Appendix 16 Log of the Drill Hole "MJTA-7" (1/4)

. .	<u>.</u>			10			e.	a l				<u> </u>	ssay	result	ts	·
Scale (m)	Column	Depth (m)	Description	Sulfidation	Silicifica	Aqilliza	Chloritiza.	Epidotiza.	Examined Sample	Assay Interval	Au (ppb)	Ag (ppm)	Cu (ppm)	РЪ (ppm)	Zn (ppm)	Mo (ppm
-			0.0-8.0m: coarse grained sand, surface soil, yellowish brown colored	-	-	-	-									
	\mathbf{v}		8.0-15.5m: brown, oxide zone, strongly weathered granitic rock, with hematite dissemination, cracky core (ϕ 1-5cm)		-	-			-	0.0 - 3.0	30	1.2	44.0	22.6	104.6	5.
-	\square		15.5-21.4m: brownish gray colored, oxide zone, hornblend + biotite adamente, plagioclase ≧ K-feldspar > biotite ≧ hornblend, quartz		-	-	- 1		-	3.0 - 6.0	20	0.2	32.0	24.0	125.4	6.
	<u>/</u>	8.0	plagnoclase: 3-5mm K-feldspar, biotite, hornblend: 2-3mm hematite stains along fractures		-	-	-			611-9.0	27	0.2	18.0	20.8	79.2	7
10 -	· + + + + + +		plagioclase and matic minerals are replaced by chlorite. epidote and hematite	-	-	-	-	-	-							
	- + + + + + + + + + + +		21.4-22.75m: weakly chloritized and weakly epidotized granite, with chlorite stringers, chlorite + pyrite stringers, chlorite + epidote stringers (1-3cm interval) most of mafic minerals change to chlorite		-	-		-1	-	9.0 - 12.0	17	0.8	16.0	18.6	52.0	4
	+ + + + • + • + + + + +	15.5	22.75-26.0m. greenish light gray colored porphyry, dyke? (∠ 70deg.), including a lot of plagioclase (replaced by epidote & white clay minerals) phenocrysts (≥ 4.5mm) groundmass is composed of chlorite	-	-	-	-	- - -		12.0 - 15.0	13	0.4	18.0	24.8	49.6	2
	+ + + + + + + + + +		weak disseminaton of pyrite, pyrite strigers and pyrite veinlets (3-10cm interval) 26.0-33.1m: biotite - hornblend monzonite, or hornblend	-	-	1 1 1	-			15.0 - 18.0	40	2.4	18.0	19.8	66.4	4
20 -	-+++ ++++ ++++	21.4 22.75	biotite monzonite, pink colored with chlorite stringers (0.5-3cm interval) or chlorite network, traces of pyrite - chlorite stringers occur locally, pyrite dissemination is very weak	- 0	- 0		÷	1		15.0 - 21.0	30	0.8		30.6	63.2	
			most of malic minerals are replaced by chlorite, some plagioclase crystals change to epidote 27 0m: chlorite + quartz vein (∠90deg., w=lcm) 31.0m: chlorite + pyrite veinlets (∠70deg., w=5mm)	0 1 1	0	1				21.0 - 23.0	23	1.6	26.0	23.6	61.4	
	+++ +++	26.0	33.1-36.2m: strongly silicitied part; along vertical fractures, with pyrite dissemination (1-2%) silicitied and epidotized part; plagioclase is replaced by	1 0 0			2			23.0 - 26.0	23	0.4	98.0	28.0	95.4	
- - 30 -	+ ++ + + + + + + + +		epidote and white clay, mafic minerals are replaced by chlorite & pyrite, pink colored feldspar are found 36.2-38.4m: pinkish-gray, hornblend-biotite granite with a	0	0 0	0	2	1	-	26.0 - 29.0	30	1.2	32.0	20.8	54.8	-
	+ + + + + + + + + + + +	33.1	bot of stringers of chlorite (1-20m interval) plagioclase shows pale green color minor veinlets of clay (white to pale green colored) and minor veinlets of chlorite + pyrite are found		0 0	0	3	1		29.0 - 32.0	20	0.8	26.0	19.0	59.8	
 	+++>0000	36.2	38.4-40.0m: argillized granite with pyrite dissemination, partly silicified, white colored with pyrite + chlorite stringers, with quartz + pyrite stringers (2-3cm interval). N-feldspar and plagioclase are	0	2	1	3	3 :		32.0 - 35.0 35.0 - 36.2	37 50	0.8 16.6	48.0 46.0	19.2 16.0	†	2
	+ + + + + + + + + + + + + + + + + + +	38.4	replaced by clay minerals 40.0-41.8m: hornblend-biotite granite, pink colored,	0	201	1		2		36.2 - 38.2	33	0.4	42.0	13.2	65.8	<
40 -	+ + + 000 + + + 000 + + +	40.0 41.8	plagiociase shows white to pale green color, K-feldspar is alive, malic minerals change to chlorite with chlorite stringers, with chlorite + pyrite stringers (1- 3cm interval), pyrite dissemination is very weak	2	1		3	2		382-410	37	1.2	18.0	14.6		T
	+ + 10 0 + + 10 0 + + 10 0 + + 10 0 + + 10 0	43.4	41.8-43.4m; greenish pale gray, strongly argillized granite, K-feldspar and plagioclase are replaced by white clay minerals,	0	·		2	2	-	41.5 - 43.4	23 30	0.2	52.0 46.0	13.2		1
	+++ +++ ++++	44.9	all mafic minerals change to chlorite, 41.9m: sheared zone with dark gray clay mineral 42.0-42.2m: strongly silicified zone	0	0	1	1	0		43.4 - 46.0	27	0.2	16.0	27.0	42.0	
	+ + + + + + + +		43.4-44.9m: pink colored granite porphyry 44.9-51.3m. pink colored granite, mafi c minerals change to chlorite, with chlorite veinlets, with chlorite + pyrite veinlets.	0	0	Ò	2 2 2	1		45,0 - 49 ()	27	0.2	24.0	73.8	53.2	
50 -	++++++++++++++++++++++++++++++++++++++	-513-	with epidote vendets (2-5cm interval), traces of quartz + pyrite veinlets occur (50-100cm interval, ∠75deg, ±, w=5-10mm) 51.3-51.9m; pale green colored porphyry	0	0	0	2	1	-							
	* + + 1010 + + + 1010 + + + 1010 + + + 1010		phenocrysts: plagioclase (& 5-8mm), hornblende groundmass: strongly chloritized pyrite dissemination: 1% =	1	1	23	+	1	-	4910 - 5210	13	0.6		15.4	57.0	
	+ + + + + + + + + + + + + + + + + + +	55.4	52.4-52.8m; white, strongly argillized granitoid, mafic minerals are replaced by chlorite. K-feldspar and plagioclase are replaced by white clay minerals pyrite dissemination: 2% a	2	0	2		2	-	5411-55.4	13	0.6			95.8	
		57.2 59.6	52.8-55.4m: greenish gray to pinkish gray, weakly argulized granite, K-feldspar is alive, plagnoclase change to white clay and epidote, all mafic minerals change to chlorite	1	2 0		2	2	-	58.4 - 57.6 57.6 - 59.6	20 17	0.6			63.8 71.0	
60 -	++++++++++++++++++++++++++++++++++++++		Ist stage: epidotization & chloritization, 2nd stage: argillization pyrite dissemination: 1% or more	0	— ÷	1	22	2	-				24.0	11.0	11.0	
-+ 	+ + + + + + + + + + + + + + + + + + +		55.4-55.6m, 57.6-59.6m transition zone 55.6-57.2m; alteration mineral assemblage: white clay +	0	0	1	2	1	-	5¥ 6 - 63.U	10	15.8	19.8	29.0	57.4	
-1	+ + + + + + + + + + + + + + + + + + +		epidote + quartz. K-feldspar is dead 57.2-57.6m: strongly silicified rock with pyrite dissemination (2%±)	0 0 0	0	$\frac{1}{1}$		1	4	63.0 - 66.0	20	<0.10	21.4	16.6	54.6	l
	+ + + + + + + + + + +	69.3	59.6-69.3m, 71.4-77.2m: pale greenish gray colored granite. all mafic minerals change to chlorite + epidote, plagioclase shows white to pale green colored, pyrite dissemination is weak	0	0 0	1 1	2	1		66.0 - 69.0	17	0.2	14.4	16.0	49.6	

Appendix 16 Log of the Drill Hole "MJTA-7" (2/4)

1	1			1	Ī	i					A	ssay	result	s	
Scale Colum	n Depth	Description	Lo1	g	8	129						_		_	
(m)	(m)	·	Sullida	Silicific	Argilliza. Chloritiza	Epidot	Sa	umined ample	Assay Interval	АU (ррб)	(ppm)	(ppm)	Pb (ppm)	(ppm)	MO (ppm
-+++++++++++++++++++++++++++++++++++++	71,4	with chlorite stringers, with chlorite + pyrite stringers, with epidote stringers (2-4cm interval, \angle 70-80deg.)	0	0	0 1	0			69.U - 72.U	13	1.0	13.4	16.0	42.0	7.0
		69.3m: silicified band, ∠60deg., w=2cm	0	0	1 2	1	<u></u>		07.0 - 720		1.0	13.4	10.0	42.0	
-{+ <u>+</u> + + -{+ <u>+</u> ++ +		77.2-80.0m. light gray to pale greenish colored granite. plagioclase and K-feldspar change to white clay and epidote, all	0	-	1 2 1 2	- 			72.0 - 75.u	13	0.2	10.6	15.8	35.2	13.0
++++ +++++++++++++++++++++++++++++++++	77.2	mafic minerals change to chlorite pyrite dissemination is weak, slightly silicified, with stringers of chlorite & epidote			1 2 1 2	-									
		80.0-81.2m: strongly silicified and chloritized rock, with a lot of fractures (∠80deg), cracky core, dark gray colored	+	-	2 2 3 3				75.0 - 78.0	23	0.2	27.8	20.2	53.6	19.0
80 - [++++	\$0.0 \$1.2	81.2-82.4m: pale greenish gray colored, argillized granite, with a lot of chlorite stringers (0.5-1cm intervals)		-	3 3 3 3		\square		78.(1 - 81.0	33	<0.10	25.0	84.6	84.8	<2.0
-{+++)0 -{+++}0	9	82.4-88.2m, 88.7-90.0m pinkish-gray, weakly argilized granite, with chlorite stringer, with chlorite venlets (< 80deg.).		_	2 3 1 2										
-+++++++++++++++++++++++++++++++++++++		with minor veinlets of quartz + pyrite 88.2-88.7m , white, cracky core, strongly argillized rock,	++		1 2 1 2	-			81.0 - 84.0	13	0.4	31.2	27.8	63.2	<2.0
+,+ +++++ +++++++		with pyrite dissemination, original rock texture is completely destroyed			1 2	-			84 D - 87.0	13	0.6	29.7	22.0	52.4	<2.0
	88-2	90.0-91.5m pinkish gray to pale greenish gray, plagioclase changes to clay and epidote, with a lot of epidote + chlorite	0	-	1 2										
90 - + + + + + + + + + + + + + + + + + +	90.0	stringers (3cm interval) 92.1-93.0m: pinkish gray to pale greenish gray: plagioclase	0	0	1 2	1			87.0 - 90.0	30	0.4	28.8	25.4	64.6	<2.0
	91.5 92.1 93.0	changes to white clay, all mafic minerals change to chlorite + epidote, with a lot of chlorite + epidote stringers	0	0	1 2	1)				10	-0.10	24.0	76.0	26.0	
		93.0-95.9m. bornblend-biotite adamerite, pinkish gray, with minor epidote stringers, with minor chlorite stringers	0	0	1 1	1		14.0 T	90.0 - 93.0	50	<0.10	24.8	26.8	56.0	<2.0
-\++++++ ++++++ -++++++++++++++++++++++	95.9	95.9-97.0m: gray to greenish light gray colored, plagioclase changes to white clay and epidote. all mafic minerals change to chlorite, with chloritestringers, with chlorite + pyrite stringers	0	0	1 + 1 1 + 1 2 + 2	1			93.0 - 96 .0	17	0.2	27.2	21.0	53.0	
-1++++++ -1+++++++	- 51.0	10.5-2cm interval), with pyrite disseminations 97.0-104.4m; pale greenish gray, plagioclase changes to	0	0	2 2 2 2	1			96.0 - 97,0	20	0.4	37.4	45.2	78.4	<2.0
++++ 100+++		argillic mineral, mafe mererals thange to chlorite and epidote, with a lot of chlorite stringers (0.5-1cm intervals) with minor epidote stringers, with minor clay veinlets	0	0	2 2 2	11			97 Q - 100,0	17	0.2	22.6	28.4	67.4	<2.0
-+++++++++++++++++++++++++++++++++++++		104.4-104.9m: light gray colored, strongly silicified band, \angle	0	0	2 2 2 2	1									
_{++++++++++++++++++++++++++++++++++++	104.4	45deg., w=10cm, quartz>sericite, with minor pyrite veinlets, with weak dissemination of pyrite	0	0	2 2 2 2	1		104.5 XI	100.0 - 103.0	27	<0.10	37.0	24.2	61.6	<2.0
	104.9	104.9-108.6m: all plagioclase changes to white clay, all mafic minerals are replaced by chlorite and epidote, with dense network of chlorite, with dense network of chlorite + pyrite (0.5-	0	0	3 1 3 3	1			103.0 - 105.0	27	<0.10	43.6	20.6	53.2	<2.0
{++++ +++++++++++++++++++++++++++++++	108.6	lom interval) 108.6-109.8m: white, strongly argillized rock, with pyrite	1	Ó I	3 3 2 3	1			105.0 - 108.0	23	0.2	56.4	22.8	58.4	<2.0
-++++ 110-+++++		dissemination, white clay>>chlorite, service 109.3m: strongly silicified band with pyrite vehilets, \angle 40deg.	1	1	3 1	0			108.0 - 110.0	37	1.0	67.4	25.2	48.2	<2.0
	111.5	109.8-111.5m: pink colored, weakly argillized granite, with chlorite stringers, with chlorite + pyrite stringers (1-3cm	1	0	2 2	11									
- * * * + - + + + + + +		interval) 111.5-111.9m, 112.6-113.0m chloritized porphyritic andesite	0	0	1 2 2	1			110.0 - (1) .0	27	2.6	46.6	25.4	69.8	<2.(
┙┨┾┷┿ ┿┸┿┆┿╧	116.8	dyke, with pyrite disseminatione 113.0m: silicified zone, 4 50deg., w=10cm with pyrite dissemination of (2%±)	1	_	2 2	1			113.0 - 116.0	23	<0.10	33.0	19.0	59.8	<2.(
		113.0-116.8m. weakly argillized rock, with pyrite stringers, with pyrite + chlorite stringers (1-3cm interval)	0	0	22 23	2									
120 -+++		116.8-123.2m: weakly argillized and epidotized rock, with a lot of chlorite stingers (1-2cm interval), all mafic minerals	0	0	23 23	2			116.0 - 119.0	23	0.4	28.4	16.6	56.2	16.
_ +++ +++ - +++		change to chlorite + epidote 121.4-121.8m: strongly argillized, chloritized and epidotized rock with small amount of pyrite dissemination	0	_	3 3				119.0 - 122.0	10	0.4	15.4	8.8	44.6	11.0
	123.2	123.2-124.2m: strongly argillized rock, with strong dissemination of pyrite, original rock texture is completely	2	0	4 1			24. 0 •TX	122.0 - 123.2 123.2 - 124.2	20 23	0.6 0.4	56.4 16.8	14.4 23.2	57.2 51.4	18.0 <2.0
	126.2	destroyed, porphyry?, angle of intrusion = 2 50deg. 124.2-126.2m, 126.5-127.1m pale greenish gray, argillized	0		2 2	1									
	199.0	granite, plagioclase changes to white clay (& pale green colored mineral), all mafic minerals change to chlorite and epidote with chlorite stringers, with chlorite + pyrite stringers (1-	2	3		1		ļ	124.2 - 127.1	33 40	0.4	30.0 56.6	21.8	70.2 113.0	<2.0
-++++++ -+++++++++++++++++++++++++++++		3cm interval) pyrite dissemination is weak	0	3 0		+			127.1 - 128.6		1.0	.0.0	17.4	113.0	<u> </u>
++++++++++++++++++++++++++++++++++	132.6	126.2-126.5m: silicified rock with pyrite dissemination (2%), alteration mineral assemblage = quartz >> sericite, white clay, pyrite	0	0	1 1 1 1	+ +				17	0.1	16.0	15 6	50 7	76
- + + + + + + + + + + + + + + + + + + +		pyrite 127.1-128.6m: silicified rock with pyrite dissemination (2%), with chlorite stringers, with pyrite stringers (∠ 50deg.)		_	2 1 2 1			i i	128.6 - 132.6 132.4 - 133.4	17 27	0.2	16.8 33.2	15.6 27.0	58.2 44.2	25. 24.
++_+ ++_+		128.6-132.6m; greenish pale gray, argillized rock,			22 22	<u> </u>	_		133.4 - 136.0	33	0.2	46.2	21.8	57.4	27.
+_++++++ ++++++++++++++++++++++++		plagioclase changes to white clay (& pale green colored mineral), mafic minerals change to chlorite & epidote with chlorite + pyrite stringers, with pyrite stringers, with		0	_										
		chlorite stringers (2cm ± interval), pyrite dissemination is very weak	0	0		1		ſ	136.0 - 139.0	13	0.2	29.8	21.8	53.0	28.0

Appendix 16 Log of the Drill Hole "MJTA-7" (3/4)

				e	Ì			1		A	ssay	result	s	
Scale (m)	Colum	n Depth (m)	Description	Sulfidation	Argilliza.	Chloritiza. Epidoliza.	Examined Sample	Assay Interval	Au	Ag (ppm)	Cu	Pb	Zn	Мо
	1			3.3	Ž	ਦੇ ਦੇ	Gemple	intervar	(000)	(ppn)	(ppm)	(ppn)	(ppm)	(ppm
-	{+ <mark>+</mark> +	-	132.6-133.4m: white to greenish lightly gray colored.	0 0		- +								
_	++++++++++++++++++++++++++++++++++++++	1	argillized granite with dense network of pyrite	0 0	- 1	1 1	_	139.0 - 142.0	10	0.2	33.0	19.4	44.6	35.
-	{+ <u>*</u> + <u></u> ‡‡	1	133.4-151.3m: pinkish light gray, weakly argillized &	0 0	-	1 1				į				
-	┆┽ _┿ ┽╠╧╅	1	chloritized granite, matic minerals change to chlorite & epidote, plagioclase changes to white clay, with chlorite stringers, with	002	2		-		10	0.2	10.4	34.4		10
_	+++		chlorite + pyrite stringers, with pyrite stringers (1-2cm interval). with pyrite dissemination (0.5%-1%), with minor veinlets of	0 0 2			-	142.0 - 145.0	30	0.2	19.4	24.4	53.2	39.
-	┇┽╬┽╠┼┼	-	epidote (∠80deg., w=5mm at 135.8m)	0 0 1	-	111	-		ľ					
_]_++[[[]	-	140.0-140.2. 146-149m: alteration is very weak, half of maße minerals change to chlorite, plagioclase is slightly altered	0 0 1	1	1 1	7	145.0 146.0	20	1.0	19.0	20.4	46.6	35.
-	┟┿╧┿╠╇╇	-	151.3-156.6m: plagioclase changes to white clay, all mafic	0 0 2	2	2 1			1					
150 -	+++	1	minerals change to chlorite & epidote, most of K-feldspar is	1 0 2										
-	┟┰┿┰╠╧╧	151.3	alive, pyrite dissemination is weak chlorite stringers occur (1-5cm interval)	0 0 2	- +	2 1	_	148.0 - 151.0	30	7.8	25.4	14.6	40.8	22.
-	+++	1	156.6-157.3m: cracky core, silicified and argillized rock.with	0 0 2	-+	2 1			1					ĺ
-	│┿ _┿ ┿ <u>╎</u> ┷┷	:	pyrite network and pyrite dissemination, total amount of sulfide	0 0 2	-	2 1			1		12.0	18.0		
_	[+ <u>+</u> +		= $2\% \cdot 3\%$), with quartz + pyrite veinlets.	0 0 2		2 1	-1	151.0 - 154.0	23	0.8	32.8	18.0	52.4	40.
	+++++++++++++++++++++++++++++++++++++++	1600	159.5-161.7m: rock texture is not clear becouse of argillization, chloritization, epidotization & network of chlorite +	0 0 2		2 1	-							
_	+++	156.6	pyrite with monor dissemination of pyrite		31	-+	-	154.0 - 156.6	17 30	6.0 0.4	30.6 37.8	15.0	46.8	
-	[+∔+₩	-		1 1 2	2	2 1		15000 - 157.5		0.4	57.5	17.4	53.8	40.
-	┝╋╋ ┥╋╋	159.5		0 0 2	-+-									
160 -	╎╍┆┙	- 1		0 0 2		2 2	4	157.3 - [60,0	33	<0.10	24.4	33.0	49.8	27.
-	ŀ <u></u> + <u>+</u> ‡‡	161.7		1 1 3		3 3 2 1]		
~		1		0 0 2		2 1								
-	[+ <u>+</u> + <u>+</u> +	164.1		0 0 2	-+-	2 1		160.0 - 164.1	17	0.4	34.0	14.2	48.8	17.
-	+++	165.3	164.1-165.3m: cracky core, argillized granite, with dense network of pyrite, with network of quartz + pyrite, with network	2 1 3	-	3 1	-							
_	[+↓+		of chlorite + pyrite, with pyrite dissemination, with slight silicification	0 0 2	2	2 1		164.1 - 165.3	27	0.4	25.0	12.2	50.0	<2.
-	+_	1		103	3	2 1								
-	· + + + + + + + + + + + + + + + + + + +	1	165.3-172.0m: argillized and chloritized rock, with chlorite + pyrite network, with pyrite network (5-15mm interval)	0 0 2		2 1		165.3 - 168.0	40	0.4	36.8	[4.4	53.8	28.
-	+++	1	quartz + pyrite (+ epidote) veinlets locally occur (50-100cm interval), with pyrite dissemination	1 0 3		2 1	_		İ					
170 -	*** <u>*</u>		rock texture is not clear by strong alteration and dense	1 0 3	-	2 11	-							
-	+_+	172.0	network	0 0 2	-		-	168.0 - 171.0	27		120.0	37.0	74.0	19.0
-	+++++++++++++++++++++++++++++++++++++++		172.0-173.7m: light gray to pale greenish gray, argillized and silicified rock, with strong dissemination of pyrite, with	2 2 3			-	171.0 - 172.0	33	<0.10	55.2	13.0	54.0	22.0
1	+++	173.7	network of chlorite + pyrite + epidote, rock texture is not clear	1 1 3			-1	172.0 - 173.7	27	0.2	77.8	13.8	50.8	23.0
]	+++		173.7-184.3m: rock texture is not clear, dark green colored.	0 1 2	<u> </u>		7-176.4							
_	╧┿╬╋╇	1	all mafic minerals change to chlorite, plagioclase changes to pale green or white colred minerals, K-feldspar is alive	0 0 2	2	3 11	x	173.7 - 176.0	23	<0.10	32.8	12.2	44.0	24.1
	+∔+∦	1	with network of chlorite, pyrite, chlorite + pyrite	0 0 2	-+-									
-	<u>+</u> +#+		pyrite dissemination is weak 177.7-179.1m, 184.0-184.3m; fracture zone	0 0 2	-		-					Í		
-	+++	1	180.7m: silicified zone with pyrite dissemination, w=3cm, \angle 60deg.	0 0 2	_÷-	3 1	-	176.0 - 179.0	20	<0.10	38.0	17.2	47.4	21.0
180 -	+++++++++++++++++++++++++++++++++++++++		182.0m: quartz veinlets, w=1cm, ∠50deg.	0 0 2	- é-	<u>3 1 </u> 2 1	-				Í			
-	+++		183.0m: coarse grained quartz vein with druse, including coarse grained pyrite, w=7-10cm, ∠70deg.	0 1 2	-	2 1	-	17930 - 182.0	40	0.4	56.0	70.0	64.7	741
1	++++		184.3-196.6m: greenish gray to light gray colored.	0 1 2	-i-	2 1	-	17930 - 18230	- 40	0.4	30.0	29.8	64.2	24.
]	+++000		argillized, chloritized & weakly epidotized granitic rock, original	0 1 2		2 1					Í			
-	┼╧┽┠╋┿	1	rock texture is not clear becouse of strong alteration with weak dissemination of pyrite	0 0 2	_	2 1		182.0 - 188.0	33	0.8	95.0	12.0	40.0	27.0
	+++		with chlorite stringers, with pyrite + chlorite stringers with pyrite stringers (2-3cm interval, \angle 50-80deg.)	0 0 2	!	2 1								
_	+ 1010	1	188-188.2m: strong dissemination of pyrite, amount of	0 1 3			7-188.0							
-	++++		pyrite = 2% 186.5m, 188.6m: pink-feldspar band, w=3-5cm, ∠ 40-85deg.	0 1 3			PTX	168.0 - 191.0	23	2.0	41.8	16.0	49.6	23.0
	+++	:	196.6-198.0m: green colored, strongly epidotized and	0 0 2			-							
190 -	+++	:	chloritized rock, original rock texture is not clear, all plagioclase	0 0 2			-	Dist.0 - 198.0	27	1.4	28.2	22.6	91.4	18.0
]	*_ * ++		changes to epidote, with a lot of chlorite stringers	0 0 2	-	2 1	-	1.0.1					/1.4	10.
]	+++		198.0-198.6m: rock texture is clear	0 0 2	-+-									
-	+++		198.6-201.2m: strongly chloritized & argillised rock, most of	0 0 2		2 1		191.0 - 194.0	20	0.4	26.0	2.2	28.6	<2.0
-	<u>+</u> +		K-feldspar and all plagioclase change to alteration minerals (white clay, epidote, chlorite, etc.), original rock texture is	0 0 2	+	2 1								
-{	+_+	196.6	completely destroyed by strong alteration. 200.5m: sheared zone	0 0 2	-									
-4	+++	108.0		0 0 2	-		-	194.0 - 197.0	33	1.0	14.0	18.4	23.0	<2.0
-+	_┿ ┿	198.0	201.5-204.5m: dark greenish gray colored, fine grained porphyritic andesite, with chlotitization and weak argillization.	0 0 2	-		-				10.0	<i>[</i>]		~
†	┼╪┿╢╋╋		with quartz stringers (5-10mm interval, \angle 20-70deg.), with a lot of open fracture filled with clay (white to gray colored, \angle 80deg.)	1 1 3			-	197.0 - 199.0 199.0 - 200.0	20	<0.10	28.0 11.0	62.6 7.8	37.8	<2.
200 -	╧┿┇╋╋	201.2		1 1 3			-	199.0 - 200.0 200.0 - 201.0	17	0.6	11.0	7.8 5.0	34.2 43.8	<2. <2.
3	;;; []		204.5-206.8m: light gray to light greenish gray colored strongly argillized rock with chlorite network, with pyrite	1 1 3	-	-	-	201.0 - 202.0	27	0.2	21.6	8.4	25.4	<2.
]	***	1	dissemination, original rock may be granitoid, original rock texture is not clear	0 0 1	-]		İ					
		204.5		0 0 1	-	2 0								
1			206.8-209.4m; cracky core, fine grained andestic rock, dark greenish gray colored, with quartz stringers, with pyrite	1 1 3		3 2		202.0 - 205.0	30	<0.10	31.0	4.8	97.2	<2.
1	00 00 00 00	206.0	greenish gray colored, with quartz stringers, with pyrite dissemination, with clay veinlets	2 1 3	+-	3 2			ĺ				Í	
		206.8	209.4-211.1m; greenish light gray, strongly argillized rock	2 1 3		3 2		205.0 - 207.0	27	0.2	20.2	13.0	42.2	<2.0
-ł	¥¥¥∰		with pyrite dissemination, with quaretz network, with quartz +	101	÷	2 0			1					
4	:::HF	209.4	pyrite network, with clay vein	001	-	2 0	1 1	207.0 - 209.0	20	0.6	29.0	12.0	101.6	<2.0
-	<u></u>	<u></u>		2 1 3		2 1			ī					

Appendix 16	Log of the	Drill Hole	"MJTA-7"	(4/4)
-------------	------------	------------	----------	-------

			-1-1-		i		T · ·····		1	(4				
cale Colur		Description	UO.		rg	e			<u> </u>	A	ssay	resul	ts	.
(m)	(m)	Description	Sultidation	Argilliza	Chloritiza.	pidatiz	Examined Sample	Assay Interval	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	M (pp
	211.1	211.1-215.0m: green colored, fine grained, chloritized		3			+			10	40.0	+	ļ	
		andesite dyke, with weak pyrite dissemination, including white		1		0	-	209.0 - 211.0	33	1.0	49.0	11.6	55.8	<2
1:::[]		clay veinlets (485deg.)		1			1	1	[
	Ξ	215.0-220.0m: altenation beds of strongly silicified rock and strongly argillized rock	0 0	-	2		1				ĺ			
_}:::€	215.0	strongly silicified rock: with pyrite dissemination, with	0 0		<u> </u>	01	7-216 0	211.0 - 215.0	30	1.2	32.2	23.2	119.2	<
	0 0	quartz + pyrite veinlets (\angle 40deg.), original rock may be fine grained andesite	2 2	3	2	0	TX	215.0 - 216.0	53	6.8				+
- V V V S I C	010	strongly argillized rock along fracture zone: sheared rock (3	2	0		216.0 - 217.0	30	9.8	<u> </u>	946.0	95.8	
	0 0	= 50deg.), with pyrite dissemination, with quartz pool (\$ 2cm), cracky core	22			0]	217.0 - 218.0	40	1.0	22.4	614.0	76.8	+
		220.0-223.5m: dark green colored, strongly chloritized,	2 2		_	0	4	218.0 - 219.0	27	2.2	36.4	164.6	74.2	
220 - 👯	220.0	strongly argillized, slightly silicified rock	0 1	++		0	4	219.0 - 220.0	23	4.6	106.2	149.2	215.0	1
		partly strongly silicified with pyrite dissemination	22	+ +	-	<u> </u> 	4	220.0 - 221.0	37	1.0		530.0	75.4	<
- 783 8		223.5-236.7m; greenish gray colred, prphyritic andesite, hornblend andesite, with chloritization, with chlorite stringers,	2 2	÷	-+	1	-	221.0 - 222.0	30	1.2		90.8	43.4	<
	223.5	with quartz + pyritestringers, with epidote + pyritestringers,	1 2	÷÷	_	0	4	222.0 - 223.0	13	0.6	35.0	43.0	51.4	<
		with pyrite stringers (interval 2-3cm), pyrite dissemination is weak	00	÷	_	1	-							
一下部十	+	"tom	0 0	11		1	1	223.0 - 226.0	40	10	156.0	74.6	103.8	<
133F	\Box		0 0			11	-						103.0	+
	#		0 0	1	2	1	1							İ
_!:::#	#1			+ +	2	1]	226.0 - 229.0	37	1.6	135.2	96.0	154.2	<
30-どど出			1 +	<u> </u>	-	1								
	8 1		0 0	++		1	1							
-4887F	+		0 0	<u>←</u>		1	4	279.0 - 232.0	53	0.2	29.2	258.0	155.6	<
			0 0	***		1	4							
	Ë		0 1			<u> </u> 	ł							
		236.7-237.1m: white, argillized granitoid. K-feldspar and		1			1	232.0 - 235.0	30	0.2	66.0	68.6	106.8	<
-1:::+-	236.7	plagioclase change to white clay , mafic minerals change to		÷	···· ÷	1	7-237.0		ł					
	FT 1	chlorite, with strong dissemination of pyrite $(3\% \pm)$		2	_	2	X	235.0 - 236.0	13	0.6	78.0	68.6	83.8	<
+++++	\Box	237.1-241.4m: pinkish gray colored granite, plagioclase changes to pale greenish gray colored mineral, all mafic		2			1	200.00	1.51	0.0	/0.0	00.0	05.0	
₄o_]+++ 		minerals change to chlorite and epidote	00			2	1							
	T1	with epidote stringers, with chlorite stringers, with chlorite - pyrite stringers (3-5cm interval)	0 0	2	2	2		238.0 - 241.0	30	1.4	33.2	95.4	39.8	<
-+++ +++10		pyrite dissemination is weak		3		2								
-+++	0	241.4-243.9m; strongly argillized, strongly chloritized and	0 2	÷	_									
+_+io	0 243.9	weakly silicified rock, original rock texture is completely destroyed by strong alteration	0 2			2		241.0 - 244.0	10	1.2	49.4	37.6	42.0	<
	245.3			2	_	11		-	ĺ					
		245.3-246.0m. coarse grained quartz vein, with druse, w≃5cm. ∠ 50deg., in the strongly silicified zone	03			0	{ .		~-		c0.0			Ì.
7.+.10	0 247.7	247,7m: coarse grained quartz vein, including coarse	0 1			1	1	244.0 - 247.0	27	1.0	58.8	17.6	29.2	<;
+++	0	grained pyrite cristal (euhedral), w=1-3cm, 2 70deg.	01			1								
[+ <u>+</u> +[]•			0 0			1		247.0 - 250.0	10	2.6	69.2	176	31.2	
50					Ť		·			2.0	07.2	12.0	51.2	È
_						1	1				1			
-														
4						1								
-						1	ļ							ŀ
-														
-			<u>}-</u> ∔;		-									
-			┝╼┼─┤	\vdash	+	+								
			$\left - \right $		-+-	+-							}	ŀ
io					Ť	1	1				İ			
4						Ī]							
_												l		
_				Ì		T]					ĺ		
-			$ \square$		_									
-			 		_ -		ļ							
4			+ -		-									
-			- -		+	+	F							
70 -			$\left - \right $		+	+								
1					+	+								
-				t										
]					+	+					ĺ			
					+	+								
					1	1								
						1	1 i							
-								1						

Appendix 17 Log of the Drill Hole "MJTA-8" (1/4)

				-		ļ					L	A	ssay	result	S	
	Column		Description	Sulfidation	g	IZa	Chloritiza.	otiza	Examined	Assay	Au	Ag	Cu	РЪ	Zn	м
(m)		(m)		Suff	Silicifica.	Argilliza.	ŝ	Epid	Sample	interval	(000)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
				-	-	-	- 1		<u> </u>			ŕ	i			÷
]	\setminus /		0.0-6.1m: brown to brownish gray colored surface soil, with a lot of gravels (\$\$\phi\$1-6cm)\$	-	-	-	-	-	1			ł				
_	\mathbf{V}		with a lot of gravers (o 1-ocm)	-	-	-	-	-		0.U - 3.D	10	<0.1	235.8	19.8	81.4	3
_	Δ		6.1-10.0m: white, silicified rock with dense network of	-		-		-	1		_					Γ
_	/		hematite, 0.5cm intervals, strongly silicified & argillized rock, fracture-rich, pebbly core, oxide zone	-	-	-	-	-	_							
		6.1		-	-	-			-	30-60	17	0.6	154.2	6.6	72.0	4
	4444 0 0 4444 0 0 4444 0 0		10.0-13.30m: weathered rhyolite porphyry, brownish light gray colored, strongly argillized, cracky core, pebbly	· · · ·	2	3	-	-	4				1			ľ
			core, oxide zone	-	1	3	_	-1		60-90	23	0.4	72.2	10.2	176	2
1		10.0	13.30-19.80m: rhyolite porphyry, with hematite	- H-	1	3		-		411. 4.0		0.4	1 12.2	10.2	12.6	-
			stringers (3-5cm intervals), weathered & Fe-oxide rich	-	0	3	-	-1	1							
			phenocryst: plagioclase >> quartz (& 3.6mm)	-	0	3	-	-]	9.0 - 12.0	10	0.2	161.6	6.2	117.6	l
ŀ		13.3	plagioclase changes to clay minerals, groundmass shows brown color by oxidation	-	0	3	-	-]				1			1
ال ا				-	-	2	-	-]							
			19.8-21.8m: white to light gray colored, strongly argillized rhyolite porphyry, rock texture is unclear	-		2	-	-	1	12.0 + 15.0	33	<0.1	35.0	8.8	94.6	
4	6666 1966 1966		because of strong alteration, oxide zone	-	0	2	-	-!	Į							
				1-	0	2	-	-	-							
-1			21.8-27.5m: transition zone between oxide zone & sulfide zone, weakly weathered (Fe-oxide rich) rhyolite	E	0	2	-	-	-	15.0 - 18.0	13	0.8	43.4	18.8	132.8	1
		19.8	porphyry, brownish dark gray colored, strongly argillized.	+	0	2	-	_	1							
20 20			with weak dissemination of pyrite	-	1	3		-	1	18.0 - 21.0	110	0.2	118.8	29.4	51.0	
1		21.8	27.5-38.5m: reduced (sulfide) zone starts from the	-	1	3	-	-1-	1	11.0 11.0		0.2	110.0	27.4	51.0	┝
			depth of 27.5m, fractured rock, cracky core, porphyry or	-	0	3	-	-1	1							
]			rhyolite porphyry containing a large quantity of plagioclase phenocrysts (\$3-6mm)	-	0	3	-	-1	1	21.0 - 24.0	50	0.2	69.4	5.4	105.8	
1			phenocryst: plagioclase>>biotite, hornblend, quartz	-	0	3	-]							
	. e e e		plagioclase:	<u>-</u>	0		-	-								ŀ
-		27.5	Total amount of phenocryst: 40-50%	-	0		-	-		24.0 - 27.0	33	0.2	59.2	14.2	112.2	<
			plagioclase-phenocryst & groundmass are perfectly	-	0		-	-	-							
			replaced by white clay minerals, mafic minerals change to chlorite	0	0 0		2	0								
30 -			quartz + pyrite stringers (interval of 3-4cm) & dense		0		2	0		27.0 - 30.0	67	0.2	121.4	14.6	72.4	<u> </u>
	****		network of white clay (interval of 5-10mm) occur widely, white clay stringers cut the quartz + pyrite stringers,	0	0	3	+ +	01								
			pyrite dissemination is very weak .	0		3	÷÷	0		30.0 - 33.0	50	0,	117.0	20.0	79.6	2
			30.8m: chalcopyrite dissemination	0	ō	-	<u> </u>	0		50.0 - 55.0			117.0	20.0		-
			38.5-41.6m: quartz + pyrite & prite network (1-1.5cm	0			2	0	1							
3	• <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u> • <u>+</u>		interval), slightly silicified, pyrite dissemination occur	0	0	3	2	0	8-37.5	J 3.0 - 34.0	80	0.2	145.2	25.8	78.6	3
_ <u></u>			along these stringers, 38.5m: quartz + pyrite veinlets, w≈7-10mm, ∠65deg.		_		2		TX							
-	+++	38.5	· · · · · · · · · · · · · · · · · · ·		_	_	2	_		36.0 - 38.5	40	<0.1	70.4	17.8	64.4	1
	+++++++++++++++++++++++++++++++++++++++		41.5-44.0m: strongly silicified rock with pyrite dissemination, dark gray colored, compact				2									1
40 7	++++++++++++++++++++++++++++++++++++++		this zone shows brecciated structure	1			2									
	++++	41.6	44.0.46.2m; strengly appliined sail, massish may		1	3 3		0		38.5 - 41.6	57	0.2	103.8	8.0	70.0	1
-	+++		44.0-46.3m: strongly argillized rock, greenish gray, dense network of quartz + chlorite + white clay		_	2		0		4(.6 - 42.6	127	0.2	70.8	8.0	80.0	<
~[+++	44.0		3		2		0		42.6 - 44.0	77	04	108.0	7.4	39.8	4
Ŧ	e+e+ioioi		46.3-50.7m: slightly silicified porphyry plagioclase phenocrysts change to white clay-		1	3		01								-
1	+++++++++++++++++++++++++++++++++++++++	46.3	minerals, with pyrite stringers (2-4cm intervals)	1	1	3	2	0		44.0 - 46.3	77	-01	151.4	8.4	60.6	
			49.0m: quartz + pyrite veinlets, ∠65deg., w=7-8mm	0	1	2	1	0		10,100		<u> </u>	151.4	0.4	00.0	
	++++ ++++ +++++		50.7-54.8m: porphyry, light gray colored, strongly		-	_	1									
_ <u>-</u> [argillized, slightly silicified, with dense network of quartz + pyrite				1			46,3 - 49,0	37	<0.1	96.6	6.9	68.8	<
50 -		50.7	 pyrite pyrite stringers (0.5-1cm interval), with pyrite 	0		2	<u> </u>									
-{	++++100		dissemination	0		2	1	· · · ·	4	49.0 - 51.0	37	1.6	62.4	7.0	51.8	1
	++++++++++++++++++++++++++++++++++++++		53.4m, 54.4m; quartz + chlorite + pyrite veinlets, Z 70-85deg., w=7mm ±		1	_	2			51.0 - 53.0	40	<0.1	52.6	4.6	47.6	
			•	2	1	3	_		1	51.0 - 54.0	30	<0.1	49.0	4.8		
	++++++++++++++++++++++++++++++++++++++	54.8	54.8-58.7m : 55.4-55.7m & 56.8-57.5m: strongly argillized &	2	1	3		-	8-55.6	54.0 - 55.0	50	0.6		5.6		
	+++++++++++++++++++++++++++++++++++++++		strongly silicified zone, with pyrite (+ chalcopyrite?)	1	1	3	2	1	PT							t
_			dissemination, with quartz + pyrite network, total amount of sulfide is 2-3%	1	1	3	2	1								Ì
	++++	58.7	58.4-58.7m: strongly silicified zone, plagioclase-	1	1	_	2			55.0 - 58.0	33	<0.1		16.2	64.0	4
	++++++++++++++++++++++++++++++++++++++		phenocrysts change to epidote + clay, with ameba shaped	2	3	2				58.0 - 59.0	27	<0.1	54.6	12.0	66.8	1
60 -	•+• +•+		quartz-pools	1								1				
	Ţ₽Ţ		58.7-65.7m: porphyry, light brown colored, argillized		0				4							
-+	•		rock with pyrite + quartz stringers (2-5cm interval).	1	_	2	<u> </u>		{	59.0 62.0	33	<0.1	45.6	10.6	66.4	4
-			59.0-62.0m: quartz + pyrite veinlets, ∠70-80deg., w=3-8mm	0		_	2		-							
					_		2		{		77		54.4	110	76 0	ľ
-13		65.7	65.7-71.3m: slightly silicified porphyry, greenish-light gray colored				2		1	62.0 - 65.0	27	<0.1	54.4	13.8	76.8	
-			with strong argillization & epidotization				2		1	.						
-1			with quartz + pyrite stringers, pyrite stringers &	0	_	_	2		1	65.0 - 68.0	<10	<01	37.6	11.0	73.4	
- E	9+9100		chlorite stringers (0.5cm ± or 2-4cm interval) chalcopyrite dissemination ??			_	2		ł	0.01 100,0	10	-0.1	1 27.0		, , , , , , ,	\vdash
			shareopyrice arasemination ::			2		11	i				ļ			

(07) (07) <t< th=""><th>_</th><th></th><th></th><th></th><th>5</th><th></th><th> </th><th></th><th>A</th><th>ssay</th><th>result</th><th>s</th><th></th></t<>	_				5				A	ssay	result	s	
80 11 1		Column	· · · · ·	Description	Sulfidatic Stitcifica. Argittiza. Chloritiza						Pb (ppm)	Zn (ppm)	Mo (ppm)
90			71.3	71.3-73.4m: alternation beds of strongly silicified rock	1 1 2 2 1		66.U - 71.U		<0.1	64.8	11.0	99.4	<2.0
are point and only light product spatial product s				& strongly argillized rock		4				÷	12.4	93.8	55.0
$ \begin{array}{c} 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & $	-					{ '	72.0 - 73.0	27	<0.1	19.6	11.2	83.4	7.0
80 7.2 7.	-		73.4			1							
	-					1	73.0 - 76.0	33	<0.1	30.6	13.8	81.6	<2.0
0 100	-					4							
80 97.16 14.23 (1) 10.2 10.0 10.2 10.0 91.10 14.23 (1) 10.0 12.1 0.0 2.2 10.0 91.11 14.23 (1) 10.0 12.1 0.0 2.2 10.0 91.11 14.23 (1) 10.0 12.1 0.0 2.2 10.0 91.12 10.1	-		78.1		hand the production of the second sec	1	26.0. 20.0	10	-0.1	30 4	344	77.0	
	-					1	76,01 - 79,0	40	KU.	29.0	26.6	73.0	11.0
90 94.0 9	- 00			79 1 92 1m nombury braugish grou	I saw in the second sec		79.01 × 81 13	37	<0.1	40.6	21.6	76.6	11.0
	~			phenocryst= plagioclase>>quartz, hornblend>biotite									
30 76 m. quart = pyrite ven, well & dm. 2 404eq sort, pyrite dm. 2 404eq sort,	-		83.1		hand wanter of the last						16.4 16.8	91.8 59.4	6.0
	-	+++		78.6m: quartz + pyrite vein, w=1.5cm, ∠ 45deg							10.3	39.4	26.0 20.0
$\begin{array}{c} 100 \\$	_			82.5m: pyrite + quartz veinlets, w=3mm, 2 90deg.	2 3 3 1 0	1					16.0	57.8	19.0
90prime values light gray colored. dissemnation of partie, with quarts + pyrite venices dissemnation of quarts + pyrite venices dissemnation with done network of quarts + pyrite venices dissemnation with a loof quart = pyrite venices, with pyrite dissemnation is weak loof quart = pyrite venices, with pyrite dissemnation is weak loof quart = pyrite venices, and pyrite venices dissemnation was with done network of quart = pyrite venices dissemnation was with a loof quart = pyrite venices dissemnation is weak loof quart = pyrite venices dissemnation is weak loof quart = pyrite venices dissemnation was with done network of quart = pyrite venices dissemnation was with done network of quart = pyrite venices dissemnation is weak piperio dissemnation is weak tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense tennes do quart = pyrite venices dissemnation is weak with ense dissemnation is weak ense dissemnation is we							86.0 - 87.0	103	<0.1	44.2	18.6	36.2	28.0
90 additional of printe, with quarts + printe vening additional of printe with dense network of granter, with quarts + printe vening additional of printe with dense network of granter, with quarts + printe vening additional of printe with dense network of granter, with quarts + printe with granter additional of printer with additional of printer with additional of printer additional printer additional of printer additional of printer additional printer additional of printer additional printer additional printer additional printer additional printer additional printer additional printer are printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additional printer additionad printer printer additionad printer additional printe	-	++++		pyrite veinlets, light gray colored,		Р		130	.0.1	06.2	100	54.2	
$100 = \frac{376 + 8.9}{123 + 32} + \frac{387 + 8.9}{113 + 32} + \frac{316}{114 + 316} + \frac{316}{1$	~~~~		89.3			1	87.0 - 89 0	130	<0.1	90.4	18.0	54.2	50.0
100 1	90 -			more then 5cm, ∠80deg.),		1							
94.5 93.3-94.5m: brownish grav colored porphyry plagicolase phenocrysts (a 5.7mm) change to white by 0.90.0m, 90.490.0m, 90.400.0m, 90.490.0m, 90.400.0m,]	89.0 - 920	97	0.2	147.6	18.4	68.0	8.0
100 110 11100 11100 11100 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-					-							
100 1			94.5			-	ann ata	47	~0 T	61.6	21.8	60.8	8.0
100 98.3 99.3.9	~					-	+			01.0	21.0	00.0	0.0
100 98.3 94.593 m strongly arglilized & weakly silicified protex, with pyrite dissemination with a lot of quart + pyrite, with pyrite $\frac{4}{4}$ and $\frac{3}{1}$ and $\frac{1}{1}$ and $\frac{4}{4}$ and $\frac{3}{1}$ and $\frac{1}{1}$ and $\frac{3}{1}$ and \frac	_	++++											
Intervalcone with dense network of quartz + pyrite, with pyrite dissemination98.3-102.9m strongly silicified breecia, with pyrite dissemination, with a lot of quartz + pyrite venilets, with dissemination, with a lot of quartz + pyrite venilets, with dissemination with a lot of quartz + pyrite venilets, with dissemination with a lot of quartz + pyrite venilets, with dissemination is weak102.9102.9 $a_{2.0} + a_{2.0} + a_$	-	9+9) alai	98.3	94.5-98.3m: strongly argillized & weakly silicified		1	95.0 - 98.3	113	<0.1	64.2	14.8	75.4	15.0
100 1	_			zone with dense network of quartz + pyrite, with pyrite		ł	84.1.1141.0	80	<01	11.6	14.8	49.0	<2.0
$\begin{array}{c} 93.102.9m \ strongly silicified breccia, with pyrite dissemination, with a lot of quartz + pyrite veniets, with a lot of quartz + pyrite veniets with the strongly silicified breccia, with pyrite dissemination is weak interval, & with pyrite dissemination is weak interval, & with pyrite dissemination is weak interval, & with a lot of quartz + pyrite veniets with a lot of quartz + pyrite veniets with a lot of quartz + pyrite veniets with a lot of quartz + pyrite veniets (2 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	100 -	0+01.410		dissemination		8-102.0					17.8	55.2	<2.0
110dense network of quartz brecci aconsists of white breecia of porphyry (o 2- 5cm) & dark gray colored silicified matrix $4 + 2 + 3 + 1 + 1 + 0$ $4 + 2 + 3 + 1 + 0$ $102 - 100, 5 + 0 + 0 + 0$ $102, 9 - 105, 5m : arglilized & slightly silicified porphyry,tight gray colored, with dense network of quartz, quartz +pyrite, clay & chlorite,pyrite dissemination is weak30 + 0.2 + 0.0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$						Р	101.0 - 102.0	30	<0.1		13.4	43.6	<2.0
$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $			102.9	dense network of quartz	I and the second		102.0 - 103.0	30	0.2	50.0	16.6	54.2	23.0
120 - 102.5 - 105.5 - 102.5 - 105.5 - 102.5 - 105.5 - 102.5 - 105.5 - 102.5 - 105.5 - 102.5	-	++++											
Image: Second s	_		105.5				103.0 - 105.5	97	<0.1	157.4	14.4	81.0	26.0
110 109.5 105.5-109.5m; weakly argulized porphyry; plagicalase phenocrysts change to white day minerals, all mafic minerals change to chlorite, groundmass is mainly composed of K. Feldspar & quartz 0 0 1 2 0 1 1 4 3 0 113.0 113.0 109.5-113.0m; pale gray or pale green colored. strongly arguilized rock, with a lot of quartz venifets (2 40.70deg, w=3.5mm, 3-4cm interval), with a lot of quartz venifets (2 41.2 0.2 0 1 1 4 3 0 113.0 114.7m; porphyritic daicite dyke, ∠65deg., w=36mm, 1; parcolase phenocrysts change to white clay traces of quartz + pyrite veinlets (∠70deg, w=35mm ±) are found 1 1 1 0 1 2 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-]							
110 109.5 105.5-109.5m: weakly argilized porphyry: playioclase minerals change to white clay minerals. all mafe minerals change to white clay minerals. all mafe minerals change to chlorite, groundmass is mainly composed of K-feldspar & quartz 11 4 3 0 110 113.0 109.5-113.0m; pale gray or pale green colored. strongly argilized rock, with a lot of quartz venilets (2 40.70deg., we3.6mm. 3.4cm interval), with a lot of pyrite stringers 113.0-114.7m; porphyritic dacite dyke. ∠65deg. we30cm ±, playcolase phenocrysts change to white clay & mafic minerals change to chlorite traces of quartz + pyrite venilets (∠70deg., w=5mm ±) are found 135 0 0 1 2 10 0 113.0 114.7-130.7m; strongly silicified zone, pale gray to greensh gray colored, with pyrite venilets (∠70deg., w=5mm ±) are found 13 5 0 0 1 13 0 110.7-12.00 110.0-2 120.0 1300 114.7-130.7m; strongly silicified zone, pale gray to greensh gray colored, with pyrite venilets (2-70deg., strongly argilized & slightly silicified zone, a lot of quartz + pyrite veinhets & stringers are observed 3 5 0 0 1 13 10 110.0-11 1300.7 130.7-138.6m; pale green to light gray colored, strongly argilized & slightly silicified porphyry; with a lot of quartz, quartz + pyrite stringers (∠40.70deg., 2. of minervals), pyrite dissemination is weak, orgingla rock texture is clear, plagicolase phenocrysts &													
130 - 1130 - 114.7 $114.7 - 1130 - 114.7 - 1130$	لہ ا		109.5				105.5 - 109.5	93	0.2	117.6	23.0	101.2	34.0
Immerals change to chlorite, groundmass is mainly composed of K-feldspar & quartz umposed of K-feldspar & quartz (114,71)11 <td>110 -</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	110 -					-							
130113.0114.7130.71	-	+++	ĺ	minerals change to chlorite, groundmass is mainly	1 1 4 3 0]						İ	
109.5-113.0m: pale gray or pale green colored. strongly argilized rock, with a lot of purite stringers $0 0 0 1 2 0$ $0 0 1 2 0$ $0 0 1 2 0$ 114.7113.0-114.7m: porphyritic dacite dyke, $\angle 65deg$. w=80cm \pm , plagioclase phenocrysts change to white clay & mafic minerals change to chlorite traces of quartz + pyrite veinlets ($\angle 70deg$., w=5mm \pm) are found $2 5 0 0 0$ $3 5 0 0 0$ $1 3 0.2 129.0 1$ $3 5 0 0 0$ 113.0-114.7m: porphyritic dacite dyke, $\angle 65deg$. w=80cm \pm , plagioclase phenocrysts change to white clay & mafic minerals change to chlorite traces of quartz + pyrite veinlets ($\angle 70deg$ w=5mm \pm) are found $3 5 0 0 0$ $3 5 0 0 0$ $8-121.0$ P1 $1130.0.114.7 = 130.770.04 52.6 10$ $1200.1200 93 0.4 51.2 = 130.7112 m & 129.1130.7m: transitional zone betweenstrong silicification, porphyritic texture is campletely destroyed bystrong silicification. porphyritic texture is rarely observed115.117m \& 129.1130.7m: transitional zone betweenstrongly argilized & slightly silicified porphyry, with a lotof quartz, quartz + pyrite stringers (\angle 40.70deg.2 5 0 1 1 013 2 2 2 1 113 2 2 1 113 2 2 0 1130.7-138.8m: pale green to light gray colored,strongly argilized & slightly silicified porphyry, with a lotof quartz, quartz, quartz, eprite, pyrite stringers (\angle 40.70deg.2 5 0 1 1 013 2 2 0 113 2 0 1138.8.12 0 0138.8-140.6m: light gray colored, argillized &chlorite.138.8.12 0 0138.8.12 0 0138.8-140.6m: light gray colored, argillized &chlorite.1 32 0 01 3 2 2 0 1138.8-140.6m: light gray colored, argillized &$			113.0	composed of K-leidspar & quartz		1	109.5 - 113.0	73	0.2	102.0	22.0	72.0	49.0
40-70deg., w=3-6mm. 3-4cm interval), with a lot of pyrite stringers120113.0-114.7m; porphyritic dacite dyke, $\angle 653$ deg., w=80cm ±, plagioclase phenocrysts change to white clay & mafic minerals change to chlorite $2 4 1 2 0$ $2 5 0 0 0$ $2 4 1 2 0$ $2 5 0 0 0$ 120113.0-114.7m; porphyritic dacite dyke, $\angle 653$ deg., w=80cm ±, plagioclase phenocrysts change to white clay & mafic minerals change to chlorite $2 4 1 2 0$ $2 5 0 0 0$ $8-121.0$ Pl120114.7-130.7m; strongly silicified zone, pale gray to greensh gray colored, with pyrite veinlets (3-4cm interval), & with pyrite dissemination, & with pyrite probla original rock texture is completely destroyed by strong silicified zone, a lot of quartz + pyrite veinlets & stringers are observed $3 5 0 0 0$ $3 5 0 0 0$ $8-121.0$ Pl130130.7-138.8m; pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz, + pyrite byrite stringers (2 40.70deg, 2 fore $3 5 0 1 0$ $3 5 0 1 0$ $1 3 2 2 0$ $1 3 2 2 0$ $120 - 1320$ $1 3 2 2 0$ 130130.7-138.8m; pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz, + pyrite byrite stringers (2 40.70deg, 2 fore $1 3 2 2 0$ $1 3 2 2 0$ $1 3 2 2 0$ $1 3 2 2 0$ 130130.7-138.8m; pale green to light gray colored, 	-	878	114.7			-	113.0 - 114.7	57	<0.1	83.8	28.8	103.4	47.0
$120 + 113.0-114.7m: porphyritic dacite dyke, \angle 65deg.w=80cm ±, plagioclase phenocrysts change to white clay& mafic minerals change to chloritetraces of quartz + pyrite veinlets (\angle 70deg., w=5mm ±) are found114.7-130.7m: strongly silicified zone, pale gray togreensh gray colored, with pyrite veinlets (\angle 70deg., w=5mm ±) are found114.7-130.7m: strongly silicified zone, pale gray togreensh gray colored, with pyrite veinlets (\angle 3-4cminterval), & with pyrite dissemination, & with pyrite poolsoriginal rock texture is completely destroyed bystrong slicification, porphyritic texture is rarely observed(plagioclase phenocrysts change to servicite115-117m & 129.1-130.7m: transitional zone betweenslicified zone, a lot of quartz + pyriteveinlets & stringers are observed130.7-138.8m: pale green to light gray colored,strong largilized & slightly silicified porphyry, with a lotof quartz, quartz + pyrite, pyrite stringers (\angle 40.70deg., 2-dom interval), write dissemination is weak, original rocktexture is clase phenocrysts change tochlorite.130.7-138.8m: pale green to light gray colored,strong largilized & slightly silicified porphyry, with a lotof quartz, quartz + pyrite, pyrite stringers (\angle 40.70deg., 2-dom intervals), pyrite dissemination is weak, original rocktexture is clear, plagioclase phenocrysts change tochlorite.130.8-140.6m: light gray colored, argillized &130.8-140.6m: light gray colored, argillized &130.7-138.8-140.6m: light gray colored, argillized &130.7-138.8-140.6m: light gray colored, argillized &130.7-138.8-140.6m: light gray colored, argillized &130.7-138.9-140.6m: light gray colored, argillized &130.7-138.9-$					· · · · · · · · · · · · · · · · · · ·	-							
$120 - \frac{1}{120} + \frac{1}{120} $	-			stringers									
120& mafic minerals change to chlorite traces of quartz + pyrite veinlets ($\angle 70degw=5mm \pm$) are found1301001101		+++	ţ			4					50.2	56.4	58.0
traces of quartz + pyrite veinlets (2.10deg w=3mm ±) are found3 5 0 0 0P11300 - 131070 0.6 39.0 [1]114.7-130.7m: strongly silicified zone, pale gray to greensh gray colored, with pyrite veinlets (3-4cm interval), & with pyrite dissemination, & with pyrite pools original rock texture is completely destroyed by strong slicified zone, alot of quartz + pyrite (plagioclase phenocrysts change to sericite 1150 - 117m & 129.1 - 130.7m: transitional zone between silicified zone & argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite stringers (2 40-70deg., 2- 5cm intervals), pyrite dissemination is weak, original rock texture is clase phenocrysts change to chlorite,3 5 0 1 0 3 5 0 0 0 3 5 0 1 01210 - 1210 - 1210 - 63 0.2 88.8130130.7-138.8m: pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite stringers (2 40-70deg., 2- 5cm intervals), pyrite dissemination is weak, original rock texture is clase phenocrysts change to chlorite,1 3 2 2 0 1 3 2 2 01120 - 1250 - 1270 - 30 0.4 30.2 12130130.7-138.8m: pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite, pyrite stringers (2 40-70deg., 2- 5cm intervals), pyrite dissemination is weak, original rock texture is clase phenocrysts change to chlorite,1 3 2 2 0 1 3 2 2 01120 - 1350 53 c0.1 85.2 1130138.8-140.6m: light gray colored, argillized & tolore1 3 2 0 0 1 3 3 2 01 13 2 2 0 0 1 3 3 2 01 120 - 1350 53 c0.1 85.2 1		+++++++++++++++++++++++++++++++++++++++	-	& mafic minerals change to chlorite		8-121 0	-		-		54.0 101.8	46.0 30.8	<2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120 -	++++++++++++++++++++++++++++++++++++++			hand the second se	-						27.0	43.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-8+0- 1+0-	ļ				121.0 - 122.0	93	0.4	51.2	78.0	44.8	29.0
130 - 130 - 130 - 138 - 140 - 6m; light gray colored, argillized & stringers (2 40-70 deg, 2-	-	-0+0		greenish gray colored, with pyrite veinlets (3-4cm							40.2	38.0	20.0
130 strong silicification, porphyritic texture is rarely observed (plagioclase phenocrysts change to sericite 115-117m & 129-130.7m: transitional zone between silicified zone, a lot of quartz + pyrite veinlets & stringers are observed 3 5 0 1 0 3 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 2 5 0 1 0 1 3 2 2 1 1 1 3 2 2 1 1 1 3 2 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	++++++++++++++++++++++++++++++++++++++				-					41.4	52.6 39.2	18.0 28.0
$130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 115 \cdot 117 \text{m} \& 129 (1 \cdot 130 \text{ fm} : transitional zone between}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $130 - 113 \cdot 10 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 129 \text{m}$ $1290 - 1290 \cdot 1290 \text{m}$ $1290 - 1290 \cdot 1290 \text{m}$ $1290 - 1290 \cdot 1290 \text{m}$ $1290 - 1290 \cdot 1290 \text{m}$ $1290 - 1290 \cdot 1290 \text{m}$ $1290 - 12$		-0+0		strong silicification, porphyritic texture is rarely observed	3 5 0 0 0	1							
130 130.7 130.7-138.8m: pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite, pyrite stringers (∠ 40.70deg, 2- 5 cm intervals), pyrite dissemination is weak, original rock texture is clear, plagioclase phenocrysts & groundmass change to white clay, mafic mineral phenocrysts change to chlorite. 1 3 2 1 1 1 3 2 1 1400 100 130.7-138.8m: pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite, pyrite stringers (∠ 40.70deg, 2- 5 cm intervals), pyrite dissemination is weak, original rock texture is clear, plagioclase phenocrysts & groundmass change to white clay, mafic mineral phenocrysts change to chlorite. 0 1 3 2 0 1005 138.8-140.6m: light gray colored, argillized & 0 0 1 3 2 0 1120-1350 53 <0.1		•+• •+•				1	125.0 - 127.0	30	0.4	30.2	127.4	56.6	<2.0
130 130.7-138.8m: pale green to light gray colored, strongly argillized & slightly silicified porphyry, with a lot of quartz, quartz + pyrite, pyrite stringers (∠ 40-70deg, 2- ócm intervals), pyrite dissemination is weak, original rock texture is clear, plagioclase phenocrysts & groundmass change to white clay, mafic mineral phenocrysts change to chlorite. 1 3 2 2 1 1 1 3 2 2 1 0 1 3 2 0 0 1 1 3 2 0 0 1 1 3 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	-	-0+0											• •
130.7 130.7 <td< td=""><td>-</td><td></td><td></td><td>•</td><td></td><td></td><td>127.0 - 129.0</td><td>63</td><td>0.2</td><td>88.8</td><td>10.2</td><td>53.8</td><td><2.0</td></td<>	-			•			127.0 - 129.0	63	0.2	88.8	10.2	53.8	<2.0
initial 5cm intervals), pyrite dissemination is weak, original rock 0 1 3 2 0 initial texture is clear, plagioclase phenocrysts & groundmass 0 1 3 2 0 initial change to white clay, mafic mineral phenocrysts change to chlorite, 0 1 3 2 0 initial chlorite, 0 1 3 2 0 133 2 0 initial chlorite, 0 1 3 2 0 133 2 0 133 2 0 132.0-1350 53 <0.1	130 -		130.7			1							
best iteles 5cm intervals), pyrite dissemination is weak, original rock 0 1 3 2 0 rest iteles texture is clear, plagioclase phenocrysts & groundmass 0 1 3 2 0 rest iteles chlorite, 0 1 3 2 0 rest iteles chlorite, 0 1 3 2 0 rest iteles 0 1 3 2 0				of quartz, quartz + pyrite, pyrite stringers (2 40-70deg., 2-	0 1 3 2 0]	129.0 - 132.0	80	<0.1	71.8	43.2	53.4	23.0
11100 change to white clay, mafic mineral phenocrysts change to chlorite, 0 1 3 2 0 11010 chlorite, 0 1 3 2 0 113,8,9,140,6,7,135,9 53 <0.1	-	++++++++++++++++++++++++++++++++++++++				4							
1001 1001 <th< td=""><td>-</td><td>1010</td><td></td><td>change to white clay, mafic mineral phenocrysts change to</td><td>hand and and and and a</td><td>4</td><td>111/1.1160</td><td><1</td><td>e0 1</td><td>85 7</td><td>210</td><td>81.6</td><td>30.0</td></th<>	-	1010		change to white clay, mafic mineral phenocrysts change to	hand and and and and a	4	111/1.1160	<1	e0 1	85 7	210	81.6	30.0
138.8-140.6m: light gray colored, argillized & 0 1 3 2 0	-					1	U.661 - IALLE		0.1	<u></u>			
		++++		138.8-140.6m : light gray colored, argillized & chloritized porphyry, with quartz + pyrite veinlets ($\angle 20$ -	0 1 3 2 0]					1	ĺ	
65deg, interval of 5-10cm), slightly silicified 0 1 3 2 0 1 1350-1380 77 <0.1 107.0	_		138.8			4	135.0 - 138.0	77	<0.1	107.0	25.4	83.6	34.0
		-a+a2.0 01				4					1		

Appendix 17 Log of the Drill Hole "MJTA-8" (2/4)

Appendix 17 Log of the Drill Hole "MJTA-8" (3/4)

					T		[A	ssay	result	s	
Scale	Column	Depth	Description	Suthdation Sultidation Argilliza. Chloritiza Epidotiza	Examined	Assay	Au	Ag	Cu	РЬ	Zn	Мо
(m)		(m)	·	gilliz pidot	Sample	Interval		(ppm)				(ppm
	1	140.6			ļ,							<u> </u>
-		140.0	140.6-142.5m: strongly silicified rock, with quartz +	1 3 2 2 1	4	138.0 - 1+1.0	90	<0.1	169.2	30.0	73.8	48.0
		1138	pyrite veinlets & stringers, with quartz, + pyrite pools (ϕ = 1-2cm), rock texture is dstroved by strong silicification	2 4 1 2 2	-							
-		_113.0	1-2cm), fock texture is distroyed by strong sincification	2 4 2 3 1			67	-01	94,4			1
			143.0-146.7m: strongly silicified rock, with quartz +	2 4 2 3 1		141.0 - 144 0	07		74.4	33.4	56.0	23.0
-			pyrite network, with quartz network, with quartz + pyrite pools, rock texture is completely destroyed by strong	2 4 2 3 1	1		l İ	l l				
-		146.7	alteration	2 4 2 3 1		(44.0 - 147.0	57	<0.1	75.2	33.4	68.6	35/
-	2+++1010	145.0	146 7 140 0m may smilling & slightly silisified	0 2 3 2 1		· · ·						
-			146.7-148.0m: gray, argillized & slightly silicified porphyry with pyrite stringers	0 3 3 2 1	8-150.4			1		}		
150 -				1 4 3 2 1	PX	147 0 - 150,0	70	<0.1	126.4	65.6	92.0	44.
150 -		151.4	148.0-151.4m: light gray colored, strongly silicified . rock with pyrite dissemination, with pyrite network, with	3 4 2 2 1		150.0 - 151.0	60	<0.1	225.0	22.8	68.4	<2.
_	+++++++++++++++++++++++++++++++++++++++		pyrite + quartz network, original rock texture is destroyed	3 2 3 2 2	8-151.0	151.0 - 152.0	50	÷	÷	31.4	80.6	÷
_	4-0-1-0-0		by strong alteration shear zone	3 4 3 2 1	Т	152.0 - 153.0	57	0.8		22.8	73.2	+
_		154.3	snear zone	3 4 3 2 1		153 0 - 154.0	43	<0.1	121.6	32.0	56.0	÷
			151.4-151.8m: pale green colored, strongly argillized	4 5 1 1 1		154.0 - 155.0	53	0.4	102.2	50.0	77.6	<2.
	++++++		rock with quartz + pyrite stringers (interval of 3cm). slightly silicified, total amount of sulfide is 3%	4 5 1 1 1	8-157.0 PT		57	3.0	;	19.8	91.2	+
-	++++		signify sinched, total amount of sumde is 5%	4 5 1 1 1 4 5 0 0 0		156.0 - 157.0	53	0.6	63.4	41.2	47.2	<2.
-	; * * *	158.7	151.8-154.3m: light gray colored, strongly silicified	3 5 1 1 0	{	157 0 - 158 .0	103	1.4	67.4	68. 3	45.2	<2.
	++++	<u> </u>	rock, with quartz + pyrite network, with pyrite network, with quartz network with pyrite dissemination	3 5 1 1 0	1							
60 -)+0+ +0+		-	3 5 1 1 0	1	158.0 - 161.0	50	0.2	135.8	87.2	40.4	<2
-		161.5	154.3-158.7m: strongly silicified rock, with strong	3 5 1 1 0	1							1
-			dissemination of pyrite (3-4%), with a lot of pyrite veinlets, with quartz + pyrite & quartz veinlets, (\angle 60deg.	2 3 4 3 1	1	161.0 - 163.0	90	1.2	152.0	36.2	74.8	<2
		1	±. w=5-10mm, 2-4cm interval), original rock texture is	2 3 4 3 1	1				<u>[</u>			1
-		165.0	completely destroyed	3 5 1 1 0		163.0 - 165.0	127	<0.1	249.4	43.8	66.4	<2
_	0+01010 01010		158.7-161.5m: strongly silicified rock with pyrite	0 1 3 3 0								
-			dissemination & pyrite network, coarse grained quartz	0 1 3 3 0								
-			veinlets & quartz stringers occur (3-4cm interaval), original rock texture (porphyritic texture) is slightly	0 1 3 3 0		165.0 - 168.0	70	<0.L	95.0	64.6	71.8	<2
_	1-1-1-00		observed	0 1 3 3 0				į i				
70 -			151 5 165 0m; exception official reals first grouped	0 1 3 3 0	1							
-			161.5-165.0m: strongly silicified rock, fine grained rock, original rock texture is destroyed by strong	1 3 2 3 0	4	168.0 - 171.0	90	0.6		· · · · · · · · ·		
-		172.4	silicification	0 1 3 3 0	ł	171.0 - 172.0	60	3.4	137.2	19.2	77.2	<2
-	1 1 100		strong dissemination of pyrite & dense network of pyrite are widely developed	0 1 3 3 0	-							1
-			162.5-163.4m: strongly argillized porphyry, slightly	1 2 3 3 0		172.0 - 175.0	77	0.2	132.8	76.0	68.0	1.0
	はいい		silicified, pyrite dissemination is very weak	1 3 2 3 0		172.0 - 175.0		0.2	152.8	20.0	03.0	<u> </u>
_		177.0	165.0-172.4m: greenish gray colored, strongly	1 3 1 2 0	1							
-			argillized & strongly chloritized porphyry, with quartz +	0 0 1 2 0	1	175.0 - 178.0	37	<0.1	76.0	34.6	98.4	2
_			pyrite veinlets (∠60deg., w=4-10mm. interval of 3-5cm). pyrite dissemination is weak	0 0 1 2 0	1		(i		1			i
~~~	1::::+++		170.0-170.6m: strongly silicified rock, fine grained	0 0 1 2 0	1			(		1		
80 -			rock, original rock texture is destroyed by strong	0 0 1 2 0		178.0 - 181.0	23	0.4	100.8	15.0	148.0	<2
_			silicification, total amount of disseminated pyrite is about 1%	0 0 1 2 0								
			170	0 0 1 2 0								
			172.4-177.0m: strongly argillized & chloritized	0 0 1 2 0	1	181.0 - 184.0	<10	<0.1	93.0	10.6	127.0	<2
-		185.8	porphyry and strongly silicified porphyry, contact boundaries between argillized part and silicified part are	0 0 1 2 0	4					/		.
-		100.0	irregular	0 0 1 2 0	1	184.0 - 186.0	17	1.0	39.2	11.6	115.8	<2
		188.0	argillized & chloritized part: pyrite dissemination is very weak (<1%)	1 3 1 1 0	-		İ				1	
		100.0	silicified part: pyrite dissemination is strong (2% =)	0 0 2 3 0	1	186.0 - 189.0	210	1.8	78.0	11.4	70.0	<
	<b>1</b>	190.0		0 1 2 3 0	1			1.0				1
90 -			177.0-185.8m: fine grained andesite? dyke, with chloritized hornblende phenocrysts (o 1mm) & argillized	1 3 2 3 0	1			1				1
		192.0	plagioclase phenocrysts ( o 1-2mm), traces of clay veinlets	1 1 3 2 3 0	1	189.0 - 192.0	70	<0.1	147.2	24.8	81.4	<
-		1	occur (interval of 4-10cm) 165.5m: quartz + pyrite vein, w=25cm ∠50deg ,	0 0 1 3 1	1					i		
-	腦肚		including coarse grained pyrite	0 0 1 3 1	]		l	1				ł
		ļ		0 0 1 3 1		192.0 - 195.0	70	<0.1	69.2	19.2	87.8	<
-			<b>188.0-190.0m</b> : green colored porphyry, argillized & chloritized, with quartz + pyrite veinlets (∠70deg., w=5-	0 0 1 3 1	1							1
_		1	10mm), with quartz stringers (2.5cm interval)	0 0 1 3 1		1						
				0 0 1 3 1	4	195.0 - 198.0	60	<0.1	154.0	28.8	80.4	
~		ł	<b>190.0-192.0m</b> : strongly silicified rock with pyrite dissemination, showing brecciated structure. ( $\phi$ 2-4cm)	0 0 1 3 1	4	1		1			'	1
00 -				0 0 1 3 1	4	1						
-			<b>192.0-205.3m</b> : chloritized porphyritic dacite (dyke?), with weak argillization, rock texture is clear, with quartz	0 0 1 3 1	-	198.0 - 201.0	50	1.2	98.2	34.2	85.8	<
-			+ pyrite stringers, with quartz stringers, with epidote +	0 0 1 3 1	-	1	1					
-			pyrite stringers (interval of 3-5cm)	0 0 1 3 1	4		1 10	0.0	104.0	100	DAC	
-			pyrite dissemination is weak fractured rock (cracky core)	0 0 1 3 1	4	201.0 - 204.0	50	0.2	104.8	16.2	94.6	<
-		205.3	MACINICA IOCK (CIACKY COTE)	0 0 1 3 2	1							1
	∱┋┋┋╞╋┙		205.3-214.4m: chloritized porphyry, weakly argillized.	0 0 1 3 2	1	204.0 - 207.0	40	0.8	97.0	22.8	86.8	
	<u>↓</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		pyrite stringers occur (interval of 2-5cm), fractured core	0 0 1 3 2	1			1.0.0	1.0	0.00	00.0	$\dot{\uparrow}$
-		1										
-			(cracky core). original rock texture is clear	0 0 1 3 2	1							j.

### Appendix 17 Log of the Drill Hole "MJTA-8" (4/4)

Scale (m)	Column											A	VE.22	rocuit	c	
		Depth	Description	Log L	e	9	Z.a.	28		İ	<u> </u>		ssay		1	T
		(m)		Sulfidation	CIC	giliz	Chloritiza	lidot	Examined Sample	Assay Interval	Au	Ag	(ppm)	Pb (nom)	Zn	M
E	[ 		· · · · · · · · · · · · · · · · · · ·	Su	S	¥ C					(PDD)	(ppm)	աստչ	(ppm)	(ppm)	(ppr
				0	0	1 4			]						Ī	1
_			214.4-219.0m: strongly silicified zone, greenish dark		0	1 4	4	2	]							
_			gray colored, original rock texture is not clear because of strong solidification, plagioclase phenocrysts show pale	1	1	1 4	4	2		210.0 - 213.0	80	<0.1	115.6	37.0	79.0	<2
		214.4	green colored (epidotized?), all mafic minerals change to		_	1 3		1								T
<u> </u>			chlorite, small amount of pink colored anhedral minerals	1	1	1 3	3	1	]							1
_			(K-feldspar??) occur locally, pyrite stringers, chlorite + pyrite stringers & quartz +			2 2		1	]	213.0 - 216.0	100	<0.1	116.4	43.4	74.6	<2
4			pyrite schligers chlorite + pyrite schligers & quartz +		_	2 2		1								i
_			dissemination is weak, traces of chalcopyrite stringers			2 2		2					ĺ			
		219.0	occur locally			2 2		1	]	216.0 - 219.0	80	<0.1	88.8	29.2	63.8	<2
	+++++++++++++++++++++++++++++++++++++++		219.0-226.0m: strongly silicified rock, greenish dark,			2 2		2								1
			gray colored			2 2			1							ł
-			dense network of quartz, quartz + pyrite, pyrite.			2 2				219.0 - 222.0	50	0.2	96.0	39.0	86.0	15
	+++		chlorite + pyrite, quartz + calcite + pyrite weak dissemination of pyrite			2 2			4							
4			a lot of veins & veinlets of quartz & quartz + pyrite			2 2	_			222.0 - 224.0	40	<0.1	82.0	26.0	80.0	46
	2+0+0 0+0 +0+0 +0+0		(interval of 5·15cm. ∠ 40-80deg., w=4·15mm)			2 2										
		226.0	226.0-237.5m: greenish dark gray colored, strongly			2 2			1							
-	++++		silicified porphyry, with network of quartz + pyrite, pyrite				-÷	2		224.9 - 227.0	30	<0.1	87.0	24.0	76.0	10
-	+-+		(1-3cm interval), with veinlets of quartz + pyrite (5-10cm		<u> </u>	1 2			4							1
			interval) rock texture is not clear because of the strong		_	1 2	-	2	4							
220 -	+++++++++++++++++++++++++++++++++++++++		rock texture is not clear because of the strong silicification, chloritization & epidotization, plagioclase			1 2		2	8-231.0	227.0 - 230,0	30	<0.1	37.0	24.0	80.0	<u> </u>
-{			phenocrysts change to pale green colored minerals			1 2			ŤΧ							
			(epidote?), groundmass is replaced by quartz & chlorite			1 2		_		ļ						1
_			pink colored anhedral minerals locally occur in the groundmass (K-feldspar?)			1   2	_	2		230.0 - 233.0	20	<0.1	67.0	51.0	109.0	8
-		-	232m:quartz + pyrite vein. ∠60-70deg., w=1cm			1   2		<u> </u>	1							
			235m: quartz + pyrite vein, ∠ 45deg., w=1cm		4		212	_								
-			236.5m: quartz vein, 485deg., w=0.5-1.5cm	11			2   2	_								
	+++	237.5		0 4			2 2			233.0 - 237.0	50	<0.1	34.0	36.0	73.0	15
					4			2	4							
					4   :		<u> </u>	2	8-240. 2							
$240 \rightarrow$	+++++		237.5-250.0m: light gray to greenish light gray colored, strongly silicified rock, chloritized & weakly		4		- 1 -	2	P	237.0 - 240.0	30	<0.1	76.0	17.0	55.0	2
			epidotized, rock texture is completely destroyed by strong		4   ;		_	2								
			alteration			2 2		2								
{-	+ + + + + + + + + + + + + + + + + + + +		with quartz stringers & quartz + pyrite stringers ( $\angle$ 40-75deg., intervals of 2-3cm)		4   1	-		2		2400-2430	40	<0.1	84.0	19.0	68.0	<2
-			with quartz + pyrite veinlets ( $\angle$ 70-90deg.) rarely		4   1			2								
			occur	14				_	1							
	++++		247-250m: clay veins (w=2-10mm) rarely occur	h-+-		2 2		2		243.0 - 246.0	30	<0.1	59.0	18.0	62.0	<2
	++++		240m, 245m: quartz + pyrite vein (∠50-55deg.) w=15mm)		4	-		2								
{i					4   :				8-249, 1	246.0 - 248.0	20	<0.1	101.0	21.0	57.0	<2
	:::::::::::::::::::::::::::::::::::::::	250.0				3 3		_	PTXI							
250 -	•্ৰন্থন্থন্	250.0			213	3 3	1 2	21		248.0 - 250.0	301	<0.1	82.0	36.0	62.0	<2
-	İ			<u> </u>			+						1			
_						+	-						· 1			
-					+	+	+		1							
-				$\vdash$	+								.			
4				++	+	+	-	-+					1			
				++	+-	+	+	+	{							
				+	+	-+	+.	-+								
-					+	+-	1									L
					+	+	-	-+	}							l
260 -					+		+	+		ļ						1
-				++	-+-	+	+	-+					ĺ			
-1			,	+-+	+	+	+	+					j			
-	1			$\vdash$	+	+-	+	- +								
٦				+-+-	-+-	+	-+-	+								
-1	1				+	+-	+•	+								
				-+-	+		+-						j			
7				++		+	+	+-			1			l		
-	1				+-		-+-	+	ł Ì							
				$\left  + \right $	+	+-	+-							1		
270 -				$\vdash$	+	+	+	+								
_				$\vdash$	+	+		+								
	Í				+	-+-	+	+								ł
	ļ			$\vdash$	+	+	+									1
					+	+-	+									
				<b>├</b> -+-			+	+	{							1
	ļ	1					1	1								
				++	+		+	+								
				H	+											