THE AVERTAGE OF THE REPORT OF THE OPERAL AT THE PROPERTY OF A THEORY OF A THE STATES AND ACTUAL STATES AND A THE STATES AND A

MITTER SHITTING

()) ·

AAV, asus asettomente est encolorist viera series

ACCOUNTED A SERVICE AND A SERV

TOTAL MET MET MET VISCON TO THE PROPERTY OF WATER A ZEEL

HIMITAL REPORT

> JIMA LIBRARY J 1156517[3]

> > MARCIE 2000

TAN CHILLE OF BENCHMARKANA CAP THEFT CARA ?

JAPAN INTERNATIONAL COOPERATION AGENCY

()

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

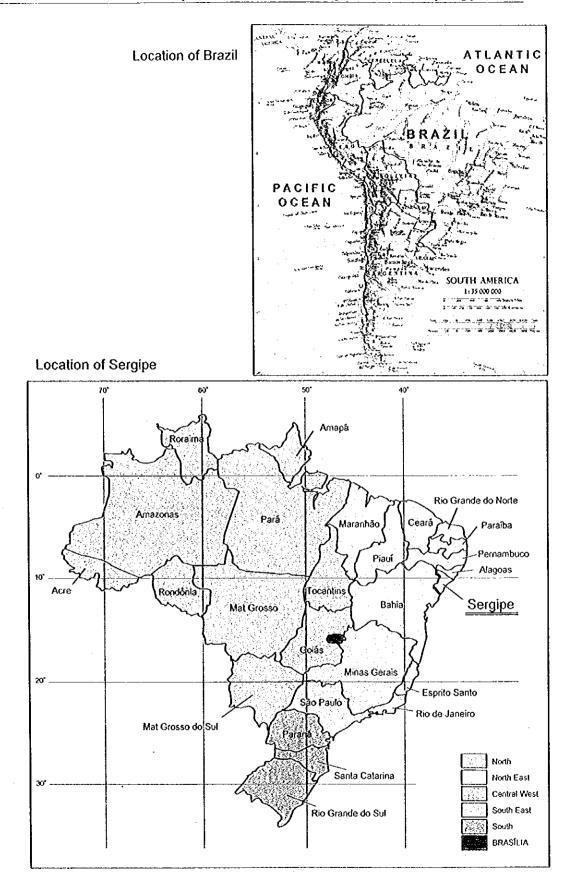
FINAL REPORT

SUPPORTING REPORT (VOLUME II) FEASIBILITY STUDY

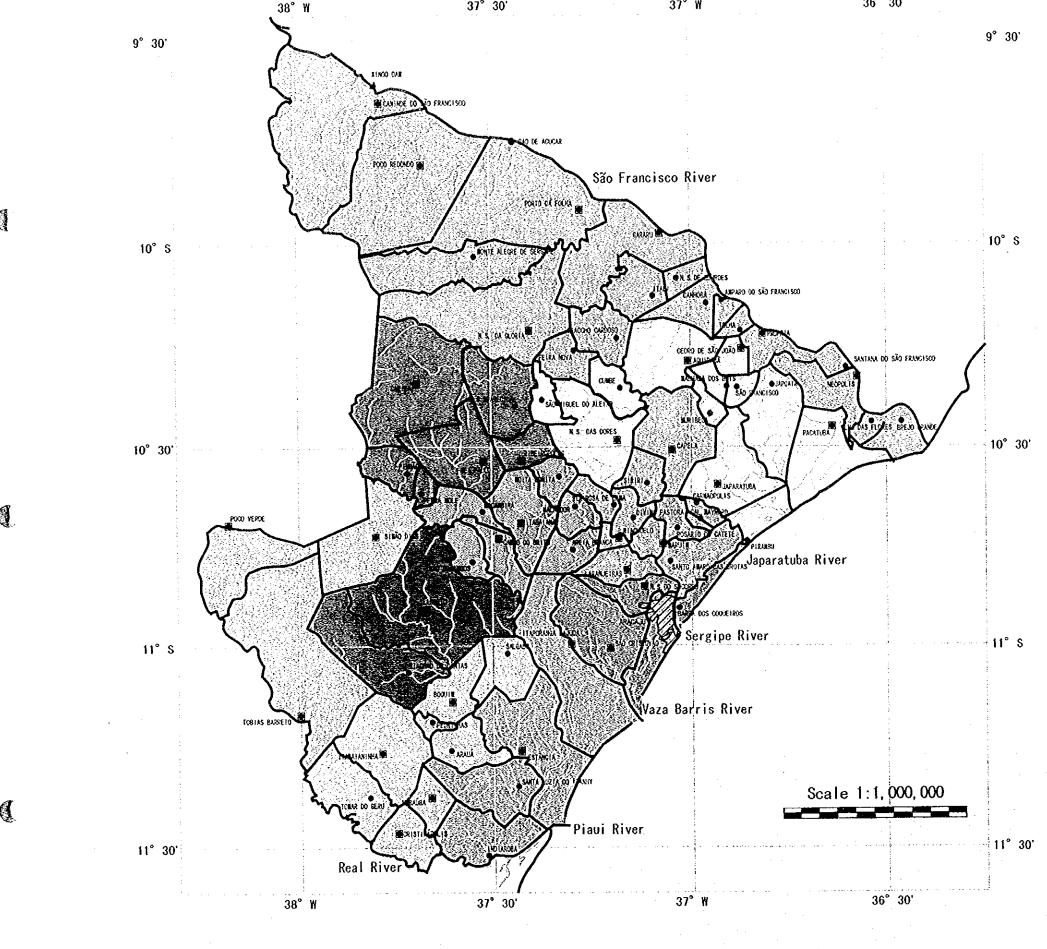
MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)

1156517 (3)

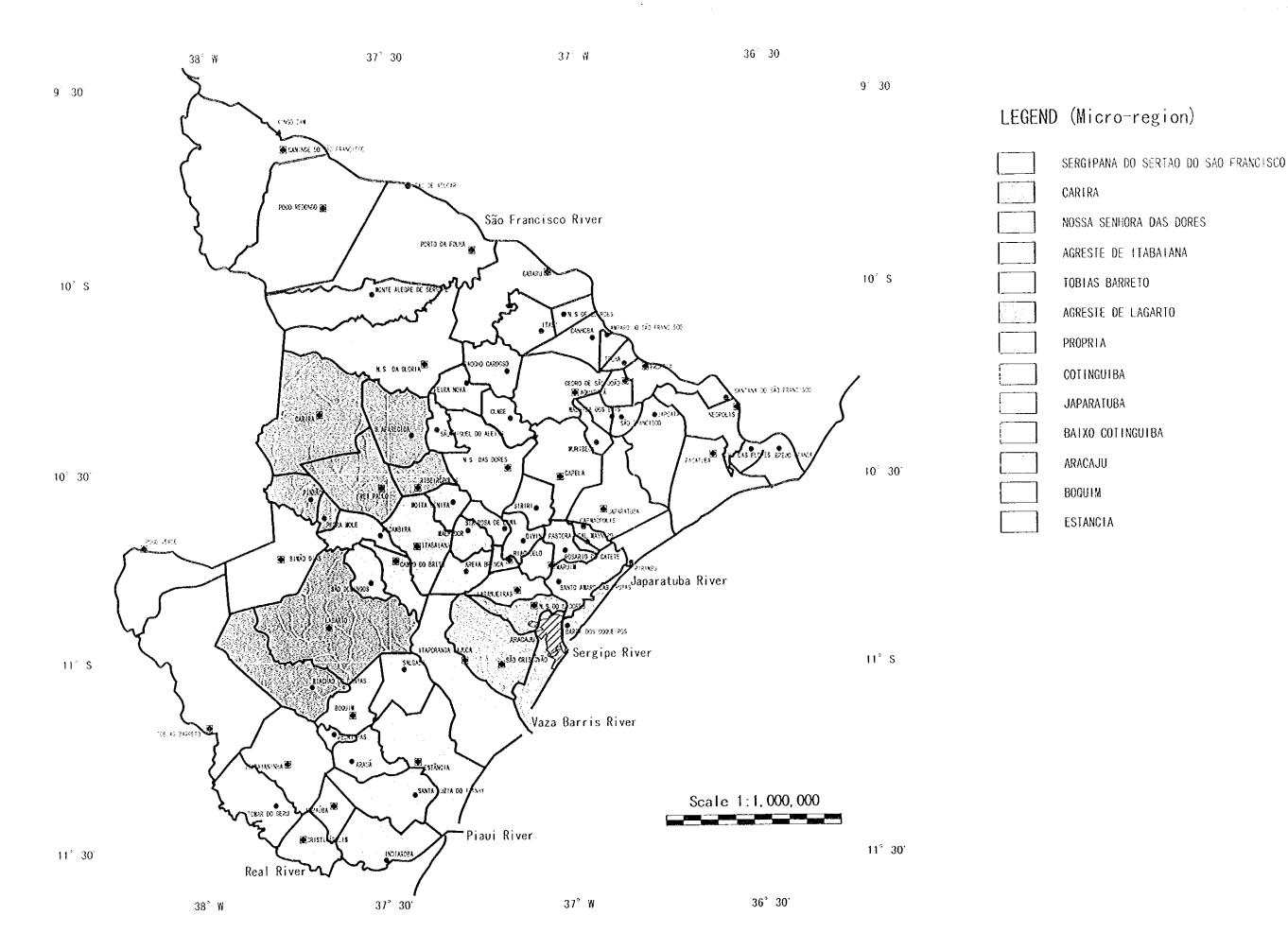

Exchange Rate

Part I Master Plan Study:


US\$ 1.00 = R\$ 1.18 =\frac{\frac{1}{2}}{141.40} as of August 1998

Part II Feasibility Study:

US\$1.00 = R\$1.92 = \$106.95 as of September 1999


LOCATION MAP

Map of the Study Area

LEGEND (Micro-region)

	SERGIPANA DO SERTAO DO SAO FRANCISCO
	CARIRA
	NOSSA SENHORA DAS DORES
80.00	AGRESTE DE ITABATANA
	TOBIAS BARRETO
	AGRESTE DE LAGARTO
	PROPR1A
	COTINGUIBA
	JAPARATUBA
	BAIXO COTINGUIBA
	ARACAJU
	BOQUIM
23.55	ESTANCIA

Map of the Study Area

(ii)			

LIST OF REPORT

MAIN REPORT

SUMMARY SUMMARY (JAPANESE) SUMMARY (PORTUGUESE)

SUPPORTING REPORT VOLUME I: MATER PLAN STUDY

- A. SOCIO-ECONOMY
- B. GEOLOGY AND HYDROGEOLOGY
- C. HYDROLOGY
- D. WATER QUALITY
- E. AGRICULTURE AND IRRIGATION
- F WATER DEMAND PROJECTION
- G. WATER RESOURCES DEVELOPMENT PLAN
- H. FACILITY DESIGN AND COST ESTIMATE
- I. LAWS AND ORGANIZATION
- J. OPERATION AND MANAGEMENT
- K. ENVIRONMENT
- L. ECONOMIC, FINANCIAL AND SOCIAL EVALUATION
- M. HYDRÓLOGICAL DATABASE SYSTEM
 - N. SATELLITE IMAGERY INTERPRETATION

SUPPORTING REPORT VOLUME II: FEASIBILITY STUDY

- A. SOCIO-ECONOMY
- B. HYDROLOGY
- C. WATER QUALITY
- D. DAM GEOLOGY
- E. DAM PLAN
- F. DAM DESIGN
- G. PLAN AND DESIGN OF WATER CONVEYANCE
- II. OPERATION AND MAINTENANCE PLAN
- I. COST ESTIMATE
- J. IMPLEMENTATION PROGRAM
- K. ENVIRONMENT IMPACT ASSESSMENT
- L. ECONOMIC, FINANCIAL AND SOCIAL EVALUATION
- M. TOPOGRAPHICAL SURVEY

DATA BOOK

LIST OF ABBREVIATIONS

Abbreviation	Official Name in Brazil	Name Translated in English
ADEMA	Administração Estadual do Meio Ambiente	State Department of Environment
ANA	Agência Nacional de Água	National Water Agency
ANEEL	Agência Nacional de Energia Elétrica	National Agency of Electric Energy
ASES	Agência Reguladora de Serviços Concedidos	Agency for Public Services Inspection
CEMIG	Companhia Energética de Minas Gerais	Minas Gerais Power Company
CECMA	Conselho Estadual de Controle do Meio	State Council of Environmental Control
СЕНОР	Ambiente Companhia Estadual de Habitação e Obras Públicas	State Company of Housing and Public Works
CEPEL	Centro de Pesquisa de Energia Elétrica	Electric Power Research Center
CEPES	Central de Pesquisas Espaciais de Sergipe	Sergipe Space Research Center
CHESF	Companhia Hidroelétrica do São Francisco	São Francisco Hydropower Electricity Corporation
CNPq	Conselho Nacional de Desenvolvimento Científico e Tecnológico	National Council of Science and Technology Development
CNRH	Conselho Nacional de Recursos Hídricos	National Council of Water Resources
CNRNR	Conselho Nacional dos Recursos Naturais Renováveis	National Council of Renewal Natural Resources
CODEVASF	Companhia de Desenvolvimento do Vale do	
	São Francisco	Corporation
CODISE		Industry and Mineral Resources
	de Recursos Minerais de Sergipe	Development Corporation of Sergipe State
COFIEX	Comissão de Financiamentos Externos	Commission of International Finance
COHIDRO	Companhia de Desenvolvimento de	Sergipe Water Resources and Irrigation
	Recursos Hídricos e Irrigação de Sergipe	Development Corporation
CONAMA	Conselho Nacional do Meio Ambiente	National Council of Environment
CONDESE	Conselho do Desenvolvimento Econômico de Sergipe	Sergipe Economic Development Council
CONERH/SE	Conselho Estadual de Recursos Hídricos	State Council of Water Resources
CVRD	Companhia Vale do Rio Doce	Council of Doce River Valley
DC	Defesa Civil	Civil Defense
DESO	Companhia de Saneamento de Sergipe	Sergipe Sanitation Corporation
DNAEE	Departamento Nacional de Águas e Energia Elétrica	National Department of Water and Electric Energy
DNER	Departamento Nacional de Estados e	National Department of Roads and
DMOCC	Rodagens	Highways
DNOCS	Departamento Nacional de Obras Contra as Secas	National Department of Drought Countermeasure
ELETROBRAS	6 Centrais Elétricas Brasileiras S.A.	Brazilian Central Electric Joint-stock Company
EMBRAPA	Empresa Brasileira de Pesquisa	Brazilian Agriculture and Livestock
	Agropecuária	Research Company
EMDAGRO	Empresa de Desenvolvimento Agropecuário	Sergipe Agriculture and Livestock
ELO	de Sergipe	Development Company
FAO	Fundo das Nações Unidas para Alimentação e Agricultura	rood and Agriculture Organization
FIDA	Fundo Internacional de Desenvolvimento	International Fund of Agriculture
TIVA	Agrícola	Development
FNS	Fundação Nacional de Saúde	National Foundation Health
FUNERH	Fundo Estadual de Recursos Hídricos	State Fund of Water Resources
IBAMA	Instituto Brasileiro do Meio Ambiente e dos	Brazilian Institute of Environment and
	Recursos Naturais Renováveis	Renewable Natural Resources
IBGE	Instituto Brasileiro de Geografia e Estatística	Brazilian Institute of Geography and Statistics
IICA	Instituto Interamericano de Cooperação para	
,	a Agricultura	Cooperation
INCRA	Instituto de Nacional de Colonização e	National Institute of Colonization and
	Reforma Agraria	Agricultural Reform

Abbreviation	Official Name in Brazil	Name Translated in English
ITPS	Instituto de Tecnologia e Pesquisas de Sergipe	Sergipe Institute of Technology and Research
JBIC	Banco de Cooperação Internacional do Japão	Japan Bank for International Cooperation
JICA	Agência de Cooperação Técnica	Japan International Cooperation Agency
	Internacional do Japão	1
IIS	Padrão Industrial do Japão	Japan Industrial Standard
MMARHAL	Ministério do Meio Ambiente, dos Recursos	Ministry of Environment, Water Resources
	Hídricos e da Amazônia Legal	and Legal Amazon
MPO (change to MP)	Ministério de Planejamento e de Orçamento	Ministry of Planning and Budget
MP (change	Ministério do Planejamento, Orçamento e	Ministry of Planning, Budget and
from MPO)	Gestão	Management
DECF	Fundo Cooperação e Economica Ultramarino	Overseas Economic Cooperation Fund
PERH	Plano Estadual de Recursos Hídricos	State Plan of Water Resources
PROÁGUA/	Sub-Programa de Desenvolvimento	Water Resources Development Program for
Semi-Árido	Sustentável de Recursos Hídricos para o Semi-Árido Brasileiro	Brazilian Semi-Arid Areas
PRÓ-SERTÃO	Projeto de Apoio às Famílias de Baixa	Low Income Family Supporting Project in
	Renda da Região Semi- Árida de Sergipe	Semi-Arid Region of Sergipe
PROVABASE	Projeto do Desenvolvimento dos Recursos	Project of Water Resources Development
	Hídricos e Abastecimento de Água com Aproveitamento do Rio Vaza Barris em	and Supply in Vaza Barris River - Sergipe
DDQ.	Sergipe	Discording to the second
RBC	Commence de Préside de Austrolium de	River Basin Committee
SAGRI	Secretaria de Estado da Agricultura, do Abastecimento e da Irrigação	State Secretariat of Agriculture, Supply and Irrigation
SEAIN	Secretaria Assuntos Internacionais	Secretariat of International Affairs
SEEC	Secretaria de Estado de Educação e Cultura	State Secretariat of Education and Culture
SEED	Secretaria de Estado de Educação e do	State Secretariat of Education and Sports
	Desporto	
SEFAZ	Secretaria de Estado da Fazenda	State Secretariat of Finance
SEICT	Secretaria de Estado da Indústria, do	State Secretariat of Industry, Commercial
0D1 64	Comércio e do Turismo	and Tourism
SEMA	Secretaria de Estado do Meio Ambiente	State Secretariat of Environment
SESP	Secretaria de Estado de Serviços Públicos	State Secretariat of Public Services
SEPLAN	Secretaria de Estado do Planejamento	State Secretariat of Planning
SEPLANTEC	Secretaria de Estado do Planejamento e da	State Secretariat of Planning, Science and
000	Ciência e Tecnologia	Technology
SES	Secretaria de Estado da Saúde	Secretariat of Health
SOE	Empresas possuídas pelo Estado	State owned Enterprise
SPEO	Superintendência de Planejamento e Orçamento	Superintendency of Planning and Budget
SRH	Superintendência de Recursos Hídricos	Superintendency of Water Resources
SRH	Secretaria de Recursos Hídricos	Secretariat of Water Resources
SSP	Secretaria de Estado da Segurança Pública	State Secretariat of Public Security
SUDENE	Superintendência de Desenvolvimento do Nordeste	Superintendency of Northeast Brazil Development
SUPES	Superintendência de Estudos e Pesquisas	Superintendency of Study and Research
UEGP	Unidade Estadual de Gestão do PROÁGUA	State Unit of PROAGUA Management
UFS	Universidade Federal de Sergipe	Federal University of Sergipe
UGP	Unidade de Gestão do PROÁGUA	Project Management Unit
UNDP	Programa da Nações Unidas para o Desenvolvimento	United Nation Development Program
USBR	Departamento de Interior dos Estados Unidos	United States Department of Interior, Bureau of Reclamation
USCE	Exército dos Estados Unidos, Corpo de	United States Army, Corps of Engineers
	Engenneiros	
WA	Engenheiros	Water Agency

JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL

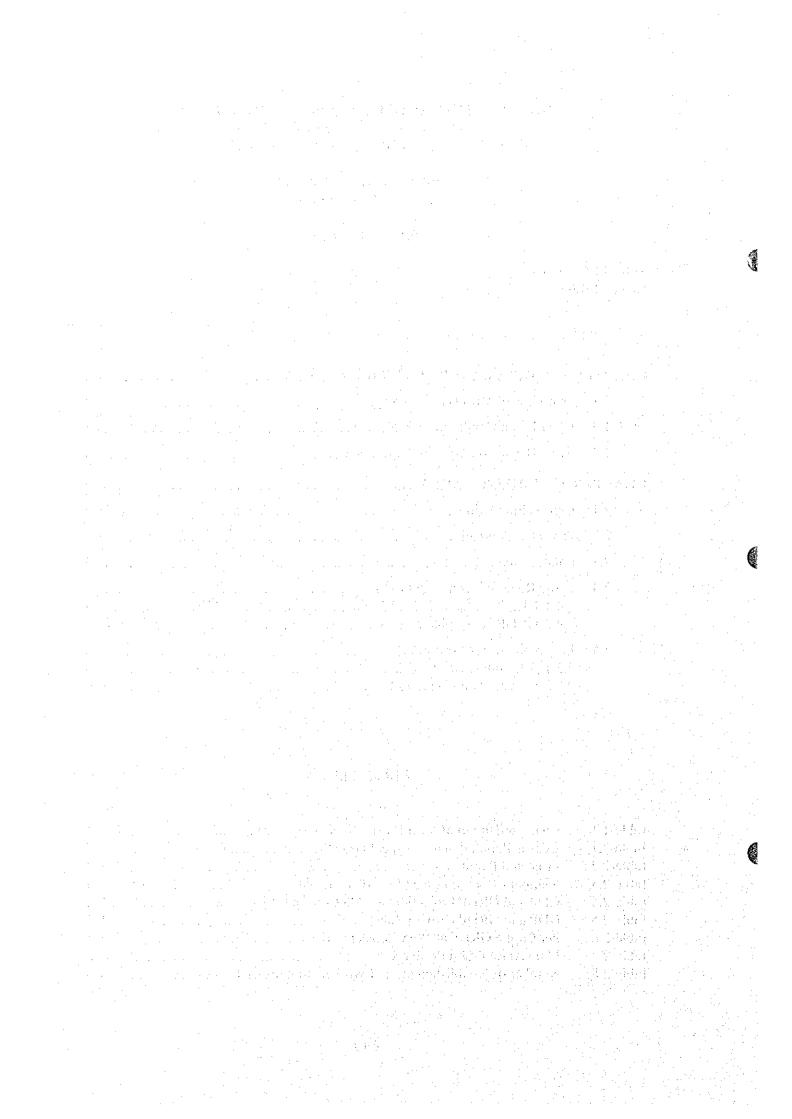
THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT
SUPPORTING
(VOLUME II)
FEASIBILITY STUDY

[A] SOCIO-ECONOMY

MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)


THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

SUPPORTING REPORT (A) SOCIO-ECONOMY

Table of Contents

Table of Contents List of Tables

		Page
СНАРТЕ	R 1 VAZA BARRIS RIVER BASIN AREA	A-1
1.1	Overview of Vaza Barris River	A-1
1.2	River Basin Condition in Bahia State	A-1
1.3	River Basin Condition in Sergipe State	A-1
СНАРТЕ	R 2 PROJECT AREA	A-2
2.1	Census Population	A-2
2.2	Projected Population	A-3
2.3	Labor Force	
2.4	Gross Regional Domestic Product	A-4
2.5	Economic Sector Profile	A-6
	List of Tables	
		Page
Table-1.1	Characterization of Vaza Barris River Basin Area	
Table-2.1	Census Population and Annual Growth	
Table-2.2	Projected Population	
Table-2.3	Number of Labor Force (over 10 years old)	
Table-2.4 Table-2.5	GDP and GRDP Projection at 1998 Constant PricesGDP and GRDP Growth Rate	
Table-2.5	Per Capita GRDP at 1998 Constant Prices	
Table-2.7	Main Agricultural Products	
Table-2.8	Number of Establishments and Workers in Industrial Sector	
1000-2.0	runtor of Londonsmionio and Horkors in industrial occionana.	

CHAPTER 1 VAZA BARRIS RIVER BASIN AREA

1.1 Overview of Vaza Barris River

Vaza Barris River hydrological basin is located in both states, Bahia State (rise) and Sergipe (mouth) State, and has a total area of 16,229 km².

The total population in the Vaza Barris river basin area of both states ran up to 382,000 in the 1991 census. The average population density was 23.5 persons/km².

1.2 River Basin Condition in Bahia State

At Bahia State, the basin owns an area of 13,670 km² or 84% of total area, where ten municipalities are located. The 1991 census population of the basin area was estimated at 240,000 (estimated based on the master plan of "Plano Diretor de Recursos Hidricos, Bacia dos Rios Vaza Barris e Real" by Bahia State), which was 3.4% of total population of the state in the same census. The population density (persons/km²) was 17.6 that was lower compared with 21.2 of the state because of the typical semi-arid climate in the region. A large part of the inhabitants live in the rural area and economic activities concentrate in primary sector.

1.3 River Basin Condition in Sergipe State

At Sergipe State, the basin owns an area of 2,559 km² or 16% of total area, where fourteen municipalities (Carira, Frei Paulo, Pedra Mole, Pinhao, Areia Branca, Campo do Brito, Itabaiana, Macambira, Sao Domingos, Simao Dias, Lagarto, Aracaju, Sao Cristovao and Itaporanga D'Ajuda) are located. The 1991 census population of the basin area was 142,000, which was 9.5% of total population of the state in the same census. The population density was 55.5 that was also lower compared with 67.7 of the state.

Table-1.1 Characterization of Vaza Barris River Basin Area

Item	Bahia State	Sergipe State	Total
Basin Area (km²)	13,670	2,559	16,229
Number of municipalities	10	14	24
Population (1991 Census)	240,000	142,000	382,000
Population Density (persons/km²)	17.6	55.5	(average) 23.5

CHAPTER 2 PROJECT AREA

The project area contains nine (9) municipalities as shown in Table-2.1.

2.1 Census Population

In Sergipe State, the 1996 census population was 1.62 million or 1.03% of the national population. The average growth rate during the 1990s was 1.71% per annum. This growth rate was larger than that (1.36%) of the country.

The population of the project area was 0.26 million in the 1996 census or 16% of the state population. Lagarto, Itabaiana and Simao Dias were the three largest municipalities, which shared 70% of all project area population in the same census. The average growth rate of the project area during the 1990s was 1.50% per annum which was smaller than that of the state. Nevertheless, these 3 municipalities such as Areia Blanca, Campo de Brito and Itabaiana showed more accelerated growth rate as compared with others, respectively 5.90%, 2.13% and 2.18% during the 1990s.

By river basin area, 40% of the population of the project area concentrated in the Piaui river basin area where Lagarto is located. Meanwhile, Sergipe river basin area showed extremely higher growth rate where Areia Blanca and Itabaiana are situated.

Table-2.1 Census Population and Annual Growth

Unit: Population 1000 persons, Growth %

			Omi: P	opulation	1000 persons, Growin 76					
1970	1980		1991		1996					
Population	Population	Growth	Population	Growth	Population	Growth				
93,139.0	119,002.7	2.48	146,825.5	1.93	157,079.6	1.36				
901.6	1,140.0	2.37	1,491.9	2.47	1,624.2	1.71				
By Project Area (9 municipalities)										
173.1	198.7	1.39	240.6	1.75	259.2	1.50				
3.8	6.3	5.33	10.5	4.73	14.0	5.90				
11.2	11.9	0.58	13.4	1.09	14.9	2.13				
41.6	52.6	2.36	64.8	1.92	72.2	2.18				
4.7	4.4	-0.64	5.0	1.09	5.4	1.53				
4.9	6.3	2.44	7.8	1.91	8.3	1.46				
11.1	14.4	2.65	17.8	1.90	17.6	-0.06				
27.9	27.0	-0.31	32.2	1.60	33.7	0.92				
51.3	58.3	1.30	72.1	1.95	75.3	0.86				
16.6	17.5	0.49	17.0	-0.26	17.8	0.96				
<u> </u>			.7	1 11	and Springer					
30.8	43.0	3.39	60.3	3.11	70.6	3.23				
55.6	51.5	-0.76	54.5	0.51	57.3	1.03				
71.9	86.1	1.81	104.7	1.79	110.1	1.03				
14.8	18.1	2.03	21.1	1.39	21.2	0.06				
	Population 93,139.0 901.6 9municipalities 173.1 3.8 11.2 41.6 4.7 4.9 11.1 27.9 51.3 16.6 30.8 55.6 71.9	Population Population 93,139.0 119,002.7 901.6 1,140.0 9 municipalities 173.1 173.1 198.7 3.8 6.3 11.2 11.9 41.6 52.6 4.7 4.4 4.9 6.3 11.1 14.4 27.9 27.0 51.3 58.3 16.6 17.5 30.8 43.0 55.6 51.5 71.9 86.1	Population Population Growth 93,139.0 119,002.7 2.48 901.6 1,140.0 2.37 nunicipalities 173.1 198.7 1.39 3.8 6.3 5.33 11.2 11.9 0.58 41.6 52.6 2.36 4.7 4.4 -0.64 4.9 6.3 2.44 11.1 14.4 2.65 27.9 27.0 -0.31 51.3 58.3 1.30 16.6 17.5 0.49 30.8 43.0 3.39 55.6 51.5 -0.76 71.9 86.1 1.81	1970 1980 1991 Population Population Growth Population 93,139.0 119,002.7 2.48 146,825.5 901.6 1,140.0 2.37 1,491.9 9 municipalities) 3.8 6.3 5.33 10.5 11.2 11.9 0.58 13.4 41.6 52.6 2.36 64.8 4.7 4.4 -0.64 5.0 4.9 6.3 2.44 7.8 11.1 14.4 2.65 17.8 27.9 27.0 -0.31 32.2 51.3 58.3 1.30 72.1 16.6 17.5 0.49 17.0 30.8 43.0 3.39 60.3 55.6 51.5 -0.76 54.5 71.9 86.1 1.81 104.7	1970	Population Population Growth Population Growth Population 93,139.0 119,002.7 2.48 146,825.5 1.93 157,079.6 901.6 1,140.0 2.37 1,491.9 2.47 1,624.2 0 municipalities) 173.1 198.7 1.39 240.6 1.75 259.2 3.8 6.3 5.33 10.5 4.73 14.0 11.2 11.9 0.58 13.4 1.09 14.9 41.6 52.6 2.36 64.8 1.92 72.2 4.7 4.4 -0.64 5.0 1.09 5.4 4.9 6.3 2.44 7.8 1.91 8.3 11.1 14.4 2.65 17.8 1.90 17.6 27.9 27.0 -0.31 32.2 1.60 33.7 51.3 58.3 1.30 72.1 1.95 75.3 16.6 17.5 0.49 17.0 -0.26 17.8				

Source: Anuario Estatistico do Brasil 1996, IBGE

Contagem da Pópulação 1996, IBGE

Anuario Estatistico de Sergipe 1996, SEPLANTEC/SUPES

2.2 Projected Population

In this study, the future population is projected on the basis of the 1996 census results, applying the method of the SUPES projection as presented in the Master Plan. Table-2.2 shows the population projected up to the year 2020 at 10-year intervals. The state population in 2020 was projected at 2.78 million. Its growth rate is 2.3% on average between 1996 and 2020. It is smaller than that (2.47%) between the 1980 and 1991 censuses, but almost the same rate as the growth during 1970 to 1996.

The strategic scenario for regional development plan was discussed in the Master Plan. The scenario was drawn up basically for decentralization policy to solve or to avoid foresecable problems such as extremely concentration of population and economic activities in the central region like Aracaju and to alleviate the high level of regional socio-economic disparity among the municipalities. According to the strategic scenario, the projected population was distributed to the project area by the respective municipalities as shown in the Table-2.2. The population of the project area in 2020 was projected at 0.54 million. In consequence, the annual growth rate of the area between 1996 and 2020 results in 3.1% that is larger than the state annual growth rate of 2.3% during the same period.

Table-2.2 Projected Population

17763 Unit: 1000 persons 1998 2000 2010 2020 2020 Item 1997 %(*) 159,060 161,070 165,715 184,157 200,306 1.0 By Trend Brazil 2.3 Scenario Sergipe 1,654 1.684 1,750 2,163 2,778 By Project Area (9 municipalities) 268 278 394 539 3.1 452 Total 264 A. Blanca 16. 18 45 77 7.4 77 13 C. de Brito 15 16 17 26 36 3.8 36 79 121 174 3.7 130 Itabaiana 74 76 5 6 7 9 2.2 9 Macambira 5 . 9 9 .9 11 14 2.2 14 S. Domingos 19 21 0.7 21 18 18 Poco Verde 18 46 1.3 40 46 Simao Dias 34 34 35 78 105 139 2.6 96 Lagarto 76 76 R. do Dantas 18 18 18 21 23 1.1 23 By River Basin Sergipe 73 : 76 81 149 231 5.1 188 Vaza Barris 58 59 61 74 91 2.0 91 112 112 115 149 192 2.3 148 Piaui 21 21 22 25 0.7 25 21 Real

Source: Anuario Estatistico do Brasil 1996, IBGE

Anuario Estatistico de Sergipe 1996, SEPLANTEC/SUPES

Note: (*) Annual growth rate between 1996 and 2020

The census and projected population in urban and rural area by municipality is given in Supporting Report, Volume 1-A, Appendix-2.

2.3 Labor Force

In the 1991 census, the labor force in the project area was 81,200 that were 15% of the state.

The agriculture sector had the largest number of labor forces, which accounted for 36,600 that shared 45% of all labor forces in the area. Nevertheless, it recorded a drastic decrease to 35,600 in the 1980 census from 41,000 in the 1970 census. On the other hand, the number of labor forces in the industry and service sector continued to show an upward trend at an annual rate of over 6%. This rate was somewhat larger than that of the state.

Table-2.3 Number of Labor Force (over 10 years old)

Item	Gainful Workers			Percentage Distribution (%)			Growth Rate (%)	
ICH	1970	1980	.1991	1970	1980	1991	'70-'80	'80-'91
Sergipe	265.5	353.7	530.8	100.0	100.0	100.0	2.9	3.8
Agriculture	161.0	149.7	149.2	60.7	42.3	28.2	-0.7	0.0
Industry	31.1	61.4	100.5	11.7	17.3	18.9	7.0	4.6
Services	68.6	131.4	263.5	25.8	37.2	49.6	5.7	3.7
No Jobs	4.8	11.2	17.6	1.8	3.2	3.3	8.8	4.2
Project Area	52.9	58.1	81.2	100.0	100.0	100.0	0.9	3.1
Agriculture	41.0	35.6	36.6	77.6	61.3	45.0	-1.4	0.2
Industry	3.3	6.0	11.5	6.2	10.4	14.2	6.4	6.1
Services	8.6	16.5	33.1	16.3	28.4	40.8	6.7	6.6

Source: Censo Demografico 1991, Mao-de-Obra, No. 16 Sergipe, IBGE

Censo Demografico 1980, Mao-de-Obra, Sergipe, IBGE

Censo Demografico 1970, Mao-de-Obra, Sergipe, IBGE

2.4 Gross Regional Domestic Product

2.4.1 GRDP

In the Master Plan, future Gross Domestic Product (GDP) in Brazil and Gross Regional Domestic Product (GRDP) of Sergipe State until the year 2020 were projected as shown in Table-2.3. According to the strategic scenario mentioned in the above, the projected GRDP was distributed to the project area as figured in Table-2.4.

GRDP of the state is projected to an amount of R\$15.02 billion by 2020. It is 3.4 times of that (R\$4.43 billion) in 1995. Thus, it accounts for 0.8% in Brazil, which becomes larger than the percentage (0.55%) in 1995.

Table-2.4 GDP and GRDP Projection at 1998 Constant Prices

Unit: R\$ billion

Item	Actual			Projection		
1(Ci)1	1995	1997	1998	2000	2010	2020
1) Brazil	799.39	868.78	912.21	1,005.71	1,453.30	1,860.35
2) Sergipe	4.43	4.89	5.13	5.66	9.22	15.02
Agriculture	0.55	0.57	0.57	0.58	0.64	0.71
Industry	1.34	1.49	1.57	1.75	2.95	4.93
Services	2.54	2.83	2.99	3.33	5.62	9.38
3) Project Area	0.43	0.47	0.49	0.53	0.96	1.85
Agriculture	0.12	0.12	0.12	0.13	0.13	0.14
Industry	0.11	0.12	0.13	0.14	0.28	0.59
Services	0.20	0.23	0.24	0.26	0.55	1.12
4) By River Basin	4 1 1 1					
Sergipe	0.06	0.07	0.07	0.08	0.17	0.40
Vaza Barris	0.08	0.09	0.09	0.10	0.16	0.29
Piaui	0.27	0.30	0.32	0.34	0.62	1.15
Real	0.01	0.01	0.01	0.01	0.01	0.01

Source: Plano Plurianual 1996-1999, Mensagem ao Congresso Nacional, GOB, MPO

Anuario Estatistico do Brasil, 1996, IBGE

GRDP in 2020 of the project area is estimated at an amount of R\$1.85 billion which is 4.3 times of that (R\$0.43 billion) in 1995. It shares 12.3% in the state GRDP, which indicates an impressive gain as compared with 9.7% in 1995.

GDP and GRDP growth rate was shown in the Table-2.5. The growth rate of the project

area between 2010 and 2020 is 6.8% that is larger than 5.0% of the state during the same period. Especially industry and service sectors contribute to the growth acceleration in the project area. As to by river basin area, all areas except Real where agriculture sector exerts predominant economic activities are estimated to attain high growth rate.

Table-2.5 GDP and GRDP Growth Rate

Unit: %

Ya	Actual			Projection		
ltem	1995	1997	1998	2000	2010	2020
1) Brazil	1.8*	4.5	5.0	5.0	3.75	2.5
2) Sergipe	1.3*	5.0	5.0	5.0	5.0	5.0
Agriculture	-5.1*	1.0	1.0	1.0	1.0	1.0
Industry	0.1*	5.6	5.6	5.6	5.4	5.3
Services	4.0*	5.6	5.6	5.6	5.4	5.3
3) Project Area		4.4	4.3	4.3	6.1	6.8
Agriculture		1.0	1.0	1.0	0.6	0.7
Industry	-	5.6	5.6	5.6	7.3	7.6
Services	: .	5.6	5.6	5.6	7.3	7.6
4) By River Basin						
Sergipe		3.8	3.8	3.8	7.9	9.4
Vaza Barris		3.5	3.5	3.5	4.9	6.1
Piaui		4.8	4.8	4.8	6.0	6.3
Real		1.2	1.2	1.2	0.5	0.9

Note:

* Annual growth rate between 1990 and 1995

2.4.2 GRDP per Capita

GRDP per capita in 2020 of the state was calculated at R\$5,400, as shown in Table-2.6. It is 1.9 times of R\$2,770 in 1995 and 58% of the nation's level, which indicates an obvious improvement, compared with 54% in 1995.

Table-2.6 Per Capita GRDP at 1998 Constant Prices

Unit: R\$

Year	1995	1997	1998	2000	2010	2020			
GRDP Per Capita at 1998 constant price									
Brazil	5,160	5,460	5,660	6,070	7,890	9,290			
Sergipe	2,770	2,960	3,050	3,230	4,260	5,400			
Project Area		1,770	1,820	1,910	2,420	3,430			
River Basin									
Sergipe		940	940	950	1,110	1,750			
Vazá Barris	544 <u>644</u> 445	1,530	1,560	1,630	2,150	3,170			
Piaui		2,690	2,790	3,000	4,170	5,970			
Real		450	450	460	460	450			
Indices of Per Cap	ita GRDP to 19	97 Value							
Brazil		1.00	1.04	1.11	1.44	1.70			
Sergipe	-	1.00	1.03	1.09	1.44	1.83			
Project Area		1.00	1.03	1.08	1.37	1.94			
River Basin		144.15	112 1000						
Sergipe	4, 1 <u></u> 14]	1.00	1.00	1.01	1.18	1.86			
Vaza Barris	<u>—</u> ,	1.00	1.02	1.07	1.41	2.07			
Piaui	_	1.00	1.04	1.12	1.55	2.22			
Real		1.00	1.01	1.03	1.03	1.00			
			and the second s	and the second second second	and the second s	and the second second second second			

GRDP per capita in 2020 of the project area was calculated at R\$3,430. It is 64% of the state's level, which also indicates a clear improvement against prior decades. Thus, the regional disparity could mitigate and the people lives would get closer to the national level for this period.

2.5 Economic Sector Profile

2.5.1 Agriculture Sector

Main agriculture products in the project area are shown in Table 4.8. Seven major products shared at over 50% in the state, markedly tobacco leaves 87%, maracuja fruit 68% and cassava 61%. The area were marked by a predominant share of 86% in tomato production in 1992, but its share fell down to 53% in 1993 due to the production start-up in the municipality of Caninde de Sao Francisco. The area is accounted as the second largest of orange production in the state.

Table-2.7 Main Agricultural Products

Unit: ton

					Om. ton		
Item		1992			1993)3	
	Sergipe	Project Area	%	Sergipe	Project Area	%	
Beans	11,473	4,177	36.4	8,150	3,835	47.1	
Cassava	492,396	253,078	51.4	617,411	375,800	60.9	
Peanuts	1,504	705	46.9	1,526	854	56.0	
Sweet Potato	19,027	11,800	62.0	22,511	13,119	58.3	
Tobacco Leaves	1,960	1,657	84.5	5,782	5,050	87.3	
Tomato	4,973	4,277	86.0	8,329	4,423	53.1	
Orange(*1)	3,791	1,099	29.0	4,406	1,317	29.9	
Maracuja (*2)	.345,631	227,818	65.9	380,615	258,189	67.8	
Papaya (*2)	5,119	2,533	49.5	5,042	2,717	53.8	

Note:

(*1); million fruits, (*2): 1,000 fruits

(%); Ratio of project area to Sergipe

2.5.2 Industrial and Services Sector

There is no precise statistical data and information concerning industries and commercial establishments in the area. There is only one inventory booklet of industrial establishments in the state, the title of which is "Cadastro Industrial Sergipe, 1991/92". Based on the booklet, the number of establishments and workers were worked out as shown in Table-2.8.

Table-2.8 Number of Establishments and Workers in Industrial Sector

A COLUMN TO A	· · · · · · · · · · · · · · · · · · ·	OI INSTITUTE	31111161110	mind trotteers	, iii xiidustiiti	LOCCIOI
Item	Sergipe	Project	Ratio	Largest	Municipalities in	the Area
	(A)	Area (B)	(B/A)	lst	2nd	3rd
Establishments	1,458	252	17 %	Lagarto 90	Itabaiana 86	S.Dias 28
Food	553	88	16 %	Lagarto 32	Itabaiana 24	S.Dias 10
Non-Metallic	143	32	22 %	Itabaiana 18	S.Dias 9	Lagarto 4
Workers (Person)	47,034	2,070	4 %	Itabaiana 865	Lagarto 795	S.Dias 259
Food	6,272	607	10 %	Lagarto 315	Itabaiana 152	S.Dias 51
Non-Metallic	2,525	528	21 %	Itabaiana 331	S.Dias 158	Lagarto 36
Worker/Establishment	32.3	8.2	*	•	-	-

Source: Cadastro Industrial Sergipe, 1991/92, SEIT, CODISE and SEBRAE

There were 252 establishments in the project area, which shared 17% in the total of the state. The food and non-metallic industries are the most sizable in the terms of number of establishments and workers in the area. Nevertheless, average workers per establishments are only 8, which is markedly smaller than 32 of the state average. It means that small establishments predominate in the area. Lagarto, Itabaiana and Simao Dias are counted as the three largest municipalities in the above terms both in food and non-metal industries.

JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT
SUPPORTING
(VOLUME II)
FEASIBILITY STUDY

[B] HYDROLOGY

MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

SUPPORTING REPORT (B) HYDROGEOLOGY

Table of Contents

Table of Contents
List of Tables
List of Figures

	in a subject to the contract of the second o	
CHAPTI	CR 1 HYDROLOGIC SURVEY	B-1
1.1	Flow Measurement	B-1
1.2	Cross Sectional Survey	
1.3	Revised H-Q Rating Curves	B-2
1.4	Daily Discharge and Flow Regime	B-2
CHAPTE	CR 2 CLIMATE	B-6
2.1	Climate of the River Basin	B-6
2.2	Rainfall in Sergipe State	B-6
	R 3 HYDROLOGY	
3.1	River Flow	B-9
3.2	Probable Discharge at Fazenda Belem	B-10

List of Tables

	Page
Vaza Barris Flow Measurement Results	B-1
ANEEL Historical Flow Measurement Data	B-2
ANEEL H-Q Tables for Vaza Barris River	B-3
Flow Regime Results during 1986-95	B-5
Monthly Average Flows during 1986-95	B-5
Availability of Monthly Rainfall Data in Vaza Barris Basin	B-6
Minimum and Maximum Probable Annual Rainfall	B-8
Results of Flow Regime Analysis for Vaza Barris River	B-9
Probable Flood Discharge	
at Fazenda Belem - Thomas (Moment) Method	B-10
Annual Maximum Daily Discharge at Fazenda Belem	B-11
Calculation Results of Probable Flood Discharge at Fazenda	
	ANEEL Historical Flow Measurement Data ANEEL H-Q Tables for Vaza Barris River Flow Regime Results during 1986-95 Monthly Average Flows during 1986-95 Availability of Monthly Rainfall Data in Vaza Barris Basin Minimum and Maximum Probable Annual Rainfall Results of Flow Regime Analysis for Vaza Barris River Probable Flood Discharge at Fazenda Belem - Thomas (Moment) Method Annual Maximum Daily Discharge at Fazenda Belem

List of Figures

	. The first probability of the contract ${ m Pag}$
Figure-1.1	River Cross Section at Fazenda Belem and Ponte SE-302 B-
Figure-1.2	Revised H-Q Curve for Ponte SE-302 at Low Flow
Figure-2.1	Isohyetal Map of Vaza Barris River Basin
Figure-2.2	Variation of Monthly Rainfall in Vaza Barris Basin
Figure-3.1	Variation of Monthly Discharge for Vaza Barris River

CHAPTER 1 HYDROLOGIC SURVEY

1.1 Flow Measurement

)

Flow measurement field trips were undertaken on Vaza Barris River for the ANEEL flow gauging stations at Fazenda Belem and Ponte SE-302 (near Pedra Mole) and also for the proposed dam site.

The river discharge was measured using a propeller flow meter. Staff gauge readings were taken and the river width measured using a 50m tape. The actual water depth was recorded at each measurement point and the flow meter adjusted to a position equal to 0.6 of the water depth from the surface. The number of revolutions of the propeller was counted over a period of 30 seconds – this procedure was repeated twice for each measurement point.

The velocity at each point was calculated from the calibration equation of the flow-meter. The incremental area for each point was determined by multiplying the distance between the measurement points by the average depth; this area was then multiplied by the velocity to give the discharge. The incremental discharges were then summed to give the total discharge in the river.

The results of the flow measurement are summarized in Table-1.1 below.

Staff Gauge River Sectional Discharge Average Average Location Date Reading (m) Width (m) (m³/s) Depth (m) Area (m²) Velocity Faz. Belem 8 June 99 0.55 14.5 0.28 4.08 0.57 2.33 Ponte SE-302 8 June 99 1.26 4.5 0.23 1.03 0.14 0.14 Dam Site 14 June 99 0.54 14.6 0.38 5.55 0.40 2.21 Ponte SE-302 14 June 99 1.25 2.7 0.17 0.46 0.32 0.15

Table-1.1 Vaza Barris Flow Measurement Results

1.2 Cross Sectional Survey

Cross sectional surveys of the two gauging stations on Vaza Barris River were undertaken as part of the topographical survey. The cross sections at Fazenda Belem and Ponte SE-302 are shown in Figure-1.1 below.

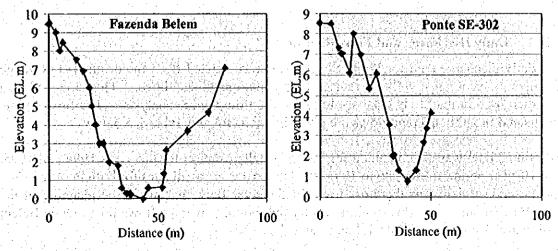


Figure-1.1 River Cross Section at Fazenda Belem and Ponte SE-302

1.3 Revised H-O Rating Curves

(1)**Existing H-Q Rating Tables**

ANEEL use a system of H-Q rating tables as part of the MSDHD database. The H-Q tables for Vaza Barris River are given in Table-1.3. It can be seen that there is only one H-Q table for the gauging station at Ponte SE-302, whereas there are 3 tables for the Fazenda Belem station for different periods.

These rating tables are based on a program of river flow measurements made on a regular basis over a period of many years. The historical river flow measurements are summarized in Table-1.2 for the Ponte SE-302 and Fazenda Belem stations.

ANEEL Historical Flow Measurement Data: Service and Table-1.2

Station	Number of Measurements	From	To .	Staff Gauge Range H (m)	Discharge Q (m³/s)
Ponte SE-302	54	Sept 1994	April 1998	1.17 – 3.58	0.04 - 41.20
Fazenda Belem	295	Oct 1943	April 1998	0.54 - 3.18	0.30 94.60

The measured flow data are plotted in Figure-1.2. All the available data is plotted for Ponte SE-302, while for Fazenda Belem only the data from 1971 to 1998 is plotted. The ANEEL H-Q rating tables are also plotted as H-Q curves.

Revised H-Q Curve for Ponte SE-302 **(2)**

From the flow measurement undertaken as part of this study, it became apparent that the rating curve for the Ponte SE-302 flow gauging station was not satisfactory at lower flows (less than 2.0 m³/s or gauge reading less than 1.60m). A revised curve was plotted based on the available flow data and the following two H-Q equations obtained:

For H less than or equal to 1.6m,

 $Q = 8.49 (H - 1.0)^{2.876}$ $Q = 2.85 (H - 0.725)^{3.12}$

For H greater than 1.6m,

The revised H-Q curve is plotted in Figure-1.2.

The flow measurements made by the JICA Study Team on 8th and 14th June, when the staff gauge reading was 1.24 and 1.25m respectively, fit the revised H-Q equation well.

1.4 Daily Discharge and Flow Regime

The daily discharge data for Ponte SE-302 was recalculated from the original staff gauge readings in accordance with the revised H-Q equations given above. This amended data was then used in the Study database to revise the flow regime analysis. The flow regime results and monthly average flows are given in Table-1.4 and Table-1.5 below.

Additional data was also obtained for Fazenda Belem station for the years 1994 and 1995. The 10-year period from 1986 to 1995 (the latest 10 years available) for both Ponte SE-302 and Fazenda Belem was therefore used for the river flow analysis in the planning of the Vaza Barris dam. The flow regime results and monthly average flows for Fazenda Belem station are also given in Table-1.4 and Table-1.5.

Table-1.3 ANEEL H-Q Tables for Vaza Barris River

Ponte S			a Belem	Fazenda		Fazend:	a Belem
501 69			000 (A)	501 910		501 91	000 (C)
14,435			0 km²	15,74			0 km²
from 1-1			-Jan-85	from 17			-Aug-88
to 31-D			Oct-87	to 15-/			Dec-93
H	Q m³/s	H	Q	H	Q	H	Q
. m		m	m³/s	m	m³/s	m	m³/s
1.20	0.225	1.00	1.30	0.60	0.010	1.00	0.050
1.30	0.550	1.10	2.60	0.70	0.050	1.10	1.00
1.40	0.920	1.20	4.00	0.80	1.00	1.20	1.50
1.50	1.40	1.30	6.00	0.90	1.50	1.30	3.00
1.60	2.00	1.40 1,50	9.00	1.00	3.00	1.40	4.80
1.70	2.80 3.80	1.60	12.00 15.00	1.10 1.20	5.00 7.00	1.50 1.60	7.50 10.30
1.90	5.00	1.70	18.50	1.30	9.50	1.70	13.50
2.00	6.50	1.80	22.00	1.40	12.50	1.80	17.00
2.10	7.80	1.90	25.50	1.50	15.50	1.90	20.30
2.20	9.60	2.00	29.50	1.60	19.00	2.00	24.00
2.30	11.70	2.10	33.50	1.70	22.00	2.10	28.00
2.40	13.80	2.20	37.80	1.80	25.80	2.20	32.00
2.50	16.50	2.30	42.00	1.90	29.50	2.30	36.00
2.60	19.50	2.40	46.50	2.00	33.50	2.40	40.50
2.70	23.00	2.50	51.00	2.10	37.50	2.50	45.50
2.80	26.50	2.60	56.00	2.20	42.00	2.60	50.00
2.90	30.00	2.70	60.50	2.30	46.00	2.70	54.50
3.00	35.00	2.80	65.50	2.40	50.50	2.80	59.50
3.10	40.00	2.90	70.50	2.50	55.00	2.90	64.50
3.20	46.00	3.00	75.50	2.60	60.00	3.00	70.00
3.30	52.00	3.10	81.00	2.70	64.50	3.10	75.00
3.40	58.00	3.20	86.50	2.80	69.50	3.20	80.50
3.50 3.60	65.00 74.00	3.30 3.40	92.00 97.50	2.90 3.00	74.50 80.00	3.30 3.40	86.00 92.00
3.70	82.00	3.50	103.00	3.10	85.00	3.40	98.00
3.80	92.00	3.60	109.00	3.10	90.50	3.60	104.00
	103.00	3.70	115.00	3.30	95.00	3.70	110.00
	114.00	3.80	121.00	3.40	101.00	3.80	116.00
	126.00	3.90	128.00	3.50	107.00	3.90	122.00
4.20	138.00	4.00	135.00	3.60	113.00	4.00	129.00
4.30	154.00	4.10	141.00	3.70	119.00	4.10	135.00
	168.00	4.20	148.00	3.80	125.00	4.20	143.00
	185.00	4.30	155.00	3.90	132.00	4.30	149.00
	200.00	4.40	162.00	4.00	138.00	4.40	156.00
	220.00	4.50	169.00	4.10	145.00	4.50	164.00
	240.00 260.00	4.60 4.70	176.00 183.00	4.20 4.30	151.00 158.00	4.60 4.70	171.00 179.00
	285.00	4.70	191.00	4.40	165.00	4.70	186.00
	305.00	4.90	198.00	4.50	172.00	4.90	194.00
	330.00	5.00	206.00	4.60	179.00	5.00	202.00
5.30		5.10	214.00	4.70	186.00	5.10	210.00
5.40		5.20	222.00	4.80	194.00	5.20	218.00
5.50		5.30	230.00	4.90	201.00	5.30	226.00
5.60	4.1	5.40	238.00	5.00	209.00	5.40	234.00
5.70		5.50	246.00	5.10	216.00	5.50	243.00
5.80		5.60	254.00	5.20	224.00	5.60	251.00
5.90		5.70	262.00	5.30	232.00	5.70	260.00
6.00		5.80	270.00	5.40	239.00	5.80	268.00
6.10		5.90	278.00	5.50 5.60	248.00 255.00	5.90 6.00	277.00
6.20 6.30		6.00 6.10	287.00 296.00	5.70	263.00	6.00 6.10	287.00 296.00
6.40		6.20	305.00	5.80	272.00	6.20	305.00
6.50		6.30	314.00		281.00	6.30	314.00
6.60		6.40	324.00		290.00	6.40	324.00
6.70		6.50	334.00		299.00	6.50	334.00
6.80		6.60	344.00	6.20	310.00	6.60	344.00
6.90		6.70	354.00	6.30	320.00	6.70	354.00
7.00		6.80	364.00		330.00	6.80	364.00
7.10		6.90	374.00	6.50	340.00	6.90	374.00
7.20		7.00	384.00		350.00	7.00	384.00
7.30	6 1 i A	7.10			360.00	7.10	
7.40		7.20		6.80	370.00	7.20	

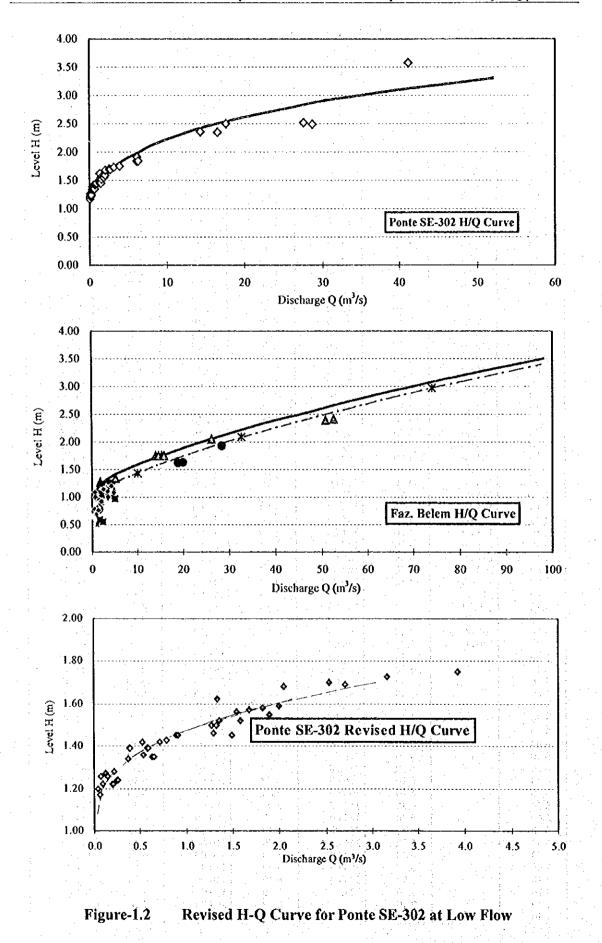


Table-1.4 Flow Regime Results during 1986-95

Units: m3/s 95-day 185-day 275-day 355-day Min.7day Ave Total Ave Max Min Year Revised Flow Regime Results for Ponte SE-302 1986 746 2.04 17.07 0.97 2.09 1.77 1.52 1.09 1.00 1987 506 1.39 17.07 0.22 1.37 1.16 0.70 0.24 0.24 1988 2168 5.92 179.82 0.18 4.71 2.39 1.44 0.42 0.21 1989 1593 4.44 115.43 0.70 2.99 2.31 0.71 1.16 0.70 1990 1079 2.96 48.17 0.65 2.16 1.95 1.16 0.800.79 1991 737 2.02 48.17 0.27 2.47 0.85 0.61 0.27 0.27 1992 104.78 1951 5.33 0.22 2.72 0.97 0.65 0.27 0.25 1993 245 0.67 2.55 0.11 0.80 0.57 0.45 0.18 0.14 1994 1583 4.34 510.72 0.06 2.16 0.70 0.22 0.080.08 1995 954 2.71 115.43 0.06 1.95 0.75 0.22 N.A. 80.0 1156 3.18 115.92 0.34 2.34 0.45 1.34 0.81 0.38 Average Flow Regime Results for Fazenda Belem 1986 2261 6.20 64.00 2.34 6.90 4.80 4.00 2.60 2.43 1987 1215 3.73 27.50 0.15 3.86 2.74 1.00 N. A. 0.21 1988 8818 24.09 285.00 0.24 24.70 9.74 6.15 0.43 0.32 1989 8772 24.03 309.00 26.0₀ 2:10 11.30 5.88 2.55 2.40 101.00 1990 4108 11.26 0.24 10.90 7.78 3.90 0.72 0.62

Table-1.5 Monthly Average Flows during 1986-95

9.74

12.50

2.40

5.85

2.58

10.54

3.54

6.69

1.35

2.90

0.80

5.16

1.80

2.55

1.15

1.47

0.53

2.84

1.00

1.00

0.81

0.53

80.0

1.08

0.81

0.74

0.86

0.30

0.08

0.88

1991

1992

1993

1994

1995

Average

2955

4591

778

2929

1472

3790

8.09

12.54

2.13

8.03

4.03

10.41

66.10

174.00

10.90

132.00

95.10

126.46

0.62

0.53

0.72

0.23

0.00

0.72

Units: m3/s Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Revised Monthly Average Flows for Ponte SE-302 1986 3.54 1.92 2.77 2.33 2.04 1.65 1.91 1.54 2.27 1.48 1.83 1.18 1.03 1987 1.27 1.67 3.55 2.21 1.05 1.91 1.56 1.16 0.30 0.26 0.68 1988 1.25 1.81 6.18 7.95 18.08 16.24 6.87 2.39 2.30 1.69 1.31 4.88 1989 1.25 0.903.69 2.23 8.64 3.28 5.89 2.76 2.16 0.97 2.09 22.23 1990 15.33 3.14 2.35 1.98 1.98 1.73 1.69 1.60 1.00 0.96 1.52 2.05 3.07 1991 0.98 1.57 2.96 7.28 2.74 2.55 0.71 0.83 0.44 0.53 0.48 1992 11.40 38.75 3.94 2:96 0.93 0.74 0.87 1.04 0.86 0.60 0.75 2.77 1993 0.87 0.57 0.44 0.68 0.53 0.91 1.01 0.51 0.61 0.70 0.67 0.54 1994 0.14 3.20 31.19 4.33 1.27 4.39 4.43 1.30 0.68 0.45 0.19 0.10 1995 0.45 1.38 1.40 16.62 2.04 0.91 0.20 1.09 1.33 0.47 5.87 2.64 Ave. 3.62 5.45 5.67 4.56 4.50 3.38 2.81 1.48 1.12 0.85 1.47 3.82 Monthly Average Flows for Fazenda Belem 1986 6.43 2.85 12.12 7.40 8.87 9.06 4.43 4.54 3.87 5.63 3.93 4.88 2.11 1987 2.38 4.45 7.36 6.78 4.63 5.36 4.22 N.A. N.A. 0.60 1.07 1988 3.78 4.77 25.60 11.60 45.90 65.95 69.49 18.86 12.35 10.62 4.41 14.49 1989 4.27 3.01 9.11 28.25 40.80 24.49 49.90 24.53 13.00 13.38 8.20 66.68 1990 21.99 11.68 4.62 5.00 8.56 10.14 28.74 23.36 8.96 5.22 2.95 3.32 1991 1.96 2.57 4.60 3.40 20.64 19.59 17.28 10.39 9.66 1.80 2.65 2.17 1992 18.76 49,02 19.16 10.79 2.78 11.57 11.62 6.90 5.56 5.67 1.75 8.61 1993 1.70 1.21 0.97 1.10 1.31 5.12 4.78 2.95 2.46 1.54 1.12 1.28 1994 1.52 3.91 19.94 7.09 5.37 17.12 32.79 3.12 1.88 1.59 0.85 0.55 1995 0.58 2.07 11.38 1.77 3.60 14.19 4.01 3.12 1.43 0.36 3.91 2.12 Ave. 6.34 10.26 9.34 14.28 17.13 23.86 10.20 6.57 5.09 3.07 10.48

CHAPTER 2 CLIMATE

2.1 Climate of the River Basin

The Vaza Barris river basin has a total area of 16,229 km², 84% (13,670 km²) of which lies in the state of Bahia and 16 % (2,559 km²) of that lies in the state of Sergipe. The climate varies widely across the river basin from the tropical humid Leste region at the coast, through the drier intermediate Agreste region, to the semi-arid interior and finally to the arid regions around the source of the Vaza Barris River near Uaua in Bahia.

Average temperatures vary only slightly from 25°C at the coast to 23°C in Uaua at the upstream of Vaza Barris River. The daily range of temperature is, however, higher in the upper part of the basin. Evaporation is also high varying from 1,200mm at the coast to 500mm in the arid interior.

Rainfall shows an uneven distribution and can clearly be divided into two regions; namely, the humid/semi-humid region parallel to the coast with rainfall between 1800mm and 800mm per year, and the semi-arid/arid interior with rainfall of between 800mm and The majority of the Vaza Barris River basin within Bahia State has an average annual rainfall of about 600mm/year. The isohyetal map of the Vaza Barris river basin is shown in Figure-2.1.

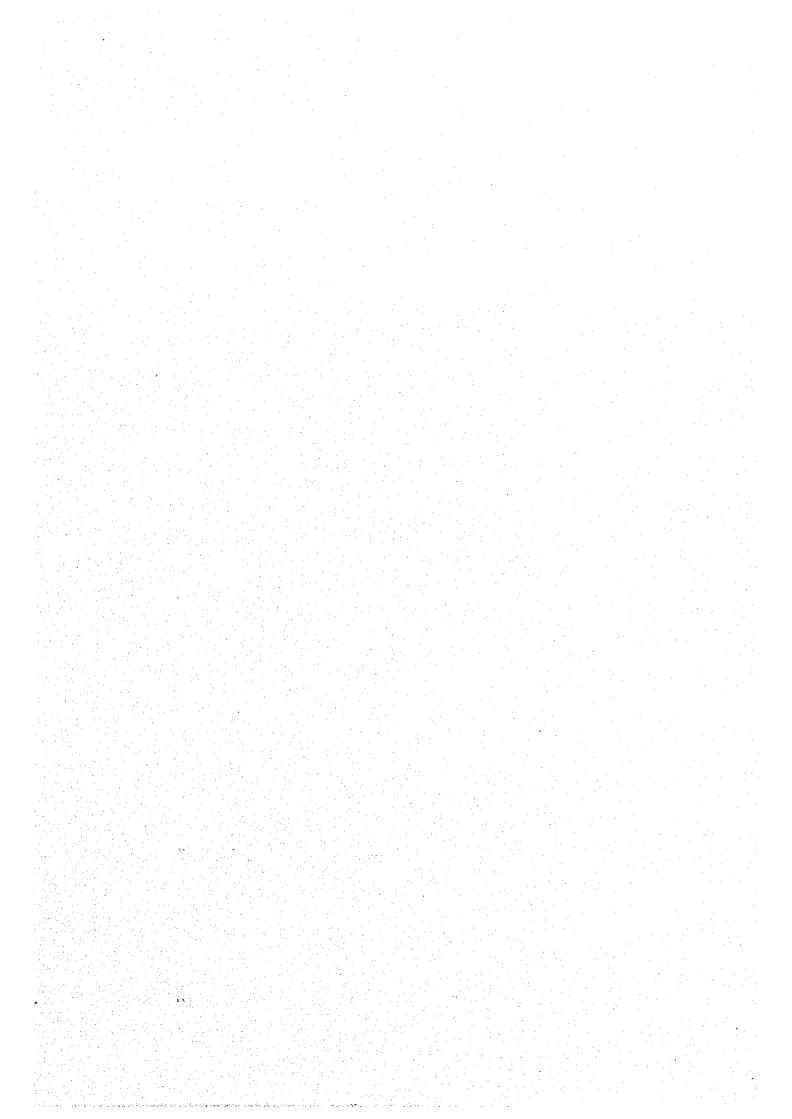
Rainfall in Sergipe State 2.2

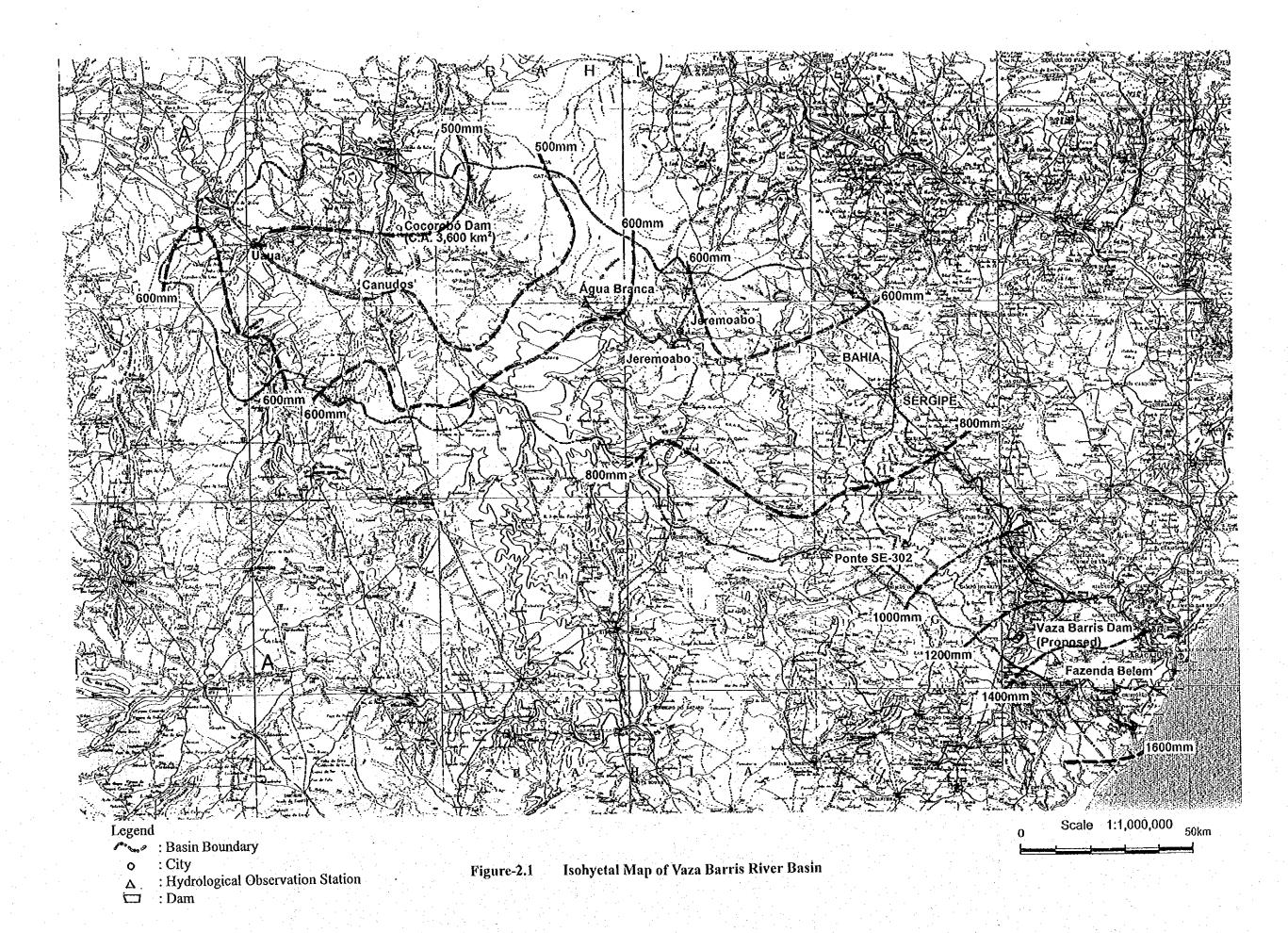
Within the Vaza Barris River basin in Sergipe State, there are five rainfall gauges that have These are Carira, Frei Paulo, Campo do Brito, a reasonable level of data availability. Belem and Sao Cristovao and the availability of data is shown in Table-2.1.

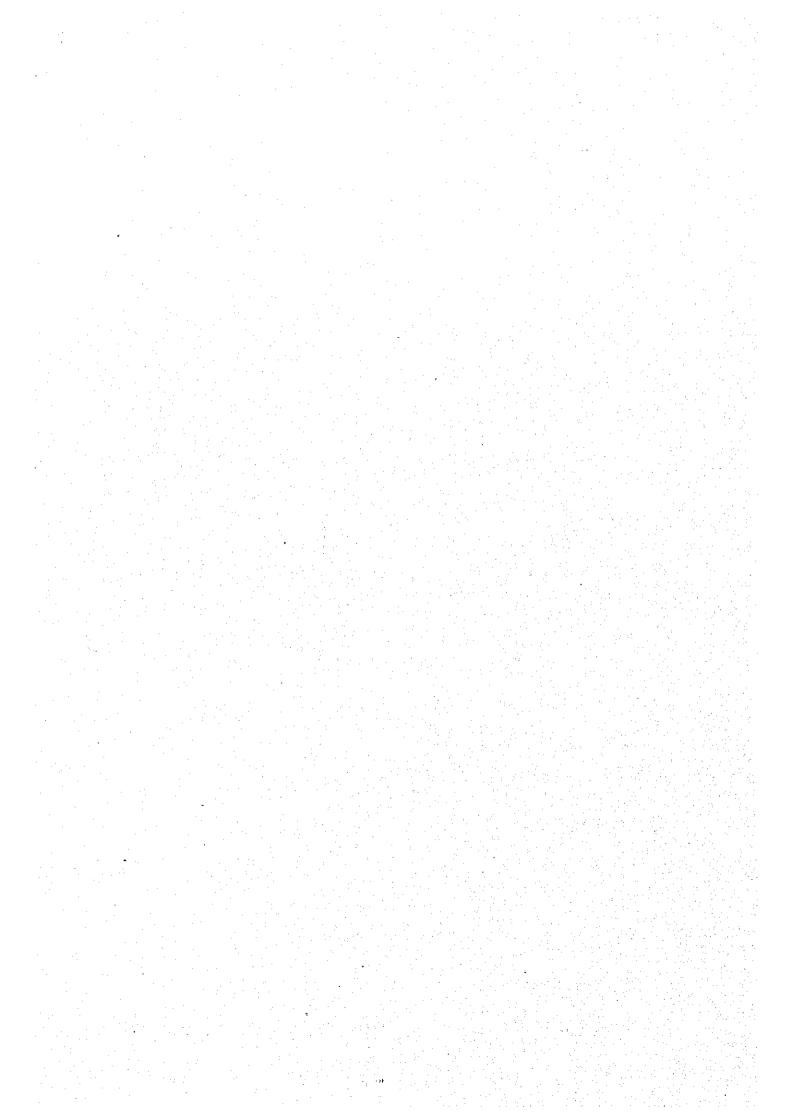
Availability of Monthly Rainfall Data in Vaza Barris Basin Table-2.1

Poly	SUDENE	Station Name	Ave. I	968 - 97	60		197	0						1	98	0					777	19) 9()				1
No.	Post No.	Station Name	mm∕yr	No. Years	8	9	0	1 2	3	4	5 6	5 7	8	9	0 1	2	3	4	5 6	7	8 9	0	1	2	3	4 :	6	. 7
4	480 4761	Carira	784.2	28 -	0	o	0	o c	0	0	o c	0	0	o	0 0	0	Ħ	0	5 C	0	00	#	0	O	o	0 (0	O
11	481 4194	Frei Paulo	944.8										0															
16	481 5501	Campo do Brito	1267.7		•								O.O									•					- 1	
18	ANEEL	Belem	1539.4										0									1						1
26	482 5062	Sao Cristovao	1515.1	28	0	0	0	00	0	0	0 (0	0	ol	00	0	0	0	Ò C	0	00)(0	0	0	#	# (0.0	O

Notes: O : data complete


#: data incomplete


= : data not available No. Years: number of years with complete data


In order to fill missing data, correlation analysis was undertaken for the chosen rainfall stations. Each station was compared with three adjacent stations and the monthly data for the 30-year period plotted. The closest correlation between the pairs of stations was selected and the best-fit equation then used to calculate the missing data.

It can be seen that average annual rainfall varies from over 1500 mm/year for the stations at Fazenda Belem and Sao Cristovao in the coastal Leste region, to less than 800 mm/year for Carira in the semi-arid interior near to the border with Bahia State.

The variation in monthly average rainfall for four of the five rainfall stations is shown in Figure-2.2. It can be seen that the year is clearly divided into a rainy winter season (April to July) and a dry summer season (October to January) in Sergipe.

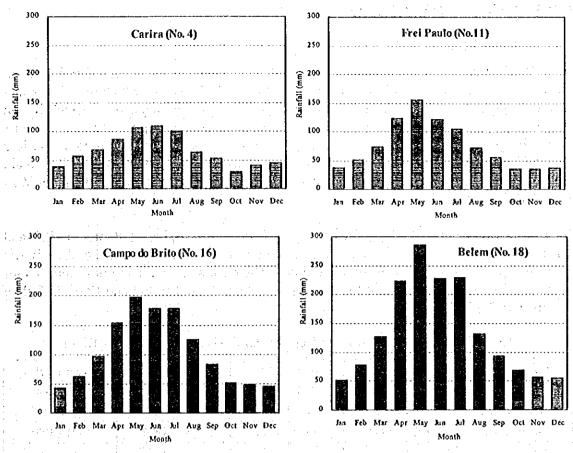


Figure-2.2 Variation of Monthly Rainfall in Vaza Barris Basin

Probable annual rainfall was calculated using the 30-year data period for a range of return periods assuming a normal probability distribution. Both minimum and maximum probable annual rainfall was calculated for the five rainfall stations and the results are shown in Table-2.2.

Table-2.2 Minimum and Maximum Probable Annual Rainfall

No.	4	1	1	1	16		18		2	6	
Station	Ca	rira	Frei	Paulo	Campo	do Brito	Belem		Sao Cr	istovao	
Ave.	76	9.2	94	0.5	125	50.5	153	9.4	148	5.3	
Return Period	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
3	676.7	861.6	833.9	1047.1	1084.4	1416.6	1382.2	1696.6	1312.5	1658.1	
4	624.4	913.9	773.6	1107.4	990.3	1510.7	1293.2	1785.6	1214.6	1756.0	
5	588.5	949.8	732.2	1148.8	925.9	1575.2	1232.2	1846.6	1147.6	1823.0	
10	494.0	1044.3	623.3	1257.7	756.2	1744.9	1071.6	2007.2	971.0	1999.6	
15	446.9	1091.4	569.0	1312.0	671.5	1829.5	991.5	2087.3	882.9	2087.7	
20	416.1	1122.3	533.4	1347.6	616.0	1885.0	939.0	2139.8	825.2	2145.4	
25	393.3	1145.0	507.2	1373.8	575.2	1925.8	900.4	2178.4	782.7	2187.8	
30	375.4	1162.9	486.5	1394.5	542.9	1958.1	869.9	2208.9	749.1	2221.4	
40	348.4	1189.9	455.4	1425.6	494.5	2006.6	824.0	2254.8	698.7	2271.8	
50	328.3	1210.0	432.2	1448.8	458.3	2042.7	789.8	2289.0	661.1	2309.5	
100	269.8	1268.6	364.8	1516.2	353.1	2147.9	690.3	2388.5	551.7	2418.9	

CHAPTER 3 HYDROLOGY

3.1 River Flow

Vaza Barris River originates in the municipality of Uaua in the State of Bahia at an elevation of over 500 m. It has a total length of around 410 km, of which only 125 km is within Sergipe State. The total basin area is 16,229 km², the majority of which lies in Bahia State with only 16% or 2,559 km² lying within Sergipe making up 11.6% of the state area. In spite of its significant basin area, the discharge in Bahia is intermittent and it is only within Sergipe State that Vaza Barris River becomes a perennial river. The main tributaries in Sergipe are the Salgado and Trairas rivers, both of which join the main Vaza Barris River from the left bank.

In addition to the two ANEEL flow-gauging stations in Sergipe at Ponte SE-302 and Fazenda Belem, there are also another two stations further upstream in the Vaza Barris basin at Agua Branca and Jeremoabo in Bahia. The results of the flow regime analysis for these two additional stations and for the revised data at Ponte SE-302 and Fazenda Belem are given in Table-3.1.

Table-3.1 Results of Flow Regime Analysis for Vaza Barris River

				A CONTRACTOR OF THE PROPERTY O
Station Name	Agua Branca	Jeremoabo	Ponte SE-302	Fazenda Belem
Code No.	501 46000	501 50000	501 69000	501 91000
Catchment Area	7,110 km²	8,685 km²	14,435 km²	15,740 km²
No. of Years	1985 - 1993	1972 - 1993	1985 - 1996	1971 - 1995
Flows (m³/s)				
Average	0.95	2.91	4.19	11.86
Q-95 day (25%)	0.50	1.71	2.92	10.35
Q-185 day (50%)	0.38	0.82	1.53	4.95
Q-275 day (75%)	0.32	0.60	0.88	2.77
Q-355 day (95%)	0.20	0.36	0.47	1.33
Min. Q 7-day	0.24	0.34	0.40	1.18
Spec. Q (l/s/km²)	0.13	0.34	0.29	0.75

The variation in monthly discharge for the four ANEEL stations on Vaza Barris River is shown in Figure-3.1.

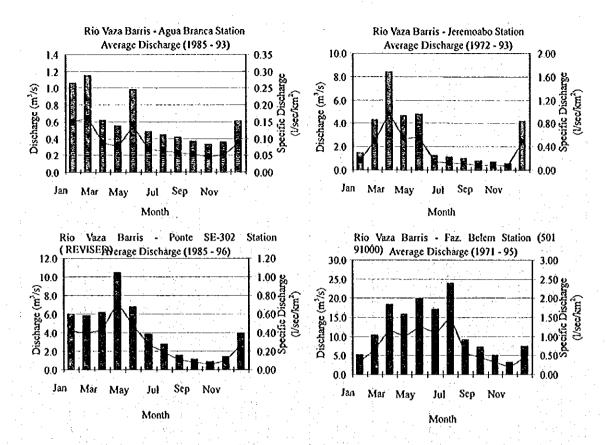


Figure-3.1 Variation of Monthly Discharge for Vaza Barris River

3.2 Probable Discharge at Fazenda Belem

The daily discharges at Fazenda Belem are the consequence of the water level measuring twice a day. It means that the annual maximum daily discharges are not always the maximum in that day. Introducing the assumption that actual maximum discharge in that day is 1.2 times of measured maximum daily discharge, probable flood discharge at Fazenda Belem is estimated and is given in Table-3.2.

Table-3.2 Probable Flood Discharge at Fazenda Belem - Thomas (Moment) Method

Return Period (year)	Probable Flood Discharge (m³/s)	Return Period (year)	Probable Flood Discharge (m³/s)	Return Period (year)	Probable Flood Discharge (m³/s)
50,000	4,857	80	1,134	8	484
20,000	4,101	70	1,089	7	454
10,000	3,588	60	1,038	6	420
5,000	3,121	50	979	5	380
1,000	2,198	40	910	4	334
500	1,863	30	825	3	276
200	1,471	20	712	2	197
150	1,360	15	636		
100	1,211	10	536		

Table-3.3 Annual Maximum Daily Discharge at Fazenda Belem

	Original Data		Sorte	d Data	
Year	Max. Daily Discharge (m³/s)	Rank	Thomas Plot	Year	Max. Daily Discharge (m³/s)
1971	139.0	1	0.960	1975	647.0
1972	154.0	2	0.920	1974	437.0
1973	426.0	3	0.880	1973	426.0
1974	437.0	4	0.840	1981	340.0
1975	647.0	5	0.800	1989	309.0
1976	102.0	6	0.760	1988	285.0
1977	274.0	7	0.720	1977	274.0
1978	266.0	8	0.680	1978	266.0
1979	138.0	9	0.640	1985	183.0
1980	121.0	10	0.600	1984	176.0
1981	340.0	- 11	0.560	1992	174.0
1982	137.0	12	0.520	1972	154,0
1983	141.0	13	0.480	1983	141.0
1984	176.0	14	0.440	1971	139.0
1985	183.0	15	0.400	1979	138.0
1986	64.0	16	0.360	1982	137.0
1988	285.0	17	0.320	1994	132.0
1987	27.5	18	0.280	1980	121.0
1989	309.0	19	0.240	1976	102.0
1990	101.0	20	0.200	1990	101.0
1991	66.1	21	0.160	1995	95.1
1992	174.0	22	0.120	1991	66.1
1994	132.0	23	0.080	1986	64.0
1995	95.1	24	0.040	1987	27.5

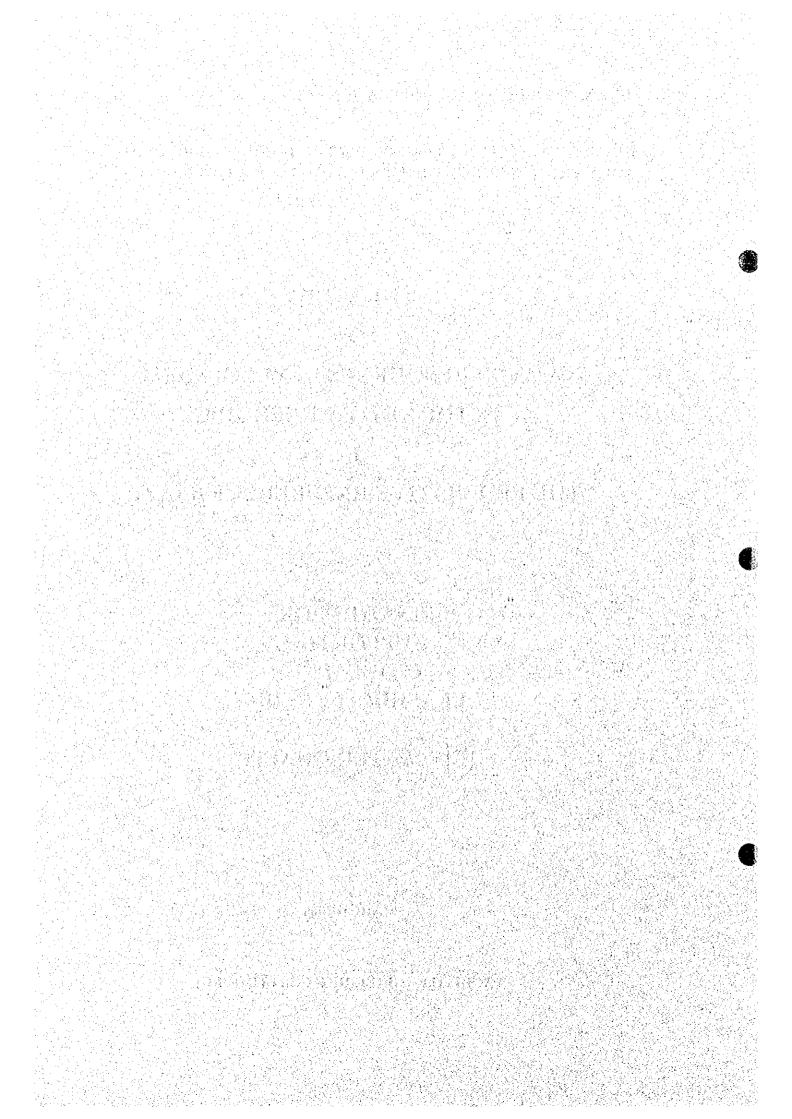
Note: The data of 10.9 m³/s in 1993 was excluded because of being too small.

Table-3.4 Calculation Results of Probable Flood Discharge at Fazenda Belem

						Unit: m'/s
Return Period (year)	Thomas (LSM)	Hazen (LSM)	Tomas (Moment)	Hazen (Moment)	Iwai	Gumbel
50,000	3,799	2,884	4,048	3,018	2,532	1,546
20,000	3,219	2,479	3,418	2,588	2,199	1,427
10,000	2,823	2,200	2,990	2,292	1,967	1,337
5,000	2,462	1,942	2,601	2,019	1,751	1,246
1,000	1,746	1,419	1,831	1,468	1,306	1,037
500	1,485	1,224	1,552	1,264	1,137	946
200	1,178	991	1,226	1,020	933	827
150	1,091	924	1,133	950	873	789
100	974	833	1,010	855	792	736
- 80	913	785	945	805	749	707
70	877	757	907	776	724	689
60	837	726	865	743	695	669
50	791	689	816	705	662	645
40	736	645	759	659	623	616
30	668	591	688	603	573	578
20	578	518	593	527	506	524
15	518	469	530	476	460	485
10	438	402	447	408	397	430
8	396	367	403	372	364	399
7	372	346	378	350	345	380
6	345	323	350	326	322	358
5	313	296	317	299	296	332
4	275	263	278	265	265	299
3	229	222	230	223	224	254
2	164	164	164	164	167	184

JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL


THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT
SUPPORTING
(VOLUME II)
FEASIBILITY STUDY

[C] WATER QUALITY

MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

SUPPORTING REPORT (C) WATER QUALITY

Table of Contents

Table of Contents List of Tables List of Figures

		Page
CHAPTER	1 WATER QUALITY SURVEY	C-1
1.1 I	Review of Water Quality Survey Result at Vaza Barris River in 1998	C-1
1.2 I	Detailed Study of Water Quality in Vaza Barris River in 1999	C-3
1.3	Additional Water Quality Survey for the Future Reservoir Investigation	C-5
CHAPTER	2 ANALYSIS OF CURRENT WATER QUALITY BEHAVIOR IN VAZA BARRIS RIVER	
CHAPTER	3 ANALYSIS OF FUTURE WATER QUALITY BEHAVIOR IN VAZA BARRIS DAM RESERVOIR	
3.1	Possible Impacts of Agrotoxics	C-10
3.2 I	Eutrophication	C-10
3.3	Water Color of the Reservoir	C-12

	List of Tables	
	and the experience of the world by	
		Page
Table-1.1	Results of Water Quality Analysis in Vaza Barris Riv	
Table-1.2	Results of Monitoring in Vaza Barris River	
Table-1.3	Chloride and EC Variation	
	between Four Stations in Vaza- Barris River	
Table-3.1	Results of Nutrients Analyses in Vaza Barris River	
Table-3.2	Proposed Criterion of Trophic Category (Vollenweid	
		the second of the second of
4.7	List of Figures	
		Page
Figure-1.1	Variation of Cl Concentration in Vaza Barris River	
Figure-2.1	Relationship between Cl Concentration / EC and Riv	· · · · · · · · · · · · · · · · · · ·
. •		and the second s
Figure-2.2	Relationship between Na/Mg/Ca/HCO ₃ /pH and Rive	
Figure-2.3	Correlation between EC and Na/Mg/Ca/Cl	

CHAPTER 1 WATER QUALITY SURVEY

1.1 Review of Water Quality Survey Result at Vaza Barris River in 1998

The water quality investigation at Vaza Barris River basin was carried out in August and October in 1998, setting three stations along the referred river and one point each in Tejupeba River, in Comprido River and in Trairas River, respectively.

As presented the results of this survey in Table-1.1, the water system of this basin notices, in a general way, a low index of organic pollution and a satisfactory oxygen concentration. While the water of the main stream of Vaza Barris River shows the high pH, EC and mineral salts constituted by Cl, Na, Ca, Mg and other concerned parameters, the water of its tributaries keeps those parameters in low levels, which can be found usually in the river systems in the region with high rainfall. In relation to analyzed heavy metals, there were obtained always inferior to the limits of detection of standard methods of analyses.

In the Table-1.1 already mentioned, analyzed results that exceeded for WHO standard for drinking water and CONAMA 20 for multiple uses with rectangular marks and FAO standards for agricultural use with italic character to facilitate visualization. According to this classification, CI presents the concentration much superior to the standards along all Vaza Barris Main River while Na and SO₄ exceeded in the initial stretch of this river system during the period of this investigation.

Besides the parameter referred above, fecal coliform density in Tejupeba and Comprido rivers in the downstream surpassed the limits established in the standards. All the other parameter amounts were registered inferior to the standards already referred.

One of the water quality behaviors that must be observed is the appreciable reduction of the salts concentrations, especially Cl and Na that are main constituents of salinization, and also are considered as tracer due to its inert property with chemical reaction.

In average terms of Cl, the concentration of 2,400 mg/l found in Ponte SE-302 fell down to approximately 350 mg/l in Fazenda Belem station that corresponds to 85 % of reduction. Such considerable deduction rate can be attributed to the effects of dilution by the water contribution with low salinity, originated from the drainage basin mostly from the region that belongs to the sub-humid tropical with higher rainfall. These contributing waters characteristics can be compared with the same ones found in the tributaries already mentioned where are verified low salts concentration.

The monitoring that has been realized in these past years also confirms the water quality presented above.

Table-1.1 Results of Water Quality Analysis in Vaza Barris River in 1998

					,			
	C		V-1	V-2	V-3	VB-1	VC - I	VT - 1
Parameter	Sampling Period	Unit	Main River Ponte SE-	Main River	Main River	Tributary	Tributary Compride	Tributary Trairas
	renou		302	Sao Domingos	Fazenda Belem	Tejupeba Riyer	River	River
	18		8.3	8.4	7.9	6.8	7.4	8.0
ж	2		8.2	8.1	7.7	7.6	7.7	7.5
···	<u>"</u>	mg/L	7.00	6,00	6.10	6.60	6.40	7.04
DO	2'	mg/L	7.30	7.30	6.10	7.00	4.80	5.90
	1*	mg/L	0.20	0.20	0.40	0.40	0.60	0.60
BOD	2*	mg/L	2.40	1.80	0.80	0.20	0.60	1.40
	, J*	UNT	19	10	10	. 19	10	18
Turbidity	21	UNT	2	1	5	8	5	. 6
	1,5	jimho/cm	6 200	2 280	864	215	362	306
Elect. Conductivity	. 2'	μmho/cm	6 600	3 500	398	147	398	350
	1,	%	•	-	0055	0.011	0.018	0.015
Salinity	21	%	0.350	0.180	0.090	0.007	0.020	0.018
	12	nig/L	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE
Alcal. Fen. CaCO ₁	2*	mg/L	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE
	1,	mg/L	108.40	144.80	120.00	18.40	152.40	60.80
Alcal. Met. CaCO ₃	21	nig/L	90.80	108.00	112.80	14.80	175.60	98.00
	12 /	mg/L	132.25	176.66	146.40	22.45	185.93	74,18
Bicarb. HCO ₃	2*	mg/L,	110.78	131.71	137.62	18.06	214.32	119.56
	10	mg/L	2 843.27	886.96	302.21	28.25	19.31	56.86
Chloride	21	mg/L	2 031.42	1 280.36	382.68	28.25	19.31	72.96
1984 1984	13	mg/L	410.27	124.68	39.30	5.35	6.79	7.00
SO ₄	2*	mg/L	101.62	189.29	27.36	8.23	4.20	11,73
	1"	mg/L	342.63	137.05	63.45	2.79	48.48	9.64
Ca	21	mg/L	336.62	184.52	82.28	3.24	59.34	14.96
	l'	mg/L	277.53	80.67	29.76	2.55	4.56	9.93
Mg	21	mg/L	225,99	113.54	31,67	2.34	3.75	14.36
	10	mg/L	0.09	0.16	1.08	2.14	1.00	1.25
Fe	2°	mg/L	0.15	0.14	0.40	1.08	0.34	0.36
		mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Mn		mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	- 12	mg/L	1 997.76	674.24	280.94	17.48	139.84	64.93
Hardness CaCO ₃	2.	mg/L	1 770.59	928.04	335.80	17.71	163.63	96.47
	l*	NMP/100mL	170	170	170	≥ 1600	240	23
Fecal Coliform	2ª	NMP/100mL	23	17	90	≥ 1 600	≥1600	500
	1ª	NMP/100mL	300	≥ 1 600	300	≥ 1 600	≥ 1 600	110
Total Coliform	21	NMP/100mL	170	27	140	≥ 1 600	≥ 1 600	1,600
	12	mg/L	0.77	0.36	0.87	0.93	0.60	1.06
N-NO,	2,	mg/L	1.49	1.12	0.53	0.62	0.51	0.50
	I,	mg/L	110.00	328.00	111.00	17.60	937	31.30
Na	21	mg/L	611.00	436.00	162.00	17.70	13.90	41.90
	14	mg/L	15.20	5.37	4.36	1.07	0.59	3.71
<u>K</u>	2,	mg/L	14.00	7.68	4.24	0.79	0.82	4.39
ns.	1,	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pb	21	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
α.	1,	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cu	2°	mg/L	< 0.02 < 0.001	< 0.02 < 0.001	< 0.02 < 0.001	< 0.02 < 0.001	< 0.02	< 0.02
Cd	23	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001
Cu	12	mg/L	< 0.05	< 0.001	< 0.05	< 0.001	< 0.05	< 0.05
Cr	23	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	11.	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg	2'	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	12	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
As	2	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	1'	°C	30.0	29.0	27.0	29.0	25.0	30.0
Air Temp.	21	°c	30.0	30.0	29.0	28.0	28.0	29.0
	12	°Č	26.5	27.0	28.4	25.0	27.0	26.5
****	21	°C	28.1	28.3	31.6	25.0	28.0	29.9
Water Temp.				05/08/98	08/04/98	08/04/98	08/04/98	08/04/98
Water Temp.	1*] mm/dd/yv	08/04/98	סלוסטונט	00,01,70			
Sampling Date	21	mm/dd/yy mm/dd/yy	08/04/98 10/06/98	10/06/98	10/06/98	10/07/98	10/06/98	
		mm/dd/yy mm/dd/yy						10/06/98 Good

Note: Rectangular marks show that the data are exceeded for WHO standard for drinking water and CONAMA 20 for multiple use. Italic figures show that the data are exceeded for FAO standards for agricultural use.

1.2 Detailed Study of Water Quality in Vaza Barris River in 1999

Aiming to obtain more comprehensive and systematical observation data, complementing the already existing ones, the intensive monitoring was programmed on the Vaza Barris River in the period from January to July 1999, along three sampling stations set with the sampling frequency once a week. The selected data were Cl, Na, Ca, Mg, hardness, total solid and EC which were considered the essential parameters for simulation of future water quality of Vaza Barris Dam reservoir, following the simultaneous reading of the staff gauge in Ponte SE-302, Sao Domingos and Fazenda Belem.

There were also determined, total N, NH-N, NO₂-N, NO₃-N, total P and PO₄-P which are indicators for the eutrophication phenomenon to verify the possibility of a eventual occurrence of this phenomenon as consequence of water accumulation for the long period in a dam.

All the results obtained in this monitoring are inserted in Table-1.2. Based on these data, it was elaborated in the Figure-1.1, which shows the Cl weekly variation during the monitoring period in the three collecting stations. As was previously related, constant reduction of Cl concentration can be observed from upstream to downstream. However, a notable stability of Cl variation in Fazenda Belem station where was registered an oscillation of concentration only in range from 350 to 400 mg/l, independently on the variation that occurs in the upper stream basin. This fact suggests the presence of appreciable water contribution to this region that promotes the dilution of salt.

According to the data collected in the first 5 months of monitoring in 1999, a dilution of the Cl concentration is more than 5 times at the stretch between Ponte SE-302 and Fazenda Belem. At the other stretch between Ponte SE-302 and Sao Domingos occurs a dilution only 1.6 times what confirms the difference of rainfall amount, affecting consequently, water contribution capacity.

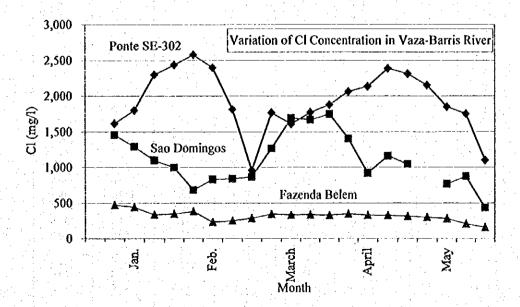


Figure-1.1 Variation of Cl Concentration in Vaza Barris River

Table-1.2 Results of Monitoring in Vaza Barris River

Date	Flow m³/s	EC ds/m	CL mg/l	Na mg/l	Mg mg/l	Ca mg/l	HCO, mg/l	pH
Ponte SE-302	11173 1	usin j	<u></u>			1081	11181	
1995/11/16				7772				
1995/8/24	0.42	4.51	1780.0	448.5	237.7	257.7	70.3	· · · · · · · · · · · · · · · · · · ·
1996/4/23	35.00	1.12	298.1	110.0	35.8	73.7	128.1	6.9
1996/10/29	0.29	6.00	1878.5	598.0	143.2	280.0	25.7	7.0
1997/5/12	13.20	1.53	435.6	150.0	54.9	94.8	110.4	7.1
1997/10/7	0.97	5.12	1752.0	510.0	212.2	261.1	184.1	7.9
1998/5/7		6.07	2104.1	605.0	195.7	380.6	56.8	6.9
1998/8/4	0.65	6.20	2843.0	-	277.5	342.6	132.5	8.3
1998/10/6	0.55	6.60	2031.4	610.0	226.0	336.6	110.8	8.2
Ave. 1999/1	0.02	5.96	2038.0	705.0	176.0	394.0	101.0	
Ave. 1999/2	0.06	5.91	1936.0	655.0	252.0	334.0	132.0	•
Ave. 1999/3	0.08	5.10	1818.0	615.0	146.0	326.0		12.
Ave. 1999/4	0.07	6.35	2246.0	-	240.0		88.0	7.7
1999/5/18	2.00	2.40	1101.0		38.0		98.0	
1999/6/8	2.00	2.40	1101.0		36.0		76.0	
1999/6/10	- 000		1442.0					
	0.06	5.50	1447.0		•	•	•	•
1999/6/14	0.15	5.12	1347.0	*- /		· •	-	<u>• 1727</u>
1999/6/15	0.27	4.89	1247.0	•	•	<u> </u>	<u> </u>	•
1999/6/16	16.50	1.00	220.0	<u>-</u>	_			•
1999/6/17	4.50	6.26		-	27.	<u> </u>	-	i
Sao Domingos						in a line to a pro-		4 44 d 1/
1995/11/16	1.32	3.35	1275.9	353.0	177.7	153.8	65.4	8.4
1995/8/24			•					_
1996/4/23		1.40	323.8	138.0	35.3	80.7	113.3	7.3
1996/10/29	0.77	3.35	1174.7	333.0	155.9	152.6	25.7	7.3
1997/5/12	34.00	0.52	136.9	48.8	18.6	46.9	107.8	J.L
		~~~~~~~						7.0
1997/10/7	1.06	4.56	1663.7	454.0	142.5	301.5	119.9	7.9
1998/5/7	0.20	4.99	3568.4	497.0	144.5	334.7	63.4	8.3
1998/8/4	1.68	2.28	887.0	328.0	80.7	137.1	176.7	8.4
1998/10/6	-	3.50	1280.4	436.0	. 113.5	184.5	131.7	8.1
Ave. 1999/1	•	4.81	1211.0	506.5	141.3	187.8	125.0	-
Ave. 1999/2		3.00	780.0	270.8	92.0	137.8	<u> -</u>	
Ave. 1999/3	•	5.27	1555.0	571.5	134.0	400.0	84.0	19 38 12 76
Ave. 1999/4		3.49	1041.0	-	173.0	96.0	90.5	7.5
1999/5/18		1.80	432.0	•	42.0	96.0	79.0	•
1999/6/8		2.50	771.0	·				
1999/6/10				<u> </u>				
1999/6/14					_ 1.2			
1999/6/15	<u>-</u>		<u>-</u>	<del></del>				
1999/6/16		ļ				<del></del>		
1999/6/17	<del>-</del>	<u> </u>	<del>-</del>	•	•			
· · · · · · · · · · · · · · · · · · ·	-				<u> </u>		•	<b>.</b>
Fazenda Belem			, <del></del>	1 1		,		
1995/11/16	-	•		-		•	-	- ·
1995/8/24	-	l	<u> </u>	•				. •
1996/4/23	7.23	1.43	357.2	141.0	26.8	100.4	120.7	7.5
1996/10/29	1.10	1.38	349.5	135.0	51.9	78.3	51.3	7.1
1997/5/12	48.60	0.26	61.4	23.0	8.9	28.9	_	
1997/10/7	1.15	2.12	634.3	210.0	•	135.6	130.9	7.9
1998/5/7	0.34	2.21	644.9	219.0	52.2	134.4	78.1	7.2
1998/8/4	2.41	0.86	302.2	111.0	29.8	63.5	146.4	7.9
1998/10/6	5.31	0.40	105.4					
			<del></del>	137.6	31.7	82.3	137.6	7.7
Ave. 1999/1	2.00	1.42	388.0	166.0	46.0	80.0	70.0	•
Ave. 1999/2	2.10	1.10	288.0	119.0	59.0	58.0		
Ave. 1999/3	1.49	1.35	355.0	142.0	39.0	68.0	131.3	
Ave. 1999/4	1.33	1.42	315.0	•	43.0	75.0	89.0	• .
1999/5/18	26.00	0.80	155.0	•	18.0	36.0	135.3	•
1999/6/8		•	-	•	. •	- '	•	
1999/6/10	-			<del>-</del>	-	•		-
1999/6/14	. 2.00	1.17	/: 308.0	• 7	. aseg <b>e</b> id ev.		.s.•.158	
	•			<del> </del>		<del></del>	}	ł
	5.20	0.86	1 203.0	1 -				
1999/6/15 1999/6/16	5.20 350.00	0.86	203.0 50.0		•	· •	-	•

# 1.3 Additional Water Quality Survey for the Future Reservoir Investigation

All the monitoring surveys carried out were always focused to the three stations along Vaza Barris River (Ponte SE-302, Sao Domingos and Fazenda Belem) and its tributaries to formulate the general vision about the water quality of the entire basin in Sergipe State.

According to the definition of Vaza Barris Dam planning, it became necessary to rearrange the data obtained at the monitoring sampling stations to the future reservoir site. To attend the such purpose, there were realized sampling surveys during 3 days in May 1999, including the water flow measurements in the following 4 stations to establish the correlation between each station: Ponte SE-302, the check dam, the dam site and Fazenda Belem.

Table-1.3 Chloride and EC Variation between Four Stations in Vaza- Barris River

Date	Parameter	Fazenda Belem	Dam site	Check Dam	Ponte SE-302
May 9	CI (mg/l)	167	240	953	1,427
	Conductivity (ds/m)	0.38	1.20	3.80	5.10
May II	Cl (mg/l)	198	279	1,078	1,442
	Conductivity (ds/m)	0.74	1.23	3.70	5.10
May 12	Cl (mg/l)	298	356	1,053	1,416
	Conductivity (ds/m)	0.10	1.60	3.70	5.10
Average	Cl (mg/l)	221	292	1,028	1,428
Correlation	Conductivity (ds/m)	0.41	1.34	3.73	5.10