QL-3 1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	Outlet QL-4 1999/4/21 2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	Of Ubate City QR-1 1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	Punta Gande QR-2 1999/4/22 0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	QR-3 1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Chiquinquira City QR-5 1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	Tolon Gate QR-6 1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Remarks	1 1999/4/21 4.00 Dark Gray 1	1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	QL-4 1999/4/21 2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	Oliver City QR-1 1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	Gande QR-2 1999/4/22 0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	QR-4 1999/4/22 3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	OR-5 1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	Gate QR-6 1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Code No. QL-1 Sampling Date 1999/4/2 Point Depth (m) 2.20 Color Black Odor Anaerol pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 0.196 Particle size distribution (% 40micron) 88.4 Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Copper (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	1 1999/4/21 4.00 Dark Gray 1	1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	1999/4/21 2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	QR-1 1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	QR-2 1999/4/22 0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	1999/4/22 3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	QR-5 1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	QR-6 1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Sampling Date 1999/4/2 Point Depth (m) 2.20 Color Black Odor Anaerol pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) 88.4 Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) <3.2	1 1999/4/21 4.00 Dark Gray 1	1999/4/21 5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	1999/4/21 2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	1999/4/22 1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	1999/4/22 0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	1999/4/22 3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	1999/4/22 3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	1999/4/22 0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	1999/4/22 1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Point Depth (m) 2.20 Color Black Odor Anaerol pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) 88.4 Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) <3.2	4.00 Dark Gray ic Anaerobic 6.30 59.8 3.60 0.094 90.8 13.5 0.65 <3.2 0.0	5.30 Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	2.20 Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	1.20 Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	0.75 Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	3.35 Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	3.45 Dark Gray Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	0.90 Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	1.60 Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Color Black Odor Anaerol pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁻ (mg/drykg) 0.0 Crpper (mg/drykg) 0.0 Copper (mg/drykg) 37,7 Lead (mg/drykg) 59.9 Zinc (mg/drykg) 90.9	Dark Gray 10 Anaerobic 11 6.30 12 59.8 13 .60 13 .5 13 .5 14 .5 15 .5 16 .65 17 .5 18 .5 18 .5 19 .65 19 .65 10 .65	Dark Gray Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	Black Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	Dark Gray Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	Beige Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	Dark Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Dark Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	Dark Gray Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
Odor Anaerol pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) 88.4 Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) <3.2	6.30 59.8 3.60 0.094 90.8 13.5 0.65 <3.2	Anaerobic 6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	Anaerobic 6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	Anaerobic 6.20 32.3 1.30 0.045 68.2 8.2 0.11	Fish 5.70 4.8 0.50 0.019 93.0 4.7 0.03	Brown Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	Soft Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Brown Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	Anaerobic 6.70 103.0 5.20 0.010 90.6 17.8 0.48
pH 6.30 COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykg) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykg) 59.9 Zinc (mg/drykg) 90.9	6.30 59.8 3.60 0.094 90.8 13.5 0.65 <3.2 0.0	6.50 97.5 5.30 0.019 82.8 15.8 0.63 <3.2	6.10 92.6 5.20 0.282 74.6 20.1 1.43 <3.2	6.20 32.3 1.30 0.045 68.2 8.2 0.11	5.70 4.8 0.50 0.019 93.0 4.7 0.03	Anaerobic 6.20 208.2 1.01 0.454 61.0 45.2 0.15	Anaerobic 6.20 139.3 6.80 0.408 74.6 25.4 0.67	Fish 6.70 99.4 3.80 0.037 78.9 15.7 0.25	6.70 103.0 5.20 0.010 90.6 17.8 0.48
COD(Cr) (mg/dry) 98.6 T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr6+ (mg/drykg) 0.0 Copper (mg/drykg) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykg) 59.9 Zinc (mg/drykg) 90.9	59.8 3.60 0.094 90.8 13.5 0.65 <3.2 0.0	97.5 5.30 0.019 82.8 15.8 0.63	92.6 5.20 0.282 74.6 20.1 1.43 <3.2	32.3 1.30 0.045 68.2 8.2 0.11	4.8 0.50 0.019 93.0 4.7 0.03	208.2 1.01 0.454 61.0 45.2 0.15	6.20 139.3 6.80 0.408 74.6 25.4 0.67	99.4 3.80 0.037 78.9 15.7 0.25	103.0 5.20 0.010 90.6 17.8 0.48
T-N(mg/dryg) 4.30 T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cadmium (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykg) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykg) 59.9 Zinc (mg/drykg) 90.9	3.60 0.094 90.8 13.5 0.65 <3.2	5.30 0.019 82.8 15.8 0.63 <3.2	5.20 0.282 74.6 20.1 1.43 <3.2	1.30 0.045 68.2 8.2 0.11	0.50 0.019 93.0 4.7 0.03	1.01 0.454 61.0 45.2 0.15	6.80 0.408 74.6 25.4 0.67	3.80 0.037 78.9 15.7 0.25	5.20 0.010 90.6 17.8 0.48
T-P(mg/dryg) 0.196 Particle size distribution (% 40micron) Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cadmium (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykg) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykg) 59.9 Zinc (mg/drykg) 90.9	0.094 90.8 13.5 0.65 <3.2	0.019 82.8 15.8 0.63 <3.2	0.282 74.6 20.1 1.43 <3.2	0.045 68.2 8.2 0.11	0.019 93.0 4.7 0.03	0.454 61.0 45.2 0.15	0.408 74.6 25.4 0.67	0.037 78.9 15.7 0.25	0.010 90.6 17.8 0.48
Particle size distribution (% 40micron) 88.4 Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 3.2 Cadmium (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁻ (mg/drykg) 0.0 Copper (mg/drykg) 84.3 Hg (mg/drykg) 0.0 Ni ²⁻ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	90.8 13.5 0.65 <3.2 0.0	82.8 15.8 0.63 <3.2	74.6 20.1 1.43 <3.2	68.2 8.2 0.11	93.0 4.7 0.03	61.0 45.2 0.15	74.6 25.4 0.67	78.9 15.7 0.25	90.6 17.8 0.48
(% 40micron) Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Copper (mg/drykgl) 84.3 Hg (mg/drykg) 0.0 Ni²+ (mg/drykg) 37.7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	13.5 0.65 <3.2 0.0	15.8 0.63 <3.2	20.1 1.43 <3.2	8.2 0.11	4.7 0.03	45.2 0.15	25.4 0.67	15.7 0.25	17.8 0.48
Ignition Loss (%) 16.2 Phenol (mgdrykgl) 1.28 Arsenic (mg/drykg) <3.2	0.65 <3.2 0.0	0.63	1.43	0.11	0.03	0.15	0.67	0.25	0.48
Arsenic (mg/drykg) <3.2	<3.2	<3.2	<3.2						
Cadmium (mg/drykg) 0.0 Cyanide (mg/drykg) 0.0 Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykgl) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37.7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	0.0			<3.2	<3.2				
Cyanide (mg/drykg) 0.0 Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykgl) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9		0.0	0.0			<3.2	<3.2	<3.2	<3.2
Cr ⁶⁺ (mg/drykg) 0.0 Copper (mg/drykgl) 84.3 Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Copper (mg/drykgl) 84.3 Hg (mg/drykg) 0.0 Ni²+ (mg/drykg) 37.7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	i	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hg (mg/drykg) 0.0 Ni ²⁺ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ni²+ (mg/drykg) 37,7 Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	76.0	78.3	72.7	63.4	67.9	70.0	66.9	64.2	59.9
Lead (mg/drykgl) 59.9 Zinc (mg/drykg) 90.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zinc (mg/drykg) 90.9	28.2	32.6	33.2	27.5	17.2	24.1	15.1	32.1	18.6
, , , , , ,	67.3	54.4	68.5	52.8	20.5	30.6	45.3	53.5	41.3
	68.9	138.9	566.7	287.7	159.9	112	121.2	275.9	195.0
Iron(mg/dryg) 34.5	43.8	61.3	49.0	37.5	20.1	27.3	46.7	37.7	48.7
Manganese 0.212 (mg/dryg)	0.667	0.750	0.667	0.,294	0.192	0.143	0.500	0.299	0.101
Organo-chlorine 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pesticide (mg/drykg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organo-phosphorus 0.00 Pesticide (mg/dryk)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organo-carbonate 0.00 Pesticide (mg/drykg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Moisture Content (%)	75.8	85.4	83.7	34.5	23.7	78.5	75.8	68.4	72.0
Sulfide (mg/dryg) 1.21	0.55	0.63	1.43	0.10	0.03	0.84	0.36	0.61	1.24
Oxidation Reduction -123 Potential (mV)	0.65		-120	-114	328	-95	-134	-51	-142

Table E.1.7 Results of Biological Observation in the Lake in Rainy Season (Phytoplankton)-1/4

∞	Fuquene Lake	Near Suarez Outlet		QL-4	Deep Layer	1999/4/15	14:15	3.4	10850	Cymbella sp.	Synedre ilne,	Gomphoriema	acuminatum,	Gomphoriema sp,	Navicula plantula,	Microspora sp 2,	Sccendesmus econis.,	Ulothrix sp,	Anabaena sp,	Phacus sp,		
7	Fuque	Near Su		O'	Upper Layer	1999/4/15	14:10	1.2	8700	Tabellaria fenestrata., Cymbella sp.	Cymbella sp,	a	acuminatum,	Microspora sp 2,	Cosmarium sp I,	Cosmarium sp 2,	Scendesmus econis., Scendesmus econis.,	Ulothrix sp,	Lingbya sp,	Oscillatoria sp 1,	Oscillatoria sp 2,	
9	Fuquene Lake	Center		QL-3	Deep Layer	1999/4/15	11:45	0.11	14250	Peridinium sp,	Oscillatoria sp 1,	Anabaena sp,					:					:
80	Fuque	වී		Ð	Upper Layer	1999/4/15	11:40	0.49	7800	Oscillatoria sp 1,	Anabaena sp,	Trachetomona	volvocina,									
4	Fuquene Lake	Near Port	A CONTRACTOR OF THE CONTRACTOR	QL-2	Deep Layer	1999/4/15	13:18	0.03	3150	Navicula plantula,	Closterium sp,	Peridium sp,	Spirulina sp,									
3		Near		ď	Upper Layer	1999/4/15	13:15	0.11	500	Nitzschia sp,	Navicula sp 1,	Penium sp,										
2	Fuquene Lake	Near Ubate Mouth		-1	Deep Layer	1999/4/15	10:42	0.23	6050	Nitzschia sp,	Tabelleria.	fenestrata,Synedra,	ulna,Microspora sp1,	Closterium acutum.								
	Fuquei	Near Ub		QL-1	Upper Layer	1999/4/15	10:40	0.39	006	Microspora sp 1,	Spyrogyra sp,		volvocina,									
Sample No.	Lake Name	Sampling Site	Remarks	Code No.	Sampling Layer	Sampling Date	Sampling Time	Chlorophill-a (mg/m³)	Density (Cells/ml)	Taxonomy Description	(Genera, speces)											

Table E.1.7 Results of Biological Observation in the Lake in Rainy Season (Zooplankton)-2/4

Lake Name	Sample No.	1	2	3	4	5	6	7	8
Remarks QL-1 QL-2 QL-3 QL-4 Sampling Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Deep Layer Deep Layer Upper Layer Deep Layer <td< td=""><td>Lake Name</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Lake Name								
Code No. QL-1 QL-2 QL-3 QL-4 Sampling Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer	Sampling Site	Near Uba	ite Mouth	Near	Port	Cei	nter	Near Sua	rez Outlet
Sampling Layer Upper Layer Deep Layer Deep Layer Upper Layer Deep Layer <	Remarks								
Sampling Date 1999/4/15	Code No.	QI	-1	QI	<u>2</u>	QI	L-3	QI	L-4
Sampling Time 10:40 10:42 13:15 13:18 11:40 11:45 14:10 14:15 Density (Cells/ml) 0.8 4.0 4.0 1.2 2.0 20.0 0.0 0.0 Texanomy Lionotus Lionotus, Euchlanis, Rotaria, Lionotus, Lio	Sampling Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer
Density (Cells/ml) 0.8 4.0 4.0 1.2 2.0 20.0 0.0 0.0 Texanomy Lionotus Lionotus, Moina, Moina, Moina, Moina, Euchlanis, Rotaria, Lionotus, Lionotus, Lionotus, Lionotus, Moina, Lionotus,	Sampling Date	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15	1999/4/15
Texanomy Lionotus Lionotus, Moina, Moina, Moina, Moina, Description Euchlanis, Rotaria, Lionotus, Lionotus,	Sampling Time	10:40	10:42	13:15	13:18	11:40	11:45	14:10	14:15
Description Euchlanis, Rotaria, Lionotus, Lionotus,	Density (Cells/ml)	0.8	4.0	4.0	1.2	2.0	20.0	0.0	0.0
	Description	Lionotus					Moina,	-	-

Table E.1.7 Results of Biological Observation in the Lake in Rainy Season (Macrobenthos) -3/4

Sample No.	1	2	3	4
Code No.	QL-1	QL-2	QL-3	QL-4
Sampling Date	1999/4/15	1999/4/15	1999/4/15	1999/4/15
Sampling Time	10:40	10:42	13:15	13:18
Specimen Numbers	0.0	0.0	0.0	0.0

Table E.1.7 Results of Biological Observation in the Lake in Rainy Season (Microbenthos) -4/4

Sample No.	1	2	3	4
Code No.	QL-1	QL-2	QL-3	QL-4
Sampling Date	1999/4/15	1999/4/15	1999/4/15	1999/4/15
Sampling Time	10:40	10:42	13:15	13:18
Specimen Numbers	0.0	0.0	0.0	0.0
				•
:				

Table E 1.8 Results of Releasing Test in the Lake (Point (Code No. : QL-2))

Sample No.	1	2	3	4	5	6	7
Day from Start	0	1	2	4	6	9	13
Sampling ate	1999/5/11	1999/5/12	1999/5/13	1999/5/15	1999/5/17	1999/5/20	1999/5/24
COD(Cr) (mg/l)	1.8	12.6	13.7	16.2	19.7	22.8	24.0
T-N(mg/l)	0.61	1.21	1.32	1.51	1.66	1.775	1.91
NH4 ⁺ -N (mg/l)	0.14	0.52	0.60	0.82	1.00	1.06	1.18
NO ³⁻ -N(mg/l)	0.07	0.08	0.10	0.11	0.05	0.08	0.07
NO ²⁻ -N(mg/l)	0.05	0.05	0.04	0.03	0.04	0.04	0.04
T-P(mg/l)	0.009	0.010	0.012	0.015	0.014	0.018	0.021
PO ₄ 3P(mg/l)	0.002	0.005	0.009	0.010	0.009	0.011	0.012

Table E.1.9 Results of Production Test in Rainy Season-1/4 (Code No.:QL-1)

Sample No.	1	2	3	4	5	6	Remarks
Sampling Time	10	:50	16	:53	16	:53	
Time from Start (hour)	0.0	00	6.0	05	6.0	05	
Dark or Light Bottle	Dark Bottle	Light Bottle	Dark Bottle-1	Dark Bottle-2	Light Bottle-1	Light Bottle-2	
Upper Layer DO(mg/l)	3.5	3.9	1.6	1.4	2.8	2.5	
Deep Layer DO(mg/l)	2.5	2.2	2.0	1.5	3.0	3.2	

Table E.1.9 Results of Production Test in Rainy Season -2/4 (Code No.:QL-2)

Sample No.	1 .	2	3	4	5	6	Remarks
Sampling Time	13	:15	17	:15	17	:15	
Time from Start (hour)	0.0	00	4.	00	4.	4.00	
Dark or Light Bottle	Dark Bottle	Light Bottle	Dark Bottle-1	Dark Bottle-2	Light Bottle-1	Light Bottle-2	
Upper Layer DO(mg/l)	4.0	4.2	4.1	4.0	7.0	6.6	
Deep Layer DO(mg/l)	4.5	4.4	4.1	3.6	4.1	3.9	

Table E.1.9 Results of Production Test in Rainy Season-3/4 (Code No.:QL-3)

Sample No.	1	2	3	4	5	6	Remarks
Sampling Time	11	:40	17	:07	17	:07	-
Time from Start (hour)	0.0	00	5.	78	5.	78	
Dark or Light Bottle	Dark Bottle	Light Bottle	Dark Bottle-1	Dark Bottle-2	Light Bottle-1	Light Bottle-2	
Upper Layer DO(mg/l)	5.2	5.3	4.5	4.1	6.6	6.2	
Deep Layer DO(mg/l)	5.0	4.9	4.9	4.1	4.3	4.8	

Table E.1.9 Results of Production Test in Rainy Season-4/4 (Code No.:QL-4)

Sample No.	1	2	3	4	5	6	Remarks
Sampling Time	14	:10	17	:25	17	:25	
Time from Start (hour)	0.0	00	3.	25	3.	25	
Dark or Light Bottle	Dark Bottle	Light Bottle	Dark Bottle-1	Dark Bottle-2	Light Bottle-1	Light Bottle-2	
Upper Layer DO(mg/l)	6.0	5.6	3.8	3.5	8.2	7.8	
Deep Layer DO(mg/l)	4.0	3.8	3.6	2.9	3.5	3.2	

Table E.1.10 Results of Settling Test in the Lake in Rainy Season

Sample No.		1		2		3		4	
Lake Name	Fuque	ne Lake	Fuque	ne Lake	Fuque	ne Lake	Fuque	ne Lake	
Sampling Site	Near Uba	ate Mouth	Nea	r Port	Ce	nter	Near Sua	arez Outlet	
Remarks									
Code No.	Q	L-1	Q	L-2	Q	L-3	Q	L-4	
Setting Date	1999	9/4/15	1999	9/4/15	1999	0/4/15	1999	9/4/22	
Sampling Date	1999	9/5/14	199	9/5/14	1999	9/5/14	199	9/5/14	
Test Period (d)	2	29		29	2	29		22	
Point Depth (m)	2.	.10	4	.20	5.	.10	2	.20	
Setting Depth (m)	0.50	1.60	0.50	3.20	0.50	4.00	0.50	1.70	
SS (mg/l)	Not O	bserved	1	630	1	25	5	93	
Particle size distribution(% 400- 38micron)	Not Observed		74.8		99.0		12.0		
V-SS (mg/l)	Not O	bserved	5	550	4	58	2	202	
SS (g/m ² .d)	Not O	bserved	4	.48	0	.34	2	.15	
V-SS (g/m ² .d)	Not O	bserved	1	.51	0	.16	0	.73	

Table E.1.11 Results of Wastewater Quality Observation of Sewerage and Factories in Rainy Season-1/2

Sample No.	I	2	3	4	5	9	7	8	6	10
Name of Factory	Name of Factory Lacteos San Andres	Lacted	Lacteos Ubate	Ubate	Parmalat	Dona Leche	Ubate Sew	Ubate Sewerage System	Colf	Colfrance
or Sewerage				Slaughterhouse						
Sampling Site	Effluent Point	Affluent Point	Effluent Point	Outlet	Outlet	Outlet	Affluent Point		Affluent Point	Effluent Point
Code No.	OW-1	QW-2	OW-2	OW-3	OW-4	OW-5	9-MO	9-MO	OW-7	7-WO
Sampling Date	L/\$/6661	L/5/6661	1999/5/7	1999/5/6	1999/4/30	1999/4/30	1999/4/30		1999/4/30	1999/4/30
Sampling Time	06:6	10:30	10:40	16:30	13:30	14:30	15:20		12:00	12:10
Climate										
Discharge(m3/s)	30*	*091		*059	\$00\$	*059	0.047		100*	
WaterTemperature	17.1	23.1	18.8	19.7	18.2	18.8	17.5	18.5	23.2	17.8
Color	Milky Gray	Coloriess	Gray	Greenish	White	white	Milky Gray	Black	white	white Graish
Odor	Anaerobic	Rancid	Anaerobic	Dung	Rancid milk	Milky	Waste	Strong Anaerobic	Rancid Milk	Anaerobic
EC(mS/m)	1500	800	125	1000.00	45.3	0.33	71.8	71.4	145.80	0.44
Turbidity (UNT)	120.0	15.0	5.0	120.0	320	25	28	25	350	510
Hd	5.10	6.91	6.95	6.95	98.9	5.50	7.10	7.00	5.50	4.90
BOD (mg/l)	360	56.0	18.0	480.0	372	992	285	0.09	3420	399
COD(Cr) (mg/l)	1537	78.0	24.0	1195.0	862.0	1509	431	149	3890	5720
T-N(mg/l)	107.6	13.3	2.50	43.50	42.1	107.8	41.1	38.0	103	342
NH, N (mg/l)	11.6	5.77	69:0	5.95	9.88	5.60	28.9	30.90	33.7	321.1
NO ³⁻ -N(mg/l)	2.0	0.71	0.13	0.00	0.40	0.35	0.38	0.32	0.26	3.01
NO ² -N(mg/l)	0.0	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T-P(mg/l)	26.7	6.73	0.29	8.4	89:9	91.5	6.47	5.02	14.75	132.5
PO.3 -P(mg/l)	18.4	4.58	0.11	5.68	2.89	22.9	0.25	0.16	9.13	86.48
SS (mg/l)	3208	104.0	24	398	236	295	277	95	1087	1277
VSS (mg/l)	2784	0.89	16	375	236	293	211	70	983	1207
Total Coliform (MPN)								93×10°		
Facal Coliform (MPN)								93×IO		

Table E.1.11 Results of Wastewater Quality Observation of Sewerage and Factories in Rainy Season -2/2

Sample No.	11	12	13	14	15	16	17	18	19
Name of Factory Alpina	Alpina	Delay	Simijaca Sl.	jaca Slaughterhouse	Cucunuba Se	Cucunuba Sewerage System	Saboya Se	Saboya Sewerage System	Ubate Sewerage
or Sewerage									System
ite	Outlet	Outlet	Affluent Point	Effluent Point	Affluent Point	Effluent Point	Affluent Point	Efflicat Point	Effluent Point
Code No.	8-MŎ	6-MO	QW-10	QW-10	QW-11	OW-11	OW-12	OW-12	OW-13
Sampling Date	1999/4/30	1999/4/30	1999/4/30	1999/4/30	1999/4/30	1999/4/30	1999/4/30	1999/4/30	1999/4/30
Sampling Time	10:40	11:40	10:05	10:10	16:40	17:00	8:30	8:40	15:05
Climate									
Discharge(m3/s)	936*	750*	180*		0.035		0.001		0.033
Water Temperature	18.6	22.1	16.5	17.4	17.5	18.3	15.4	15.8	17.5
Color	White	Colorless	Red	Dark red	Milky Gray	Black	Light Gray	Light Green	Milky Gray
Odor	Rancid Milk	Odorless	Blood	Fetid	Waste	Anaerobic	Waste	Odorless	Strong Waste
EC(mS/m)	0.28	45.3	25.70	123.3	59.20	57.2	48.3	14.6	71.5
Turbidity (UNT)	120	130	46	45	75	18	45	22	25
Hd	6.11	7.60	6.50	06.9	08.9	7.00	09.9	6.30	08.9
BOD (mg/l)	288	84.0	645	0.069	258	93.0	136	12.0	240.0
COD(Cr) (mg/l)	419	227	792	713	336	223	243	51	298
I-N(mg/l)	39.0	13.4	107.8	143.7	30.8	30.8	43.1	8.20	35.90
NH, +N (mg/l)	37.98	12.55	77.0	28.4	23.2	21.2	35.1	2.45	5.65
NO ³ -N(mg/l)	1.95	0.27	1.12	2.78	9.02	0,33	0.48	0.32	0.35
NO ²⁻ -N(mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
T-P(mg/l)	5.85	16.2	6.44	9.78	3.96	4.04	5.34	0.47	8.74
PO,3P(mg/1)	2.18	90.6	0.03	5.50	0.42	0.13	96:0	0.00	3.66
SS (mg/l)	238	159	277	376	75	123	384	19	173
Total Coliform (MPN)						15×10°		43	
Facal Coliform (MPN)						/3×IU		43	

*:m³/mon

Table E.1.12 Results of Water Quality Observation in the Lake in Dry Season

Sample No.	1	2	3	4	5	6	7	8
Lake Name		ne Lake		ne Lake		ne Lake	_	ne Lake
Sampling Site	Near Uba	ite Mouth	Near	Port	Cer		Near Sua	rez Outlet
Remarks								
Code No.	. OI	<i>_</i> -1	OI		OI		Ol	
Sampling Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer	Upper Layer	Deep Layer
Sampling Date	1999/8/26	1999/8/26	1999/8/26	1999/8/26	1999/8/26	1999/8/26	1999/8/26	1999/8/26
Sampling Time	13:30	13:35	14:05	14:10	15:05	15:10	16:40	16:45
Climate	CI	ear	Cl	ear	Cle	ear	Cl	ear
Point Depth (m)	1.	90		00		30		80
Clearance (m)	0.9		1.3		1.8			33
Sampling Depth (m)	0.50	1.60	0.50	1.50	0.50	4.00	0.50	1.70
WaterTemperature(°C)	17.4	17.4	17.2	17.2	17.2	17.0	18.5	15.6
Color		Light Yellow					Colorless	Colorless
Odor	Odorless	Odorless	Sulfur	Sulfur	Odorless	Odorless	Odorless	Odorless
EC(mS/cm)								····-
Turbidity	120.0	120.0	120.0	130.0	110.0	110.0	140.0	140.0
рН	4.5	7.8	2.0	4.7	2.2	3.0	6.0	6.5
Dissolved O ₂ (mg/l)	6.60	6.70	6.80	6.60	6.90	7.00	6.70	6.60
COD(Cr) (mg/l)		5.7	5.8	4.0	6.2	6.5	1.9	0.0
COD(Mn) (mg/l)	24.0	25.0	28.0	31.0	27.0	25.0	28.0	40.0
TOC (mg/l)	10.3	10.7	10.7	12.5	9.5	10.9	12.3	13.3
Humic acid (mg/l)	9.3	3.0	4.2	10.3	1.8	15.3	3.1	3.1
T-N(mg/l)	5.9	1.7	1.6	4.6	1.6	3.6	5.3	7.6
NH ₄ ⁺ -N (mg/l)	1.40	1.31	1.38	2.17	1.38	1.70	1.12	1.96
NO ₃ -N(mg/l)	0.73	0.73	0.79	0.85	0.76	0.82	0.79	0.82
NO_3 -N(mg/l) NO_2 -N(mg/l)	0.30	0.45	0.53	0.69	0.61	0.77	0.30	0.69
T-P(mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PO ₄ ³⁻ -P(mg/l)	0.02	0.03	0.02	0.16	0.00	0.00	0.04	0.07
SS (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particle size	6	9	4	15	2	4	13	44
distribution(% 400-								
38micron)	100	100	100	100	100	100	100	100
V-SS (mg/l)	4	4	2	9	1	3	7	27
Phenol (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Arsenic (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cadmium (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cyanide (mg/l)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cr6+ (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Copper (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hg (mg/l)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ni2+ (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lead (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zinc (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Iron(mg/l)	1.51	3.23	0.74	2.54	0.23	0.21	2.70	2.61
Manganese(mg/l)	0.03	0.12	0.05	0.17	0.00	0.00	0.08	0.12
Organo-chlorine				_	_	_		
Pesticide (mg/l) Organo-phosphorus	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pesticide (mg/l) Organo-carbonate	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pesticide (mg/l)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total Coliform (MPN)	230	-	<2	_	230	_	430	-
Facal Coliform (MPN)	230	_	<2	-	40	-	90	-
	200			!	10	<u> </u>		