JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL

# THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN

THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT SUPPORTING (VOLUME II) FEASIBILITY STUDY

[E] DAM PLAN

**MARCH 2000** 

YACHIYO ENGINEERING CO., LTD. (YEC)

### THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

### SUPPORTING REPORT (E) DAM PLAN

### **Table of Contents**

のまた

| Table of C<br>List of Tal<br>List of Fig | oles                                                                                                                                                       |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Page                                                                                                                                                       |
| CHAPTE                                   | R 1 AIMS OF THE PROJECT E-1                                                                                                                                |
| 1.1                                      | Necessity of the Project                                                                                                                                   |
| 1.2                                      | Objectives of the Project                                                                                                                                  |
| 1.3                                      | Project Components and Location E-3                                                                                                                        |
| CHAPTE                                   | R 2 CRITERIA FOR DAM PLAN                                                                                                                                  |
| 2.1                                      | Compensation Discharge E-5                                                                                                                                 |
| 2.2                                      | Reservoir Reliability (Security Level of Water Supply)                                                                                                     |
| 2.3                                      | Design Discharges E-6                                                                                                                                      |
| 2.4                                      | Design Criteria                                                                                                                                            |
| CHAPTE                                   |                                                                                                                                                            |
| 3.1                                      | R 3       PLANNING CONDITION OF DAM                                                                                                                        |
| 3.2                                      | Reservoir Sedimentation E-8                                                                                                                                |
| 3.3                                      | Determination of Design Discharges                                                                                                                         |
|                                          | 3.3.1 Design Flood Discharge of Dam E-9                                                                                                                    |
|                                          | <ul> <li>3.3.2 Design Discharge for Energy Dissipater of Dam E-10</li> <li>3.3.3 Design Discharge of Diversion Channel during Construction E-10</li> </ul> |
|                                          | 3.3.4 Design Discharge for the Spillway of a Check Dam                                                                                                     |
| CHAPTE                                   | e per se la la segura de la presentada de la compositiona da composition de la segura de la segura de la segur                                             |
|                                          | Main Function of the Proposed Dam                                                                                                                          |
|                                          | Main Function of the Proposed Dam                                                                                                                          |
| 4.2                                      | Reservoir Operation ModelE-134.2.1Concept of Reservoir Operation ModelE-13                                                                                 |
|                                          | 4.2.2 Runoff Model                                                                                                                                         |
| an a | 4.2.2Runoff ModelE-154.2.3Water Quality ModelE-16                                                                                                          |
| 4.3                                      | Simulation Result of Reservoir Operation                                                                                                                   |
|                                          | 4.3.1Trial SimulationE-204.3.2Decision of Bypass Discharge and Reservoir VolumeE-22                                                                        |
|                                          | 4.3.3 Reservoir Operation Plan E-23                                                                                                                        |
| 4.4                                      | Specifications of the Plan of Vaza Barris Dam                                                                                                              |
| 4.5                                      | Single Purpose Dam E-28                                                                                                                                    |

# List of Tables

| Page                                                                     |
|--------------------------------------------------------------------------|
| Project Component and Facilities                                         |
| Current Water Use in Vaza Barris RiverE-5                                |
| Domestic and Industrial Water Supply in Agreste and Piauitinga AreasE-8  |
| Monthly Water Requirement for Vaza Barris Irrigation ProjectE-8          |
| Sediment Capacities of Dams in Sergipe State                             |
| Design Flood Discharge of Existing Dams in Sergipe State                 |
| Basin DivisionE-16                                                       |
| Water Quality Estimation Equation                                        |
| Simulation Result of "without water quality capacity" Case               |
| Simulation Result of "with water quality capacity for dilution" CaseE-21 |
| Comparison with the Alternatives of Low Flow Bypass and dam              |
| Summary of Water Quality in Vaza Barris Dam Reservoir                    |
| Planed Specification of Vaza Barris Dam                                  |
| Specification of Single-purpose DamE-28                                  |
|                                                                          |

그는 것이는 분위에 관심되었다. 그는 것이 하는 것이 가지?

| ан ал ан ал ан |                                                                        |
|----------------------------------------------------|------------------------------------------------------------------------|
| :<br>:                                             | 나는 것 같은 것 같                              |
|                                                    | List of Figures                                                        |
|                                                    |                                                                        |
| · · · · · ·                                        | Page                                                                   |
| Figure-1.1                                         | Location of the Project                                                |
| Figure-2.1                                         | Location of Current Water Use in Vaza Barris River                     |
| Figure-3.1                                         | Specific Maximum Discharges of Rivers in the WorldE-9                  |
| Figure-4.1                                         | Main Function of Vaza Barris Dam                                       |
| Figure-4.2                                         | H-A and H-V Curve of Main Dam Reservoir                                |
| Figure-4.3                                         | Concept of Reservoir Operation Model                                   |
| Figure-4.4                                         | Runoff Model for Reservoir Operation Simulation                        |
| Figure-4.5                                         | Relationship between CI/EC and River Flow                              |
| Figure-4.6                                         | Tributaries Basin Load (Cl) between Fazenda Belem and                  |
| i iguito ino                                       | Ponte SE-302 (Relationship between Cl and Discharge)                   |
| Figure-4.7                                         | Estimation of Daily Water Quality (Cl and EC) at the Main Dam SiteE-18 |
| Figure-4.8                                         | Estimation of Cl concentration at the check dam Site                   |
| Figure-4.9                                         | Water Quality Model for Reservoir Operation Simulation                 |
| Figure-4.10                                        | Simulation Result of "without water quality capacity" Case             |
| Figure-4.11                                        | Simulation Result of "with water quality capacity for dilution" Case   |
| Figure-4.12                                        | Variation of Reservoir Volume and Inflow                               |
| Figure-4.13                                        | Variation of Chlorine Concentration and Electric Conductivity          |
| rigure                                             | in the Vaza Barris Dam Reservoir                                       |
| Figure-4.14                                        |                                                                        |
| 116010 1111                                        | After Construction of the Dam                                          |
| Figure-4.15                                        | Schematic Description of Capacity and Planning Water Level             |

### CHAPTER 1 AIMS OF THE PROJECT

### 1.1 Necessity of the Project

### (1) Necessity of New Water Resources Development in Vaza Barris River

Itabaiana and Lagarto Water Supply areas (Agreste and Piauitinga Integrated Pipeline Systems) are located in Agreste/Semi-arid areas and are the second and third largest populated areas in Sergipe State. These areas are of poor ground/surface water resources potential and have been suffering from water shortage. In order to cope with present water shortage and increasing water demand, groundwater is not enough in both quantity and quality and it costs too much if surface water is conveyed from other river basins affluent in water resources, Sao Francisco River for example. Vaza Barris River has large water resources potential and is located between the large water-consumed cities of Itabaiana and Lagarto. Therefore, it has been expected to develop the river water not only by benefiting municipalities but also by the state of Sergipe.

### (2) Refreshing High chlorine River Water by a Proposed Dam System

Vaza Barris River, who is the second largest river in the State with the total basin area of 16,229 km<sup>2</sup> including a part of the Bahia State, flows down between the second and third largest populated cities of Itabaiana and Lagarto. River water of the main stream has large potential of water resources but has not been able to be utilized as potable and irrigation water due to high chlorine concentration of flow from upstream. In fact, a dam plan had been progressed on the main stream of the river in the Sergipe State in 1980's and was abandoned due to unavailable water quality of the river. After elaborate investigation of river water quality, however, it was found that river flow has high chlorine concentration during flood time and in the downstream. Considering such condition of the water quality in Vaza Barris River, the following reservoir operation plan is being established:

- 1) Low flow from the upstream with high chlorine concentration is bypassed around the dam to the downstream.
- 2) River water with less chlorine concentration during flood and in the downstream is stored in the dam reservoir.

Then,

3) Dam reservoir water is kept clean (low chlorine concentration) and could be utilized as portable and irrigation water.

Introducing such reservoir operation plan with a new system for river water quality, river water that could not be utilized before becomes clean and comes to be utilized as potable and irrigation water.

### (3) Insufficient Water Supply

In the State of Sergipe in 2020, necessary supply water amount is estimated to be totally 830,000 m<sup>3</sup>/day including 547,000 m<sup>3</sup>/day of supply water shortage. Of this water shortage, Aracaju Capital Area is short of 175,000 m<sup>3</sup>/day (equivalent to 32% of total supply water shortage in the State) of water, and Itabaiana and Lagarto Water Supply areas (Agreste and Piauitinga Integrated Pipeline System) are short of 129,000 m<sup>3</sup>/day (equivalent to 24%) of water.

The population of these areas is 259,000 inhabitants in 1996 and is estimated to be 540,000 in 2020, which represents almost two thirds of population in Aracaju Capital Area at the same year (875,000 inhabitants). The lack of adequate water supply is a serious obstacle to the development of the so mentioned regions and creates a migratory pressure towards the State capital, worsening even more problems in Aracaju.

Therefore, it's mandatory to try to stabilize the water supply for high-concentrated population, indispensable to boost its social-economical development and to improve the quality of life. The positive consequences will spread all over the State, contributing to reduce the regional differences and alleviating the population and social-economic pressures towards the area of Aracaju.

### (4) Irrigation Development

Fertile land suitable for irrigation extends around the right side of the planned dam site. This area is located between the three largest cities in the State of Sergipe, such as Aracaju, Itabaiana and Lagarto. It means the area has an advantage being near to large consumer cities. This area, which is presently utilized as orchards and pastures, could be irrigated and the agricultural production is to be supplied to the city areas. This irrigation project promotes improvement of agricultural productivity and activation of regional economy.

The planned dam is implemented as a multi-purpose dam for the development of domestic/industrial water and irrigation water. It results in decrease of the both project costs.

### **1.2 Objectives of the Project**

"The Project of Water Resources Development and Supply in Vaza Barris River –Sergipe (PROVABASE)" is proposed for securing stable life of the state people through sustainable water resources development. The objectives of the project are set as follows:

to improve river water quality and to develop potable water resources.

to supply clean and enough water for the people through public water supply. to supply irrigation water to agriculturally potential land for the achievement

a fight and the second of a fight

of high productivity.

to develop maintenance water of the river for riparian environment.

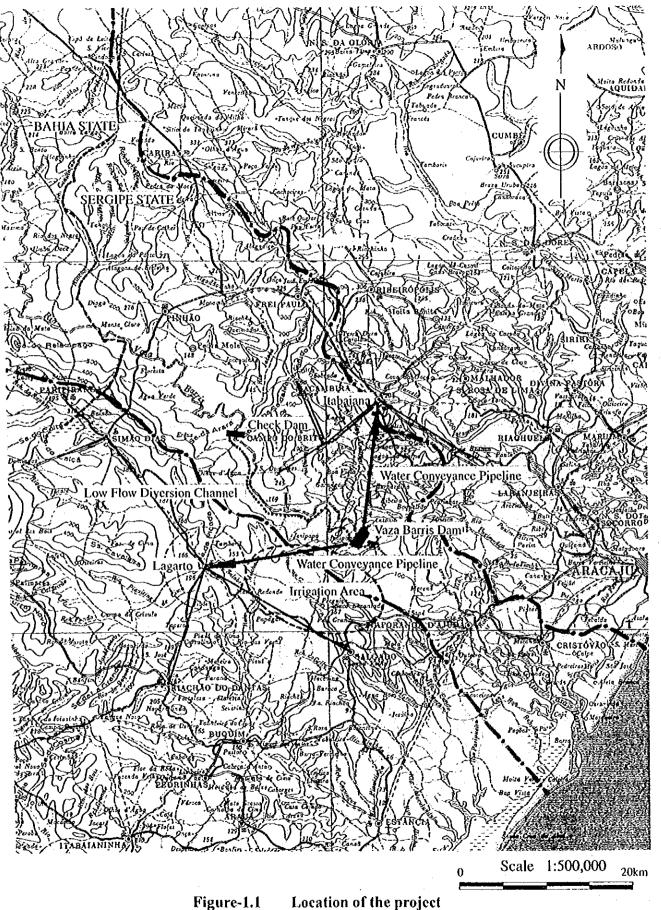
Supporting Report: Feasibility Study

the second second second

### **1.3 Project Components and Location**

The project components of the facilities are summarized in Table-1.1. The target facilities of the project components in this feasibility study are:

- Facilities of Vaza Barris Multipurpose Dam
- Water conveyance pipelines of domestic/industrial water supply facilities


The project location is shown in Figure-1.1.

| Project Components                    | Faciliti                                                                            | es                              |
|---------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|
| (1) Vaza Barris Multipurpose Dam      |                                                                                     |                                 |
| Dam facilities                        | • Main Dam                                                                          | - Spillway                      |
|                                       | - Check Dam (Bypass Intake                                                          | - Low Flow Bypass               |
| (2) Domestic/Industrial Water Supp    | oly Facilities: <itabaiana sup<="" td="" water=""><td>ply Area&gt;</td></itabaiana> | ply Area>                       |
| Water conveyance pipeline             | - Intake and raw water pump station                                                 | • Pipeline                      |
| Treatment and distribution facilities | - Waler treatment station                                                           | - Distribution pipeline network |
| (3) Domestic/Industrial Water Sup     | oly Facilities: <lagarto supp<="" td="" water=""><td>ly Area&gt;</td></lagarto>     | ly Area>                        |
| Water conveyance pipeline             | - Intake and raw water pump station                                                 | - Pipeline                      |
| Treatment and distribution facilities | - Water treatment station                                                           | - Distribution pipeline network |
| (4) Irrigation Water Supply Facilitie | S                                                                                   |                                 |
| Water Conveyance Pipeline             | - Intake and raw water pump station                                                 | - Pipeline                      |
| Irrigation Facilities                 | - Farmland development                                                              | - Irrigation channel            |

É-3

### Table-1.1 Project Component and Facilities

Note: Italic parts show the facilities not including in this feasibility study.





### CHAPTER 2 CRITERIA FOR DAM PLAN

### 2.1 Compensation Discharge

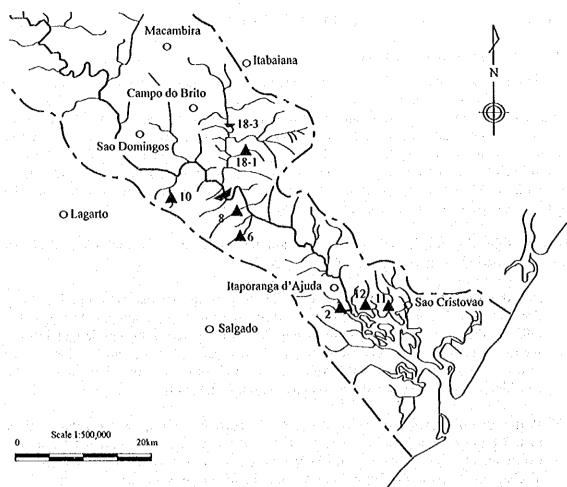
1000

)

The "compensation discharge" could be defined as the discharge necessary to maintain the normal function of a river, and consists of maintenance discharge and water-use discharge. Maintenance discharge has been stipulated to maintain river function even at the times of low flow, with overall consideration to the following: 1) fisheries, 2) scenery, 3) sea water intrusion, 4) preservation of fauna and flora, 5) preservation of cleanliness of river flow, 6) prevention of river-mouth clogging, 7) protection of river works, 8) groundwater level maintenance, 9) boat transportation. Water-use discharge is the flow necessary for the exclusive use of the river water at all points downstream.

After the following consideration, compensation discharge was set as the 100% of the 10year return period 7-day flow (Q7, 10).

Maintenance Discharge: In this Study, the 100% of the 10-year return period 7-day flow (Q7, 10) is applied as maintenance discharge for dam planning. The (Q7, 10) refers to the mean annual minimum 7-day flow with 10-year return period, and this is secure as compensation discharge to the downstream when developing new water resources of river flow. As this value is not an absolute one, the above items to be considered should be studied in detailed environmental study.


Water Use Discharge: Based on the survey of current water use in Vaza Barris River in the Sergipe State, exclusive water use in the main stream could not be found. Consequently, no water use discharge is taken into account for compensation discharge. Refer to the following investigation of current water use.

### < Current Water Use in Vaza Barris River in Sergipe State >

Current water use in Vaza Barris River concerning with water intake on domestic/industrial/irrigation water is summarized in Table-2.1 and their locations are pointed in Figure-2.1. All the intakes in the upstream and downstream are located in the tributaries of Vaza Barris River, not in the main stream.

| Station<br>No. | River          | River Location Objective |                      | Operation<br>Organization | Water Use<br>Amount<br>(m³/day) |
|----------------|----------------|--------------------------|----------------------|---------------------------|---------------------------------|
|                | Downstream     | L                        |                      | • • • • •                 |                                 |
| 02             | Rio Chinduba   | Antiga Intake            | Industry             |                           |                                 |
| 06             | Riacho Taboca  | Pov. Sape                | Municipal            | DESO                      | 1,356                           |
| 08             | Riacho Pedras  | Faz. Riacho Doce         | Irrigation           | COHIDRO                   | -                               |
| 11             | Rio Comprido   | Intake SAAE              | Municipal            | DESO                      | 2,400                           |
| 12             | Riacho Pindoba | Fonte Indaiá             | Industry             | -                         | -                               |
|                | Upstream       |                          |                      |                           |                                 |
| 10             | Riacho Taboca  | Pov. Genipapo            | Municipal            | DESO                      | 1,199                           |
| 18-1           | Rio Trairas    | Riacho Ribeira           | Municipal            | DESO                      | 346                             |
| 18-3           | Rio Trairas    | Rio Trairas              | Municipal/Irrigation | DESO/COHIDRO              | 12,216                          |

Table-2.1Current Water Use in Vaza Barris River



O Estancia

Figure-2.1 Location of Current Water Use in Vaza Barris River

### 2.2 Reservoir Reliability (Security Level of Water Supply)

Low flow security in the plan has been set to ensure the intake of newly developed discharge even in the worst drought in ten years for domestic/industrial and irrigation water supply.

### 2.3 Design Discharges

### (1) Design Flood Discharge of Dam

A spillway is the safety value for a dam. It must have the capacity to discharge major floods without damage to the dam or any appurtenant structures, at the same time keeping the reservoir level below some predetermined maximum level.

The selection of design flood discharge is related to the degree of protection that ought to be provided to the dam that depends on the type of dam, its location, and consequences of failure of the dam. A high dam storing a large volume of water located upstream of an inhabited area should have a much higher degree of protection than a low dam storing a small quantity of water whose downstream reach is uninhabited. The probable maximum flood is commonly used for the former while a smaller flood based on frequency analysis is suitable for the latter. According to the "Criteria of Civil Design of Hydro-electric Plant, 1994 May, Preliminary Edition, CEMIG (Energy Company of Minas Gerais)", design flood discharge of a dam is set as follows:

- 1) For dams whose collapse involves loss risk of human lives (if permanent habitation exists downstream), the design flood discharge should be the Probable Maximum Flood.
- 2) For dams with the height less than 30 m or with the volume less than 50,000,000 m<sup>3</sup>, and when there is not loss risk of human lives (if permanent habitation exists downstream), the design flood discharge should be defined as minimum return period of 1,000 years by probability analysis.

The proposed dam is categorized in 1) above and the design flood discharge should be the probable maximum discharge.

### (2) Other Design Discharges

0.17

As the scale of the following design discharges are not defined in the criteria mentioned above, the Japanese standard for dam design are referred.

- Design discharge for energy dissipater of a dam
  - Design discharge of diversion channel during construction
- Design discharge for spillway of a check dam

### 2.4 Design Criteria

Dam should be carefully designed to minimize the construction cost, holding necessary functions of each facility. Dam and related structures are designed according to reasonable balance between construction cost and safety level. A large safety level of structures requires a large scale of structures and complicated construction procedures. Consequently, the construction costs increase. Design Criteria are standards to decide a balance between construction cost and safety level.

Dam Design Criteria used in Brazil are as follows:

- 1) For almost existing dams, dam design standards of USBR (US, Dep. of the Interior, Bureau of Reclamation) and USCE (US Army, Corps of Engineer) were employed.
- 2) Sao Francisco Electricity Corporation (CHESF) recently uses the standard "Civil Works Criteria for Hydropower Generation" which was complied by Mina Gerais Power Company (CEMIG) on the basis of standards of USBR and USCE. This standard was used in designing Xingo Dam.

Considering the above situation, CEMIG standard is employed basically in design of Vaza Barris Dam and other related structures. If necessary, the Japanese Standards for dam design of "Manual of River Works, Ministry of Public Works, Japan" are referred.

Supporting Report: Feasibility Study

E-7

#### **CHAPTER 3** PLANNING CONDITION OF DAM

#### 3.1 **Required Development Water Amount**

Vaza Barris Dam is planned for development of domestic/industrial water and irrigation water. Domestic and industrial water is to be supplied for the area covered by Agreste and Piauitinga Integrated Pipeline Systems, as shown in Table-3.1. Irrigation water is to be supplied for Vaza Barris Irrigation Project, of which monthly water requirement is shown in Table-3.2.

| Area Covered                                         |          | ntegrated<br>System | Piauitinga<br>Pipeline | Integrated<br>System | Total Supply |        |  |
|------------------------------------------------------|----------|---------------------|------------------------|----------------------|--------------|--------|--|
|                                                      | (m³/day) | (m³/s)              | (m³/day)               | (m³/s)               | (m³/day)     | (m³/s) |  |
| Water amount necessary to be supplied in 2020        | 74,286   | 0.860               | 79,664                 | 0.922                | 153,950      | 1.782  |  |
| Present Capacity                                     | 12,810   | 0.148               | 12,130                 | 0.141                | 24,940       | 0.289  |  |
| Expansion project to be proposed to PROAGUA          | 22,200   | 0.257               | 30,200                 | 0.349                | 52,400       | 0.606  |  |
| Required development water<br>amount in this project | 39,276   | 0.455               | 37,334                 | 0.432                | 76,610       | 0.887  |  |

| Table-3.1 | Domestic | e and Industrial | Water Supply in | <b>Agreste and Piauitinga</b> | Areas |
|-----------|----------|------------------|-----------------|-------------------------------|-------|
|           |          |                  |                 |                               |       |

and the second second

Monthly Water Requirement for Vaza Barris Irrigation Project Table-3.2

|        | Item                                        | JAN   | FEB    | MAR   | APR   | ΜΛΥ            | JUN              | JUL                 | AUG               | SEP                  | ост            | NOV      | DEC   | Average |
|--------|---------------------------------------------|-------|--------|-------|-------|----------------|------------------|---------------------|-------------------|----------------------|----------------|----------|-------|---------|
| Source | Water Requirement<br>(m <sup>3</sup> /s)    | 2.912 | 2.469  | 2.022 | 0.717 | 0.273          | 0.000            | 0.033               | 0.542             | 1.344                | 2.484          | 2.463    | 2.820 | 1.507   |
| Note:  | Efficiency of Water<br>Irrigation Area: 4,5 |       | yance: | 0.9,  |       | Effici<br>Maxi | ency of<br>mum W | f Water<br>/ater Re | Distrib<br>quirem | ution: (<br>ent: 2.9 | ) 9<br>)12 m³/ | 's on Ja | nuary |         |

| <br>Municipal and industrial water supply |                                                                                                                 |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <br>Irrigation water supply:              | 2.912 m <sup>3</sup> /s in maximum                                                                              |
|                                           | 1.507 m <sup>3</sup> /s in average                                                                              |
| <br>Total required development amount:    | 3.799 m <sup>3</sup> /s in maximum                                                                              |
|                                           | 2.394 m <sup>3</sup> /s in average                                                                              |
|                                           | Second |

#### 3.2 **Reservoir Sedimentation**

There are two dams existing in the Vaza Barris River basin, namely Cocorobo Dam (C.A.=3,600 km<sup>2</sup>) and Cajaiba Dam (C.A.=195 km<sup>2</sup>). As the hydrographic basin of the Vaza Barris dam is 15,560 km<sup>2</sup>, sediment catchment area becomes 11,765km<sup>2</sup>, subtracting the catchment areas of the existing dams. He was the state of the stat

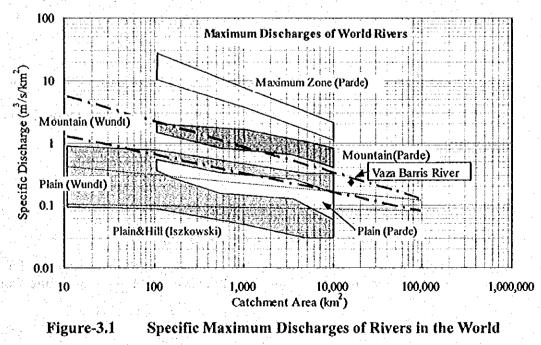
lander sak tu

an and a straight Planned sediment capacities of the dams with the catchment area of over 100 km<sup>2</sup> in Sergipe State are shown in Table-3.3. The specific sediment capacities (m<sup>3</sup>/km<sup>2</sup>/year) of the above dams with the catchment area between 118-1.350 km<sup>2</sup> are ranged from 14-53 m<sup>3</sup>/km<sup>2</sup>/year. Taking into account of the catchment area size and the deference of basin elevation, the specific sediment capacity of the Vaza Barris Dam is set at 10 m<sup>3</sup>/km<sup>2</sup>/year. Then, securing 100-year sediment for the dam reservoir, the sediment capacity for the Vaza Barris Dam is necessary to be 12,000,000 m<sup>3</sup>.

| Dam<br>Name                            | River<br>Name | Catch-<br>ment<br>Area<br>(km <sup>2</sup> ) | Deference<br>of Basin<br>Elevation<br>(m) | Reservoir<br>Area<br>(ha) | Reservoir<br>Volume<br>Vt (m²) | Sediment<br>Capacity<br>Vs (m³) | Specific<br>Sediment<br>Capacity<br>(m <sup>3</sup> /km <sup>2</sup> /year) | Vs/Vt<br>(%) |
|----------------------------------------|---------------|----------------------------------------------|-------------------------------------------|---------------------------|--------------------------------|---------------------------------|-----------------------------------------------------------------------------|--------------|
| Vaza Barris                            | Vaza Barris   | 15,560<br>(11,765)                           | 600                                       | 948                       | 93,000,000                     |                                 | 10                                                                          | 12.9%        |
| Piaiu                                  | Piaui         | 1,350                                        | 400                                       | 367                       | 15,000,000                     | 2,000,000                       | 15                                                                          | 13.3%        |
| Jabiberi                               | Jabiberi/Real | 118                                          | 200                                       | 61                        | 4,300,000                      | 540,000                         | 46                                                                          | 12.6%        |
| Jacarecica I                           | Jac./Sergipe  | 221                                          | 200                                       | 115                       | 4,700,000                      | 300,000                         | 14                                                                          | 6.4%         |
| ······································ | Trairas/V.B.  | 195                                          | 200                                       | 250                       | 16,500,000                     | 1,032,000                       | 53                                                                          | 6.3%         |

Table-3.3Sediment Capacities of Dams in Sergipe State

Note: () shows sediment catchment area


### **3.3 Determination of Design Discharges**

### 3.3.1 Design Flood Discharge of Dam

According to the planning criteria, the design flood discharge should be the probable maximum discharge, which is assumed to be the discharge with 10,000-year return period in this report. Based on annual maximum daily discharge for the 24-year data series (1971-1995) at Fazenda Belem (C.A.=15,740km<sup>2</sup>), the discharge with 10,000-year return period was calculated to be 3,588 m<sup>3</sup>/s. Taking into account of the ration of the catchment areas at Fazenda Belem and that at the dam site, the design flood discharge was set at 3,600 m<sup>3</sup>/s.

- Design Flood Discharge: Specific Discharge:
- 3,600 m<sup>3</sup>/s 0.23 m<sup>3</sup>/s/km<sup>2</sup> (Dam C.A.= 15,560 km<sup>2</sup>)

Figure-3.1 illustrates the range of specific discharge of the maximum flow for rivers in the world. As the design flood discharge of Vaza Barris Dam is pointed in the figure, it corresponds to the maximum discharge of the upper range in a plain area or the lower range in a mountain area. It seems to be reasonable studying the topographical condition of this basin.



E-9

| Dam Name                                                | Piaui            | Jabiberi         | Jacarecica I   | Cajaiba                 | Xingo               |
|---------------------------------------------------------|------------------|------------------|----------------|-------------------------|---------------------|
| River Name                                              | Piaui            | Jabiberi         | Jacarecica     | Trairas                 | S. Francisco        |
| Responsible Organization                                | COHIDRO          | COHIDRO          | COHIDRO        | COHIDRO                 | CODEVASF            |
| Purpose                                                 | Irrigation       | Irrigation       | Irrigation     | Irrigation/<br>Domestic | Power<br>generation |
| Catchment Area (km²)                                    | 1,350            | 118              | 221            | 195                     | 633,000             |
| Spillway Design Discharge (m³/s)<br>(Probable year)     | 2,238<br>(1,000) | 331.5<br>(1,000) | 738<br>(1,000) | 1,621<br>(10,000)       | 33,000              |
| Specific Discharge (m <sup>3</sup> /s/km <sup>2</sup> ) | 1.66             | 2.81             | 3.34           | 8,31                    | 0.052               |

| Table-3.4 | Design Flood Discharge | of Existing | Dams in Sergipe State |
|-----------|------------------------|-------------|-----------------------|
|-----------|------------------------|-------------|-----------------------|

### 3.3.2 Design Discharge for Energy Dissipater of Dam

The design discharge of the dam energy dissipater is adopted as the discharge with 100year return period, according to "Manual of River Works, Ministry of Public Works, Japan".

The probable discharge with 100-year return period at Fazenda Belem (C.A.=15,740km<sup>2</sup>) is 1,211 m<sup>3</sup>/s, and that at the dam site is 1,197 m<sup>3</sup>/s taking into account of the basin areas' ratio. Then the design discharge of 1,200 m<sup>3</sup>/s was taken for the design discharge.

### 3.3.3 Design Discharge of Diversion Channel during Construction

A design discharge of a diversion channel is defined, as the frequency resulting from probable analysis, comparing the expected value of losses cost resultant from respective floods. According to the degree of flood damage by a dam type, in this report, a design discharge of a diversion channel during construction is set as the following criteria:

|   | Concrete dam:                    | Discharge with 2-year return period  |
|---|----------------------------------|--------------------------------------|
| - | Earth-fill dam or Rock-fill dam: | Discharge with 20-year return period |

Therefore, the design discharge of the diversion channel during construction is set as follows:

|   | Concrete dam:                | 200 m <sup>3</sup> /s (0.013 m <sup>3</sup> /s/km <sup>2</sup> ) |
|---|------------------------------|------------------------------------------------------------------|
| - | Earth-fill or rock-fill dam: | 720 m³/s (0.048 m³/s/km²)                                        |

### 3.3.4 Design Discharge for the Spillway of a Check Dam

The larger one of the following two discharges is adopted as a design discharge for the spillway of a check dam, according to "Manual of River Works, Ministry of Public Works, Japan".

- Discharge with 100-year return period

- Experienced maximum discharge

The probable discharge with 100-year return period at Fazenda Belem (C.A.=15,740km<sup>2</sup>) is 1,211 m<sup>3</sup>/s, and that at the dam site is 1,170 m<sup>3</sup>/s taking into account of the basin areas' ratio. On the other hand, the experienced maximum discharge at Fazenda Belem is 647 m<sup>3</sup>/s in 1975 during 25-year data series from 1971 to 1995. Then the design discharge with 100-year return period should be taken for the design discharge.

However, the proposed check dam has the function not only as a sand sedimentation facility but also as an intake facility. For the dam reservoir operation, this intake is inevitable for improvement of reservoir water quality. Therefore, adding 20 % of discharge due to its importance, the design discharge of the spillway for the check dam is set at 1,400  $m^3/s$ .

Design discharge:Specific Discharge:

a ser en se a

1,400 m<sup>3</sup>/s 0.09 m<sup>3</sup>/s/km<sup>2</sup> (Check Dam C.A.= 15,030 km<sup>2</sup>)

a go tradi

1

### CHAPTER 4 RESERVOIR OPERATION PLAN

### 4.1 Main Function of the Proposed Dam

The proposed dam, Vaza Barris Dam has the functions of not only "Storing Water" but also "Improvement of Reservoir Water" as follows:

- 1) Storing water in the dam reservoir for the purpose of:
  - Maintenance of river and riparian environment
  - -- Domestic/Industrial water supply
  - Irrigation water supply
  - Dilution of water quality
- 2) Improvement of reservoir water with the new system of low flow bypass:
  - High saline concentration water is bypassed around the dam reservoir.
  - Clean or low saline concentration water is stored in the dam reservoir.

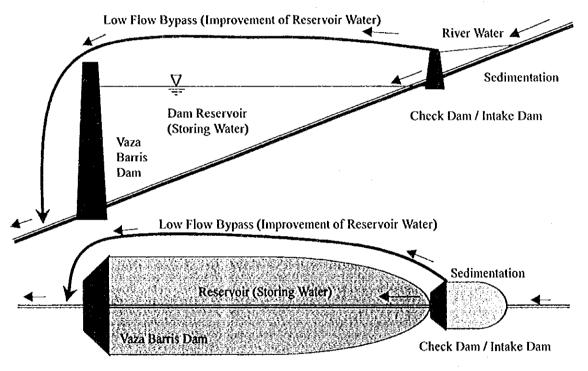



Figure-4.1 Main Function of Vaza Barris Dam

River water of the main stream has large potential of water resources but has not been able to be utilized as potable and irrigation water due to high concentration of chloride. After elaborate investigation of water quality, however, it was found that river flow has high chlorine concentration only during low flow condition but not during flood. Considering such condition of the water quality in Vaza Barris River, the following dam plan with the new system of a low flow bypass was established:

- 1) Low flow with high concentration of chloride from the upstream is bypassed around the dam reservoir to the downstream.
- 2) River water during flood is stored in the dam reservoir.

Then,

3) Dam reservoir water is kept clean and is utilized as potable and irrigation water.

### 4.2 Reservoir Operation Model

### 4.2.1 Concept of Reservoir Operation Model

The concept of the reservoir operation model is shown as a flow chart in Figure-4.3. The reference points for the reservoir operation plan were set at the check dam site and the main dam site, because the hydrological reference point in the most downstream, Fazenda Belem is located in the very near downstream of the dam. The both catchment area of the dam site (C.A.=15,560 km<sup>2</sup>) is close to that of Fazenda Belem (C.A.=15,740 km<sup>2</sup>). Given conditions in this model are listed as follows:

Daily Discharge (Refer to Hydrological Model)

1) Main dam:  $Q_0$ , 2) Check dam:  $Q_{CD}$ , 3) Reservoir inflow:  $Q_0 - Q_{CD}$ 

- Development Water Amount at the Dam Site
  - 1) Compensation (Maintenance) discharge: 0.44 m<sup>3</sup>/s
- 2) Domestic/Industrial water use: 0.887 m<sup>3</sup>/s
- 3) Irrigation water use: Maximum 2.912 m<sup>3</sup>/s

Average 1.507 m<sup>3</sup>/s

- Physical Precondition
- 1) H-V curve of the dam reservoir: Refer to Figure-4.2.
- 2) Capacity of the check dam reservoir: 10,000,000 m<sup>3</sup> at the level of EL. 63.0 m
- 3) Bypass discharge:  $0 2.0 \text{ m}^3$ /s (Assumption cases in trial calculation)
- Initial Condition

蠿

3

- 1) Initial reservoir volume: Full of capacity
- 2) Reservoir water quality:

Average water quality according to the average flow during 1986-1995

: Main Dam Reservoir: Cl=200 mg/l, EC= 0.90 dS/m,  $Q_{AVE}$ =8.74 m<sup>3</sup>/s : Check Dam Reservoir: Cl=330 mg/l, EC= 1.40 dS/m,  $Q_{AVE}$ =4.65 m<sup>3</sup>/s

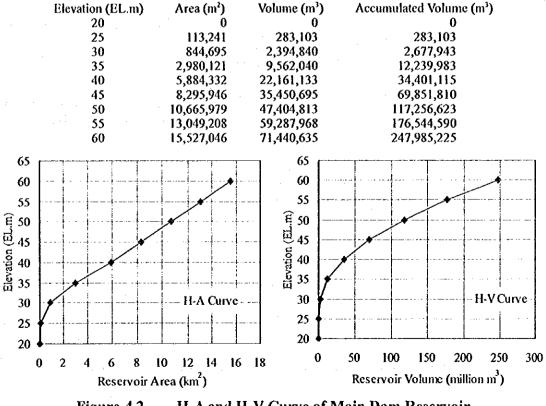
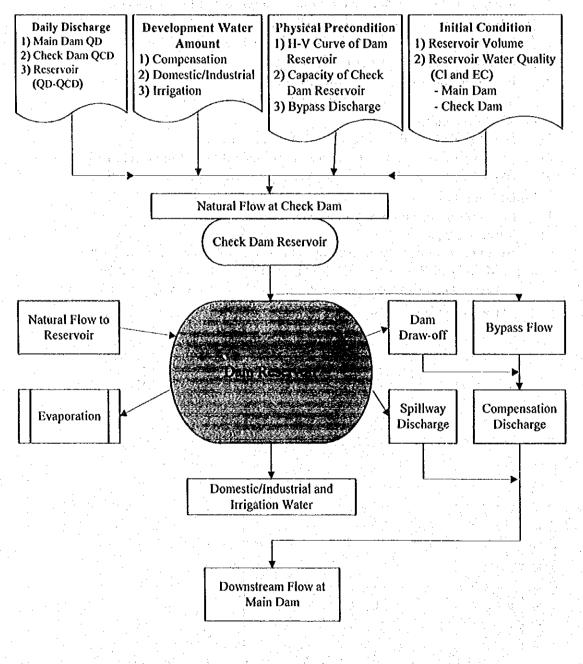




Figure-4.2 H-A and H-V Curve of Main Dam Reservoir

Based on the given conditions above, following water volume/flow and water quality are simulated:

- 1) Check Dam Reservoir
  - Inflow: Natural Flow
    - Outflow to Dam Reservoir and Low Flow Bypass
- 2) Main Dam Reservoir
  - Inflow: Natural Flow to Reservoir, Flow from Check Dam
  - Outflow: Dam Draw-off, Spillway Discharge, Evaporation
  - Intake Flow: Municipal/Industry Water, Irrigation Water



### Figure-4.3 Concept of Reservoir Operation Model

E-14.

김 승규는 영국을 통해 말을 수

Based on the given conditions above, following water volume/flow and water quality are simulated:

- 1) Check Dam Reservoir
  - Inflow: Natural Flow
  - Outflow to Dam Reservoir and Low Flow Bypass
- 2) Main Dam Reservoir
  - Inflow: Natural Flow to Reservoir, Flow from Check Dam
  - Outflow: Dam Draw-off, Spillway Discharge, Evaporation
  - -- Intake Flow: Municipal/Industry Water, Irrigation Water

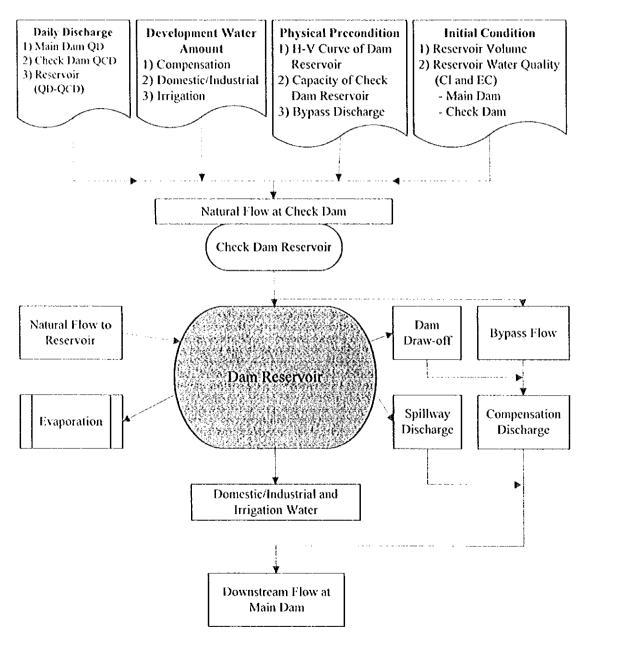
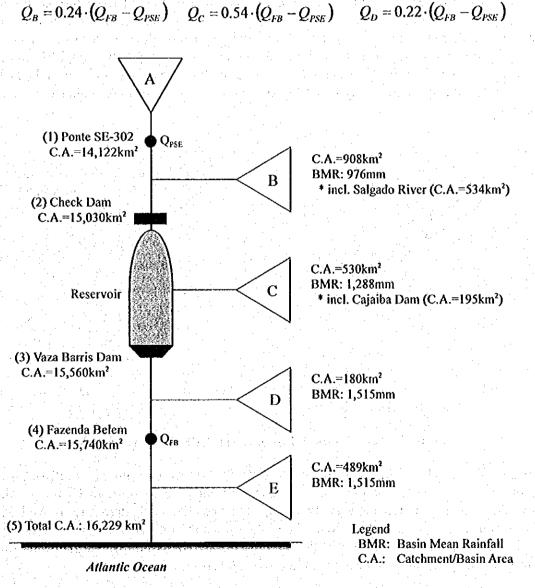
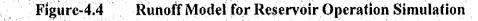



Figure-4.3 Concept of Reservoir Operation Model

Supporting Report: Feasibility Study

 $\left( \right)$ 


()


### 4.2.2 Runoff Model

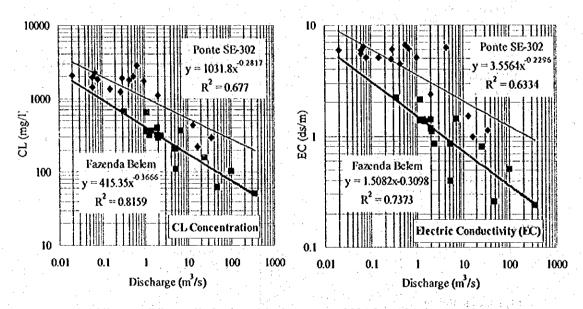
Runoff model of reservoir operation simulation is presented in Figure-4.4 and Table-4.1. Hydrological reference points were set at the check dam and the main dam, of which daily discharge is calculated based on the discharge at Ponte SE-302 ( $Q_{PSE}$ ) and Fazenda Belem ( $Q_{FB}$ ). The daily discharge from the basin B, C and D is calculated introducing "Runoff Contribution Factors", which were estimated as the following equations, based on the basin areas, the basin mean rainfalls and the runoff rates of the basins of B, C and D.

[Runoff Contribution Factors] = [Basin Ratio] \* [Basin Rainfall Ratio] \* [Runoff Rate Ratio]

Then, the runoff contribution factors were obtained as 0.24, 0.54 and 0.22 for the basins of B, C and D respectively, and discharges from these basins could be calculated by following equations:






The Study on Water Resources Development in the State of Sergipe, Brazil

|       | · · · · · · · · · · · · · · · · · · · |                         | Reference Poir              | st las      |     |                 |                        |
|-------|---------------------------------------|-------------------------|-----------------------------|-------------|-----|-----------------|------------------------|
| No.   | Basin Name                            | Basin<br>Area.<br>(km²) | Basin Mean<br>Rainfall (mm) | Runoff Rate | No. | Point Name      | Basin<br>Area<br>(km²) |
| A     | Upstream (Bahia)                      | 14,122                  | 500-800                     | -           | (1) | Ponte SE-302    | 14,122                 |
| B     | Ponte – Check Dam                     | 908                     | 976                         | 0.07        | (2) | Check Dam       | 15,030                 |
| С     | Dam Reservoir                         | 530                     | 1,288                       | 0.21        | (3) | Vaza Barris dam | 15,560                 |
| D     | Dam – F. Belem                        | 180                     | 1,515                       | 0.21        | (4) | Fazenda Belem   | 15,740                 |
| Е     | Most Downstream                       | 489                     | 1,515                       | <b>_</b>    | (5) | River Mouth     | 16,229                 |
| Total | Average of B, C & D                   | 1,618                   | 1,138                       | 0.14        |     |                 |                        |

Table-4.1Basin Division

### 4.2.3 Water Quality Model

In Vaza Barris River of Sergipe State, the Cl loads that is drained from the basin can be basically distinguished in two origins: one came from the main river (river itself) and other from the tributaries (rain water), carrying the salts retained on the soil surface. According to available water quality data, it can be found a good relationship between Cl/EC and river flow, as can be seen in Figure-4.5 established in Ponte SE-302 and Fazenda Belem, showing feasibility of the study of Cl/EC behavior according to mass balance concept in these basins.





All the loads produced in downstream of Ponte SE-302 were assumed as diffuse or nonpoint sources. The calculation of these loads might be held through Cl mass balance procedures in the stretch between Ponte SE-302 and the check dam site as well as the check dam site and Fazenda Belem. The data obtained on Sao Domingos station were applied for estimation of diffuse loads for this first stretch, assuming that the same station represents water characteristics in the check dam location.

Based on observation data at Fazenda Belem and Ponte SE-302, tributaries basin loads (Cl) between both stations was estimated as shown in Figure-4.6. Assuming that 80% of these loads be produced from the basin between Ponte SE-302 and the check dam site, and 20% be produced from the check dam site and Fazenda Belem, water quality equations of both

E-16:

basin loads is estimated as follows:

N. ...

)

Between Ponte SE-302 and the check dam site: $[Cl]_{PSE-CH} = 590.43 * Q^{-0.3557}$ Between the check dam site and Fazenda Belem: $[Cl]_{CD-FB} = 78.059 * Q^{-0.3557}$ 

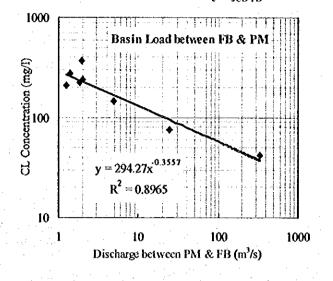



Figure-4.6 Tributaries Basin Load (Cl) between Fazenda Belem and Ponte SE-302 (Relationship between Cl and Discharge)

On the other hand, in Trairas River located in the basin between the check dam site and the main dam site, river water quality was observed to be about 80 mg/l of chloride concentration (Cl) and 0.4 ds/m of electric conductivity (EC) when river flow is about 1 m<sup>3</sup>/s. When the same indexes of the equation at Fazenda Belem is employed as the trend of decreasing of Cl and EC according to the discharge decreasing, tributaries basin load of Trairas River could be estimated as following equations:

$$[CI]_{TRAIRAS} = 80^{*}Q^{-0.37}$$
$$[EC]_{TRAIRAS} = 0.4^{*}Q^{-0.31}$$

This equation for Cl concentration is very similar with the equation estimated before.

Based on the above equations and main river equation at Fazenda Belem (Figure-4.5), the water quality (Cl and EC) at the main dam and the check dam could be calculated using the following equations:

[Water Quality Cl and EC]<sub>MD</sub> = ([Load]<sub>FB</sub> - [Load]<sub>MD-FB</sub>) /  $Q_{MD}$ [Water Quality Cl and EC]<sub>CD</sub> = ([Load]<sub>MD</sub> - [Load]<sub>CD-MD</sub>) /  $Q_{CD}$ 

Applying the hydrological model to the year of 1985 – 1995, the relationships between CI/EC and discharge are obtained as shown in Figure-4.7 and Figure-4.8. As the dam site is very near from Fazenda Belem, daily calculation results of water quality are concentrated to the one line (Figure-4.7). However the water quality results at the check dam (Figure-4.8) are scattered with in the specific range due to daily deference of the water contribution from the basin between the check dam and Fazenda Belem. As Figure-4.7 is presented with the equation at Sao Domingos located 5 km upstream of the check dam site, CI concentration by this equation is almost within the range and locates in upper or average part of the rage.

E-17

The Study on Water Resources Development in the State of Sergipe, Brazil

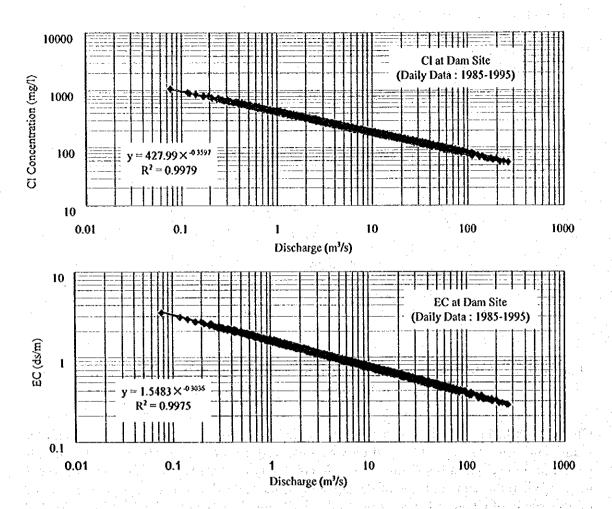



Figure-4.7 Estimation of Daily Water Quality (Cl and EC) at the Main Dam Site

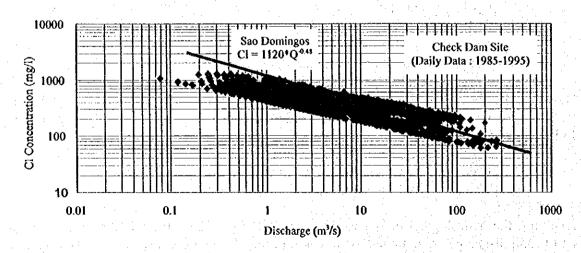



Figure-4.8 Estimation of Cl concentration at the check dam Site

Based on the above study, Water Quality Model of reservoir operation simulation is formulated as shown in Figure-4.9 and Table-4.2. River water quality of Sodium (Na), Magnesium (Mg) and Calcium (Ca) could be estimated applying the correlation equations to EC, of which equations were formulated based on the water quality observation data at Ponte SE-302 and Fazenda Belem.

Supporting Report: Feasibility Study

E-18

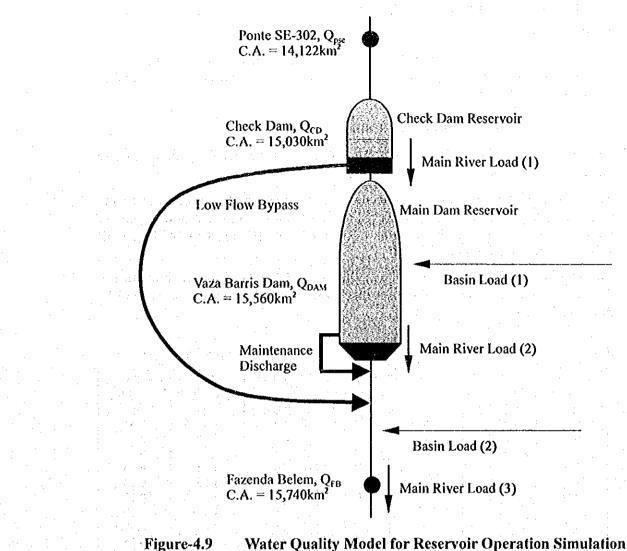



Figure-4.9

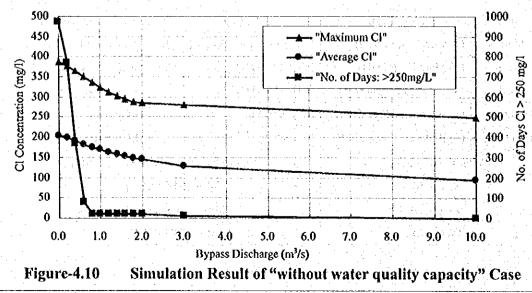
|            | Table-4.2 Wa           | ter Quality Estimation l                 | Equation                                 |  |
|------------|------------------------|------------------------------------------|------------------------------------------|--|
| Load       | Point/Basin            | Cl (mg/l)                                | EC (ds/m)                                |  |
| Main       | (1) Check Dam (CD)     | $[Cl or EC]_{CD} = ([Load]_{MD} - []$    | Load] <sub>CD-MD</sub> )/Q <sub>CD</sub> |  |
| River      | (2) Main Dam (MD)      | [Cl]=427.99*Q <sup>-0.3597</sup>         | [EC]=1.5483*Q <sup>-0.3035</sup>         |  |
| Load       | (3) Fazenda Belem (FB) | [CI]=415.35*Q <sup>-0.3666</sup>         | [EC]=1.5082*Q <sup>-03098</sup>          |  |
| Tributary  | (1) Between CD and MD  | [Cl]=80*Q <sup>-0.37</sup>               | [EC]=0.4*Q <sup>-0.31</sup>              |  |
| Basin Load | (2) Between MD and FB  | [Cl]=80*Q <sup>-0.37</sup>               | [EC]=0.4*Q <sup>-031</sup>               |  |
| Wa         | ter Quality Items      | Correlation equa                         | ntion with EC (ds/m)                     |  |
|            | Na (mg/l)              | [Na] = 104.53*[EC]<br>[Mg] = 35.514*[EC] |                                          |  |
|            | Mg (mg/l)              |                                          |                                          |  |
|            | Ca (mg/l)              | [Ca] = 56.833*[EC]                       |                                          |  |

### 4.3 Simulation Result of Reservoir Operation

### 4.3.1 Trial Simulation

Reservoir operation simulation was carried out changing bypass discharge from  $0.0 \text{ m}^3$ /s to  $10.0 \text{ m}^3$ /s. The simulation was implemented in the two cases of "without water quality capacity for dilution" and "with that".

### (1) Simulation without Water Quality Capacity for Dilution


Table-4.3 and Figure-4.10 shows the simulation result of "without water quality capacity for dilution" case, which is summarized as follows:

- 1) The maximum and average Cl concentration become smaller according to the increase of bypass discharge. However the maximum Cl concentration is higher than 250 mg/L (upper limit for drinking water by WHO and CONAMA), until bypass discharge would be set as 10 m<sup>3</sup>/s.
- 2) The number of the days more than 250mg/L of Cl concentration dramatically decreases from 0 to 0.8 m<sup>3</sup>/s of bypass discharge, but almost no decrease (19 to 17 days in case from 0.8 m<sup>3</sup>/s to 2.0 m<sup>3</sup>/s.

|       |           |                           |            |                      |            | 2         |                    |  |
|-------|-----------|---------------------------|------------|----------------------|------------|-----------|--------------------|--|
| Case  | Bypass    | Reservoir                 |            | Reservoir Cl         |            |           | Reservoir Electric |  |
| 0.000 | Discharge | Volume *                  | Concentrat | lion (mg/l)          | > 250 mg/l | Conductiv | ity (dS/m)         |  |
|       | (m³/s)    | (Million m <sup>3</sup> ) | Max.       | Ave                  | (day)      | Max.      | Ave                |  |
| 1     | 0.0       | 52.4                      | 387        | 204                  | 969        | 1.43      | 0.83               |  |
| ··· 2 | 0.2       | 52.4                      | 377        | 197                  | 770        | 1.39      | 0.81               |  |
| 3     | 0.4       | 52.4                      | 364        | : 190                | 366        | 1.35      | 0.78               |  |
| 4     | 0.6       | 58.9                      | 351        | 182                  | 76         | 1.31      | 0.75               |  |
| 5     | 0.8       | 65.0                      | 335        | 175                  | 19         | 1.25      | 0.73               |  |
| 6     | 1.0       | 68.8                      | 324        | 168                  | 18         | 1.22      | 0.71               |  |
| 7     | 1.2       | 71.8                      | 312        | 163                  | 18         | 1.18      | 0.69               |  |
| 8     | 1.4       | 74.2                      | 302        | 157                  | 18         | 1.14      | 0.67               |  |
| 9     | 1.6       | 75.9                      | 294        | i da <b>152</b> a gr | 18         | 1.12      | 0.65               |  |
| 10    | 1.8       | 77.2                      | 288        | 148                  | 17         | 1.10      | 0.63               |  |
| 11    | 2.0       | 78.3                      | 285        | 144                  | 17         | 1.08      | 0.62               |  |
| 12    | 3.0       | 82.1                      | 279        | 127                  | 11         | 1.06      | 0.56               |  |
| 13    | 10.0      | 87.5                      | 248        | 94                   | 0          | 0.95      | 0.44               |  |

 Table-4.3
 Simulation Result of "without water quality capacity" Case

Note: \* Includes sediment volume of 2,000,000 m<sup>3</sup>.



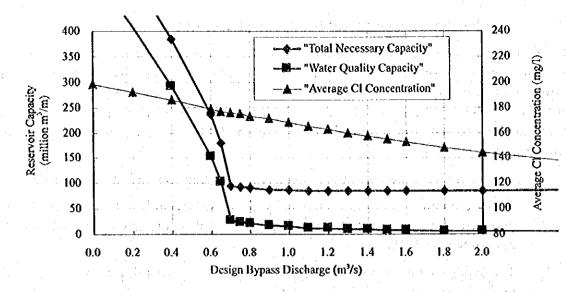
E-20

### (2) Simulation with Water Quality Capacity for Dilution

Ą

It is found that no dilution water volume causes these phenomena mentioned above when the reservoir is almost vacant of water. Then water quality capacity for dilution was introduced to this reservoir planning. Total necessary reservoir volume was calculated so as to be less than 250 mg/l of chloride concentration. The simulation result of "with water quality capacity for dilution" is shown in Table-4.4 and Figure-4.11 and is summarized as follows:

- 1) In case of no low flow bypass, total reservoir volume 634 million m<sup>3</sup> is needed.
- 2) Total reservoir volume is dramatically decreased according to the increase of bypass discharge from 0 to  $0.7 \text{ m}^3$ /s, but very small change in case from 0.7 to 3.0 m<sup>3</sup>/s of bypass discharge.
- 3) The average Cl concentration is gradually decreased according to the increase of bypass discharge.
- 4) Total reservoir volume which is necessary to make reservoir water less than 250mg/l, is the smallest (84.9 million m<sup>3</sup>) when bypass discharge is 1.3-1.5m<sup>3</sup>/s, and increases when bypass discharge is lower and higher than that.


| Table-4.4 | Simulation Result of | "with water quality | y capacity for dilution" Case |
|-----------|----------------------|---------------------|-------------------------------|
|-----------|----------------------|---------------------|-------------------------------|

|      |                     | Reservoir Volume (Mm <sup>3</sup> ) |                |        | Reservoir Cl         |      | Reservoir           |      |
|------|---------------------|-------------------------------------|----------------|--------|----------------------|------|---------------------|------|
| Case | Bypass<br>Discharge | Total                               | Dilution Other |        | Concentration (mg/l) |      | Conductivity (dS/m) |      |
|      | <b>-</b>            | Volume*                             | Volume         | Volume | Max.                 | Ave. | Max.                | Ave. |
| 1    | 0.0                 | 634.0                               | 519.0          | 115.0  | 250                  | 198  | 1.07                | 0.84 |
| 2    | 0.2                 | 514.0                               | 409.0          | 105.0  | 250                  | 192  | 1.07                | 0.82 |
| .3   | 0.4                 | 384.0                               | 291.4          | 92.6   | 250                  | 186  | 1.06                | 0.79 |
| 4    | 0.6                 | 236.0                               | 153.1          | 82.9   | 250                  | 179  | 1.05                | 0.76 |
| 5    | 0.65                | 180.0                               | 102.2          | 77.8   | 250                  | 177  | 1.04                | 0.75 |
| 6    | 0.7                 | 95.2                                | 27.5           | 67.7   | 250                  | 176  | 1.01                | 0.74 |
| 7    | 0.75                | 92.3                                | 23.8           | 68.5   | 250                  | 175  | 1.00                | 0.73 |
| 8    | 0.8                 | 90.2                                | 21.0           | 69.2   | 250                  | 173  | 0.99                | 0.73 |
| 9    | 0.9                 | 87.6                                | 17,1           | 70.5   | 250                  | 171  | 0.98                | 0.72 |
| 10   | 1.0                 | 86.2                                | 14.5           | 71.7   | 250                  | 168  | 0.98                | 0.71 |
| 11   | 1.1                 | 85.4                                | 12.5           | 72.9   | 250                  | 165  | 0.98                | 0.70 |
| 12   | 1.2                 | 85.0                                | 11.0           | 74.0   | 250                  | 163  | 0.98                | 0.69 |
| 13   | 1.3                 | 84.9                                | 9.8            | 75.1   | 250                  | 160  | 0.97                | 0.68 |
| 14   | 1.4                 | 84.9                                | 8.9            | 76.0   | 250                  | 157  | 0.97                | 0.67 |
| :15  | 1.5                 | 84.9                                | 8 <b>.1</b>    | 76.8   | 250                  | 155  | 0.97                | 0.66 |
| 16   | 1.6                 | 85.0                                | 7.5            | 77.5   | 250                  | 153  | 0.97                | 0.65 |
| 17   | 1.8                 | 85.2                                | 6.6            | 78.6   | 250                  | 148  | 0.97                | 0.64 |
| 18   | 2.0                 | 85.4                                | 5.9            | 79.5   | 250                  | 144  | 0.97                | 0.62 |
| 19   | 3.0                 | 86.7                                | 3.8            | 82.9   | 250                  | 128  | 0.97                | 0.56 |

E-21

ote: • Includes sediment volume of 2,000,000 m<sup>2</sup>.

The Study on Water Resources Development in the State of Sergipe, Brazil





### 4.3.2 Decision of Bypass Discharge and Reservoir Volume

The result of the above trial simulations of reservoir operation indicates feasibility to use the reservoir water plenty for domestic and irrigation supply. Based on the result, the following sets of bypass discharge and total reservoir volume are proposed as alternatives of Vaza Barris Dam plan.

Design Bypass Discharge: 
$$Q_{BP} = 0.7-1.3 \text{ m}^3/\text{s}$$
  
Total Reservoir Volume:  $V_{RFS} = 85-96 \text{ million m}^3$ 

It is apparent that the larger scale of bypass discharge and total reservoir volume are the higher cost of the low flow bypass and the dam. Table-4.5 shows rough cost comparison with the alternative scales of the low flow bypass and the dam. In the comparison, based on the study of design and cost estimate, it was assumed that the type of low flow bypass is a pipeline and the dam type is a concrete dam.

| Table-4.5 | Comparison with the Alternatives of Low Flow Bypass and dam |
|-----------|-------------------------------------------------------------|
|           |                                                             |

| Bypass              | Total Reservoir               | Reservoir       | Low Flow Bypa                | ss Pipeline        | Concre                      | te Dam          | Total           |
|---------------------|-------------------------------|-----------------|------------------------------|--------------------|-----------------------------|-----------------|-----------------|
| Discharge<br>(m³/s) | Volume<br>(M m <sup>3</sup> ) | N.W.L<br>(EL.m) | Dimension of<br>Channel (mm) | Cost *1<br>(M R\$) | Volume<br>(m <sup>3</sup> ) | Cost<br>(M R\$) | Cost<br>(M R\$) |
| 0.70                | 96                            | 47.8            | 1,050 x 1,050                | 31.6               | 222,000                     | 29.1            | 60.7            |
| 0.75                | 93                            | 47.5            | 1,050 x 1,050                | 31.6               | 219,000                     | 28.7            | 60.3            |
| 0.80                | 91                            | 47.2            | 1,100 x 1,100                | 36.6               | 216,000                     | 28.3            | 64.9            |
| 0.90                | 88                            | 46.9            | 1,150 x 1,150                | 37.7               | 213,000                     | 27.9            | 65.6            |
| 1.00                | 87                            | 46.8            | 1,200 x 1,200                | 38.7               | 212,000                     | 27.8            | 66.5            |
| 1.10                | 86                            | 46.7            | 1,200 x 1,200                | 38.7               | 211,000                     | 27.6            | 66.3            |
| 1.20                | 85                            | 46.6            | 1,250 x 1,250                | 44.3               | 210,000                     | 27.5            | 71.8            |
| 1.30                | 85                            | 46.6            | 1,300 x 1,300                | 45.4               | 210,000                     | 27.5            | 72.9            |

Consequently, the most economical alternative was adopted and the design discharge of the low flow bypass and the total reservoir capacity are set as follows:

Design Discharge for Low Flow Bypass: Total Reservoir Volume (N.W.L): 0.75 m<sup>3</sup>/s 93000,000 m<sup>3</sup> (EL. 47.50 m)

Supporting Report: Feasibility Study

E-22

### 4.3.3 Reservoir Operation Plan

R

The simulation result of the reservoir operation for Vaza Barris Dam is shown in Figure-4.12 and Figure-4.13. These figures show variation of reservoir water volume, inflow, chlorine concentration (Cl) and electric conductivity (EC). To identify the effect of low flow bypass, the simulation result in the case of no bypass is also presented in the same figures. Table-4.6 shows the maximum and the average of reservoir water quality during the calculation period of 1986 to 1995.

On the other hand, river flow and its water quality at the downstream of the dam shall be changed after construction of the dam. Figure-4.14 shows these changes on them.

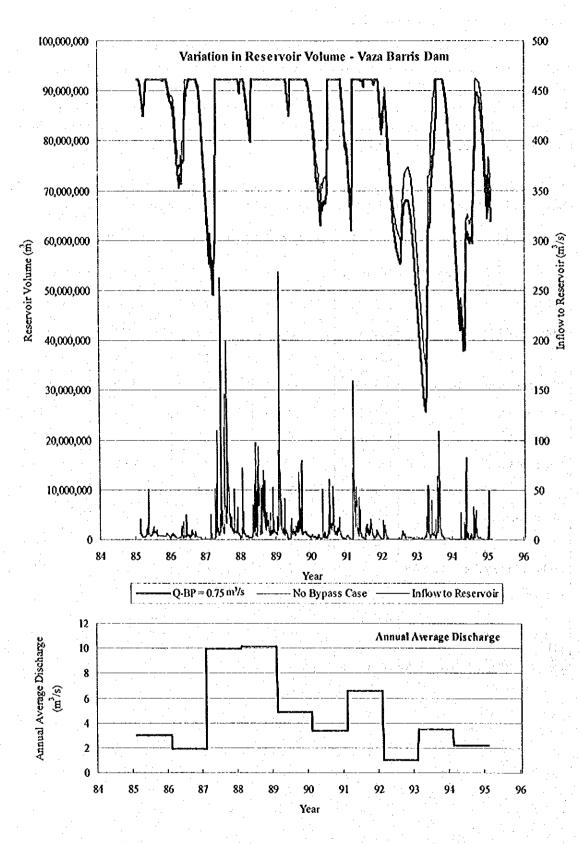
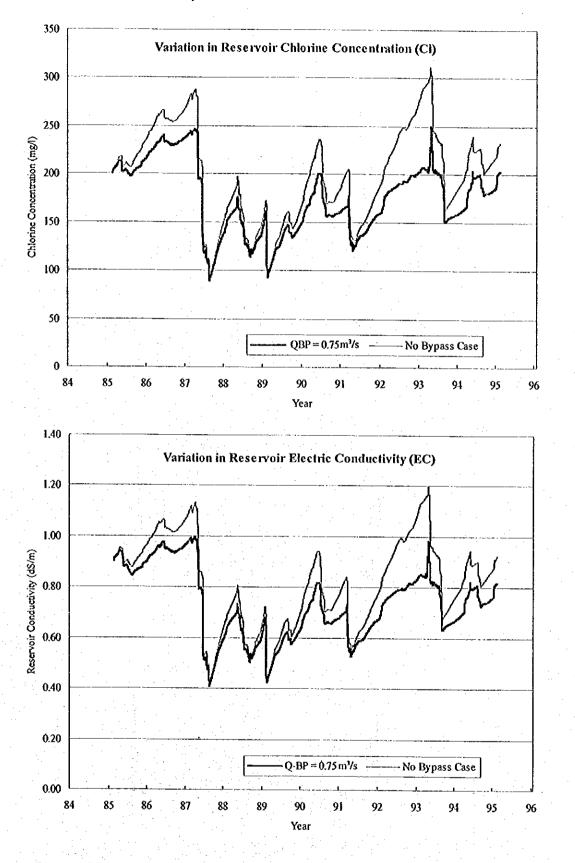

| Low Flow Bypas              | $\mathbf{Q}_{BP} = 0$ | .75 m³/s  | $Q_{\rm BP}=0.0~{\rm m^3/s}$ |         |         |  |
|-----------------------------|-----------------------|-----------|------------------------------|---------|---------|--|
| Parameter                   |                       | Maximum   | Average                      | Maximum | Average |  |
| Chloride: Cl                | (mg/l)                | 250       | 175                          | 312     | 199     |  |
|                             | (me/l)                | 7.1       | 4.9                          | 8.8     | 5.6     |  |
| Electric Conductivity: EC   | (dS/m)                | 1.00      | 0.73                         | 1.20    | 0.82    |  |
| Sodium: Na                  | (mg/l)                | 104       | 77                           | 126     | 85      |  |
|                             | (me/l)                | 4.5       | 3.3                          | 5.5     | 3.7     |  |
| Calcium: Ca                 | (mg/l)                | 57        | 42                           | 68      | 46      |  |
|                             | (me/l)                | 2.8       | 2.1                          | 3.4     | 2.3     |  |
| Magnesium: Mg               | (mg/l)                | 35        | . 26                         | 43      | 29      |  |
|                             | (me/l)                | 2.9       | 2.1                          | 3.5     | 2.4     |  |
| Sodium Absorption Rate: SAR | •                     | 2.7       | 2.3                          | 2.9     | 2.4     |  |
| Carbonic Acid: HCO, *       | (mg/l)                | 50 - 180  |                              |         |         |  |
| (me/l)                      |                       | 0.8 - 3.0 |                              |         |         |  |
| pH *                        | •                     |           | 6.9                          | - 8.3   |         |  |

 Table-4.6
 Summary of Water Quality in Vaza Barris Dam Reservoir

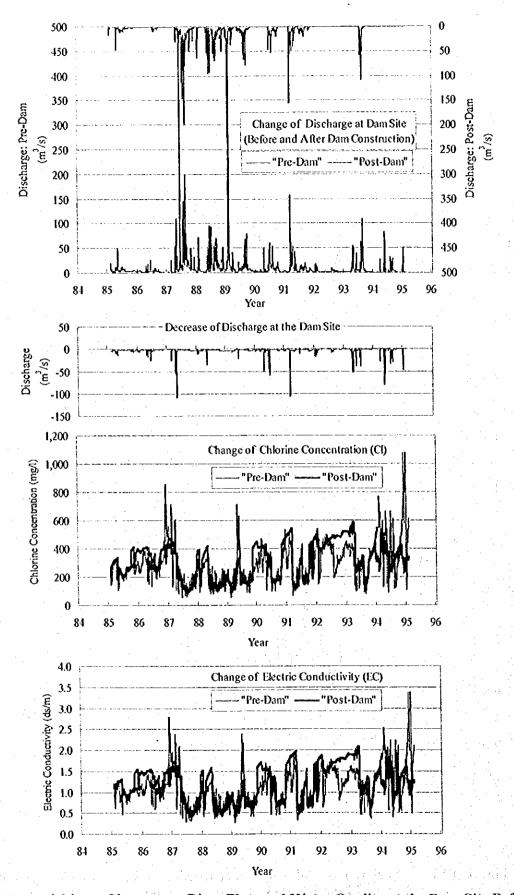

Note: \* HCO<sub>3</sub> and pH are not dependent on discharge.

The Study on Water Resources Development in the State of Sergipe, Brazil

8



### Figure-4.12 Variation of Reservoir Volume and Inflow



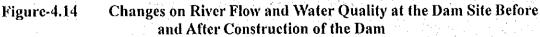
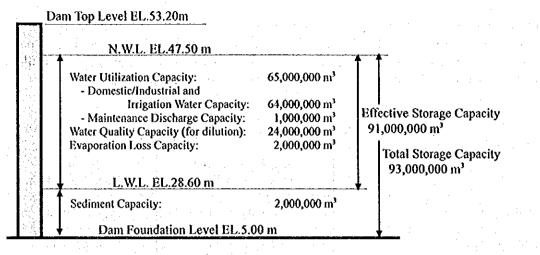


利用

Figure-4.13 Variation of Chlorine Concentration and Electric Conductivity in the Vaza Barris Dam Reservoir

Supporting Report: Feasibility Study

E-25






E-26

### 4.4 Specifications of the Plan of Vaza Barris Dam

Based on reservoir operation simulation, reservoir capacity distribution was set as shown in Figure-4.15.



### Figure-4.15 Schematic Description of Capacity and Planning Water Level

Planned specification of Vaza Barris Dam on development discharge, dam reservoir allocation, Dam/Spillway, check dam, low flow bypass is summarized in Table-4.7.

|                       | Items                                                                                                           | Unit             | Specification     | Remarks                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------------------------------------|
| Development           | Domestic and Industrial Water                                                                                   | m³/s             | 0.887             |                                               |
| Discharge             | Irrigation Water (Max. /Ave.)                                                                                   | m³/s             | 2.912 / 1.507     | Vaza Barris Irrigation Project                |
|                       | Total (Max. /Ave.)                                                                                              | m³/s             | 3,799/2.394       |                                               |
| Dam                   | Catchment Area                                                                                                  | : km² .          | 15,560            |                                               |
| Reservoir             | Reservoir Area (N.W.L.)                                                                                         | hà               | 950               |                                               |
|                       | Total Storage Capacity                                                                                          | m3               | 93,000,000        |                                               |
|                       | Effective Storage Capacity                                                                                      | m³               | 91,000,000        |                                               |
|                       | Water Utilization Capacity                                                                                      | m³               | 65,000,000        |                                               |
|                       | - Domestic/Industrial and                                                                                       | m <sup>3</sup>   | 64,000,000        |                                               |
|                       | Irrigation Water Capacity                                                                                       |                  |                   |                                               |
| and the second second | - Maintenance Discharge Capacity                                                                                | m <sup>1</sup>   | 1,000,000         | Maintenance Discharge: 0.44 m <sup>3</sup> /s |
|                       | Water Quality Capacity                                                                                          | m <sup>3</sup> ' | 24,000,000        |                                               |
|                       | (for dilution)                                                                                                  |                  |                   |                                               |
| 1                     | Evaporation Loss Capacity                                                                                       | m                | 2,000,000         |                                               |
| 4.5                   | Sediment Capacity                                                                                               | m <sup>3</sup>   | 2,000,000         | 10 m³/km²/year, 100 years                     |
|                       | ter a seconda de la filia de la composición de la composición de la composición de la composición de la composi |                  | 1 a               | (10Mm <sup>3</sup> into Check Dam)            |
|                       | Normal Water Level (N.W.L.)                                                                                     | EL.m             | 47.50             |                                               |
|                       | Low Water Level (L.W.L.)                                                                                        | EL.m             | 28.60             | Sediment Level                                |
| Dam and               | Design Flood Discharge                                                                                          | m³/s             | 3,600             | Probable Maximum                              |
| Spillway              |                                                                                                                 |                  |                   | (10,000-yr. Return Period)                    |
|                       | Design Discharge of Energy Dissipater                                                                           | m³/s             | 1,200             | 100-year return period                        |
|                       | Design Discharge of Diversion                                                                                   | m³/s             | Concrete Dam: 200 | 2-year return period                          |
|                       | Channel during Construction                                                                                     | ·                | Fill Dam: 720     | 20-year return period                         |
| Check Dam             | Dam Type                                                                                                        | -                | Concrete Dam      |                                               |
|                       | Dam Top Level                                                                                                   | EL.m             | 63.00             |                                               |
|                       | Design Discharge of Spillway                                                                                    | m³/s             | 1,400             | 1.2 times of 100-year return                  |
|                       |                                                                                                                 |                  |                   | period                                        |
|                       | Sediment Capacity                                                                                               | m <sup>3</sup>   | 10,000,000        | Level at EL.63.0m                             |
| Low Flow              | Design Discharge                                                                                                | m³/s             | 0.75              |                                               |
| Bypass                |                                                                                                                 | 1                |                   |                                               |

Table-4.7 Planed Specification of Vaza Barris Dam

### 4.5 Single Purpose Dam

Vaza Barris Dam was designed as a multi-purpose dam in terms of domestic/industrial and irrigation water supply. In this section, two single dams for the each purpose are planned for estimating the cost of the single-purpose dam.

Assuming that bypass discharge is same as  $0.75 \text{ m}^3$ /s of Vaza Barris Dam, reservoir operation simulation was carried out and necessary reservoir volume was determined so that chloride concentration of reservoir water becomes less than 250 mg/l. Table-4.8 shows the reservoir capacity distribution plan for each single-purpose dam.

| Items                                 | Domestic/Industrial<br>Water Supply Đam | Irrigation<br>Water Supply Dam |
|---------------------------------------|-----------------------------------------|--------------------------------|
| Total Storage Capacity                | 42,900,000 m <sup>3</sup>               | 59,500,000 m <sup>3</sup>      |
| Effective Storage Capacity            | 40,900,000 m³                           | 57,500,000 m <sup>3</sup>      |
| Water Utilization Capacity            | 11,100,000 m <sup>3</sup>               | 34,300,000 m <sup>3</sup>      |
| - Domestic/Industrial Water Capacity  | 10,100,000 m <sup>3</sup>               |                                |
| - Irrigation Water Capacity           |                                         | 33,300,000 m <sup>3</sup>      |
| - Maintenance Discharge Capacity      | 1,000,000 m³                            | 1,000,000 m <sup>3</sup>       |
| Water Quality Capacity (for dilution) | 28,600,000 m³                           | 21,700,000 m <sup>3</sup>      |
| Evaporation Loss Capacity             | 1,200,000 m <sup>3</sup>                | 1,500,000 m <sup>3</sup>       |
| Sediment Capacity                     | 2,000,000 m <sup>3</sup>                | 2,000,000 m <sup>3</sup>       |
| Normal Water Level (N.W.L.)           | EL. 41.20 m                             | EL. 43.60 m                    |
| Low Water Level (L.W.L.)              | EL. 28.60 m                             | EL. 28.60 m                    |
| Dam Top Level                         | EL. 46.90 m                             | EL. 49.30 m                    |
| Dam Height                            | 41.90 m                                 | 44.30 m                        |

### Table-4.8 Specification of Single-purpose Dam

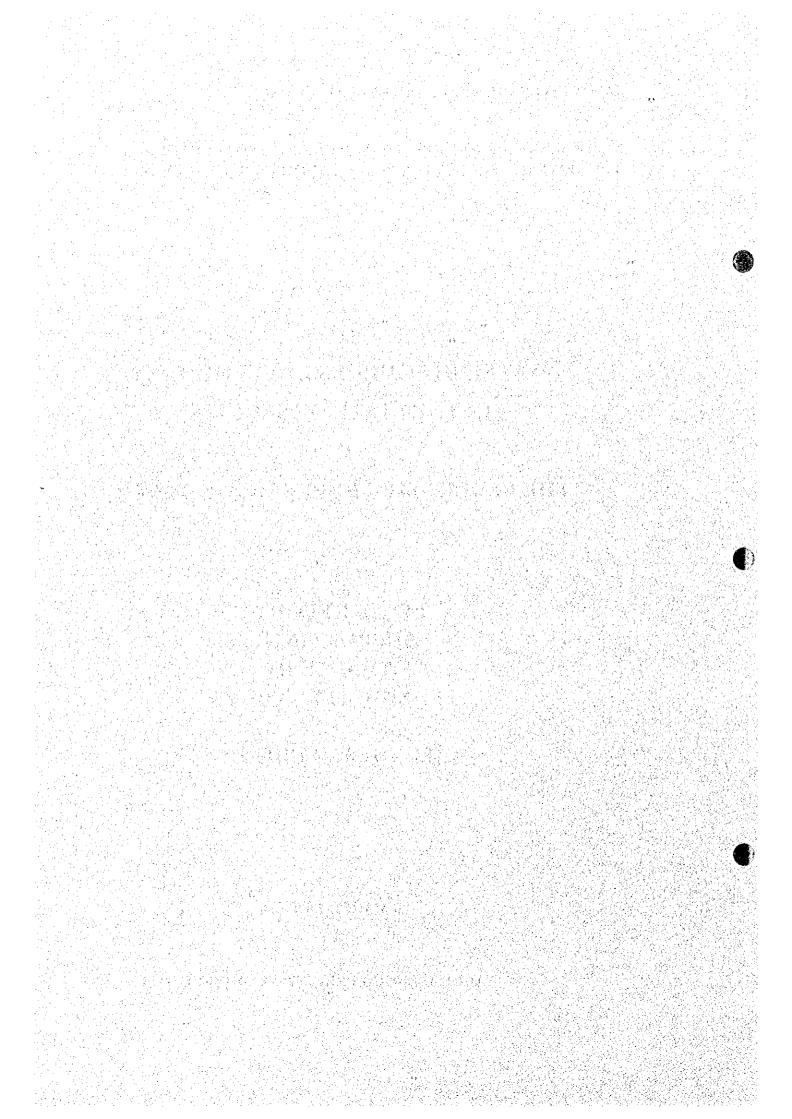
JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL

# THE STUDY

**ON** 

# WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN


## THE FEDERATIVE REPUBLIC OF BRAZIL

## FINAL REPORT SUPPORTING (VOLUME II) FEASIBILITY STUDY

## [F] DAM DESIGN

**MARCH 2000** 

YACHIYO ENGINEERING CO., LTD. (YEC)



### THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

### SUPPORTING REPORT (F) DAM DESIGN

### Table of Contents

| Table of Conten | ts |
|-----------------|----|
| List of Tables  |    |
| List of Figures |    |

Ì

| je ze se su su |                                               | rage  |
|----------------|-----------------------------------------------|-------|
| CHAPTEI        |                                               |       |
| 1.1            | Contents of Examination                       | F-1   |
| 1.2            | Main Structures.                              | F-1   |
| 1.3            | Flowchart of Dam Design                       | F-2   |
| 1.4            | Result of Examination                         | F-3   |
| CHAPTE         | R 2 DESIGN CRITERIA                           |       |
| 2.1            | Basic Design Principle                        | F-4   |
| 2.2            | Freeboard of Dam                              | F-4   |
| 2.3            | Discharge Capacity                            | F-4   |
| 2.4            | Design Flood Water Level                      | F-5   |
| 2.5            | Design River Water Level                      | F-7   |
| 2.6            | Design Load                                   | F-7   |
| 2.7            | Case of Load                                  | F-12  |
| 2.8            | Method for Stability Analysis of Concrete dam | F-13  |
| 2.9            | Excavation Line                               | F-15  |
| 2.10           | Foundation Treatment                          | F-15  |
| CHAPTEI        | R 3 DESIGNS OF DAM BODY AND SPILLWAY          | F-16  |
| 3.1            | Alternative Design of Dam and Spillway        | F-16  |
| 3.2            | Design of Dam Body                            | F-23  |
| 3.3            | Design of Spillway                            | F-36  |
| 3.4            | Design of Low Flow Outlet                     | F-37  |
| 3.5            | Design of Foundation Treatment                |       |
| СНАРТЕІ        | R 4 DESIGN OF CHECK DAM                       | F-40  |
| 4.1            | Design Condition                              | E. 40 |
| 4.2            | Design of Waterway                            | F-40  |
| 4.3            | Design of the Check Dam Body                  | F-41  |
| 4.4            | Design of Sub-dam (Protection for Scoring)    |       |
|                |                                               |       |

| СНАРТЕ                      | R 5     | PLAN AND DESIGN OF LOW FLOW BYPAS | SS F-49   |
|-----------------------------|---------|-----------------------------------|-----------|
| 5.1                         | Alterna | ntives of Low Flow Bypass         | F-49      |
| 5.2                         | Design  | of Low Flow Bypass                | F-52      |
| 5.3                         |         | of Intake Facility                |           |
| 5.4                         |         | Drawing                           |           |
| СНАРТЕ                      |         | CONSTRUCTION PLAN                 |           |
| 6.1                         | Outline | e of Diversion Works              | F-58      |
| 6.2                         | Design  | of Diversion Works                | F-61      |
| 6.3                         |         | uction Plan                       |           |
| СНАРТЕ                      | R7 -    | ESTIMATION OF CONSTRUCTION QUAN   | ГІТҮ F-63 |
| 7.1                         | Vaza B  | arris Dam<br>Concrete             | F-63      |
|                             | 7.1.1   | Concrete                          | F-63      |
| ана<br>Алариана<br>Алариана | 7.1.2   | Excavation                        | F-63      |
|                             | 7.1.3   | Grouting                          |           |
| · ·                         | 7.1.4   | Form                              | F-64      |
| 72                          | Check   | Dam                               | F-65      |

11 ( 1. s.).

F-(ii) 🗧 🗧

 $1.14^{-1}$ 

n on her state i song to spis fra sine far. To song to state state to be fra an all the sine far.

# List of Tables

A

語い

| 1          | Page                                                        |
|------------|-------------------------------------------------------------|
| Table-2.1  | Criteria of FreeboardF-4                                    |
| Table-2.2  | River Water LevelF-7                                        |
| Table-2.3  | Case of Load CombinationF-12                                |
| Table-2.4  | Allowable Minimum Value of C.S.F.                           |
| Table-2.5  | Allowable Minimum Value of C.S.TF-13                        |
| Table-2.6  | Safety CoefficientsF-14                                     |
| Table-2.7  | Safety Coefficient for Allowable Tensile Stress             |
| Table-2.8  | Maximum Excavation StopeF-15                                |
| Table-3.1  | Maximum Excavation StopeF-15<br>Comparison of Dam TypeF-17  |
| Table-3.2  | Comparison of Spillway for Fill-Type DamF-21                |
| Table-3.3  | Parameter for Stability Analysis of Dam BodyF-25            |
| Table-3.4  | Results of Dam Stability Analysis of Dam Body               |
| Table-3.5  | Summary of Stability Analysis of Dam BodyF-28               |
| Table-3.6  | Analyzed Case ; Stability analysis                          |
|            | for CCN of Nonoverflow Section of Main Dam                  |
| Table-3.7  | Analyzed Case; Stability Analysis                           |
|            | for CCE of Nonoverflow Section of main DamF-30              |
| Table-3.8  | Analyzed Case; Stability Analysis                           |
|            | for CCN of Overflow Section of main DamF-31                 |
| Table-3.9  | Analyzed Case; Stability Analysis                           |
|            | for CCE of Overflow Section of main DamF-32                 |
| Table-3.10 | Height of Training WallF-36                                 |
| Table-3.11 | Calculation for Low Flow Discharge Facilities F-38          |
| Table-4.1  | Parameters for Stability Analysis of Check Dam              |
| Table-4.2  | Results of Check Dam Stability AnalysisF-42                 |
| Table-4.3  | Summary of Stability Analysis of Check Dam                  |
| Table-4.4  | Analyzed Case ;                                             |
|            | Stability Analysis for CCN of Overflow Section of Check Dam |
| Table-4.5  | Analyzed Case;                                              |
|            | Stability Analysis for CCE of Overflow Section of Check Dam |
| Table-5.1  | Comparison of Low Flow Bypass                               |
| Table-5.2  | Calculation for Box Culvert and Gate                        |
| Table-6.1  | Relationship between Dimension of Channel Section and       |
|            | Upstream Water LevelF-62                                    |
| Table-6.2  | Construction Plan of the DamF-62                            |
|            |                                                             |

F-(iii)

# List of Figures

|                  | Page                                                             |
|------------------|------------------------------------------------------------------|
| Figure-1.1       | Flowchart of Dam Design                                          |
| Figure-2.1       | Contraction Coefficient of the Abutment                          |
| Figure-2.2       | Contraction Coefficient of the PiersF-6                          |
| Figure-2.3       | Section for CalculationF-8                                       |
| Figure-2.4       | H-Q Curve at Station a-aF-8                                      |
| Figure-2.5       | Load Acting on DamF-10                                           |
| Figure-2.6       | Pressure Coefficient Cm                                          |
| Figure-2.7       | Uplift CriteriaF-11                                              |
| Figure-3.1       | Type of Dam                                                      |
| Figure-3.2       | Alternative Plan (Gravity Concrete Dam)F-19                      |
| Figure-3.3       | Alternative Plan (Concrete Facing Type Rock Fill Dam)F-20        |
| Figure-3.4       | Comparison of Spillway                                           |
| Figure-3.5       | Shear Strength by Rock Class                                     |
| Figure-3.6       | Load Acting on Non-overflow Section                              |
| Figure-3.7       | Load Acting on Overflow Section                                  |
| Figure-3.8       | Dam PlanF-33                                                     |
| Figure-3.9       | Dam Longitudinal Sections of Upstream and Downstream ViewF-34    |
| Figure-3.10      | Standard Cross Section of Dam                                    |
| Figure-3.11      | Foundation TreatmentF-39                                         |
| Figure-4.1       | Load Acting on Check Dam                                         |
| Figure-4.2       | Plan of Check DamF-47                                            |
| Figure-4.3       | Structure of Check Dam                                           |
| Figure-5.1       | Vertical Profile of Low Flow BypassF-52                          |
| Figure-5.2 (1/3) | Profile of Bypass Box Culvert                                    |
| Figure-5.2 (2/3) | Profile of Bypass Box Culvert                                    |
| Figure-5.2 (3/3) | Profile of Bypass Box Culvert                                    |
| Figure-6.1       | Diversion Works (Plane)F-59                                      |
| Figure-6.2       | Diversion Works (Longitudinal Section of Dam Axis, Upstream)F-60 |
| Figure-7.1       | Section for CalculationF-66                                      |

# CHAPTER 1 INTRODUCTION

#### **1.1 Contents of Examination**

On the basis of the study results: Water Resources Development Plan; Reservoir Operation Plan; Topographical Survey; Geological Survey, Design of Vaza Barris Dam is examined on the following aspects:

- 1) Dam basic dimensions: Level of dam top and foundation, dam height, overflow depth
- 2) Type of dam and type of spillway
- 3) Design of dam and hydraulic structures
- 4) Design of check dam and low flow bypass
- 5) Construction Plan

CEMIG standard "Civil Works Criteria for Hydropower Generation" is employed basically in design of Vaza Barris Dam and other related structures. If necessary, the Japanese Standards for dam design are referred.

### 1.2 Main Structures

Main structures of Vaza Barris Dam are:

- 1) Dam body to store water of river: Highest elevation of dam top is EL.60m. Dam is put on base rock. Dam suffices design safety factor.
- Spillway to safely spill design flood discharge: Design flood discharge = 3,600 m<sup>3</sup>/s (1/10,000-ycar).
- 3) Low Flow Outlet to discharge maintenance flow: Between N.W.L and L.W.L, outlet discharge of 0.44 m<sup>3</sup>/s.

F-1

# 1.3 Flowchart of Dam Design

Flowchart of dam design is shown in Figure-1.1.

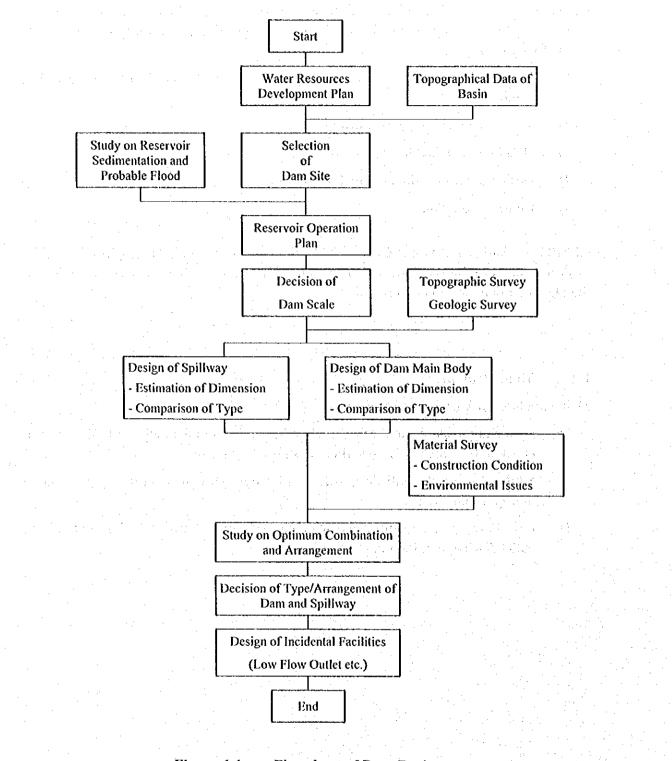



Figure-1.1 Flowchart of Dam Design

F-2

#### 1.4 **Result of Examination**

Based on the result of the examination, design items are set as listed below as to Vaza Barris Dam, Check Dam and Low Flow Bypass.

#### Dam Body

| Item                 | Dimension                |
|----------------------|--------------------------|
| Dam Type             | : Gravity Concrete Dam   |
| Dam Top Level        | : EL. 53.2 m             |
| Dam Foundation Level | : EL. 5.0 m              |
| Height of Dam        | : 48.2 m                 |
| Crest Length of Dam  | : 280.0 m                |
| Width of Dam Top     | : 5.0 m                  |
| Volume of Dam        | : 216,100 m <sup>3</sup> |
| Upstream Slope       | : Vertical               |
| Downstream Slope     | : 1:0.88                 |
|                      |                          |

#### Spillway

| Item                      |    | •  | ÷ .  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|----|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design Flood Discharge    |    |    |      | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Design Discharge for Ener | ġу | Di | ssip | oater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spillway Type             |    |    |      | i e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Width of Overflow Crest   |    |    |      | and and a second s |
| Dissipater Type           |    |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Size of Basin             |    |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Low Flow Outlet Item **Design Discharge Diameter of Pipe Diameter of Gate** 

#### **Check Dam** Item

Dam Top Level Height of Dam Width of Waterway **Concrete Volume** 

Low Flow Bypass Item **Bypass** Type Design Discharge Width and Height Diameter of Gate **Auxiliary Facility** 

**Construction Plan** Method of Diversion Work ; Construction Term;

Dimension  $:3,600 \text{ m}^{3}/\text{s}$  $: 1,200 \text{ m}^{3}/\text{s}$ : Free Overflow Crest :150 m : Hydraulic jump : W:150 m × H:12 m

Dimension : 0.44 m<sup>3</sup>/s : 800 mm : 250 mm

Dimension : EL. 63.0 m : 20.0 m : 70.0 m : 28,400 m<sup>3</sup>/s

Dimension : Box Culvert : 0.75 m<sup>3</sup>/s : 1.05 m × 1.05 m : 400 mm : Spillway, Sedimentation basin

Diversion Flowing in Half of a River Section 2,004 - 2,006

F-3

# CHAPTER 2 DESIGN CRITERIA

#### 2.1 Basic Design Principle

Dam should be carefully designed to minimize the construction cost, holding necessary functions of each facility. Dam and related structures are designed according to reasonable balance between construction cost and safety level. A large safety level of structures requires a large scale of structures and complicated construction procedures. Consequently, the construction costs increase. Design Criteria are standards to decide a balance between construction cost and safety level.

Dam Design Criteria used in Brazil are as follows:

- 1) For almost existing dams, dam design standards of USBR (US, Dep. of the Interior, Bureau of Reclamation) and USCE (US Army, Corps of Engineer) were employed.
- 2) Sao Francisco Electricity Corporation (CHESF) recently uses the standard Civil Works Criteria for Hydropower Generation which was complied by Mina Gerais Power Company (CEMIG) on the basis of standards of USBR and USCE. This standard was used in designing Xingo Dam.

Considering the above situation, CEMIG standard is employed basically in design of Vaza Barris Dam and other related structures. If necessary, the Japanese Standards for dam design are referred.

#### 2.2 Freeboard of Dam

According to CEIG standard, dam freeboards are as follows:

| Items                 | Freeboard (in Normal) | Freeboard (in Flood)                                                                         |  |
|-----------------------|-----------------------|----------------------------------------------------------------------------------------------|--|
| Concrete Dam          | N.W.L. + Min. 1.5 m   | H.W.L. + Min. 0.5 m                                                                          |  |
| Rock & Earth Fill Dam | N.W.L. + Min. 3.0 m   | H.W.L. + Min. 1.0 m                                                                          |  |
| Coffer Dam            |                       | W.L. + Min. 1.0 m                                                                            |  |
| Spillway Chute        |                       | 0.6 + 0.037×V×h <sup>(1/3)</sup><br>Where:<br>V = Runoff Speed (m/s)<br>h = Runoff depth (m) |  |

Table-2.1 Criteria of Freeboard

### 2.3 Discharge Capacity

The Discharge Capacity of the sill operating as overflow spillway will be calculated by the formula

$$Q = C \times L \times H^{1.5}$$

where

|   | С |   | discharge coefficient               |
|---|---|---|-------------------------------------|
| 1 | L | : | effective width of the spillway (m) |
|   | Π | • | head upon the crest (m)             |

The effective width of the spillway will be defined by the formula

$$L = L' - 2 (Ka + nKp) H$$

where

100

|   | effective width (m)                     |
|---|-----------------------------------------|
| : | usable geometric width (m)              |
| : | contraction coefficient of the abutment |
| • | contraction coefficient of the piers    |
| : | number of piers                         |
|   | head upon the spillway (m)              |
|   | :                                       |

The coefficients Ka and Kp can be based in the indications of the Figure-2.1 and Figure-2.2.

#### 2.4 Design Flood Water Level

Design flood water level is defined as the highest water level of the reservoir at just behind the dam in case of the design flood discharge flowing down through spillway. It is generally formulated as shown below;

$$H.W.L. = N.W.L. + h$$

where

N.W.L. : Normal Water Level h : overflow depth of spillway

Design flood water level of the Vaza Barris dam is set as follows;

- The elevations of the lowest saddles of both bank are EL. 62 m on the right bank ridge and 67 m on the left bank ridge. Therefore, the maximum reservoir water level is set as EL. 55 m considering some allowance.
- The river width including fluvial terrace at the dam site is about 100 m. The width of water flow is 150 200m in case of the design flood discharge. The width of spillway at overflow section is set as 150m.
- Normal water level of reservoir is EL. 47.5 m according to the reservoir operation plan.

Relationship between overflow depth (h), overflow width (L) and overflow discharge (Q) is expressed as the following equation:

 $Q = C \times L \times h^{1.5}$ 

Giving Q = 3,600 m<sup>3</sup>/s, coefficient C = 2.0 and L = 150 m to the above equation, overflow depth h = 5.2 m is obtained. The design flood water level, normal water level = EL. 47.5 m + overflow depth(5.2 m), is set as EL. 52.7 m.

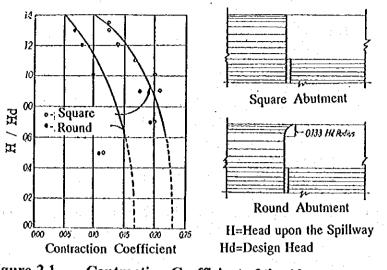



Figure-2.1

**Contraction Coefficient of the Abutment** 

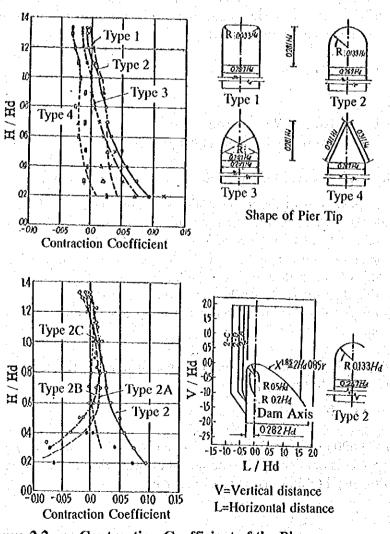



Figure-2.2 **Contraction Coefficient of the Piers** 

# 2.5 Design River Water Level

Water level must be set at the right below the dam. The water level is decided calculating uniform flow calculation as to narrow pass of river. The uniform flow formula is as follows;

$$Q = (1/n) \times A \times R^{(2/3)} \times i^{0.5}$$

where

| n | . : | coefficient of roughness(natu | tral channel $= 0.1$ ) |
|---|-----|-------------------------------|------------------------|
| Α |     | flow area                     |                        |
| R | :   | hydraulic mean depth          |                        |
| i | :   | bed slope                     |                        |

Section to be calculated is shown in Figure-2.3, relationship between discharge and water level were obtained under the assumption that the shape of river floor is approximated with trapezoid. Figure-2.4 shows H-Q curve of the downstream. Water level of the downstream corresponding to each design discharge is shown below;

| Table-2.2 | River | Water | Lèvel |
|-----------|-------|-------|-------|
|           |       |       |       |

| ĺ | Probable Year | Discharge (m <sup>3</sup> /s) | River Water Level (m) | Remark                                                |
|---|---------------|-------------------------------|-----------------------|-------------------------------------------------------|
|   | 2             | 200                           | 24.2                  | Design Discharge of Concrete Dam<br>Diversion Channel |
|   | 20            | 720                           | 28.3                  | Design Discharge of Fill Dam Diversion<br>Channel     |
| ſ | 100           | 1,200                         | 31.2                  | Design Discharge of Energy Dissipater                 |
| l | 10,000        | 3,600                         | 38.2                  | Design Flood Discharge                                |

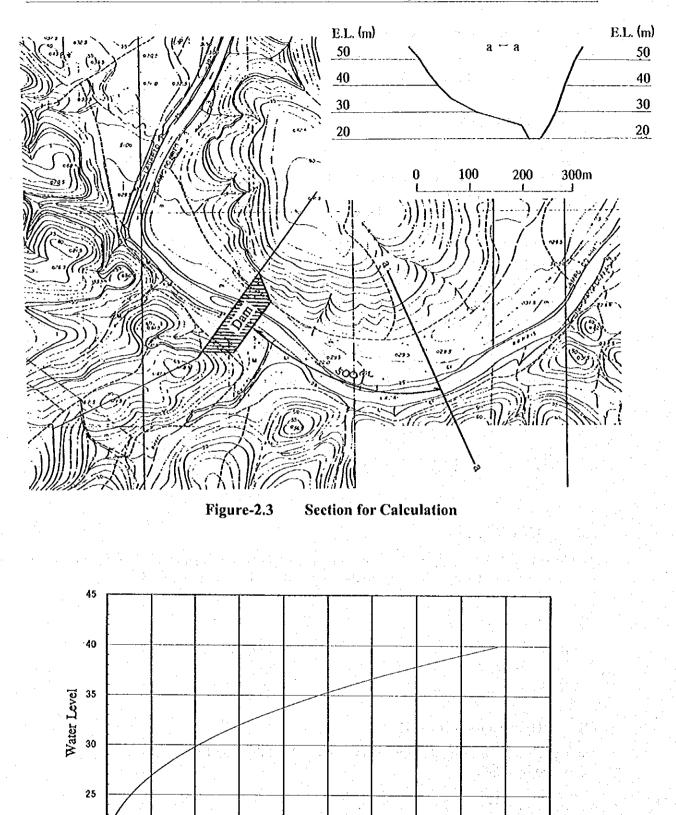
#### 2.6 Design Load

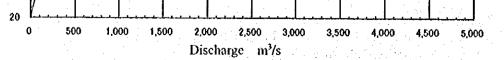
The load to the dam body is designed for stability analysis as shown below based on the CEMIG design criteria. The road to the dam body is listed in Figure-2.5.

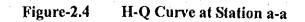
(1) Own Weight

| Item          | Unit Weight            |
|---------------|------------------------|
| Mass Concrete | : 2.3 t/m <sup>3</sup> |
| Water         | : 1.0 t/m <sup>3</sup> |

# (2) Hydrostatic Pressure


Static pressure acts at right angle against both side of the dam body. The static pressure is calculated by depth.


 $Pw = \gamma w \times H$ 


where

|     | Pw | • | hydrostatic pressure at the interest point (t/m <sup>2</sup> ) |
|-----|----|---|----------------------------------------------------------------|
| 1., | γw | • | unit weight of water (1.0t/m <sup>3</sup> )                    |
| •   | H  |   | piezometric height at the interest point (m)                   |
| 2   |    |   |                                                                |

8







F-8

#### (3) **Pressures due to Sedimentation**

Pressure due to sedimentation is supposed as acting on the dam body from the up-stream side. Unit weight of the sediments under the water is designed applying the special value of  $0.35 \text{ t/m}^3$ .

 $Ps = \gamma s \times H$ 

where

15.13

| Ps | 1.  | pressures due to scdimentation at the interest point (t/m <sup>2</sup> ) |
|----|-----|--------------------------------------------------------------------------|
| γs | :   | unit weight of sedimentation (0.35t/m <sup>3</sup> )                     |
| Ĥ  | • : | depth from design sedimentation level (m)                                |
|    |     |                                                                          |

#### (4) Seismic Inertia Force

Seismic Inertia Force is designed as follows;

- Horizontal Fh = 0.05P- Vertical Fv = 0.03P

where P is dead load.

### (5) Dynamic Water Pressure during Earthquake

Dynamic Water Pressure during Earthquake is calculated using the formula below;

#### $Pd = C \times \gamma w \times \lambda \times H$

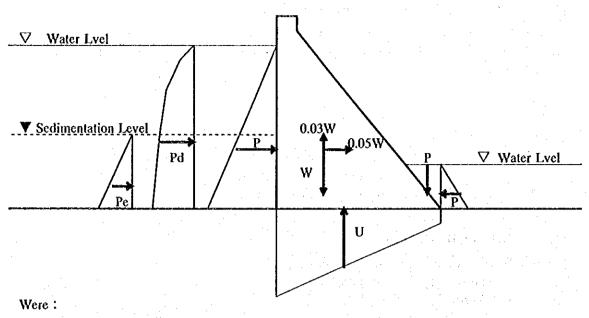
where

| nere |   |                                                                                   |
|------|---|-----------------------------------------------------------------------------------|
| Pd - | : | dynamic water pressure during earthquake                                          |
| C    | : | $(Cm/2) (H'(2-H') + (H'(2-H'))^{0.5})$                                            |
| H'   | : | Z/H                                                                               |
| Cm   | • | C in case of maximum Pd (see Figure-2.6)                                          |
| γw   |   | unit weight of water (1.0t/m <sup>3</sup> )                                       |
| λ    | • | (maximum horizontal speed of the foundation) / (gravity speed) = 0.05             |
| Н    | : | maximum depth of the reservoir                                                    |
| Z    | • | vertical distance from the surface of the reservoir until the section being study |
|      | - |                                                                                   |

The resultant value and the moment in depth "Z" can be calculated by the expressions indicated below;

 $Ht = 0.726Pd \times Z$  $M = 0.299Pd \times Z^{2}$ 

#### (6) Uplift


Uplift is assumed to act vertically upward on the dam base. The uplift distribution is assumed for the following three (3) types as shown in Figure 2.7.

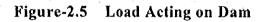
- Drain is effective and the water level in the down stream is higher than the elevation of drained water.

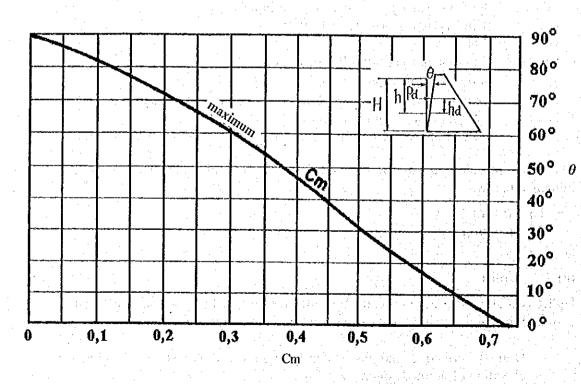
Drain is effective and the water level in the downstream is lower than the elevation of drained water.

Drain is not effective.

The Study on Water Resources Development in the State of Sergipe, Brazil



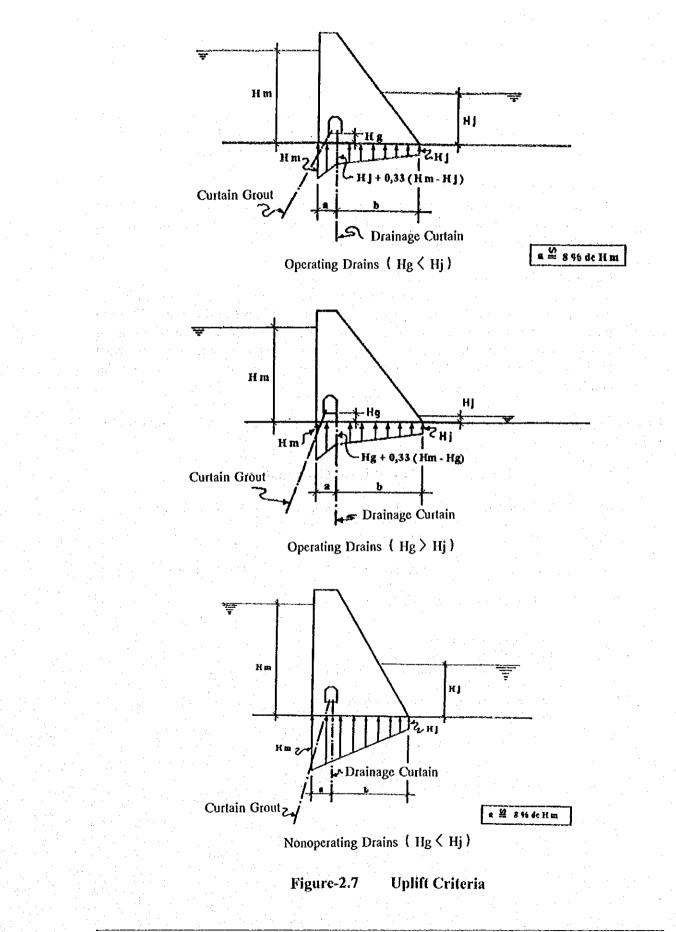

W = Own Weight of Dam Body


P = Hydrostatic Pressure Force

Pe= Forces of the Pressures due to Sedimentasion

Pd= Dynamic Water Pressure during Earthquake

U = Uplift








Supporting Report : Feasibility Study

lighte faller.



F-11

9

0