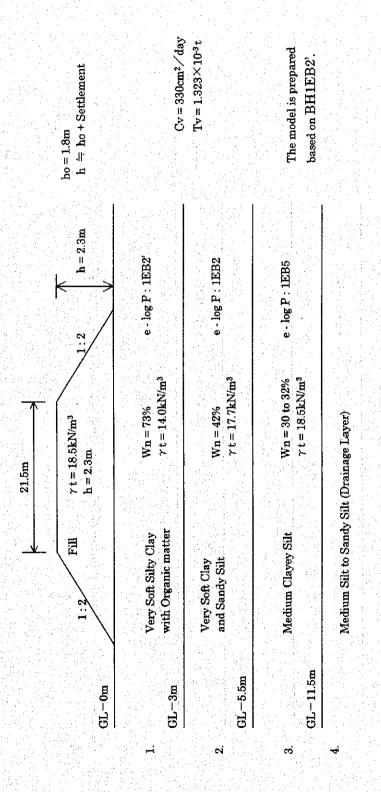
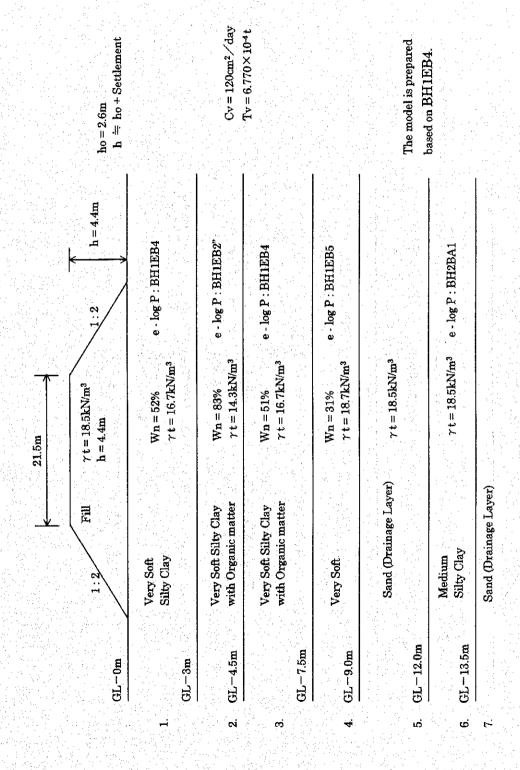


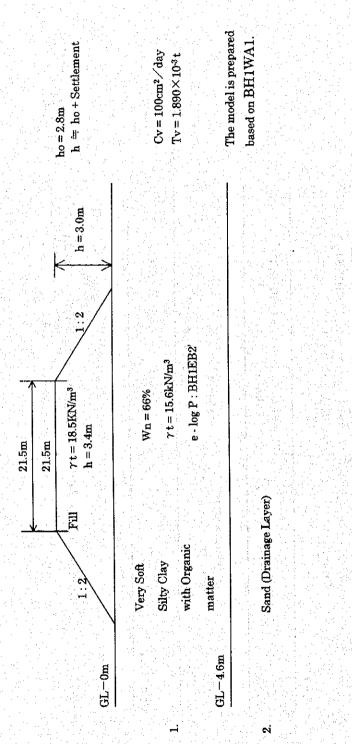
Appendix A

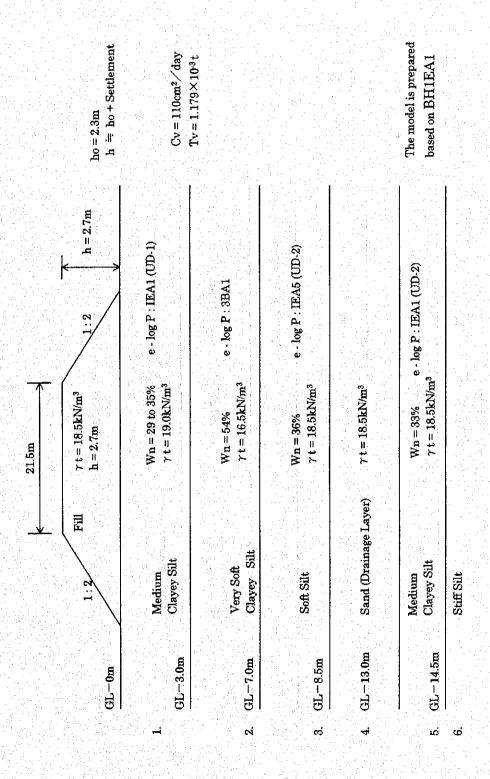
Figures 1 through 19 Ground Model for Settlement Analysis

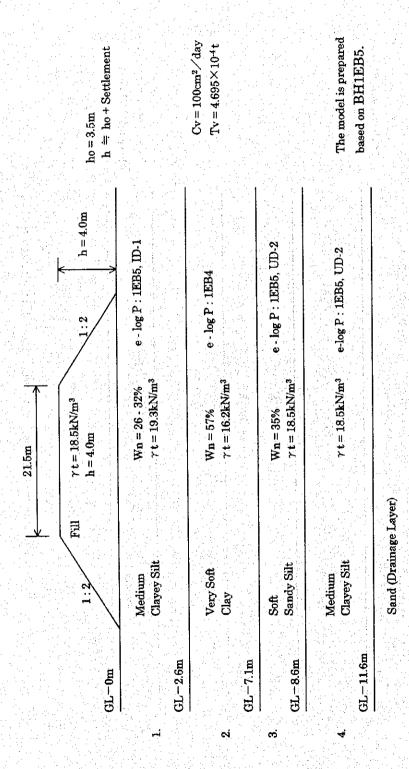

	and property of the property of the second	
마하다는 네 중요한 보통 (2) 하는 하나를 하는 사람이 좋아		
		6 (2) 등이 되었다. 하는 12 (2) 4일 : 10 : 12 (2) - 12 (2) (2) (2) (2) 당하는 14 (2) - 12 (2) (2) (2) (2) (2)

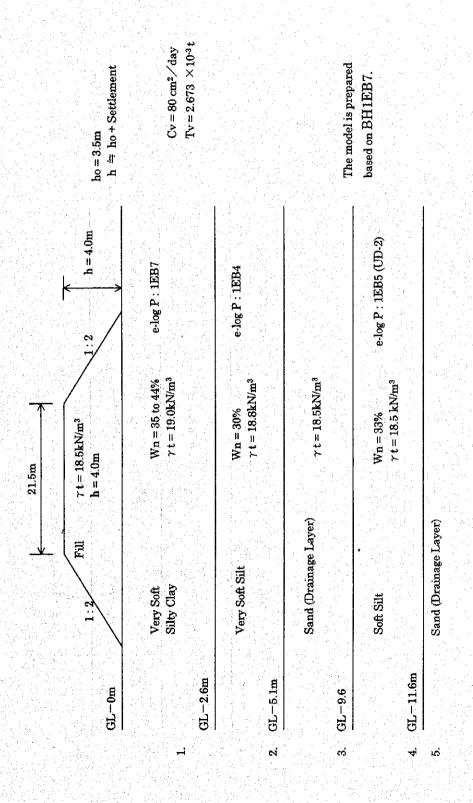
Ground Model of Settlement Analysis for STA 0+000 to STA 2+000 Figure-1

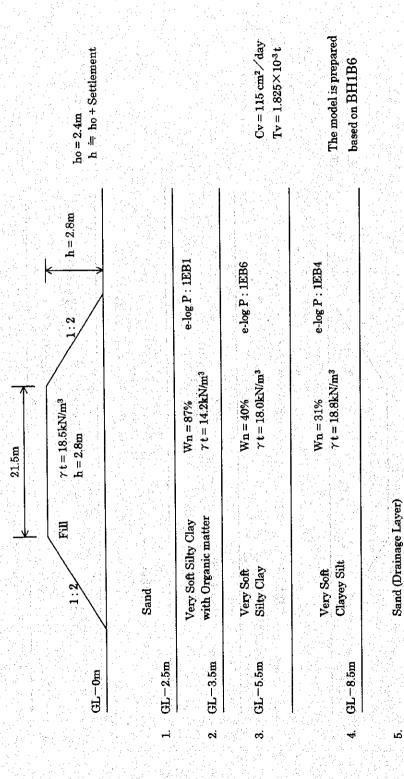

Ground Model of Settlement Analysis for STA 2+000 to Hatia River West Bank

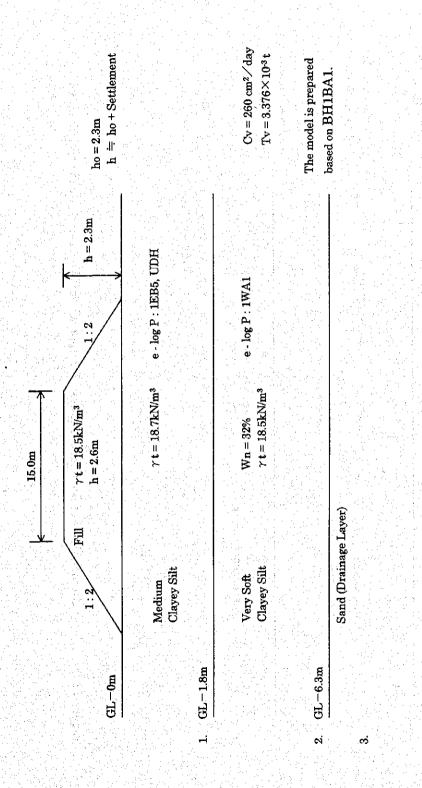

Ground Model of Settlement Analysis for Hatia River East Bank to STA 3+700 Figure-3

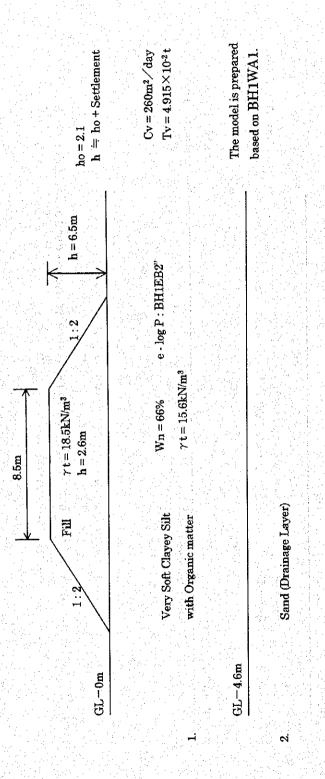

Ground Model of Settlement Analysis for STA 3+700 to STA 5+400 Figure-4


Ground Model of Settlement Analysis for STA 5+400 to STA 6 + 500


Ground Model of Settlement Analysis for STA 6+500 to STA 6+900 Figure-6


Ground Model of Settlement Analysis for Rupsa East Viaduct to STA 8+900


Ground Model of Settlement Analysis for STA 8+900 to STA 9+900


Ground Model of Settlement Analysis for STA 9+900 to Molonghata Bridge

Ground Model of Settlement Analysis for Molonghata Bridge to End of Route 1 Figure-10

Ground Model of Settlement Analysis for Rupsa River West Access Road at River Bank Side Figure-11

Ground Model of Settlement Analysis for Rupsa River West Access Road at Viaduct Side Figure-12

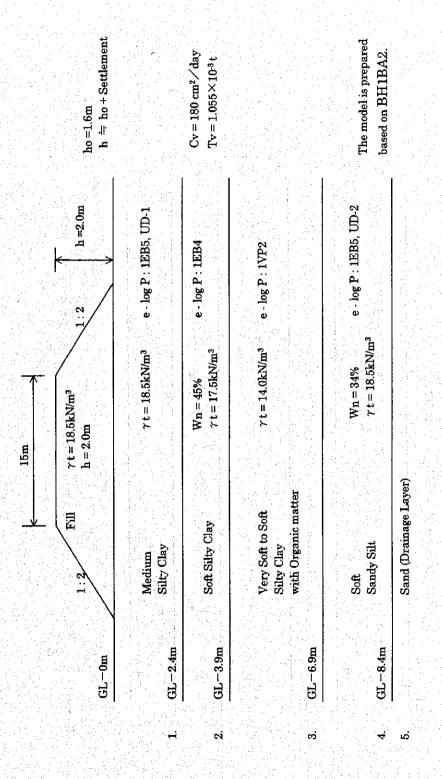
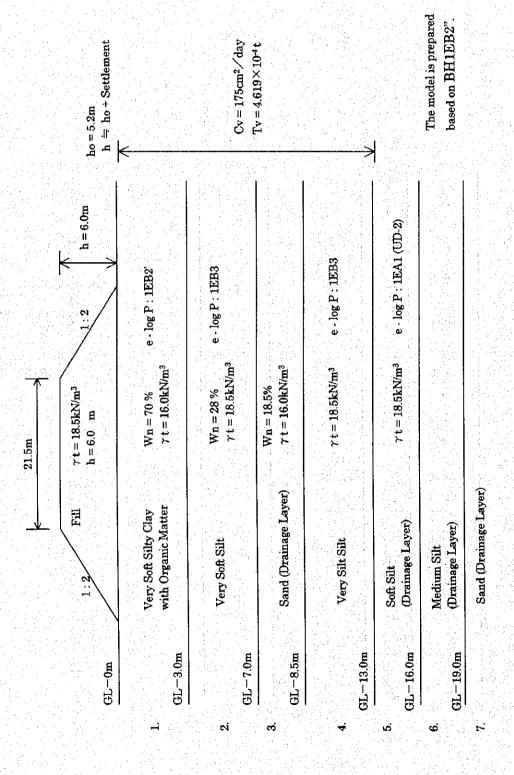
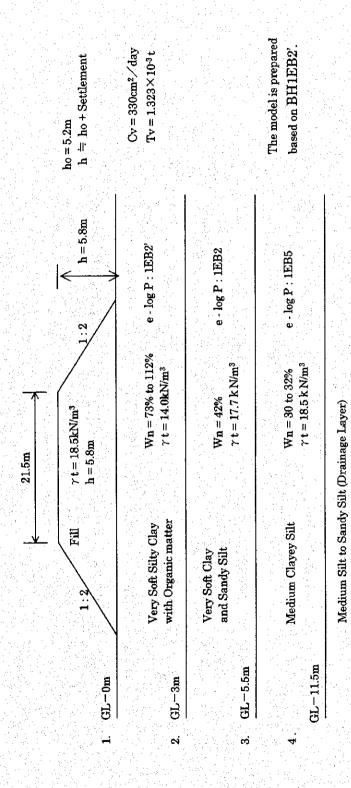
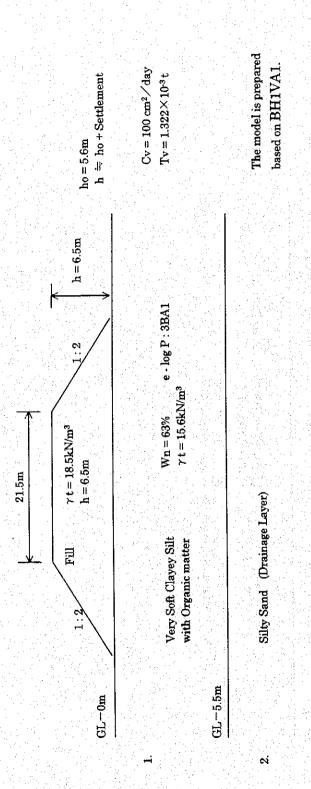
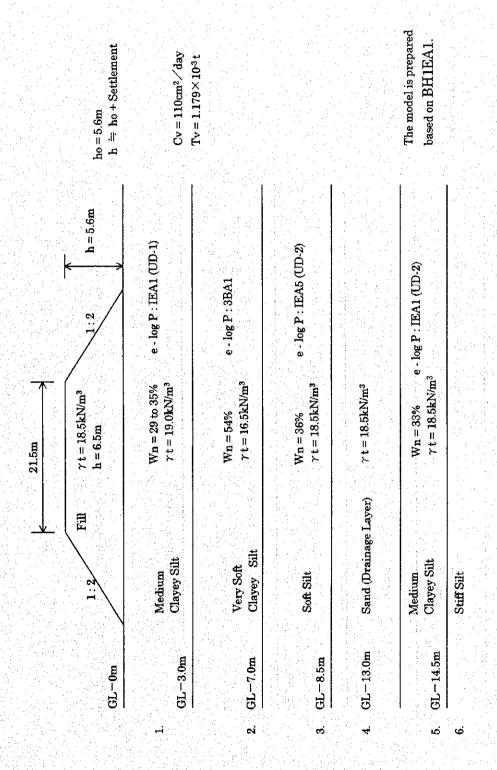
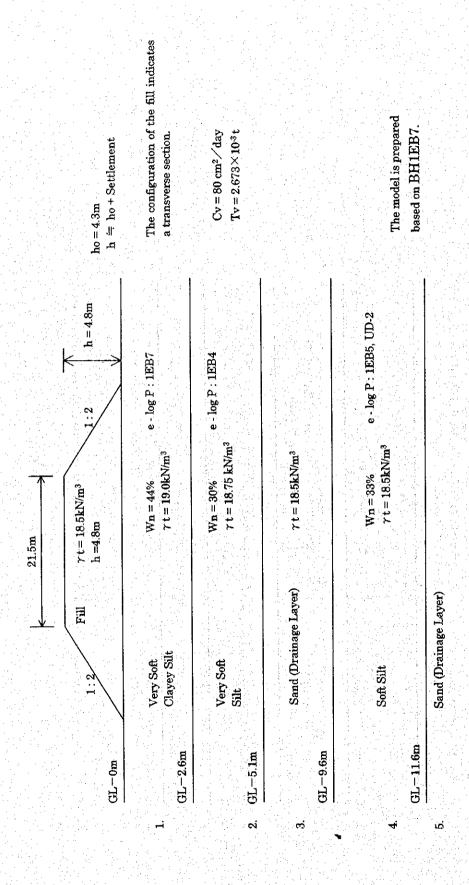
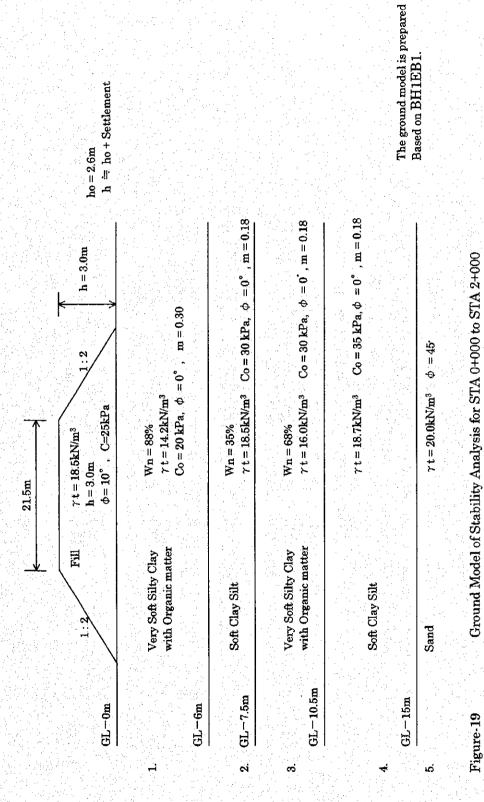



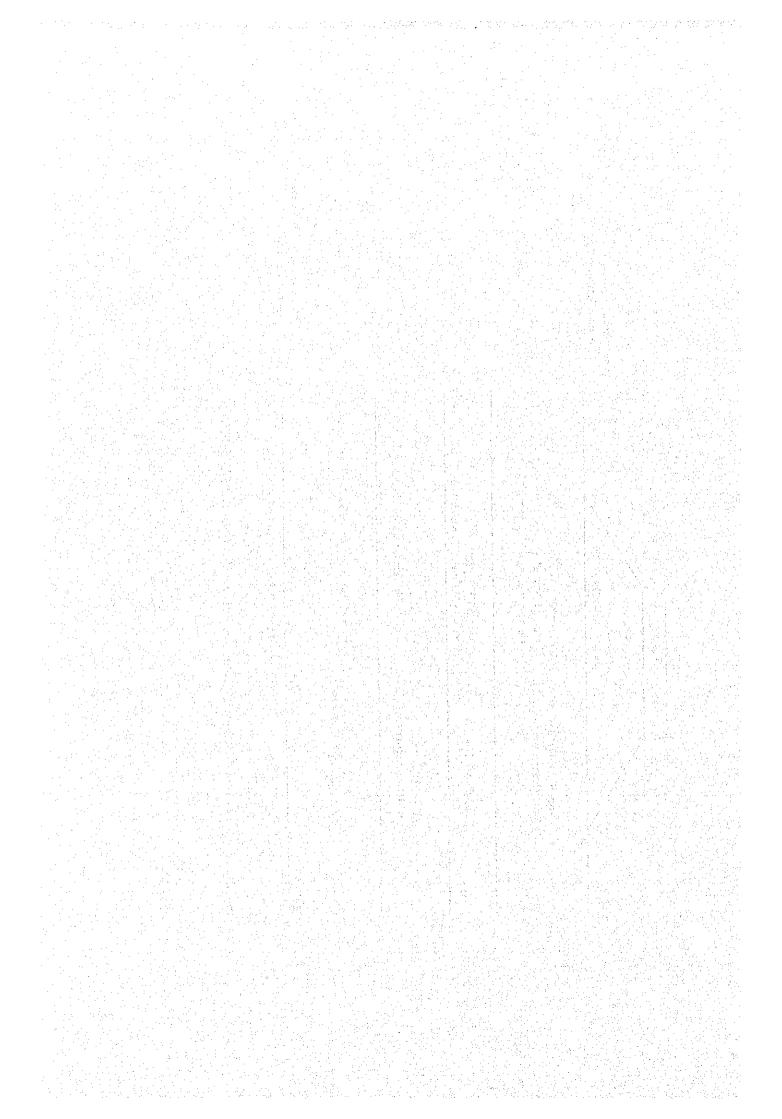
Figure-13 Ground Model of Settlement Analysis for Rupsa River East Access Road

Ground Model of Settlement Analysis for to Hatia Bridge West Abutment Figure-14


Figure-15 Ground Model of Settlement Analysis for to Hatia Bridge East Abutment


Ground Model of Settlement Analysis for West Approach to Viaduct Figure-16



Ground Model of Settlement Analysis for East Approach to Viaduct Figure-17

Ground Model of Settlement Analysis for Molonghata Bridge Approach Figure- 18

Appendix B

Tables-1 through 38
Settlement Calculation Sheet
And
Settlement VS. Time

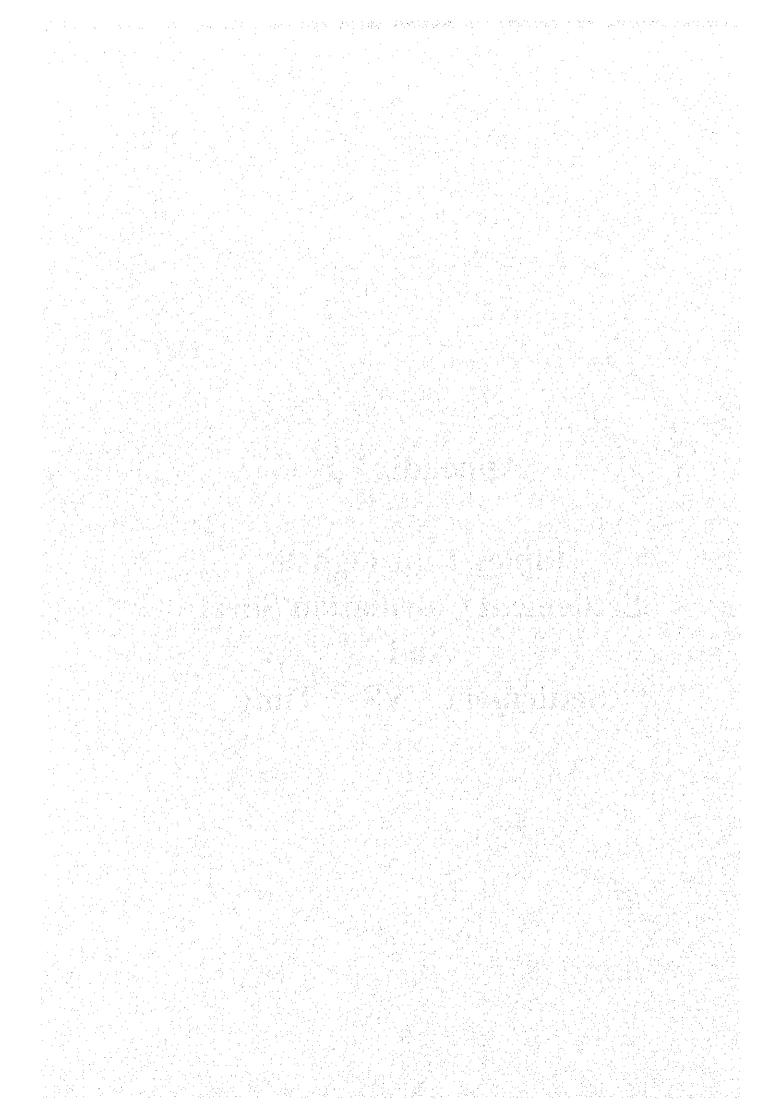


Table-1 Settlement Calculation Sheet, STA 0+000 to STA 2+000

Layer No.	D (cm)	σ vó (kPa)	σ vó+∆P (kPa)	e_0	e _j	S (cm)
1	600	30.1	8.33	2.115	2.00	22.2
2	150	49.1	10.02	0.925	0.900	1.9
3	300	64.5	11.11	1.195	1.130	8.9
4	450	93.0	13.96	0.905	0.890	3.5
	ala den en lavaño. La vianten la la				Total	36.6

Table-2 Settlement VS. Time, STA 0+000 to STA 2+000

Time (months) *	6	12	24	36	60
Settlement (cm)	8	15	20	23	29
Residual Settlement (cm)	29	22	17	14	8

^{*} Time from reaching height of 3.0m

Table-3 Settlement Calculation Sheet, STA 2+000 to Hatia River

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e _o	e,	S (cm)
1	300	12.5	71.7	2.84	2.60	18.8
2	400	38.5	96.5	0.959	0.918	8.4
3	450	87.4	139.7	0.924	0.894	7.0
5	300	119.3	166.8	0.856	0.838	2.9
					Total	37.1

Table-4 Settlement VS. Time, STA 2+000 to Hatia River

Time (months) *	6	12	24	36	60
Settlement (cm)	15	21	27	31	34
Residual Settlement (cm)	22	16	10	6	3

^{*} Time from reaching height of 3.0m

Table-5 Settlement Calculation Sheet, Hatia River East Bank to SAT 3+700

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e_0	e _i	S (cm)
1	150	10.0	52.6	2.86	2.63	17.9
2	425	25.6	61.2	0.918	0.872	6.0
3	850	60.8	95.8	0.918	0.902	2.5*
					Total	26.4

^{*} Half of calculated value

Table-6 Settlement VS. Time, Hatia River East Bank to SAT 3+700

Time (months) *	6	12	24	36	60
Settlement (cm)	18	21	24		
Residual Settlement (cm)	9	6	3		

^{*} Time from reaching height of 2.3m

Table-7 Settlement Calculation Sheet, STA 3+700 to SAT 5+400

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e ₀	$oldsymbol{e_i}$	S (cm)
1	400	22.1	90.6	0.968	0.917	10.4
2	300	48.8	115.6	1.216	1.106	14.9
3	300	68.9	133.8	1.138	1.100	12.1
4	150	85.3	146.7	0.906	0.89	0.7*
					Total	38.1

^{*} Half of calculated value

Table-8 Settlement VS. Time, STA 3+700 to SAT 5+400

Time (months) *	6	12	24	36	60	72
Settlement (cm)	9	12	17	24	33	34
Residual Settlement (cm)	29	26	11	7	5	4

^{*} Time from reaching height of 3.7m

Table-9 Settlement Calculation Sheet, STA 5+400 to SAT 6+500

Layer No.	D (cm)	σ vó (kPa)	σ vó+∆P (kPa)	e ₀	e ₁	S (cm)
1	300	21.1	100.7	1.259	1.145	15.1
2	150	34.3	113.1	1.23	1.05	12.1
3	300	47.6	12436	1.218	1.117	13.7
4	150	64.1	139.1	0.917	0.890	2.1
6	150	102.3	172.0	0.738	0.722	0.7*
					Total	43.7

^{*} Half of calculated value

Table-10 Settlement VS. Time, STA 5+400 to SAT 6+500

A STATE OF THE STA	A CONTRACTOR OF THE CONTRACTOR	the state of the state of the				
Time (months) *	6	12	24	36	48	.:
Settlement (cm)	19	24	36	39	40	
Residual Settlement (cm)	25	20	10	5	4	

^{*} Time from reaching height of 4.4m

Table-11 Settlement Calculation Sheet, STA 6+500 to Rupsa West Viaduct

Γ	Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e ₀	e ₁	S (cm)
	1.1	550	30.4	80.6	1.31	1.12	37.8
						Total	37.8

Table-12 Settlement VS. Time, STA 6+500 to Rupsa West Viaduct

Time (months) *	3	6	12	18
Settlement (cm)	14	24	32	36
Residual Settlement (cm)	24	14	6	2

^{*} Time from reaching height of 3.7m

Table-13 Settlement Calculation Sheet, Rupsa East Viaduct to SAT 8+900

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	$\mathbf{e_0}$	e_1	S (cm)
1	300	21.5	71.5	0.925	0.872	8.2
2	400	48.0	97.9	1.373	1.21	27.4
3	150	67.4	115.3	0.915	0.896	1.5
5	150	118.4	161.2	0.855	0.840	1.2
					Total	38.3

Table-14 Settlement VS. Time, Rupsa East Viaduct to SAT 8+900

Time (months) *	6	12	24
Settlement (cm)	21	28	34
Residual Settlement (cm)	17	10	4

^{*} Time from reaching height of 2.7m

Table-15 Settlement Calculation Sheet, STA 8+900 to SAT 9+900

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e ₀	e ₁	S (cm)
1	260	21.7	95.7	0.862	0.815	6.7
2	450	47.4	120.2	1.218	1.125	18.9
3	150	67.6	137.6	0.915	0.890	2.0
4	300	87.1	154.0	0.906	0.887	3.0
					Total	30.6

Table-16 Settlement VS. Time, STA 8+900 to SAT 9+900

Time (months) *	6	12	24	36	60
Settlement (cm)	18	21	24	27	29
Residual Settlement (cm)	13	10	7	4	2

^{*} Time from reaching height of 4.0m

Table-17 Settlement Calculation Sheet, STA 9+900 to Molonghata Bridge

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e ₀	e ₁	S (cm)
1	260	11.7	85.7	0.918	0.918	8.9
2	250	34.3	107.6	1.239	1.239	11.1
4	200	92.0	159	0.904	0.904	2.0
					Total	22.0

Table-18 Settlement VS. Time (STA 9+900 to Molonghata Bride)

Most part of the settlement will be developed during construction of the fill.

Table-19 Settlement Calculation Sheet, Molonghata Bridge to End

Layer No.	D (cm)	σ vó (kPa)	σ vó+ \triangle P (kPa)	\mathbf{e}_0	$\mathbf{e_{l}}$	S (cm)
2	100	29.9	81.6	2.15	2.00	4.8
3	200	40.0	91.0	0.984	0.920	6.5
4	300	61.1	110.5	1.198	1.140	7.9
					Total	19.2

Table-20 Settlement VS. Time, Molonghata Bridge to End

Time (months) *	6	12	24
Settlement (cm)	12	16	18
Residual Settlement (cm)	6	3	

^{*} Time from reaching height of 2.8m

Table-21 Settlement Calculation Sheet, West Access Road, River Bank Side

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e ₀	e ₁	S (cm)
1	180	11.9	6.03	0.874	0.837	3.6
2	450	38.9	85.8	0.900	0.865	8.3
					Total	11.9

Table-22 Settlement VS. Time, West Access Road, River Bank Side

Time (months) *	6	12
Settlement (cm)	9	11
Residual Settlement (cm)	2	1

^{*} Time from reaching height of 2.6m

Table-23 Settlement Calculation Sheet, West Access Road, Viaduct Side

Layer No.	D (cm)	σ vó (kPa)	σ vó+ΔP (kPa)	€ ₀	ė,	S (cm)
1 · /	460	15.9	62.9	1.13	1.16	29.9
					Total	29.9

Table-24 Settlement VS. Time, West Access Road, Viaduct Side

 Time (Months) *	6	12
Settlement (cm)	27	29
Residual Settlement (cm)	3	

^{*} Time from reaching height of 2.6m

Table-25 Settlement Calculation Sheet, East Access Road

Layer No.	D (cm)	σ vó (kPa)	σ vó+ \triangle P (kPa)	e ₀	e ₁	S (cm)
1	240	17.2	54.1	0.866	0.840	3.3
2	150	33.0	68.8	1.242	1.189	3.5
3	300	44.7	76.5	4.46	4.36	5.5
4	10	57.0	85.7	0.92	0.906	1.1
					Total	13.4

Table-26 Settlement VS. Time, East Access Road

	Time (months) *	6	12	24	36
ſ	Settlement (cm)	9	11	12	13
	Residual Settlement (cm)	5	3	2	1

^{*} Time from reaching height of 2.0m

Table-27 Settlement Calculation Sheet, Hatia Bridge West Approach, 18m behind abutment

Layer No.	D (cm)	o vó (kPa)	σ vó+△P (kPa)	e ₀	e ₁	S (cm)
1 2 3 5	300 400 450 300	12.5 38.5 87.4 119.3	123.5 147.5 189.3 213.0	2.79 0.959 0.924 0.855	2.33 0.890 0.868 0.828	36.4 14.1 13.1 2.2*
					Total	65.8

^{*} Half of the calculated settlement

Table-28 Settlement Calculation Sheet, Hatia Bridge West Approach, 5m behind abutment

Layer No.	D (cm)	σ vó (kPa)	σ vó+ Δ P (kPa)	\mathbf{e}_0	$\mathbf{e_i}$	S (cm)
	300	12.5	118.1	2.79	2.355	34.4
2 3	400 450	38.5 87.4	129.8 163.5	0.959 0.924	0.898 0.878	12.5 10.8
5	300	119.3	181.8	0.855	0.836	1.5*
						59.2
					Total	61.8**

^{*} Half of the calculated Settlement

^{**}After correction of stress

Table-29 Settlement VS. Time, Hatia Bridge West Approach, 18m behind Abutment

Time *	1	2	3	4	5	6	7	8
Settlement (cm)	21	36	40	42	46	53	57	62
Residual Settlement (cm)	45	30	26	24	20	13	9	4

- * 1. At reaching to 6.0m (12 months from commencement of fill)
 - 2. At the end of 11 months' curing period (23 months from commencement of fill)
 - 3. At the completion of backfill behind abutment (Assumed 29 months from commencement of fill)
 - 4. At 0.5 year after completion of backfill behind abutment
 - 5. At 1 year after completion of backfill behind abutment
 - 6. At 2 year after completion of backfill behind abutment
 - 7. At 3 year after completion of backfill behind abutment
 - 8. At 5 year after completion of backfill behind abutment

Table-30 Settlement VS. Time, Hatia Bridge West Approach, 5m behind Abutment

	Time *	1	2	3	4	5	6	7	8
. [Settlement (cm)	Nil	5	5	21	29	40	48	56
	Residual Settlement (cm)	62	57	57	41	33	22	14	6

- * 1. At reaching to 6.0m (12 months from commencement of fill)
 - 2. At the end of 11 months' curing period (23 months from commencement of fill)
 - 3. At the completion of backfill behind abutment (Assumed 29 months from commencement of fill)
 - 4. At 0.5 year after completion of backfill behind abutment
 - 5. At 1 year after completion of backfill behind abutment
 - 6. At 2 year after completion of backfill behind abutment
 - 7. At 3 year after completion of backfill behind abutment
 - 8. At 5 year after completion of backfill behind abutment

Table-31 Settlement Calculation Sheet Hatia Bridge Eest Approach

Layer No.	D (cm)	σ vó (kPa)	σ vó+ \triangle P (kPa)	e ₀	e ₁	S (cm)
1	300	6	113.3	2.820	2,372	35.2
2	250	21.6	127.2	0.910	0.832	10.2
3	600	56.7	1583.0	0.920	0.900	3.1 *
* Half	of the calculate	d settlement			Total	48.5

Table-32 Time VS. Settlement, Hatia Bridge East Approach

Time *	1	2	3	4	5	6
Settlement (cm)	18	26	33	38	44	46
Residual Settlement (cm)	31	23	16	11	5	3

- * 1. At reaching to 5.8m (7 months from commencement of fill)
 - 2. At the end of 5 months' curing period (12 months from commencement of fill)
 - 3. At 0.5 year after completion of backfill behind abutment
 - 4. At 1 year after completion of backfill behind abutment
 - 5. At 2 years after completion of backfill behind abutment
 - 6 At 3 years after completion of backfill behind abutment

Table-33 Settlement Calculation Sheet, West Approach to Viaduct

Layer No.	D (cm)	σ νό (kPa)	σ vó+△P (kPa)	e ₀	e _j	S (cm)
1	550	20.0	140.2	1.41	1.065	78.7
					Total	78.7

Table-34 Settlement VS. Time, Hatia Bridge East Approach

Time *	1	2	3	4 5	6
Settlement (cm)	30	46	60	68 73	76
Residual Settlement (cm)	49	33	19	11 6	3

- * 1. At reaching to 6.5m (6 months from commencement of fill)
 - 2. At the end of 4 months curing period (10 months from commencement of fill)
 - 3. At 0.5 year after completion of backfill behind abutment
 - 4. At 1 year after completion of backfill behind abutment
 - 5. At 1.5 years after completion of backfill behind abutment
 - 6. At 2 years after completion of backfill behind abutment

Table-35 Settlement Calculation Sheet, East Approach to Viaduct

Layer No.	D (cm)	σ vó (kPa)	σ vó+△P (kPa)	e_0	$\mathbf{e_1}$	S (cm)
1	300	21.5	141.8	0.925	0.840	13.2
2	400	48.0	166.8	1.373	1.210	58.8
3	150	67.4	182.8	0.915	0.880	2.7
5	150	118.4	221.6	0.855	0.826	2.3
					Total	77.0

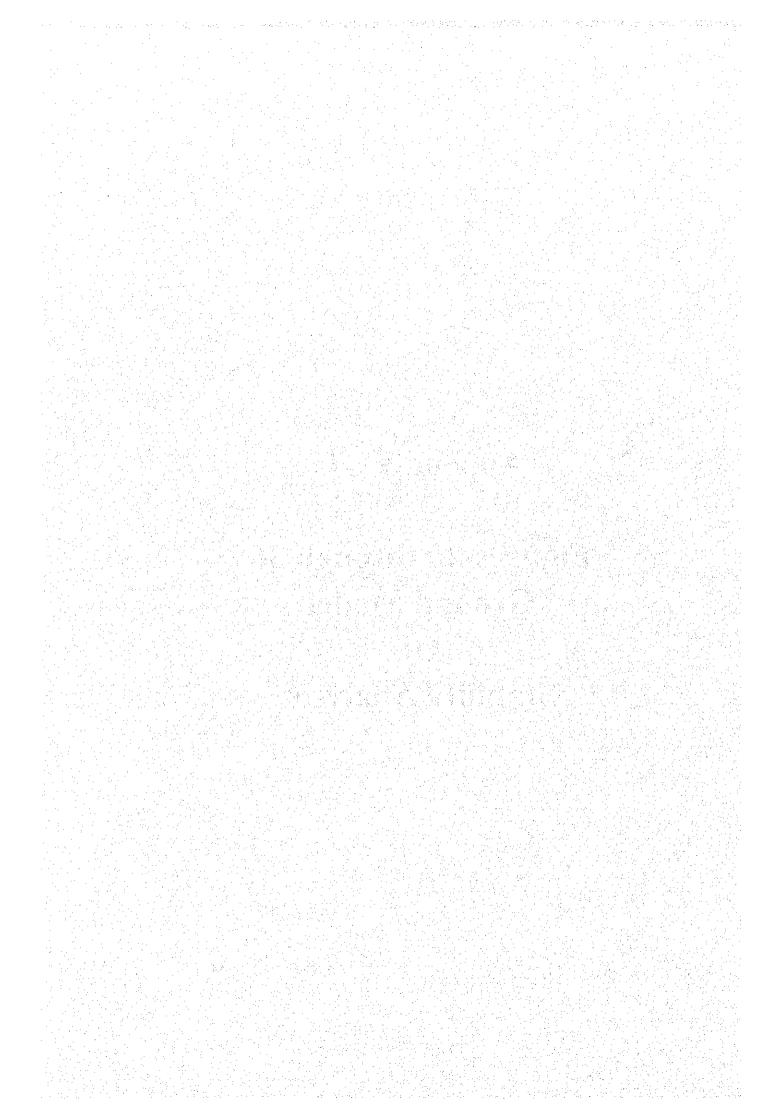
Tabl-36 Settlement VS. Time, East Approach to Viaduct

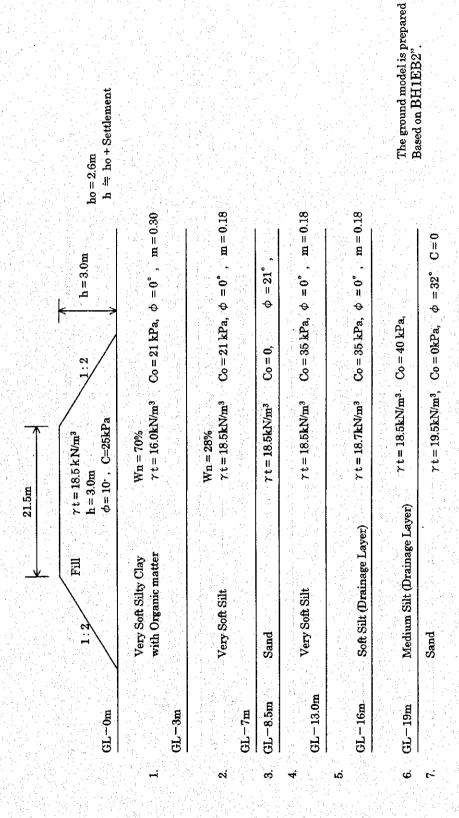
Time *	1	2	3	4	5	6
Settlement (cm)	31	58	41	65	70	72
Residual Settlement (cm)	46	19	36	12	7	5

- * 1. At reaching to 6.5m (6 months from commencement of fill)
 - 2. At the end of 4 months curing period (10 months from commencement of fill)
 - 3. At 0.5 year after completion of backfill behind abutment
 - 4. At 1 year after completion of backfill behind abutment
 - 5. At 1.5 years after completion of backfill behind abutment
 - 6 At 2 years after completion of backfill behind abutment

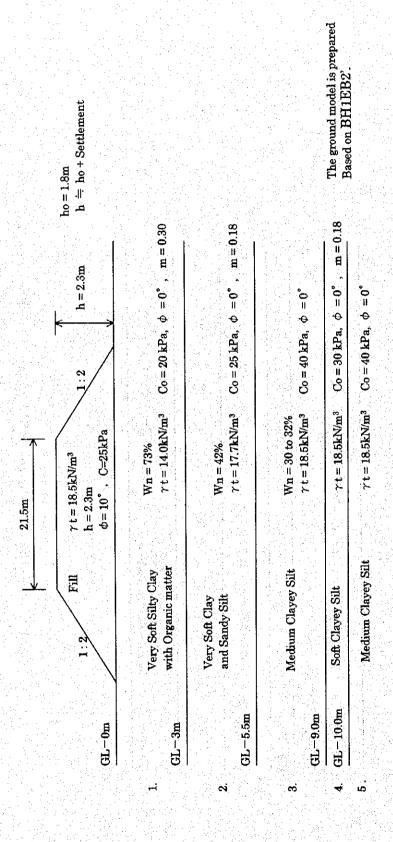
Table-37 Settlement Calculation Sheet, Molonghata Bridge Approach

Layer No.	D (cm)	σ vó (kPa)	σ vó+ Δ P (kPa)	e ₀	$\mathbf{e_i}$	S (cm)
1	260	11.7	10.1	0.918	0.839	10.7
2	250	34.3	12.2	1.239	1.125	12.7
4	200	92.0	17.3	0.904	0.885	2.0
					Total	25.4

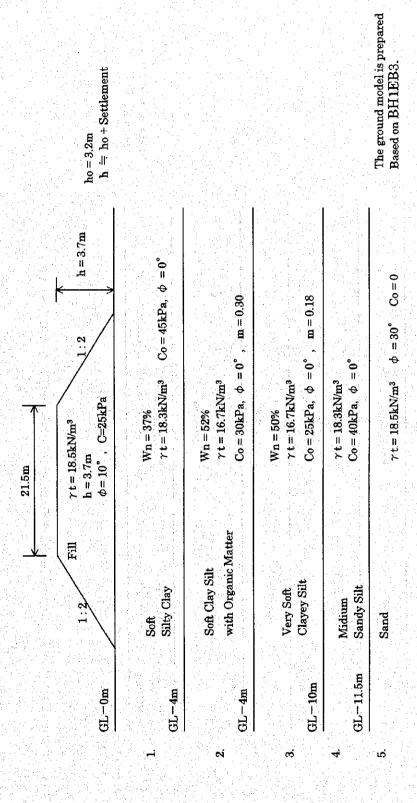

Table-38 Settlement VS. Time, Molonghata Bridge Approach

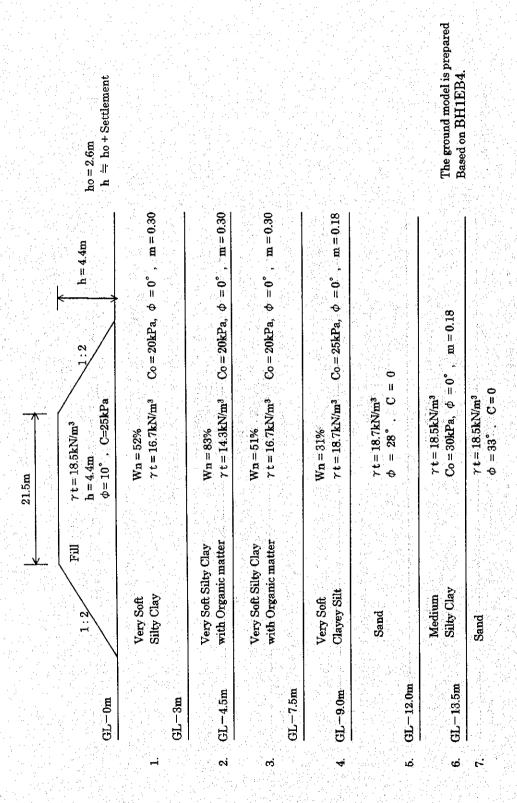

Time (months) *	6	12	24
Settlement (cm)	20	24	25
Residual Settlement (cm)	6	2	1

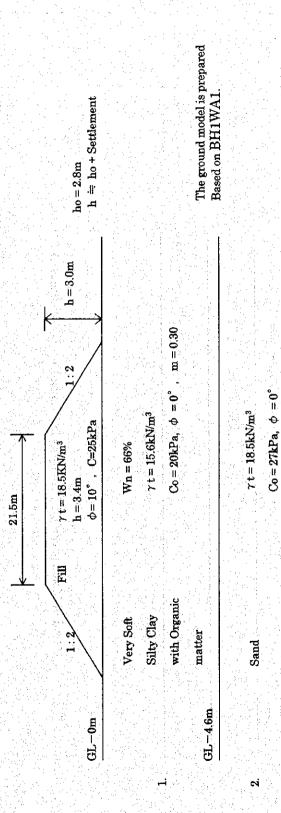
^{*} Time from reaching height of 4.8m

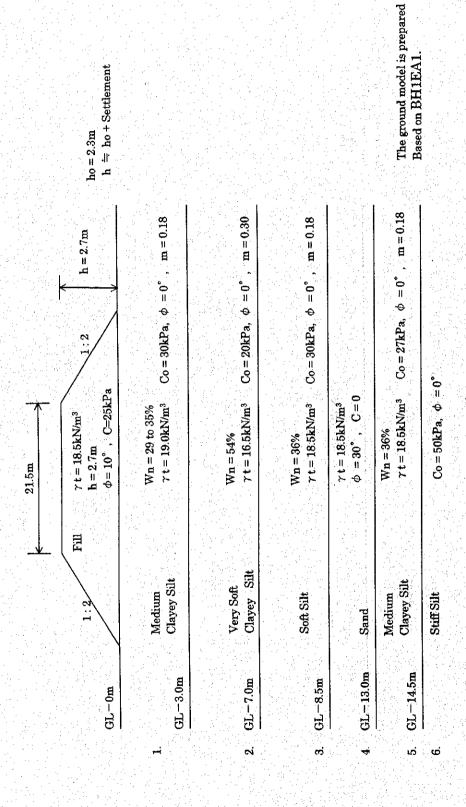

Appendix C

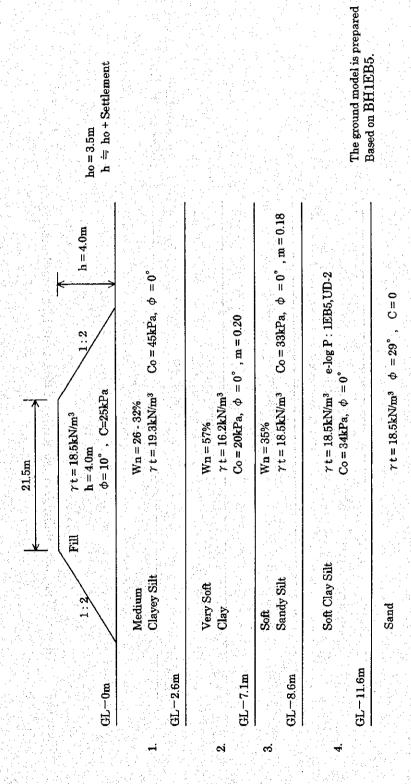
Figures-20 through 36 Ground Model Of Stability Analysis




Ground Model of Stability Analysis for STA 2+000 to Hatia River West Bank Figure-20


Ground Model of Stability Analysis for Hatia River East Bank to STA 3+700

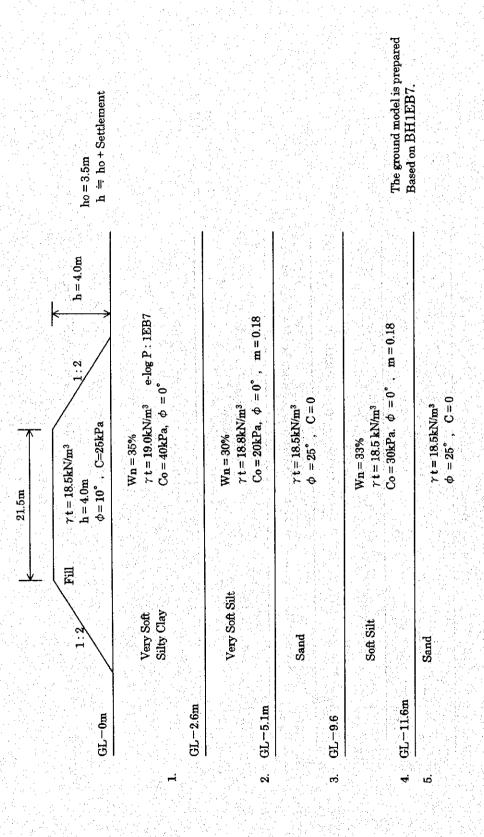
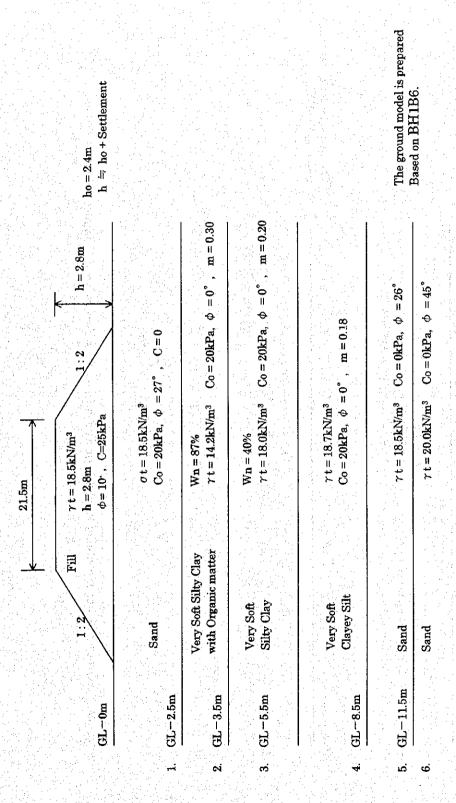
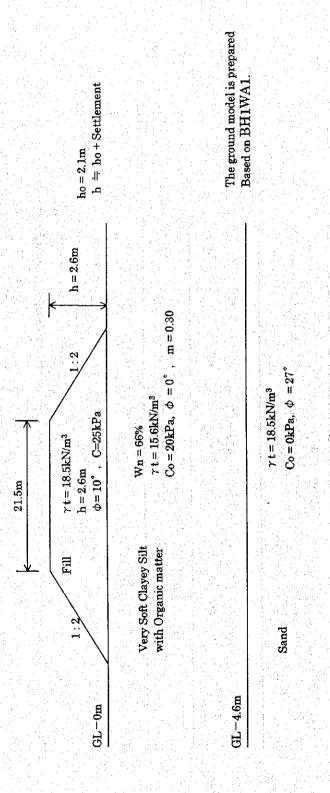

Ground Model of Stability Analysis for STA 3+700 to STA 5+400 Figure-22

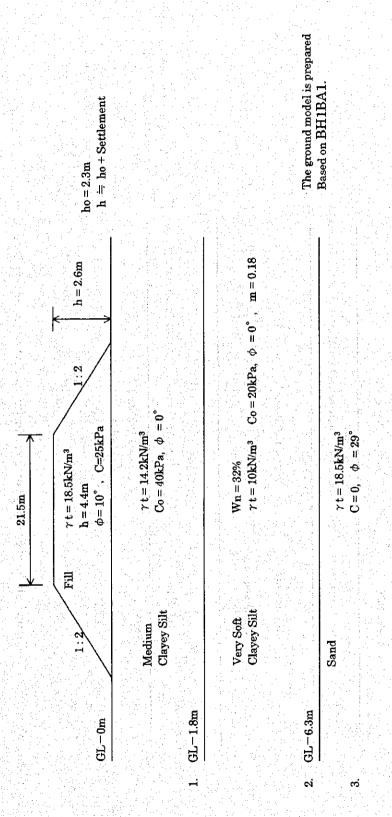

Ground Model of Stability Analysis for STA 5+400 to STA 6 + 500

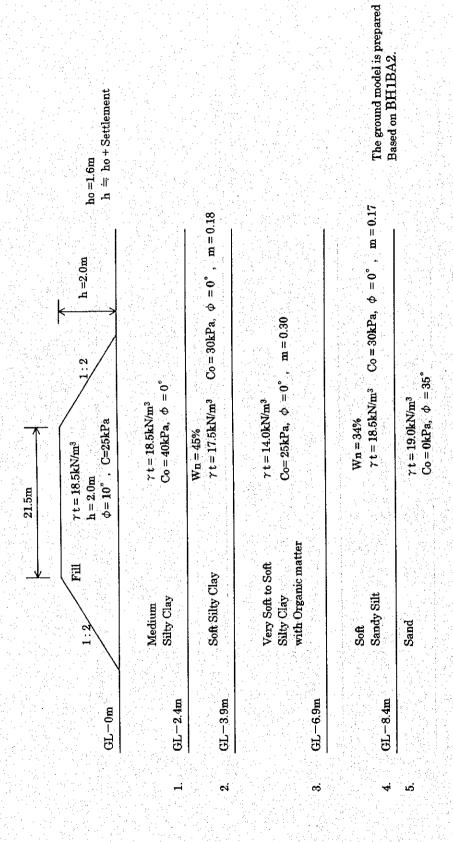
Ground Model of Stability Analysis for STA 6+500 to STA 6+900 Figure-24

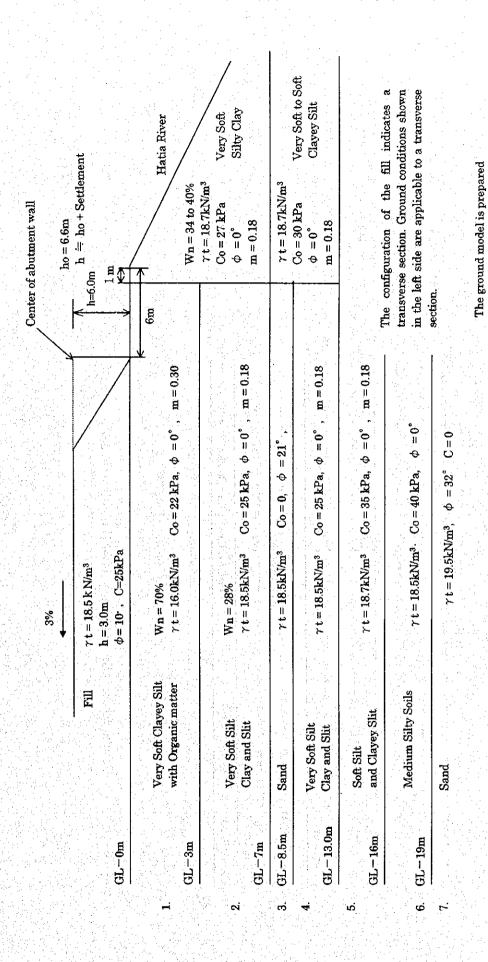
Ground Model of Stability Analysis for Rupsa East Viaduct to STA 8+900

Ground Model of Stability Analysis for STA 8+900 to STA 9+900 Figure-26

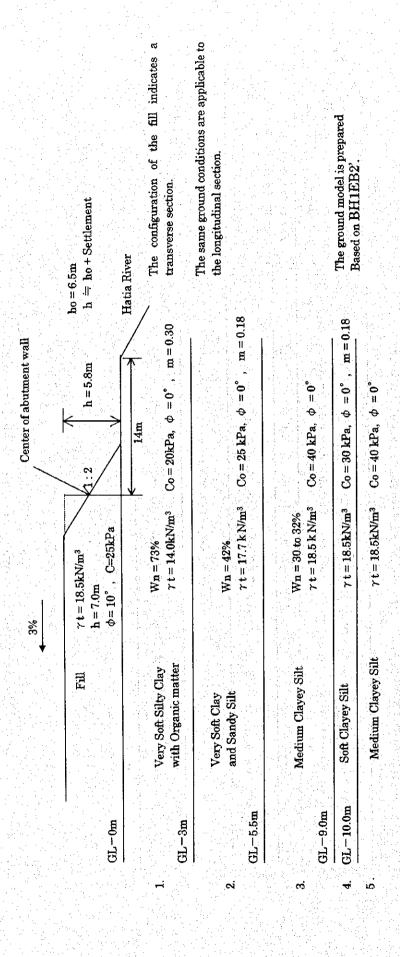





Figure-27 Ground Model of Stability Analysis for STA 9+900 to Molonghata Bridge


Ground Model of Stability Analysis for Molonghata Bridge to End of Route 1


Ground Model of Stability Analysis for Rupsa River West Access Road (Viaduct Side) Figure-29

Ground Model of Stability Analysis for Rupsa River West Access Road (River Bank Side) Figure-30



Ground Model of Stability Analysis for Rupsa River East Access Road

Ground Model of Stability Analysis for Hatia Bridge West Approach

Based on BH1EB2" and BH1EB2.

Ground Model of Stability Analysis for Hatia River East Approach

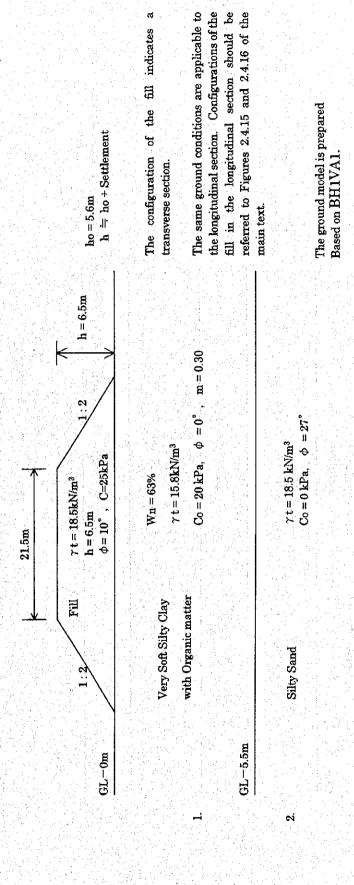
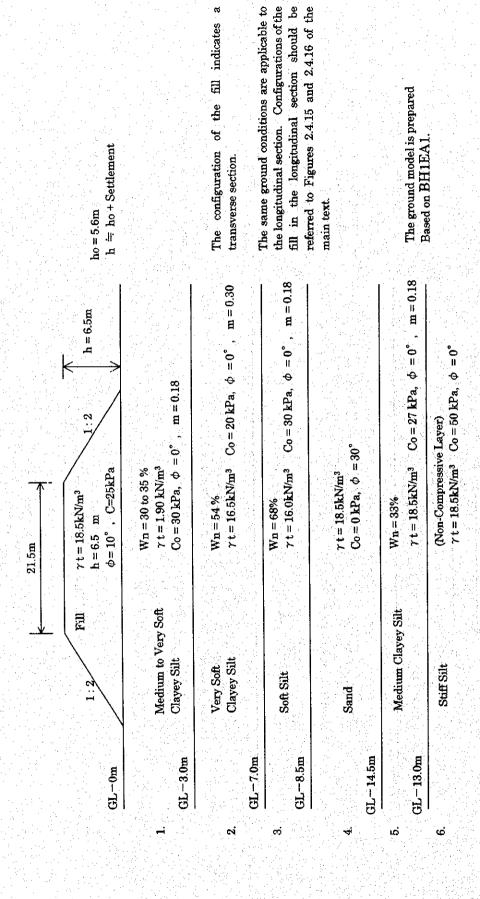
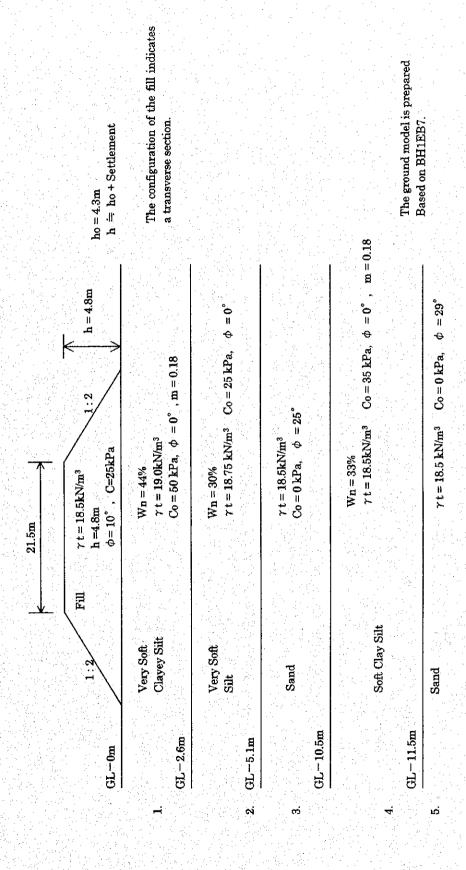




Figure-34 Ground Model of Stability Analysis for West Approach to Viaduct

Ground Model of Stability Analysis for East Approach Viaduct

Ground Model of Stability Analysis for Molonghata Bridge Approaches