Chapter 1 Introduction

1-1 Objective of the project

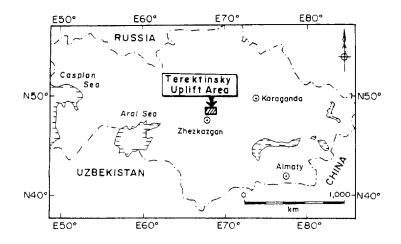
The purpose of the project is to discover new zone of mineralization by defining the mineral potential and geology of the Terektinsky Uplift area (Figure 1-1).and at the same time to accomplish technology transfer to the Kazakhstan counterperts.

1-2 Scope of work

Figure 1-2 shows the flow chart of the survey for three years. Table 1-1 and Table 1-2 are the quantities of work involved.

1-3 Survey Area

Terektinsky Uplift area is located in the central part of the Republic of Kazakhstan. The area covers an area of 6,900km² between latitude $48^{\circ} 10'00$ "N $\sim 48^{\circ} 10'00$ "N and $67^{\circ}45'00$ "E $\sim 69^{\circ}00'00$ "E (Figure 1-1).


Terektinsky Uplift area is located in the south-west of Central Kazakhstan, approximately 50 km northeast of Zhezkazgan. The southern boundary of the area can be accessed by car from Zhezkazgan along a paved road, and major unsealed roads provide access to the western and eastern sides of the area. Numerous small tracks give four wheel drive vehicle access to the northern boundary and centre of the area.

The topography of the area belongs to the "stage of old age" or "peneplain" topographic classification, and is predominantly characterized by low rolling hills cut by small seasonal drainages. In the western part of the area, where uplifted Carboniferous sediments have been deeply eroded, relief is greatest and elevations range from 372.3 m. to 645.3 m above sea level. In the eastern part of the area, which is underlain by Devonian volcanoplutonic rocks, relief is more moderate and elevations range from 413.6 m to 535.9 m above sea level.

The climate of the survey area is semiarid with sufficient precipitation to support sparse treeless grasslands. The temperature ranges between+33 °C in summer to -33°C in winter. Annual precipitation is 250mm per annum with the wettest months being June. The major vegetation is feathergrass, sagebrush and other grasses. Trees are notable by their total absence.

1-4 Field survey team

Table 1-3 indicates the personnel who comprised the field surveys team.

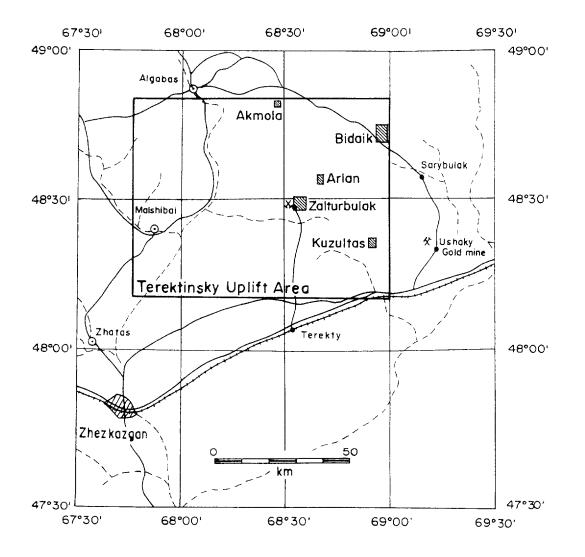


Figure 1-1 Location Map of the Project Area

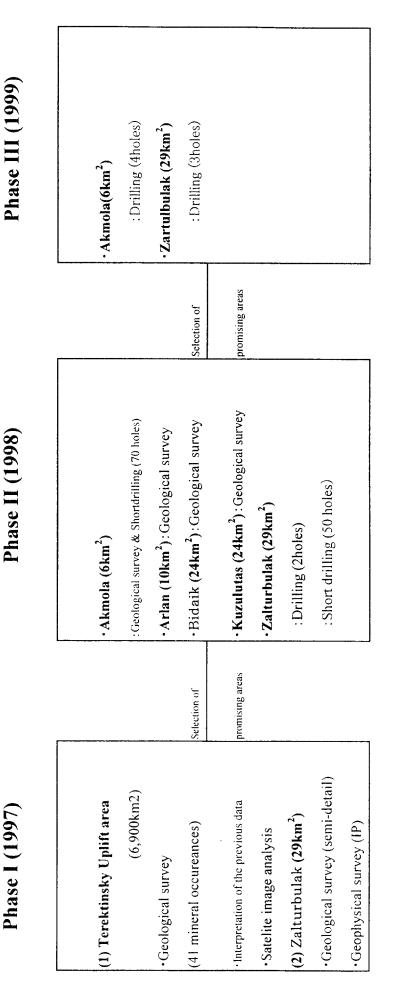


Figure 1-2 Flow Chart of the Terektinsky Uplift area project

Table 1-1 Survey Works

Phase	Survey method	Prospect area	Quantity of f	ield works				
			Ar	ea				
	Satelite image analysis	All area	6,800km ²					
	Geological survey	41prospects	300km²					
Phasel	Geological survey(semi-detail)	Zalturbulak	29km ²					
			Measuring line	Sampling points				
	Geophysical suevey(IP)	Zalturbulak	55.7km	497				

Phase	Survey method	Prospect area	Quantity of fie	ld works					
			Area						
		• Akmola	6 km ²						
	Geological survey(semi-detail)	• Bidaik	1	0 km ²					
		• Arlan	24 km ²						
		• Kuzulutas	24 km ²						
			Holes	Total depth (m)					
	Short drilling	• Akmola	70	1370					
Phase II	(geochemical exploration)	 Zalturbulak 	50	1400					
		• Arlan	2	30					
			Holes	Total depth (m)					
	Drilling survey	·Central Zalturbulak							
		zone	1	350					
L		• West of Aktau	1	350					

Phase	Survey method	Prospect area	Holes×Depth	Total depth (m)
		• West of Aktau	2×250	500
Phase III	Drilling survey	• Wetern Zalturbulak	1×300	300
		·Akmola	3×250,	
		- Hunolu	1×288	1038

Survey method	Item	Number
	•Chemical analysis (Au, Ag, Cu, Pb, Zn, Mo)	305
	•Polished thin section	66
	• Thin section	78
Geological survey	•Fluid inclusion (homogenization temp.)	46
	•X-ray diffraction	77
	• Age dating	4
	·Chemical analysis (Au, Ag, Cu, Pb, Zn, Mo)	161
Geological survey	• Polished thin section	35
(semi-detail)	• Thin section	31
	•X-ray diffraction	51
	•Fluid inclusion (homogenization temp.)	26
	•Age dating	3
Geophysical survey	•Resisitivity	25
	Chargeability	25

Table 1-2 List of laboratory tests and measurement

(2) Phase II

Survey method	Item	Number
	•Chemical analysis of Ore(Au, Ag, Cu, Pb, Zn, Mo)	300
	•Polished thin section	40
Geological survey	• Thin section	35
	·Fluid inclusion (homogenization temp.)	6
	·X-ray diffraction	25
	·Age dating	3
	·Chemical analysis of Ore(Au, Ag, Cu, Pb, Zn Mo)	450
Short drilling	·Polished thin section	40
	• Thin section	10
	•X-ray diffraction	10
	•Chemical analysis of Ore(Au, Ag, Cu, Pb, Zn, Mo)	400
Drilling	•Polished thin section	40
	•Fluid inclusion (homogenization temp.)	6
	• Thin section	10
	•X-ray diffraction	20

(3) Phase III

Survey method	Item	Number
	·Chemical analysis of Ore(Au, Ag, Cu, Pb, Zn, Mo)	850
	•Chemical analysis of Ore(S)	74
	•Polished thin section	50
Drilling	• Thin section	50
	•Fluid inclusion (homogenization temp. & salinity measurment)	10
	•X-ray diffraction	40
	•whole rock analysis	9
	• Age dating	5

Phase	Japan	Republic of Kazakhstan							
Phase I	Mr.Mitsuru Suzuki	Dr. Yriy Vasilenko							
	(Leader)	(Chief Geophysist)							
	Mr.Takaaki Nagao	Dr. Malik Rakhymbayev							
	(Geologist)	(Chief Geologists)							
	Mr.Goto Motomu	Mr.Sergey Yaskevich							
	(Geologist)	(Geophysist)							
	Mr.Steven Luke Wolliamson	Mr.Askar Kazybekov							
	(Geologist)	(Geologist)							
	Mr.Hiroyuki Ii	Mr.Alexey Novikov							
	(Chief Geophysist)	(Geologist)							
	Mr.Jyunnichi Sasaki	Mr.Marat Usipbayev							
	(Geophysist)	(Geologist)							
	Mr.Zdenek Duchoslav	Mr.Oleg Solovyev							
	(Geophysist)	(Geophysist)							
		Mr.Dmitriy Danilin							
		(Geophysist)							
Phase II	Mr.Mitsuru Suzuki	Dr. Yriy Vasilenko							
	(Leader)	(Chief Geophysist)							
	Mr.Takaaki Nagao	Dr. Malik Rakhymbayev							
	(Geologist)	(Chief Geologists)							
	Mr.Norio Ikeda	Mr.Sergey Yaskevich							
	(Geologist)	(Geophysist)							
	Mr.Kazuhiro Yamamoto	Mr.Askar Kazybekov							
	(Geologist)	(Geologist)							
		Mr.Alexey Novikov							
		(Geologist)							
		Mr.Marat Usipbayev							
		(Geologist)							
		Mr.Dmitriy Danilin							
		(Geophysist)							
Phase III	Mr.Mitsuru Suzuki	Dr. Yriy Vasilenko							
	(Leader)	(Chief Geophysist)							
	Mr.Takaaki Nagao	Dr. Malik Rakhymbayev							
	(Geologist)	(Chief Geologists)							
		Mr.Askar Kazybekov							
		(Geologist)							
		Mr.Marat Usipbayev							
		(Geologist)							

Table 1-3 Survey team

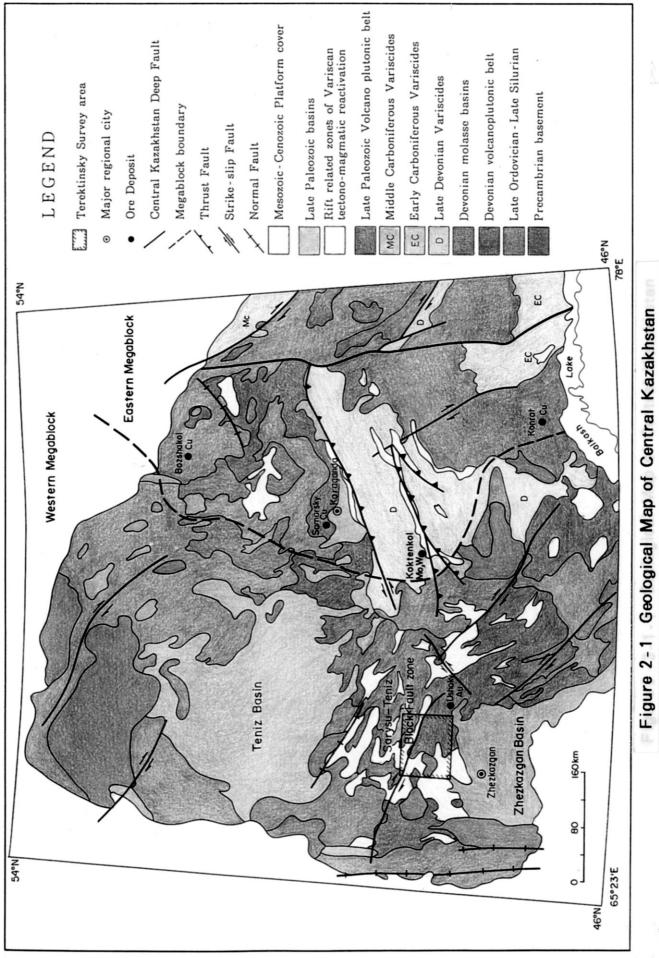
Chapte 2 Geology and mineralization in the Central Kazakhstan

2-1 Regional geological setting

In present day Central Kazakhstan, the Precambrian massifs, Paleozoic fold belts and related granitic plutons form an arch, convex to the northwest, with rock ages decreasing to the southeast (Figure2-1).

In the Paleozoic rocks, five fold systems have been identified which are interpreted to be the result of the progressive subduction of Cambrian oceanic crust beneath Precambrian massifs, commencing in the Late Ordovician and continuing, with various relocations of the subduction zone, up to the Late Carboniferous (Glukhan and Serykh, 1996). Initially, the subduction occurred along the rim area of Turkestan sea in eastern Kazakhstan. Later, other subduction zone appeared in the southern part of Central Kazakhstan. As the result of this, Central Kazakhstan have been taken lateral compression from south.

The Hercynian orogenies, (which involved continental collision that joined Europe and Asia), extended from the Middle Carboniferous into the Early Permian, and are interpreted to have resulted in a NNE-SSW directed compression of the region. The fold belts are believed to have formed linear zones, but later underwent bending and lateral displacement along major strike-slip shear zones. The Terektinsky uplift area lies at a major bend in the Caledonian fold belt .


The Terektinsky Uplift area is located within the Sarysu-Teniz Block Fault sytem which lies between the Late Paleozoic Teniz and Zhezkazgan basins. The Sarysu-Teniz zone consists of alternating, relatively long but narrow, horst-anticlines and graben-synclines trending northwest, cut by closely spaced sub-parallel reverse faults trending approximately east-west (Khain,1985). The cores of the horst-anticlines contain Precambrian and Early Paleozoic basement while the graben-synclines consist generally of tightly folded Upper Devonian carbonates. Lower-Middle Devonian volcanic molasse separate the basement from the Upper Devonian rocks.

2-2 Metallogeny of the Central Kazakhstan

A general outline of the mineral resources of Central Kazakhstan, including a description of metallogenic zones, metallogenic epochs, and deposit types, is presented in Malchenko and Ermolov (1996). The Terektinsky Uplift area lies in the Koktas-Sonaly metallogenic zone which contains Late Caledonian epoch tungsten, tin, molybdenum, copper, and gold mineralization hosted by Devonian volcanoplutonic rocks. The known tungsten, tin and molybdenum mineral occurrences are small and of sub-economic grade (by previous Soviet standards), and are therefore not considered an attractive exploration target. The Koktas-Sonaly metallogenic zone is believed to have a greater potential for economic copper-molybdenum and gold mineralization as, over the last decade, porphyry copper-molybdenum-gold, and quartz vein gold deposits have been found elsewhere in Central Kazakhstan's Devonian volcanoplutonic rocks

The main styles of mineralization noted in Central Kazakhstan's Devonian volcanoplutonic rocks are:

- Samarsky type, copper (Cu)-gold porphyry style mineralization related to the contact between volcanogenic sedimentary rocks and Middle Devonian porphyritic granitic intrusions
- Ushoky type, vein style, quartz-sulphide-gold (Au) mineralization hosted by Lower Devonian volcanic rocks, with a possible association to Upper Devonian granitic intrusives
- Granite related, quartz-cassiterite, cassiterite-tourmaline, and cassiterite-sulphide, tin (Sn) mineralization, and
- 4. Granite related, tungsten (W) and molybdenum (Mo) occurrences

(modified after Orlov, Kondrashenkov, Shchebunyaev, in Glukhan and Serykh, 1996)

Chapter 3 Geology of the Terektinsky Uplift area

3-1 Image Interpretation of LANDSAT/TM Data

Prior to the field investigation in Phase I survey, to grasp the regional geology and geological structure, false color and ratioing images were composed using LANDSAT/TM data.

(1) Satellite image data used and Image data processing

1) Image data

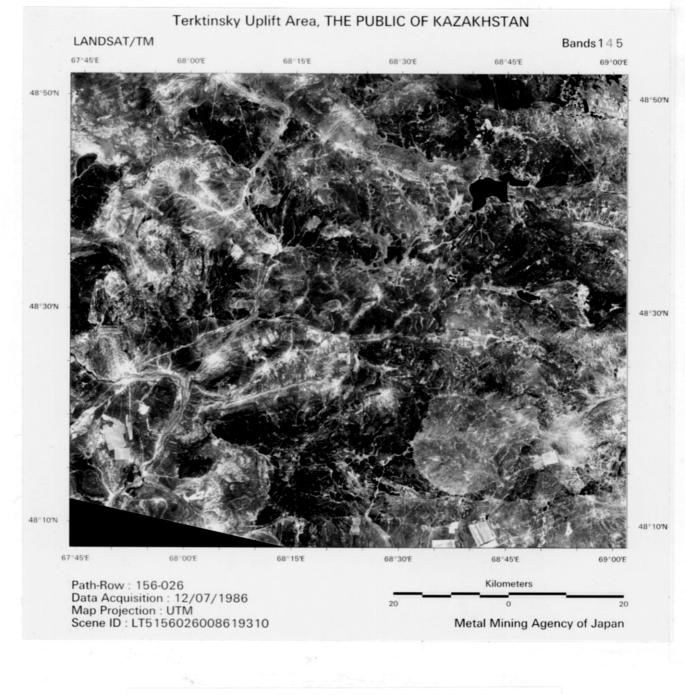
The following LANDSAT/TM data were selected as the best quality image covering the investigation area:

- Path : 156, Row : 026
- Image acquisition : 07/12/86
- Scene ID : LT5156026008619310

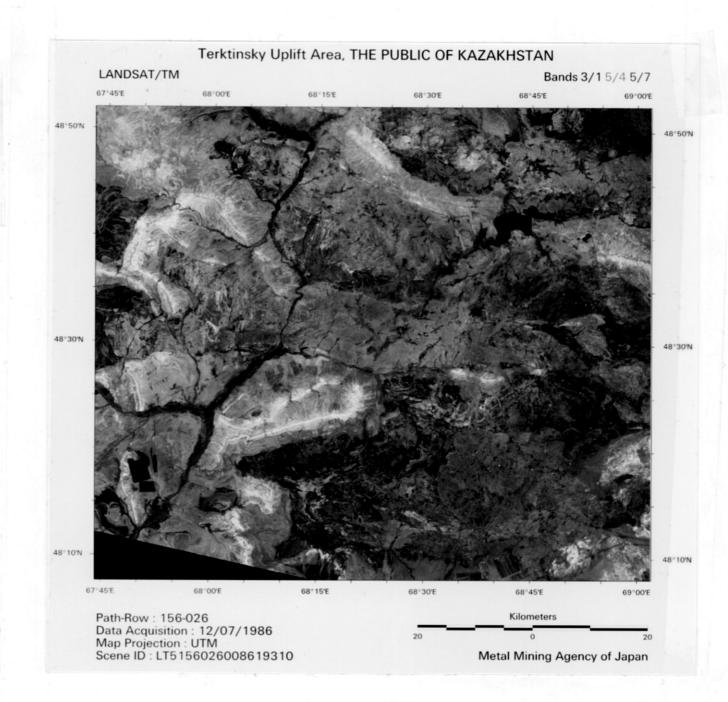
2) Composite images

Production of color composite images by using false color and ratioing images was carried out in order to extract geologic information from them. TM bands 1(assigned Blue), 4(assigned Green) and 5(assigned Red) were selected as the best band combination for the false color image by taking into account the reflectance behavior of surface materials such as soils and rocks and high spectral contrasts between neighboring pixels. Ratioing image process was performed by using the ratios 3/1(assigned Blue) and 5/4(assigned Green) to discriminate iron oxides, and the ratio 5/7(assigned Red) to discriminate clay minerals.

3) Image data processing


Image data processing applied to these composite images are as follows:

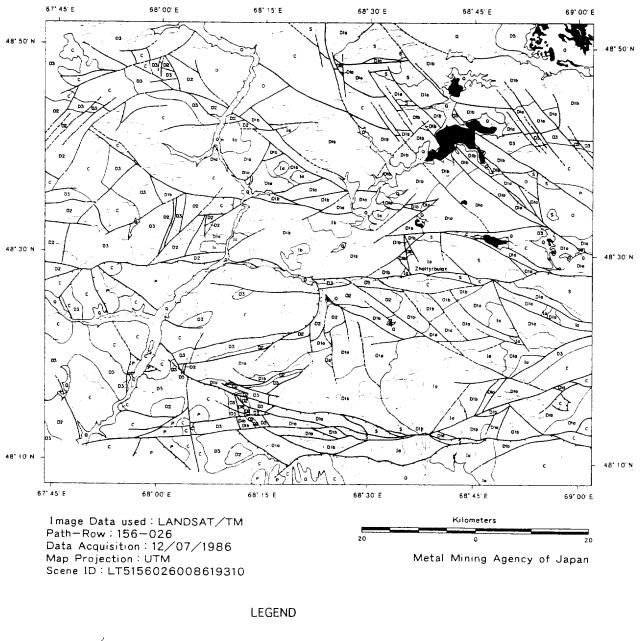
- Format transformation
- · Quality checking of original data
- · Geometric correction referring to "Navigation Chart"
- Trimming investigation area
- TM band selection(B:G:R=1:4:5)
- Rating(B:G:R=3/1:5/4:5/7)
- Contrast stretch
- Edge enhancement
- Annotation


Positive film generation

(2) TM image interpretation

The false color and rating images are shown in Figures 3-1 and 3-2 respectively. Geologic unit discrimination, geologic structural extraction, lineament extraction and alteration zone extraction were carried out on the generated images. Geological interpretation chart, Geological unit interpretation map and Geological structural interpretation map are shown in Table 3-1, Figure 3-3 and Figure 3-4 respectively. These results were evaluated by groundtruth.

Figure 3-1 LANDSAT/TM False Color Image


Figure 3-2 LANDSAT/TM Ratioing Image

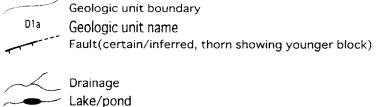
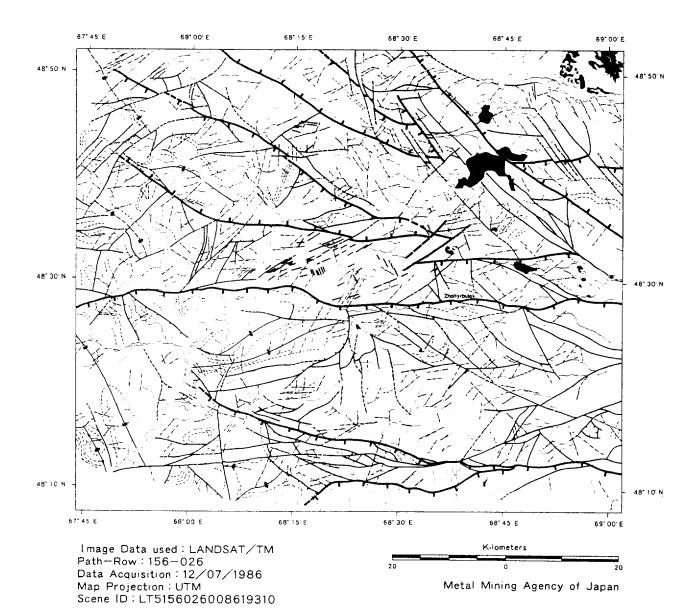
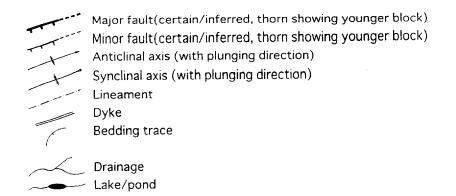

~~~~ <b>·</b>				· - ·			· · ·				r•	
Comparison * ²	Q(Quaternary)	P(Permian)	C(Carboniferous)	D3(Upper Devonian)	D2(Upper Devonian)	D1(Lower Devonian)	D1(Lower Devonian)	S(Silurian)	O(Ordovician)	D2-3(Upper Devonian)	D2-3(Upper Devonian)	D2-3(Upper Devonian)
Remarks	stream sediments, evaporites	well bedded	well bedded	bedded	well bedded	bedded, dykes	poor bedded, dykes		mottle	intrusive-like, dykes	intrusive-like, dykes	intrusive-like, dykes
Vegetation	sparse	none	very poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor
Landuse	little	very poor	very little	very little	none	very little	none	very little	very little	very little	very little	little
Texture	none	smooth	very rough	rough	smooth	rough	rough	smooth	smooth	rough	rough	smooth
Resistance	very low	low	high	intermediate	intermediate	intermediate	intermediate	low	low	intermediate	intermediate	intermediate
Density	very high	low	very high	high	moderate	high	high	high	high	high	very high	very high
Pattern	none	dendritic	parallel	subdendritic, parallel	subdendritic	subdendritic	dendritic		subdendritic	subparallel	subparallel	radial, parallel very high
Tone * ¹	green, white	reddish brown dendritic	Orange	purple	dark brown	brown	dark brown (bluish)	reddish brown subdendritic	purple	light grey	yellowish brown	greenish brown
Geologic Unit		۵.	υ	D3	D2	D1b	Dla	S	0	13	12	<u></u>

Table 3-1 Geological Interpretation Chart


Tone on LANDSAT/TM false color image

 $^{\star\,2}$  ) Compared with "Regional Geological Map of the Tretinsky Uprift Area"






# Figure 3-3 Results of Geologic Unit Interpretation



#### LEGEND





### 3-2 Geology of the Terektinsky Uplift Area

### 3-2-1 Geologic Setting

The Terektinsky Uplift area is located within the Late Paleozoic Sarysu-Teniz Block Fault system which consists of alternating, long but narrow, horst-anticlines and graben-synclines trending northwest, cut by closely spaced sub-parallel reverse faults trending approximately east-west (Khain, 1985). In the Terektinsky survey area, the cores of the horst-anticlines contain Precambrian and Early Paleozoic basement, while the graben-synclines consist generally of folded Upper Devonian and Lower Carboniferous carbonates and shallow marine sediments. Igneous rocks, which intruded Early Paleozoic basement during the Ordovician and Lower to Middle Devonian, are exposed in the horst-anticlines. The igneous rocks primarily belong to the Devonian volcano-plutonic belt which formed during the Caledonian orogenic phase in Central Kazakhstan.

### 3-2-2 Stratigraphy

The stratigraphy of the survey area consists of Proterozoic basement, Ordovician volcanics and sediments, Lower to Middle Devonian volcanics, pyroclastics and interbedded sediments, Upper Devonian and Lower Carboniferous carbonates and sediments, and unconsolidated Quaternary alluvial and lacustrine sediments. A schematic columnar section of the stratigraphy in the survey area is presented in Figure 3-5 and Figure 3-6 and Figure 3-7 present a geological map and geological cross sections of the survey area respectively. The detailed description of each formation was shown in Phase II report.

### (1) Proterozoic Era

The oldest rocks in the survey area belong to a block of uplifted Precambrian basement. They outcrop in the western half of the survey area, and according to previous regional geological mapping, consist of Lower Proterozoic porphyrite and chloritesericite-albite schist, and Lower-Middle Riphean quartz-sericite and quartz-chlorite schist.

### (2) Paleozoic Era

1) Ordovician System - Middle and Upper Ordovician Series (O₂ and O₃)

These series occur in the northwest and center of the survey area in horst blocks, and are believed to be oldest Paleozoic rocks in the survey area. The Middle Ordovician series  $(O_2)$  consists of sandstones and siltstones with lenses of limestone and andesite-

Ge	eologic Age		Columnar Section	Symbol	Russian Formation		Lithology	Tectonic Event		gneous ctivity	
			• • • • •		Symbol	(11)	Undifferentiated clay, sand,	Stable			
Cenozoic	Quarternary		· · · · · · · · ·	QI-QIII	Q	1-10	gravel and loam	platform	4		
		Upper-	<u> </u>		C2-3dz	365-630					Y
		Middle			C21s			_			
					CIBI			Basin and trough formation by tectono-magmatic reactivation		1	
	Carbon-			С	Cldl	150-250	Postorogenic marine	ion ctiv			
	ferous	Lower			Cljag		terrigenous and	rmat rea			
					Clis		carbonate sequence:	h fo atic			
					Clrg	100-250	limestone, sandstone,	roug magm			
					Clks		siltstone and conglomerate	nd t ono-		:	
Paleozoic					D3slsm	200-500		in a tect			
		Upper		D3	D3u t	200-1200		Bas by			Ĵ
	Devonian				D3zd	800-1000			1 -	-	Y
					D3dz	1000				:	Å
alec		Middle		D2	D211	2400	Synorogenic intermontane				T
				Dla	Dluz	900	basin sequence:				V
				Dib	Dlz:	600	conglomerate, sandstone,	Subduction			1
		Lower			Ditz	1125	rhyoiite, rhyodacite,			Y	
				Dlc	Dlut	930-1550	andesite-basalt tulf and lava				Å
		Upper		03	03	1800					J
		opper	<u> </u>		03krb	1000	Geosynclinal marine			orite	Y
	Ordovician				02a1	1500	sedimentary sequence:	Rifting		Granodiorite	1
	ordovieran	Middle	· · · · · · · · · · · · · · · · · · ·	02	02sv	600	sandstone, siltstone, conglomerate				ń,
					02k I	600	tuff and andesite-basalt lava			:	Granite
		Lower			01-2ks	500				. (	ບັ
ic	Distant	Middle-	ANAG		D: 0		Quariz-sericite and	Metamor-	Gabbro		
rozo	Riphean	Lower	htt	PR	R1-2		quariz-chiorite schist	phism	Ga		
Proterozoic	Lower Prote	rozoic			PRi		and porphyrite				

Figure 3-5 Columnar Section of Terektinsky Uplift Area



.

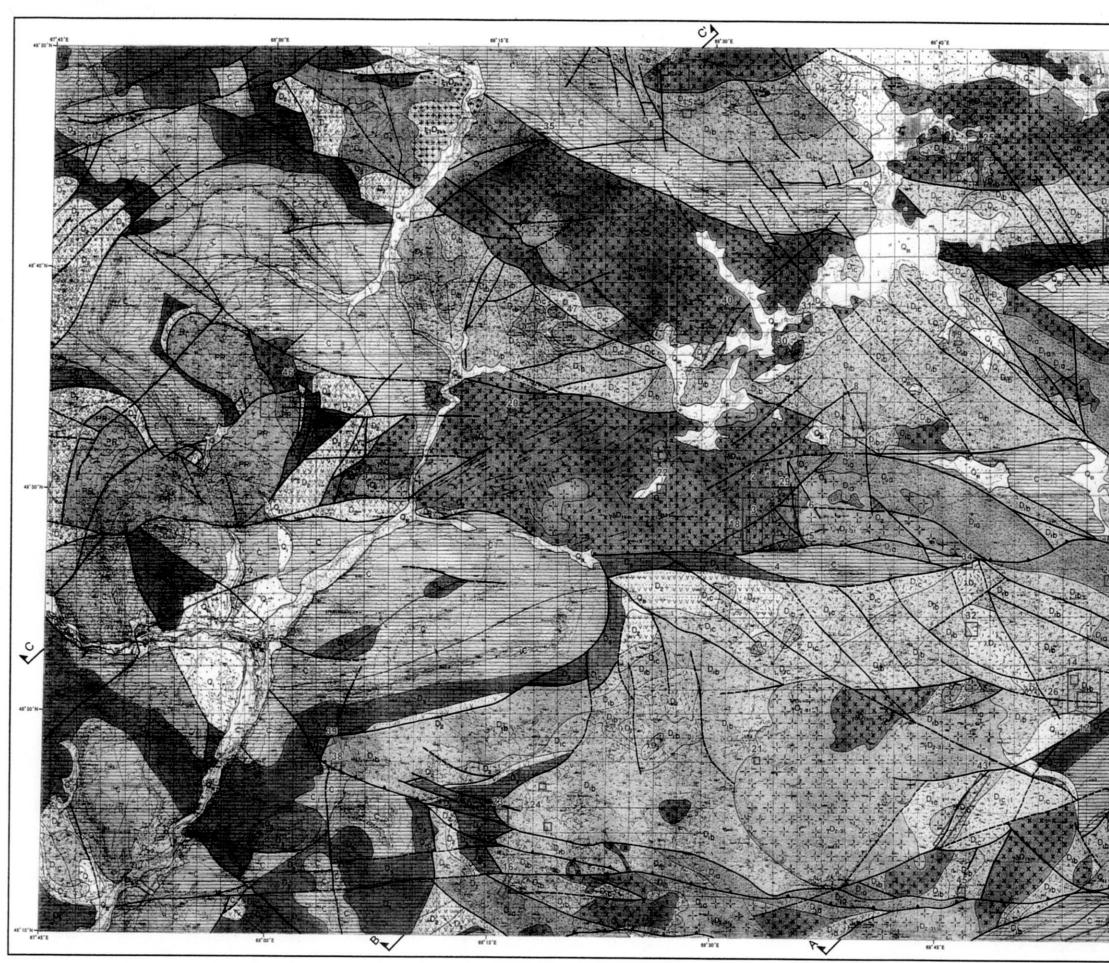



Figure 3-6 Geology and Mineral Occurrence Location Map, Terektinsky Uplift Area





-23~24-

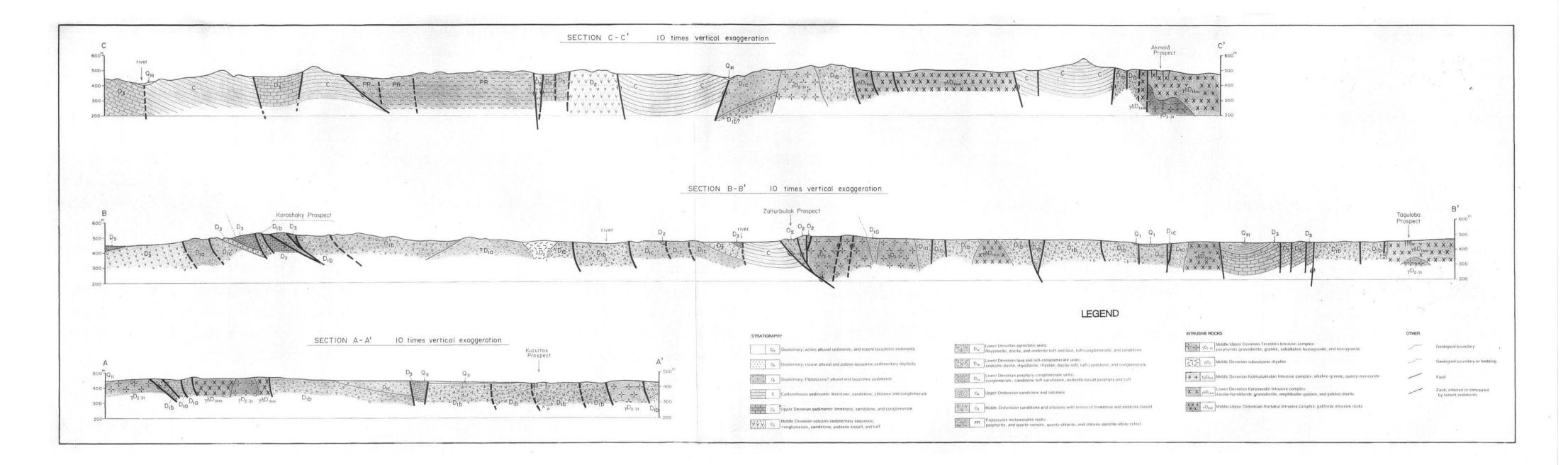



Figure 3-7 Geological Cross Sections of the Terektinsky Uplift Area

basalt lava. The Upper Ordovician series  $(O_3)$  consists primarily of sandstone and siltstone. Prior to uplift they were intruded by Lower and Middle Devonian granitoids, and overlain by Upper Devonian and Carboniferous rocks, which have since eroded.

According to previous detailed mapping, the Ordovician rocks are a geosynclinal sequence of sediments, pyroclastics and lavas. Descriptions of the formations suggests they represent a marine transgressive sequence from deep water to subaerial depositional environments.

The total thickness of the Formations is between 3,000 and 5,000 meters.

2) Devonian System - Lower and Middle Devonian Series (D_{1a}, D_{1b}, D_{1c}, and D₂)

Unconformably overlying the Ordovician geosynclinal sequence are Lower and Middle Devonian synorogenic extrusive volcanic rocks and postorogenic continental molasse sediments, including red sandstone, conglomerate, tuff-sandstone, tuffconglomerate, and tuff and lava of rhyolitic, rhyodacitic, dacitic, andesitic and basaltic compositions.

The Lower Devonian series occur through-out the center and east of the survey area in both anticlinal and synclinal structures., These units have been intruded by Lower and Middle-Upper Devonian granitoids.

The Middle Devonian series  $(D_2)$ , which is also exposed in both anticlinal and synclinal structures, is mainly confined to the west of the survey area. It consists of conglomerate, sandstone, and esite-basalt lava, and tuff.

Total thickness of the Lower Devonian units is between 3,500 and 4,100 meters.

3) Devonian System - Upper Devonian Series (D₃)

The Upper Devonian series unconformably overlies the Middle Devonian series rocks. It consists of several conglomerate and sandstone Formations (postorogenic continental molasse) unconformably overlain by limestones. The limestones indicate a change to deposition in shallow marine sedimentary basins, which were probably formed by the reactivation of Caledonian structures.

The Upper Devonian series rocks occur primarily in synclinal structures around the margins of the survey area.

Total thickness of the Upper Devonian units is between 2,200 and 3,700 meters.

4) Carboniferous System (C)

Carboniferous System rocks conformably overlie Upper Devonian limestones, and primarily occur in synclinal structures around the margins of the survey area. These units broadly consist of Lower Carboniferous sandstone, siltstone, limestone, dolomite and marl, characteristic of deposition in shallow marine sedimentary basins, and Upper Carboniferous sandstone, siltstone, shale and conglomerate, characteristic of a lacustrine depositional environment.

The total thickness of the Carboniferous units is between 600 and 1150 meters.

### 5) Quaternary System (Q_I, Q_{II}, and Q_{III})

The Quarternary System is composed of recent alluvium and lacustrine sediments in major drainages and several lakes ( $Q_{III}$ ), unconsolidated recent alluvium and lacustrine sediments in paleo-drainages and paleo-lakes ( $Q_{II}$ ), and some older, possibly Pleistocene, sand and gravel beds ( $Q_I$ ).

Quaternary sediments consist of unconsolidated clay, sand, loam, and shingle, and have a total thickness of between 1 and 10 meters.

### **3-2-3 Intrusive rocks**

Intrusive lithologies comprise approximately 25% of the survey area. They occur in the center and east of the area as massifs and plutons in anticlinal structures and up faulted blocks. Three intrusive phases, with rock types varying from gabbro to aklaine-granite, have been defined based on stratigraphic relationships and previous K-Ar dating.

The oldest intrusive phase is believed to be a gabbroic pluton of the Middle Ordovician Kurtukul (or Qurtukul) Intrusive Complex. All other phases belong to either the Lower Devonian to Carboniferous Karamendin Intrusive Complex or Middle-Upper Devonian Terektin Intrusive Complex.

The Karamendin Complex is important in connection with the mineralization. The current shape of Karamendin Complex bodies in the area relates to late Paleozoic tectonomagmatic reactivation and uplift, which imposed northwest and east-west trending fault boundaries on many of the rock units in the area. The main rock facies of the Karamendin Complex consists of granodiorite to granite. According to the Isotope age, the activity of the Karamendin Complex varies from middle Caledonian to Variscan in age (Figure 3-9).

### Chapter 4 Minerlization in the Terektinsky Uplift area

In the Terektinsky Uplift area there are numerous occurrences of precious, base and other metals. A 1:200,00 scale geochemical anomaly map, showing the location of all known mineral occurrences, was used as the basis for planning field investigations. During the phase I survey period, 41 mineral occurrences (excluding the Zalturbulak area) were investigated.

### 4-1 Survey method

Topographic maps at 1:100,000 scale and Landsat images were used for field survey. Tape and compass survey and detailed mapping (including sketching outcrops) was carried out in the mineralized zone. At the same time, rock samples for laboratory tests were collected. The samples for chemical analysis were collected mainly in mineralized zones. Outcrops vein systems were mainly channeled sampled and quartz float zones were grab sampled with several kilogram of material collected at each sampling location.

### 4-2 Results

Using the data obtain from these investigations, the mineral occurrences have been divided into the following categories:

- 1: Porphyry type mineralization( Samarsky porphyry type): Intrusive hosted disseminated sulfide mineralization.
- 2:. Vein style gold (Au) mineralization (Ushoky type): Vein style, quartz-sulfidegold(Au) mineralization hosted by Lower Devonian volcanic rocks
- 3: Others
- 3-1: Vein style, quartz-sulfide-gold (Au) mineralization hosted by Lower

Devonian granitic rocks

3-2: Volcanic hosted disseminated and fracture controlled sulfide mineralization (no significant quartz veining)

- 3-3:Intrusive contact related quartz-sulfide veins.
- 3-4: Miscellaneous occurrences including alluvial gold and uranium occurrences, and unclassifiable occurrences due to insufficient data.

All mineral occurrences investigated for three years are summarized in Table 4-1

		1			·						_		-	~	1		``	-Bionai se		
No.	Mineral Occurrence Name	Latitude	Longitude	flosuroek	Mineralization zone	Fault System Orientation	Alteration	Mineralogy	X-ray	Inclusion Flomogen.			V	letal Gra (ppm)	ıde			Ore Minerals (Polished	Minerali zation	<ol> <li>Size of Alterati</li> </ol>
		N	E				Intensity	Visual	Diffraction	Temp. (C)	No.	Au	Ag	Cu	የኮ	Z.n	other	Section)	Type	Mineralizati
	Akmola Southeast			altered Devonian sediment and f. gd.	Intense alt zone	3		Qz-Ser-												50 m × 5
	(Zabutaia)	48'47'07'	68"27:56"	Gramte	····	2	S	Qz-Ser-	Qz-Set-Kac Qz-Prp-	<u>'</u>	3	<0.01	<0.2	5.5	12	3.4	Ba:429	<u> </u>	<u>2b?</u>	(Alteration 700 m × 1
16	Baidos	48°12'38''	68"16'08"	granite porphyry	silicified zone	NS	S	Clay-Hem	Dia-Py±		4	<0.01	<0.2	39.8	11	2	Ba:697	Cp, Py, Po	26	(Silicified
	Demdi	4001153"	4.0"57.41"	December of literate contention	- <b>R</b> . <b>I</b>		9	2										Contraction De	_	
	Demui	48°41'52"	68"56'41"	Devonain sediment, volcanics	yz floats zone	²			Qz-PI-Or-		4	<0.01	0.4	54	59	33.3	Ba:1150	Cp, Py, Po	7	20 m × 4
18	G1	48°28′	68°31'	granodiorite (Karamendin)	qz vein zone	N5W	w	Qz	Hor-Chl		2	<0.01	<0.2	9.3	3	2.2			2b	(Quartz v
10	G2	48°37	68°46	Lower Devonian			w	Qz-Hem	Qz-Pl		2	0.08	0.3	89.5		3.7	Ba:1330	Cp, Py, Ht,	2a	Many quartz bou
<u> </u>	02	48.57	03 40	Exiwer Devolitait	qz vein-qz network			Q2-11cm	Qz-Or-Pl-		2	0.00	0.5	69.5	11	5.1	Ba:15,90		24	2km×2kn 10 m×3
20	G3	48°34	68°16′	granodiorite (Karamendin)	5 qz veins	N10E	w	Qz-Clay	Chl±Ser	158-338	2	<0.01	<0.2	20.5	5	<0.5			2b	(Average of Qu
21	G4	48°18'	68°33'	Bt granite (Terektin)	gz network-gz floats zone	N20E	w	Qz	Qz-Pl-Or- Bi	259-419	5	<0.01	<0.2	17.2	6	2.7			26	117 m × (Quartz bould
			00.35	Di glanice (Terexial)	q2 intermine q2 intration 2 time	14201.		<u> </u>		237 417		×0.01	<b>N</b> 0.2	11.0		+ <u>-</u>	1		20	50m×20m, 10
22	Greisen	48°32	68°27'	granodiorite (Karamendin)	qz floats zonc	N45W	w	Qz		229-366	2	<0.01	<0.2	17.7	<2	<0.5	L	ļ	<u>2b</u>	(Quartz bould
23	Karashaky -A	48"15'43"	68"15'19"	Devonain volcanics	intense alt zone	N75E	s	Qz-Clav	Qz-Ser- Kao-Or		9	<0.01	<0.2	12.4	13	9.9	Ba:5360		2a?	1000 m × 3 (Alteration
				· · · · · · · · · · · · · · · · · · ·																
24	Karashaky B, C, D	48''16'	68''17'	Devonain volcanics	yz vein	E-W&NE	S	Qz-Clay	Qz-Ser-Kao Qz-Pl-Or-		5	<0.01	<0.2	26.2	15	19.2	Ba:364		2a	4km×4
25	Koktal	48°45'44"	68"48'15"	contacted of granitoid and diabase	qz veinlets	N30₩	vw	Qz-Zeolite?	Bi-Ser		3	< 0.01	<0.2	76	5	35.3			4	400m×5
				<u> </u>	<b></b>				1											20 m × 2
26	Kuzultas West	48'20'43'	68°53'11"	Devonain acidic volcanics	qz voin and breccia zone	N50W	W	Qz-Py		324-343	1	0.29	2.1	16.3	18	3.7	<u> </u>	ļ	2a	(Quartz bould
27	Luguvoe	48"41'07"	68"59'12"	Devonain volcanics	ųz vein?														7	
												1					1			120 m × 8
28	N1	48°26'11"	68"56:30"	Lower Devonain volcanics	qz floats zone	N30E	w	Qz-Hem			5	<0.01	<0.2	18.5	23	5.1		ll lt	7	(Quartz bould
29	N2	48"30'03"	68°34'27"	Lower-Middle Devonain volcanics	qz floats zonc	N80E	w	Qz.			1	<0.01	< 0.2	21.3	6	2.2			7	80 m × 6
2							6													300 m × 7
30	N3 (Koktem?)	48"36'28"	68"34'29"	Quartz porphyry, granite, porphyry	intense silicified zone	N40W	S	Qz				<0.01	<0.2	50.2	17	11.4		Ht, Go	<u>2b?</u>	(Silicified boul
31	N4 (Shilde-1?)	48°37'58"	68'36'19"	Devonain voicanies	gz floats zone	N35E	w	Qz		246-379		<0.01	0.2	19.7	2	2.5			2a?	150 m ×
								0.5												200 m × 5
32	Reper	48"24'00"	68°47'30"	Lower-Middle Devonain rhyolitic volcanics	fissure filling zone, fissure develop randomly	NS (General trend)	м	Qz·Ser- Hem	Qz-Ser-Pl	234-305	7	0.07	5.6	58.5	643	177	As:928, Sb:103	El, Go, Lm	3	(Quartz vei boulder z
					Mineralization zone developing in the										0.0		Dente			Contact D.
33	<b>S</b> 1	48"28'18"	68°56'01"	Lower Devonain volcanies	contact zone of Devonian and Carboniferous	N40W	м	Qz			1	< 0.01	0.3	31.5	4	4			- 2a	80 m × 2
				Edwer Devolution forculaes	qz network and breeciated zone.							\$0.01	0.2	21		†				00 11 × 2
					Mineralization zone developing in the contact zone of Devonian and															
34	S2	48°26'49"	68"46'56"	Lower Devonain f. gd acidic volcanics granodiorite, diorite (Karamendin) and	Carboniferous	N75E	w	Qz			1	<0.01	<0.2	11.3	3	5.9	ļ		2a	150 m ×
35	S3	48°45'30'	68"18'30"	sediment	gz veiniets	N35W	w	Qz			6	<0.01	<0.2	37	ÿ	35.5		Cp, El		
36	S4	1041512-01	ر مر <del>د م</del> ران د	P. S.		LUCE	м	0.		134-328									21	(1) 7
- 30		48"45"24"	68"57'55"	granodiorite	ųz. zone	N90E	М	Qz	Qz-Ser-	1.54-526	4	<0.01	<0.2	14	4	5.4	<u> </u>		2h	60 m × 2
	Sartas	48"15"	68"57	granite porphyry	yz network zone	NUE	W?	Qz-Hem	Anh-Pl	222-295		0.56	0.2	372	11	111	<u> </u>	fron oxides	2a?	50 m × 50
	Shenber-A	48°17'44"	68°04'44"	intense silicified rock Lower Devonain volcanics and upper	yz floats zone	N70W	S	Qz			4	0.01	< 0.2	16.9	28	9.9	Ba:5360		7	<200 m × 1
39	Shenber-B	48°18'38"	68°04'14"	Devonain sediment	yz floats zone	NSOW	<u>M?</u>	Oz-Hem	Qz-Pl±Kao		4	<0.01	<0.2	14.6	8	57	Ba:4590		7	500 m ×
40	Shilde-2	48°36	68"29	sandstone (hornfels)	qz vein	NE	м	Qz			6	<0.01	<0.2	17.9	26	7.6	As:102.B a:1940		4	100 m × 4
				granodiorite (Karamendin) and														Cp, Go, Jar,		
41	Shubarkol	48`44'35''	68°46'35"	Devonian volcanics	qz vein zone	N75E	W	Qz-Ser	Qz-Ser-Pl Qz-Dol-	126-169	8	0.04	0.4	36.7	333	21.5	As:29	l.m Cn. Co. Iou	<u>2a</u>	1500 m ×
42	Shubarkol NW	48'45'17'	68"46'10"	ditto	qz floats zone	ENE	w	Qz-Epi	Hor-Py	159-263	3	<0.01	<0.2	19.6	.31	13.1		Cp, Go, Jar. Em	2b	100 m × 5
+3	Sn I	48"[7	68°48	Lower Devonian acidic voicanies	qz network zone	NE?	W	Qz-Clay-Py	Qz-Ser-Kao Qz-Pl±Kao	220-306		<0.01		43.5	48	47.6		Go, Ht	7	8 km × 2
				Lower Devonian volcanies and					±Hem± Ser								As-104	El, Cp, Mt,		
44	Tamuz	48"32	68'38'	sediment	qz floats zone	2	S	Qz-Hem	±Bi±Or	156-165	6	0.62	7,7	91.6	1150	11.8		Py, Go, Lm	2a?	<u>100 m × 1</u> 0
45	Uchastok "B"	48''12'	68"47	granodiorite (Karamendin)	qz floats zone	N35E	w	Qz-Epi	Qz-Pl-Ser± Py±Cc	125-385	4	< 0.01	<0.2	16.5	1	1.4			4?	100 m × 6
10	CONDICK D	40.12	UR1 4 /	granoulorae (Karamendin)	yz noats zone	0.00E	**	Q2-Epi	Qz-Ser-Pl-	12.0-30.3		\$0.01	<u.2< td=""><td>10.2</td><td>2</td><td><u> +</u></td><td> </td><td></td><td></td><td>4km × 4</td></u.2<>	10.2	2	<u> +</u>				4km × 4
46	Western Karamendin	48''34'	68"00"	quartz porphyry in Ordovician sediment	gz network and floats zone	N60E	w	Qz	Kao	175-404	7	0.02	17.7	51.3	901	170		Cl. Po	2a?	(Quartz bould
47	Zhamantas II	48''38'	68''20	granodiorite (Karamendin)	ųz floats zona		·1	Qz				0.01	<0.02	16.4		1.5			26"	30 m × 30
· · · · ·		10.1 (10.1		paneralerice (narditicitani)	yz nicaro zville	L		1 24	4	. 1		1 0.01	10.272	112.7		1 1.2		1	1 - V 1	

## Table 4-1: Summary of mineral occurrence and their characteristics in the Terektinsky Uplift Area (Regional survey area)

 47
 Zhamantas II
 48'38
 68'70
 granoductic (Karamendin)
 granoductic (Karamendi)
 granoductic (Karamendi)
 granoduct

	کن در برده می می می بید به مربوع می برد بر برد می می می می می می اور
lteration zone + dization zone	Previous Prospectings
m × 50 m ration zone)	
m × 50 m	
cified zone)	
	Drilling Hole : 1 site
m × 4 m lartz vein)	
tz boulder zone in ×2km area	itronch : Llino
m×3m	French : 1 line
of Quartz vein) 7 m × 3 m	Trench : 3 lines
boulder zone)	
)m, 10m×15m boulder zone)	Trench : 1 line
m × 300 m	Trench : 4 lines
ration zone)	(Total 1,600m) Lots of Trenches
m×4km	(Total 1,600m)
) <u>m×50m</u>	Trench : 10 lines (Total 132m), Previous Drilling Hole : 2 sites
m × 2 m boulder zonc)	
m × 80 m	Previous Drilling Hole: 3 sites
boulder zone)	
m × 60 m	
m × 70 m d boulder zone)	
a boulder zone)	
<u>m×lm</u> m×50 m	
rtz vein and	
lder zone)	
m×2m	
)m×1m	
m × 2 m	Trench : 2 fines
m × 50 m	
m × 100 m	
10 m × ?	
m × 40 m	
) m × 2 m	Trench : 9 lines
m × 50 m	
<u>n × 2 km</u>	
14/0	
$n \times 100 \text{ m}$	
<u>m × 60 m</u> л × 4km	
1	Lots of Trenches

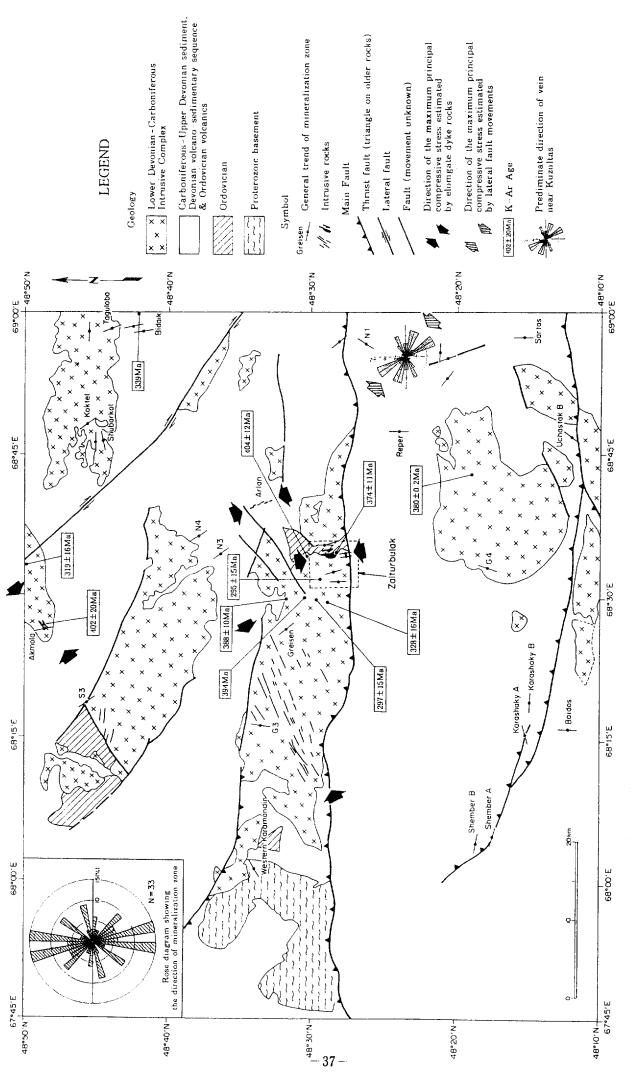
Table 4-2 Summary of mineral occurrence and their characteristics in the Terektinsky Uplift Area (Detail-subdetail survey area)

No.         More all Centration         Box trock         Miteral Life and one         System Description         New Set (Algebraic)         Set (Algebraic)         New Set (Algebraic)         Ne Set (Algebraic)         New Set (Algebraic					Fault	Alter	ation	Inclusion			Man Lin			
1       Central Zaburaus       Question za performance       NE-SW       Question zaburaus       Question zaburauus	No.	1	Host rock	Mineralization zone	System			Homogen.	Metal Grade (This survey)		ation	Size of Alteration zone + Mineralization zone	Resources	Previous Prospectings
2       (Akau vest)       (Differ in glastical	1	1		Cu bearing qz network	NE-SW			ore min.		Cp, Py, Mt, Po, Cb		0.3km×0.5km	-	Drilling Hole:2 sites, Trench:more than 10 lines
3(Western Zahlurbuk)(Wo.(M. K. Sale)(M. K. Sale)(M	2		granite in granodiorite	Cu, Mo bearing qz network	NE-SW			-		Cp, Py, Mo, Mt, Po		0.15km×0.5km	-	-
4       Zaturbulak porspect       and barring og veins (12) veins (22 onis)       NNW-SSE       Ser — prop       Ser-Chi-Py       164-424 (42 ottal 22 onis)       An : 0.05prm (C-1 vein; W-30m), An : 2.5prm (C-1 vein; W-15m), An : 2.5prm (C-1 vein; W-15m), 	3		ditto.	ditto.	NNW-SSE			205-324		Ср, Ру, Мо, Мі, Ро		0.7km×2km	-	Drilling Hole:4 sites, Trench:more than 15 lines
Image: Note that the second problem is an example of the second problem in an example of the second problem is the second problem in an example of the second problem is the second problem in the second problem is the second problem is the second problem in the second problem is the second problem is the second problem in the second problem is the second p	4	(Central Zalturbulak	granodiorite		NNW-SSE	Ser→prop	Ser-Chl-Py	164-424	Au : 0.95ppm (C-1 vein ; W=30m), Au : 18.9ppm (P-5 vein ; W=1.5m), Au : 2.5ppm (P-4 vein ; W=1.5m),				7398kg (C1+C2): Prev. data	Costean:2 lines, Drilling Hole:more than 40sites, Trench:more than 15lines
bAktaumonthe is andesheven itspe godENE-WSW propChi-Epi21/0Au 17,1ppm (W=1m): USSR dataEl PyAu venadomx400m7Akmolaquartz porphyry, granitoldsMo bearing qz networkNW-SE $Qz$ -Ser-rprop $Qz$ -Ser -Prop $ho: 445ppm (MJTA-9, W=38m)$ Mo. Py. CpPorphyry Mo mineralization zz U:z400/mW; 20m8Arlandioritevein type goldNNE-SSW $Qz$ -Ser-rprop $Qz$ -Ser-Tour-Kao- tourmaline in silicified zonez180Au : 4.16ppm (boulder)Cp. Py. Po. ElAu vein2000mx300m9BidaikLower Devotian dacite ~ andesite volcanicsAu bearing qz veinNS $Qz$ -Chi $Qz$ -Ser-Ser129-288Au : 29.08ppm (boulder)El. Cp. Py. OxidesAu vein2000mx300m10Tagutobagranite porphyryqz veinNNE-SSW $Qz$ -Chi $Qz$ -Ser-Smec- Tour?115-189Au : 1.7ppm (boulder)fron OxidesAu vein800mx400m (Quartz veintets)11BidaikNE (No.2 zone)Devorian dacite ~ volcanicsAu hearing qz veinNNE-SSWSilicified zone along z vein $Qz$ -Ser-Ser Smec- Lm137-334Au : 1.7ppm (boulder)El. Cp. PyAu vein200mx2m (Quartz veintets)12Kanahamana SWLower Devotian actific volcanicsAu hearing qz veinNNE-SSWSilicified zone along z vein137-334Au : 0.000m/x2m (Au : 0.03ppm (W=2m))El. Cp. PyAu vein200mx2m (Qz vein)13BidaikNE (No.2 zone)Devorian dacite ~ volcanics	5	NE Zalturbulak	hornblende diorite	vein type gold	E-W	ргор	Epi-Chl-Ca	-	-	El, Py	Au vein	150m×80m	(P2): USSR data	Drilling Hole:8 sites, Trench:8lines
7       Akmola       quartz porphyty, granitoids       Mo bearing qz network       NW-SE       Qz-Ser-rprop Epi-Ca       Qz-Ser-rprop Epi-Ca       150-360       Mo: 445ppm (MJTA-9, W=38m)       Mo. Py. Cp       Porphyty Mo       L:±400m?, D:±100 W:20m         8       Arlan       diorite       vein type gold       NNE-SSW       Qz -clayprop tourmaline in silicified zone       Qz-Ser-Tnur-Kao Pr-Chi-Epi       ±180       Au : 4.16ppm (boulder)       Cp. Py. Po. El       Au vein       2000mx300m         9       Bidaik       Lower Devonian dacite~ andestic volcanics       Au bearing qz vein       NS       Qz -rChi       Qz-Ca-Ser       129-288       Au : 29.08ppm (boulder)       El, Cp. Py. Oxides       Au vein       275m×20m         10       Taguloba       granite porphyty       qz vein       NNE-SSW       silicified zone along qz vein       Qz-Ser-Smec- Tuur?       115-189       Au : 1.7ppm (boulder)       Iron Oxides       Au vein       800ms/400m (Quartz veinlets)         11       BidaikNE (No.2 zone)       Devonian dacite ~ andesite volcanies       Au bearing qz vein       NNE-SSW       silicified zone along qz vein       Qz-Ser-Smec- Lm       137-334       Au : 1.7ppm (boulder)       Iron Oxides       Au vein       200mx2m (Qz vein)         12       Kundha zone       Lower Devonian acidie       Au bearing qz vein       NNE-SSW </td <td>6</td> <td>Aktau</td> <td>diorite in andesite</td> <td>vein type gold</td> <td>ENE-WSW</td> <td>ртор</td> <td></td> <td>±170</td> <td>Au : 17.1ppm (W=1m):USSR data</td> <td>El. Py</td> <td>Au vein</td> <td></td> <td>Olokg (P2):</td> <td>Drilling Hole: 5sites, Trench: more than 30lines</td>	6	Aktau	diorite in andesite	vein type gold	ENE-WSW	ртор		±170	Au : 17.1ppm (W=1m):USSR data	El. Py	Au vein		Olokg (P2):	Drilling Hole: 5sites, Trench: more than 30lines
8       Arlan       diorite       vein type gold       NNE-SSW       tourmalline in silicified zone       QZ-Set-Four-Nabe       ±180       Au : 4.16ppm (boulder)       Cp. Py. Po. El       Au vein       2000mx300m         9       Bidaik       Lower Devonian dacite~ andesitic volcanics       Au bearing qz vein       NS       Qz - Chl       Qz-Ca-Ser       129-288       Au : 29.08ppm (boulder)       El. Cp. Py. Oxides       Au vein       275m×20m         10       Taguloba       granite porphyry       qz vein       NNE-SSW       Qz - Chl       Qz-Set/Smec- Tour?       115-189       Au : 1.7ppm (boulder)       Iron Oxides       Au vein       800m×400m (Quartz veinlets)         11       BidaikNE (No.2 zone)       Devonian dacite~andesitic volcanics       Au bearing qz vein       NNE-SSW       Silicified zone along qz vein       Qz-Set/Smec- Tour?       137-334       Au : 286~364ppm (boulder). Au : 0.93ppm (W=2m)       El. Cp. Py       Au vein       200m×2m (Qz vein)         12       Koughung zong SW       Lower Devonian acidic       Orachung Ra wing       NW SW       Silicified zone along qz vein       0z Set Smec Ca       183-243       Au : 0.93ppm (W=2m)       El. Cp. Py       Au vein       200m×2m (Qz vein)	7	Akmola	quartz porphyry, granitoids	Mo bearing qz network	NW-SE			150-360	Mo : 445ppm (MJTA-9, W=38m)	145ppm (MJTA-9, W=38m) Mo. Py. Cp		Mo mineralization zone; L:±400m?, D:±100m?, W:20m		Drilling Hole : 4sites, Trench : 35lines
9Bidaik andesitic volcanicsAU bearing dz veinNS $Qz \rightarrow Chi$ $Qz - Ca-Ser$ $129-288$ $Au : 29.08ppm (boulder)$ EI, Cp, Py, Oxides $Au$ vein $275m x 20m$ 10Tagulobagranite porphyryqz veinNNE-SSW $Qz \rightarrow Chi$ $Qz - Chi$ $Qz - Ser/Smec-Tour?115-189Au : 1.7ppm (boulder)Iron OxidesAu vein\frac{800m \times 400m}{(Quartz veinlets)}11BidaikNE(No.2 zone)Devonian dacite \sim andesiticvolcanicsAu bearing qz veinNNE-SSWsilicified zonealong qz veinQz-Ser/Smec-Lm137-334Au : 286 \sim 364ppm (boulder)EI, Cp, PyAu vein200m \times 2m(Qz vein)12Kuululus zone SWLower Devonian acidicUower Devonian acidicQz-Hun-Ba vaireNW SWsilicified zonealong qz veinQz-Ser/Smec-Lm183-243Au : 0.93ppm (W=3m)EI, Cp, PyAu vein700m \times 100m$	8	Arlan	diorite	vein type gold	NNE-SSW	tourmalline in		±180	Au : 4.16ppm (boulder)	Cp. Py. Po. El	Au vein	2000m×300m	-	Drilling Hole:4sites. Trench:more than 4lines
10Tagulobagranite porphyryqz veinNNE-SSWQz $\rightarrow$ ChlTour?115-189Au : 1.7ppm (boulder)Iron OxidesAu vein(Quartz veinlets)11BidaikNE (No.2 zone)Devonian dacite $\sim$ andesitic volcanicsAu bearing qz veinNNE-SSWsilicified zone along qz veinQz-Ser-Ser/Smec- Lm137-334Au : 286 $\sim$ 364ppm (boulder).El. Cp. PyAu vein200m×2m (Qz vein)12Ku gulutas zone SWLower Devonian acidic Lower Devonian acidicOze-Um-Ba voincNW SWsilicified zone along qz veinOz Ser/Smec Ca183-243Au : 0.93ppm (W=3m)Cp. PyAu vein700m×100m	9			Au bearing qz vein	NS	Qz→Chl	Qz-Ca-Ser	129-288	Au : 29.08ppm (boulder)	El, Cp, Py, Oxides	Au vein	275m×20m	(P2):	Drilling Hole:7sites 1031m. Trench:4lines 450m
11       (No.2 zone)       volcanics       Au bearing q2 vein       NNE-SSW along q2 vein       Lm       137-334       Au : 0.93ppm (W=2m)       El. Cp. Py       Au vein       (Q2 vein)         12       Kusululas zone SW       Lower Devonian acidic       Oze-Um-Ra veinc       NW SW       silicified zone       Oz Ser/Smec Ca       183-243       Au : 0.93ppm (W=3m)       Cp. Py       Au vein       700mx100m	10	Taguloba	granite porphyry	qz vein	NNE-SSW	l()2 → (h)		115-189	Au : 1.7ppm (boulder)	Iron Oxides	Au vein	800m×400m (Quartz veinlets)	-	Drilling Hole:1site 145.6m, Trench:9lines:3380m
17 Kurululas zone SW Lower Devonian acidic Oze-Hun-Ba vaine NW SW silicified zone Oz Ser/Smec Ca 183 243 (Au : 0.9ppm (W=3m) Cp. Py Au yein 700mx100m	11			Au bearing gz vein				137-334		El, Cp, Py	Au vein		-	Trench:1lines 10m
	12		Lower Devonian acidic	Qz-Hm-Ba veins	NW-SW	silicified zone		183-243		Cp. Py	Au vein		(P2,Depth 0- 15m):	Drilling Hole:more than 3 sites, Trench:70lines 1250m (including zone SE)
13Kuzulutas zone SEditto.ditto.E-W. WNW- ESE. NW- SEHm-Ba, Qz- scr/Smec-Ca133.2-267.5 (especially 133.2-190)Au : 0.36ppm (boulder)Cp. Iron OxidesAu vein1400×600m	13	Kuzulutas zone SE	ditro.	ditto.	WNW~ ESE、NW-	1		(especially	Au : 0.36ppm (boulder)	Cp. Iron Oxides	Au vein	1400×600m	-	Trench:10lines 3380m
14     Kuzulutas zone NW     ditto.     qz veins and silicified rocks     E-W. N-S. NE-SW     silicitied zone along qz vein     Au : 0.46ppm (boulder)     Au : 0.46ppm (boulder)	14	Kuzulutas zone NW	ditte.	gz veins and silicified rocks	1 1	1		-	Au : 0.46ppm (boulder)			400×300m		

and Table 4-2. The locations of these mineral occurrences are shown in Figure 3-6. Of the mineralization type above mentioned, many promising occurrences belong to type 1 and type 2. The mineral occurrences listed in Table 4-2 were considered to be specially promising and were investigated continuously after Phase I survey. The results of the survey in those occurrences are described in Chapter 5. While, the mineral occurrences listed in Table 4-1 were estimated not to be prospective. JICA/MMAJ presents the descriptions of theses occurrences in detail.

### 4-3 Geological structure and mineralization

In this section, the relationship between geological structure and mineralization zone is described.


The trend of mineralization in this area have a dominant NNE-SSE $\sim$ NS direction (upper left in Figure 3-8). In Zalturbulak area, the majority of mineralized veins run in the N-S or NNW-SSE direction. The diorite porphyry intrusions, which are implied to have brought about the mineralization of the Central Zalturbulak Zone, indicate similar trends. Based on this fact, it was considered that the regional compression stress might well have formed numerous open fissures of the N-S and NNW-SSE directions, which played a role of channels for ascending magmas and hydrothermal solutions (JICA/MMAJ, 1999).

In Kuzulutas, two dominant directions of fractures are recognized, namely NNW-SSE and WNW-ESE directions (lower right in Figure3-9). T he NNW-SSE fractures lining up echelon and forming right-stepping fracture system (JICA/MMAJ, 1998:P103) are left –lateral strike-slip faults. Therefore, two trending fractures are considered to be conjugate faults forming in the NW-SE compression field.

Most mineralization zone of the Terektinsky uplift area is estimated to form to be affected by either open fissures or left-lateral strike-slip faults. Either way, the compression field from southeastern direction basically controlled the mineralization zone.

On the other hand, there are many indications of ENE-WSW compression in northern to northwestern part of Terektinsky uplift area such as the direction of intrusive bodies of Akmola area, dyke swarm in western part of Zalturbulak and general trend of Shubarkol prospect. In general, the relative older rocks are distributed in the northwestern part of the Terektinsky uplift area, and before getting ENE-WSW compression these older rocks were considered to be suffered from ENE-WSW compression. According to Sengor et al.(1993), Central Kazakhstan was placed in a new stress field after appearance of subduction zone in the southern part of Central Kazakhstan after early Carboniferous. The change of the regional stress field in Terektinsky uplift area mentioned above may correspond to the new appearance of the subduction zone. However this is only speculation because of poor evidences.

There are some mineral occurrences (Shenber, Karashaky and so on) which show E-W trend in southern part of Terektinsky uplift area. These occurrences have formed along reverse fault distributed nearby. No promising occurrences have been discovered in this area.



Geotectonic map and results of age dating in Terektinsky Uplift Area Figure 3-8

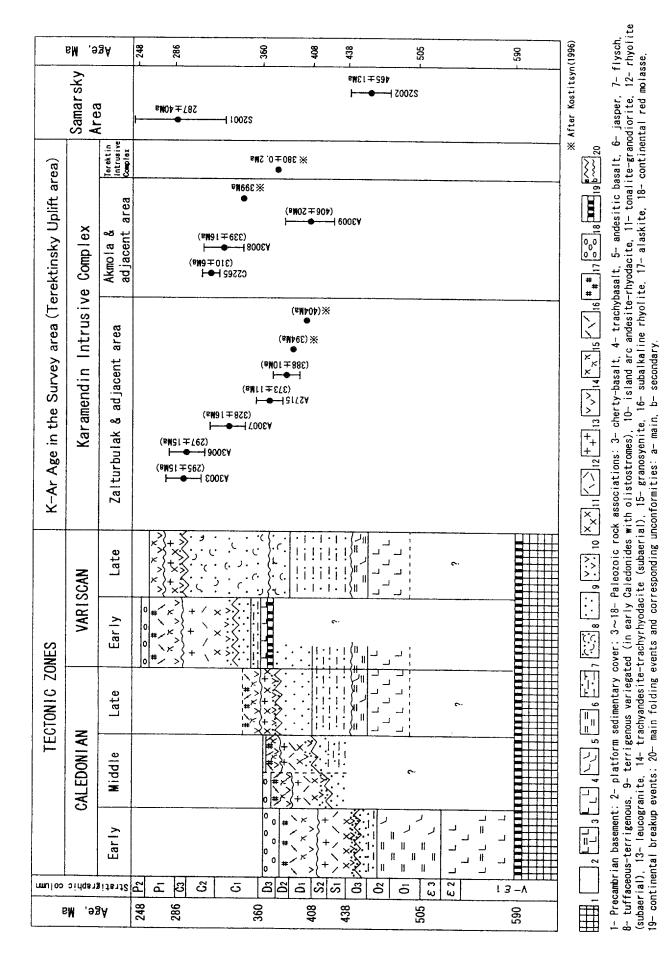



Figure 3-9 Age of the Igneous Rock

### 4-4 Whole rock chemical analysis

Chemical analysis for principal rock forming elements('whole rock analysis') is made for a total of 9 intrusive rock samples, two collected in West Aktau, three in West Zalturbulak and three in Akmola. The analytical results are compared for various compositional indices with the chemical compositions of intrusions responsible for other mineral occurrences in Kazkhstan such as Qonyrat porphyry molybdenum copper (Late Carboniferous: Kudryavtsev, 1996), Bozhakol porphyry molybdenum copper deposit (Cambrian: Kudryavtsev, 1996) and Koktenkol porphyry molybdenum tungsten (Late Carboniferous: Mazurov1996) deposits. The locations of these ore deposits are shown in Figure2-1. The complete set of analytical data is shown in Appendix 8 of the Phase III report of this project (JICA/MMAJ, 2000).

(1) AFM diagram (Figure 3-10; Irvine and Baragar, 1971)

All the 9 samples of intrusions in the project area are plotted in the domain of calcalkine suite on AFM diagram. The compositions of those associated with the porphyry style ore deposits also indicate the same compositional range in general with one exception for Qonyrat.

(2) Granitoid Series: Magnetite Series vs. Ilmenite Series(Fig. 3-11)

 $(Fe^{3+}/Fe^{2+}+Fe^{3+})$ -SiO₂ diagram is used for magnetite-ilmenite series classification. All the Aktau and West Zalturbulak samples are plotted along the boundary line between the magnetite and ilmenite granitoid series, while two of the three Akmola samples fall well inside the magnetite series domain and one, in that of the ilmenite series close to the boundary line. According to the microscopic observation, however, magnetite occurrences are much less common in Akmola than in Aktau or West Zalturbulak, which is contradictory to the above classification based on the chemical compositions. The number of samples is too scarce to make any satisfactory explanation for the contradiction at this stage.

With respect to the intrusions associated with the three major ore deposits, those of Qonyrat and Bozhakol are generally of magnetite series with a few samples plotted close to the boundary line, while those of Koktenkol, being low in  $Fe^{3+}/Fe^{3+}+Fe^{2+}$ , fall within the ilmenite series domain. This difference suggests that the intrusions related to the former two deposits have been formed in different magnatic processes from those for the intrusions related to the latter deposit.

(3) Granitoids Series: I type vs. S type

Granitoids are also differentiated into S type and I type(Chappell and White (1974)) for their genetical implication; the former type involves partial melting of pelitic sedimentary rocks in its genesis while the latter type is generated by partial melting of igneous rocks. Molar ratios between CaO,  $Al_2O_3+Na_2O+K_2O$  and FeO+MgO and variation of  $Al_2O_3/(CaO+Na_2O+K_2O)$  against SiO₂ are used for discriminating S type and I type granitoids.

The intrusions of the project area are invariably plotted in the I type side both on ACF diagram(Fig. 3-12) and variation diagram of  $Al_2O_3/(CaO+Na_2O+K_2O)$  against  $SiO_2(Fig. 3-13)$ . The Bozshakol granitoids fall in the I type domain close to the boundary line with the S type domain on ACF diagram, while those of Qonyrat are generally of S type with a few plotted in the I type domain very close to the boundary line. The granitoids of Koktenkol are mostly of I type with a couple of exceptions which are plotted close to the boundary line in the S type domain. As for variation diagram of  $Al_2O_3/(CaO+Na_2O+K_2O)$  against  $SiO_2$ , the Qonyrat and Bozshakol granitods are plotted both in the S type and I type domains, while those of Koktenkol fall mostly in the I type domain with one exception.

(4)  $K_2O / Na_2O$  (Figure 3-14)

Variation diagram of K₂O / Na₂O against SiO₂ is prepared.

The intrusions of West Aktau are higher in  $Na_2O$  and lower in  $K_2O$  than those of Western Zalturbulak and Akmola. The Bozshakol intrusions are generally higher in  $Na_2O$  and lower in  $K_2O$  than those of Qonyrat and Koktenkol.

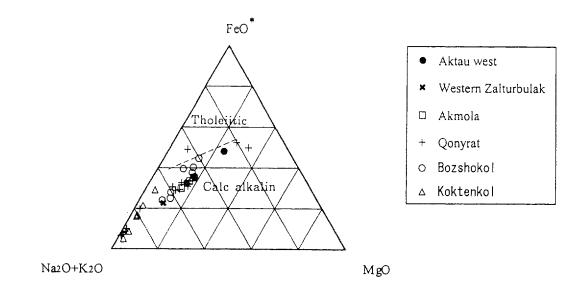



Figure 3-10 Molar proportion of Na2O+K2O, FeO*(total iron) and MgO

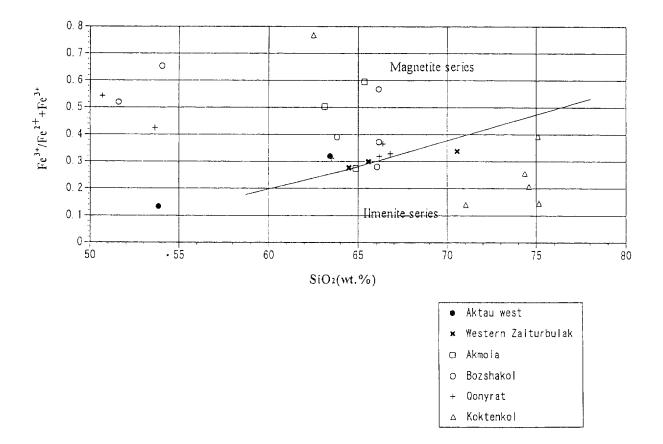



Figure 3-11 SiO₂/Fe³⁺/Fe²⁺+Fe³⁺ variation diagram

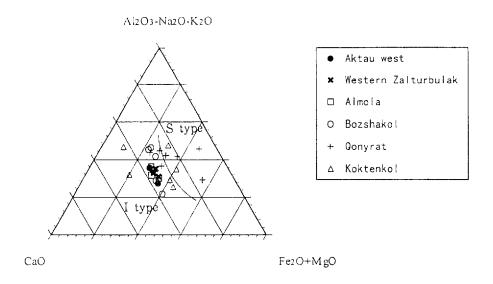



Figure 3-12 Molar proportion of CaO, Al2O3-Na2O-K2O and Fe2O+MgO

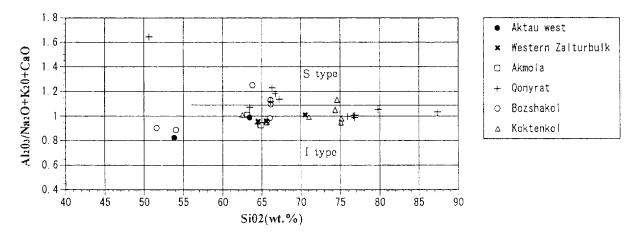



Figure 3-13 Al2O3/Na2O+K2O +CaO/SiO2 variation diagram

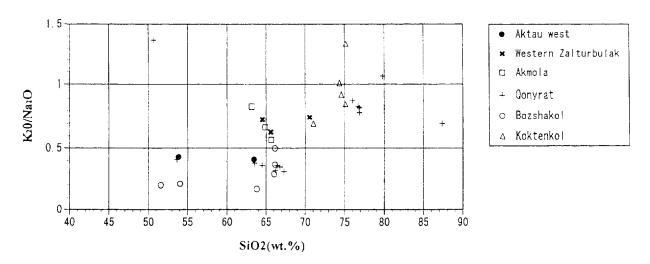



Figure 3-14 K2O /Na2O/ SiO2 variation diagram