2.7 Case of Load

The following cases of load must be considered in the studies of stability and respective calculations in the internal efforts.

Case of Normal Load (CCN)

It corresponds to all the combinations of actions that present great probability of occurrence along the durability period of the structure, during the normal operation or normal maintenance of the work, in normal hydrological conditions.

- Case of Exceptional Load (CCE)

It correspond to any load actions of eventual occurrence of low probability of exceptional hydrological conditions, malfunctions in the drainage system, action of exceptional character, seismic effect etc.

Case of Load of Construction (CCC)

It corresponds to all the combination of actions that present probability of occurrence during the construction work, only, during short periods in relation to its durability and in good conditions of control. It might be due to loads of construction equipment, or, due to structures executed only partially, abnormal loads during the transportation of permanent equipment, and any other similar conditions.

Cases of load combination for stability analysis of gravity concrete dam is summarized in Table-2.3.

Case	Reservoir Level	Load mast be considered	Drain condition
CCN	N.W.L.	W, P, Pe, U	Operating
CCE	H.W.L.	W, P, Pe, I, Pd. U	Non Operating
ccc	All the load to act a	gainst dam during construction	
ote: W : P : Pe : I : Pd :	seismic inertia for	re forces ures due to sedimentation	

Table-2.3 Case of Load Combination

2.8 Method for Stability Analysis of Concrete dam

CEMIG design criteria indicates items to be examined as shown below;

(1) Safety Coefficients to Fluctuation (C.S.F.)

Safety coefficient to the fluctuation is defined as the relation between the summitry of the gravity forces and the summitry of the Sub-pressure Forces and will be given by the expression:

$$C.S.F = \frac{\Sigma V}{\Sigma U}$$

where

C.S.F. : Safety Coefficient to the Fluctuation.

V : summitry of the gravitational forces

U : summitry of the sub-pressure forces

Allowable minimum of C.S.F. is as follows;

Table-2.4Allowable Minimum Value of C.S.F.			
Bafatu Can Bialanta	Carrying Cases		
Safety Coefficients	CCN	CCE	CCC
CSF>	1.3	1.1	1.2

(2) Safety Coefficient against the Overturning

The safety coefficient to the Overturning in any direction is defined as the relation between the stabilizing moment and the falling down moment in relation to one point or to one effective line of rotations and will be given by the expression:

$$C.S.T = \frac{\Sigma Me}{\Sigma Mt}$$

where

C.S.T. : Safety Coefficient to the Overturning Me : summitry of stabilizer moments Mt : summitry of falling down moments

Allowable minimum of C.S.T. is as follows;

Table-2.5	÷	Allowable Minimum Value of C.S.T	ľ

Safaty Coefficients	Carrying Cases]
Safety Coefficients	CCN	CCE	CCC]
CST >	1.5	1.2	1.3]

(3) Safety to the Sliding for Structures (E.S.S)

It is considered that the safety to sliding is verified if:

$$F.S.S = \frac{\frac{\Sigma Ni \tan(\phi i)}{CSD\phi} + \frac{\Sigma Ci \Lambda i}{CSDC}}{\Sigma ti} \ge 1.0$$

where

CSDø	•	safety coefficient relatively to the friction
CSDC	•	safety coefficient relatively to the cohesion

Ni	:	normal strength to the surface of sliding analyzes
Øi	:	angle of friction characteristic of the sliding surface.
Ci	:	cohesion characteristic along to the sliding.
Ai	:	real area of contact of structure in the plan under analyzes.
Ti	:	resulting on the forces parallel to the sliding surface.

Values of CSDØ and SDC are as follows;

Safatu Caafficianta	Carrying Cases		
Safety Coefficients	CCN	CCE	CCC
CSDØ	1.5 (2.0)	1.1 (1.3)	1.3 (1.5)
CSDC	3.0 (4.0)	1.5 (2.0)	2.0 (2.5)

The adoption of these figures indicates a reasonable knowledge of the resistance parameters of the involved materials.

These figures shall be increased in the cases in which such knowledge is precarious or the materials do not present constancy behavior. In this case there shall be adopted the figures between the parenthesis.

(4) Analyzes of Tensions and Deformations

The tensions and deformations analyzes shall be elaborated to all the structural elements and of foundations considering the possible cases of carrying, in a way to determine or confirming the dimensioning of the structural elements.

As this study is for basic design stage, it is enough to confirm that the vertical stress acting on the contact surface between the dam base and the foundation rock is smaller than allowable tensile stress.

The charge capacity of the foundations is related to the maximum normal tension, defined through criteria which supply the rupture conditions, and the limitations concerning the excessive repression, harmful to the behavior and perfect utilization of the structure.

The maximum normal tension on the foundations shall be obtained based on the following relation:

σt , $adm = \frac{Charg \ e \ capacity \ of \ the foundation}{Safety Coefficient}$

The charge capacity of the foundations material shall be determined by suitable methods, using as subsides the results of tests" in situ "and the ones from laboratory.

In relation to the safety coefficient, are recommended the figures specified as follows:

Table-2.7	Safety	Coefficient f	or Allowable	Tensile Stress

Carrying Case			Safety coefficient	
CCN			3.0 (4.0)	N. 1. A.
CCC	1		2.0 (3.0)	
ССЕ	· · · · · · · · · · · · · · · · · · ·	[1.5 (2.0)	

These figures adoption points out to a reasonable knowledge of the resistance of the materials involved.

F-14

2.9 Excavation Line

)

The depth of the dam foundation is decided based on the imperviousness the rock strength required from the result of the stability analysis. As geological data is not enough so far, the excavation depth of the dam base should be decided according to general criteria.

(1) Dam Foundation Rock

- Concrete type dam: As a rule, C_M class rock mass is needed for the foundation of the dam with the height of 50m, though even C_L class rock mass is available where the dam height is small.
- Fill type dam : The core base needs imperviousness. C_L class rock mass is needed expecting the shielding effect by grouting. The filter base also needs C_L class rock mass. Soil and superficial sediments must be taken away from the rock base of the dam body.

(2) Excavation Slope

Average gradient of the foundation excavation slope including berm has maximum values as shown below;

,	Fab	le-2.8	

Maximum Excavation Slope

ſ	Tasta of Josephere	Outside of dam base			
	Inside of dam base	Soil	Rock		
ſ	1:0.7	1:1.0	1:0.8		

2.10 Foundation Treatment

(1) Foundation grouting

As geological data of foundation rock is not enough so far, general design values is adopted.

- Curtain Grouting

 $d = H/3 + \alpha$

a program de la del

where

- d : depth of grout hole (m) H : dam height upon a grout hole (m) α : constant (8-25m)
- Consolidation Grouching

- Consolidation Grouching

Pattern of boreholes arrangement is lattice pattern with 5m distance.

(2) Drain

According to CEMIG standard, length between upstream edge and drains is more 8% of reservoir water depth.

CHAPTER 3 DESIGNS OF DAM BODY AND SPILLWAY

3.1 Alternative Design of Dam and Spillway

(1) Comparison of Dam Type

Four (4) dam types: gravity concrete dam, rock-fill dam with zone type, rock-fill dam with concrete facing type and carth-fill dam are compared. Refer to Table-3.1, Figure-3.1, Figure-3.2 and Figure-3.3. Type of Vaza Barris Dam: *Gravity Concrete Dam Type* is decided due to low cost and workability of construction under the following considerations:

- 1) Rock material and concrete aggregate are procured at the existing quarry site located near the Cajaiba Dam and 15 km far from the dam site. As necessary material volume is minimum, concrete type dam, is advantageous.
- 2) Due to big design flood discharge for spillway, a large scale of spillway facility is necessary. Fill type dam requires large volume of concrete for spillway facility. Spillway for concrete type dam can be installed easily on the dam body. Concrete type dam is advantageous from viewpoints of construction cost and construction workability.
- 3) Fill type dam can be constructed on the rather less hard rock on the ground surface. That is an advantage of fill type dam. At the dam site, the layer of this rather less hard rock, namely C_L -class rock is very thin or nothing. Concrete type dam is constructed on the hard rock foundation: C_M -class rock or more. At the dam site, the difference between fill type dam foundation and concrete type dam foundation is very small. Therefore, fill type dam has no advantage at the dam site.
- 4) Around the dam site, layers of soil and weathered rock are very thin. Therefore, a large area is necessary to collect core material and earth material. Considering the current land use (pastureland) near the dam site, it is impossible to collect soil material in the wide areas.
- 5) Water depth in flood time is very high due to low gradient of the river channel. This high water depth is disadvantage for diversion tunnel during construction period. Therefore, partial bulkhead for diversion is recommendable. Partial bulkhead method is applicable for concrete type dam because the design diversion discharge is small and concrete dam is resistant against dam-top overflow. For fill type dam, diversion during construction period is very difficult at the Vaza Barris dam site.

(2) Comparison of Spillway

Generally, for concrete dam, spillway is installed on the top of dam as one unit with dam body. For fill type dam, spillway is constructed, apart from dam body, at the most appropriate place. The location is decided considering topography, geology, workability, economic efficiency and so on. Table-3.2 shows the comparison of spillway for fill type dam. Refer to Figure-3.4.

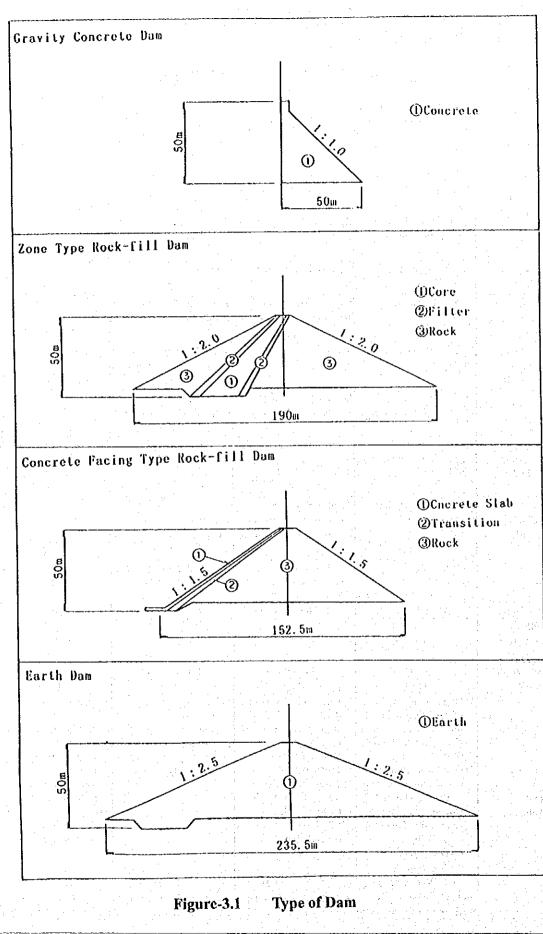
Spillway for Vaza Barris Dam has no gate. For concrete dam, overflow spillway is installed on the top of dam. For fill type dam, Chute spillway with overflow inlet is employed. Width of spillway for fill type dam is estimated to be about 130 m, supposing

F-16

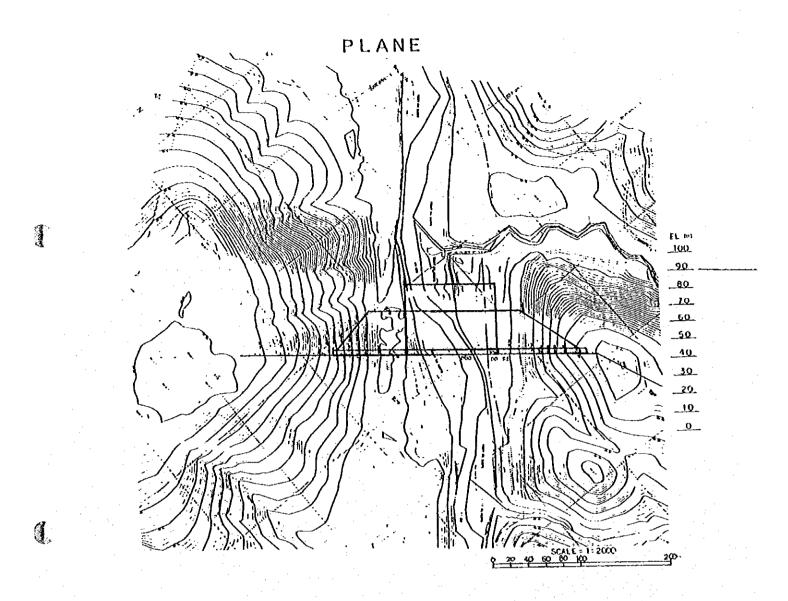
overflow depth: about 6 m. From the comparison result of spillway location for fill type dam, Left-Bank plan is most recommendable.

-	· · · · · · · · · · · · · · · · · · ·	Rock-I	ill Dam	Earth Dam
Items	Gravity Concrete Dam	Zone Туре	Concrete Facing Type	rann Dan
Dam	Dam foundation at the site	e is possible for construction		·····
Foundation	0 O	0	0	0
N 4 - 4	and concrete has to be pu dam site, acquisition of sc	rchased form the existing bil material is very difficult		m the dam site. Near the
Material for Dam Body	1) Concrete	1) Core	1) Concrete	1) Earth
Dani Dody	Aggregate, Cement,	2) Filter	2) Transition	
	Fly ash, Admixture	3) Rock	3) Rock	
	<u> </u>	Δ	0	X
Location of	Upper part of main dam	Left bank side, apart from		·
Spillway	0	Δ	Δ	Δ
Location of Low Flow	Inside of main dam	Outlet pipe cannot be in facilities are constructed a	. Pipe and other relat	
Outlet	O	Δ	Δ	Δ
Resistance against dam	Safety due to concrete structure.	Weak	Weak but better than zone type rock fill dam	Very weak
top overflow	0	$\mathbf{X} = \mathbf{x}_{1}$	Δ	$\mathbf{x} = \mathbf{x}$
Diversion	Q=200 m³/s	Q=720 m³/s (1/20 year pr	• •	
Discharge	(1/2 year probability)	For concrete facing type,	design discharge can be de	r
	0	X	Δ	X
Diversion Method	 Partial bulkhead Temporary hole in dam body 	No practical method, due to very large scale of diversion tunnel	 Partial bulkhead Temporary hole in dam body 	No practical method, du to very large scale of diversion tunnel
mentod	0	X	0.07	X
Construction Facilities	One system including concrete batch and concrete place	Total two systems: - Embankment system for - Concrete batch and con-	r dam body crete place system for spill	way
· .	0	Δ	Δ	Δ
Dam Height		class are very thin at the	Base rock for concrete da dam site. The dam heigh	
Dam Volume	275,000 m ³ (1.0)	899,000 m ³ (3.3)	697,000 m ³ (2.5)	1,100,000 m ³ (4.0)
Spillway Concrete Volume	0 m ³	37,500 m ³	37,500 m³	37,500 m ³
Excavation Volume	373,000 m ³ (1.0)	2,113,000 m ³ (5.7)	1,926,000 m ³ (5.1)	2,301,000 m ³ (6.2)
Total Evaluation	 Due to min. volume of dam, material cost inc. transportation is cheaper than fill type dam. Good workability due to one unit inc. dam, spillway and outlet. Due to big resistance against flood over top of dam, cost for diversion can be decreased. 	 Due to big diversion discharge and small slope of river channel, cost for diversion facilities is extremely expensive. Acquisition of core material is difficult. Cost for spillway is very larger than that of concrete type dam. 	 Due to remote quarry site, cost for rock material is very high. Cost for spillway is very larger than that of concrete type dam. 	 Due to big diversion discharge and small slope of river channe cost for diversion facilities is extremely expensive. There is no earth material near dam sitt Cost for spillway is very larger than that of concrete type dam.
	O (Very Good)	X (Not Good)	Δ(Fair)	X (Not Good)
	Probable dam types are	gravity concrete and r	ock-fill with concrete fa	cing. Due to cost an

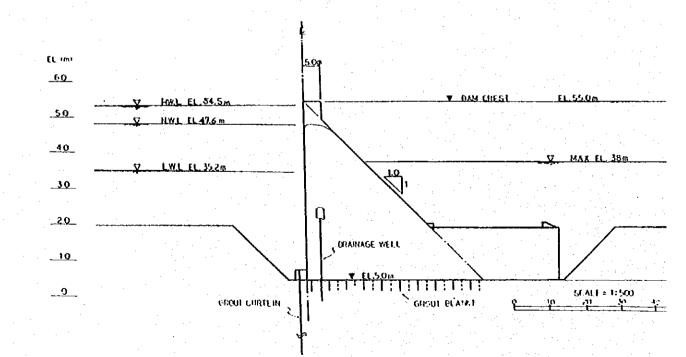
F-17:


Table-3.1 Compa

den al des


a server a s

Comparison of Dam Type



F-18

TYPICAL CROSS SECTION

C.

LONGITUDINAL SECTION OF DAM AXIS

CL (M)

_52

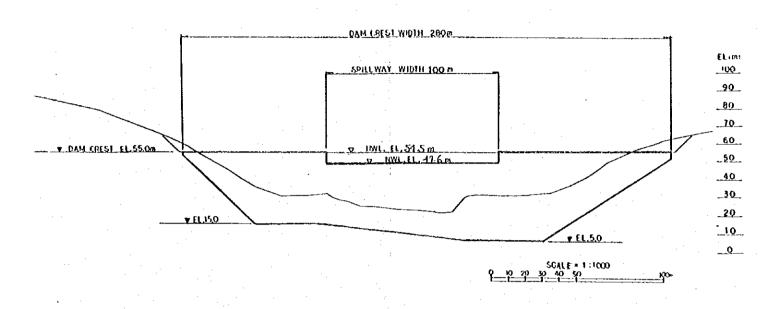
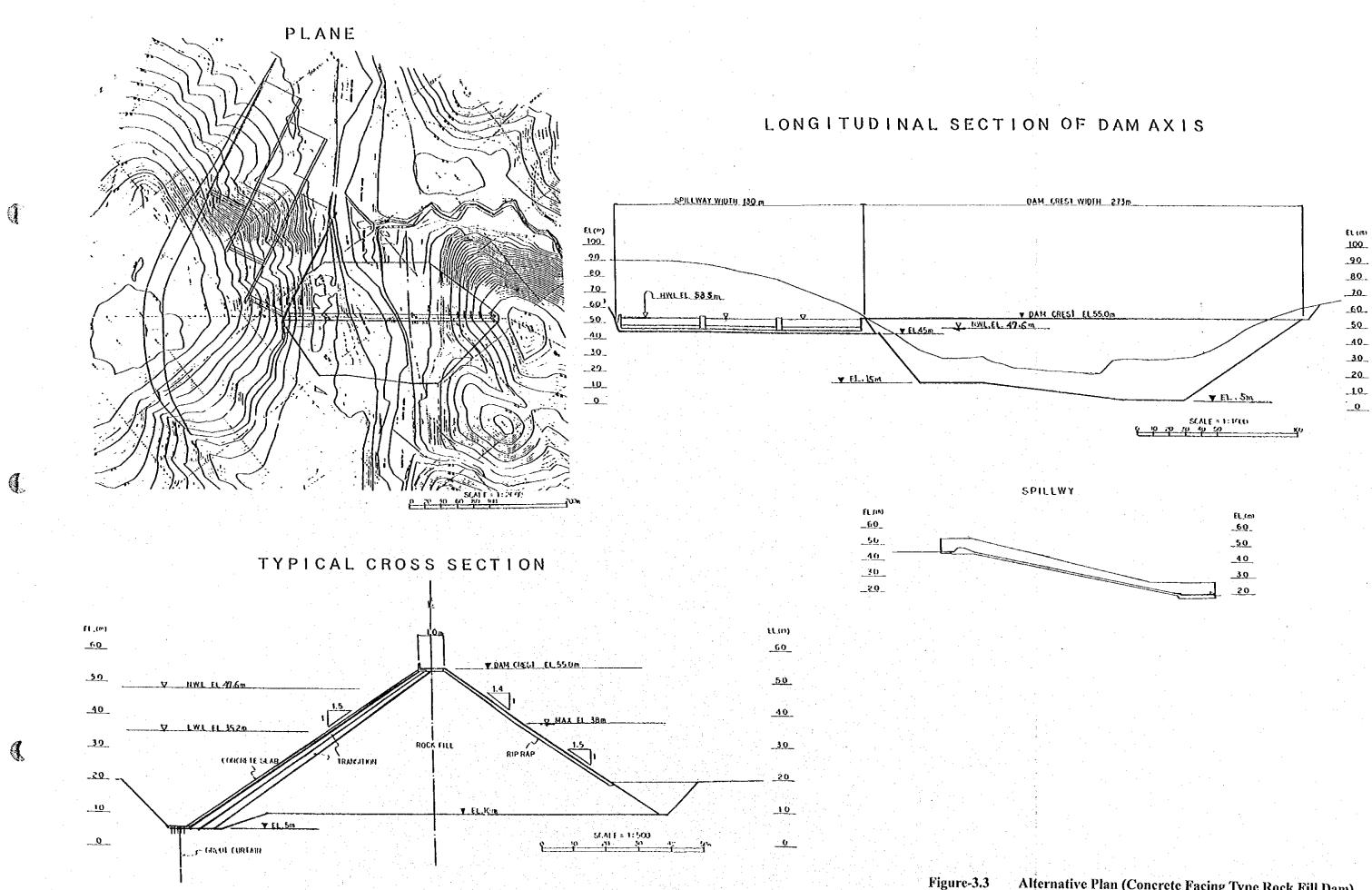
40

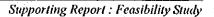
10

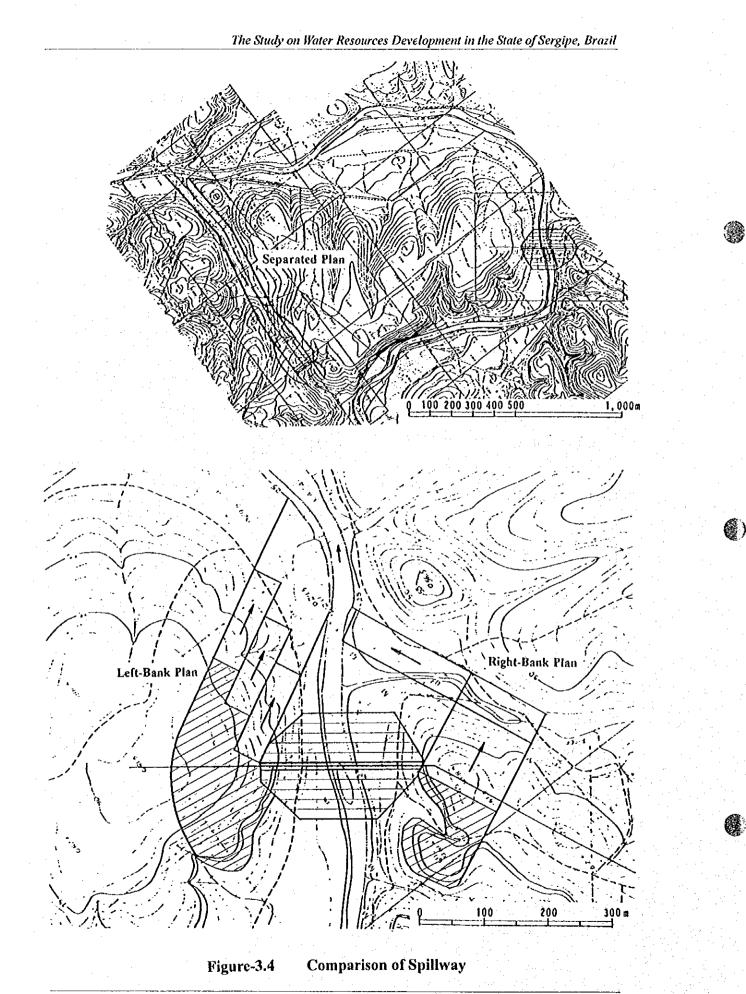
20

10_

_ Q___


Figure-3.2 Alternative Plan (Gravity Concrete Dam)


Alternative Plan (Concrete Facing Type Rock Fill Dam)

Items	Left-Bank Plan	Right-Bank Plan	Separated Plan
Topography and Geology	Topographically, left bank mountain body is large enough to install spillway. There is no geological problem.	Right bank is thin ridge. Line of the ridge is inclined upstream at 30 degree from dam axis. Weathered layer is 10 - 20 m. Hill top, el. 61 m, located at the top of right abutment, is obstacle to spillway.	Location is saddle of ridge. Weathered layer is 15 m. At the downstream valley, sedimentation depth seems 15 m.
Foundation of Spillway	Inlet level is normal water I rock is distributed. This c	evel of reservoir. At the no lass rock is strong enough fo	ormal water level, C _L – class r foundation of spillway.
Connection to Downstream River Channel	The center line of spillway crosses the river channel at 25 degree. No special problem.	Spilled water is directly discharged to the tributary which meets right angles to the river channel	The end of valley where spillway is installed, is flat land. No special problem.
Length of Spillway	Approx. 150 m	Approx. 100 m + 200 m training channel	Approx. 1000 m
Hydraulic Points	No special problem.	Arrangement of stilling pool is difficult due to topographic reason.	Curved chute is not appropriate to discharge supercritical flow.
Other Points	Large scale of spillway needs a large amount of excavation	Due to thin ridge and existence of lineament, there is a weak point of leakage. To prevent this leakage, there is a plan to fill the valley (upstream side of the ridge) with dumping soil material. It is not appropriate to install spillway near the dumping place.	Similar existing dams have chute with natural channel and inlet with concrete. Due to frequency of flood, large discharge and thick layer of sedimentation, natural channel – chute is not preferable.
Total Evaluation	Few problem	Large scale of spillway can not be installed.	Few merit
	O (Applicable)	X (Not applicable)	X (Not applicable)

 Table-3.2
 Comparison of Spillway for Fill-Type Dam

F-21

F-22

3.2 Design of Dam Body

(1) Design Conditions

The design conditions of the main dam is as follows:

(a) Design Water Level

- 1) Reservoir Water Level
 - H.W.L. = EL.52.7 m
 - N.W.L. = EL.47.5 m
 - L.W.L. = EL.28.5 m

2) Downstream Water Level

- Normal Time: EL. 20.0 m
- Flood Time: EL. 38.2 m

(b) Elevation of Dam Top

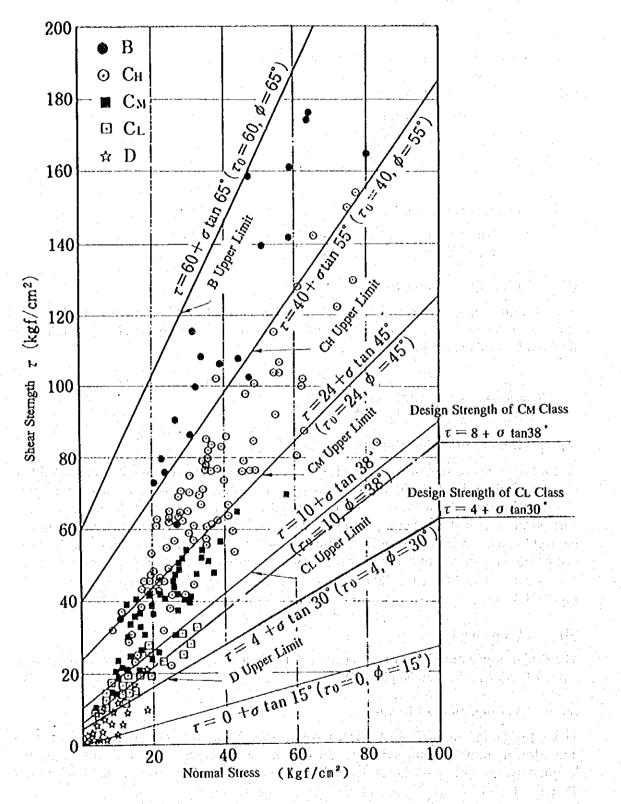
The elevation of dam top is EL. 53.2 m, which is the larger, comparing the levels of "normal water level + concrete dam freeboard" and "flood water level + concrete dam freeboard", as shown below.

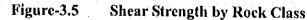
Items	Water Level	Freeboard	W/L+ Freeboard
Normal Time	N.W.L.: EL. 47.5 m	1.5 m	EL. 49.0 m
Flood Time	H.W.L.: EL. 52.7 m	0.5 m	EL. 53.2 m

(c) Dam Foundation Rock

According to the results of the geological survey covering the dam site, it is evaluated that C_M class rock at the dam site is strong enough to construct gravity concrete dam of 50 m class. Therefore, Vaza Barris Dam is installed on the C_M class rock foundation. The core boring revealed that the depth of C_M class rock is EL. 15 m at the left bank and 6 m at the right bank. It is necessary to confirm the strength of C_M class rock through the sheer test before preparation of detailed design. In this design, strength of C_M class rock in the dam site is assumed to be $C = 80 \text{ ton/m}^2$ of cohesion and $\emptyset = 38^\circ$ of internal friction angle. Figure-3.5 shows relationship between rock mass class and shear strength.

(d) Dam Height


The design foundation level of C_M class rock is set at EL. 5 m. As the elevation of dam top is EL. 53.2m, the dam height is 48.2 m.


(e) Arrangement of Drain

Three (3) drains in one block (15m) were arranged at the dam foundation of 5 m downstream from the dam axis. It satisfies the drain arrangement standard, while the length between upstream edge and drains is more than 8 % of reservoir water depth (5 m / 48.2 m = 10 %).

(f) Width of Dam Top

The width of dam top is set as 5 m considering entrance of crane truck in the case that gates are installed for low flow outlet and for temporary drain hole in dam body.

Supporting Report : Feasibility Study

. .

(2) Stability Analysis

(a) Analysis Condition

Stability of the dam is analyzed for dam standard section (the maximum section of overflow section and nonoverflow section) as described in the section of "Design Criteria". The load combination of three types, namely Case of Normal Load(CCN), Case of Exceptional Load(CCE), Case of Load of Construction(CCC), are listed in the design criteria. As CCC is changeable according to construction method, this case is neglected in this Study. Experimentally it is expected that safety factor of CCC case is higher than those of CCN and CCE cases though depending on the design condition. The parameters for the calculation of CCN and CCE are shown in Table-3.3;

Items	Itama		Carrying Case				
nems		CCN	CCE				
Upstream water level		EL.47.5 m (N.W.L.)	EL.52.7 m (H.W.L.)				
Downstream water level		EL.20.0 m	EL.38.2 m				
Sedimentation level		EL.28.6 m	EL.28.6 m				
Design seismic coefficient		0	Horizontal 0.05g Vertical 0.03g				
	Condition	Operating	Non operating				
Drain 👘	Position	5m from dam upstream face					
	Drainage level	EL.25 m					
Foundation design strength	С	80t/m ²					
roundation design strength	Ø	38					
	Mass concrete	2.3t/m ³					
Unit weight	Water	1.0t/m ³					
	Sedimentation(su	b) 0.35t/m ³					

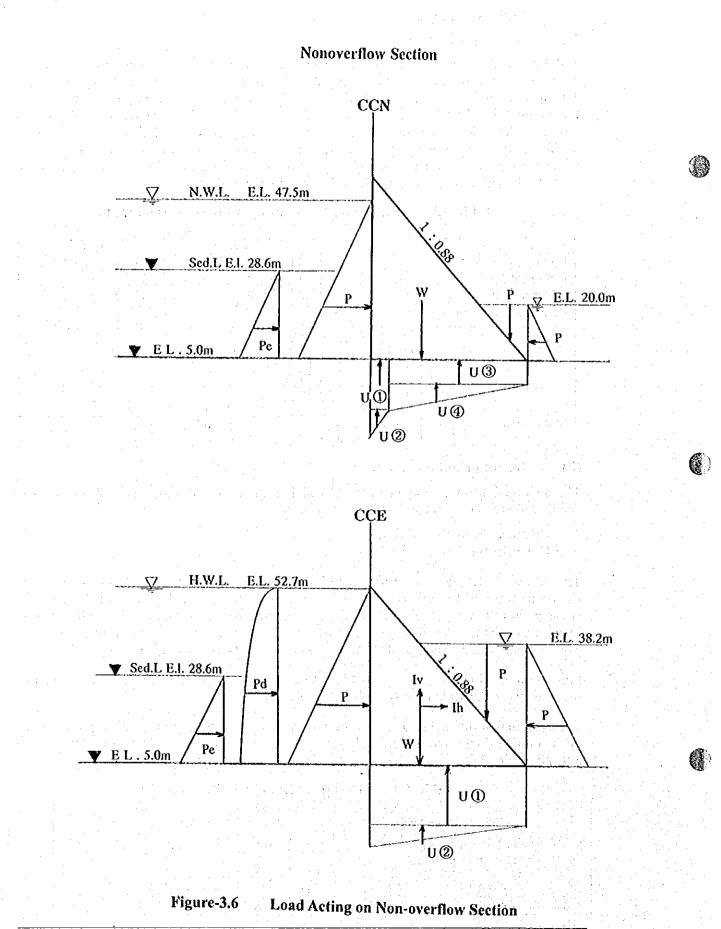
 Table-3.3
 Parameter for Stability Analysis of Dam Body

(b) Result of stability analysis

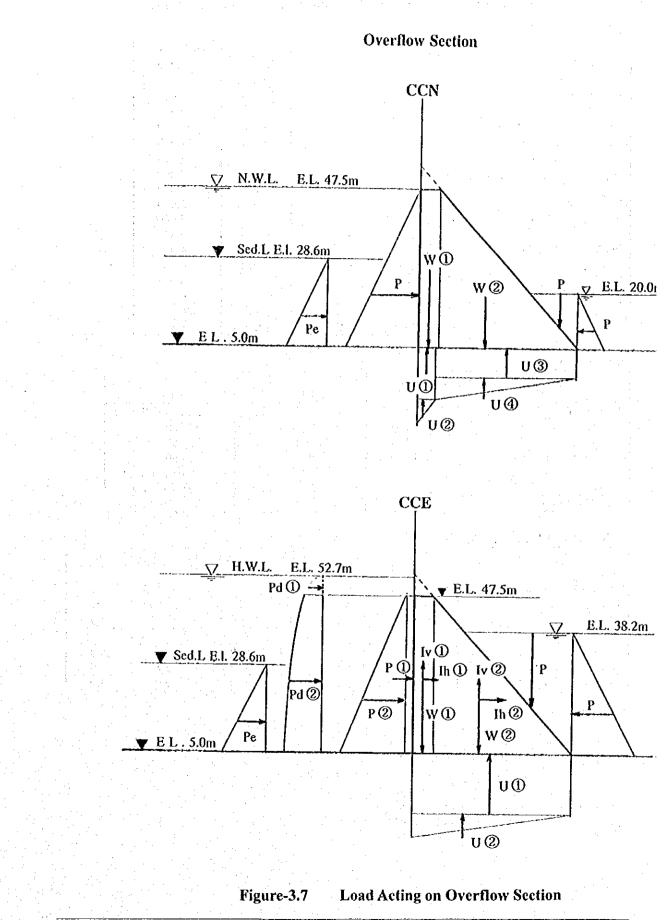
The sectional form of the main dam, which satisfies the design standard in the dam stability analysis (see Table-3.4), was set as follows:

Upstream Slope: Vertical Downstream Slope: 1:0.88

The allowable tensile stress of foundation rock is given by Charge Capacity / Safety Coefficient in CEMIG criteria. In order to increase the safety degree against the tensile stress within the foundation rock comprising phyllite with many joints, the sectional form of the main dam is designed so as not to cause tensile stress within the foundation rock. This study is for basic design stage and assumption above is considered enough.


Figure-3.6 and Figure-3.7 shows loads acting on the dam body by each case. Detail of the analysis is shown in case Table-3.5 to Table-3.9.

The sectional form of the dam, the drawings of Dam plan, longitudinal sections of the upstream and downstream view and standard sections, is presented in Figure-3.8, Figure-3.9 and Figure-3.10.


an the states	100/1	0.014	Ittouna or i	vani via	omey many sis		
		Safety	Safety Coefficients	Factor of	Tensio	n (V/m²)	Safety
Case	Section and allowable value	Coefficients to	against the	Safety to the	Upstream	Downstream	Factor
		Fluctuation	Overturning	Stiding	compressive stress ovu	compressive stress ovd	by Henny
Case of	Non-overflow section	2.53	2.76	1.61	32.23	37.63	5.1
Normal	Overflow section	2.50	2.75	1.59	29.31	39.00	5.1
Load	Allowable minimum value	1.3	1.5	1.0	0	0	4
Case of	Non-overflow section	1.61	1.71	2.74	0.79	48.71	5.0
Exceptional	Overflow section	1.59	1.67	2.77	4.11	43.89	5.0
Load	Allowable minimum value	1.1	1.2	1.0	0	0	4 .

F-25

Table-3.4 Results of Dam Stability Analysis

The Study on Water Resources Development in the State of Sergipe, Brazil

(CARE)

. . .

Table-3.5

Summary of Stability Analysis of Dam Body

1. Design Load

Ite	em .	Unit	Dimension
Dam Top Level	EL.(m)	53.200	
Overflow Crest Level		EL.(m)	47.500
Dam Foundation Level		EL.(m)	5.000
Downstream Slope			0.88
Design Flood Water Level		EL.(m)	52.700
Normal Water Level		EL.(m)	47.500
Sedimentation Level		EL.(m)	28.600
Downstream River Water Leve	H.W.L.	EL.(m)	38.200
Downstream Kiver water Leve	N.W.L.	EL.(m)	20.000
Drain Outlet Level		EL.(m)	25.000
Distance from Upstream Face u	ntil Drain	(m)	5.000
	Concrete	(t/m³)	2.3
Unit Volume Weight	Water	(t/m³)	1.0
	Sedimentation	(t/m³)	0.35
Design Seismic Coefficient	Horizontal		0.05
Design Seismic Coefficient	Vertical	· · · · · · · · · · · · · · · · · · ·	0.03
Equidation Dation Strangth	Cohesion	(t/m²)	80
Foundation Design Strength	Angle of Internal Friction	(deg)	38

2. Carrying Case

	Unit	Carrying Case		
ltem	Unu	CCN	CCE	
Upstream Water Level	EL.(m)	47.500 N.W.L.	52.700 H.W.L.	
Downstream Water Level	EL.(m)	20.000	38.200	
Sedimentation Level	EL.(m)	28.600	28.600	
Dam Foundation Level	EL.(m)	5.000	5.000	
Design Seismic Coefficient			0.05 Horizontal 0.03 Vertical	
Drain Condition		Operating	Non operating	

3. Results of Stability Analysis

Carrying Case	CSF	CST	FSD	σνυ	σvd	n
CCN					1. T. T. T.	
Nonoverflow Section	2.53	2.76	1.61	32.228	37.633	5.1
Overflow Section	2.50	2.75	1.59	29.314	38.997	5.1
Allowable Minimum Value	1.3	- 1.5	1.0	0.0	0.0	4.0
ССЕ	3					
Nonoverflow Section	1.61	1.71	2.74	0.792	48.710	5.0
Overflow Section	1.59	1.64	2.77	4.112	43.886	5.0
Allowable Minimum Value	1.1	1.2	1.0	0.0	0.0	4.0

Note:

•••			
•	CCN		case of normal load
	CCE	•	case of exceptional load
	CFS		safety coefficients to fluctuation
	CST	:	safety coefficients against the overturning
	FSS	•	factor of safety to the sliding
	σνυ	:	upstream compressive stress
• •	σvd		downstream compressive stress
	n	:	safety factor by Henny

Table-3.6Analyzed Case ;Stability analysis for CCN of Nonoverflow Section of Main Dam

1. Carrying Case Nonoverflow Section CCN

3

2. Design Condition

Item	Dimension		
Height of Dam	48.200		
Downstream Slope		1:0.88	
Upstream Head		42.500	
Downstream Head		15.000	
Depth of Sedimentation	Depth of Sedimentation		
Drain Condition	Operating		
	Heel of Dam	42.500	
Uplift	Drain section	27.425	
	Toe of Dam	15.000	
Danian Sainwin Confiniant	Horizontal	: .	
Design Seismic Coefficient			
	0.570		
Dynamic Water Pressure	С	0.570	
	Pd	0.000	

3. Working Load

I	tem	V (t)	Lv (m)	V × Lv (t×m)	H (t)	Lh (m)	H × Lh (t×m)
Own Weight		2,351.119 14.1	14.139	14.139 33,242.472		1	
Seismic Inerti	a Force						[
Hydrostatie	Upstream				903.125	14.167	12,794.572
Pressure	Downstream	99.000	38.016	3,763.584	-112.500	5.000	-562.500
	Subtotal	99.000		3,763.584	790.625		12,232.072
Pressure due to Sedimentation					97.468	7.867	766.781
Dynamic Wate	er Pressure	et el competition de la competition de	a stati				1
Uplift	\bigcirc	-137.125	2.500	-342.813			
	2	-37.688	1.667	-62.826			
	3	-561.240	23.708	-13,305.878			
	()	-232.447	17.472	-4,061.314			
: ·	Subtotal	-968.500		-17,772.831	· .	· · · · · · · · · · · · · · · · · · ·	
Total		1,481.619		19,233.225	888.093		12,998.853

4. Stability Analysis

4. Stability Analysis Summitry of the Gravitational Forces Summitry of the Uplift Forces Safety Coefficients to Fluctuation	$\Sigma V =$ $\Sigma U =$ C.S.F = $\Sigma V / \Sigma U =$	2450.119 t 968.5 t 2.53 ≧1.3 O.K
Summitry of Stabilizer Moments Summitry of Overturning Moments Safety Coefficients against the Overturning	$\Sigma Me = \Sigma Mi = C.S.T = \Sigma Me / \Sigma Mi =$	50567.409 t × m 18335.331 t × m 2.76 ≧1.5 O.K
Safety Coefficient relatively Ø Safety Coefficient relatively C Normal Strength Angle of Friction Cohesion Area of Contact Forces Parallel to the Sliding Surface Factor of Safety to the Sliding FSS =	$CSDØ = CSDc = Ni = Øi = Ci = Ai = Ti = (\SigmaNi \times tanØi / CSDØ + \Sigmac \times Ai / CSDc) / \Sigma ti = Ci = CSDc) / \Sigma ti = CSDØ + Sc \times Ai / CSDc) / \Sigma ti = CSDC + Sc \times Ai / C$	$\begin{array}{c} 2\\ 4\\ 1481.619 t\\ 38\\ 80 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Total of Moments Working Point of Resultant Force Length of Dam Base Upstream Compressive Stress Downstream Compressive Stress Safety Factor by Henny	$\Sigma M = \Sigma (V \times I.) + \Sigma (H \times h) =$ $d = \Sigma M / \Sigma V =$ B = $c = B / 2 \cdot d =$ $\sigma u = (V / B) (I + 6e / B) =$ $\sigma d = (V / B) (I - 6e / B) =$ $n = (f \times \Sigma V + Ci \times B) / \Sigma H =$	32232.078 t × m 21.7546333 m 42.416 m -0.547 ≤ B/6= 7.069 32.228 ≥0 t/m ² O.K 37.633 ≥0 t/m ² O.K 5.1 ≥4 O.K

Table-3.7Analyzed Case;Stability Analysis for CCE of Nonoverflow Section of main Dam

1. Carrying Case Nonoverflow Section

Nonoverflow Section

2. Design Condition

Item	•	Dimension
Height of Dam		48.200
Downstream Slope		1:0.88
Upstream Head		47.700
Downstream Head		33.200
Depth of Sedimentation		23.600
Drain Condition		Non operating
· · · · · · · · · · · · · · · · · · ·	Heel of Dam	47.700
Uplift	Drain section	· · · ·
•	Toe of Dam	33.200
Design Salemia Coofficient	Horizontal	0.050
Design Seismic Coefficient	Vertical	0.030
	Cm	0.570
Dynamic Water Pressure	C	0.570
	Pđ	1.359

3. Working Load

İte	em ·	V (t)	Lv (m)	V×Lv(t×m)	H (l)	Lh (m)	H × Lh (t × m)
Own Weight		2,351.119	14.139	33,242.472		1. 1. 1. 1. 1.	
Seismic Inertia	Force	-70.534	14.139	-997.280	117.556	16.067	1,888.772
	Upstream				1,137.645	15.900	18,088.556
Hydrostatic	Downstream	484.986	32.677	15,848.049	-551.120	11.067	-6,099.245
Pressure	Subtotal	484.986		15,848.049	586.525		11,989.311
Pressure due to	Sedimentation			· · ·	97.468	7.867	766.781
Dynamic Water	r Pressure				47.062		924.544
	\bigcirc	-1,408.211	21.208	-29,865.339			
Uplift	2	-307.516	14.139	-4,347.969			
	Subtotal	-1,715.727		-34,213.308			
Total		1,049.844		13,879.933	848.611		15,569.408

4. Stability Analysis

A Guomy mayors	and the second	and the second	
Summitry of the Gravitational Forces	$\Sigma V =$	2,765.571 t	1 -
Summitry of the Uplift Forces	ΣU =	1,715.727 1	
Safety Coefficients to Fluctuation	$\mathbf{C.S.F} = \boldsymbol{\Sigma V} / \boldsymbol{\Sigma U} =$	1.61 ≧1,1	0.K
Summitry of Stabilizer Moments	ΣMe =	70 759 174 t × m	
· · · · · · · · · · · · · · · · · · ·			n en el construction en el construction en el construction
			O.K
			na an An ann
		1.3	
Safety Coefficient relatively C		2.0	
Normal Strength	Ni =	1,049.844 t	
Angle of Friction	Øi =	38	
Cohesion	Ci =	80 t/m²	in the second
Area of Contact	Ai=	42.416 m² (unit w	idth) -
Forces Parallel to the Sliding Surface	Ti =	848.611 t	den al c
Factor of Safety to the Sliding $FSS =$	$(\Sigma ni \times tan@i/CSD@ + \Sigma ci \times Ai/CSDc) / \Sigma ti =$	2.74 ≧1.0	O.K
Total of Moments	$\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$	29,449.341 t × m	
Working Point of Resultant Force	$d = \Sigma M / \Sigma V =$	28.051 m	i i i
	B =	42.416 m	
~	e = B/2 - d =	-6.843 ≦B/6=	7.07
Unstream Compressive Stress	$\sigma u = (V / B) (1 + 6e / B) =$		
• -			
Safety Factor by Henny	$N = (f \times \Sigma V + Ci \times B) / \Sigma H =$	「「「「」」「「」」「「」」「「」」「「」」「」」「」」	O.K
	Summitry of the Gravitational Forces Summitry of the Uplift Forces Safety Coefficients to Fluctuation Summitry of Stabilizer Moments Summitry of Overturning Moments Safety Coefficients against the Overturning Safety Coefficient relatively Ø Safety Coefficient relatively Ø Safety Coefficient relatively C Normal Strength Angle of Friction Cohesion Area of Contact Forces Parallel to the Sliding Surface Factor of Safety to the Sliding FSS = Total of Moments Working Point of Resultant Force Length of Dam Base Upstream Compressive Stress Downstream Compressive Stress	Summitry of the Gravitational Forces $\Sigma V =$ Summitry of the Uplift Forces $\Sigma U =$ Safety Coefficients to Fluctuation $C.S.F = \Sigma V / \Sigma U =$ Summitry of Stabilizer Moments $\Sigma Me =$ Summitry of Overturning Moments $\Sigma Mt =$ Safety Coefficients against the Overturning $C.S.T = \Sigma Me / \Sigma Mt =$ Safety Coefficient relatively Ø $CSDØ =$ Safety Coefficient relatively Ø $CSDØ =$ Safety Coefficient relatively Ø $CSDØ =$ Normal StrengthNi =Angle of FrictionØi =Cohesion $Ci =$ Area of Contact $Ai =$ Forces Parallel to the Sliding Surface $Ti =$ Factor of Safety to the Sliding $FSS =$ ($\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$ Working Point of Resultant Force $d = \Sigma M / \Sigma V =$ Length of Dam Base $B =$ $e = B/2 - d =$ Upstream Compressive Stress $ou = (V / B) (1 + 6e / B) =$ Downstream Compressive Stress $ou = (V / B) (1 - 6e / B) =$	Summitry of the Gravitational Porces $\Sigma V =$ $2,765.571$ tSummitry of the Uplift Forces $\Sigma U =$ $1,715.727$ tSafety Coefficients to Fluctuation $C.S.F = \Sigma V / \Sigma U =$ $1.61 \ge 1.1$ Summitry of Stabilizer Moments $\Sigma Me =$ $70,759.174$ t × mSummitry of Overturning Moments $\Sigma Mt =$ $41,309.833$ t × mSafety Coefficients against the Overturning C.S.T = $\Sigma Me / \Sigma Mt =$ $1.71 \ge 1.2$ Safety Coefficient relatively Ø $CSDØ =$ 1.3 Safety Coefficient relatively C $CSDØ =$ 2.0 Normal StrengthNi = $1,049.844$ tAngle of FrictionØi = 38 CohesionCi = $80 t/m^2$ Area of ContactAi = $42.416 m^2 (unit w)$ Factor of Safety to the Sliding Surface $FSS =$ $(\Sigma m \times tanØi / CSDØ + \Sigma ci \times Ai / CSDc) / \Sigma ti =$ Total of Moments $\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$ $29,449.341 t \times m$ Working Point of Resultant Force $d = \Sigma M / \Sigma V =$ $28.051 m$ Length of Dam Base $B =$ $42.416 m$ Upstream Compressive Stress $\sigma u = (V / B) (1 + 6c / B) =$ $0.792 \ge 0 t/m^2$ Downstream Compressive Stress $\sigma u = (V / B) (1 - 6c / B) =$ $48.710 \ge 0 t/m^2$

Table-3.8 Analyzed Case; Stability Analysis for CCN of Overflow Section of main Dam

1. Carrying Case Overflow Section CCN

2. Design Condition

Item		Dimension
Height of Dam		42.500
Crest Width		5.016
Downstream Slope		1:0.88
Upstream Head		42.500
Downstream Head		15.000
Depth of Sedimentation		23.600
Drain Condition		Operating
	Heel of Dam	42.500
Uplift	Drain section	27.425
	Toe of Dam	15.000
Design Seismic Coefficient	Horizontal	<u> </u>
Design Seisnic Coemclent	Vertical	
	Cm	0.570
Dynamic Water Pressure	С	0.570
	Pd	0.000

Working Load

5. working	Load			and the second sec	and the second second		
Item		V (t)	Lv (m)	$V \times Lv (t \times m)$	H (t)	Lh (m)	$H \times Lh (t \times m)$
	\bigcirc	490.314	2.508	1,229.708			and the second second
Own Weight	2	1,827.925	17.483	31,957.613	· · ·		
	Subtotal	2,318.239		33,187.321	·		
Seismic Inertia I	orce		· · ·				
	Upstream	Sec. 19 Sec.			903.125	14.167	12,794.572
Hydrostatic	Downstream	99.000	38.016	3,763.584	-112.500	5.000	-562.500
Pressure	Subtotal	99.000		3,763.584	790.625		12,232.072
Pressure due to S	Sedimentation				97.468	7.867	766.781
Dynamic Water	Pressure		1	and the second second			
	\bigcirc	-137.125	2.500	-342.813			
	2	-37.688	1.667	-62.826			
Uplift	3	-561.240	23.708	-13,305.878		· · ·	
	4	-232.447	17.472	-4,061.314			
	Subtotal	-968.500		-17,772.831			
Total		1,448.739		19,178.074	888.093		12,998.853

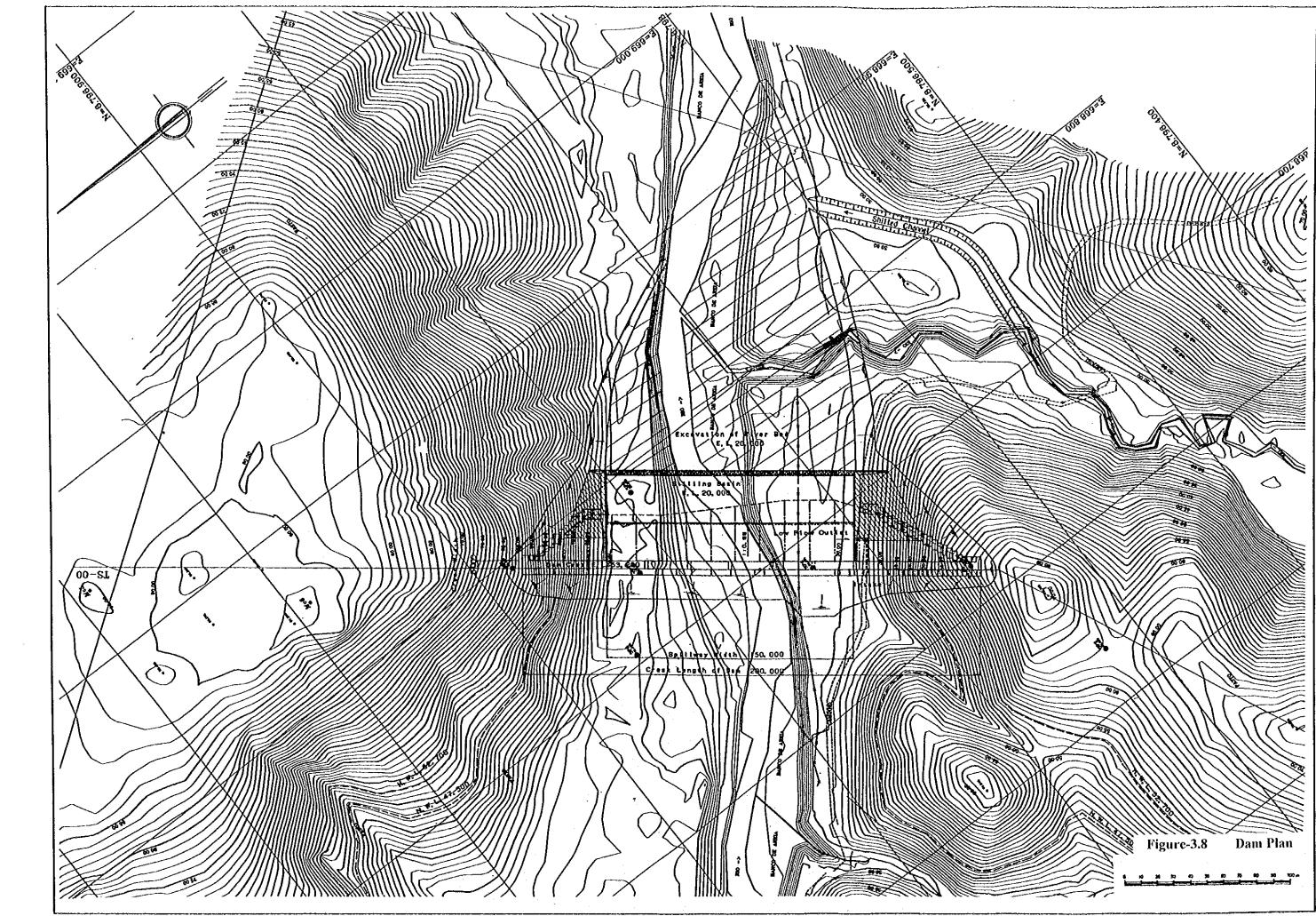
4. Stability Analysis

4. Stability Analysis Summitry of the Gravitational Forces Summitry of the Uplift Forces Safety Coefficients to Fluctuation	$\Sigma V =$ $\Sigma U =$ $C.S.F = \Sigma V / \Sigma U =$	2,417.239 t 968.500 t 2.50 ≧1.3 O.K
Summitry of Stabilizer Moments Summitry of Overturning Moments Safety Coefficients against the Overturning	$\Sigma Me = \Sigma Mt = 2S C.S.T = \Sigma Me / \Sigma Mt = 2S C.S.T = \Sigma Me / \Sigma Mt = 2S C.S.T = \Sigma Me / \Sigma Mt = 2S C.S.T = 2S Me / \Sigma Mt = 2S C.S.T = 2S Me / Z Mt = 2S Me / Z Mt = 2S C.S.T = 2S ME / Z Mt = 2S C.S.T = 2S ME$	50,512.258 t × m 18,335.331 t × m 2.75 ≧1.5 O.K
Safety Coefficient relatively Ø Safety Coefficient relatively C Normal Strength Angle of Friction Cohesion Area of Contact Forces Parallel to the Sliding Surface Factor of Safety to the Sliding FSS =	$CSDØ = CSDc = Ni = Øi = Ci = Ai = Ti = (\SigmaNi \times tanØi / CSDØ + \Sigmaci \times Ai/CSDc) / \Sigmati = Ci = CSDØ + \Sigmaci \times Ai/CSDc) / \Sigmati = CSDØ + CSDØ + Cci \times Ai/CSDc) / \Sigmati = CSDØ + CCI \times Ai/CSDc) / Zti = CSDØ + CCI + CCI \times Ai/CSDc) / Zti = CSDØ + CCI	2.0 4.0 1,448.739 t 38 80 Vm^2 42.416 m ² (unit width) 888.093 t 1.59 \geq 1.0 O.K
Total of Moments Working Point of Resultant Force Length of Dam Base Upstream Compressive Stress Downstream Compressive Stress Safety Factor by Henny	$\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$ $d = \Sigma M / \Sigma V =$ B = e = B/2 - d = $\sigma u = (V / B) (1 + 6e / B) =$ $\sigma d = (V / B) (1 - 6e / B) =$ $n = (f \times \Sigma V + Ci \times B) / \Sigma H =$	$\begin{array}{c} 32,176.927 \ t \times m \\ 22.210 \ m \\ 42.416 \ m \\ -1.002 \leq B/6= & 7.07 \\ 29.314 \geq 0 \ t/m^2 & O.K \\ 38.997 \geq 0 \ t/m^2 & O.K \\ 5.1 \geq 4 & O.K \end{array}$

Analyzed Case; Table-3.9 Stability Analysis for CCE of Overflow Section of main Dam

1. Carrying Case Overflow Section CCE

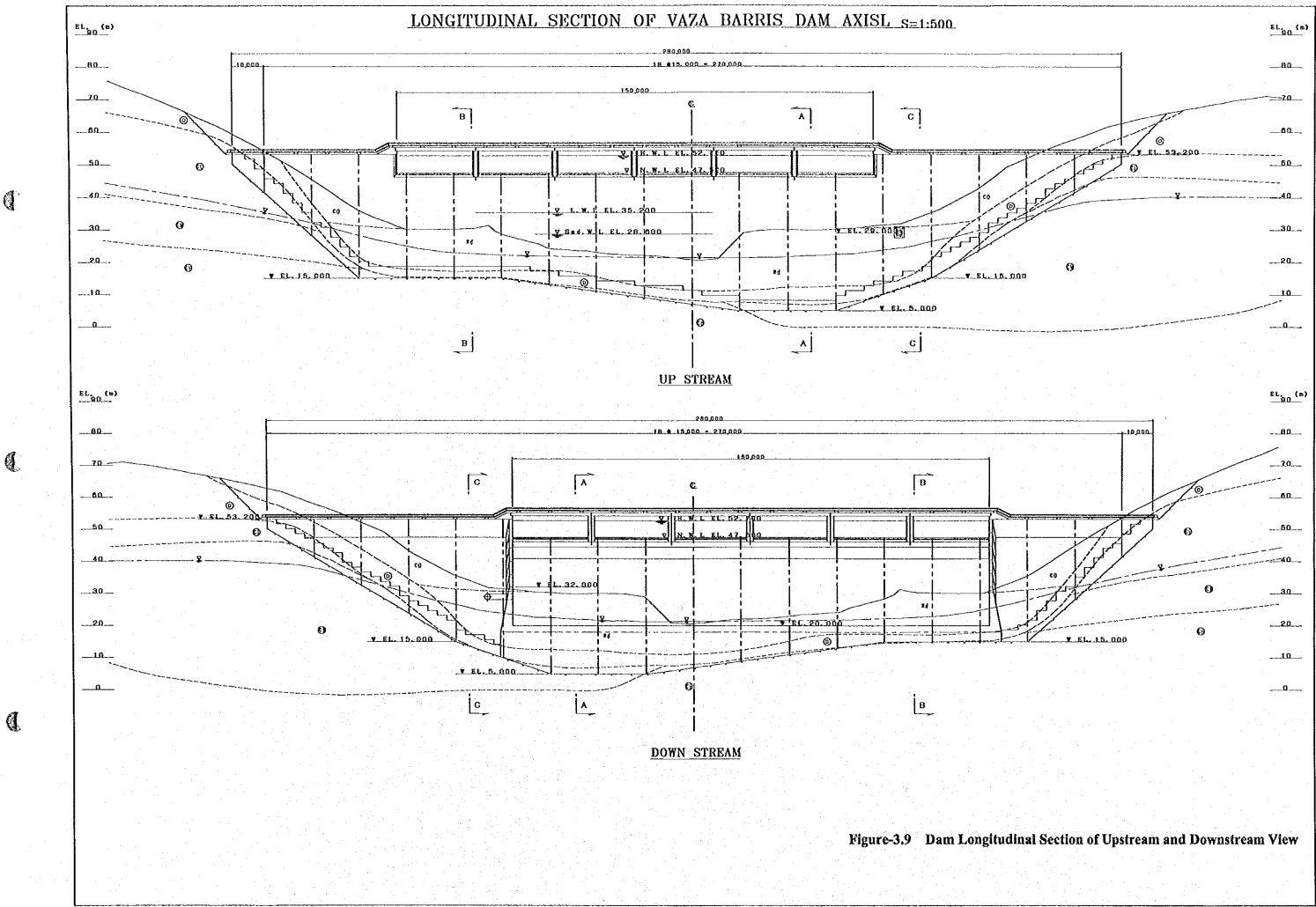
2. Design Condition

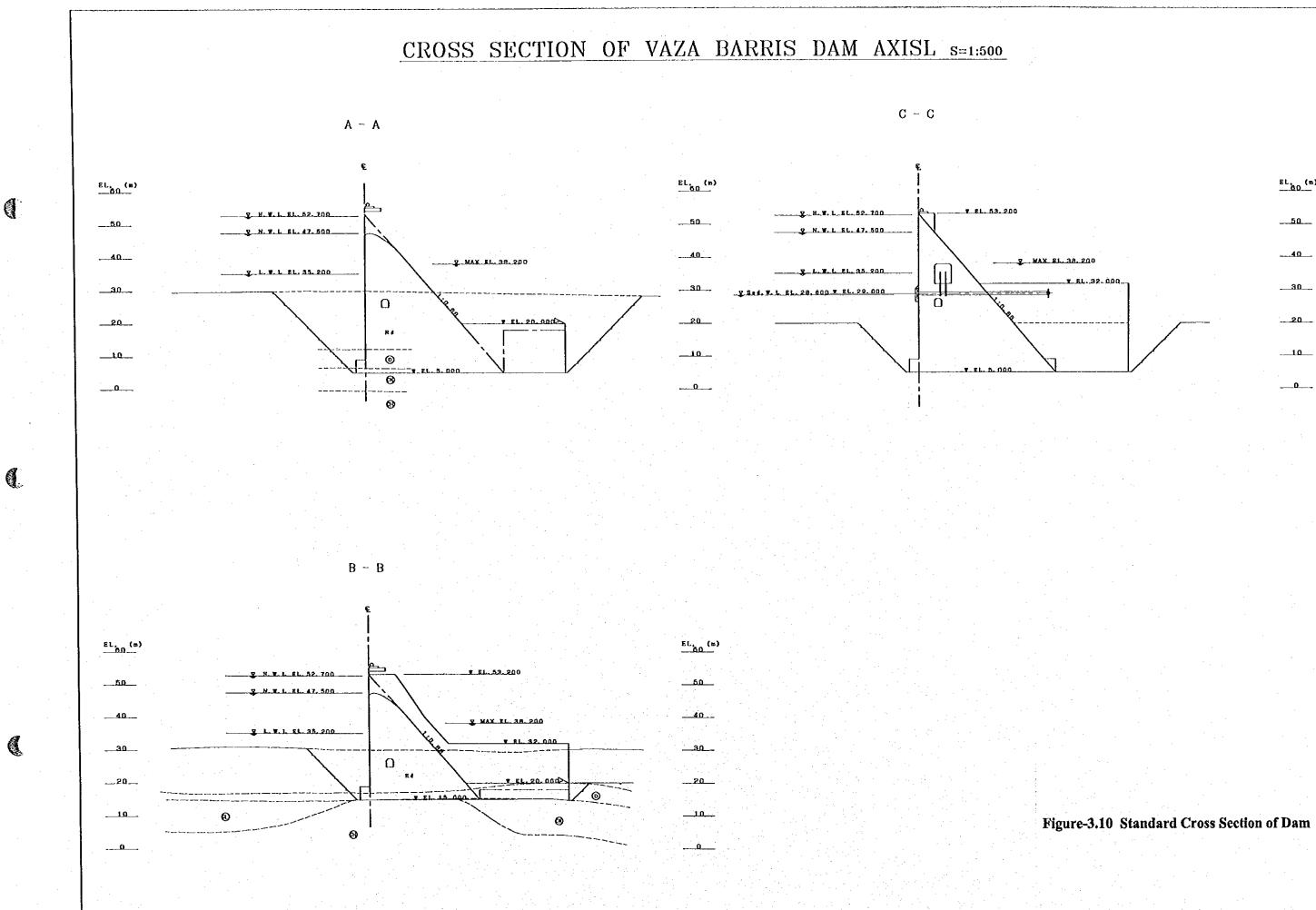

Item		Dimension
Height of Dam		42.500
Crest Width		5.016
Downstream Slope		1:0.88
Upstream Head		47.700
Downstream Head		33.200
Depth of Sedimentation		23.600
Drain Condition		non operating
	Heel of Dam	47,700
Uplift	Drain section	: .:
	Toe of Dam	33.200
Davion Saismin Conflicient	Horizontal	0.050
Design Seismic Coefficient	Vertical	0.030
	Cm	0.570
Dynamic Water Pressure	С	0.188
	Pd	0.449

3. Working Load

J. HUIANG	Liona						
Iter	ກ	V(t)	Lv(m)	V×Lv(t×m)	H(t)	Lh(m)	H×Lh (t×m)
A CONTRACTOR		490.314	2.508	1,229.708			
Own Weight	②	1,827.925	17.483	31,957.613	i sa jato di		
, [°]	Subtotal	2,318.239		33,187.321			and the group
0.1.1.1.4.	0	-14.709	2.508	-36.890	24.516	21,250	520.965
Seismic Inertia	2	-54.838	17.483	-958.733	91.396	1.373	125,487
Force	Subtotal	-69.547		-995.623	115.912		646.452
	Upstream(1)	and a second second			221.000	21.250	4,696.250
Hydrostatic	Upstream2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			903.125	14.167	12,794.572
Pressure	Downstream	484.986	32.677	15,848.049	-551.120	11.067	-6,099.245
in the second second	Subtotal	484.986		15,848.049	573.005	an a	11,391.577
Pressure due to S	edimentation				97.468	7.867	766.781
D	-0				-1.695		-3.630
Dynamic Water	-0) ()+2				47.062		924.544
Pressure	Subtotal	and the second second			45.367		920.914
	\bigcirc	-1,408.211	21.208	-29,865.339			1
Uplift	2	-307.516	14.139	-4,347.969			
	Subtotal	-1,715.727		-34,213.308			
Total	<u> </u>	1,017.951		13,826.439	831.752		13,725.724

4. Stability Analysis


Summitry of the Gravitational Forces	ΣV =	2,733.678 t
Summitry of the Uplift Forces Safety Coefficients to Fluctuation	$\Sigma U = C.S.F = \Sigma V / \Sigma U =$	1,715.727 t 1.59 ≧1.1 O.K
Summitry of Stabilizer Moments Summitry of Overturning Moments	$\Sigma Me = \Sigma Mt =$	67,939.425 t × m 41,311.806 t × m
Safety Coefficients against the Overturning		1.64 ≧1.2 O.K
Safety Coefficient relatively Ø	CSDØ = CSDc =	1.3
Safety Coefficient relatively C Normal Strength	Ni =	1,017.951 1
Angle of Friction Cohesion	Øi = Ci =	38 80 Vm²
Area of Contact Forces Parallel to the Sliding Surface		42.416 m ² (unit width) 831.752 t
	$(\Sigma Ni \times tan \emptyset i / CSD\emptyset + \Sigma ci \times Ai/CSDc) / \Sigma ti =$	2.77 ≧1.0 O.K
Total of Moments	$\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$	27,552.163 t × m
Working Point of Resultant Force	$d = \Sigma M / \Sigma V =$ B =	27.066 m 42.416 m
Length of Dam Base	e = B/2 - d =	•5.858 ≦B/6= 7.02
Upstream Compressive Stress	$\sigma u = (V/B)(1 + 6c/B) =$	4.112 ≧0 t/m ² O.K
Downstream Compressive Stress	$\sigma d = (V / B) (1 - 6e / B) =$	43.886 ≧0 l/m² O.K
Safety Factor by Henny	$\mathbf{n} = (\mathbf{f} \times \Sigma \mathbf{V} + \mathbf{Ci} \times \mathbf{B}) / \Sigma \mathbf{H} =$	5.0 ≧4 O.K


(

(

(

Ĩ

đ

EL, (m)

F-35

3.3 Design of Spillway

(1) Width and Water Depth of Overflow Section

The width of overflow section (L) is set as 150 m, equivalent to the width of the current river section. As described in the above section, the depth of overflow section is given as 5.2 m at the design flood discharge $Q = 3,600 \text{ m}^3/\text{s}$. Beside, the influence of the crest bridge pier was taken into account on the calculation of over flow section.

 $Q = CLH^{1.5}$ L = L²-2 (Ka + nKp) H C = 1.704 × (1 + 0.648 (H/R))^{0.5}

 $R = 0.9173 \text{Hd} = 0.9173 \times 5.2 = 4.770 \text{ m}$ $C = 1.704 \times (1+0.648 \times (5.2/4.770))^{0.5} = 2.2$ n = 5 $L^{3} = 150 - (2 \times 5) = 140 \text{ m}$ Ka = 0.12, Kp = 0.01 $L = 140-2 \times (0.12 + 5 \times 0.01) \times 5.2 = 138.2 \text{ m}$ $Q = 2.2 \times 138.2 \times 5.2^{1.5} = 3605 \text{ m}^{3}\text{/s} > 3600 \text{m}^{3}\text{/s} \text{ ok}$

(2) Shape of Overflow Section

As the design water depth of overflow section is high as 5.2 m, the shape of overflow section is designed giving larger discharge coefficient so that the negative pressure does not occur on the overflow section. According to the standard of USCE (US Army, Corps of Engineer), the standard overflow section is employed in this design.

(3) Height of Training Wall

The heights of training wall (water depth + free board) are calculated as below: each figure is perpendicular to channel surface.

·	Location	Head H (m)	Velocity V (m/s)	Water depth h (m)	Freeboard Fb (m)	h + Fb (m)	Height of Training Wall (m)
	EL. 40 m	12.7	14.2	1.69	1.23	2.92	3.0
	EL. 30 m	22.7	19.0	1.26	1.36	2.62	2.7
	EL. 20 m	32.7	22.8	1.05	1.46	2.51	2.6

Table-3.10 Height of Training Wall

Note:

2

II : Reservoir Level - Location Level

V : 0.9 × (2 × g × H)^{0 5} h : 3600 / 150 / V

Fb : $0.6+0.037 \times V \times h^{(1/3)}$

(4) Energy Dissipater

The design conditions for the energy dissipater are as follows:

- Design discharge for energy dissipater: 1,200 m³/s (100 year return period)
- Difference is large between current riverbed elevation: EL. 20 m and dam base rock elevation: EL. 5 m.
- Layer of deposits in riverbed is 10-20 m in thickness.
- Water depth in flood time is high. In design flood: 1,200 m³/s, water depth is 10.8 m (EL. 30.8 m).
- Width of energy dissipater is 150 m as same width as the overflow section of the spillway.

As the riverbed deposit is thick and water depth is deep, hydraulic jump basin (with chute blocks and sills) equivalent to Basin II from USBR standard. Dimensions of the energy

8

dissipater are designed as follows:

	Elevation of basin:	EL. 20 m
	Width of basin:	. 150 m
· · ·	Length of basin:	26 m
	Conjugate depth of jump:	5.8 m

As the water depth of downstream river (10.8 m) is higher than the conjugate depth of jump (5.8 m), hydraulic jump occurs in the basin and flood stream is dissipated.

Design discharge; $Q = 1200m^3/s$. Overflow depth during water flowing down is calculated as $H = (1200/2.2/140)^{(2/3)} = 2.476m$ referring to the formula of $Q = CLH^{1.5}$. Consequently, reservoir water level is EL.47.5m+2.476 = EL.50m. Water head from the apron h = EL.50m-EL.20m = 30m.

Corresponding above, water depth at the tip of the energy dissipater; d1, velocity;V1, Froude number; F1 are calculated as follows;

 $V1 = 0.9 \times (2 \times g \times h)^{0.5} = 21.8 \text{m/s}.$ d1 = 1200 / 150 / 21.8 = 0.37m. F1 = V1 / (g × d1)^{0.5} = 21.8 / (9.8 × 0.37)^{0.5} = 11.4.

Water depth after hydraulic jump ; d2 is, $d2 = 0.5 \times d1 \times ((1+8 \times F1^2)^{0.5}-1) = 0.5 \times 0.37 \times ((1+8 \times 11.4^2)^{0.5}-1) = 5.8m.$

Length of basin ; L is,

 $L = 4.5 \times d2 = 4.5 \times 5.8 = 26 \text{ m}.$

(5) Height of Basin Wall

The elevation of the basin wall is set as EL. 32 m considering water depth (30.8 m for 100 year return period) of downstream river and some freeboard. Higher elevation of the basin wall than river water depth prevents water intrusion from side to basin. Stream in basin can flow straightly as two-dimensional flow from upstream to downstream.

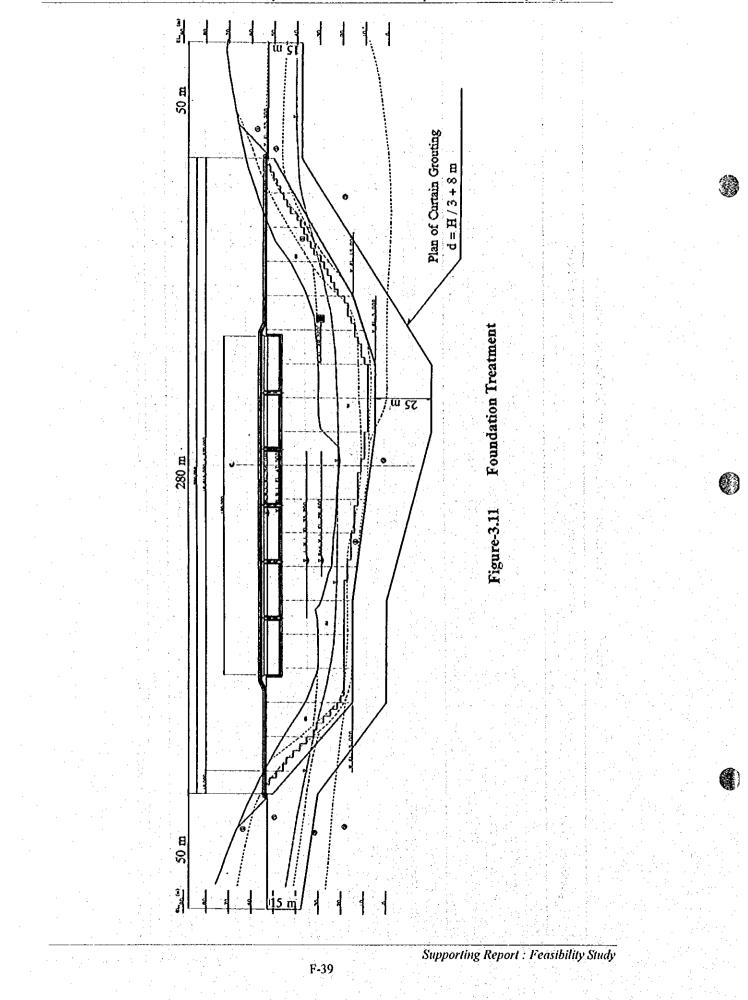
3.4 Design of Low Flow Outlet

Low flow outlet is composed of conduit and discharge regulating valve. To take water effectively, the low flow inlet is installed at the lower elevation where reservoir sedimentation does not disturb. According to the reservoir operation plan, the reservoir sedimentation level (L.W.L) is EL. 28.6 m. The level of the inlet is set at EL. 29 m to effectively release design low water and discharge density layer. The occurrence of the salinity water layer is not confirmed yet. As the design water head is 25.5 m in this case, high-pressure outlet facility is employed. Water from the outlet is discharged to the stilling basin. The scale of the low flow outlet, after the hydraulic study, is set as 250 mm of the gate diameter and 800 mm of the low flow pipe.

Table-3.11 shows hydraulics calculation.

3.5 Design of Foundation Treatment

The foundation rock is judged to be considerably impervious according to the result of the Lugcon tests in boreholes which shows that Lugeon Values of the foundation rock classified into more than C_M class are usually less than 2Lu. However these data are so far not enough, thus standard curtain grouting method should be designed in this study. Area to be grouted is shown in Figure-3.11.


	Table	Table-3.11	Calcul	ation for	Calculation for Low Flow Discharge Facilities	w Disch	arge Fa	cilities			
		Nor	Normal Water level	evel			Γo	Low water Level	vel		a
Reservoir Level EL.(m)	47.5	47.5	- 47.5	47.5	47.5	35.2	35.2	35.2	35.2	35.2	Kemark
Gate									-		
Diameter of Gate Ø (mm)	- 350	300	250	200	150	350	300	250	200	150	
Open Rate of Gate (%)	- 38	46	60	. 90	100		· · · :69	100	100	100	
Coefficient of Discharge C	0.250	0.328	0.472	0.752	0.820	0.421	0.564	0.820	0.820	0.820	
Area A0(m ²)	0,096	0.071	0.049	0.031	0.018	0.096	0.071	0.049	0.031	0.018	
Low Flow Pipe					er aver						
Roughness Coefficient n	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	Steel Pipe
Diameter of Pipe D1(mm)	800	800	800	800	800	800	800	800	- 800	800	
Length of Pipe L1(m)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	
Area Al(m ²)	0.502	0.502	0.502	0.502	0.502	0.502	0.502	0.502	0.502	0.502	
Coefficient of Friction Loss	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	
fi/A1 ²	2.873	2.873	2.873	2.873	2.873	2.873	2.873	2.873	2:873	2.873	
f1/A1 ² ×0.2	0.575	0.575	0.575	0.575	0.575	0.575	0.575	0.575	0.575	0.575	20% of Friction Loss
Summitry of Loss	3.448	5.448	3.448	5.448	3.448	3.448	3.448	3.448	3.448	3.448	
Downstream Water Level EL.(m)	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	
[Head h(m)	18.5	18.5	18.5	18.5	18.5	. 6.2	. 6.2	6.2	6.2	6.2	
Velocity V(m/s)	6.0	6.0	0.9	0.9	0.6	0.9	0.9	0.9	0.6	0.3	
Discharge Q(m ³ /s)	0.456	0.443	0.440	0.443	0.281	0.444	0,440	0.442	0.280	0.163	
Design Discharge Q0(m ³ /s)	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	
Evaluation	OK	оК	OK	OK	UN N	OK	оK	OK	ŊŊ	UN	
The combination of Ø800 pipe and Ø250 gate satisfies the desi Note:	te satisfies t	the design	discharge c	if .44m ³ /s)	ign discharge of $.44m^3$ /s in both normal water level and the lowest water level.	mal water	level and ti	ie lowest v	zter level		

F-38

Supporting Report : Feasibility Study

 $(124.5 \times n^{2} \times L1) / D^{(4/3)}$ $3.14 \times D^{0.5}$ $C \times A0 \times ((2 \times g \times h) / (1 + C^{2} \times A0^{2} \times \Sigma(f1/A1^{2})))^{0.5}$

άźα

The Study on Water Resources Development in the State of Sergipe, Brazil

CHAPTER 4 DESIGN OF CHECK DAM

4.1 Design Condition

- Alaria

(1) Type of Check Dam

Type of the check dam is set as a gravity concrete dam because of having advantages on workability of construction and resistance to flood with sediment.

(2) Location of Check Dam and Top of Dam

The location is the upstream end of reservoir where the design reservoir volume is secured at the normal water level. Also, the location is decided from viewpoint of topography and geology. The proposed location is located 29.5 km far upstream from Vaza Barris Dam. The elevation of the top of dam is EL. 63 m to secure the design sediment volume of $10,000,000 \text{ m}^3$.

(3) Dam Foundation and Dam Height

According to the core boring survey result at the check dam site, C_L -class rock and C_H class rock lie on EL. 43 m and 41 m respectively. C_M -class rock is not identified at the site. The check dam is put on the C_L -class rock. Therefore, the check dam height is 20 m while the elevation of dam top is EL. 63 m. C_L -class rock is strong enough to construct this class of a concrete dam.

4.2 Design of Waterway

Considering the width of the current river, the width of waterway is set as 70 m. The water depth is 4.95 m to pass the design discharge 1,400 m³/s (120% flood discharge of 100 year return period). The height of the water way is set as 6 m adding a freeboard to over flow depth, consequently the elevation of the top of dam is set as EL. 69 m.

Discharge capacity of Waterway is calculated using the following formula.

Q=(0.71h+1.77B) ×h^{1.5}

where

Q		discharge capacity
h	•	overflow depth
B		width of waterway

When B=70m, h=4.95m, Q= $(0.71 \times 4.95 + 1.77 \times 70) \times 4.95^{1.5} = 1403 > 1400 \text{ m}^3/\text{s}$ ok

4.3 Design of the Check Dam Body

(1) Design Condition

As the dam height is 20 m, the same stability analysis as that of a normal dam was carried out in the stability analysis of the check dam. The design of the check dam is different from a normal dam in the viewpoints of follows:

- 1) A check dam is planned to have sediment at the level of the waterway top. Since river water including sediment load flows down through a downstream face of the dam, a downstream slope should be steep to avoid abrasion by sediment. The standard downstream slope of a check dam is employed as 1:0.2 following the Japan standard.
- 2) Curtain grouting for water cutoff is not designed because water storage function is not needed for the check dam

Stability for the check dam body was analyzed following the design standard by CEMIG. Analysis cases are set as same as that of the main dam and the analysis section is set at over the flow section.

Item		development of a carrying case			
		CCN	CCB		
Upstream water level		EL.63.0 m	EL.67.95 m		
Downstream water level		EL.47.5 m	EL.50.3 m		
Sedimentation level		EL.63.0 m	EL.63.0 m		
Design seismic coefficient		0	Horizontal 0.05g Vertical 0.03g		
Drain		None			
Uplift			hd = downstream head,		
Shear strength of	с	40t/m ²			
Rock foundation (C _L class)	Ø	30'			
Unit weight	Mass concrete	2.31/m ³			
		1.0t/m ³			
Unit weight	Water		1.0t/m ³		

 Table-4.1
 Parameters for Stability Analysis of Check Dam

The sectional form of the check dam body, which satisfies the design standard in the dam stability analysis (see Table-4.2) as set as follows:

Loads acting on the dam body is shown in Figure-4.1 and the content of the calculation is shown in Table-4.3 to Table-4.5.

F-41

 Width of Waterway:	4 m
 Upstream Slope:	1:0.53
 Downstream Slope:	1:0.29

The dam plan and structural drawings are shown in Figure-4.2 and Figure-4.3

Case		Sa fatu	Safety		Tension (Vm²)	
	Section and Allowable Value	Safety Coefficients to Fluctuation	Coefficients against the Overturning	Factor of Safety to the Sliding	Upstream Compressive Stress ovu	Downstream Compressive Stress ovd
Case of Normal Load	Overflow section	4.89	6.47	1.88	3.189	51.982
	Allowable minimum value	1.3	1.5	1.0	-7.0	
Case of Exceptional	Overflow section	3.59	4.81	2.15	-13.845	66.705
Load	Allowable minimum value	I.1	1.2	1.0	-14.0	

 Table-4.2
 Results of Check Dam Stability Analysis

According to the result of the calculation, tensile stress is caused on the dam base in CCE case, however, this stress is less than allowable value. Allowable tensile stress is set as shown below;

- Shear strength of CL class rock is assumed as 40t/m².
- Generally shear strength of foundation rock is assumed that ; tension strength = compression strength/10, shear strength = compression strength/7. Hence considering above, it is assumed that tension strength = shear strength \times 0.7 for foundation rock. Then;

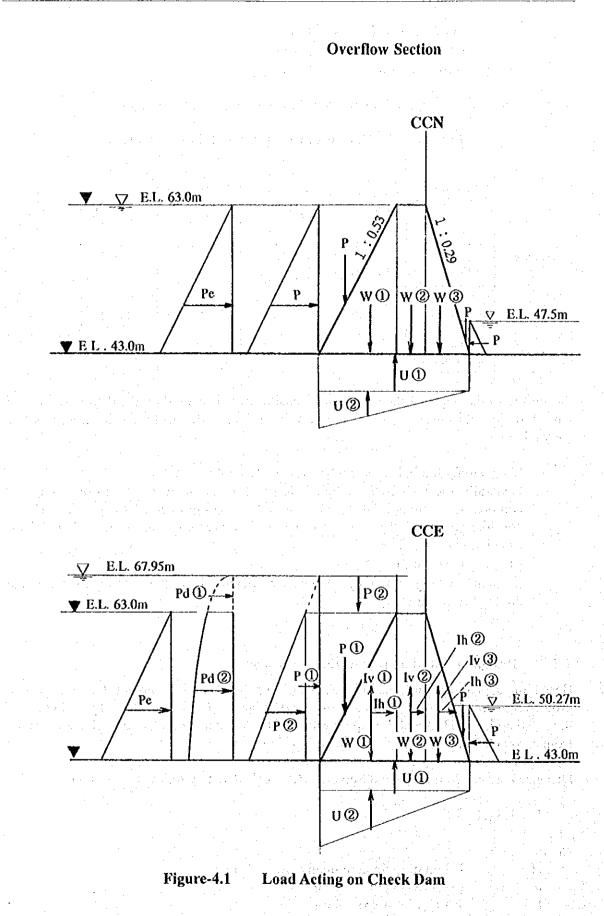
 $\sigma t = 40 \times 0.7 = 28 t/m^2$

- σt , adm = Charge Capacity / Safety Coefficient, then $28/4 = 7t/m^2$ for CCN and $28/2 = 14t/m^2$ for CCE.

4.4 Design of Sub-dam (Protection for Scoring)

Based on Japan standard, namely Standard for River and Sediment Control Works, protection works for downstream scoring are designed. The length from the main dam to the sub dam is set 33 m and the top elevation of the sub-dam is set as same elevation as the front apron elevation for the prevention of scoring.

Distance between Main dam and Sub dam (L) is calculated by following formula


L = 1.5 (H + h)

where

H:height of main dam upon apron = 17mh:overflow depth = 4.95mL: $1.5 \times (17 + 4.95) = 33m$

E.

ŝ

Table-4.3 Summary of Stability Analysis of Check Dam

1. Design Load

Item	Unit	Dimension	
Dam Top Level		EL.(m)	63.000
Overflow Crest Level		EL.(m)	63.000
Dam Foundation Level		EL.(m)	43.000
Upstream Stope	· · · · · · · · · · · · · · · · · · ·		0.29
Downstream Slope			0.53
Design Flood Water Level		EL.(m)	67.950
Normal Water Level	EL.(m)	63.000	
Sedimentation Level	EL.(m)	63.000	
Downstream River Water Level	H.W.L.	EL.(m)	50.270
Downsticani Kivel Water Lever	N.W.L.	EL.(m)	47.500
Drain Outlet Level		EL.(m)	—
Distance from Upstream Face until D	rain	(m)	
	Concrete	(1/m³)	2.3
Unit Volume Weight	Water	(t/m³)	1.0
· · · · · · · · · · · · · · · · · · ·	Sedimentation	(t/m³)	0.35
Design Seismic Coefficient	Horizontal		0.05
	Vertical		0.03
Foundation Design Strength	Cohesion	(t/m²)	40
roundation Design Strength	Angle of Internal Friction	(dcg)	30

2. Carrying Case

Item	Unit	Carrying Case			
liem	Um	CCN	CCE		
Upstream Water Level	EL.(m)	63.000 N.W.L.	67.950 H.W.L.		
Downstream Water Level	EL.(m)	50.270	47.500		
Sedimentation Level	EL.(m)	63.000	63.000		
Dam Foundation Level	EL.(m)	43.000	43.000		
Design Seismic Coefficient			0.05 Horizontal 0.03 Vertical		
Drain Condition			i di energia di seconda		

3. Results of Stability Analysis

Carrying Case	CSF	CST	FSD	ovu	σvd	n
CCN				1		
Overflow Section	4.89	6.67	1.88	3.189	51.982	4.4
Allowable Minimum Value	1.3	1.5	1	-7	-7	[
CCE	·					
Overflow Section	3.59	4.81	2.15	-13.845	66.705	2.9
Allowable Minimum Value	1.1	1.2	5. 1 - 5	-14	-14	

Note:

CCN	:	case of normal load
CCE		case of exceptional load
CFS		safety coefficients to fluctuation
CST CST	.	safety coefficients against the overturning
FSS	:	factor of safety to the sliding
σνυ	•	upstream compressive stress
σvd	.	downstream compressive stress
n in	•	safety factor by Henny

Table-4.4Analyzed Case ;Stability Analysis for CCN of Overflow Section of Check Dam

1. Carrying Case Overflow Section CCN

2. Design Condition

Item	Dimension	
Height of Dam	20.000	
Crest Width	4.000	
Upstream Slope	1:0.53	
Downstream Stope	1:0.29	
Upstream Head	9.667	
Downstream Head	4.500	
Depth of Sedimentation	20.000	
Drain Condition		none
11-110	Heel of Dam	9.667
Uplift	Toe of Dam	4.500
Design Selemia Caefficient	Horizontal	0.000
Design Seismic Coefficient	Vertical	0.000

Uu ≕ (hđ + (hu - hd) / 3) × γw Ud ≕ hd × γw Ś.

3. Working Load

li	em	V(t)	Lv (m)	V× Lv (t × m)	H(t)	<u>l h (m)</u>	$H \times Lh(t \times m)$
Own Weight	\bigcirc	243.800	7.067	1,722.935			
	2	184.000	12.600	2,318.400		-	1
	3	133.400	16.533	2,205.502			
	Subtotal	561.200		6,246.837			
Seismic inertia	force	10 March 10					
	Upstream	106.000	3,533	374.498	200.000	6.667	1,333.400
Hydrostatic	Downstream	2.936	19.965	58.617	-10.125	1.500	-15.188
Pressure	Subtotal	108.936		433.115	189.875		1,318.212
Pressure due to	Sedimentation	37.100	7.067	262.186	70.000	6.667	466.690
Dynamic Wate	r Pressure	a ta ang					
	0	-91.800	10.200	-936.360		4	
Uplift	2	-52.700	6.800	-358.360			
	Subtotal	-144.500		-1,294.720			
Total		562.736		5,647.418	259.875		1,784.902

4. Stability Analysis

Summitry of the Gravitational Forces Summitry of the Uplift Forces Safety Coefficients to Fluctuation	$\Sigma V =$ $\Sigma U =$ C.S.F = $\Sigma V / \Sigma U =$	707.236 t 144.500 t 4.89 ≧1.3	0.K
Summitry of Stabilizer Moments Summitry of Overturning Moments Safety Coefficients against the Overturning	$\Sigma Me = \Sigma Mt = C.S.T = \Sigma Me / \Sigma Mt =$	8,742.228 t × m 1,309.908 t × m 6.67 ≧1.5	0.К
Safety Coefficient relatively Ø Safety Coefficient relatively C Normal Strength Angle of Friction Cohesion Area of Contact Forces Parallel to the Sliding Surface Factor of Safety to the Sliding FSS =	$CSDØ = CSDc = Ni = Øi = Ci = Ai = Ti = (\SigmaNi \times tanØi / CSDØ + \Sigmaci \times Ai / CSDc) / \Sigmati = Ci = $	$\begin{array}{c} 1.5 \\ 3.0 \\ 562.736 \\ 1 \\ 30 \\ 40 \\ 10 \\ 10 \\ 20.400 \\ 1.0 \\ 259.875 \\ 1.88 \\ \ge 1.0 \end{array}$	width) O.K
Total of Moments Working Point of Resultant Force Length of Dam Base Upstream Compressive Stress Downstream Compressive Stress Safety Factor by Henny	$\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$ $d = \Sigma M / \Sigma V =$ B = $e = B / 2 \cdot d =$ $\sigma u = (V / B) (1 + 6c / B) =$ $\sigma d = (V / B) (1 - 6c / B) =$ $n = (f \times \Sigma V + \tau 0 \times B) / \Sigma H =$	7,432.320 t × m 13.207 m 20.400 m -3.007 \leq B/6= 3.189 ≥-7 51.982 ≥-7 4.4 ≥4	3.4 O.K O.K O.K

Analyzed Case; Stability Analysis for CCE of Overflow Section of Check Dam Table-4.5

1. Carrying Case Overflow Section CCE

窿

2. Design Condition

Item	Dimension	
Height of Dam	20.000	
Crest Width	4.000	
Upstream Slope		1:0.53
Downstream Slope		1:0.29
Upstream Head	24.950	
Downstream Head	7.270	
Depth of Sedimentation	20.000	
Drain Condition		none
Uplift	Heel of Dam	13.163
opin	Toe of Dam	7.270
Design Seismic Coefficient	Horizontal	0.050
Design Seisinie Coefficient	Vertical	0.030

Uu == (hd+(hu-hd)/3) × γw Ud == hd × γw

3. Working Load

Ite	em	V(t)	Ly (m)	V×Lv (t×m)	H(t)	Lh (m)	H×Lh (t×m)
	\bigcirc	243.800	7.067	1,722.935			
One Weight	2	184.000	12.600	2,318.400			
Own Weight	3	133.400	16.533	2,205.502			
	Subtotal	561.200		6,246.837	100 A.S.		
	1	-7.314	7.067	-51.688	12.190	6.667	81.271
Seismic Inertia	2	-5.520	12.600	-69.552	9.200	10.000	92.000
Force	3	-4.002	16.533	-66.165	6.670	6.667	44.469
	Subtotal	-16.836	$r = \frac{1}{2} r r$	-187.405	28.060		217.740
	Upstream(1)	52.470	5.300	278.091	99.000	10.000	990.000
Hydrostatic	Upstream(2)	106.000	3.533	374.533	200.000	6.667	1,333.400
Pressure	Downstream	7.664	19.697	150.958	-26.426	2.423	-64.030
	Subtotal	166.134		803.582	272.574		2,259.370
Pressure due to	Sedimentation	37.100	7.067	262.186	70.000	6.667	466.690
Descrite	· ①	1997 - 19	a a second and		-1.369		-2.791
Dynamic Water Pressure	1+2				14.455	· ·	148.530
water Pressure	Subtotal				13.086		145.739
a de la companya de l		-148.308	10.200	-1,512.742			
Uplift	2	-60.112	6.800	-408.762			
	Subtotal	-208.420		-1,921.504			·
Total		539.178		5,203.696	383.720		3,089.539

4 Stability Analysis

4. Stability Analysis Summitry of the Gravitational Forces Summitry of the Uplift Forces Safety Coefficients to Fluctuation	$\Sigma V = \Sigma U = C.S.F = \Sigma V / \Sigma U =$	747.598 t 208.420 t 3.59 ≧1.3 O.K
Summitry of Stabilizer Moments Summitry of Overturning Moments Safety Coefficients against the Overturning	$\Sigma Mc = \Sigma Mt = C.S.T = \Sigma Mc / \Sigma Mt =$	10,468.965 t × m 2,175.730 t × m 4.81 ≧1.5 O.K
Safety Coefficient relatively Ø Safety Coefficient relatively C Normal Strength Angle of Friction Cohesion Area of Contact Forces parallel to the sliding surface Factor of Safety to the Sliding FSS =	$CSDØ = CSDc = Ni = Øi = Ci = Ai = Ti = (\SigmaNi \times tanØi / CSDØ + \Sigmaci \times Ai / CSDc) / \Sigmati = Ci = CSDC = $	1.1 1.5 539.178 t 30 40 t/m^2 20.400 m ² (unit width) 383.720 t 2.15 \ge 1.0 O.K
Total of Moments Working Point of Resultant Force Length of Dam Base Upstream Compressive Stress Downstream Compressive Stress Safety Factor by Henny	$\Sigma M = \Sigma (V \times L) + \Sigma (H \times h) =$ $d = \Sigma M / \Sigma V =$ B = $c = B / 2 \cdot d =$ $\sigma u = (V / B) (1 + 6c / B) =$ $\sigma d = (V / B) (1 - 6c / B) =$ $n = (f \times \Sigma V + z \ 0 \times B) / \Sigma H =$	8,293.235 t × m 15.381 m 20.400 m -5.181 >B/6= 3.4 -13.845 ≧-14 O.K 66.705 ≧-14 O.K 2.9 <4

No.

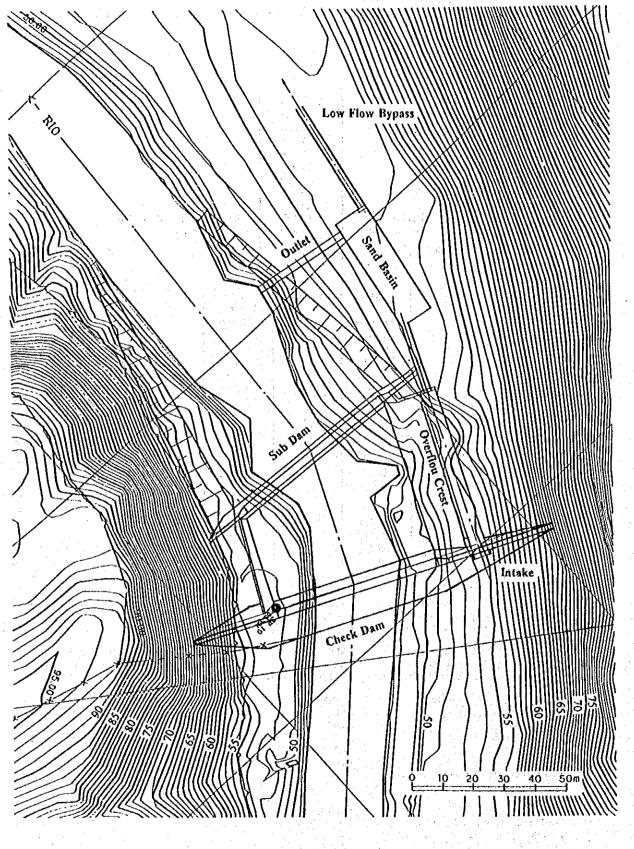
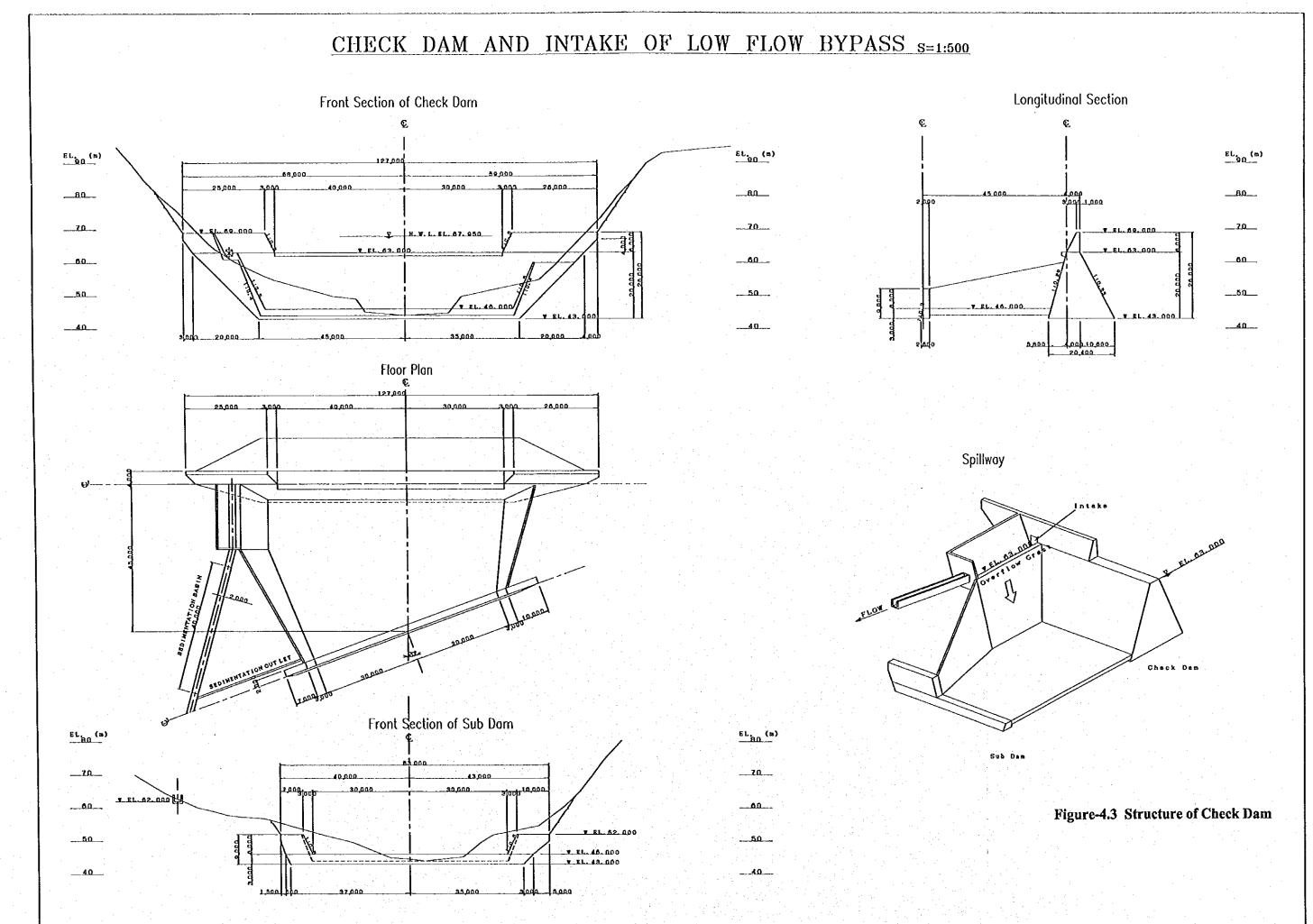



Figure-4.2 Plan of Check Dam

đ

(

CHAPTER 5 PLAN AND DESIGN OF LOW FLOW BYPASS

5.1 **Alternatives of Low Flow Bypass**

To convey low flow water not entering reservoir and to decrease salinity of reservoir water, the low flow bypass is planned and compared.

Open Type: Open type channel is installed along the periphery of reservoir. A channel crosses a valley or steep slope as a bridge.

Closed type of pipeline or box culvert is installed in the bottom of Closed Type: the reservoir. · .

: EL. 63.0m

 $: 0.75 \text{m}^{3}/\text{s}$

: EL. 56.0m(Open channel)

: EL. 29.0m(Pipeline and Culvert)

Design Condition (**1**) '

1

3

< Water Level and Design Discharge >

- Upstream at outlet of Check Dam
- Downstream at Vaza Barris Dam

Design Discharge

< Coefficient of Roughness >

Steel pipe

: 0.015 - Concrete channel or culvert : 0.020

Friction loss is taken into account in hydraulic calculation.

Description of Alternatives (2)

and the states

(a) **Bypass Open Channel**

Longitudinal slope of the bypass open channel is preferably constant throughout the channel route. In principle, the channel is constructed excavating ground on the middle of hill slope. At the place where the channel crosses a deep valley, a concrete bridge or earth embankment supports it in order to minimize the total length of the channel. At the place where hill slope is very steep and excessive excavation is expected, a bridge supports The bridge has a span of around 15m and is constructed by cast-in-place the channel. concrete.

Maintenance road with 3m wide is provided beside the channel. For bridge sections, the maintenance road is also constructed on hill slope apart from the bridge. The required channel dimension is W 1.5 m x H 1.5 m to convey the design discharge of 0.75 m³/s with 80 % water depth. Channel slope is 1 : 3,750. Flow velocity is 0.7 m/s. The flow of the channel is sub-critical flow, since Froude Number of the channel flow is 0.17. Although it is rather difficult to precisely construct this kind of channel with slope required by design because the channel slope is very small, some irregularities of slope are acceptable because the flow is sub-critical flow. The construction of this type of channel affects much to environmental conditions.

(b) Bypass Steel Pipeline

Longitudinal slope of the bypass steel pipeline is not necessary to be constant because the water in pipeline flows by pressure. It is recommendable to provide downward slope as much as possible to prevent the sedimentation in the pipe. Large degree of bends in horizontal and vertical directions is avoided by means of excavating or embanking the natural ground surface along the pipeline route to secure smooth alignment. Steel pipe under water is backfilled after installation of the pipe to prevent uplift by buoyancy.

The pipe diameter to transport design discharge of $0.75 \text{ m}^3/\text{s}$ is obtained as $\emptyset 1,000\text{mm}$ by hydraulic calculation taking into account of the friction loss in welded steel pipes. Flow velocity inside of pipe is 1.0m/s. The cathodic protection with 80 years of service life is provided to external and internal surface of steel pipe to protect the steel pipe against corrosion. At the downstream end of pipe, the diameter of pipe is reduced to 0.45 m to regulate the discharge volume and shut gate is provided for emergency use. The affect of construction of steel pipe to environmental conditions is negligibly small since the pipe is backfilled and installed under reservoir water.

(c) Bypass Box Culvert

The same precaution is required as to the bypass steel pipeline against large degree of bends in vertical and horizontal alignment. No uplift is expected because it is heavier than uplift force by buoyancy. Hydraulic calculation shows that the required section of box culvert to transport the design discharge of $0.75m^3/s$ is W 1.05m x H 1.05m and flow velocity is 0.7 m/s. The downstream end of box culvert is connected to steel pipe with \emptyset 1,000 mm diameter and is lead to inside of dam body. The shut gate is provided as same as for bypass steel pipe. The affect of construction of box culvert to environment is also negligibly small since the box culvert is installed under water.

(3) Comparison of the Design of Low Flow Bypass

As for the alternative designs of low flow bypass, earthwork volume is calculated based on the relation between the horizontal and vertical alignment of each bypass and the natural ground surface condition along the bypass routes. The quantities of other works are also obtained based on the longitudinal and transversal sections of each bypass. Based on the construction quantities, construction cost was estimated.

The alternative designs were evaluated in viewpoints of design, workability, operation and maintenance, environment, economy and so on. Table-5.1 shows the comparative evaluation on the alternative designs of low flow bypass.

In this Feasibility Study, the box culvert bypass of the closed type was adopted as a low flow bypass, which is superior on many points although it has difficulty on maintenance.

1.1.1.1.1

	Table-5.1 Co	mparison of Low Flow B	ypass
Items	Open Type: Open Channel	Closed Type: Box Culvert	Closed Type: Pipeline
Flow Type	Open type	Pressure type	Pressure type
Section	Concrete rectangular channel:		Steel pipe:
	W1.5m × H1.5m	W1.05m × H1.05m	Ø1,000 mm
Length	30.0 km	27.7 km	27.7 km
Head	8.0 m	38.0 m	38.0 m
Flow Velocity	 0.6 m/s Channel is installed on the 	0.7 m/s	1.0 m/s
Dam Crossing		 A pipe crosses the dam body. 	Same as the left
Method	top of dam.	- To control discharge, valve	
Mediou		is equipped.	
	- At the intake,	- At the intake,	- At the intake,
	sedimentation basin is	sedimentation basin is	sedimentation basin is
	installed.	installed.	installed.
Sediment	- It is easy to clean deposit in	- It is difficult to clean	- It is difficult to clean
Problem	the channel.	deposit in the box culvert.	deposit in the pipeline.
FIODICIII		- Flow velocity of 0.7 m/s	- Flow velocity of 1.0 m/s
		seems to cause no	seems to cause no
		sedimentation in box	sedimentation in pipeline.
		culvert.	
	- It is easy because the	- It is difficult because the	Same as the left
Maintenance	facility is installed out of	facility is submerged	
	reservoir.	permanently on the bottom of reservoir.	
	- Channel installation	- Impact to environment is	Same as the left
Impact to	requires a large amount of	very small because most of	
Environment	earthworks of cutting and	the facility is concealed	
	embanking riverbanks.	under the reservoir water.	
	- Channel divides drain	- Leakage of water from	- Leakage of water from
	system into the reservoir.	reservoir into pipeline is	reservoir into pipeline is
Impact to	It is necessary to put	avoided by providing	avoided by providing
Reservoir Operation	rainwater drain system to	careful construction.	cathodic protection to steel
Operation	across underneath the		pipes.
	channel.		
	- Construction material is	 Access to the construction 	 Access to the construction
	carried through the	site is very easy.	site is very easy.
	maintenance road to the	- Construction material is	- Construction material is
	construction site of	entered from the existing	entered from the existing
	channel.	approach road and carried	approach road and carried
Construction	 The construction work of bridge with cast-in-place 	on the riverbed or river	on the riverbed or river
Workability	concrete requires much	terrace Concrete work for box	terrace.
	construction time and cost.	culvert is easy and simple.	 Installation of pipeline in the reservoir area is easy
	- Installation of prefabricated		and simple.
	bridge is much more		
	difficult than cast-in-place		
	concrete bridge.		
Construction Cost	R\$ 47.1 million	R\$ 32.8 million	R\$ 44.5 million
	- Maintenance for channel	- Careful design is required	- Careful design is required
	cleaning and repairing is	to assure maintenance free	to assure maintenance free
	easier.	bypass after filling of	bypass after filling of
	- Water bridge should be		reservoir.
	carefully designed and		
Evaluation	constructed based on the		repair pipe during reservoir
	proper construction plan.	reservoir operation.	operation.
	- Impact to environment is	- Workability and impact to	- Workability and impact to
	larger. - Construction cost is higher	environment is much better	environment is much better than open channel.
	- Construction cost is inglier	than open channel.Construction cost is lowest.	- Construction cost is higher
		Construction cost is ionest.	than box culvert.
1 t	La mana da la construcción de la c		

Table-5.1 Comparison of Low Flow I	Bypass
------------------------------------	---------------

ALC: NO

)

 (a) Design Condition Type of Bypass : Reinforced Concrete Box Culvert Water Level : Upstream at outlet of Check Dam : EL. 63.0m Downstream at Vaza Barris Dam : EL. 29.0m Flow Volume : 0.75m³/s Coefficient of roughness : Concrete surface : 0.020 	(1)	Design of Low Flow By	pass
 Water Level : Upstream at outlet of Check Dam : EL. 63.0m Downstream at Vaza Barris Dam : EL. 29.0m Flow Volume : 0.75m³/s 	(a)	Design Condition	
- Flow Volume : Downstream at Vaza Barris Dam : EL. 29.0m 		Type of Bypass	· Rainforced Congrete Day Culvert
- Flow Volume : 0.75m ³ /s		Type of Bypass	. Iterinorecu Conciete Dox Curven
	-		
- Coefficient of roughness : Concrete surface : 0.020	-		: Upstream at outlet of Check Dam : EL. 63.0m
		Water Level	: Upstream at outlet of Check Dam : EL. 63.0m : Downstream at Vaza Barris Dam : EL. 29.0m

(b) Required Section

Hydraulic calculation shows that the required section of box culvert to transport the design discharge of $0.75m^3/s$ is W 1.05m x H 1.05m and flow velocity is 0.7m/s. Thickness of slabs and walls is determined as 0.40m taking the external and internal water pressures into consideration. Table-5.2 shows calculation for design of box culvert and gate.

(c) Longitudinal Alignment

Longitudinal alignment of the bypass box culvert is shown in Figure-5.1. This section is prepared based on the routing plan of the bypass using the existing 1:5,000 scale topographic map along the Vaza Barris River. Large degree of bends in horizontal and vertical directions is avoided by means of excavating or embanking the natural ground surface along the bypass route to secure smooth alignment.

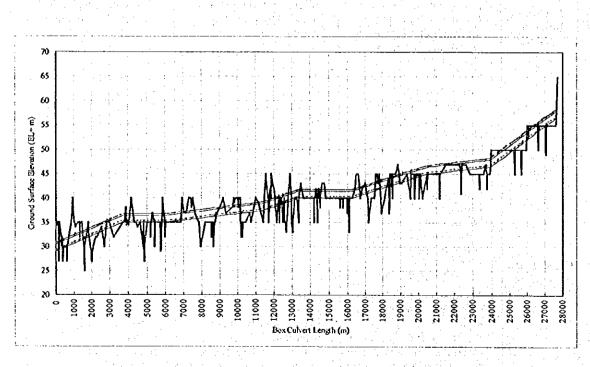


Figure-5.1 Vertical Profile of Low Flow Bypass

	Tabl	Table-5.2 C	alculation	Calculation for Box Culvert and Gate	ulvert and	Gate			
	0	Comparison of Box Culvert	f Box Culve	nt in an an		Comparison of	n of Gate		Remark
Keservoir Level ELL.(m)	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	
Gate						-			
Diameter of Gate	1,100	1,050	1,000	· 950	450	400	350	300	
Open Rate of Gate (%)	100	001	100	100	001	100	100	001	
Coefficient of Discharge	0.820	0.820	0.820	0.820	0.820	0.820	0.820	0.820	
Area (m ²)	0.950	0.865	0.785	0.708	0.159	0.126	0.096	0.071	
Box Culvert									
Roughness Coefficient n	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	Concrete Surface
Height and Width of Culvert D1(mm)	1,100	1,050	1,000	950	1,050	1,050	1,050	1,050	
Length of Pipe L1(m)	27,720.0	27,720.0	27,720.0	27,720.0	27,720.0	27,720.0	27,720.0	27,720.0	
Area Al(m ²)	1.210	1.103	1.000	0.903	1.103	1.103	1.103	1.103	
Coefficient of Friction Loss fi	1,215.717	1,293.511	1,380.456	1,478.170	1,293.511	1,293.511	1,293.511	1,293.511	-
f1/A1 ²	830.351	1,063.210	1.380.456	1,812.796	1.063.210	1,063.210	1.063.210	1,063.210	
f1/A1 ² ×0.2	16.607	21.264	27.609	36.256	21.264	21.264	21.264	21.264	2% of Friction Loss
Summitry of Loss	846.958	1,084,474	1.408.065	1,849.052	1,084.474	1.084.474	1,084,474	1,084,474	
Downstream Water Level EL.(m)	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	
Head h (m)	34.0	34.0	34.0	34.0	34.0	34.0	. 34.0	34.0	
Velocity V (m/s)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	- 2
Discharge Q (m ³ /s)	0.886	0.783	0.687	0.600	0.763	0.752	0.731	0.695	
Design Discharge Q0 (m ³ /s)	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	
Evaluation	OK	OK	NG	NG	ОK	ОK	NG	DN	-
According to the calculation result, the minimum sections of culvert and gate for the design discharge of 0.75m ³ /s is the combination of box culvert of 1.050mm × 1,050mm and gate of 400mm.	um sections o	f culvert and	gate for the d	lesign dischar	ge of 0.75m ³	/s is the com	bination of bo	x culvert of	1.050mm × 1,050mm
Note:						· ·		•	
fi : $(124.5 \times n^2 \times L1) / D^{(4.5)}$		· .					:		
AI : DI^{*}			. •						
Δ. · · · · · · · · · · · · · · · · · · ·	יוואסי־טאי־ט		-	· ·.	•				

Supporting Report : Feasibility Study

F-53

5.3 Design of Intake Facility

(1) Design of Sedimentation Basin

Intake facility for bypass is installed at the check dam. The intake works are composed of an inlet, a sedimentation basin, a discharge regulation spillway and a gate to stop water entering. The sedimentation basin is designed as width: 2 m x depth: 2 m x length: 40 m to settle sediment of 0.3 mm diameter. At the front of intake, screen is installed to prevent invasion of floating woods and people for safety reason.

Length of sedimentation basin; L is obtained as follow.

L = hV / v

where

Safety Coefficients = 1.5-2.0

				4	
5		- douth of	codumentation	haem	
h			sedimentation	Daam -	
	• .		~~~~~~		

v	•	mean	velocity	
		incan	relocity	

- v : settling velocity
- h : 2.0m, V = 0.25m/s, v = 0.025m/s (sediment of 0.3 mm diameter)

L : $2 \times 2.0 \times 0.25 / 0.025 = 40 \text{ m}$

(2) Consideration to Sedimentation

Sedimentation of soils and suspended materials in the Bypass during flood period might cause the less capability of water passage and the blockage of the bypass by sedimentation in the worst case. It is concluded that the following countermeasures are effective to prevent sedimentation in the Bypass:

- 1) Screen is installed at the entrance to the intake facility to prevent floating woods or particles from entering the bypass.
- 2) Sedimentation basin is constructed to prevent the soils from entering the bypass. Calculation shows that the grain size of soil less than or equals to 0.3 mm could be settled down in the basin with dimensions of 40 m long and 2 m deep.
- 3) Flow velocity in the bypass with the design discharge of 0.75 m³/s is about 0.7m/s. The relationship between the grain size and critical flow velocity, which is the minimum velocity not to cause movement of settled soils, according to the formula presented by Justin, the critical flow velocity for 0.3 mm particles is 0.056m/s. Therefore, it is judged that the silt or clay with grain size less than or equal to 0.3 mm is washed out to the downstream of the bypass. Although the soils with larger grain sizes may enter into the bypass, it is also washed down since the critical velocity of grain size of 5 mm is 0.229 m/s.
- 4) The shut gate at the outlet of the bypass controls the flow volume in the bypass. Turbid water with sediment load could not inflow to the bypass when a gate is closed.
- 5) Aquatic plant might be grown inside of bypass when the velocity is slow. In general, the design velocity over 0.7 m/s is adopted to prevent growing aquatic plant. Although the velocity of 0.6 m/s in the box culvert is less than 0.7 m/s, it seems no problem because: 1) the flow in bypass is of high chlorine concentration, and 2) Inside of the bypass is difficult circumstance for aquatic plant to grow without sunshine.
- 6) Some sedimentation can be allowed by dimensioning of the box culvert larger than the hydraulically required dimensions.

5.4 Design Drawing

The design of the low flow bypass, the concrete box culvert channel is shown in Figure-5.2.