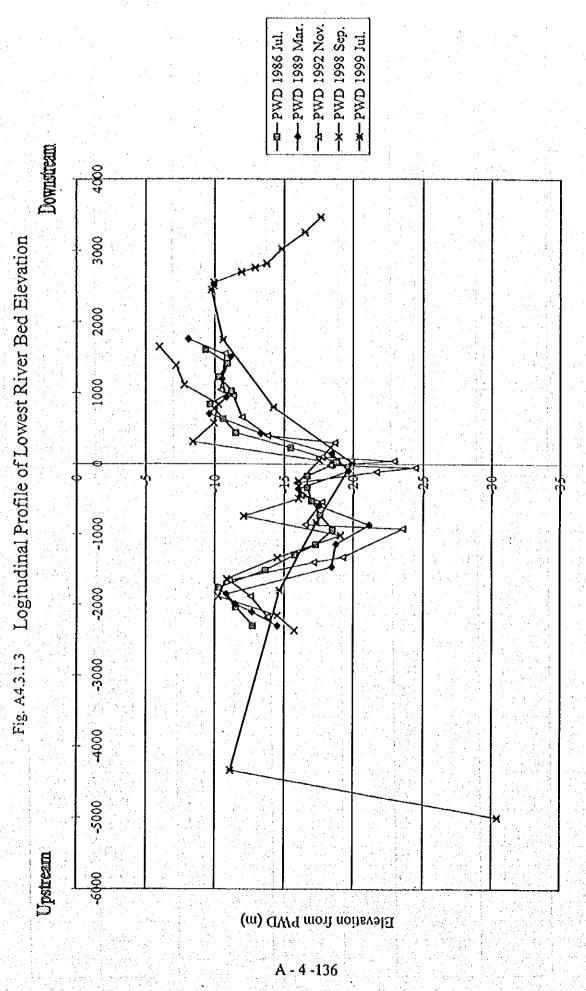
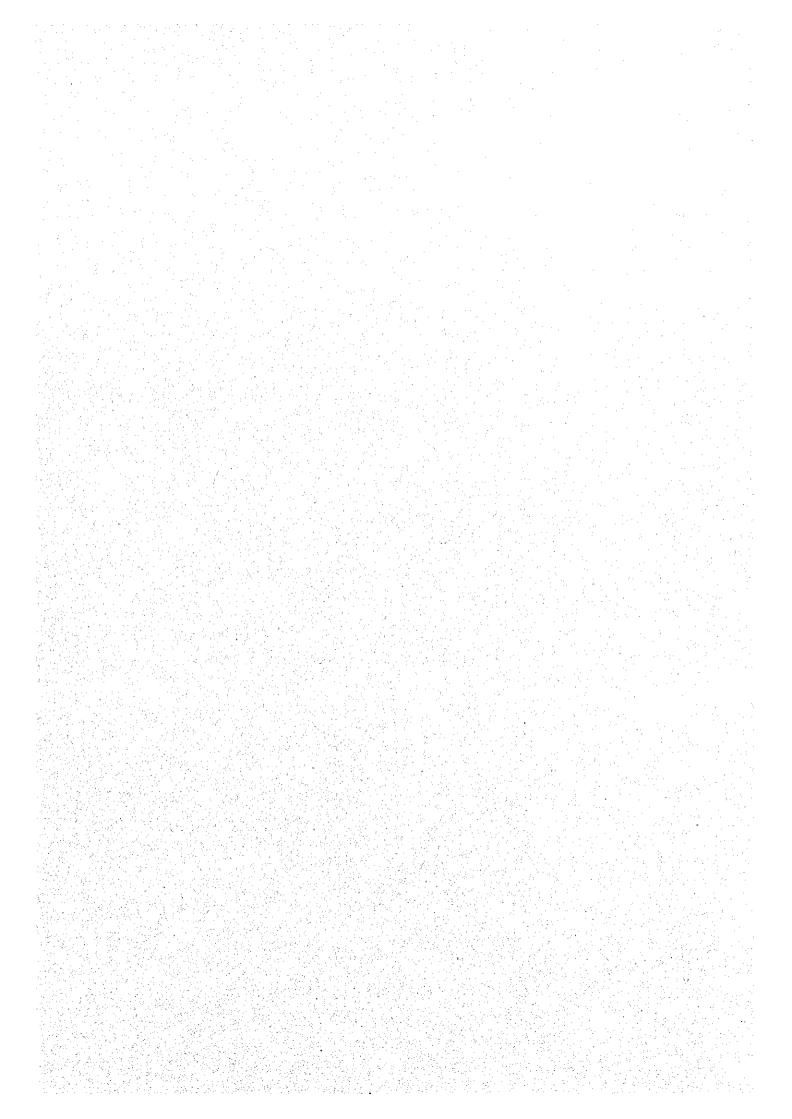


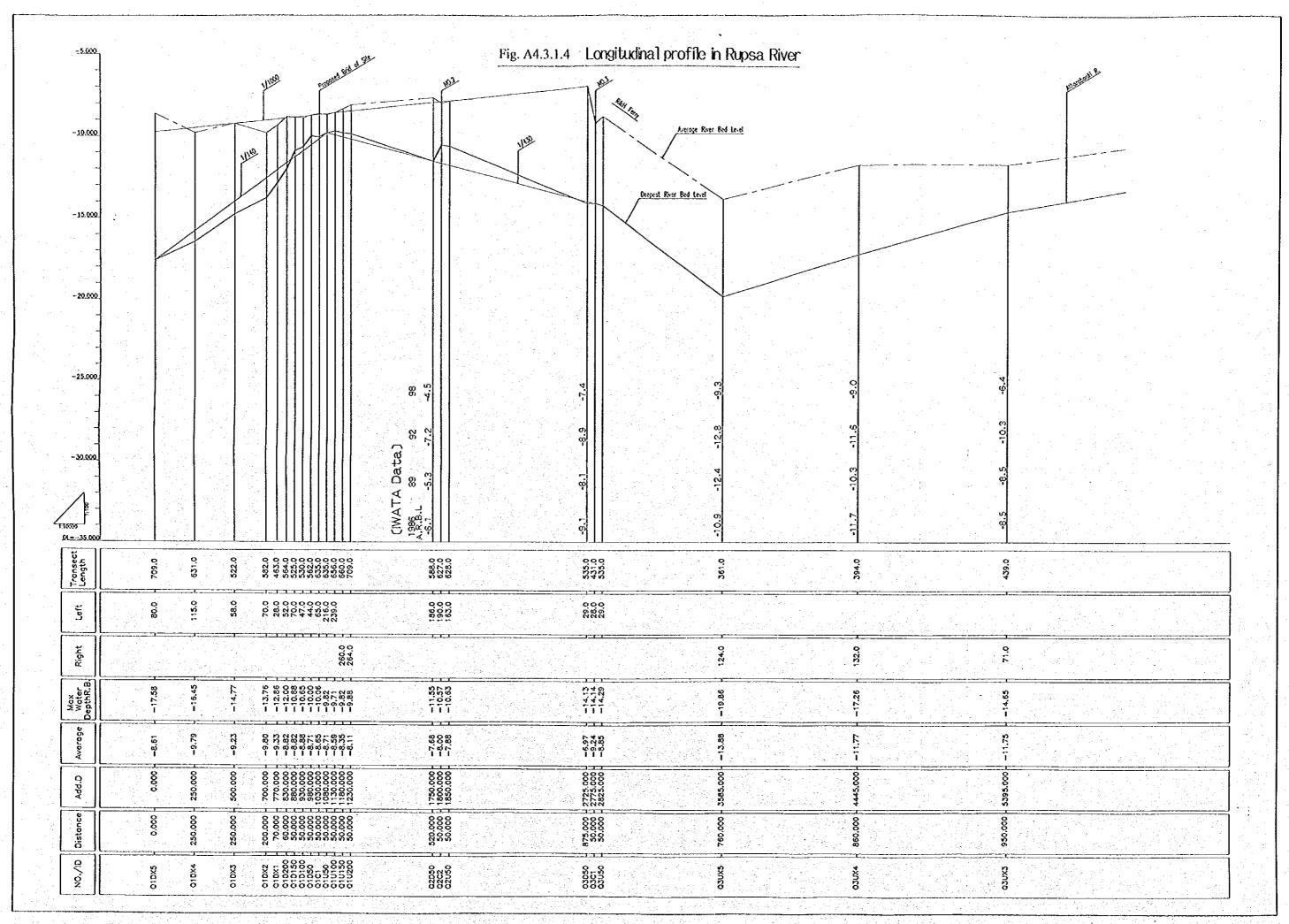
Table A4.3.1.1 Gauge Height of Rupsa River at Khulna

		Min		0.64	0.64	-0.55	-0.55	0.66	0.59	9.0	0.7	9.0	99.0	0.41	0.65	8	0.67		0.59	0.58	0.92	0.73	-0.54	-0.45	-0.59	-0.74	0.72	0.72	0.63	0.73	0.82	6.75	0.86	
	Annual		13				L	L.		<u> </u>			۲	L		<u> </u>	[약 	L_	L	٩ m	L		 				.	<u>L</u> _	I			<u> </u>	46	
	<	Max	4 2.33	1 2.41	9 2.39	3 2.68	6 2.41	2 2.51	3 2.61	4 2.55	4 2.62	4 2.73		6 2.69	8 2.76	1 2.83		7 2.92	7 3.28	7	7 2.94	9 3.12	5 3.41	4 2.95	7 3.15	2 3.15	9 3.1	6 3.25	8 3.22	9 3.15	5 3.25	5 3.21	W	
1) Sec	Min	-0.24	-0.2	0.09	0.03	0.26	0.02	-0.3	0.14	0.24	0.24		-0.36	-0.18	-0.21		-0.17	-0.17	-0.22	-0.37	-0.09	-0.15	0.44	-0.27	-0.42	-0.29	-0.26	-0.48	-0.59	0.45	-0.75	-0.32	
	٦	Max	1.77	1.68	1.72	1.63	1.68	2.01	1.83	1.86	3	1.97		1.87	1.96	2.08		1.96	1.88	2.8	2.1	1.93	2.39	2.25	2.15	2.01	1.96	2.2	2,9	2.58	2.15	1.82	2.34	
	<u>×</u>	Min	0.03	0	0.12	0.03	-0.05	0.32	0.21	0.09	-0.2	0.11		0.17	-0.13	0.07		0.18	-0.18	0.1	0.04	0.05	-0.07	0.05	0	-0.26	ې ا	٠ <u>.</u>	٥. 4	6.4	-0.17	-0.51	0.21	
;	Nov	Max	1.87	1.92	2.01	2.07	 	2.19	2.03	2.19	1.95	2.15		2.08	2.02	2.24		2.42	2.06	2.5	2.43	2.35	2.32	2.42	2.61	2.12	2.23	2.45	2.38	2.6	2.49	2.32	2,75	
	,,	Min	0.34	0.21	0.55	0.73	0	0.67	0.44	0.41	0.14	0.08		0.12	0.24	0.15		0.35	\$.0	0.38	0.19	0.11	0.09	0.4	0.27	0.02	0.12	0.12	-0.22	-0.32	-0.16	-0.56	0.12	
ľ	ទី	Max	2.23	2.16	2,15	2,42	2.1	2.51	2.35	2.45	2.3	2.48		2.54	2.48	2.62		2.91	2.85	2.93	2.91	2.78	2.78	2.71	3.04	2.7	2.64	æ	2.72	2.92	2.84	2.76	3	
		Min	0.37	0.73	0.56	1.37	0.43	0.87	16.0	0.52	0.47	0.32		0.18	0.43	0.5	_	0.65	1.05	0.49	0.24	0.8	0.61	0.57	0.39	0.34	0.15	0.44	60.0	0.2	0.05	0.06	0.33	
מוחות	ઝુ	Max	2.29	2.41	2.39	2.68	2.41	2.33	2.41	2.51	2.62	2.73		2.65	2.69	2.73		2.92	3.18	2.97	2.84	3.12	3.37	2.9	2.92	3.15	3.01	3.25	3.15	3.11	3.12	3.2	3,46	
<u> </u>	-	Min	0.75	0.62	0.68	0.67	69.0	0.87	0.87	69.0	0.51	0.5		0.44	0.65	0.7		0.54	0.49	0.63	0.42	0.62	0.61	0.33	0.62	0.37	0.1	0.52	0.22	0.19	0.17	0.02	16:0	
Cauge riegal of Aupsa Aver at Autura	Aug	Max	2.33	2.35	2.38	2.44	2.32	2.41	2.61	2.55	2.59	2.65		5.69	2.76	2.83		2.88	3.28	3	2.94	3.06	3.41	2.83	3.15	3.03	3.1	3.24	3.22	3.15	3.25	3.21	3.29	
3		Min	0,49	0.3	0.32	0.58	0.34	0.59	0.32	0.38	0.15	0.18		0.19	0.35	0.09		0.13	0.5	0.08	0.2	0.29	0.26	0.35	0.27	0.23	-0.11	0.1	0.04	0.2	-0.34	-0.15	0.13	
7),	TR.	Max	2.32	2.38	2.33	2.29	2.27	2.41	2.39	2.45	2.5	2.65		2.57	2.75	2.71		2.62	2.95	2.83	2.92	2.81	3.11	2.95	3.1	2.77	2.88	2.88	2.86	3.14	3.1	3.03	3.13	
27	-	Min	-0.09	-0:18	-0.03	0	-0.06	0.05	0.2	0.02	-0.14	-0.23		0.4	-0.7	0.03	-	0.13	90.0	0	-0.25	-0.21	0.18	0.03	90.0	-0.11	-0.28	-0.04	-0.24	-0.3	4.0	-0.39	-0.04	1
֓֟֓֟֓֟֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ä	Max	2.13	2.07	2.05	2.19	2.12	2.33	2.16	2.26	2.19	2.39		2.3	2.36	2.36	-	2.43	2.9	2.8	2,42	2.4	2.71	2.7	2.6	2.55	2.52	2.7	3	2.8	2.61	2.71	2.73	1
; -		Min 1	-0.24	-0.53	-0.2	-0.12	-0.15	-0.29	0.17	-0.2	-0.34	-0.53	2.2.4.4	-0.23	-0.26	-0.51		-0.32	-0.28	-0.27	0.38	0.44	-0.37	-0.2	-0.33	0.4		0.32	-0.43	-0.3	5	1	-0.52	1.0
בייליי	χg	Max]	2.04	1.97	2.01	7	1.94	2.04	2.09	2.09	2.18	2.21		2.27	2.28	2.31	-	2.45		2.46	1		2.63	2.65	2.49	2.37	2.36	2.6	2.5	2.98	2.6	2.65	2.68	
		Min 1	-0.5	-0.56	-0.49	-0.4	-0.27	0.41	-0.34	-0.44	-0.56	-0.56	2	-0.41	9.0	-0.63	-	-0.57	-0.56	-0.61	-0.45	6.64	-0.54	-0.37	-0.37	-0.68	-0.64	-0.62	-0.67	-0.62	-0.74	-0.75	-0.71	
	Apr	Max	2.03	1.97	1.86	1.97	1.95	1.97	1.98	2.09	2.15	2.27		2.09	2.16	2.21	_	2.25	2.43	2.27	2.3	2.3	2.56 -	2.65	2.52	2.34	2.3	2.46	2.52	2.78	2.42	2.47	2.5	
\cdot	1	Min		-0.64	-0.64	-0.52	-0.52	-0.66	-0.41	-0.66	-0.7	-0.64	-0.66	-	-0.65	-0.64	-0.67		-0.53	-0.54	-0.52	-0.73	-0.59	-0.42	-0.59	-0.74	-0.66	-0.72	-0.63	-0.73	-0.79	-0.76	-0.86	
)	Mar	Max		1.91	1.86	2.04	1.84	1.74	2.03		2:09		. 2		2.1	2.1 -	2.05	100	2.34	2.23		2.04	2.31	2.45	2.42	2.18	2.34	2.36	2.58		2.29	2.44	2.44	_
+	\dashv	Min	_	-0.58	-0.58	-0.55	-0.55	-0.58	-0.59	-0.59	-0.64	-0.61	-0.64	_	9.0-	9.0	-0.65	Total	-0.59	-0.58	-0.52	-0.62	-0.55	0.45	0.55	49.6	0.72	-0.65	0.63	0.68	0.73	-0.75	-0.86	4
ç	9	Max		1.69	1.71	1.83 -(1.62	1.65	1.71	1.95	1.87	1.83 -(1.86		1.98	1.83	1.75 -0		2.1 -0	1.92 -0	1.98	1.97 -0		2.05 -0	2.17 -0		2.22 -0	2.25 -0	2.35 -0	2.13 -0	2.27 -0		2.43 -0	
-	+	Min	-	-0.52	-0.49		-0.24	0.11	.0.27	0.44	0.55	-0.56	-0.56		-0.47	-0.45	-0.47		-0.5	-0.35	-0.92	_]		-0.39 2		- 1		0.54		0.7	-0.82		-0.75	_
	ម្ត ម	Max	2	1.62 -C	1.72 -0	1.74 -0	1.65	1.57	1.83 -C	1.83 ←		1.74 -0			1.76	1.84 -0			1.81	1.79	100	1.79 .0	- 1	- 1	- 1	. 1	1.98 -0	1.99	2.22 -0		2.03 -0	1	1.82 -0	- 2 - 3 - 3
-			1968			1971	1972	1973				_		1979	1980	1981	1982	1983	1984 1		-		\dashv						_		_			<u>ي</u>
L	×		$\stackrel{\sim}{\Box}$	51	12	15	15	25	2	2	15	2	2	2	19	2	19	2	9	1385 285	2	1987	158 88	61	2	1991	1992	1993	82	1995	1996	1997	<u>\$</u>	158 88


Annual	Max Min	2.26 -1.04	2.38 -1.01	2.85 -0.98	2.43 -0.96	2.45 -1.02	2.72 -1.13	2.62 -0.99	2.62 -1.07	2.7 -1.01	2.68 -0.99	2.13 -1.16	0	2.71 -1.07	3.05 -0.85	1.83 -1.46	3.175 -0.98	3.3 -1.07	3.62 -1.07	3.9 -1.15	3.08 -1.38	2.85 -1.14	3.71 -1.12	3.68 -1.27	3.14 -1.18	2.76 -1.26	3.91 -0.61	3.35 -1.43	3.18 -1.2	3.51 -0.92	3.59 -2.26
5	Min	-0.67	-0.14	-0.47	-0.53	-0.61	-0.75	-0.3	-0.43	-0.59	-0.46		-	-0.58	-0.12		0.445	-0.55	6.7	-0.77	-0.49	-1.09	-0.61	-0.8	-0.82		-0.25	-0.82	-0.79	-0.83	-1.28
Dec	Max	1.77	2.36	1.85	1.79	1.86	1.94	2.04	2.01	2.09	2.19			2.16	2.13		2.645	2.35	2.36	1.78	2.1	2.2	2.85	2.5	2.38		3.05	2.5	2.74	2.08	1.6
λ(Min	-0.37	-0.38	-0.23	-0.23	-0.58	-0.24	0.18	-0.12	-0.47	0.49			-0.64	-0.24		-0.055	-0.7	-0.75	9.0-	0.59	-0.64	-0.35	-1.27	-0.72		-0.61	-0.9	-0.86	-0.59	-1.28
Nov	Max	1.95	2.1	2.09	2.15	2.01	2.3	2.19	2.19	2.18	2.19			2.38	2.38		3.175	2.8	2.92	1.8	2.37	2.74	3.55	3.68	2.5		2.76	2.77	2.88	2.87	2.52
ಕ	Min	-0.15	-0.24	0.11	0.38	0.44	0.17	0.18	-0.15	0.2	0.46			-0.58	-0.37		-0.045	-0.4	-0.46	-0.7	-0.3	-0.93	-0.35	-0.53	-0.75		-0.52	0.79	-0.81	-0.53	-1.17
Oct	Max	2.19	2.16	2.7	2.37	2.15	2.56	2.31	2.29	2.45	2.44			2.62	2.59		3.155	2.7	3.62	1.84	2.96	2.65	3.67	2.9	2.81		3.05	2.96	2.92	3.29	
Sep	Min	-0.24	0.03	0.05	0.17	-0.35	0.17	-0.21	0.03	-0.08	-0.27			-0.49	-0.24		-0.18	-0.2	-0.42	-0.7	0.12	-1,14	-0.86	0.33	-0.22		-0.29	0.78		-0.47	-1,17
Š	Max	2.19	2.26	2.27	2.43	2.45	2.72	2.43	2.59	2.7	2.62			2.65	2.9		3.02	3,21	2.96	1.8	3.08	2.75	3.71	2.86	3.11		3.16	3.06	3.08	3.09	3.08
Aug	Min	0.0	-0.12	0.05	-0.16	-0.08	0.06	-0.29	0.09	0.05	0.37			-0.37	-0.06		-0.28	-0.17	-0.28	-0.3	0.2	0.77	-0.81	-0.15	-0.28		-0.37	-0.54		-0.41	
Jun Jul Aug	Max	- 2.26	2.35	2.36	2.37	2.33	2.47	2.62	2.62	2.7	2.68			2.71	3.05		2.95	3	3.07	2.1	2.94	2.84	2.98	3.07	3.03		3.36	3.12	3.12	3.29	3.59
Yul .	Min	-0.15	-0.24	-0.12	-0.1	-0.46	0.03	-0.29	-0.21	30.0-	0.44	_		3 -0.18	3 -0.27		-0.53	1 -0.16	-0.52	0.62	7 -0.72	5 -0.9	3 -0.82	-0.54			1 -0.47	-0.53	3 -0.66		-1.68
	Max	3 2.26	3 2.38	4 2.29	2 2.3	5 2.33	5 2.35	8 2.51	8 2.59	2.64	7 2.61			8 2.68	9 2.8		5 2.72	.4 3.3	8 2.92	6.8	9 2.7	2 2.85	8 3.3	8 2.9	3 2.92		5 3.91	3.02	3.18		8 2.2
Jun	Min	3 -0.43	9 -0.58	3 -0.24	7 -0.62	5 -0.55	2 -0.55	3 -0.18	2 -0.18	6 -0.44	4 -0.47			8 -0.58	9 -0.49		2 -0.65	우	7 -0.68	5 -0.86	66.0- 6	5 -1.12	4 -0.68	6 -0.58	4 -0.63		9 0.15	9 -0.88	6 -0.81		2 -1.58
	Max	4 2.23	8 2.19	4 2.13	8 2.27	4 2.25	5 2.32	1 2.33	5 2.62	2 2.36	2.64	<u></u>		76 2.38	2 2.59		3 2.62	3.16	6 2.97	1 2.5	4 2.59	2 2.75	8 2.94	5 2.86	3.14		3 3.89	1 2.99	5 2.96		2 2.2
May	c Min		6 -0.98		.3 -0.68	6 -0.64	7 -0.5	3 -0.51		6 -0.72				·0-	Ÿ	Щ.	-0.8	Q	8.0-	2	52 -0.94	58 -1.1	3.3 -1.0	2.9 -0.7	-1.(74 -0.1	٦-	9 -1.1	-	-1.7
	Ma	1 2.23	2.16	51 2.29	-0.9 2.3	7 2.26	35 2.47	-0.9 2.33	77 2.32	59 2.36	9 2.36			7 2.62	35 2.32		98 2.42	3.05	77 2.92		-1.1 2.62	-0.6 2.68	·		18 2.79		18 3.74	26 2.62	3.09	35	26 2.57
Apr	×	23 -1.04	2.19 -0.98	07 -0.61	2.15 -0	2.350.7	2.35 -0.85	2.3 -0	2.04 -1.07	2.33 -0.69	2.44 -0.99			2.29 -1.07	2.38 -0.85		2.29 -0.98	2.73 -1.07	2.6 -1.07	2.16 -1.1	2.61 -1	2.3 -0	2.98 -1.12	2.89 -1.04	2.871.18		3.76 -0.48	2.64 -1.26	2.62 -1.14	2.9 -0.85	1.66 -2.26
	n Max	2.23		98 2.07			j			Ŀ	1	01		2.2	- 1	46	2.			1			-	- 1		-1.26	3.			-0.86	
Mar	x Min		2.13 -1.01	1.98 -0.98	2.06 -0.93	2.15 -1.02	2.01 -1.13	2.24 -0.99	1.98 -1.01	2.06 -0.87	2.19 -0.94	1.95 -1.01		-	1.89 -0.83	1.68 -1.46		2.56 -0.87	2.2 -0.92	1.92 -1.15	2.33 -1.38	2.37 -0.59	2.66 -1.12	2.36 -1.05	2.67 -1.13	2.76 -1.		3.35 -1.43	2.87 -1.25	3.51 -0.	
-	in Max		0.46 2.	-0.88	-0.96 2.	-1.02	-1.01 2.	-0.96 2.	-0.61	-1.01 2.	-0.94 2.	-1.16 1.			-0.7	-1.01 1.		-0.82 2.	-0.84	-1.14 1.	-1.06 2.	0.6	-1.12 2.	-0.95 2	-1.08 2.	-1.21		-0.49 3	-1.03 2.	-0.92 3.	-0.93
Feb	Max Min		1.89 0.	2.19 -0.	2.03 -0.	1.85 -1.	1.86 -1.	2.02 -0.	1.98 -0.	2.16 -1.	1.89 -0.	1.83 -1.			1.62	1.74 -1.		2.33 -0.	1.86 -0	1.97 -1.	1.94 -1.	2.21	2 -1	1.96 -0	2.28 -1.	2.63 -1.		3.23 -0	2.86 -1	2,49 -0	1.99
			-0.88	-0.58 2	-0.59	-0.59	-1.01	-0.75 2	-0.15 I	-0.52	-0.94	1.01			1 29.0-	-0.34			-0.7	-0.67			-1.12	: I	-0.98 2	-1.02		-0.46	7	-0.69 2	-0.83
Jan	Max Min		1.65 -0	2.85 -0	1.91 -0	1.79	1.69 -1	1.99	1.83 -0	2.07 -0	1.97 -0	2.13 -1		2 2 2 2	1.8	1.83 -0		2.285 0.675	2	2.16 -0	ŀ	2.08 -0	1.86 -1	2.11 0	2.21 -0	2.3 -1		3.19 -0	2.2	2.4 -0	2.08 -0
Vegr	L	1968	1969	1970 2		1972	1973	1974	1975	1976	1977	1978 2	1979	1980	1861	1982	1983	1984 2.	1985	_	_]	_	_		1992	1993			1996	1997 2

	AverageV		1.474	-0.360		1.471	-0.549		1,357	-0.401
	_X3		3924.11	4654.13		3955.62	5250.88		3643.61	4535.18
site	20		5785.53	-1676.54		5819.22	-2883.82		4945.77	-1818.78
se bridge	ීර		2604.68	-972.11		3317.89	-1140.01		1598.67	-468.22
ch propo	A ₃	©	1455.13	1754.72	(3)	1754.57	2217.91	©	1151.78	1381.17
lation of Velocity & Discharge on each propose bridge site	MV_3		1.790	-0.554		1.891	-0.514		1,388	-0.339
& Discha	² 0		1116.23	-24.55		1422.96	-762.74		2069.66	-696.02
Velocity (A2	©	1116.23	1292.12	3	1061.12	1364.48	©	1328.41	1649.33
ation of ^v	^z /JW		1.439	610:0-		1.341	-0.559		1.558	-0.422
3 Calcul	ď		1574.60	88'629-		1078.37	-981.07		1277.44	-654.54
Table A4.3.1.3 Calcul	A_1	O	1.164 1352.75	-0.423 1607.29	O	0.946 1139.93 1078.37	1668.49	0	1163.42	1504.68
Lar.	MV		1.164			0.946	-0.588		1.098	-0.435
	MaxV	1	2.160	-0.877	02	2.095	-0.700	3	1.771	-0.568
	TIME	Q1	9:00	11:30	0 000	9:00	12:30	63	8:30	11:30


Table A4.3.1.4 Lowest River Bed Data on past years


	1986 (-1.7	/1 1 1)		1989 (-1.	48 (t)		1992 (-2.17)	1)
Distance	Acc. Dis. (m)	Elevation from	Distance	Acc. Dis. (m)	Elevation from	Distance	Acc. Dis. (m)	Elevation from
(m)	1986 Jul.	PWD 1986 Jul.	(m)	1989 Mar.	PWD 1989 Mar.	(m)	1992 Nov.	PWD 1992 Nov.
-260	-2294	-12.72	-194.00	-2295	-14.48	-289	-2172	-13.77
-275	-2034	-11.50	-113	-2101	-12.65	-225	-1883	-12.55
-253	-1759	-10.28	-140	-1988	-11.43	-262	-1658	-11.03
-220	-1506	-13.63	-385	-1848	-10.82	-77.00	-1396	-17.13
-148	-1286	-15.77	-331	-1463	-18.44	-403	-1319	-19.26
-204	-1138	-17.29	-270	-1132	-18.74	-59	-916	-23.53
-215	-934	-18.51	-270	-862	-21.18	-323	-857	-16.52
-200	-719	-17.59	-240	-592	-17.52	-93	-534	-17.73
-190	-519	-16.98	-258	-352	-16	-178	-441	-16.21
-165	-329	-16.68	-94	-94	-19.66	-156	-263	-15.91
-164	-164	-16.68	149.00	149.00	-18,44	-58	-107	-21.7
0	0	-18,51	283,00	432	-13.26	-32	-49	-24.44
35	35	-18.81	274.00	706	-9.60	-17	-17	-18.34
200	235	-15.46	234.00	940	-10.82	48.00	48	-22.92
205	440	-11.50	254.00	1194	-10.51	56,00	104	-17.73
195	635	-10.58	312.00	1506	-11.12	202.00	306	-18.65
208	843	-9.67	247.00	1753	-8.07	94.00	400	-13.77
186	1029	-11.19				258.00	658	-11.94
195	1224	-10.28				303.00	961	-11.33
191	1415					80.00		-10.42
193	1608	-9.36				511.00	1552	-10.72

	1998 (2.4	6ft)	100	* para la la la	1999 from SW	MC	i de la
Distance	Acc. Dis. (m)	Elevation from	Distance	Acc. Dis. (m)	Distance from	Elevation from	Section
(m)	1998 Sep.	PWD 1998 Sep.	írom QICI	1999 Jul.	Jetty (m) 1999 Jul.	PWD 1999 Jul.	Jeenon .
-210	-2362	-15.71	-662.9	-7494	-4993.82	-30.43	RQ3U1
-268	-2152	-14.49	-2535.5	-6831	-4330.92	-11.09	RQ3U2
-250	-1884	-10.23	-962.9	-4295	-1795	-14.64	Q3UX3
-302	-1634	-10.84	-851.61	-3333	-833	-17.32	Q3UX4
-321	-1332	-14.49	-780.93	-2481	19	-19.92	Q3UX5
-271	-1011	-19.07	-944.55	-1700	800	-14,205	Q3C1R
-254	-740	-12.05	-705.45	-755	1745	-10.569	Q2C1R
-241	-486	-16.02	-50	-50	2450	-9.75	Q1U50
-245	-245	-16.02	0	0	2500	-9.938	QICI
57	57	-17.54	50	50	2550	-9.93	Q1D50
255	312	-8.4	17.04.1	200	2700	-11.9	Q1D200R
263	575	-9.92	3.17	260	2760	-12.86	QIDXIR
266	841	-10.23	1 11 1	317	2817	-13.7	QIDX2R
270	1111	-7.79		521	3021	-14.8	QIDX3R
270	1381	-7.18		75 9	3259	-16.5	Q1DX4R
265	1646	-5.96	Nuarut	969	3469	-17.64	Q1DX5R
1 44 E. 1			- 40 J. Z.				
File wat			3				
			\$ A . B				기원하다
7	Note: Section	18. J. M. 18. 18. 18.	11 1				
9000				为主题的 [。]	ATTENDED TO		

Distance from Ferry jetty (m)

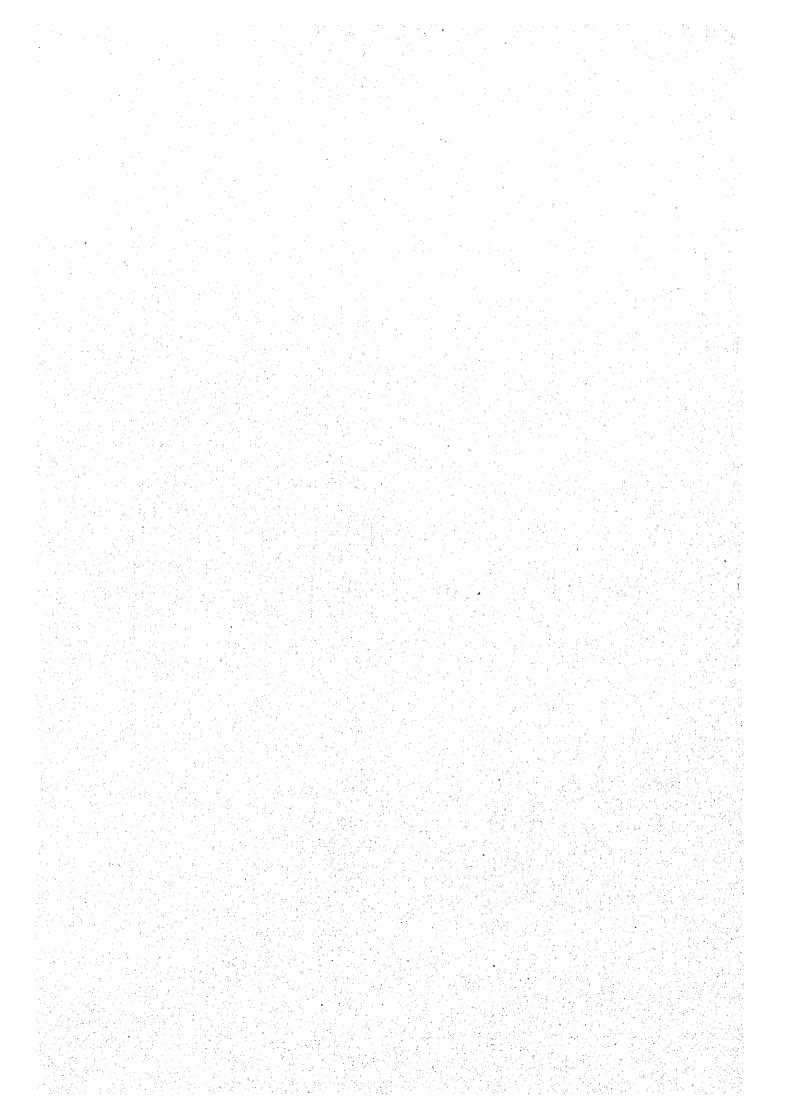


Table A4.3.2.1 Temperature Data at Khulna (Unit: C)

West	Jani	lary	* Yebr	uary ().	Ma	rch (1)	₽ ₩\$ A r	rit 🕸 🕸	Star M	ay Solo in the	(og to √Ju	nė 🦮 🕾
AD.	Nax N	Min	Mex	Min	Mex	Min	NINE.	Min	Max	Mln	Mex	Min
								1 2 11			-,	
1983	28.4	7.5	32.8	10.8	36.8	16.3	38.6	19.6	36.2	20.2	37.0	22.5
89	27.2	7.4	33.6	9.0	36.8	14.0	38.4	19.6	40.0	21.4	35.8	23,4
90	30.5	1.1	31.6	13.1	35.0	13.5	37.0	15.8	36.3	21.5	36.0	22.4
91	29.2	8.4	33.7	13.5	37.4	18.6	37.0	19.2	36.\$	20.8	35.2	23.0
92	28.5	7.4	19.7	10.6	36.5	16.2	38.8	20.2	37.4	19.4	37.2	22.2
93	29.0	7,0	33.5	10.4	35.8	12.8	36.5	19.5	: 35.7	20.3	35.2	23.0
94	30.2	8.6	31.6	9.8	36.7	13.3	37.8	16.0	37.7	20.4	37.0	23.2
95	28.0	7.3	32.6	9.2	37.7	13.8	39.4	20.6	38.2	23.6	36.2	23.2
96	30.4	8.0	32.5	9.0	36.9	16.0	39.4	18.4	37.8	21.4	36.4	22.0
97	28.6	7.2	32.0	9.4	35.6	13.4	35.6	17.8	36.5	19.6	36.5	20.9
98	29.0	6.8	32.0	12.0	34.4	15.2	36.3	18.4	37.7	21.0	36.5	25.3
		41.1		- Se - 1			x - 25			<u> </u>		
Mean	29.0	7.6	32.3	10.6	36.3	14.8	37.6	18.6	37.3	20.9	36.3	22.8
Max	30.5	8.6	33.7	13.5	37.7	18.6	39.4	20.6	40.0	23.6	37.2	25.3
Min	27.2	6.8	19.7	9.0	31.4	12.8	35.6	15.8	35.7	19.4	35.2	20.8
		1.0	2.5	1.0	1.0						<u> </u>	

	Jo	ly	Au	gust	Septe	mber	Oct	ober	Nove	mber	Dece	mber	Anr	ins i
ΑD	Max	Min	Max	Min	/Max	Min	Max	Min	Max	Min	Mox	Min	∴Ntax⊘	Min
	. 14				4 13 3	11 11			1 10 10			1		1 .
1988	35.0	24.5	34.0	25.0	39.1	25.0	33.7	20.8	32.3	13.9	19.0	12.0	39.1	7.5
89	35.5	24.7	34.6	24.5	34.6	24.0	35.5	21.8	32.5	15.6	39.1	8.0	40.0	7.1
90	35.0	24.6	34.5	24.8	35.0	24.2	34.5	18.4	32.5	13.8	29.3	10.2	37.0	7.1
91	34.8	25.0	35.5	24.0	35.0	24.0	34.5	21.2	30.6	13.0	29.8	9.0	37.4	8.4
92	35.4	22.2	35.0	23.3	36.6	22.2	34.5	19.6	33.2	15.5	28.2	8.8	38.8	7.4
93	34.0	24.0	33.9	24.8	35.3	23.8	34.8	19.4	32.0	14.8	29.8	11.5	36.5	7.0
94	35.1	25.0	313	23.0	35.5	24.0	35.4	22.0	32.8	15.4	30.4	10.2	37.8	8.6
95	35.0	24.2	35.4	24.6	35.1	21.6	35.0	9 19.0	34.0	11.9	29.6	11.9	39.1	7.3
96	35.5	24.0	33.8	22.3	37.0	24.2	35.0	20.8	33.5	13.4	29.3	9.3	38.4	8.0
97	31.8	24.0	35.6	24.2	35.0	22.3	34.2	19.8	33.7	16.2	30.1	9.2	36.5	7.1
98	34.8	24.4	34.5	24.4	36.6	23.6	36.4	22.6	34.2	16.8	30.0	11.8	37.7	6.8
			1.00		1 1			fr the		Fr. Pry	Wile of	122	12.5	
Mean	35.0	24.2	34.6	24.1	35.9	23.6	34.9	20.5	32.8	14.6	29.5	10.2	38.1	7.6
Max	35.5	25.0	35.6	25.0	39.1	25.0	36.1	22.6	34.2	16.8	30.4	12.0	40.0	8.6
Min	34.0	22.2	33.8	22.3	34.6	27.2	33.7	18.4	30.6	11.9	28.2	8.0	36.5	6.8
	14.14				1.5		I	, to	1		1. 1. 1.	1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 50.0

Source : Province Meteorology Office at Khulna

Air Temperature at Khulna Period 1988-1998 (Unit : C)

在於自己的目	January	February	March	April	May	June	W July 4	August	September	Octobes	November	December	Annual
			3.45	1000							4 27	Transfer Transfer	
Extreme Max	30.5	33.7	37.7	39.4	40.0	37.2	35.5	35.6	39.1	36.4	34.2	30.4	40.0
Mean Max	29.0	32.3	36.3	37.6	37.3	. 36.3	35.0	34.6	35.9	34.9	32.8	19.5	347.978
	55.74	2.69		Bar.						1. 1.44		1891	115
Mean Min	7.6	10.6		18.6	20.9	22.8	24.2	24.1	23.6	20.5	14.6	10.2	4
Extreme Min	6.8	9.0	12.8	15.8	19.4	20.8	21.2	22.3	22.2	18.4	11.9	8.0	6,8
jaja en saar saat is	100	40.00	1.1	- (1-yr)			1 1 1						

Source : Province Meteorology Office - Khulna

						.3.2.2			ı Data			<u> </u>				(Unit	
		20000	lanu	ary			Febru	ary 🦠			Mar	ch 🦠			Apr	il 👌 🔅	8.00
Ď	ear/	Monthly	Max	0<	10<	Monthly	Max	0<	10<	Monthly	Max	0<	10<	Monthly	Мах	∞0<	10<
	2000 2000		Daily	Days	Days		Daily	Days	Days	*****	Daily	Days	Days		Daily	Days	Days
1	968	0	0	0	0	0	0	0	0	32	32	1	1	19	- 19	l	1
	69	0	0	0	0	0	0	0	0	106	38	5	4	54	31	3	3
	70	0	0	0	0	0	; 0	0	0	0	0	0	0	51	51	ı	l
	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	72	0	0	0	0	. 0	0	0	0	0	0	0	0	64	19	7	4
	73	****	****	****	****	****	****	****	****	****	****	****	****	22	13	4	l
	74	****	****	****	****	0	0	0	0	174	68	- 5	4	37	- 14	4	3
	75														1. 4	11.7	N.
	76	0	0	<i>-</i> 0	0	70	37	2	2	0	0	0	0	59	37	3	3
	77	4	4	1	0	Ú	0	0	0	16.0	0	0	~ O	157	£ 52	z 11	7
	78	0	- 0	. 0	0	3	2	2	0	19	- 9	3	0	81	32	9	2
	79	12	9	2	- 0	26	- 14	3	1	1	1	0.01	0	12	5	4	0
	80	0	0	0	0	101	50	5	4	: 151	61	5	4	23	- 13	2	2
L	81	23	11	3	2	42	23	4	2	220	91	7	6	347	122	. 12	8
	82	0	0	0	0	15	6	3	. 0	23	11	3	1	135	37	∜ 11	5
	83	49	41	2	1	60	15	6	2	37	17	5	2	163	121	5	3
	84	32	24	3	1	1	. 1	100	0	0	0	0	0	97	36	. 7	3
-	85	9	4	3	0	6	. 4	2	0	30	22	2	1	35	21	4	2
	86	8	7	2	0	0	0	0	0	1		<i>i</i> } 1	0	147	99	8	- 2
L	87	2	1	2	0	3	3	y, 1	0	55	47	4	. 0	134	80	4	4
	88	0	0	0	0	50	25	3	2	18	- 11	3	1	53	25	6	2
	. 89	. 0	0	0	0	8	7	2	0	2	2	l	0	54	46	2	1
	90	0	0	0	0	62	27	- 6	3	212	: .35	10	10	58	37	5	2
	91	1: 10	6	2	0	54	24	3	3	36	22	2	2	38	11	4	2
	92	13	13	1	0	203	- 64	10	4	0	0	0	0	2	2	1	0
	93	70	L	Ĺ	1	52	32	<u> </u>	2	127	53	5		a 7 -	23	9	3
_ _	94	1	. 1	1	0	15	8	3	0	0	0	0	.,0	105	36	8	4
	95	8	3	4	0	104	53	4	3	34	27	3	1	1. 18	- 10	3	1
	96	1	1	l	0	17	>∵9	3	0		1	1	0	64	22	6	2
	97	10	8	2	0	22	l 2	4	L	99	66	4	. 2	80	20	< 11	3
	98	59	24	4	3	91	38	5	3	213	1	5	5	105	35		. 3
				\vec{v}			13.60		14.174					481			
N	Mean	11.1	8.1	1.2	0.3	34.7	15.7	2.6	1.1	54.9	24.5	2.6	1.6	76.1	35.6	5.5	2.6
	Max	70	70	4	3	203	64	10	4	220	95	10	10	347	122	12	8
	Min	0		·	0	0	0	0	0		0		0	0	0	0	0
	-		5 E 5 C						1844 S 1877			1.5					

				Iau	MC CAT	.3.2.2				at Miun			A Roman Barrier	6.00.000 6 2000		(Omi	· · · · · · · · · · · · · · · · · · ·
	$\ $		Ma	y		***	Jun	e	9 10 Oc		Jul	y			Augu	ıst	. W. W.
Ye	ar	Monthly	Max	-0<	10<	Monthly	Max	0<	ી0<	Monthly	Max	0<	10<	Monthly	Max	.0<	10<
		Monuny	Daily	Days	Days		Daily	Days	Days		Daily	Days	Days		Daily	Days	Days
19	68	36	0	2	l	522	104	14	10	415	130	12	9	134	36	7	5
	69	61	25	4	3	301	254	4	. 3	73	. 31	5	2	507	93	16	12
	70	129	41	4	4	548	105	14	- 13	634	96	16	14	270	51	12	11
	71	37	28	3	l	63	44	3	. 2	48	13	5	3	135	32	8	. 5
	72	121	60	- 4	3	****	****	****	****	137	51	12	3	****	****	****	****
	73	373	127	. 12	9	250	89	9	5	107	20	9	5	110	31	7	4
	74	301	97	11	9	251	42	14	8	792	85	26	19	442	174	20	10
	75			1.			1								:	1.1	
	76	288	73	., 11	8	340	57	. 14	8	305	59	25	12	378	89	21	- 11
	77	245	86	14	6	355	81	19	: 12	****	****	****	****	276	93	22	7
	78	226	35	15	8	436	132	15	8	341	47	22	13	301	78	22	8
	79	97	48	7	3	356	69	17	10	533	153	18	.: 9	633	391	16	. 7
	80	223	- 51	10	8	348	58	17	11	300	58	25	12	421	89	26	12
	81	236	74	. 19	7	227	57	15	7	425	64	27	14	268	31	- 19	12
9	82	30	- 27	3	1	340	: 69	16	9	129	29	14	5	386	131	25	10
	83	358	97	16	11	302	74	15	10	****	****	****	****	448	89	- 21	13
	84	227	58	8	6	783	216	27	12	300	57	24	9	486	69	26	15
	85	: 158	39	16	6	308	92	18	9	161	24	23	5	344	40	26	15
	86	251	65	12	7	239	99	13	5	390	- 88	27	- 12	215	42	: 17	7
	87	113	54	7	3	315	95	12	. 7	517	87	27	18	498	186	21	8
	88	305	89	13	8	599	129	21	10	326	54	22	- 8	302	56		. 9
	89	: 185	51	12	6	257	67	17	9	239	27	18	9	80	12	20	2
	90	261	74	12	7	261	62	19	7	436	83	26	. 14	206	53	21	8
	91	100	22	14	5	421	57	19	12	229	54	21	9	318	58	24	10
	92	192	61	14	6	157	44	12	6	254	62	22	. 9	198	38	21	. 8
	93	211	52	11	6	638	185	13	8	288	48	22	. 10	290	74	23	ŧ .
	94	. 115	43	8	5	239	36	19	10	210	32	24	9	217	35	22	6
	95	181	89	. 7	3	308	81	17	8	407	74	24	13	594	. 100	23	
	96	117	59	7	3	453	97	17	10	223	35	21	9	275	79	21	7
	97	181	66	13	5	218	39	18	7	456	112	24	14	321	57	22	
	98	161	46	9	7	175	ļ			ļ		25	ļ	258		<u> </u>	!
		3.7.5				38. 1. 3 1. 4-1. 1. 1.		3.8	Ý.		1.5	14 A			100		
М	ean	183.9	57.9	9.9	5.5	345.2	89.0	15.4	8.4	322.1	63.4	20.2	9.9	321.1	81.0		
N	lax	373	127	19	11	783	254	27	13	792			19	633	391	26	
N	⁄iin_	30	0	2	l	63	36	3		ļ	: 13	5	2	80	. 12	7	2
	· ·	7.5		7							1.5	1.00			Nari		7
		^	-				1.7							1.5			

Table A4.3.2.2 Precipitation Data at Khulna (3/3)

(Unit: mm)

		Septer	nber			Octo	ber .			Noven	ıber		1000,000	Decen	iber			Annual	· · · · · · · · · · · · · · · · · · ·
Year	3.000	Max	0<	10<		Max	0<	10<		Мах	0<	10<	3.883.5	Max	0<	10<	Precipit		Max
	Monthly	Daily			Monthly	Daily		Days	Monthly	Daily			Monthly	Daily			ation	Monthly	Daily
1968	47	0	5	2	17	13	2	1	0	0	0	0	0	0	0	0	1222	522	130
69	587	254	8	7	50	25	2	2	· 28	28	1	1	0	0	0	0	1767	587	254
70	115	: 49	6	4	190	71	8	6	13	13	1	· I	0	0	0	0	1950	634	105
71	80	53	5	2	106	62	: 4	2	6	6	1	0	0	0	0	0	475	135	62
72	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****
73	39	13	3	3	****	****	****	****	****	****	****	****	4	4	. 1	0	*905	*373	*127
74	452	120	16	11	312	68	7	7	1	1	. 1	0	0	0	. 0	0	2762	- 792	174
75	1111															12			2
76	363	- 68	20	11	114	50	6	. 3	:11	11	1	1	0	0	0	0	1928	378	89
: 77	57	1 1	9	2	****	****	****	****	17	11	5	1	11	5	3	0	*1122	*355	*93
78	453	113	: 17	9	127	70	9	. 3	, 0	0	0	Ô	0	. 0	: 0	0	1987	453	132
79	239	64	13	7	93	75	5	1	0	0	0	0	31	29	2	1	2033	: 633	391
80	137	23	. 17	5	126	70	: 10	3	0	0	0	0	1	1	<u> </u>	0	1830	421	89
81	188	56	13	7	29	11	5	1	0	0	0	0	65	62	2	1	2070	425	122
82	268	53	- 18	11	22	× 14	3	1	29	18	2	2	3	3	1	0	1380	386	131
83	244	42	19	. 9	276	74	13	8	6	6	1	0	6	6	7.1	0	*1949	*448	*121
84	159	39	13	8		24	7	3	0	0	0	0	6	6	1	0	2171	783	216
85	143	22	21	4	136	62	5	3	12	12	1	1	0	0	0	0	1342	344	92
86	843	430	22	12	168	33	11	6	152	108	- 4	3] - 1	1. 1	1	. 0	2415	843	430
87	189	46	20	4	41	19	4	2	48	37	4	- 1	7	- 7	, l	0	1922	517	186
88	67	17	14	3	95	29	8	4	140	102	3	2	0	0	. 0	0	1955	599	129
89	246	57	: 15	9		103	8	8	0	0	0	0	1	1	- 1	0	1402	330	103
90	205	41	22	7		53	9	4	77	27	5	4	4	2	2	0	1938		83
91	342	40	- 19	14	161	59	10	5	4	4	l	: 0	47	31	4	2	1760	421	59
92	111		 	6		42		2	0		0	0	0	0	0		[
93	196					35					2	1	0	0	0	0			
94	160		<u>-</u> _			25	6	- 4	5		3	0		0	0				
95	303					38		<u> </u>	 -		8	2	0	. 0	0		2205	594	113
96	70			_			 		 -	8	1	0	0	0	0	0	1471	453	115
97	364		 		44	35			2	2	1	0	19	7	4	0	1816		112
98	300	49	17	9			14	5	132	87	4	2	0	0	0	0	1994	343	103
<u>`</u>		64.0		4.0	127.1	40.5		3 6	21.0	31.0	1.0	3-3-3					1254.4	175.5	
Mean	240.2		14.8	6.9		48.5	7.1		31.0		1.8	0.8	7.1	5.7	0.9	0.1	1754.4	475.6	140
Max	843 39	430 0		14		115	14 2	 -	162	113	8		65	62	4	2	2762	843	
Min	39	U	3		17	11		1			0	0	0	0	0	0	475	135	52
L		L.,	L	L				L		لنبيا			<u> </u>			: .	25 2 32 3		

Table A4.3.2.3 Monthly Humidity at Khulna (Unit : percent)

11.00	🕸 Jan	nată 🍦 👙	: Pebi	uary 🛴 👙	्रिष्ट्रश्चित्रा	rch 👫 📳	cascular A	nil 💢 🞉	abaka N	lay je nji	70 W 10 Ju	ne 🦿 🦈
AD	Mai	Min	Xelf.	Min	Mex	Min	Max	Min	Mix	Min	Max	Min
									-			
1938	100.0	32.0	100.0	31.0	100.0	24.0	100.0	36.0	100.0	45.0	100.0	55.0
89	100.0	27.0	100.0	24.0	100.0	20.0	98.0	20.0	100.0	27.0	100.0	52.0
90	100.0	30.0	100.0	35.0	100.0	20.0	100.0	26.0	100.0	45.0	100.0	62.0
91	100.0	35.0	100.0	32.0	100.0	30.0	100.0	29.0	98.0	41.0	100.0	64.0
92	100.0	32.0	100.0	28.0	100.0	30.0	98.0	28.0	100.0	43.0	100.0	50.0
93	100.9	10.0	100.0	22.0	100.0	13.0	100.0	23.0	100.0	54.0	100.0	30.0
94	100.0	32.0	100.9	32.0	100.0	22.0	100.0	26.0	100.0	46.0	100.0	55.0
95	100.0	19.0	100.0	29.0	100.0	25.0	98.0	23.0	100.0	41.0	100.0	55.0
96	100.0	32.0	100.0	33.0	100.0	28.0	100.0	30.0	100.0	48.0	100.0	52.0
97	100.0	28.0	100.0	26.0	98.0	26.0	98.0	30.0	100.0	42.0	100.0	53.0
98	100.0	9.0	100.0	35.0	100.0	22.0	100.0	31.0	100.0	43.0	100.0	56.0
-11		100				2.5.37	70.0		- 11	4 4 7 4	Neb	
Mean	100.0	26.9	100.0	19,7	99.8	23,6	99.3	27.5	99.8	43.2	100.0	53.1
Max	100.0	35.0	100.0	35.0	100.0	30.0	100.0	35.0	. [00.0	54.0	100.0	64.0
Min	100.0	9.0	100.0	22.0	98.0	13.0	98.0	20.0	98.0	27.0	100.0	30.0
		, t						1.76.2				15 (5)

	J	dy	Au	gust	Septe	mbec	Oit	ober	Nove	mber	Dece	niber	An	ายวไ
AD	Max	Min	Mot	Min	Max	≫ Min≪	Max	Min	Max	Min	Max	Min	Mai	Min
1.2	114114	114 1 E					14 - No.	1917.11		11 / 1		1 11		1.5
1988	100.0	63.0	98.0	67.0	98.0	60.0	100.0	43.0	100.0	31.0	100.0	39.0	100.0	24.0
89	98.0	62.0	100.0	65.0	100.0	63.0	100.0	53.0	100.0	40.0	100.0	34.0	100.0	20.0
90	160.0	62,0	100.0	65.0	100.0	63.0	100.0	45.0	100.0	34.0	100.0	35.0	100.0	20.0
91	100.0	46.0	100.0	61.0	100.0	65.0	100.0	43.0	100.0	32.0	100.0	32.0	100.0	29.0
92	109.0	61.0	100.0	57.0	100.0	41.0	100.0	45.0	99.0	45.0	100.0	28.0	100.0	28.0
93	100.0	26.0	100.0	58.0	100.0	61.0	100.0	47.0	100.0	40.0	100.0	28.0	100.0	10.0
94	100.0	64.0	100.0	67.0	100.0	50.0	99.0	39.0	100.0	38.0	100.0	30.0	100.0	22.0
95	100.0	61.0	100.0	61.0	100.0	61.0	100.0	54.0	100.0	42.0	100.0	37.0	100.0	23.0
96	100.0	59.0	100.0	63.0	100.0	52.0	100.0	39.0	100.0	35.0	100.0	30.0	100.0	28.0
97	100.0	63.0	100.0	51.0	100.0	62.0	100.0	42.0	98.0	39.0	100.0	40.0	100.0	26.0
98	100.0	61.0	100.0	51.0	100.0	52.0	100.0	16.0	100.0	42.0	100.0	32,6	100.0	9.0
	<u> </u>					4 2 4 4	1	13.1 2		75 - 27	11.7%			
Mean	99.8	57.1	99.8	60.8	99.8	57.5	99.9	45.5	99.7	38.0	100.0	33.2	100.0	21.7
Max	100.0	61.0	100.0	67.0	100.0	65.0	100.0	\$4.0	100.0	45.0	100.0	40.0	100.0	29.0
Min	98.0	26.0	98.0	51.0	98.0	41.0	99.0	39.0	98.0	31.0	100.0	18.0	160.0	9.0
	200	1	1 1	1 1		4, 4, 5		14.1	-3.4	18 Sec.	+ 2.3			

Source: Province Meteorology Office at Khulna

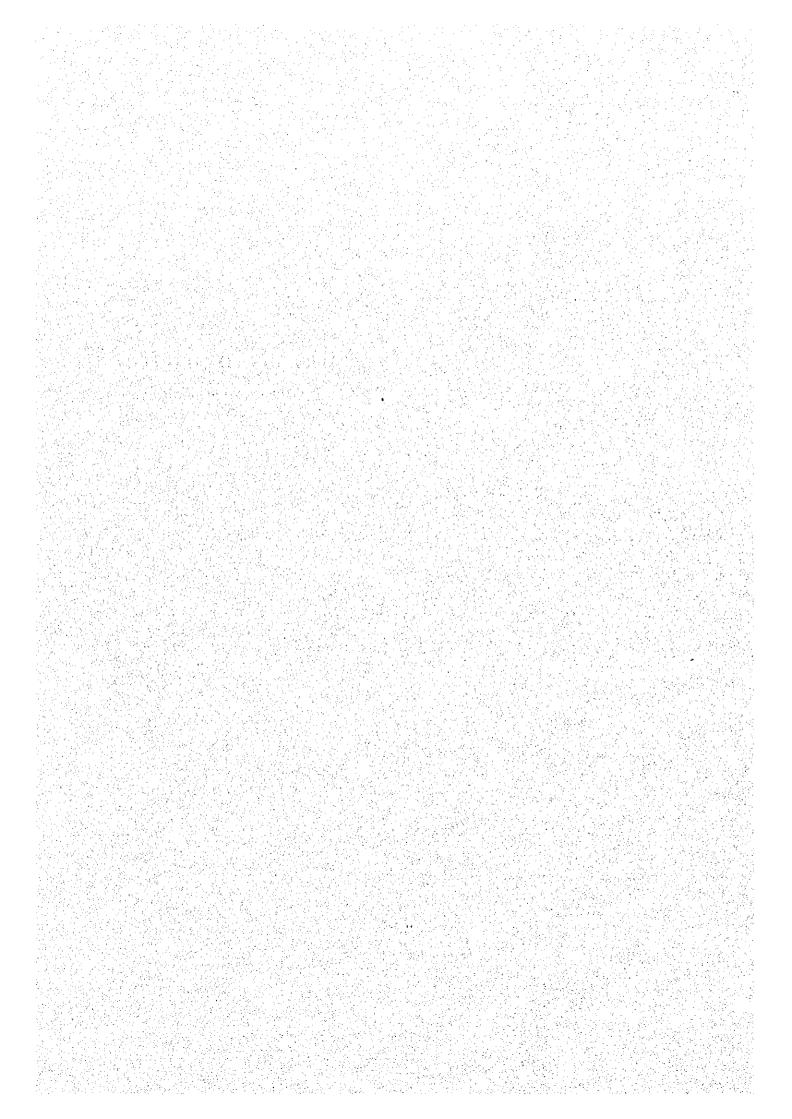
Monthly Humidity at Khulna Period 1988-1998 (Unit: percent)

Netholic No.	January	February	March	April 1	May 🖔	June 3	July	August	September	October	November	December	Meán
der de Afri	151		11 - 27 - 1	5 4 5 5	1948	1.97	Teacher.	14.1	2.4	22 442 5	4,114		4 11
Extreme Max	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	- 100.0	100.0	100.0	100.0	100.0
Mean Max	100.0	100.0	99.8	99.3	99.8	100.0	99.8	99.8	99.8	99.9	99.7	100.0	99.8
	11,44,71	1 4 4 2 5		五八縣	320,211	NAME OF	200	1.54	0.00				
Mean Min	26.9	29,7	23.6	27.5	43.2	53.1	57.1	60.8	57.5	45.5	38.0	33.2	41.3
Extreme Min	9.0	22.0	13.0	20.0	27.0	30.0	26.0	51.0	41.0	39.0	31.0	18.0	28.1
	Au Kisan		100	4.4			4.14	15.		5 8 9			Tetra.

Source: Province Meteorology Office - Khulna

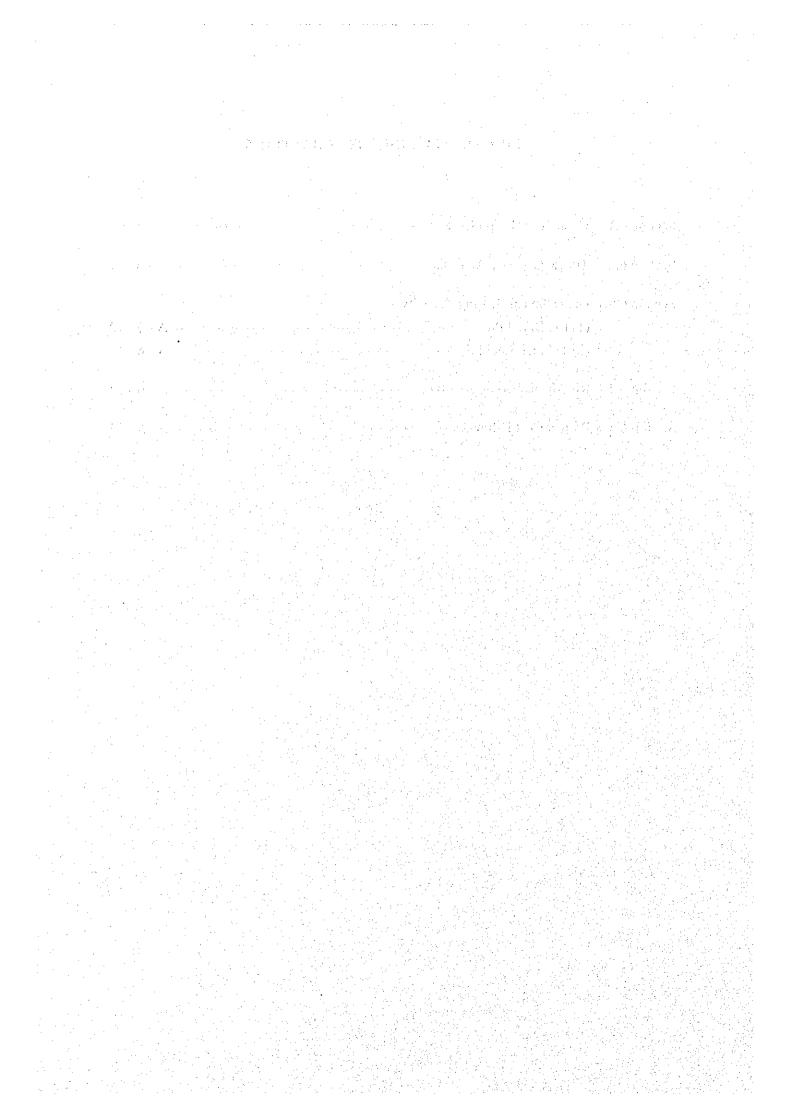
Table A4.3.2.4 Wind Velocity Data at Khulna (Unit: m/s)

AD	January	February	Morch	Apçil	May	June	July	August	September	October	November	December	Mean	Mai	Min
						:	-:								
1933	5.1	4.6	4.6	8.2	10.3	10.3	9.3	9.3	6.2	. 8.2	9.8	10.3	8.0	10.3	4.6
89	[6.3	9.3	10.3	8.7	11.8	8.1	9.8	6.2	6.2	9.3	5.1	7.7	8.6	11.8	5.1
90	4.1	7.1	8.2	1,1	9.3	7.7	6.2	5.1	6.2	4.1	3.6	10.3	6,7	10.3	3.6
91	4.1	4.1	6.2	19.5	17.8	18.0	10.3	8.7	4.1	8.3	4.1	7.2	9.0	19.5	4.1
91	7.2	5.1	8.2	15.4	10.3	7.2	9.3	6.2	5.1	6.2	4.1	5.1	7.5	15.4	4.1
93	5.1	7.7	1.1	15.9	10.3	8.2	8.2	7.2	. 7.2	4.1	4.1	5.1	7.6	15.9	- 4.1
94	5.1	6.2	7.2	20.6	8.2	9.3	9.3	6.2	8.2	4.1	3.1	4.1	7.6	10.6	3.1
95	6.2	7.2	13.9	6.2	9.3	6.1	1.1	7,7	6.2	4.1	8.2	4,6	1.3	13.9	4.1
96	15.9	7.2	6.2	23.1	6.2	8.2	4.6	6.2	3.1	7.1	18.5	18.5	10.4	23.1	3.1
97	6.2	5.1	8.2	7.7	7.1	9.3	6.2	11.3	33.4	2.1	2.1	10.8	9.2	33.4	2.1
98	4.1	4.1	6.2	7.2	6.2	5.1	7.3	10.3	4.1	4.1	15.4	3.1	6.1	15.4	3.1
									100				7.63	- 1 V.25	
Mean	6.7	6.2	1.9	12.8	9.3	8.9	8.0	7.1	8.2	5.7	7.1	7.9	8.0	17.2	3.7
Max	15.9	9.3	13.9	23.1	12.8	18.0	10.3	11.3	33.4	9.3	18.5	18.5	10.4	33.4	5.1
Min	4.1	4.1	4.6	6.3	6.2	5.1	4.6	5.1	3.1	2.1	2.1	3.1	6.1	10.3	2.1
					1			2.5			:		-		


Monthly Mean Wind Velocity at Khulna Period 1988-98 (Unit: m/s)

	January	February	Mucch	() April	May	June	July	August	September	October	November	December	Annual
和分数	500	材物等	6. jas		15.77	35	K 18 35	。清前時	特别的意	是的是特	英的數項	學學時期	Max & Min
					· · ·		177	· · · ·	1. 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			1 1	
Mean	6.7	6.2	1.9	12.8	9.3	8.9	8.0	7.7	8.2	5.7	7.1	7.9	11.15.51.54
Max	15.9	9.3	13.9	23.1	12.8	18.0	18.3	11.3	33.4	9.3	18.5	18.5	33.4
Min	4.1	4.1	4.6	6.2	6.2	5.1	4.6	5.1	3.1	2.1	2.1	3.1	2.1
						434	-						1 1 1 1 1 1

Source : Province Meteorology Office - Khulna (Unit m/s)


APPENDIX TO CHAPTER 6

Preliminary Engineering Design

LIST OF APPENDIX TO CHAPTER 6

		Page
Section 6.1.1	Geometric Design Criteria	A - 6 - 1
Section 6.2	Traffic Capacity Analysis	A - 6 - 11
Section 6.3.1	Geotechnical Bearing Capacity	
	(1) RC Bored Pile	A - 6 - 12
	(2) Tubular Steel Pile	A - 6 - 17
Section 6.4.1	Riverbank erosion	A - 6 - 22
Section 6.5	Project Cost Estimates	A - 6 - 23

(1) Maximum Superelevation (imax), Minimum Radius (Rmin) and Value of Superelevation on Curvature (i)

These three factors, i_{max}, R_{min} and i are related each other together with the design speed. The design speeds of 60 km/h is recommended as discussed previously to the Southern Section of Khulna Bypass.

The relation between minimum radius and maximum superelevation is calculated from the following formula.

$$R = \frac{Vd^2}{127*(i+f)}$$

where R: Radius (m)

Vd: Design Speed (km/h)
i: Superelevation (m/m)
f: Side Friction Factor

The side friction factor of 0.15 at the normal high speed are selected as the maximum allowable value in the RMSS, considering comfort of drivers and traffic safety.

Absolute maximum side friction factor of 0.4 may be used in order to check the safety on curves assuming that a vehicle is being operated at an excessive speed (20 km/h higher than the design speed i.e. Vd= 80 km/h) as shown in Table A-1.

Table A-1 Maximum Superelevation And Minimum Radius

Design Speed (km/h)	60
Max. Allowable Side Friction Factor (f)	0.15
Max. Superelevation (i max) %	3.0
Minimum Radius (m)	160
Side Friction Factor if 20 km/h higher than Vd	0.28
Absolute Max. Side Friction Factor	0.40

The side friction factor f = 0.15 and resulting maximum Superelevation i max = 3%

are also justified to be applicable to the urban street where the high accessibility to adjacent buildings and facilities should be maintained.

Crossfall of 2% applicable to traveled ways is mainly determined by drainage requirements. The minimum curvature which requires superelevation is determined by setting consistently low friction factor values, considering the effect of crossfall. Side friction factor of 0.05 recommended in the RMSS are used to determine sharpest curve without superelevation as shown in Table A-2.

Table A-2 Sharpest Curve without Superelevation

Design Speed (km/h)		60
Side Friction Factor (f)		0.05
Crossfall (%)		-2.0
Sharpest Curve without Supe	relevation (m)	 950

(2) Sight Distance

Stopping sight distance is the sum of two distances:

- The distance traversed by the vehicle from the instant that the driver sights an
 object necessitating a stop to the instant that the brakes are applied (Brake
 Reaction Time); and
- The distance required to stop the vehicle the brake from the instant that brake application begins (Braking Distance).
- 2.5 seconds is used for the former and the later is dependent on the initial speed and the coefficient of friction between tires and pavement.

The following equation is used for the calculation of stopping sight distance:

$$D = 0.694 * V + 0.00394 * V^2/f$$

where

D: Stopping Sight Distance (m)

V: Initial Speed (km/h)

f: Coefficient of Friction between Tires and Pavement

Stopping sight distances by each design speeds on the wet condition are shown in Table A-3.

Table A-3 Stopping Sight Distance on Wet Pavement

Design Speed	Initia	l Speed	Friction Coefficient	Stopping Sight	Distance (m)
(km/h)	%	km/h	on Wet Pavement	Calculated	Rounded
80	100	80	0.30	139.6	140
60	100	60	0.33	84.6	85

Sight distance is defined as the distance along a roadway that an object of specified height is continuously visible to the driver with eye-height above the road surface. The height of 0.15 m of object height is recommended by the RMSS and it is also specified in AASHTO. The height of driver's eye ranges 1.07 m to 1.2 m in international standards.

1.2 m is used as the eye-height for the Study, which is recommended by the RMSS and also specified in Japanese Standard. Table 4.4 tabulates the object and eye height specified in the RMSS and other standards.

As far as the Study may concerns, only the design element of minimum vertical curve length is affected by this value.

Table A-4 Summary of Object and Eye Height Specified

	Japan	AASHTO	RMSS	the Study
Driver's Eye Height for Stopping (m)	1.20	1.07	1.20	1.20
Object (m)	0.10	0.15	0.15	0.15

Vehicles frequently overtake slower moving vehicles on 2-lane two ways highway such as the Southern Section of Khulna Bypass. The passing must accomplished on lanes regularly used by opposing traffic. Accordingly, passing sight distance for use in design should be determined on the basis of the length to safely complete normal passing maneuvers.

AASHTO recommends the minimum passing sight distance of 407 m for Vd= 60km/h. If the design speed should increase up to 80 km/h, it would have to extend to 541 m or more.

Either passing sight distances could not be applicable on Rupsa Bridge because the bridge length should extend considerably due to applying larger vertical curve, and accordingly no passing/overtaking is allowed.

(3) Minimum Vertical Curve Length

Vertical curves effect gradual change between tangent grades in crest and sag curves and should result in a design that is safe, comfortable in operation, pleasing in appearance and adequate for drainage.

The major control for safe operation on crest vertical curves is the provision of ample sight distance for the design speed and rider comfort, while headlight sight distance and rider comfort govern the length of a sag vertical curve.

The following equations are used for the calculation of required vertical curve length and radius of vertical curve, of which longer length is applicable.

1. Rider comfort (tolerable limit)

$$L = \frac{\text{Vd}}{3.6} * t$$

where

L: Vertical curve length (m)

Vd: Design speed (km/h)

t: Minimum required time, t = 3 sec.

2. On Crest Curve (object height: 0.15 m, eye-height: 1.2 m)

$$L = \frac{D^2 * i}{440} \quad OR \quad R = \frac{100 * D^2}{440}$$

where

L = Vertical curve length (m)

D = Sight distance (m)

R = Radius of vertical curve (m)

i: Algebraic difference in grade (%)

As discussed previously, the design speeds of 60 km/h is recommended to the Southern Section of Khulna Bypass. However, the following comparison may ascertain its justification.

Design Speed	Sight	On Crest Curve					
Vd (Km/h)	Distance (m)	Min. Vertical Curve Length (m)	Min. Radius (m)				
60	85	99	1,643				
80	140	267	4,458				

Note: The computation is made on the condition that the algebraic difference of grades is 6%.

In case that the elevations of the top surface of Rupsa Bridge and the abutment are kept the same level, the bridge length will increase 84m long.

3. On Sag Curve (headlight sight distance: headlight height=0.75 m, angle=1°)

$$L = \frac{D^2 * i}{150 + 3.49 * D} \quad OR \quad R = \frac{100 * D^2}{150 + 3.49 * D}$$

where

L = Vertical curve length (m)

D = Sight distance (m)

R = Radius of vertical curve (m)

i: Algebraic difference in grade (%)

Design Speed	Sight	On Sag Curve						
Vd (Km/h)	Distance (m)	Min. Vertical Curve Length (m) Min. Radius (m)						
60	85	97 1,617	:					

Note: The computation is made on the condition that the algebraic difference of grades is 6%.

(4) Minimum Transition Curve Length

Transition curves are desirable on high speed roads between circular curves of substantially different radii and between tangents and circular curves.

The length necessary for controlling the steering on a curve is calculated from the following formula which provides required length for a natural and easy-to-follow path for drivers.

$$L = \frac{Vd}{3.6} * t$$

where

L: Minimum transition curve length (m)

V: Design speed (km/h)

t: Running time through the transition curve (sec)

Desirable running time through the curve to allow control of the steering is reported to be 3 to 5 seconds. The minimum transition curve length is set 50 m using the running time through the transition curve t = 3 sec and the design speed Vd = 60 km/h.

To make the change of centrifugal acceleration tolerable, the rate of increase of

centripetal acceleration (P m/sec³) is examined by Short's equation where Pmax = 0.75 m/sec³ for the urban street are adopted.:

$$P = \frac{\left(\frac{\text{Vd}}{3.6}\right)^3}{\text{L * R}}$$

where

P: Rate of increase of centripetal acceleration (m/sec³)

V: Design speed (kin/h)

L: Minimum transition curve length (m)

R: Minimum curve radius (m)

Table A-5 Minimum Transition Curve Lengths and its Rate of Acceleration.

Design Speed (km/h)	60
Running Time t (sec)	3
Minimum Transition Curve Length: L (m)	50
Minimum Curve Radius : R (m)	160
Rate of Increase of Centripetal Acceleration: P (m/sec ³)	0.58 < 0.75

(5) Minimum Horizontal Curve Length

The following values are designated to cover all the horizontal curve lengths, including transition curves if any, and to be of sufficient length for drivers to comfortably adjust their steering to allow for the change in curvature.

Rider Comfort (tolerable limit)

$$L = 0.278 * Vd * t$$

where

L: Minimum horizontal curve length (m)

Vd: Design speed (km/h)

t: Minimum required steering time on curve (sec), t = 6 sec

Design Speed (km/h)	60
Min. length calculated (m)	100
Adopted Value (m)	100

In the cases where the intersection angle (θ) is small, 7° or less, it is desirable to use a longer horizontal curve length than the minimum value. Minimum horizontal curve length is calculated as follows:

Minimum Secant Length, N min

N min =
$$\theta_0 * L/6 = 0.020 * L$$

where

 θ_0 : Intersecting angle to govern min. secant length $\theta_0 = 7^\circ = 0.122$ rad.

L: Minimum transition curve length (m)

Design Speed (km/h)	60
Min. Transition Curve Length (m)	50
Min. Secant Length (m) N min	1.00

Minimum Horizontal Curve Length, L min

L min =
$$12 * N min/\theta$$
 (rad.) = $688 * N min/\theta$ (degree)

Design Speed (km/h)	60
Min. Secant Length (m) N min	1.00
Min. Curve Length (m)	700/ 0

(6) Minimum Radius of Curve not Required Transition Curves

The minimum radius of curve for which no transition curves are required is calculated by using the following formula:

$$R = \frac{1}{24} \times \frac{L^2}{S}$$

where

S: Shift in meters between curve and tangent

L: Transition curve length (m)

R: Radius of circular curve (m)

Maximum shift Smax = 0.20 applied to the above formula and then minimum radius R min is calculated as follows:

Design Speed	Min. Transition	Min. Ru	tius (m)
(km/h)	Curve Length (m)	Calculated	Rounded
60	50	520	500

(7) Pavement widening on Curves

Pavements on curves are sometimes widened to make operating conditions on curves comparable to those on tangents or large radii of horizontal curves.

These widening on curves occur on ramps of interchange and turning roadways at channelizations of at-grade intersection.

Table A-6 shows the design widths of the pavement for turning roadways at channelizations.

Table A-6 Widening of Auxiliary Lane for At-grade Intersection for 1-lane One-way

in Meter

Radius on Turning	Wide	ning excluding Shot	ılder
R (m)	Semitrailer	Truck	Passenger Car
6			R≧6.82 m
7 8			3.5
11 9 -10 ¹² -1			
11 12	R≧13.0 m	R≧13.36 m	:
13	9.5		1 1 d
14	8.5	6.0	
15	8.0		
16	7.5	5.5	
17 18	7.0		
19	6.5	5.0	
20 21	0.5	J.0	
22			
23 24	6.0		
25 26			
27 28			
29	5.5	4.5	
30 32			
34 36	5.0		
38			
40 45	4.5		
50 55			
60		4.0	
70 80			
90	4.0		
110			
120 130			
140 150	3.5	3.5	3.0

(7) Superelevation Runoff

For added comfort and safety, the superelevation runoff should be effected uniformly over a length adequate for the design speed. In other words the length of superelevation runoff should exceed what is specified by the maximum relative slope mentioned below.

On the contrary, for the requirements of pavement drainage, the length of superelevation runoff in between -2% and 2% should not exceed what is computed by the minimum relative slope of 1/300.

$$1/q = \frac{Vd}{3.6 * B * W}$$

where

B: Roadway width from axle of rotation (m)

W: Rolling speed of vehicle (radian/sec.)

Design Sp	oced (km/h)	60
B (m)		6.0
W (rad./se	ec)	0.020
q	calculated value	139
	adopted value	140

Note: The axle of rotation is located at the inner edge of through traveled lane.

	Daily Future Traffic Volume	K-factor	K-factor Hour Future Flow Rate	Flow Rate	Capacity
The same of the sa		%	% Traffic Volume		
PCU Ratio	PCU Ratio - 2.5 - 2.9 - 2.0	8.0	. 10.		
PCU Conversion	PCU Conversion 5,829 2,536 1,120 8,663 5,829 18,483		1,479		1,687
Vehicle Conversion	Vehicle Conversion 2,536 1,120 3,465 2,915 11,152		892	656	1,292

^{**}K-factor: The rate of the 30th highest volume during the year to the AADT

Japanese Standard		
Ideal Capacity (2-lanes)	pcn/hour	2,500
Level of Service (level-2)		06.0
Adjustment Narrow Lanes		1.00
Factors Restricted shoulder width		1.00
Roadside condition of development		0.00
Grade and presence of heavy vehicles		0.90
Presence of motorcycles		0.93
Possible Traffic Volume	pcn/ponr	1,874
Design Traffic Volume	pcu/hour	1,687

AASHTO		
Ideal Capacity (2-lanes)	pcn/ponr	2,800
Level of Service		Ω
Ratio of Flow Rate to Ideal Capacity for Level of Service		0.64
Adjustment Factors Directional distribution		0.94
Narrow lanes and restricted shoulder width		0.85
Presence of heavy vehicles		0.903
Service Flow Rate	vehicle/hour	1,292
Full-hour Volume Peak Hour Factor	vehicle/hour	892
Flow Rate	vehicle/hour	656

80 ... 90 ... 100 ... 110 ... 120 ... 130 ... 140 ... 150 ... 160 Factored Geotechical Bearing Capacity of Bored Pile Depth from River Bed(m) 30 40 50 60 70 10 20 Fig. A6.3.1.1 2,000 32,000 30,000 22,000 20,000 10,000 8,000 000'9 4,000 28,000 26,000 24,000 18,000 16,000 14,000 12,000 Pile Capacity(KM) Factored Geotechnical Bearing Capacity of Bored Pile φ1.5m 7,546 310 3,328 4,413 4,544 5,296 9,383 0,343 .0,975 12,450 3,082 4,558 5,190 5,822 6,665 7,929 19,405 20,880 21,512 $\phi 2.0 m$ 22,144 1,607 8,982 16,414 227 764 3,892 6,244 11,214 14,898 15,656 17,425 18,183 18,941 19,952 21,468 22,479 23,995 25,764 23,237 25.006 φ2.5m 13,887 15,919 2,355 14,176 22,888 24,630 28,695 29,566 ф 3.0m 3 685 5,899 5,993 7,043 10,239 12,144 12,840 17,080 19,984 18,822 26,663 15,047 Depth 115.5 150.0 100.5 111.0 120.0 130.5 135.0 141.0 145.5 0.99 70.5 10.5 21.0 30.0 36.0 45.0 51.0 55.5 60.0 81.0 90.0 96.0 25.5 40.5

01.50

Ø 2.0m

Fig. A6.3.1.2 Ultimate Geotechnical Bearing Capacity of Bored Pile(\$\phi 1.5m)

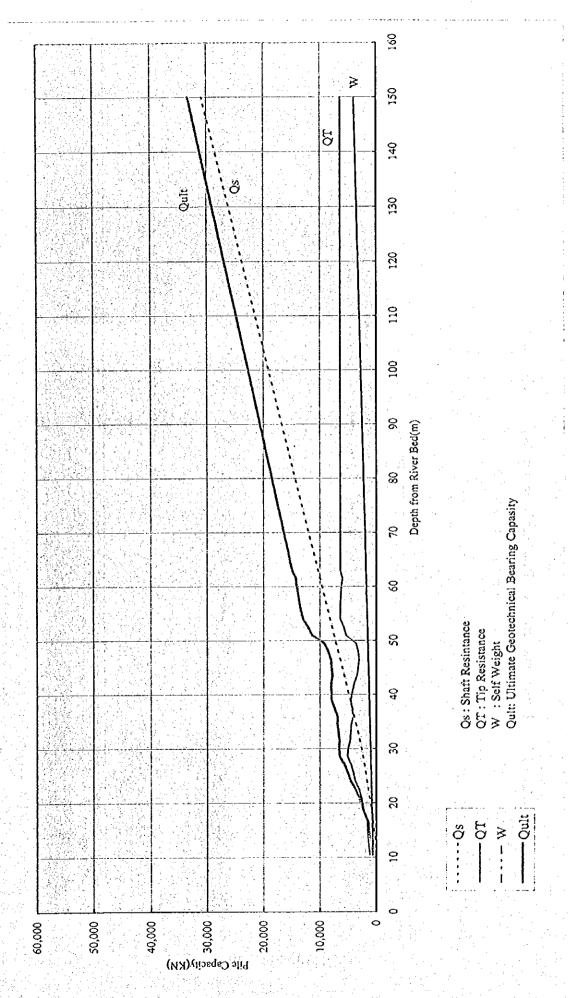


Fig. A6.3.1.3 Ultimate Geotechnical Bearing Capacity of Bored Pile(\phi 2.0m)

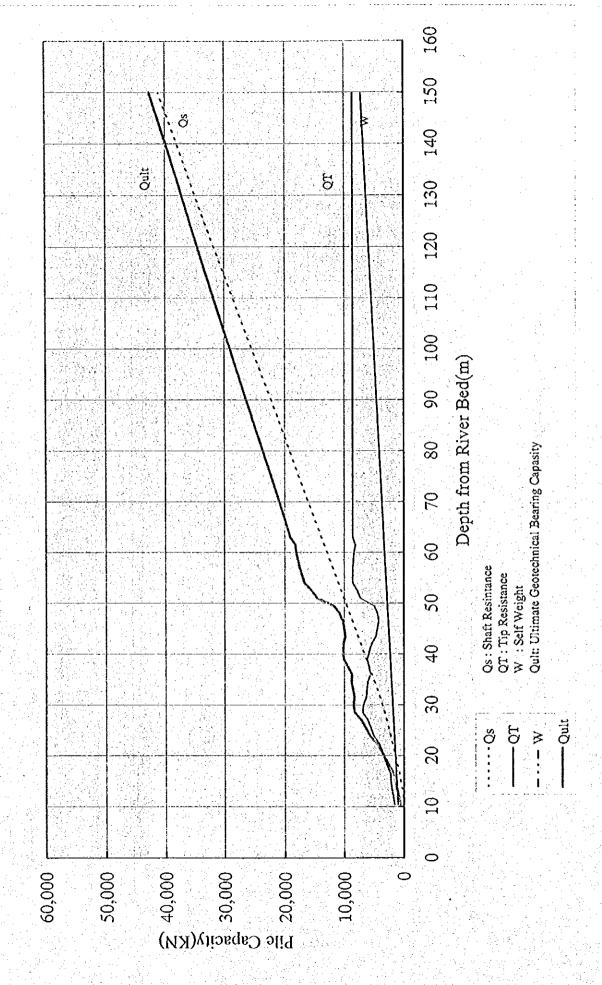


Fig. A6.3.1.4 Ultimate Geotechnical Bearing Capacity of Bored Pile(ϕ 2.5m)

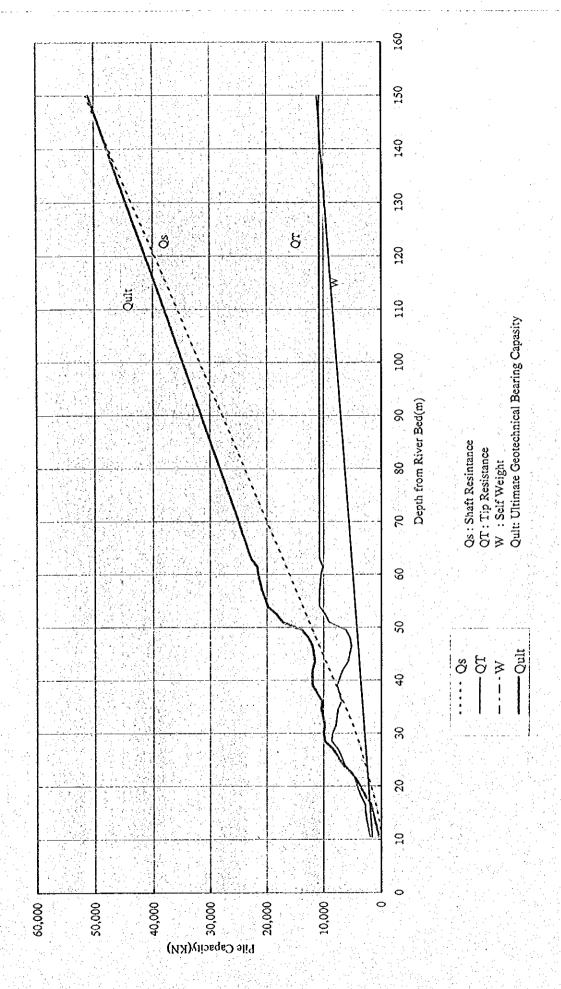
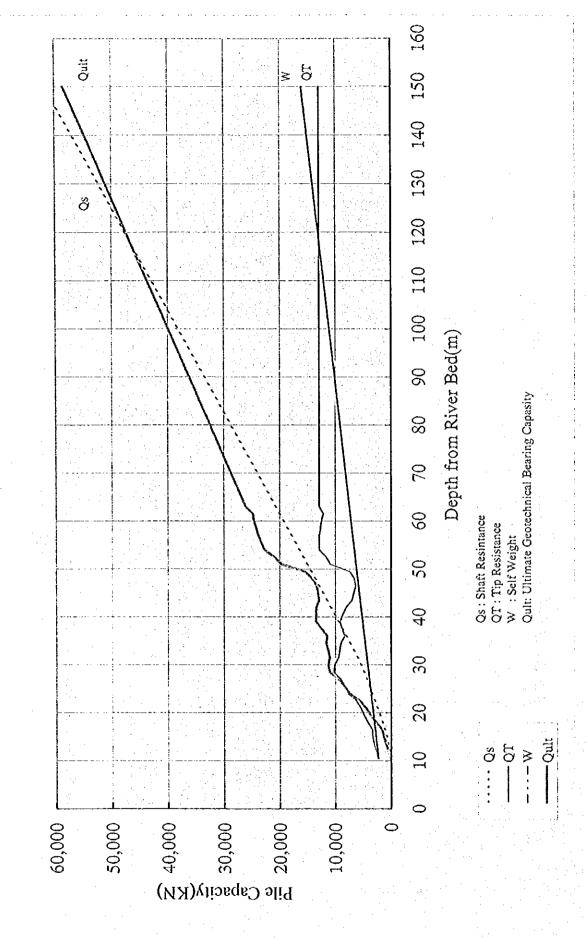
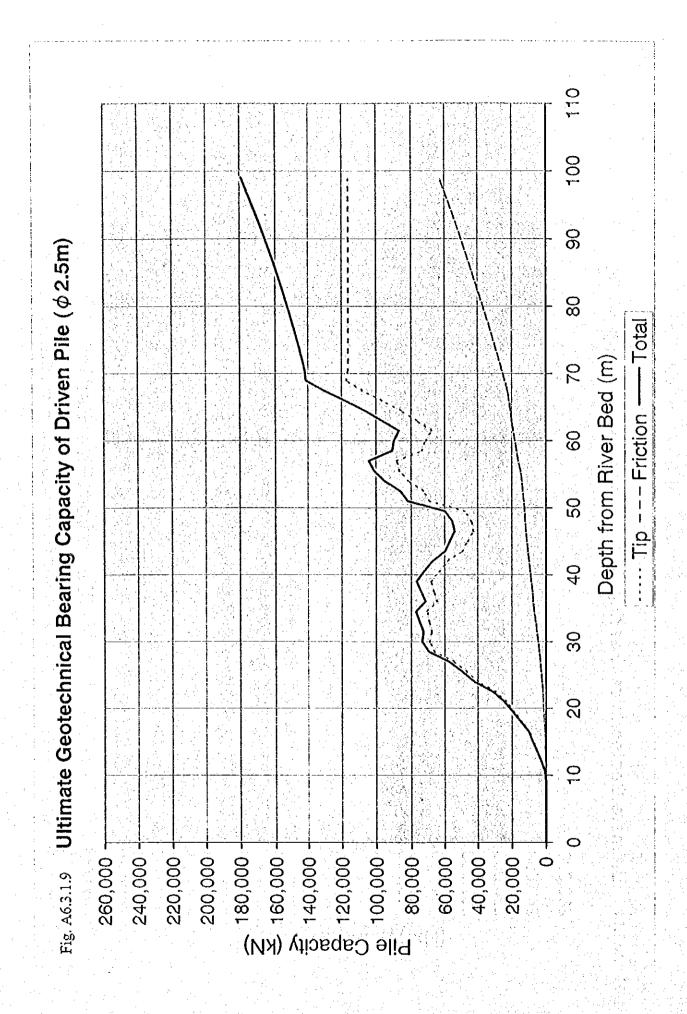
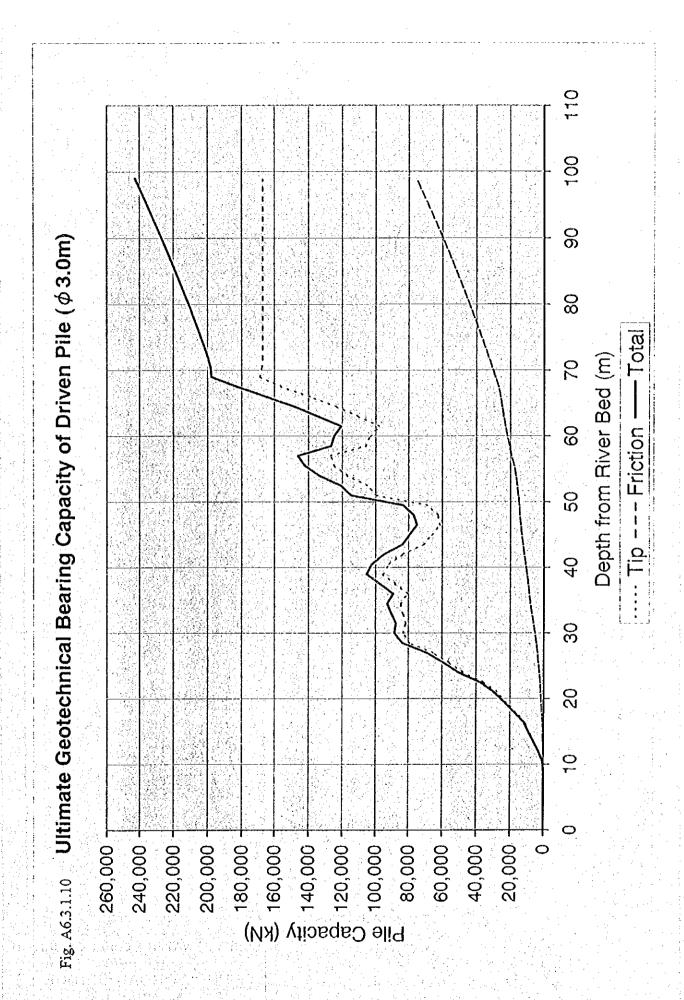
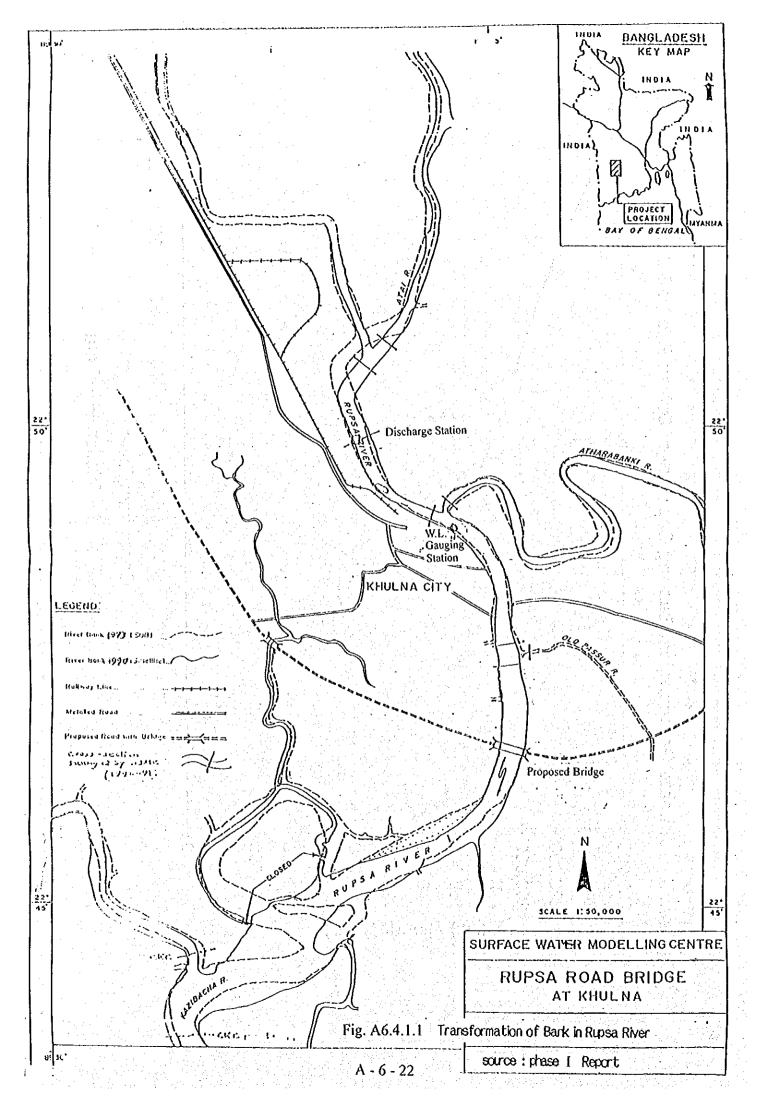



Fig. A6.3.1.5 Ultimate Geotechnical Bearing Capacity of Bored Pile(\$\phi 3.0m)


Factored Geotechnical Bearing Capacity of Driven Pile


3.0 m	331	4,168	10,605	26,612	39,818	41,783	46,109	35,741	51,698	63,994	56,229	66,783	89,227	118116	95,685	98,790	102,077	106,759	109,237
. 2.5 m	276	3,473	8.838	22,177	33,182	34,819	32,702	25,649	36,862	45,538	40,403	47,931	63,892	66,064	69,291	71.879	74,618	78,520	80,585
2.0 m	215	2,751	6.475	17,016	28,666	23,190	22.855	16,902	19,933	30,895	28,056	29,916	42,756	44,494	47,076	49,146	51,338	54,459	56,111
1.5 m	149	2,042	4,054	11,216	15,798	13,566	13,680	11,294	11,448	18,385	17,727	15.894	25,800	27,103	29,040	30,592	32,236	34,577	35,816
Depth(m)	10.5	15.0	19.5	25.5	30.0	34.5	40.5	45.0	51.0	55.5	0.09	64.5	70.5	75.0	81.0	85.5	90.0	0.96	0.66


	φ3.0m			φ2.5m			φ 2.0m		φ1.5m			100 110
ε							1					
# 63.0 H							Ì					- 8
E					3.3							- 8 8
φ2.5 m								1	1		```	- 2
				<u> 1995</u> 1999		\ \	7		, ,	7	<i>/</i>	. g
₩ 62.0 m									<u>, </u>	1000		 - ය <u>ි</u>
1										(- 6
. ø 1.5 m								\		1	\langle	ල
)												- &
_!.!												- 6
				,	7 1							- 0
	120,000	110,000	000'00		000'08	000,07	00000	000			, , , , , , , , , , , , , , , , , , ,	,
		- 1	- · · ·			icity (kh						

9 8 Ultimate Geotechnical Bearing Capacity of Driven Pile (ϕ 1.5 m) 8 ·Total Depth from River Bed (m) Tip --- Friction ဓ္ဌ 20 40,000 + Pile Capacity (kM) 60,000 -240,000 -180,000 -20,000 -260,000 -200,000 -80,000 220,000 Fig. A6.3.1.7

0 100 00 Ultimate Geotechnical Bearing Capacity of Driven Pile (ϕ 2.0 m) 8 - Total Depth from River Bed (m) 20 - Friction -09 20 --- diL --40 8 8 80,000 -- 000,09 20,000 -220,000 -40,000 240,000 -200,000 260,000 Fig. A6.3.1.8

STUDY ON CONSTRUCTION OF THE BRIDGE OVER THE RIVER RUPSA IN KHULNA (PHASE 2)

ALTERNATIVE:

ROUTE: ALT-1 Urban Structure Scheme L=10.043 km BRIDGE: OPT-1 PC Box Girder Bridge 7-Span Option

AT 1999 PRICES

201 Site Clearing	·					AT 1999 PRICES
201 Site Clearing	ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT COST	COST
3.01 Removal of Old Pavement M2	NO.				(Tk.)	(Tk.)
3.01 Removal of Old Pavement M2	2.01	Site Clearing	M2	337,640	30	10,129,200
4.01 Common Excavation			M2	4,400	38	
402						
4.03 Free-Divining Material M3 155,440 270 41,968,800 4.04 Horizontal Sand Drain M3 17,828 1,347 24,014,316 3.01 Structure Exeavation Up To 2m M3 11,022 92 1,014,024 3.02 3						
4.04 Horizontal Sand Drain M3 \$2,350 \$03 \$2,332,050 \$05 \$2,032,050 \$05 \$2,040,4316 \$05 \$15						41,121,044 41,060,000
4.05 Permeable Backfill						
5.01 Structure Exeavation Up To 2m M3 11,022 92 1,014,025 5.02 Structure Exeavation Over 2m M3 0 3,666 0 5.03 Binding Stone M3 1,098 970 1,055,060 5.04 Lean Concrete (l=10cm) M2 15,630 262 4,095,060 6.01 R.C. Pipe D=40cm M 1,502 4,746 7,128,492 6.02 R.C. Pipe D=120cm M 2,140 14,915 31,918,100 6.03 U.Ditch M 6,946 2,203 15,996,638 6.04 Inlet PACH 298 18,843 5,615,214 6.05 Concrete Curb M 2,712 555 1,505,160 6.06 R.C Box Culvert 1.5 m (H) x 4.0 m (w) M 2,712 555 1,505,160 6.07 R.C Box Culvert 1.5 m (H) x 4.0 m (w) M 25 62,946 1,573,650 6.08 R.C Box Culvert 2.0 m (H) x 7.5 m (w) M 27 135,339 6.09 R.C Box Culvert 2.0 m (H) x 1.5 m (w) M 23 70,786 1,628,078 6.09 R.C Box Culvert 2.0 m (H) x 1.5 m (w) M 27 135,349 3,556,833 6.09 R.C Box Culvert 2.0 m (H) x 1.5 m (w) M 30 208,160 6,244,800 6.10 R.C Box Culvert 3.5 m (H) x 14.0 m (w) M 30 186,656 6,560,568 6.11 R.C Box Culvert 3.5 m (H) x 14.0 m (w) M 30 186,656 5,605,688 6.12 R.C Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,656 5,605,688 6.13 R.C Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,656 5,605,688 6.13 R.C Box Culvert 4.0 m (H) x 12.0 m (w) M 36 484,170 17,430,120 6.14 Risia Canal Bridge L.S. 1 14,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 14,790,000 114,790,000 6.16 Pier Protection M2 5,810 4,894 22,834,140 6.17 River Revement M2 9,000 6,780 6,102,0006 6.18 River Revement M2 9,000 6,780 6,102,0006 6.19 River Revement M2 9,000 6,780 6,102,0006 6.10 River Revement M2 23,840 12 2,269 123,513,015 6.10 River Revement M2 23,840 12 2,269 123,513,015 6.10 River Revement M2 3,4435 2,269 123,513,010 6.10 River Revement M2 3,4435 2,269 123,51						
5.02 Structure Excavation Over 2m M3 1,098 970 1,065,060 5.03 Blinding Stone M3 1,098 970 1,065,060 5.04 Lean Concrete (t=10cm) M2 15,630 262 4,095,060 6.01 R.C. Pipe D=10cm M 1,502 4,746 7,128,495,060 6.02 R.C. Pipe D=10cm M 1,502 4,746 7,128,495 6.02 R.C. Pipe D=10cm M 2,100 14,915 31,918,100 6.03 U-Dirich M 6,946 2,303 15,996,638 6.04 Inlet Part M 1,502 M 1,502 M 1,503 15,996,638 6.04 Inlet Part M 1,502 M 1,502 M 1,503 15,996,638 6.04 Inlet Part M 1,502 M 1,503 15,996,638 6.05 M 1,503 M						
5.03 Blinding Stone M3 1,098 970 1,065,096 5.04 Lean Concrete (t=10cm) M2 15,630 262 4,095,060 6.01 R.C. Pipe D=120cm M 1,502 4,746 7,128,492 6.02 R.C. Pipe D=120cm M 2,140 14,915 31,918,160 6.03 U-Ditch M 6,946 2,303 15,996,638 6.04 Inlet BACH 298 18,843 5,615,214 6.05 Concrete Curb M 2,712 555 1,505,160 6.07 RC Box Culvert 2.0 m (H) x 4.0 m (w) M 25 62,946 1,573,650 6.07 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 27 135,439 3,656,853 6.08 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 20 7,0786 1,628,078 6.10 RC Box Culvert 3.0 m (H) x 14.0 m (w) M 23 297,860 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 8.0 m (w) M 30 186,856 5,650,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 36 484,170 11,7491,000						1,014,024
S.04 Lean Concrete (1=10cm) M2 15,630 262 4,995,666 6.01 R.C. Pipe D=40cm M 1,502 4,746 7,128,492 6.02 R.C. Pipe D=10cm M 2,140 14,915 31,918,100 6.03 U-Ditch M 6,946 2,303 15,996,638 6.04 Inlet RACH 298 18,843 5,615,214 6.05 Concrete Curb M 2,712 555 1,505,160 6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) M 2,712 555 1,505,160 6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) M 23 70,786 1,528,736 6.08 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 23 70,786 1,528,736 6.08 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 27 135,439 3,555,833 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 27 135,439 3,555,833 6.09 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 23 297,860 6,244,800 6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 23 297,860 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert 3.5 m (H) x 16.5 m (w) M 36 484,170 17,430,120 6.14 Haita Canal Bridge L.S. 1 14,790,000 11,4790,000 6.15 Telok Canal Bridge L.S. 1 14,790,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 23,43,140 6.16 Pier Protection M2 5,810 4,894 23,43,140 7,02 Granular Sub-base M3 5,435 2,269 123,513,015 7,03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7,04 Biluminous Prime Cost/Tack Coal Litre 406,388 34 13,817,192 7,00 Applicat Practed Base M3 17,747 3,463 61,457,861 7,00 Applicat Practed Base Course (i=10cm) M2 135,463 1,238 167,703,194 7,00						0
6.01 R.C. Pipe D=40cm M 2,140 14,915 31,181,00 6.02 W.C. Pipe D=120cm M 2,140 14,915 31,181,100 6.03 W.Ditch M 6,946 2,303 15,996,638 6.04 Intet BACH 298 18,843 5,615,214 6.05 Concrete Curb M 2,712 555 1,505,160 6.06 R.C Box Culvert 1.5 m (1) x 4.0 m (w) M 2,712 555 1,505,160 6.07 R.C Box Culvert 2.0 m (i) x 4.0 m (w) M 2,712 555 1,505,160 6.08 R.C Box Culvert 2.0 m (i) x 4.0 m (w) M 23 70,766 1,628,078 6.08 R.C Box Culvert 2.0 m (ii) x 4.0 m (w) M 23 70,766 1,628,078 6.09 R.C Box Culvert 2.0 m (ii) x 4.0 m (w) M 27 1335,439 3,556,853 6.09 R.C Box Culvert 2.0 m (ii) x 12.5 m (w) M 30 208,160 6,244,800 6.10 R.C Box Culvert 3.0 m (ii) x 14.0 m (w) M 30 128,656 5,655,680 6.11 R.C Box Culvert 4.0 m (ii) x 10.0 m (w) M 30 186,856 5,665,680 6.12 R.C Box Culvert 4.0 m (ii) x 12.0 m (w) M 30 186,856 5,665,680 6.13 R.C Box Culvert 4.0 m (ii) x 12.0 m (w) M 46 270,960 12,464,160 6.13 R.C Box Culvert 3.0 m (ii) x 12.0 m (w) M 46 270,960 12,464,160 6.13 R.C Box Culvert 3.0 m (ii) x 12.0 m (w) M 46 270,960 12,464,160 6.16 Fire Protection M2 5,810 48,4170 17,430,120 6.17 River Revertment M2 5,810 4,894 28,43,140 6.17 River Revertment M2 2,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 2,3340 12 2,365,088 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Cost/Fack Cost Litre 406,388 34 12 2,365,088 7.02 Granular Sub-base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Cost/Fack Cost Litre 406,388 34 13,817,129 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 103,18,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 807 103,18,641 7.07 Concrete Pavement (t=25cm) M2 135,463 807 103,18,641 7.08 Brick Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.09 Brick Pavement (t=25cm) M2 135,463 807 103,18,641 7.00 Goncrete Barrier L.S. 1 80,000,000 80,000,000 8.02 Main Span Superstructure L.S. 1 80,000,000 80,000,000 8.03 Mapproach Span Substructure L.S. 1 80,000,000 80,000,000 8.04 Mapproach Span Substructure L.S. 1 326,000,000 8.05 Mapproach S						
6.02 R.C. Pipe D=120cm M 6,946 2,303 15,966,538 6.04 Inlet BACH 298 18,843 5,515,214 6.05 Concrete Curb M 6,946 2,303 15,966,538 6.04 Inlet BACH 298 18,843 5,515,214 6.05 Concrete Curb M 2,712 5.55 1,505,160 6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) M 2,712 5.55 1,505,160 6.07 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 23 70,786 1,528,078 6.08 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 23 70,786 1,528,078 6.09 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 30 208,160 6,244,800 6.10 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 30 208,160 6,244,800 6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 23 297,860 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 80 m (w) M 30 186,856 5,505,560 6.12 RC Box Culvert 4.0 m (H) x 80 m (w) M 30 186,856 5,505,560 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 30 186,856 5,505,560 6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 114,790,000 414,790,000 6.15 Telok Canal Bridge L.S. 1 14,713,100 43,133,000 43,153,000 40,153,000	5.04	Lean Concrete (t=10cm)	M2	15,630	262	4,095,060
6.02 R.C. Pipe D=120cm	6.01	R.C. Pipe D=40cm	M	1,502	4,746	7,128,492
6.03 U-Ditch	6.02	R.C. Pipe D=120cm	M	2,140	14,915	31,918,100
6.04 Inlet 6.05 Concrete Curb 6.05 Concrete Curb 6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) 6.07 RC Box Culvert 2.0 m (H) x 4.0 m (w) 6.08 RC Box Culvert 2.0 m (H) x 7.5 m (w) 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) 6.09 RC Box Culvert 2.0 m (H) x 12.5 m (w) 6.10 RC Box Culvert 2.0 m (H) x 12.5 m (w) 6.10 RC Box Culvert 2.0 m (H) x 12.5 m (w) 6.11 RC Box Culvert 4.0 m (H) x 8.0 m (w) 6.11 RC Box Culvert 4.0 m (H) x 12.0 m (w) 6.11 RC Box Culvert 4.0 m (H) x 12.0 m (w) 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) 6.13 RC Box Culvert 4.0 m (H) x 12.0 m (w) 6.14 Hatia Canal Bridge 6.15 RC Box Culvert 4.0 m (H) x 15.0 m (w) 6.16 Hatia Canal Bridge 6.17 River Revetment 6.17 River Revetment 6.18 Revertment 6.19 River Revetment 6.19 River Revetment 6.10 River Revetment 6.10 River Revetment 6.11 RC Box Culvert 4.0 m (H) x 15.0 m (w) 7.01 Sub-grade Preparation 7.02 Granular Sub-base 7.03 Mechanical Stabilized Base 7.04 Biltuminous Prime Coal/Tack Coat 7.05 Asphalt Treated Base Course (t=10cm) 7.06 Asphalt Teated Base Course (t=10cm) 7.07 Concrete Pavement (=25cm) 7.08 River Revenment 7.09 Asphalt Teated Base Course (t=10cm) 7.01 Main Span Superstructure 7.02 Granular Sub-base 7.03 Mechanical Stabilized Base 7.04 Biltuminous Prime Coal/Tack Coat 7.05 Asphalt Treated Base Course (t=10cm) 7.07 Concrete Pavement (=25cm) 7.08 River Revenment 7.09 Asphalt Treated Base 7.00 Main Span Superstructure 7.00 River Revenment 8.01 Main Span Superstructure 8.02 Main Span Superstructure 8.03 Approach Span Superstructure 8.03 Approach Span Superstructure 1.04 Asphalt Revenment 1.05 Asphalt Revenment 1.06 Asphalt Revenment 1.07 Asphalt Revenment 1.08 Asphalt Revenment 1.09 Row Marker 1.00 Main Span Superstructure 1.00 Ma			M			15.996.638
6.05 Concrete Curb 6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) M 6.06 RC Box Culvert 2.0 m (H) x 4.0 m (w) M 6.07 RC Box Culvert 2.0 m (H) x 2.5 m (w) M 6.08 RC Box Culvert 2.0 m (H) x 2.5 m (w) M 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 6.09 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 6.10 RC Box Culvert 2.0 m (H) x 1.5 m (w) M 6.11 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 70 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 4.0 m (H) x 10.0 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w) M 70 RC Box Culvert 6.0 m (H) x 16.5 m (w						
6.06 RC Box Culvert 1.5 m (H) x 4.0 m (w) M 23 70,786 1,523,650 6.07 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 23 70,786 1,628,078 6.08 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 27 135,439 3,656,853 6.09 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 30 208,160 6,244,800 6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 30 208,160 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 111,790,000 114,790,000 6.13 RC Box Culvert, 5.0m (H) x 16.5 m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 143,153,000 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revertment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,005 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Biluminous Prime Coal/Tack Coat Litre 406,588 34 17,747 3,463 61,457,861 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 320,000,000 441,900,000 441,900,000 440,900,000 8.02 Main Span Superstructure L.S. 1 320,000,000 220,000,000 8.02 Main Span Superstructure L.S. 1 320,000,000 320,000,000 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 2,131,353 11,852,700 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 2,1435,539 10.03 Regulatory & Waming Sign BACH 84 6,103 512,652 10.04 Guide Sign PACH 84 6,104 34 467 174,658 10.00 RM Protect Lighting Control Panel BACH 84 6,101 517,101 Glorice BACH 184 6,101 13,416,672 1,416						
6.07 RC Box Culvert 2.0 m (H) x 4.0 m (w) M 23 70,786 1,628,078 6.08 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 27 135,439 3,656,853 6.09 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 30 281,610 6,244,800 6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 23 297,860 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert 4.0 m (H) x 16.5 m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Reventment M2 9,000 6,780 61,020,000 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Bituminous Prime Coat/Fack Coat Litre<						
6.08 RC Box Culvert 2.0 m (H) x 7.5 m (w) M 30 208,160 6,244,800 6.09 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 30 208,160 6,244,800 6,850,780 6,850						
6.09 RC Box Culvert 2.0 m (H) x 12.5 m (w) M 30 208,160 6,244,800 6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 23 297,860 6,850,780 6.11 RC Box Culvert 4.0 m (H) x 8.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert 5.0 m (H) x 16.5 m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 147,990,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 143,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 4.894 28,434,140 1.00 6.17 River Revetment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.08 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.08 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.09 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement Le.S. 1 441,000,000 441,000,000 400,000 8.03 Approach Span Substructure L.S. 1 260,000,000 820,200,000 8.03 Approach Span Substructure L.S. 1 260,000,000 820,000,000 9.01 Structural Members TON 0 46,529 0 0 10,000 000 10,000 000 000 000 000 0						
6.10 RC Box Culvert 3.5 m (H) x 14.0 m (w) M 30 186,856 5,605,680 6.11 RC Box Culvert 4.0 m (H) x 8.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert, 5.0m (H) x 16.5m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. I 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. I 143,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revertment M2 9,000 6,780 61,020,000 7.00 12,2686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Treated Base Course (t=10cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. I 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. I 820,200,000 820,000,000 820,						
6.11 RC Box Culvert 4.0 m (H) x 8.0 m (w) M 30 186,856 5,605,680 6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert, 5.0m (H) x 16.5m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revetment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.07 Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Brick Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Brick Pavement M2 37,173 149 5,533,777 8.01 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.04 Approach Span Substructure L.S. 1 320,600,000						
6.12 RC Box Culvert 4.0 m (H) x 12.0 m (w) M 46 270,960 12,464,160 6.13 RC Box Culvert, 5.0m (H) x 16.5m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revelment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coal/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,3171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.03 Approach Span Substructure L.S. 1 820,200,000 320,000,000 8.04 Approach Span Substructure L.S. 1 820,000,000 320,000,000 30,000,000 30,000,000 30,000,00				L		
6.13 RC Box Culvert, 5.0m (H) x 16.5m (w) M 36 484,170 17,430,120 6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revelment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coal/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 807 109,318,641 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Brick Pavement M2 37,173 1441,900,000 441,900,000 8.02 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Superstructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 10.01 Structural Members TON 0 46,529 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
6.14 Hatia Canal Bridge L.S. 1 114,790,000 114,790,000 6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revetment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coal/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Substructure L.S. 1 820,200,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 820,200,000 220,000,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 220,000,000 8.03 Approach Span Substructure L.S. 1 320,600,000 3						
6.15 Telok Canal Bridge L.S. 1 43,153,000 43,153,000 6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Revetment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 135,463 1,238 167,703,194 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,000,000 </td <td>6.13</td> <td>RC Box Culvert, 5.0m (H) x 16.5m (w)</td> <td></td> <td>36</td> <td></td> <td></td>	6.13	RC Box Culvert, 5.0m (H) x 16.5m (w)		36		
6.16 Pier Protection M2 5,810 4,894 28,434,140 6.17 River Reverment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 420,200,000 8.02 Main Span Superstructure L.S. 1 260,000,000 320,200,000 8.03 Approach Span Superstructure L.S. 1 320	6.14	Hatia Canal Bridge		September 1		
6.17 River Revetment M2 9,000 6,780 61,020,000 7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Substructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1			L.S.	2 3 - 1	43,153,000	43,153,000
7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Biltuminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 260,000,000 260,000,000 8.03 Approach Span Substructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substruc	6.16	Pier Protection	- M2	5,810	4,894	28,434,140
7.01 Sub-grade Preparation M2 223,840 12 2,686,080 7.02 Granular Sub-base M3 54,335 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Substructure L.S. 1 260,000,000 320,600,000 8.04 Approach Span Substruct	6.17	River Revetment	M2	9,000	6,780	61,020,000
7.02 Granular Sub-base M3 54,435 2,269 123,513,015 7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 80,200,000 820,200,000 8.03 Approach Span Substructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.02 Guardrail M 9,739 2,2			• M2			
7.03 Mechanical Stabilized Base M3 17,747 3,463 61,457,861 7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Superstructure L.S. 1 260,000,000 820,200,000 8.03 Approach Span Substructure L.S. 1 260,000,000 320,600,000 8.04 Approach Span Substructure L.S. 1 260,000,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.02 Guardrail						
7.04 Bituminous Prime Coat/Tack Coat Litre 406,388 34 13,817,192 7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 260,000,000 260,000,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 8.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,2						
7.05 Asphalt Treated Base Course (t=10cm) M2 135,463 807 109,318,641 7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.02 Guid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH						
7.06 Asphalt Concrete Surface (t=15cm) M2 135,463 1,238 167,703,194 7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Superstructure L.S. 1 260,000,000 260,000,000 8.03 Approach Span Substructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 84 6,103 512,652 10.05 Road Marking M2 34,847 307 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7.07 Concrete Pavement (t=25cm) M2 1,644 3,171 5,213,124 7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 8.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7.08 Brick Pavement M2 37,173 149 5,538,777 8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.02 Golid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree						
8.01 Main Span Superstructure L.S. 1 441,900,000 441,900,000 8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.05 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker						
8.02 Main Span Substructure L.S. 1 820,200,000 820,200,000 8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.05 Road Marking M2 34,847 307 10,698,029 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700						
8.03 Approach Span Superstructure L.S. 1 260,000,000 260,000,000 8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09						
8.04 Approach Span Substructure L.S. 1 320,600,000 320,600,000 9.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Stre						
9.01 Structural Members TON 0 46,529 0 10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post						
10.01 Solid Sodding M2 138,425 24 3,322,200 10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 <				1		
10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.02 Guardrail M 9,739 2,201 21,435,539 10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						3,322,200
10.03 Regulatory & Warning Sign EACH 84 6,103 512,652 10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356	10.02	Guardrail	M	9,739		21,435,539
10.04 Guide Sign EACH 34 268,581 9,131,754 10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 1 3,416,672 3,416,672 10.14 Toll Paza EACH 1 1,394,356 1,394,356			EACH	84	6,103	512,652
10.05 Road Marking M2 34,847 307 10,698,029 10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356				34		9,131,754
10.06 Concrete Barrier M 3,620 3,835 13,882,700 10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356				34,847		
10.07 Street Tree EACH 4,057 489 1,983,873 10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.08 KM Post EACH 18 934 16,812 10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.09 ROW Marker EACH 374 467 174,658 10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.10 Street Lighting Unit EACH 281 48,832 13,721,792 10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.11 Street Lighting Control Panel EACH 2 61,041 122,082 10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.12 Traffic Signal Unit EACH 56 36,625 2,051,000 10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.13 Traffic Signal Control Panel EACH 6 432,812 2,596,872 10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.14 Toll Paza EACH 1 3,416,672 3,416,672 10.15 Toll Office EACH 1 1,394,356 1,394,356						
10.15 Toll Office EACH 1 1,394,356 1,394,356						
	10.14			120 775 1		
TOTAL 2.34 (2.948,980,261	10.15			<u> </u>		
		TOTAL	4 3 5 7 7			2,948,980,261

STUDY ON CONSTRUCTION OF THE BRIDGE OVER THE RIVER RUPSA IN KHULNA (PHASE 2)

ALTERNATIVE:

ROUTE: ALT-2 Mobility Scheme L=9.234 km
BRIDGE: OPT-1 PC Box Girder Bridge 7-Span Option

* .					AT 1999 PRICES
ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT COST	COST
NO.			1	(Tk.)	(Tk.)
	Site Clearing	M2	305,223	30	9,156,690
	Removal of Old Pavement	M2	4,400	38	167,200
	Common Excavation	M3	160,708	103	16,552,929
	Borrow Material	M3	219,321	177	38,819,808
	Free-Draining Material	M3	138,718	270	37,453,860
	Horizontal Sand Drain	- M3	52,350	503	26,332,050
		M3		1,347	21,195,045
4.05	Permeable Backfill		15,735 9,648	92	
5.01	Structure Excavation Up To 2m	M3			887,616
	Structure Excavation Over 2m	M3	0	3,686	015 (00
	Blinding Stone	M3	944	970	915,680
	Lean Concrete (t=10cm)	M2	13,830	262	3,623,460
6.01	R.C. Pipe D=40cm	- M	1,528	4,746	7,251,888
6.02	R.C. Pipe D=120cm	- M	1,873	14,915	27,935,795
	U-Ditch	M	5,443	2,303	12,535,229
6.04	Inlet	EACH	299	18,843	5,634,057
6.05	Concrete Curb	M	2,683	555	1,489,065
6.06	RC Box Culvert 1.5 m (H) x 4.0 m (w)	M	25	62,946	1,573,650
	RC Box Culvert 2.0 m (H) x 4.0 m (w)	M	23	70,786	
	RC Box Culvert 2.0 m (H) x 7.5 m (w)	М	27	135,439	
	RC Box Culvert 2.0 m (H) x 12.5 m (w)	M	30	208,160	
	RC Box Culvert 3.5 m (H) x 14.0 m (w)	M	23	297,860	
	RC Box Culvert 4.0 m (H) x 8.0 m (w)	M	30	186,856	
6.12	RC Box Culvert 4.0 m (H) x 12.0 m (w)	M	46	270,960	
	RC Box Culvert, 5.0m (H) x 16.5m (w)	M	36	484,170	
	Hatia Canal Bridge	L.S.	30	114,790,000	
		L.S.		43,153,000	
	Telok Canal Bridge		6010		
	Pier Protection	M2	5,810	4,894	
	River Revetment	M2	9,000	6,780	61,020,000
	Sub-grade Preparation	M2	202,699	12	2,432,388
	Granular Sub-base	M3	49,473	2,269	
	Mechanical Stabilized Base	M3	16,438	3,463	56,924,794
	Bituminous Prime Coat/Tack Coat	Litre	366,719	34	
	Asphalt Treated Base Course (t=10cm)	M2	122,240	807	98,647,680
	Asphalt Concrete Surface (t=15cm)	M2	122,240	1,238	
	Concrete Pavement (t=25cm)	M2	1,644	3,171	5,213,124
7.08	Brick Pavement	M2	33,898	149	
8.01	Main Span Superstructure	L.S.	1	441,900,000	441,900,000
	Main Span Substructure	LS.	1	820,200,000	820,200,000
	Approach Span Superstructure	L.S.	1	260,000,000	
	Approach Span Substructure	L.S.	1	320,600,000	
	Structural Members	TON	0	46,529	
	Solid Sodding	M2	128,380	24	}
	2 Guardrail	M	6,682	2,201	14,707,082
	Regulatory & Warning Sign	EACH		6,103	
	Guide Sign	EACH		268,581	9,131,754
	Road Marking	M2		307	9,582,391
			31,213		
	Concrete Barrier	M	3,620	3,835	
	Street Tree	EACH		489	
	KM Post	EACH		934	
	ROW Marker	BACH		467	154,110
	Street Lighting Unit	EACH		48,832	
	Street Lighting Control Panel	EACH		61,041	
	2 Traffic Signal Unit	EACH	56	36,625	
	Traffic Signal Control Panel	EACH	6	432,812	
	Toll Paza	EACH		3,416,672	
	Toll Office	EACH		1,394,356	
10.1	TOTAL	1			2,875,474,188
<u> </u>		J	· · · · · · · · · · · · · · · · · · ·		~,~.,, 11100

ALTERNATIVE:

ROUTE: ALT-3 Accessibility Scheme L=7.758 km
BRIDGE: OPT-1 PC Box Girder Bridge 7-Span Option

AT 1999 PRICES

					AT 1999 PRICES
ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT COST	COST
NO.			7	(Tk.)	(Tk.)
2.01	Site Clearing	M2	265,362	30	7,960,860
	Removal of Old Pavement	M2	3,900	38	148,200
	Common Excavation	M3	129,148	103	13,302,265
	Borrow Material	M3	180,748	177	31,992,361
	Free-Draining Material	M3	119,502	270	32,265,540
	Horizontal Sand Drain	M3	52,350	503	26,332,050
	Permeable Backfill	M3	13,952	1,347	10,773,577
	Structure Excavation Up To 2m	M3	9,415	92	866,180
	Structure Excavation Over 2m	M3	0	3,686	<u> </u>
	Blinding Stone	M3	905	970	877,850
	Lean Concrete (t=10cm)	M2	12,420	262	3,254,040
	R.C. Pipe D=40cm	M	1,517	4,746	7,199,682
6.02	R.C. Pipe D=120cm	- M	1,581	14,915	23,580,615
6.03	U-Ditch	M	5,482	2,303	12,625,046
6.04	Inlet	EACH	296	18,843	5,577,528
6.05	Concrete Curb	M	2,708	555	1,502,940
	RC Box Culvert 1.5 m (H) x 4.0 m (w)	М	25	62,946	1,573,650
	RC Box Culvert 2.0 m (H) x 4.0 m (w)	M	23	70,786	1,628,078
	RC Box Culvert 2.0 m (H) x 7.5 m (w)	M	27	135,439	3,656,853
	RC Box Culvert 2.0 m (H) x 12.5 m (w)	M	30	208,160	6,244,800
	RC Box Culvert 3.5 m (H) x 14.0 m (w)	M	23	297,860	6,850,780
	RC Box Culvert 4.0 m (H) x 8.0 m (w)	M	30	186,856	5,605,680
		M	46	270,960	12,464,160
	RC Box Culvert 4.0 m (H) x 12.0 m (w)		36	484,170	
	RC Box Culvert, 5.0m (H) x 16.5m (w)	M	30		17,430,120
	Hatia Canal Bridge	L.S.	1	114,790,000	
	Telok Canal Bridge	L.S.	1 7 7 7 7 1	43,153,000	43,153,000
	Pier Protection	M2	5,810	4,894	28,434,140
	River Revetment	M2	9,000	6,780	61,020,000
	Sub-grade Preparation	M2	173,202	12	2,078,424
	Granular Sub-base	M3	42,535	2,269	96,511,915
	Mechanical Stabilized Base	: M3	13,667	3,463	47,328,821
	Bituminous Prime Coat/ Fack Coat	Litre	319,027	34	10,846,918
	Asphalt Treated Base Course (t=10cm)	M2	106,342	807	85,817,994
7.06	Asphalt Concrete Surface (t=15cm)	M2	106,342	1,238	131,651,396
7.07	Concrete Pavement (t=25cm)	M2	1,644	3,171	5,213,124
7.08	Brick Pavement	M2	28,026	149	4,175,874
8.01	Main Span Superstructure	L.S.	1	441,900,000	441,900,000
8.02	Main Span Substructure	L.S.	<u>i</u>	820,200,000	820,200,000
	Approach Span Superstructure	L.S.	1	260,000,000	260,000,000
	Approach Span Substructure	L.S.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	320,600,000	320,600,000
	Structural Members	TON	ô	46,529	0 0
	Solid Sodding	M2	105,404	24	2,529,696
		M	7,171	2,201	15,783,371
	Guardrail Regulatory & Warning Sign		 	6,103	463,828
		EACH	76		
$\overline{}$	Guide Sign	EACH	30	268,581	8,057,430
	Road Marking	M2	27,961	307	8,584,027
	Concrete Barrier	M	3,460	3,835	13,269,100
	Street Tree	EACH	3,141	489	1,535,949
	KM Post	EACH	14	934	13,076
	ROW Marker	EACH	282	467	131,694
10.10	Street Lighting Unit	EACH	268	48,832	13,086,976
	Street Lighting Control Panel	EACH	2	61,041	122,082
	Traffic Signal Unit	EACH	52	36,625	1,904,500
	Traffic Signal Control Panel	EACH	5	432,812	2,164,060
	Toll Paza	EACH	1	3,416,672	3,416,672
	Toll Office	EACH	1	1,394,356	1,394,356
	TOTAL	DATE:	<u> </u>	1,371,300	2,787,911,044
	IVINU				~,,0,,,11,077

Cost of Approach Bridge

(1) Superstructure Cost

Item of works	Unit	Quantity	Rate in Taka	Cost in million Taka
Structural Concrete (Low design strength)	Cum	3,140	12,098	37.988
Structural Concrete (High design strength)	Cum	3,406	25,224	85.913
Reinforcing Steel	Ton	768	69,889	53.675
Prestressing Steel	Ton	168	170,775	28.690
Pavement & Ancillary works	Sqm	11,520	4,662	53.706
			Total	259.972

(2) Substructure Cost

Item of works	Unit	Quantity	Rate in Taka	Cost in million Taka
Structural Concrete (Low design strength)	Cum	2,780	12,098	33.632
Reinforcing Steel	Ton	300	69,889	20.967
Bored Pile(D=900mm)	m	8,160	32,618	266.163
			Total	320.762

Cost of Canal Bridges and Culverts

(1) Cost of Bridge over Hatia canal

Item of works	Unit	Quantity	Rate in Taka	Cost in million Taka
Structural Concrete (Low design strength)	Cum	1,285	12,098	15.546
Structural Concrete (High design strength)	Cum	570	25,224	14.378
Bored Pile(D=750mm)	m	3,325	22,657	75.335
Reinforcing Steel	Ton	231	69,889	16.144
Prestressing Steel	Ton	28.5	170,775	4.867
Pavement & Ancillary works	Sqm	1,620	4,662	7.552
			Total	133.822

(2) Cost of Bridge over Telok canal

Item of works	Unit	Quantity	Rate in Taka	Cost in million Taka
Structural Concrete (Low design strength)	Cum	580	12,098	7.017
Structural Concrete (High design strength)	Cum	190	25,224	4.793
Bored Pile(D=750mm)	m	1,200	22,657	27.188
Reinforcing Steel	Ton	98	69,889	6.849
Prestressing Steel	Ton	9.5	170,775	1.622
Pavement & Ancillary works	Sqm	540	4,662	2.517
			Total	49.986

(3) Cost of Culverts

All cost are in Million Taka

Culvert at Station	Height(m)	Width(m)	Unit	Quantity/Leng th(m)	Rate in Taka	Total Cost
2+218.5	1.5	4.0	m	24.37	69,241	1.687
2+760.5	2.0	- 7.5	m	26.44	148,983	3.939
3+660.0	5.0	16.5	m	35.63	532,587	18.976
4+500.0	2.0	4.0	m	22.90	77,865	1.783
4+643.0	3.5	14.0	m	22.90	327,646	7.503
4+882.0	4.0	12.0	m	22.90	298,056	6.825
5+266.5	4.0	12.0	m	22.90	298,056	6.825
5+495.5	2.0	12.5	m	29.90	228,976	6.846
8+860.5	4.0	8.0		29.90	205,542	6.146
	ì				Total	60.53