

Rupsa Bridge and Approach Road

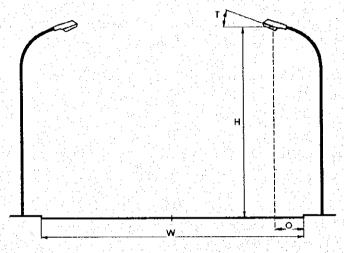
Recommended Design Criteria as per CIE publication no.12 (second Edition 1977) for lighting of roads for motorized traffic is as follows:

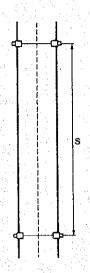
- L_{av} (Cd/m²) Average Luminance = 2
- U_0 Overall Uniformity ≥ 0.4 U_1 Lengthwise Uniformity $\geq 0.5 \& 0.6$
- G Glare mark ≥ 4 & 6
- T_1 (%) Threshold Increment ≥ 10

Date: 06-02-2000

3. Summary

3.1 Main Road


 Luminaire Type
 : SGS 102/250T


 Lamp Type
 : 1 * SON-T+ 250W

 Lamp Flux
 : 32000 lumen

 Tilt90
 (T) : 5.0 deg

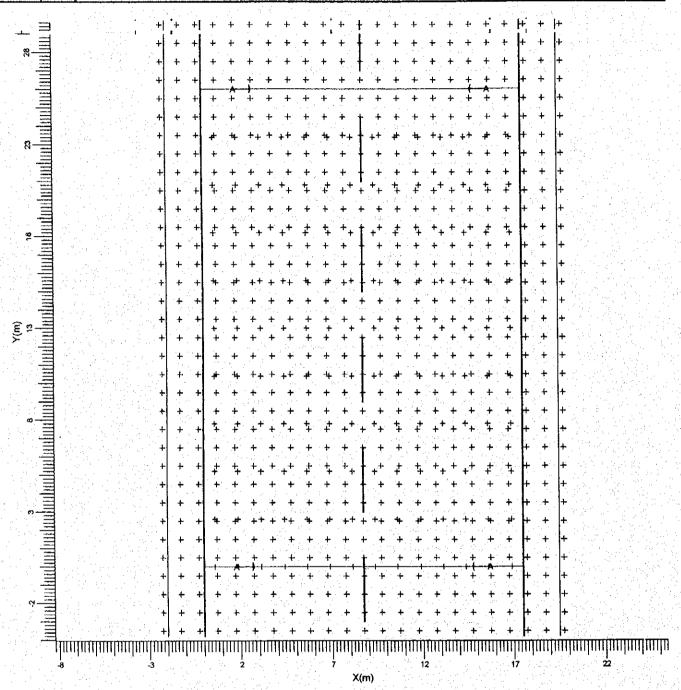
 Project Maintenance Factor
 0.90

Single Carriageway 17.50 m Carriageway Road Width (W) Number of Lanes Asphalt CIE C2 Reflection Table Q0 of Table 0.07 Opposite 10.75 m 26.00 m Installation Height (H)(s) (o) Spacing 1.80 m Overhang

Luminance	
Average =	3.33 cd/m2
Minimum =	2.46 cd/m2
Maximum =	4.24 cd/m2
Minimum/Maximum =	0.58
Minimum/Average =	0.74
UI-1 (4.38,-60.00, 1.50) =	0.88
UI-2 (13.13,-60.00, 1.50) =	0.88

Glare This first the second se	<u> </u>
TI. (4.38,-51.42, 1.50) = 8.6	%
(G 보기 : 19일 한 기 : 19일 : 15일 41)	
Surround Ratios	
SR-Left = 0.63	
SR-Right = 0.63	

Horizontal	Illumina	nce	4		100		<u> 1</u>
Average		100	jaka in an	=	54.7	lux	
Minimum				=	40.6	lux	j.
Maximum			jan ar i a	=	.71.8	lux	11.
Minimum/N	laximum			=	0.57	a gar	


ROAD DECK LIGHTING

Date: 06-02-2000

3.2 Additional Calculations

(II)luminance Calculations: Calculation Туре Unit Ave Min Max Min/Ave Min/Max General Surface Illuminance lux 54.0 30.2 71.9 0.56 0,42

A ----> SGS 102/250T

Scale 1:200

F

Flux (lm)

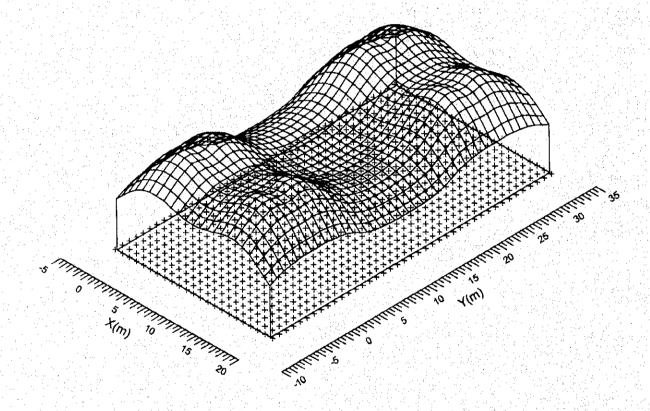
1 * 32000

Power (W)

274.0

2. Overview of Schemes

The overall maintenance factor used for this project is 0.90.


Code	Luminaire Type	Lamp Type
Α	SGS 102/250T	1 * SON-T+ 250W
	Unit	Scheme 1
Carriageway		Single Carriageway
Road Width	m	17.50
Number of La	anes	2
Reflection Ta	ible	Asphalt CIE C2
Q0 of Table		0.07
Luminaire Co	ode	
Installation		Opposite
Height	m i	10.75
Spacing	m	26.00
Overhang	m e	1.80
Tilt90	deg	5.0
L ave	cd/m2	11 3.33
L min	cd/m2	2.46
L max	cd/m2	4.24
L min/max		0.58
L min/ave		0.74
UI-1		0.88
Ul-2		0.88
TI	%	8.6
G		- 1.2 41 0 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Eh ave	lux	
Eh min	lux	40.6
Eh max	lux	71.8
Eh min/max	对外的 电运行数据数	5 % 0.57
SR-left		0.63
SR-right		4. 0.63 (1.1)

4.4 General: Mountain Plot

Grid

Calculation

General at Z = 0.00 m Surface Illuminance (lux)

Average 54.0

Minimum 30.2

Maximum 71.9

Min/Ave 0.56

Min/Max 0.42

4.7 Main Eh: Textual Table	4./	. / Main	En:	l extual	Table
----------------------------	-----	----------	-----	----------	-------

Grid Calculatio	on		at Z ≃ 0 zontai Illur	.00 m ninance (l	ux)							
X (m) Y (m)	0.63	1.88	3.13	4.38	5.63	6.88	8.13	9.38	10.63	11.88	13.13	14.38
23.40	64	70	72	71	68	64	62	62	65	68	71	72>
20.80	57	61	63	62	60	57	55	55	57	60	62	63
18.20	47	50	51	51	49	47	46	46	47	49	51	51
15.60	42	45	45	45	44	43	42	42	43	44	45	45
13.00	41	43	44	44	43	42	42	42	42	43	44	44
10.40	42	45	45	45	44	43	42	42	43	44	45	45
7.80	47	50	51	51	49	47	46	46	47	49	51	51
5.20	57	61	63	62	60	57	55	55	57	60	62	63
2.60	64	70	72	71	68	64	62	62	65	68	71	72
0.00	64	69	68	67	65	64	63	63	64	65	67	68

Average 54.7

Min/Ave 0.74

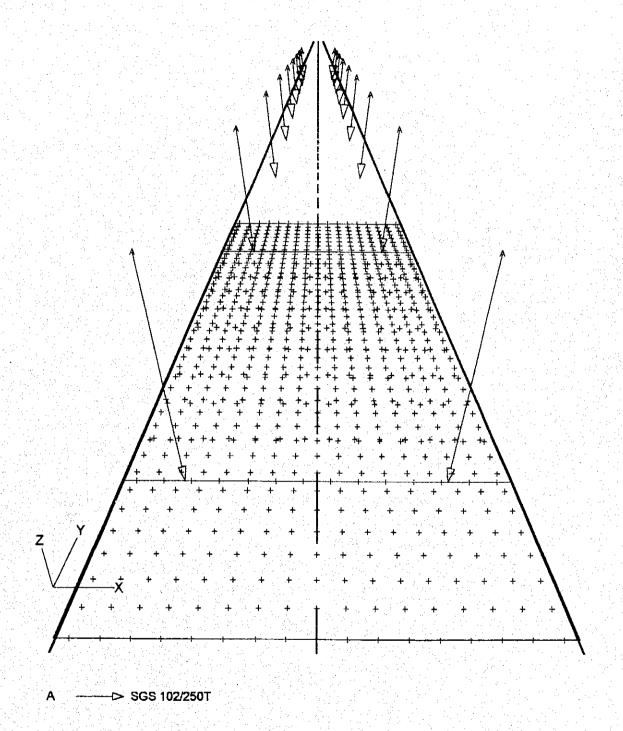
Min/Max 0.57

< Continue

Grid

: Main at Z = 0.00 m : Horizontal Illuminance (lux) Calculation

4 4		
X (m) Y (m)	15.63	16.88
23.40	70	64
20.80	61	57
18.20	50	46
15.60	45	42
13.00	43	41<
10.40	45	42
7.80	50	46
5.20	61	57
2.60	70	64
0.00	69	64


Average 54.7

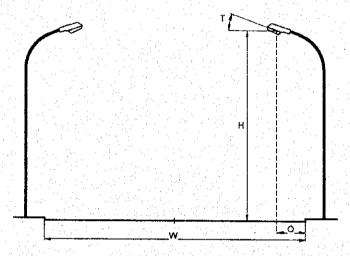
Min/Ave 0.74

Min/Max 0.57

1. Project Description

1.1 3-D Project Overview

2. Overview of Schemes


The overall maintenance factor used for this project is 0.90.


Code	Luminaire Type	Lamp Type	Power (W) Flux (Im)
Α	SGS 102/250T	1 * SON-T+ 250W	274.0 1 * 32000
	Unit	Scheme 1	
Carriageway	,	Single Carriageway	
Road Width		16.88	
Number of L	anes	2 · · · · · · · · · · · · · · · · · · ·	그런 항상 그렇게 되어 되어 있다.
Reflection T		Asphalt CIE C2	
Q0 of Table		0.07	
Luminaire C	ode	선▲ 아이들이 얼마 나를 보면 걸다는	
Installation		Opposite	
Height	m .	10.75	[H.E. High : 방향병 면 다시
Spacing	m i	26.00	
Overhang	m	1.80 (1.80 (1.86))	등하는 어린을 전혀 함께 했다.
Tilt90	deg	5.0 (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Lave	cd/m2	중요 3.43 학교실수출 등 기술 관련 시간	사람들은 하는 사람이 있습니다. 그 전 스케
L min	cd/m2		
L max	cd/m2		얼마 뭐 네팅 맛요 모든 ^^.
L min/max		4 0.58 3	
L min/ave		0.73	
Ul-1		0.88 0.88	
UI-2	%		
Ţ	70	유원 8.9 중 영화교육 시설을 관련하다	
G	la ma	4.1 56.2	
Eh ave	lux	41.2	
Eh min	lux lux	73.2	
Eh max Eh min/max		0.56	
SR-left		5 0.62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		0.62	경우하면 되면 보다 아니라다니
SR-right		그는 1996년 내 시간 사람들은 바람들이 없었다.	

3. Summary

3.1 Main Road

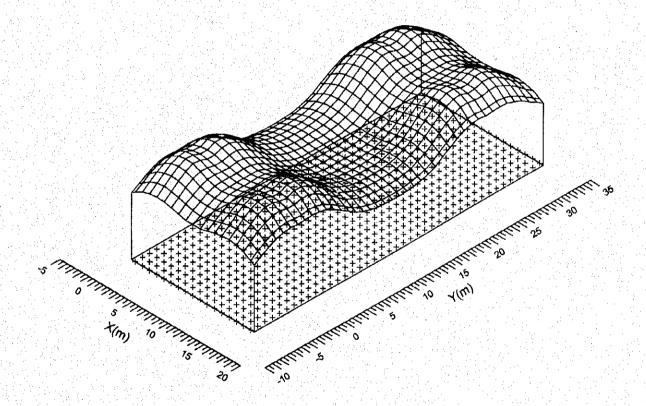
Luminaire Type SGS 102/250T Lamp Type Lamp Flux 1 * SON-T+ 250W 32000 lumen Tit90 5.0 deg (T)Project Maintenance Factor 0.90

Carriageway Single Carriageway Road Width (W) 16.88 m **Number of Lanes** 2 Reflection Table Asphalt CIE C2 Q0 of Table 0.07 Installation Opposite Height (H) 10.75 m (S) (O) Spacing 26.00 m Overhang

1.80 m

Luminance Average 3.43 cd/m2 Minimum 2.50 cd/m2 Maximum 4.31 cd/m2 Minimum/Maximum 0.58 Minimum/Average 0.73 UI-1 (4.22,-60.00, 1.50) UI-2 (12.66,-60.00, 1.50) 0.88 0.88

Horizontal Illuminance			100
Average	=	56.2	lux
Minimum	=	41.2	lux
Maximum	=	73.2	lux
Minimum/Maximum	=,	0.56	


Glare -	of the Authorities	A 医乳腺管 65			
TI (4.22,-51.42,	1.50)	=	8.9	%
G Ì			=	4.1	
Surrour	nd Ratios				
SR-Left SR-Righ			=	0.62 0.62	
100		1 X 4 L	- a - i		

3.2 Additional Calculations

(II)luminance Calculations;
Calculation Type Unit Ave Min Max Min/Ave Min/Max
General Surface Illuminance lux 58.9 40.8 73.5 0.69 0.56

4.4 General: Mountain Plot

Grid Calculation : General at Z = 0.00 m : Surface illuminance (lux)

Average	Minimum Maxin	num Min/Ave	Min/Max Pr	oject maintenance	factor
58.9	40.8 73	.5 0.69	0.56	0.90	
	化二醇化物 医多克氏腺 医皮肤 电静脉管管 化氯	· 在一个一个一个一个一个大块,不是一个	经工作证据 医皮肤 医二氏性小皮炎	and the state of the state of the state of	

4	7	Main	Fh	Textual	Table
T .		1 7 3 5 4 1 1 1	L .!1.	IONIGG	IUUIU

Grid Calculation			n at Z = 0 zontal Illur		lux)									
X (m)	0.60	1.81	3.01	4.22	5.42	6.63	7.84	9.04	10.25	11.46	12.66	13.87		
Y (m) 23.40	65	71	73	73	71	67	65	65	67	71	73	73>		
20.80	58	62	64	64	62	60	58	58	60	62	64	64		
18.20	47	51	52	52	51	49	48	48	49	51	52	52		
15.60	42	45	46	46	46	44	44	44	44	46	46	46		
13.00	41<	44	45	45	45	44	44	44	44	45	45	45		
10.40	42	45	46	46	46	44	44	44	44	46	46	46		
7.80	47	51	52	52	51	49	48	48	49	51	52	52		
5.20	58	62	64	64	62	60	58	58	60	62	64	64		
2.60	65	71	73	73	71	67	65	65	67	71	73	73		
0.00	65	70	69	69	67	67	66	66	67	67	69	69		
			and the second second second	and the second second		1.1	A CONTRACT OF A SECOND	1.4		er en in transport en		and the second of the second		

Continue >

Project maintenance factor 0.90 Average 56.2 Min/Ave 0.73 Min/Max 0.56

BRIDGE DECK LIGHTING

Date: 00-02-2000

< Continue

Grid Calculation

Main at Z = 0.00 m Horizontal Illuminance (lux)

X (m) Y (m)	15.07	16.28
23.40	71	65
20.80	62	58
18.20	51	47
15.60	45	42
13.00	44	41
10.40	45	42
7.80	51	47
5.20	62	58
2.60	71	65
0.00	70	65

Average 56.2

Min/Ave 0.73

Min/Max 0.56

1. Project Description

1.1 3-D Project Overview

Date: 08-02-200'J

2. Overview of Schemes

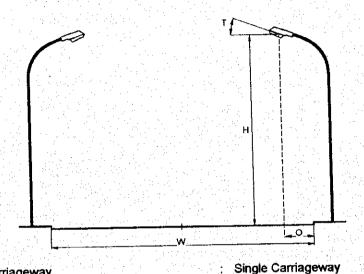
The overall maintenance factor used for this project is 0.90.

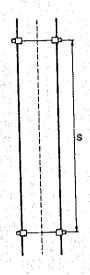
Code	Luminaire Type	 Lamp Type	Power (W)	Flux (lm)
Α	SGS 102/250T	1 * SON-T+ 250W	274.0	1 * 32000

	Unit	Scheme 1
Carriageway		Single Carriageway
Road Width	m	29.00
Number of Lanes		2
Reflection Table		Asphalt CIE C2
Q0 of Table		0.07
Luminaire Code		A
Installation		Opposite
Height	m	10.75
Spacing	m	26.00
Overhang	m	1.80
Tilt90	deg	5.0
L ave	cd/m2	2.17
L min	cd/m2	0.98
L max	cd/m2	3.83
L min/max		0.25
L min/ave		0.45
UI-1		0.90
UI-2		0.90
TI	%	8.0
G		3.9
Eh ave	lux	35.5
Eh min	lux	18.6
Eh max	lux	62.1
Eh min/max		0.30
SR-left		0.66
SR-right	1.3	0.66

3. Summary

3.1 Main Road


 Luminaire Type
 : SGS 102/250T


 Lamp Type
 : 1 * SON-T+ 250W

 Lamp Flux
 : 32000 lumen

 Tilt90
 (T) : 5.0 deg

 Project Maintenance Factor
 : 0.90

Carriageway Road Width Number of Lanes

(W) : 29.00 m : 2 : Asphalt CIE C2

Reflection Table
Q0 of Table
Installation

: 0.07 : Opposite (H) : 10.75 m

Height Spacing Overhang (H) : 10.75 m (S) : 26.00 m (O) : 1.80 m

Luminance		<u> </u>	
Average	=	2.17	cd/m2
Minimum	= '	0.98	cd/m2
Maximum	#	3.83	cd/m2
Minimum/Maximum	=	0.25	
Minimum/Average	=	0.45	
UI-1 (7.25,-60.00, 1.50)	= -	0.90	
UI-2 (21.75,-60.00, 1.50)	=	0.90	

	Glare		1.00	38 B.	10 10 W	1. 1	<u>17 1 }-</u>		
١.	TI (7.25.	-51.42,	1.50)	11. 1	= .	8.0	%	,
٠.	G `	- 75.			48.28	=	3.9		
á									

 Horizontal Illuminance
 = 35.5 lux

 Average
 = 18.6 lux

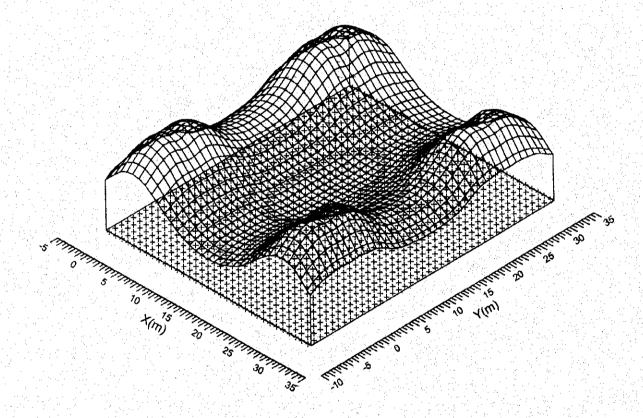
 Minimum
 = 62.1 lux

 Minimum/Maximum
 = 0.30

 Surround Ratios
 =
 0.66

 SR-Left
 =
 0.66

 SR-Right
 =
 0.66


3.2 Additional Calculations

(II)luminance Calculations:

Calculation Type Unit Ave Min Max Min/Ave Min/Max General Surface Illuminance lux 37.7 18.5 62.5 0.49 0.30

4.4 General: Mountain Plot

Grid Calculation : General at Z = 0.00 m : Surface Illuminance (lux)

Average 37.7 Minimum 18.5 Maximum 62.5 Min/Ave 0.49 Min/Max 0.30

47	Main	Fh.	Textual	Table
	17104111		IVANGU	1 4010

Grid Calculati	on		at Z = 0. contal Illur	.00 m ninance (l	ux)							
X (m) Y (m)	0.66	1.98	3.30	4.61	5.93	7.25	8.57	9.89	11.20	12.52	13.84	15.16
23.40	58	62>	61	57	50	43	36	31	27	25	23	23
20.80	51	54	54	51	45	38	32	28	24	22	21	21
18.20	42	44	44	41	37	32	28	24	21	20	19	19
15.60	37	38	38	36	33	29	26	23	21	20	19	19
13.00	36	37	37	35	32	29	26	23	21	20	19	19
10.40	37	38	38	36	33	29	26	23	21	20	19<	19<
7.80	42	44	44	41	37	32	28	24	21	20	19	19
5.20	51	54	54	51	45	38	32	28	24	22	21	21
2.60	58	62	61	57	50	43	36	31	27	25	23	23
0.00	58	61	57	53	48	42	36	31	27	25	23	23
Continue	e >											

Average 35.5 Min/Ave 0.52 Min/Max 0.30

TOLL PLAZA LIGHTING

Date: 08-02-2000

< Continue

Grid Calculation

: Main at Z = 0.00 m : Horizontal Illuminance (lux)

X (m)	16.48	17.80	19.11	20,43	21.75	23.07	24.39	25.70	27.02	28.34
Y (m) 23.40	25	27	31	36	43	50	57	61	62	58
20.80	22	24	28	32	38	45	51	54	54	51
18.20	20	21	24	28	32	37	41	44	44	42
15.60	20	21	23	26	29	33	36	38	38	37
13.00	20	21	23	26	29	32	35	37	37	36
10.40	20	21	23	26	29	33	36	38	38	37
7.80	20	21	24	28	32	37	41	44	44	42
5.20	22	24	28	32	38	45	51	54	54	51
2.60	25	27	31	36	43	50	57	61	62	58
0.00	25	27	31	36	42	48	53	57	61	58

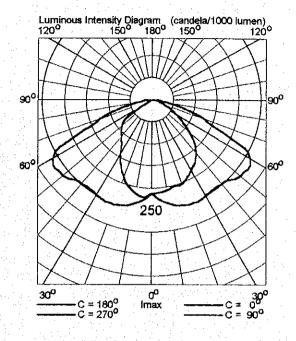
Average 35.5

Min/Ave 0.52

Min/Max 0.30

5. Luminaire Details

5.1 Project Luminaires


Luminaire Name SGS 102/250T Lamp name SON-T+ 250W

Number of lamps/luminaire

1. Lamp flux 32000 lm Ballast Standard

Light output ratios

DLOR 0.71 ULOR 0.00 TLOR 0.71 Luminaire wattage 274.0 W Measurement code : MIR6050000

Rural Area Road and Intersection Lighting

Recommended Design Criteria are as follows:

- Lav (Cd/m²) Average Luminance = 1
- U_o Overall Uniformity ≥ 0.4
- U_1 Lengthwise Uniformity $\ge 0.5 \& 0.6$
- $G Glare mark \ge 4 \& 6$
- T_1 (%) Threshold Increment ≥ 10

DDC

Date: 06-02-2000

Flux (lm)

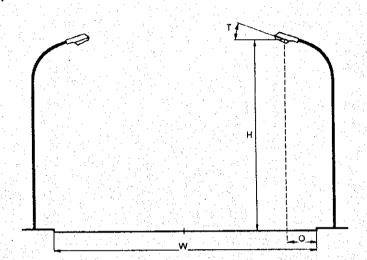
1 * 16500

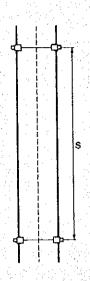
Power (W)

168.0

2. Overview of Schemes

The overall maintenance factor used for this project is 0.90.


Code	Luminaire Type	Lamp Type
В	SGS 102/150T	1 * SON-T+ 150W
	Unit	Scheme 1
Carriageway		Single Carriageway
Road Width	m	17.50
Number of La	anes	
Reflection Ta	ble	Asphalt CIE C2
Q0 of Table		0.07
Luminaire Co	de	"В 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Installation		Opposite
Height	m	10.75
Spacing	m	26.00
Overhang	m	1.80
Titt90	deg	5.0
L ave	cd/m2	5 (a.1.79)
L min	cd/m2	1.18 · 1.18 · 1.15 · 1.16 · 1.17 · 1.
L max	cd/m2	2.13 (a) (b) (c) (c)
L min/max		0.55
L min/ave		0.66
	%	6.8
<u>G</u>		5.2
Eh ave	lux	30.5
Eh min	lux	19. 2
Eh max	lux	38.2
Eh min/ave		0.63
SR-left		0.53
SR-right		0.53


Date: 06-02-2000

3. Summary

3.1 Main Road

Luminaire Type Lamp Type Lamp Flux SGS 102/150T 1 * SON-T+ 150W 16500 lumen (T) 5.0 deg Titt90 0.90 **Project Maintenance Factor**

Carriageway Road Width Single Carriageway 17.50 m (W) 2 **Number of Lanes** Asphalt CIE C2 Reflection Table 0.07 Q0 of Table Installation Opposite 10.75 m 26.00 m (H) (S) (O) Height Spacing 1.80 m

Luminance						
Average	1.5				1.79	cd/m2
Minimum			=		1.18	cd/m2
Maximum		VER 15	=		2.13	cd/m2
Minimum/Max	ximum			(0.55	
Minimum/Ave			=		0.66	

MillitrativAetage	0.00
Horizontal Illuminance	
Average =	30.5 lux
Minimum =	19.2 lux
Maximum =	38.2 lux
Minimum/Average =	0.63

:	Glare	이 회사 전체 등				
	ŤI (4.38,-51.42	, 1.50)	- Jul = 1 Jul	6.8 %	
	G _				5.2	
	Surround	Ratios			A 53	378 1 171
	SR-Left SR-Right				0.53 0.53	

Overhang

ROAD DECK LIGHTING

DDC

Date: 06-02-2000

3.2 Additional Calculations

(II)luminance Calculations:

Calculation Type Unit Ave Min Max Min/Ave Min/Max General Surface Illuminance lux 28.8 13,1 38.4 0.45 0,34

CalcuLuX Road 2.0

Date: 06-02-2000

5. Luminaire Details

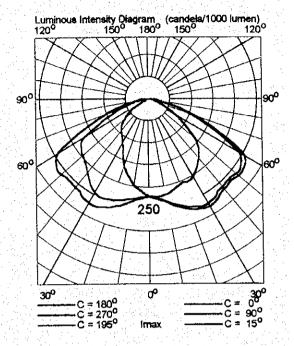
5.1 Project Luminaires

Luminaire Name : SGS 102/150T Lamp name : SON-T+ 150W

Number of lamps/luminaire :

Lamp flux : 16500 lm Ballast : Standard

Light output ratios


 DLOR
 0.70

 ULOR
 0.00

 TLOR
 0.70

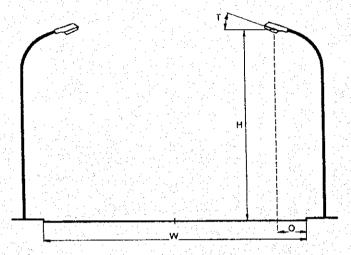
 Luminaire wattage
 168.0 W

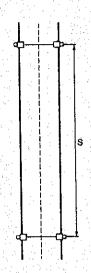
 Measurement code
 MIR5969000

2. Overview of Schemes

The overall maintenance factor used for this project is 0.90.

Code	Luminaire Type		Lamp Type		Power (W)	Flux (im)
В	SGS 102/150T		1 * SON-T+	150W		1 * 16500


	Unit	Scheme 1
Carriageway		Single Carriageway
Road Width	m	16.88
Number of Lanes		2
Reflection Table		Asphalt CIE C2
Q0 of Table		0.07
Luminaire Code		В
Installation		Opposite
Height	m	10.75
Spacing	m	26.00
Overhang	m	1.80
Titt90	deg	5.0
L ave	cd/m2	1.83
L min	cd/m2	1.20
L max	cd/m2	2.17
L min/max	1,75	0.55
L min/ave		0.66
U⊢1		0.88
UI-2		0.88
TI the second of the second	%	7.0
G		5.2
Eh ave	lux	31.3
Eh min	lux	19.5
Eh max	lux	39.1
Eh min/max		0.50
SR-left		0.53
SR-right		0.53
	The state of the s	


Date: 08-02-2000

3. Summary

3.1 Main Road

Luminaire Type Lamp Type Lamp Flux SGS 102/150T 1 * SON-T+ 150W 16500 lumen 5.0 Titt90 (T)deg 0.90 **Project Maintenance Factor**

Сапіageway Road Width Single Carriageway 16.88 m (W) Number of Lanes 2 Asphalt CIE C2 Reflection Table 0.07 Q0 of Table Opposite 10.75 m Installation (H) (S) (O) Height 26.00 m Spacing 1.80 m

Luminance	
Average =	1.83 cd/m2
Minimum =	. 1.20 cd/m2
Maximum =	2.17 cd/m2
Minimum/Maximum =	0.55
Minimum/Average =	0.66
UI-1 (4.22,-60.00, 1.50) =	0.88
UI-2 (12,66,-60.00, 1.50) =	0.88
Ul-2 (12,66,-60.00, 1.50) =	0,88

Horizontal	Illuminance	
Average	= 31.3 lux	
Minimum	= 19.5 lux	
Maximum	= 39.1 lux	
Minimum/N	faximum = 0.50	• :

Glare	4.22,-51	.42,	1.50)	=		0 %	1,11
G Surround	l Ratios				· 5.	2	
SR-Left SR-Right						.53 .53	

Overhang

Date: 08-02-2000

3.2 Additional Calculations

(II)luminance Calculations:

Calculation Type Unit Ave Min Max Min/Ave Min/Max General Surface Illuminance lux 32.4 19.2 39.1 0.59 0.49

CalcuLuX Road 2.0

RUPSA BRIDGE PROJECT

DESIGN CALCULATION (ELECTRICAL)

DESIGN CALCULATION

(STA 6 + 560 TO STA 8 + 890)

[Approach Road, Rupsa Bridge and Toll Plaza]

CCT-1 Load (L1-L26) = 26 Nos. x (250 x 1.25) Watt/No. = 8,125 W

Load of R-Phase = $9 \text{ Nos. } x (250 \times 1.25) \text{ Watt/No.}$

= 2812.5 Watt.

Current I = 2812.5

230 x 0.8

Breaker = 15.285 Amps.

= 15.285 x 1.3

= 19.87 Amps.

= 20 A TP MCCB

Cable size = $4 \times 25.0 \text{ mm}^2 \text{NYY}$.

(Selcted from Voltage drop Calculation)

CCT-2 Same as CCT-1

CCT-3 Load (L105-L130) = $26 \text{ Nos. } x (250 \times 1.25) \text{ Watt/No.}$

= 8125 Watt.

Load of R Phase = 315 Watt

Current I = 315

230 x 0.8 Amps.

= 16.98 Amps.

Breaker = 20A TP MCCB

Cable size = 4C-16.00 mm²NYY (Selected from

Voltage drop calculation)

DESIGN CALCULATION

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

CCT-4 and CCT-5 are similar to CCT-1

CCT-6 Load (L131-L155) = $25 \text{ Nos. } x (250 \times 1.25) \text{ Watt./No.}$

= 7812.5 Watt.

Load of R Phase = 2812.5 Watt.

Current, I = $\frac{2812.5}{230 \times 0.8}$

: 15.28 Amps.

Breaker = 20 A TP MCCB

Cable size = $4 \times 25.0 \text{ mm}^2 \text{ NYY Cable}$

(Selected from V.D. Calculation)

CCT-7 Same as CCT-6

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

CCT-8

PIER LIGHTING

Load (FL1 to FL8) = 8 Nos. x (400 x 1.25) Watt/No.

= 4000 Watt.

Load of R/Y Phase = 2000 Watt.

Current, I = 2000

230 x 0.8

= 10.86 Amp

Breaker = 30A DP MCB

Cable size = $3 \times 50.0 \text{ mm}^2 \text{ NYY}$

(Selected from V.D. Calculation)

(STA 6 + 560 TO STA 8 + 890)

[Approach Road, Rupsa Bridge and Toll Plaza]

V.D. Calculation (According to IEE Wiring Regulation) PIER LIGHTING (3 - 50 mm² NYY)

CCT-9 Load of each Phase (FL1, FL2, F5, FL6) = 4 Nos. x (400 x 1.25) Watt/No.

= 2000 Watt.

= 10.86 Amps

R-Phase

V.D. from S/S to FL1 = $0.00093 \text{ V/m/A} \times 640 \text{m} \times 10.86 \text{ A} = 6.4638 \text{ Volt.}$

V.D. from FL1 to F5 = $0.00093 \text{ V/m/A} \times 232 \text{m} \times 5.43 \text{A} = 1.1715768 \text{ Volt.}$

Total Voltage drop of R Phase = 7.6353768 Volt

= 3.31%

Y-Phase

V.D. from S/S to FL3 = $0.00093 \text{ V/m/A} \times 756 \text{m} \times 10.86 \text{A} = 7.6354488$

Volt.

V.D. from FL3 to F7 = $0.00093 \text{ V/m/A} \times 232 \text{m} \times 5.43 \text{A} = 1.1715768 \text{ Volt.}$

Total Voltage drop of Y Phase = 8.8070256 Volt

= 3.82%

(STA 6 + 560 TO STA 8 + 890) [Approach Road, Rupsa Bridge and Toll Plaza]

V.D. Calculation (According to IEE WIRING REGULATION 16th Edition)

CCT-1 (Y - Phase - 25.0 mm2 NYY Cable)

V.D. from T X R1 to L2		0.00175 V/m/A x (76+26)m x 15.285A 2.7283725 Volt.
V.D. from L2 to L5		0.00175 V/m/A x 78m x 13.587A 1.8546255 Volt.
V.D. from L5 to L8		0.00175 V/m/A x 78m x 11.889A 1.6228485 Volt.
V.D. from L8 to L11		0.00175 V/m/A x 78m x 10.191A 1.3910715 Volt.
V.D. from L11 to L14		0.00175 V/m/A x 78m x 8.493A 1.1592945 Volt.
V.D. from L14 to L17		0.00175 V/m/A x 78m x 6.795A 0.9275175 Volt.
V.D. from L17 to L20	=	0.00175 V/m/A x 78m x 5.097A 0.6957405 Volt.
V.D. from L20 to L23		0.00175 V/m/A x 78m x 3.399A 0.4639635 Volt.
V.D. from L23 to L26		0.00175 V/m/A x 78m x 1.698A 0.231777 Volt.
Total voltage drop	=	11.0752 Volt. 4.815% 4.81%

Note: V.D. Calculation for CCT-2, CCT4, CCT5, CCT-6 and CCT-7 will be similar to CCT-1.

DESIGN CALCULATION
(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

V.D. Calculation (According to IEE WIRING REGULATION 16th Edition)

CCT-1 (R - Phase - 25.0 mm² NYY Cable)

V.D. from T X R1 to L1	0.00175 V/m/A x 76m x 15.285A 2.032905 Volt.
V.D. from L1 to L4	0.00175 V/m/A x 78m x 13.587A 1.8546255 Volt.
V.D. from L4 to L7	0.00175 V/m/A x 78m x 11.889A 1.6228485 Volt.
V.D. from L7 to L10	0.00175 V/m/A x 78m x 10.191A 1.3910715 Volt.
V.D. from L10 to L13	 0.00175 V/m/A x 78m x 8.493A 1.1592945 Volt.
V.D. from L13 to L16	0.00175 V/m/A x 78m x 6.795A 0.9275175 Volt.
V.D. from L16 to L19	0.00175 V/m/A x 78m x 5.097A 0.6957405 Volt.
V.D. from L19 to L22	0.00175 V/m/A x 78m x 3.399A 0.4639635 Volt.
V.D. from L22 to L25	0.00175 V/m/A x 78m x 1.698A 0.231777 Volt.
Total voltage drop	10.3797435 Volt. 4.51%

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

V.D. Calculation (According to IEE WIRING REGULATION 16th Edition)

CCT-3 (R - Phase - 16 mm² NYY Cable)

V.D. from T X R1 to L105	=	0.0028 V/m/A x 50m x 16.98A 2.3772 Volt.				
V.D. from L105 to L106	=	0.0028 V/m/A x 26m x 15.282A 1.1125296 Volt.				
V.D. from L106 to L108	=	0.0028 V/m/A x 6.792m x 6.792A 0.9889152 Volt.				
V.D. from L108 to L111		0.0028 V/m/A x 78m x 5.094A 0.7416864 Volt.				
V.D. from L111 to L114		0.0028 V/m/A x 78m x 3.396A 1.1592945 Volt.				
V.D. from L114 to L117	=	0.0028 V/m/A x 78m x 1.698A 0.3708432 Volt.				
열기는 하는 사람이 살아가는 전 부분들이 있었다.	Salar Salar					

6.703704 Volt.

2.91%

A:\DESIGN CALCULATION-Elect.(B).doc

Total voltage drop

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

Load of DB (W)

(i)

No. of Light Fitting from centre of the bridge to west approach Road 78 Nos. 250 Watt. HPS 78 Nos. x (250x1.25) Watt/No. .. Road and Bridge Lighting Load 24375 Watt. Stair and Plaza Load 3675 Watt. (ii) 2,000 Watt. Spare Load (iii) Total Load of DB (W) 30,050 Watt. 30,050 Current, I 415 x 1.732 x 0.8 52.25 amps Breaker **80A TP MCCB** $4 \times 35.0 \text{ mm}^2 \text{ NYY (DB(W) is}$ Cable size Nearer to transformer so V.D. Calculation for selecting the Cable size does not arise]

DESIGN CALCULATION
(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

Load of DB (E)

(i)

No. of Light Fitting from centre of the bridge to east approach Road =			102 Nos. 250 Watt. HPS		
Road and Bridge Lighting Load			102 Nos. x (250x1.25) Watt/No		
			31875 Watt.		
(ii)	Pier Lighting Load		8 Nos. x (400 x 1.25) Watt./No.		
			4000 Watt.		
(iii)	Stair and Plaza Load		3675 Watt.		
(iv)	Spare Load		2,000 Watt.		
	Total Load of DB (E)		(i) + (ii) + (iii) + (iv)		
	Watt.		(31875 + 4000 + 3675 + 2000)		
			41550 Watt.		
	Current, I		41,550 415 x 1.732 x 0.8		
	7 1		72.25 Amps		
	Breaker		100A TP MCCB		
	Cable size		4 x 50.0 mm ² NYY [(DB (E) is Nearer to sub-station so V.D. Calculation for selecting the Cable size does not arise.]		

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

Load for Engineer's Office and Other Building for Bridge Authority:

(i) Area of Engineer's Office Building of = 882.73

(ii) Area of Engineer's Laboratory Building = 425.56 sq.m.

Total area of Engineer's Office and Laboratory Building

= (882.73 + 425.56) sq.m.

= 1308.29 sq.m.

Minimum Load of Engineer's Office and Laboratory Building as per BNBC

= 1308.29 sq.m. x 35 Watt/sq.m.

= 45790.15 W = 45790 Watt.

(iii) Area of Staff Quarter (Building) = 207.06 sq.m./No. x 18 Nos.

= 3727.08 sq.m.

(iv) Area of Engineers Mess and Dormitory Building = (1002.38 + 953.73)

= 1956.11 sq.m.

Total Area of Staff Quarters,

Mess and Dormitory Building = (3727.08 + 1956.11) sq.m.

= 5683.19 sq.m.

Minimum load of staff quarter, Mess and Dormitory Building as per Bangladesh National Building Code (BNBC)

= 5683.19 sq.m. x 25 Watt/sq.m.

= 142080 Watt.

Total Load of Engineers Office, laboratory, Staff Quarter, Mess and Dormitory Building

= (45790 + 142080) Watt

= 187870 Watt.

(STA 6 + 560 TO STA 8 + 890)
[Approach Road, Rupsa Bridge and Toll Plaza]

Load of sub-station

(i) Load of DB (E) = 41550 Watt.

(ii) Load of Toll Plaza = 10,000 Watt.

(iii) Load of Engineer's Office
 Laboratory, Staff Quarter,
 Mess and Dormitory Building
 for Bridge Authority = 187870 Watt.

Total Load of Sub-station

= (i) + (ii) + (iii)

= (41550 + 10,000 + 187870) Watt.

= 239420Watt.

= 239 kw

KVA rating of Transformer = 239

0.9

= 265.55 KVA

∴ Transformer Rating = 315 kVA.

BATIA GHATA INTERSECTION AND HATIA BRIDGE

STA 2 + 517 TO STA 3 + 100

CCT-1 Load (L181-L198) = 18 Nos. x 188 W / No. = 3384 Watt.

Load of R-Phase = 6 Nos. x 188 Watt. / No.

= 1128 Watt.

Current I = $\frac{1128}{220 \times 0.8}$

= 6.409 Amps.

= 15 ATP Amps.

Cable size = $4C - 10.0 \text{ mm}^2 \text{ NYY}$.

(Selcted from Voltage drop Calculation)

CCT-2 Load (L199-L218) = 20 Nos. x 188 Watt. / No.

= 3760 Watt.

Load of B Phase = 7 Nos. x 188 Watt. / No.

= 1316 Watt.

Current I = 1316

220 x 0.8 Amps.

= 7.477 Amps.

Breaker = 15A TP MCCB

Cable size = 4C-10.00 mm2NYY (Selected from

Voltage drop calculation)

DESIGN CALCULATIONBATIA GHATA INTERSECTION AND HATIA BRIDGE

CCT-3 Load (L219-L221) = 3 Nos. x 188 Watt. / No.

= 564 W

Current = 564

220 x 0.8 3.20 Amps.

CCT-4 Load (L222-L225) = 4 Nos. x 188 Watt. / No.

= 752 W

Current = 752

 220×0.8

= 4.27 Amps.

CCT-5 Load (L226-L230) = 5 Nos. x 188 Watt. / No.

= 940 W

Current = 940

220 x 0.8 Amps.

= 5.34 Amps.

Breaker for CCT-3-CCT5 = 15A SP MCB

Cable size CCT-3 – CCT-5 = $2C - 6.0 \text{ mm}^2 \text{ NYY}$

(Selected from V.D. Calculation)

Load of DB-1 = (3384 + 3760 + 564 + 752 + 940) Watt.

= 9400 Watt.

Spare Load = 1000 Watt.

:. Total Load of DB-1 = 10400 Watt.

DESIGN CALCULATION BATIA GHATA INTERSECTION AND HATIA BRIDGE

Current I = 10400

1.732 x 415 x 0.8

= 18.08 Amps.

Breaker = 18.08×1.3

= 23.504 Amp

= 30A TP MCCB

Cable size = $4C - 10.0 \text{ mm}^2 \text{ NYY (Selected for } 1\% \text{ V.D.)}$

V.D. CALCULATION
(According to IEE Wiring Regulation)

CCT-2 (L199 to L218), 4C - 10.0 mm² NYY Cable.

B-Phase voltage drop:

V.D. from DB-1 to L203 = 0.0038 V/m/A x 97m x 7.477A = 2.7560222 Volt.

V.D. from L203 to L206 = $0.0038 \text{ V/m/A} \times 78 \text{m} \times 5.341 \text{A} = 1.5830724 \text{ Volt.}$

V.D. from L206 to L209 = $0.0038 \text{ V/m/A} \times 78 \text{m} \times 4.273 \text{A} = 1.2665172 \text{ Volt.}$

V.D. from L209 to L212 = $0.0038 \text{ V/m/A} \times 78 \text{m} \times 3.205 \text{A} = 0.949962 \text{ Volt.}$

V.D. from L212 to L215 = $0.0038 \text{ V/m/A} \times 78 \text{m} \times 2.137 \text{A} = 0.6334068 \text{ Volt.}$

V.D. from L215 to L218 = $0.0038 \text{ V/m/A} \times 78 \text{m} \times 1.068 \text{A} = 0.3165552 \text{ Volt.}$

DESIGN CALCULATION BATIA GHATA INTERSECTION AND HATIA BRIDGE

Total Voltage drop of B-Phase

7.50553612 Volt. = 3.41%

Voltage drop of R and Y will be similar of B-Phase

Voltage drop of CCT-1 (L181 - L198) will be similar to CCT-2 (L199 - L218)

CCT-5 (L225 to L230), For 2C - 6.0 mm² NYY

V.D. from DB-1 to L228 = $0.0073 \text{ V/m/A} \times 40 \text{m} \times 5.34 \text{A} = 1.55928 \text{ Volt.}$

V.D. from L228 to L227 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 4.272 \text{A} = 0.8108256 \text{ Volt.}$

V.D. from L227 to L226 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 3.204 \text{A} = 0.6081192 \text{ Volt.}$

V.D. from L226 to L229 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 2.136 \text{A} = 0.4054128 \text{ Volt.}$

V.D. from L229 to L230 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 1.068 \text{A} = 0.2027064 \text{ Volt.}$

Total voltage drop = 3.586344 Volt. = 1.630%

Voltage drop for main incoming Line (4C – 16.0 mm²NYY)

 $= 0.0024 \text{ V/m/A} \times 100 \text{m} \times 18.08 \text{A} = 4.339 \text{ Volt.}$

= 1.045%

Molonghata Bridge and Related Approach Road

CCT-1 (L273-L287) = 15 Nos. x 188 W / No.

= 2820 Watt.

Load of each Phase = 5 Nos. x 188 Watt. /No.

= 940 Watt.

Current I = $\frac{940}{220 \times 0.8}$

= 5.34 Amps.

Breaker = 10 A TP MCCB

Cable size = $2C - 6.0 \text{ mm}^2 \text{NYY}$.

CCT-2 (L288-L303, L327) = Same as CCT-1

Load of DB4 = (2820 + 2820) Watt. = 5640 Watt.

Spare Load = 1500 Watt.

Total Load of DB-4 = 7140 Watt.

Current I = $\frac{7140}{3 \times 415 \times 0.8}$

= 12.41 Amps.

Breaker = 20A TP MCCB

Cable size = $4C - 6.0 \text{ mm}^2 \text{ NYY}$

The Electric source is approximately 1 km away from the STA10 + 495, So we have to construct a new 11 KV 3φ, 4 wire line.

MOLONGHATA BRIDGE AND RELATED ROAD) DESGIN CALCULATION

V.D. CALCULATION
According to IEE Wiring Regulation

CCT-1 (L273-287)

R (Phase) [L273, L276, L279, L282, L285], For 4C - 6.0 mm² NYY

V.D. from DB-4 to L273 = $0.0064 \text{ V/m/A} \times 31 \text{m} \times 5.34 \text{A} = 1.059456 \text{ Volt.}$

V.D. from L273 to L276 = $0.0064 \text{ V/m/A} \times 78 \text{m} \times 4.272 \text{A} = 1.1325824 \text{ Volt.}$

V.D. from L276 to L279 = $0.0064 \text{ V/m/A} \times 78\text{m} \times 3.204\text{A} = 1.5994368 \text{ Volt.}$

V.D. from L279 to L282 = $0.0064 \text{ V/m/A} \times 78 \text{m} \times 2.136 \text{A} = 1.0662912 \text{ Volt.}$

V.D. from L282 to L285 = $0.0064 \text{ V/m/A} \times 78\text{m} \times 1.068\text{A} = 0.5331456 \text{ Volt.}$

Total Voltage drop of R Phase = 6.390912 Volt. = 2.90%

Y-(Phase) [L274, L277, L280, L283, L286], For 6.0 mm² NYY

V.D. from DB-4 to L274 = $0.0064 \text{ V/m/A} \times 57 \text{m} \times 5.34 \text{A} = 1.948032 \text{ Volt.}$

V.D. from L274 to L277 = $0.0064 \text{ V/m/A} \times 78\text{m} \times 4.272\text{A} = 2.1325824 \text{ Volt.}$

V.D. from L277 to L280 = $0.0064 \text{ V/m/A} \times 78 \text{m} \times 3.204 \text{A} = 1.5994368 \text{ Volt.}$

V.D. from L280 to L283 = $0.0064 \text{ V/m/A} \times 78 \text{m} \times 2.136 \text{A} = 1.0662912 \text{ Volt.}$

V.D. from L283 to L285 = $0.0064 \text{ V/m/A} \times 78 \text{m} \times 1.068 \text{A} = 0.5331456 \text{ Volt.}$

Total Voltage drop for Y-Phase = 7.279488 Volt.

= 3.308%

= 3.3%

V.D. CALCULATION
According to IEE Wiring Regulation

B (Phase) (L275 - L278, L281, L284, L287), [For 6.0 mm² NYY Cable]

V.D. from DB-4 to L275 = $0.0064 \text{ V/A/m} \times 83 \text{ m} \times 5.34 \text{ A} = 2.836608 \text{ Volt.}$

V.D. from L275 to L278 = $0.0064 \text{ V/A/m} \times 78 \text{m} \times 4.272 \text{A} = 2.1325824 \text{ Volt.}$

V.D. from L278 to L281 = $0.0064 \text{ V/A/m} \times 78\text{m} \times 3.204\text{A} = 1.5994368 \text{ Volt.}$

V.D. from L281 to L284 = $0.0064 \text{ V/A/m} \times 78 \text{m} \times 2.136 \text{A} = 1.0662912 \text{ Volt.}$

V.D. from L284 to L287 = $0.0064 \text{ V/A/m} \times 78 \text{m} \times 1.068 \text{A} = 0.533156 \text{ Volt.}$

Total Voltage drop of B Phase = 8.168064 Volt. = 3.71%

V.D. for CCT.-2 (L288 to L302) will be similar to CCT-1 (L273 to L287).

Stair Case & Plaza

ILLUMINATION CALCULATION (Stair Case)

Area of stair case = $15.6 \times 7.6 - \frac{1}{2} (3.8 \times 2)4 = 103.36 \text{ sq.m.}$

Required Lumens =

Area in sq.m. x illuminance
Coefficient of utilization x Maintenance faction

Average Co-efficient of Utilization = 0.7

Average Maintenance faction = 0.6, Illuminance = 100 Lux.

Required Lumens = 103.36×100

 0.7×0.6

24609 Lumens

Selected Lamps 70W HPs (E)

Lamps Lumens 5,800

No. of Luminaires Required Lumens

Lumens / No.

24609

5800

4.24

4 Nos.

Stair Case & Plaza

ILLUMINATION CALCULATION (Plaza)

 (16.480×48) sq.m. + $(2 \times 28 \times 8.5)$ sq.m. Approximate Area of Plaza

(791.04 + 476) sq.m.

1267.04 sq.m.

1267 sq.m.

Area in sq.m. x Illuminance

Coefficient of utilization x Maintenance Factor Required Lumens

Average co-efficient of Utilization = 0.7

0.6 Average Maintenance factor =

15 Lux. Illuminance

Required Lumens 1267×15

 0.7×0.6

45,250

125 W HPMV Selected Lamps

5800 Lamps Lumen

Required Lumens No. of Luminaire

Lumens / No.

45250

5800

7.801

8 Nos.

Stair Case & Plaza

CCt-1

Load (B1 and B2 – 1^{st} , 3^{rd} and 5^{th} Landing) = 6 Nos. x (70 x 1.25) W / No.

= 525 Watt.

Current I = <u>525</u>

220 X 0.8

= 2.98 Amps.

Breaker = 10 A SP MCB

Cable size = $2C - 4.00 \text{ mm}^2 \text{NYY}$ (for less than 1% V. drop)

CCt-2

Load (B3 and B4 - 2nd +4th Landing and Column to Light)

= 5 Nos. x (70 x 1.25) Watt. / No.

= 437.5 Watt.

Current I = $\frac{437.5}{}$

 220×0.8

= 2.485 Amps.

Breaker = 10A SP MCB

Cable size = $2c - 4.0 \text{ mm}^2 \text{ NYY Cable}$

(for less than 1% voltage drop)

CCt-3 and CCt-4 are similar to CCt-1 and CCt-2 respectively.

Stair Case & Plaza

CCt-5 Load (PL1 – PL8) = 8 Nos. x (125 x 1.25) Watt. / No.

= 1250 Watt.

Current, I = $\frac{1250}{220 \times 0.8}$

= 7.10 Amps.

Breaker = 15A SP MCB

Cable size = $2C - 10.0 \text{ mm}^2 \text{ NYY}$ (Selected from

V.D. Calculation of less than 1%).

Load of SDB (S) = $[(525 + 437.5) \times 2 + 1250]$ Watt.

= 3175 Watt.

Spare Load = 500 Watt.

Total Load of SDB(S) = 3675 Watt.

Current, I = $\frac{3675}{220 \times 0.8}$

= 20.88 Amps.

Breaker = 30A DP MCB

Cable size = Single core $-2 \times 50.0 \text{ mm} 2 \text{ NYY}$

(Selected for 3.44% voltage drop from

V.D. calculation)

Stair Case & Plaza

Voltage drop (V.D.) Calculation (According to IEE wiring (Regulation)

Distance between sub-station and SDB(S) = 414 meter

V.D. for 1C-50.0 mm²NYY cable = $0.00093 \text{ V/m/A} \times 414 \text{m} \times 20.88 \text{A}$

= 8.039 Volt.

= 3.65%

CCt-5 Load (PL1 - PL8) For 2C - 10.0 mm² NYY Cable

V.D. from DBS to $PL_1 = 0.0044 \text{ V/A/m} \times 15 \text{m} \times 7.1 \text{A} = 0.4686 \text{ Volt.}$

V.D. from PL_1 to PL_2 = 0.0044 V/A/m x 20m x 5.324 A = 0.468512 Volt.

V.D. from PL₂ to PL₃ = $0.0044 \text{ V/A/m} \times 15 \text{m} \times 4.437 \text{ A} = 0.292842 \text{ Volt.}$

V.D. from PL₃ to PL₄ = $0.0044 \text{ V/A/m} \times 15 \text{m} \times 3.55 \text{ A} = 0.2343 \text{ Volt.}$

V.D. from PL_4 to PL_5 = 0.0044 V/A/m x 11m x 2.663 A = 0.1288892 Volt.

V.D. from PL₅ to PL₆ = $0.0044 \text{ V/A/m} \times 10 \text{m} \times 1.776 \text{ A} = 0.078144 \text{ Volt.}$

V.D. from PL_6 to PL_7 = 0.0044 V/A/m x 10m x 0.887 A = 0.039028 Volt.

Total Voltage drop = 1.7103152 Volt = 0.777%

SATKHIRA ROAD INTERSECTION

CCT-1 (L231-L234) = 4 Nos. x 188 W / No.

752 Watt.

Curent, I = 752

 $\overline{220 \times 0.8}$

= 4.27 Amps.

Cable size = $2C - 4.0 \text{ mm}^2 \text{NYY}$

Breaker = 15 A SP MCB

CCT-2 (L235-L239) = $(1 \times 2 \times 188 + 4 \times 188)$ Watt.

= 1128 W

Current I = 1128

 220×0.8

= 6.40 Amps.

Cable size = $2C - 4.0 \text{ mm}^2 \text{ NYY}$

Breaker = 15A SP MCB

CCT-3 (L240-L243) = $(1 \times 2 \times 188 + 3 \times 188)$ Watt.

= 940 W

Current = 940

220 x 0.8

= 5.34 Amps.

Cable size = $2C - 4.0 \text{ mm}^2 \text{ NYY}$

Breaker = 15A SP MCB

DESIGN CALCULATION SATKHIRA ROAD INTERSECTION

CCT-4(L244-L250) = 7 Nos. x 188 Watt / No.

= 1316 Watt.

Current, I = $\frac{1316}{220 \times 0.8}$

= 7.47 Amps.

Cable size = $2C - 6.0 \text{ mm}^2 \text{ NYY (Selected from V.D. Calculation)}$

Breaker = 15A SP MCB

Total Load of DB-2 = CCT-1+CCT-2+CCT-3+CCT-4 = (752+1128+940+1316) Watt.

= 4136 Watt.

Spare Load = 1000 Watt.

Total Load of DB-2 = (4136 + 1000) Watt.

= 5136 Watt,

Current I = $\frac{5136}{220 \times 0.8}$

= 29.18 Amps.

Breaker = 29.18×1.3

= 37.934 amp

= 40A DP MCB

Approximate distance of BPDB source = 100 meter

Cable size = $2C - 25.0 \text{ mm}^2 \text{ NYY}$

DESIGN CALCULATION SATKHIRA ROAD INTERSECTION

V.D. CALCULATION
[According to IEE Wiring Regulation]

CCT-4 (L244 to L250), Cable 2C - 6.0 mm² NYY

V.D. from DB-2 to L244 = $0.0073 \text{ V/m/A} \times 35 \text{m} \times 7.47 \text{A} = 1.908 \text{ Volt.}$

V.D. from L244 to L245 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 6.402 \text{A} = 1.2150 \text{ Volt.}$

V.D. from L245 to L246 = $0.0073 \text{ V/m/A} \times 26\text{m} \times 5.334\text{A} = 1.0123 \text{ Volt.}$

V.D. from L246 to L247 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 4.226 \text{ A} = 0.80968 \text{ Volt.}$

V.D. from L247 to L248 = $0.0073 \text{ V/m/A} \times 26 \text{m} \times 3.158 \text{ A} = 0.5993 \text{ Volt.}$

V.D. from L248 to L249 = $0.0073 \text{ V/m/A} \times 26 \text{ mx } 2.09 \text{A} = 0.3966 \text{ Volt.}$

V.D. from L249 to L250 = $0.0073 \text{ V/m/A} \times 26 \text{ mx } 1.068 \text{A} = 0.2027 \text{ Volt.}$

Total Voltage drop = 6.143 Volt

= 2.79%

V.D. for main incoming line for 100 meter and 2C - 25.0 mm² NYY cable

= 0.00175 V/A/mx 29Ax 100m

= 5.075 Volt

= 2.30%

Total Voltage drop = (2.79 + 2.30) %

= 5.09%

= 5% which is

within the permissible limit as per IEE WIRING REGULATION.

JABUSHA ROAD INTERSECTION

CCT-1 (L251-L256) = 6 Nos. x 188 W / No.

1128 Watt.

Current I = <u>1128</u>

220 X 0.8

= 6.40 Amps.

Breaker = 15 A SP MCB

Cable size = 2C - 4.0 mm² NYY (Selected V.D. calculation)

CCT-2 (L257-L261) = 5 Nos. x 188 Watt. / No.

= 940 Watt.

Current I = 940

 220×0.8

= 5.34 Amps.

Breaker = 15A SP MCB

Cable size = 2C-4.0 mm² NYY (Selected from V.D. calculation)

CCT-3 (L262-L266) = 5 Nos. x 188 Watt. / No.

= 940 Watt.

Current = <u>940</u>

 220×0.8

= 5.34 Amps.

Breaker = 15A SP MCB

Cable size = $2C - 4.0 \text{ mm}^2 \text{ NYY}$ (Selected from V.D. Calculation)

JABUSHA ROAD INTERSECTION

CCT-4 (L267-L272) = 6 Nos. x 188 Watt / No.

= 1128 Watt.

Current, I = $\frac{1128}{220 \times 0.8}$

= 6.40 Amps.

Breaker = 15A SP MCB

Cable size = $2C - 6.0 \text{ mm}^2 \text{ NYY Cable}$

(According to V.D. Calculation)

Total Load = CCT-1 + CCT-2 + CCT-3 + CCT-4

= (1128 + 940 + 940 + 1128) Watt.

= 4136 Watt.

Spare Load = 1000 Watt.

Total Load of DB-3 = 5136 Watt.

Current I = $\frac{5136}{220 \times 0.8}$

29.18 Amps.

Breaker = 29.13×1.3

= 37.869

= 40A DP MCB

Cable size = $2C - 35.0 \text{ mm}^2 \text{ NYY (According to V.D. Calculation)}$

DESIGN CALCULATION JABUSHA ROAD INTERSECTION

V.D. CALCULATION
[According to IEE Wiring Regulation]

CCT-2 (L257-L261), For 2C - 4.0 mm² NYY Cable.

V.D. from DB-3 to L258 = $0.011 \text{ V/A/m} \times 45 \text{m} \times 5.344 \text{A} = 2.6452 \text{ Volt.}$

V.D. from L258 to L259 = $0.011 \text{ V/A/m} \times 26\text{m} \times 3.208\text{A} = 0.9174 \text{ Volt.}$

V.D. from L 259 to L260 = $0.011 \text{ V/A/m} \times 26 \text{m} \times 2.14 \text{A} = 0.612 \text{ Volt.}$

V.D. from L 260 to L261 = $0.011 \text{ V/A/m} \times 26 \text{m} \times 1.068 \text{A} = 0.3054 \text{ Volt.}$

Total Voltage drop = 4.48 Volt

= 2.036%

CCT-4 (L267-L272), For $2C - 6.0 \text{ mm}^2 \text{ NYY}$.

V.D. from DB-3 to L268 = $0.0073 \text{ V/A/m} \times 45 \text{m} \times 6.404 \text{A} = 2.1024 \text{ Volt.}$

V.D. from L268 to L269 = $0.0073 \text{ V/A/m} \times 26 \text{m} \times 4.264 \text{A} = 0.8093 \text{ Volt.}$

V.D. from L269 to L270 = $0.0073 \text{ V/A/m} \times 26 \text{m} \times 3.196 \text{A} = 0.6066 \text{ Volt.}$

V.D. from L270 to L271 = $0.0073 \text{ V/A/m} \times 26 \text{m} \times 2.128 \text{A} = 0.4038 \text{ Volt.}$

V.D. from L271 to L272 = $0.0073 \text{ V/A/m} \times 26\text{m} \times 1.068\text{A} = 0.2027064 \text{ Volt.}$

Total Voltage drop = 4.1248 Volt

= 1.8749%

DESIGN CALCULATION JABUSHA ROAD INTERSECTION

V.D. CALCULATION
(According to IEE Wiring Regulation)

CCT-3 (L262-L266), For 2C - 4.0 mm² NYY Cable

V.D. from DB-3 to L262 = $0.011 \text{ V/m/A} \times 30 \text{m} \times 5.34 \text{A} = 1.7622 \text{ Volt.}$

V.D. from L262 to L263 = $0.011 \text{ V/m/A} \times 26 \text{m} \times 4.272 \text{A} = 1.221792 \text{ Volt.}$

V.D. from L263 to L264 = $0.011 \text{ V/m/A} \times 26 \text{m} \times 3.204 \text{A} = 0.91634 \text{ Volt.}$

V.D. from L264 to L265 = $0.011 \text{ V/m/A} \times 26\text{m} \times 2.136\text{A} = 0.61089 \text{ Volt.}$

V.D. from L265 to L266 = $0.011 \text{ V/m/A} \times 26 \text{m} \times 1.068 \text{A} = 0.305448 \text{ Volt.}$

Total Voltage drop = 4.8166 Volt

= 2.18%

Maximum Voltage drop for any CCT = 2.18%

Remaining Voltage drop (within 5% Limitation) for main incoming line from DPDB source = (5-2.18)% = 2.82%

Approximate distance of source from DB-3 = 150 meter

V.D. for 2C - 35 mm2 NYY Cable

 $= 0.00125 \text{ V/m/A} \times 150 \text{m} \times 29 \text{A}$

= 5.43 Volt

= 2.47%

KHULNA MONGLA ROAD INTERSECTION

CCT-1 (L303-L312) = 10 Nos. x 188 W / No.

= 1880 Watt.

Current I = <u>1880</u>

220 X 0.8

= 10.68 Amps.

Breaker = 20 A SP MCB

Cable size = $2C - 10.0 \text{ mm}^2 \text{NYY Cable (Selected from V.D. calculation)}$

CCT-2 (L313-L319, L327) = 7 Nos. x 188 Watt. / No. + 2 x 188

= 1692 Watt.

Current I = <u>1692</u>

 220×0.8

= 9.61 Amps.

Breaker = 15A SP MCB

Cable size = 2C-6.0 mm² NYY (Selected from V.D. Calculation)

CCT-3 (L320-L326, L328) = (7 + 2) Nos. x 188 Watt. / No.

= 1692 Watt.

Current = $\frac{1692}{22000000}$

220 x 0.8

= 9.61 Amps.

Breaker = 15A SP MCB

Cable size = $2C - 6.0 \text{ mm}^2 \text{ NYY}$ (Selected from V.D. Calculation)

DESIGN CALCULATION KHULNA MONGLA ROAD INTERSECTION

Total Load = Load of (CCT-1 + CCT-2 + CCT-3)

= (1880 + 1692 + 1692) Watt.

= 5264 Watt.

Spare Load = 1000 Watt.

Total Load = (5264 + 1000) Watt.

= 6264 Watt.

Current, I = $\underline{6264}$

220 x 0.8

= 35.59 Amps.

Breaker = 50A DP MCB

Cable size = Single cone 50.0 mm2 NYY Cable

(Selected from V.D. Calculation)

DESIGN CALCULATION KHULNA MONGLA ROAD INTERSECTION

Voltage drop = 2% for CCT + 3% for maining line V.D. Calculation (According to IEE Wiring Regulation)

CCT-1 (L303-L312) = [For twin core - 10.0 mm2 NYY Cable]

V.D. from DB-4 to L308 = $0.0044 \text{ V/A/m} \times 35 \text{ m} \times 10.68 \text{A} = 1.64472 \text{ Volt.}$

V.D. from L308 to L307 = $0.0044 \text{ V/A/m} \times 26\text{m} \times 5.34 \text{ A} = 0.610 \text{ Volt.}$

V.D. from L307 to L306 = $0.0044 \text{ V/A/m} \times 26 \text{m} \times 4.272 \text{ A} = 0.4887168 \text{ Volt.}$

V.D. from L306 to L305 = $0.0044 \text{ V/A/m} \times 26\text{m} \times 3.204 \text{ A} = 0.3665 \text{ Volt.}$

V.D. from L305 to L304 = $0.0044 \text{ V/A/m} \times 26\text{m} \times 2.136 \text{ A} = 0.2443584 \text{ Volt.}$

V.D. from L304 to L303 = $0.0044 \text{ V/A/m} \times 26\text{m} \times 1.068 \text{ A} = 0.1221792 \text{ Volt.}$

Total Voltage drop = 3.4764 Volt

= 1.58%

DESIGN CALCULATION KHULNA MONGLA ROAD INTERSECTION

V.D. CALCULATION
(According to IEE Wiring Regulation)

CCT-2 (1312 – L319, L327) = [For 2C – 4.0 mm² NYY Cable]

V.D. from DB-5 to L327 = $0.011 \text{ V/A/m} \times 5\text{m} \times 9.61\text{A} = 0.52855 \text{ Volt.}$

V.D. from L327 to L318 = $0.011 \text{ V/A/m} \times 26 \text{m} \times 7.474 \text{A} = 2.137564 \text{ Volt.}$

V.D. from L318 to L315 = $0.011 \text{ V/A/m} \times 45 \text{ m} \times 3.202 \text{A} = 1.58499 \text{ Volt.}$

V.D. from L315 to L314 = $0.011 \text{ V/A/m} \times 26 \text{m} \times 2.136 \text{A} = 0.610896 \text{ Volt.}$

V.D. from L314 to L313 = $0.011 \text{ V/A/m} \times 26\text{m} \times 1.068\text{A} = 0.305448 \text{ Volt.}$

Maximum Voltage drop = 5.167448 Volt.

= 2.34884%

Voltage drop for 2C - 6.0 mm² NYY Cable

= 1.55877 Volt

= 1.56%

DESIGN CALCULATION KHULNA-MONGLA-ROAD INTERSECTION

V.D. CALCULATION (According to IEE Wiring Regulation)

Main Incoming source may be 200 meter away from the DB-5. So 3% Voltage drop is considered for main incoming line and 2% is considered from DB-5 to any point of a circuit.

			and the second second			
COTTO CLOSON LOOK I	r 200\ .		(D) 00		2	
CCT-3 (L320 – L326, 1	1.4/X1	the contract of the contract of	1 HAT 26	-6.0 mm	ZNVV	Cablal
	L~ 20;	10 miles	110120	/ *** O.O IIIIU		Canner
	, , ,			0.00	,	

V.D. from DB-5 to L328 =
$$0.0073 \text{ V/m/A} \times 35 \text{m} \times 9.61 \text{A} = 2.45535 \text{ Volt.}$$

V.D. from L328 to L323 =
$$0.0073 \text{ V/m/A} \times 26 \text{m} \times 3.204 \text{A} = 0.81096 \text{ Volt.}$$

V.D. from L323 to L322 =
$$0.0073 \text{ V/m/A} \times 26\text{m} \times 2.136\text{A} = 0.4054128 \text{ Volt.}$$

V.D. from L322 to L321 =
$$0.0073 \text{ V/m/A} \times 26 \text{m} \times 3.204 \text{A} = 0.81096 \text{ Volt.}$$

V.D. from L321 to L320 =
$$0.0073 \text{ V/m/A} \times 26 \text{m} \times 1.068 \text{A} = 0.2027064 \text{ Volt.}$$

V.D. for main incoming single core =
$$50.0 \text{ mm}^2\text{NYY}$$

$$= 0.00095 \text{ V/m/A} \times 200 \text{m} \times 35.59 \text{A}$$

= 6.7621 Volt

= 3.073 %

= 3%

