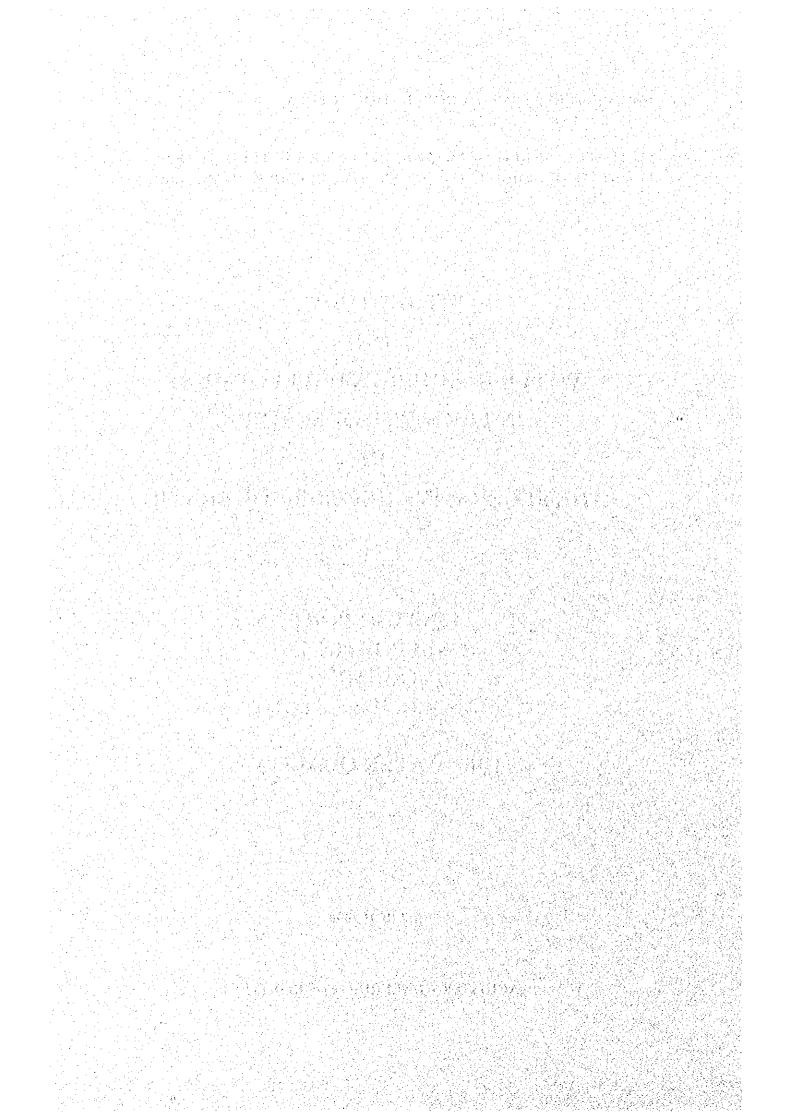
JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL


THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT
SUPPORTING
(VOLUME I)
MASTER PLAN STUDY

[D] WATER QUALITY

MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

SUPPORTING REPORT (D) WATER QUALITY

Table of Contents

Table of Contents
List of Tables
List of Figures

		Page
СНАРТЕ	R 1 CURRENT CONDITIONS OF WATER QUALITY	D-1
СНАРТЕ	R 2 WATER QUALITY SURVEY	D-3
2.1	Methodology	D-3
2.2	Water Quality Standards	D-3
2.3	Results of Analysis	D-7
СНАРТЕ	R 3 PROPOSED VAZA BARRIS DAM PROJECT	D-14
3.1	Discharge	D-14
3.2	Water Quality Estimation	D-14
APPEND Appendix	ICES -1 Results of Water Quality Analyses	

List of Tables

	Page Page
Table-1.1	Potential BOD Loads of Main Municipalities
Table-2.1	Guidelines for Interpretation of Water Quality for Irrigation
Table-2.2	Water Quality Standards Recommended by Different Organizations D-6
Table-3.1	Weighted Average Concentration
	for the Most Critical Water Quality Parameters of Vaza Barris River D-14
Table-3.2	Evaluation of Vaza Barris River for Irrigation Use
	List of Figures
.:	D.
	Page
Figure-1.1	Locations of Main Municipal and Industrial Pollution Loads
Figure-2.1	Location of the Surface Water and Groundwater Sampling Points
Figure-2.2	Classification of Rivers
	according to CONAMA 20 and W.H.O Water Quality Standards
Figure-2.3	Fecal Coliform Contamination Areas
Figure-2.4	Classification of Water Quality
	for Irrigation Use according to the F.A.O Criteria
Figure-2.5	Classification of Groundwater
	according to W.H.O and CONAMA 20 Water Quality Standards D-11
Figure-3.1	Variation of Cl Concentration – Vaza Barris River

CHAPTER 1 CURRENT CONDITIONS OF WATER QUALITY

Effluent from industries and municipalities are considered as major pollution sources in Sergipe. Potential BOD loads from main municipalities are shown in Table-1.1 and 5% of those potential loads, except from Aracaju, are estimated to reach rivers. Regarding industrial effluent, there is no data available.

Locations of main industries and municipalities are shown in Figure-1.1 with potential BOD loads.

Population in 1998 **BOD Loads** Municipality (Area > 10,000 ha) (kg/day) (persons) 20,297 Aracaju 451,048 Boquim 15,174 683 Capela 15,816 718 2,085 Estancia 46,340 51,404 2,313 Itabaiana 640 Itabaianinha 14,226 36,929 1,662 Lagarto 20.710 932 Laranjeiras 10.789 Maruim 486 5.076 N. Sr. do Socorro 112,801 N. Sr. da Gloria 16,220 730 12,884 N. Sr. das Dores 580 10,754 Neopolis 484 23,201 1,044 Propria 16,061 Simao Dias 723 Tobias Barreto 26,612 1,198

Table-1.1 Potential BOD Loads of Main Municipalities

Monitoring of water quality in Sergipe has been conducted by DESO, COHIDRO and ADEMA. Specific task of each agency is described below.

- DESO (Companhia de Agua e Esgoto de Sergipe) DESO has been carrying out drinking water monitoring at about 90 sampling points, distributed over all available tributaries in the State of Sergipe, since 1995. Sampling of water is conducted once every 6 months with occasional discharge measurement.
 - Approximately 80% of the sampling stations have acceptable water quality for public supply purposes. High salinity contents are observed in the upper reaches of Sergipe, Vaza Barris and Japaratuba rivers, resulting difficulty in their use as drinking waters.
- 2) COHIDRO (Companhia de Desenvolvimento de Recursos Hidricos do Estado de Sergipe) COHIDRO has conducted surface water monitoring at points strategically important for multiple use of water. Twelve parameters of water quality were selected for the monitoring of the reservoirs of Jabiberi, Jacarecica and Piaui rivers, and sampling has been done occasionally. Other 22 sites are selected for observation of electrical conductivity and discharge.
- ADEMA (Administracoes Estadual do Meio Ambiente)
 ADEMA carried out water monitoring in the Sergipe, Piaui and Japaratuba basins during 1982-1984. 13 parameters of water quality were analyzed and 9 of them were used for calculation of the Water Quality Index (IQA). The results of the water survey indicate very low organic population and the IQA values suggest, generally, good water quality in all the basins studied.

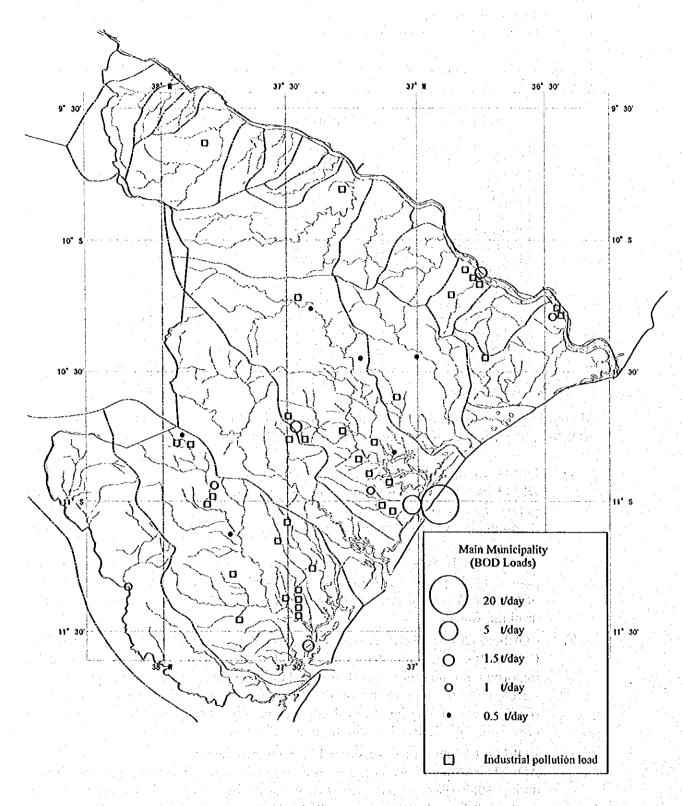


Figure-1.1 Locations of Main Municipal and Industrial Pollution Loads

CHAPTER 2 WATER QUALITY SURVEY

Since there is a lack of water quality data for the Master Plan Study, the JICA Study Team conducted water quality survey to provide basic information concerning current conditions of surface water and groundwater quality in Sergipe State.

2.1 Methodology

For the monitoring of the surface water, two sampling surveys were conducted in 1998, one in August, representing a rainy season and another in October, corresponding to a dry season. The monitoring of groundwater was also completed in September of the same year.

50 stations were selected for the surface water survey based on the existing monitoring points managed by DESO, ADEMA and COHIDRO, (organizations responsible for water resources management), the location of flow gauging stations, and current/future use of water, soil, etc. For the groundwater survey, 50 sampling stations were also selected, based on the information previously obtained by DESO and COHIDRO.

At each sampling point, 24 previously established water quality parameters were analyzed. Electric conductivity, turbidity, DO, salinity and pH were determined on site using portable analyzers, and other parameters were determined from samples sent to IPTS (Instituto de Pesquisa e Tecnologia de Sergipe).

Figure-2.1 indicates the location of the surface water and groundwater sampling points.

2.2 Water Quality Standards

The Standards established by CONAMA 20 Resolution (Conselho Nacional do Meio Ambiente) in 1986 for raw water quality according to the classification of river basins are considered to be appropriate for the present study. As there is no classification of the river basins established in Sergipe State, the CONAMA 20 Standard for Class 2 rivers has been adopted for all basins in this Study.

In addition to the CONAMA 20 standards, the criteria recommended by WHO were also introduced in order to perform a more comprehensive interpretation of the water quality results. It must be mentioned, however, that these water quality standards are aimed at drinking water, that is final treated water, and not at raw river water.

With regards to water use for irrigation, the guidelines published by FAO (Food and Agricultural Organization of the United Nations - 1985) have been adopted in this Study. These guidelines indicate the suitability of water use by dividing water quality parameters into three categories of restriction for use, as indicated in Table-2.1. For industrial use, the Japan Industrial Standards (JIS) for water boilers only were adopted in the Study, since each industry usually has its own specific criteria for the industrial processes concerned.

Table-2.2 shows the upper limit or range of limits adopted by the four organizations mentioned above for the water quality parameters analyzed in this Study.

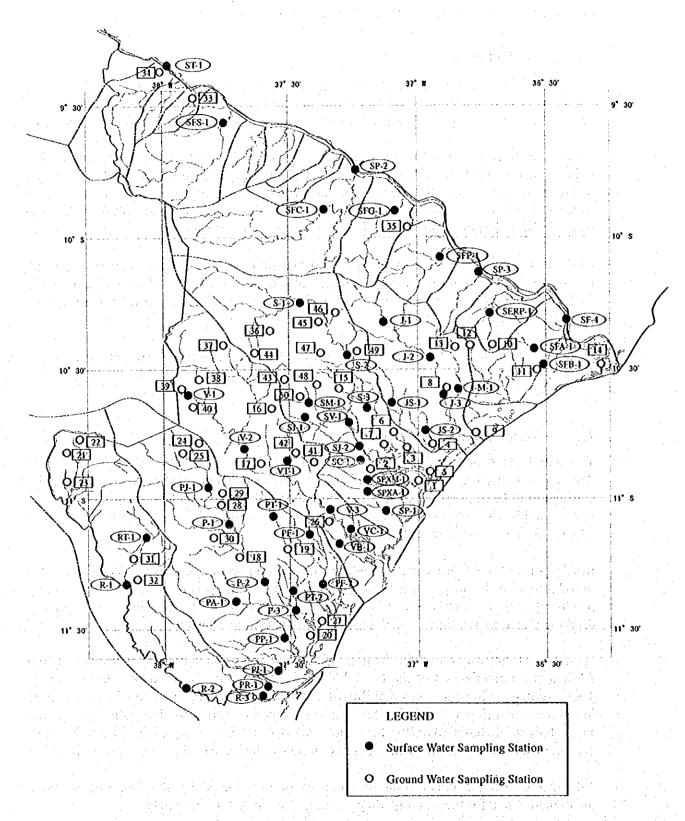


Figure-2.1 Location of the Surface Water and Groundwater Sampling Points

Table-2.1 Guidelines for Interpretation of Water Quality for Irrigation

Potential Irrigation Problem	Units	Deg	ree of Restriction on	Use
	Units	None	Slight to Moderate	Severe
Salinity (affects crop water availability) ¹	* .			
ECW	dS/m	< 0.7	0.7 - 3.0	> 3.0
(or)				
TDS	mg/L	< 450	450 - 2000	> 2000
Infiltration (affects infiltration rate of water into				
the soil. Evaluate using ECw and				
SAR together)2				
SAR = 0 - 3 and $ECw =$		> 0.7	0.7 - 0.2	< 0.2
=3-6		> 1.2	1.2 - 0.3	< 0.3
= 6 - 12 =		> 1.9	1.9 - 0.5	< 0.5
= 12 - 20		> 2.9	2.9 - 1.3	< 1.3
= 20 - 40 =		> 5.0	5.0 - 2.9	< 2.9
Specific Ion Toxicity (affects sensitive crops)				
Sodium (Na)				
surface irrigation	SAR	<3	3-9	. >9
sprinkler irrigation	me/L	< 3	>3	
Chloride (Cl)	7			
surface irrigation	me/L	< 4	4 - 10	> 10
sprinkler irrigation	me/L	< 3	>3	
Boron (B)	mg/L	< 0.7	0.7 - 3.0	> 3.0
				,
Trace Elements (see Table 3.1)	1.00			· · ·
	:			
discellaneous Effects (affects susceptible crops)	,	:		
				٠,
Nitrogen (NO, - N)	mg/L	< 5	5 - 30	> 30
Bicarbonate (HCO ₃)				
(overhead sprinkling only)	me/L	< 1.5	1.5 - 8.5	> 8.5
pH Mark to the second of the s			Normal Range:	
			6.5 - 8.4	

ECw means electrical conductivity, a measure of the water salinity, reported in deci Siemens per metre at 25° C (dS/m) or in units millimhos per centimetre (mmho/cm). Both are equivalent. TDS means total dissolved solids, reported in milligrams per liter (mg/L).

Source: FAO Irrigation and Drainage Paper 29, "Water Quality for Agriculture"

SAR means sodium adsorption ratio. SAR is sometimes reported by the symbol Rna. See Figure 1 for the SAR calculation procedure. At a given SAR, infiltration rate increases as water salinity increases. Evaluate the potential infiltration problem by SAR as modified by ECw. Adapted from Rhoades 1977, and Oster and Schroer 1979.

Water Quality Standards Recommended by Different Organizations Table-2.2

ORGANI	ZATION	W. H. O.	FAO	CONAMA	JIS
PARAMETER	WATER USE	DRINKING	IRRIGATION	MULTIPLE USE - Class 2 -	INDUSTRY USE
pH		6.5 - 9.5	6.5 - 8.4	6.00 - 9.00	7 - 9
DO	(mg/L)	NO REC.	NO REC.	> 4.0	< 0.5
BOD	(mg/L)	NO REC.	NO REC.	< 5.0	NO REC.
Turbidity	(UNT)	5.0	NO REC.	100 UNT	NO REC.
Conductivity	(µS/cm)	NO REC.	< 700	NO LIMIT	< 1000
Alkalinity Met.	(mg/L)	NO REC.	NO REC.	NO LIMIT	< 150
Hardness CaCo,	(mg/L)	500	NO REC.	NO LIMIT	0
Cl.	(mg/L)	250	142.0	250	< 100
Na	(mg/L)	200	69.0	NO LIMIT	
Fe	(mg/L)	1 - 3	5.0	0.3 (sol.)	0.03
Mn	(mg/L)	0.1	0.2	0.1	- 18 ¹ - 1
SO ₄	(mg/L)	500	NO REC.	250	-
Tot. diss. solids	(mg/L)	600	450	500	< 700
Fecal coli	(NMP/100mL)	ABSENCE	NO REC.	1000	-
Total coli	(NMP/100mL)	ABSENCE	NO REC.	5000	<u> </u>
NO ₃	(mg/L)	50.0	< 90	10.0 (N)	
Al :	(mg/L)	0.2	5.6	0.1	e i e e e e
Ba	(mg/L)	0.7	NO REC.	1.0	7
В	(mg/L)	0.3	7.6	0.75	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Cd .	(mg/L)	0.003	0.01	0.001	-
Pb	(mg/L)	0.01	5.0	0.03	Transported A. C.
Zn	(mg/L)	3.0 - 5.0	2.0	5.0	-
Cu	(mg/L)	2.0	0.20	0.02	
Cr	(mg/L)	0.05	0.10	Cr6 0.05	-
				Cr ³ 0.5	
Sn	(mg/L)	0.24	NO REC.	2.0	
SO ₃	(mg/L)	NO REC.	NO REC.	NO LIMIT	5 - 10
F	(mg/L)	1.5 (provisory)	1.0	1.4 (1.2.2.5)	
Hg	(mg/L)	0.001	0.0002	0.0002	-
Ni	(mg/L)	0.02	0.2	0.025	
PO ₄	(mg/L)	NO REC.	NO REC.	0.25 (P)	5 - 15
Ar	(mg/L)	0.01	NO REC.	0.05	
CN	(mg/L)	0.07	NO REC.	0.01	
HCO ₃	(mg/L)	NO REC.	< 92	NO LIMIT	

W. H. O.:

FAO:

CONAMA:

World Health Organization
Food Agriculture Organization of the United Nation
Conselho Nacional do Meio Ambiente. Resolucao nº 20, de 18 de Junho de 1986.

JIS:

Japan Industrial Standards

2.3 Results of Analysis

All analytical results obtained from the first sampling series in August and from the second series in October are presented graphically in Figure-2.2, Figure-2.3, Figure-2.4 and Figure-2.5 to provide easier understanding of the variations in water quality.

Figure-2.2 refers to rivers (according to CONAMA 20 standards), which do not contain fecal coliform, and rivers with and without fecal coliform contamination are plotted in Figure-2.3. Figure-2.4 shows three different river categories according to FAO classification of water for irrigation purposes. Figure-2.5 indicates the location of groundwater sampling stations and the compatibility with water quality standards.

2.3.1 Surface Water

From the data obtained, it could be observed that most of the monitored sites showed low BOD levels of about 1 mg/liter, and satisfactory DO concentrations, indicating a low organic pollution level in the surface waters of Sergipe State. The exceptions were some sites on Sergipe River where some organic contamination, as expressed by BOD, was registered in the second survey.

pH values at most of the sampling stations ranged from 6.0 to 8.2 and were, therefore, in accordance with standards. NO₃, Mn and Fe were also acceptable in both sampling periods. Metallic ion concentrations were always lower than the established standards.

Large variations were observed for electric conductivity (ECw) values, indicating the presence of chlorides, sodium ions, and carbonate compounds, which could interfere with conductivity measurements. Over about 70% of the length of Real River, ECw values were higher than 1000 μ m/cm and chloride values were above standards. Bacteria contamination was checked on all monitoring sites during the second survey. Jabiberi reservoir, however, was not checked.

Salinity parameters were within standards for most of the Piaui river basin, except for Araua River, during the first survey. The second survey showed chloride values above standards in the upper stretch of Piaui River and Jacare River. Fecal coliform contamination was observed in several tributaries, although other control parameters were within standards of CONAMA 20 and WHO.

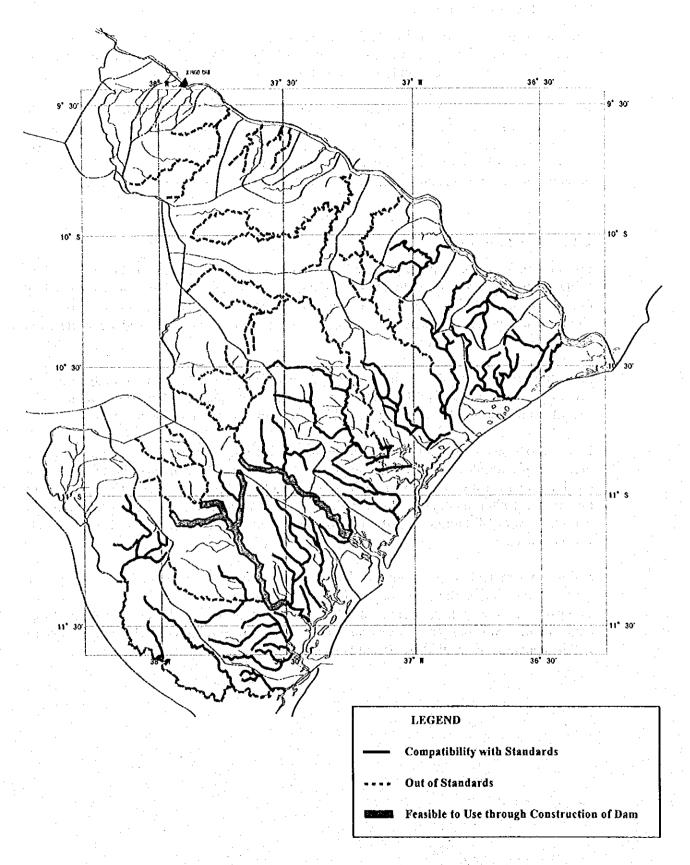


Figure-2.2 Classification of Rivers according to CONAMA 20 and W.H.O. Water Quality Standards

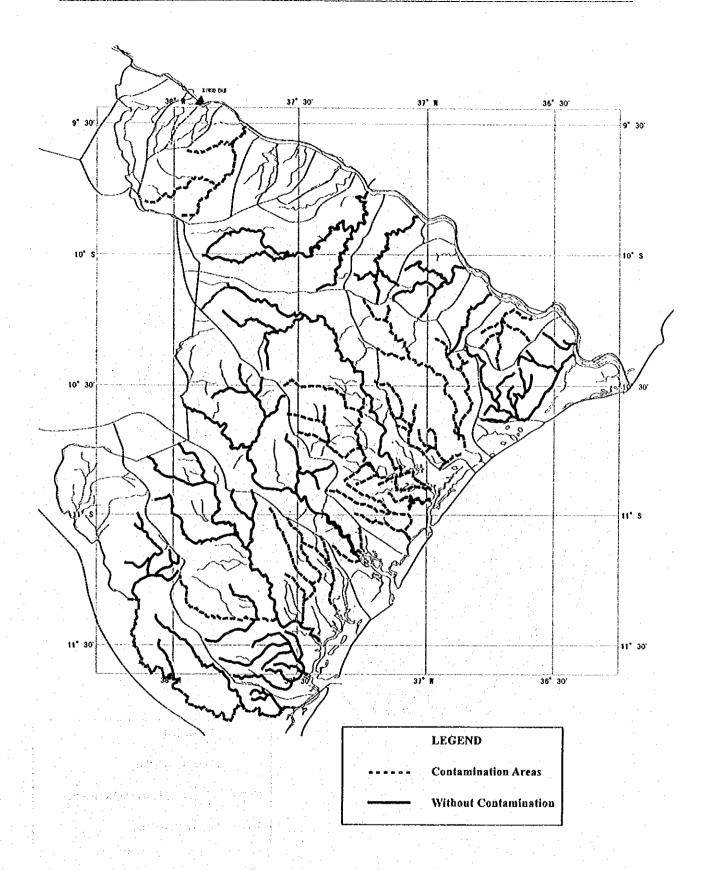


Figure-2.3 Fecal Coliform Contamination Areas

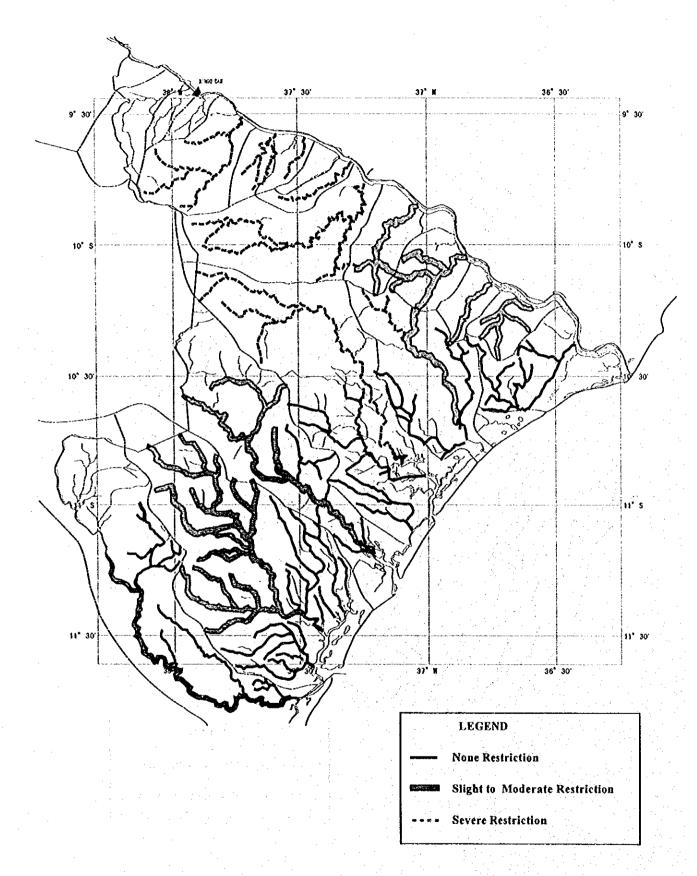


Figure-2.4 Classification of Water Quality for Irrigation Use according to the F.A.O Criteria

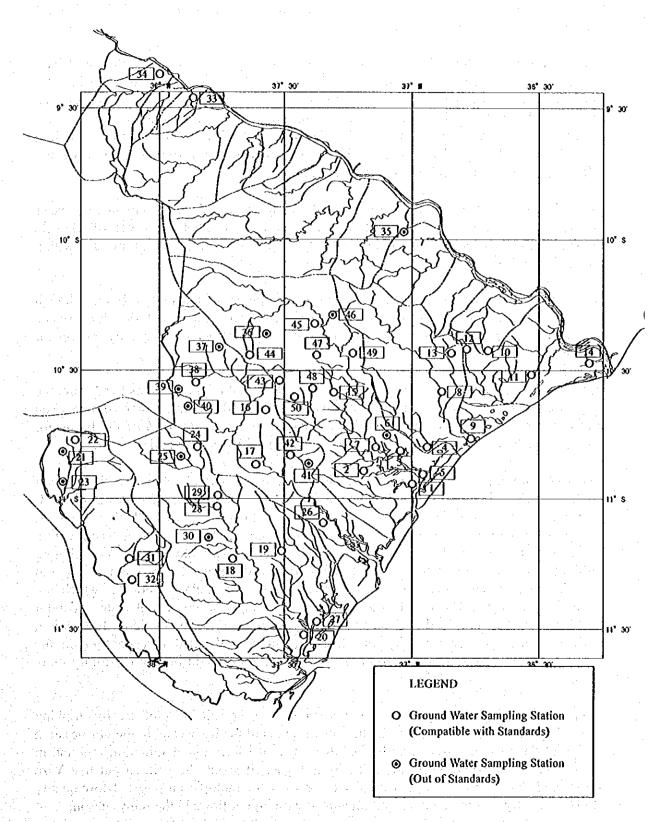


Figure-2.5 Classification of Groundwater according to W.H.O and CONAMA 20 Water Quality Standards

In Vaza Barris river basin, chloride concentrations in the upper stretches of the river reached 2,800 mg/liter during the first and second surveys, in addition to high values of ECw, Na and hardness. However these parameters decrease in downstream sections, due to the contribution of runoff water within the basin. Consequently, tributaries of the lower basin, such as the Trairas and Tejupeba show satisfactory water quality, although fecal coliform in excess of the criterion can be found.

The highest water salinity level was registered in the upper section of the Sergipe River, where 9,263 mg/liter of chloride was found in the first sampling series and 9,084 mg/liter in the second. High values for sulfate and for hardness were also observed in excess of the limits established by WHO. These concentrations were also high in downstream stretches of this river and always above the established standards. High values observed at sampling point No.4 of Sergipe River during the second survey, are assumed to indicate the influence of seawater reaching this sampling point.

Jacarecica, Cotinguiba, Poxim, Vermelho and Pitanga rivers all show satisfactory water quality, except for fecal coliform. It should be pointed out that the water of Marcela reservoir shows characteristics of slight salinity, although chloride values are still within the established standards.

High salinity levels could also be observed in most stretches of Japaratuba River, although much lower than those observed in Sergipe River. The downstream tributaries, for instance the Siriri and the Japaratuba Mirim, presented quite satisfactory water quality, except for fecal coliform.

In the Sao Francisco river basin, the rivers of the northwest region, such as the Jacare, the Capivara and the Pocao, presented greater salinity level and also low water volume, even during the rainy season in August. Other tributaries in the coastal area of the basin, for instance, the Poxim and the Santo Antonio, meet the established standards.

The four sampling stations along the main Sao Francisco River show excellent water quality for multiple use. It should be remarked, however, that fairly high values of pH (7.8-8.2) detected in both sampling surveys are not likely to be caused by alkaline elements. The possibility of an eutrophication process exists. The Sao Francisco river basin, with a drainage area of 640,000 km², includes several cities and agricultural areas contributing nutrients, which easily cause algae proliferation in the several reservoirs along Sao Francisco River. The great hazard of nutrients is their cumulative effects, which are difficult to mitigate. The proliferation of blue-green algae brings about taste and odor problems, thus the use for domestic water supply becomes seriously difficult. In addition, toxic substances are released by the algae. Therefore a detailed investigation on the eutrophication conditions in the Sao Francisco is recommended during the feasibility study phase.

Figure-2.2 and Figure-2.3 presented earlier summarize the suitability of use for drinking water. Higher salinity levels occur in the upper regions of the basins and in the northeastern region of the Sao Francisco river basin, whereas fecal bacteria contamination is found in the coastal areas, where population density is higher. It should be pointed out that Vaza Barris and Piaui rivers show potentiality to be used for multiple purposes if low quality flows in the dry season could be well integrated with higher flows in the rainy season.

With regards to the suitability of the water for irrigation purposes, Figure-2.4 presents three distinct zones according to the restriction level. The restriction free zone is situated in the coastal area and the most restrictive zone in the northwest area, while the intermediate area is a zone of moderate restriction. This distribution shows almost the same pattern as rainfall distribution in the state, indicating that climate conditions definitely influence the water quality of these regions.

For use as industrial supply, the type of industrial process will be important. Even for the use in boilers only, industrial water standards will be specific for each type and capacity of boiler. However, it can be concluded that water suitable for irrigation use without restriction will be of acceptable quality for use in boiler operation.

2.3.2 Groundwater Quality

According to the results obtained at 50 sampling stations (Figure-2.5) distributed over the entire State of Sergipe, in general, high alkalinity and low level fecal coliform contamination were observed in many locations. Ferric ion, which causes color in water, and nitrates, which cause diseases related to blood circulation, showed lower concentrations than standards at all stations. Heavy metals analyzed were always less than the relevant standards and no organic pollution was observed.

However, chloride, sodium and hardness contents were above WHO and CONAMA standards at various locations. For instance, the DESO water supply station at No. 6 Santa Rosa de Lima, and COHIDRO wells at No. 23 Povoado Saco de Camisa, No. 24 Povoado Aroeira, No. 30 Povoado Bonfim, No. 35 Povoado Lagoa dos Porcos(1), No. 36 Povoado Retoro, No. 37 Lagoa dos Porcos(2), No. 39 Povoado Laja, No. 40 Povoado Diogo and No. 45 Lagoa do Croa are not considered entirely adequate for drinking water purposes. At station No. 47 high concentrations of fecal coliform were observed, requiring urgent application of disinfecting procedures.

From the results of the groundwater sampling analysis, it is clear that water quality is closely related with geology. All the deep wells where values of Cl, Na and hardness exceed water quality standards are located in the Pre-Cambrian formation. On the other hand, all the deep wells in the Cretaceous area satisfy water quality standards.

Values of Cl, Na and hardness exceed the standard in 30% of the deep wells in the Pre-Cambrian area. A great number of deep wells were drilled in the Pre-Cambrian area in the past; however, many of these wells have already been abandoned due to poor water quality. Water samples of this survey were taken from deep wells that are still used now because of better water quality than others. However, from the result of this analysis, it is concluded that there are still water quality problems in 30% of deep wells in the Pre-Cambrian area.

CHAPTER 3 PROPOSED VAZA BARRIS DAM PROJECT

3.1 Discharge

Vaza Barris River has its source in the municipality of Uaua in the State of Bahia and its basin extends over 15,700 km², 15% of which is situated in Sergipe State. Although most of its basin is located in the semi-arid region, the flow in Vaza Barris is not negligible, due to its large drainage area and to the intense rainfall that occurs sporadically. This rainfall contributes both to the conservation of its water flow and to the dilution of the high salt concentrations resulting from evaporation. In Chapter 5, it is proposed to plan a dam on Vaza Barris River, in order to store an adequate volume of water of appropriate quality for multiple use.

The flow measured in Vaza Barris River at the ANEEL flow station of Ponte SE-302 in the municipality of Ponte SE-302, situated at the border with Bahia State, during the period of 1985-1993, shows average monthly variations of 1.41 m³/s in November to 9.64 m³/s in April, and an annual average of 4.45 m³/s.

The ANEEL station at Faz. Belem in the municipality of Itaporanga, 86 km downstream of the previous station, shows monthly average variations of 3.14 m³/s in November to 23.04 m³/s in July, and an annual average value of 12.31 m³/s. The basin area of this stretch is 1,305 km² and the specific discharge may be estimated as 6.1 liter/sec/km². This is not a great contribution when compared to the catchment area of the basin under normal climate conditions, but it is still an appreciable water volume to be integrated in the proposed dam.

3.2 Water Quality Estimation

Table-3.1 presents weighted average concentrations for the most critical parameters for Vaza Barris River with respect to public supply and irrigation water use. These calculations were based on eight sampling series carried out from 1995 to 1998 by DESO and JICA at three points along the Vaza Barris River. The flow data obtained by ANEEL on the same sampling dates at the stations of Ponte SE-302 and Faz. Belem was used in the calculation.

Table-3.1	Weighted Average Concentration for the Most Critical Water Quality
	Parameters of Vaza Barris River

'Analita'	Danamatan		Station	
Quanty	Parameter	Ponte SE-302	Sao Domingos	Faz. Belem
CL	(mg/l)	574.0	302.1	125.4
Na	(mg/l)	165.6	106.6	47.4
Con.	(um/cm)	1,832.7	531.6	471.9
Hardness	(mg/l)	1,400.82	286.8	145.7
Ca	(mg/l)	109.4	70.4	42,3
Mg	(mg/l)	68.0	34.3	12.9
HCO ₃	(mg/l)	159.2	119.6	95.6

Figure-3.1 illustrates changes in chloride concentrations along the length of Vaza Barris. The chloride concentration level of 574 mg/liter registered at the first station (Ponte SE-302), decreases linearly to 302 mg/liter at the second station (Sao Domingos) and to 125 mg/liter at the third station (Faz. Belem), 86 km downstream of the first station. Considering the low activity of the chloride ion in the solution, this reduction in chloride

concentration can be interpreted as the effect of proportional dilution produced by surface runoff through the Vaza Barris basin within Sergipe State.

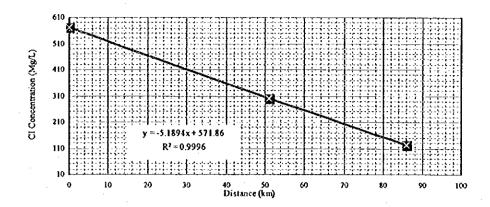


Figure-3.1 Variation of Cl Concentration – Vaza Barris River

The Standards established by the CONAMA 20 Resolution and by WHO are 250 mg/liter for chloride. Therefore, the Vaza Barris River meets the referred standards from a point 10 km downstream of the Sao Domingos station.

With regard to water use for irrigation purposes, Table-3.2 presents calculations determining the restriction of water use following the guidelines published by FAO. The moderate restriction level obtained at Ponte SE-302 and Sao Domingos stations change to no restriction at Fazenda Belem station. This suggests the possibility of agricultural water use in this river stretch.

Table-3.2	Evaluation of Vaza l	Barris River for Irrig	ation Use
 		Sampling Station	
Parameter	V-1	V-2	V-3

· · · · · · · · · · · · · · · · · · ·	Sampling Station	
V-1	V-2	V-3
Ponte SE-302	Sao Domingos	Faz. Belem
1.8 (M)	1.1 (M)	0.47 (N)
6.1 (M)	5.4 (M)	2.4 (M)
7.2 (M)	5.0 (M)	2.1 (N)
11.1 (S)	8.6 (M)	3.5 (N)
2.6 (M)	1.2 (N)	1.6 (M)
(M)*	(M)*	(N)*
	Ponte SE-302 1.8 (M) 6.1 (M) 7.2 (M) 11.1 (S) 2.6 (M)	V-1 V-2 Ponte SE-302 Sao Domingos 1.8 (M) 1.1 (M) 6.1 (M) 5.4 (M) 7.2 (M) 5.0 (M) 11.1 (S) 8.6 (M) 2.6 (M) 1.2 (N)

⁽N) No restriction, (M) Slight to moderate restriction, (S) Severe restriction

It should be emphasized, however, that a greater number of analytical results and simultaneous flow measurements are essential to confirm the above possibility. A further water quality survey is recommended as outlined.

- 1) Frequency of sampling: once a week, with corresponding staff gauge readings at ANEEL flow gauging stations at Ponte SE-302 and Faz. Belem.
- 2) Sampling stations: Ponte SE-302, Sao Domingos and Fazenda Belem
- 3) Parameters to be determined: chloride, sodium, total hardness, calcium, magnesium, bicarbonates, electric conductivity, total solids, suspended solids, total nitrogen and total phosphorus. Total nitrogen and total phosphorus may be done only once a month.

APPENDIX-1

Results of Water Quality Analyses

Appendix-1 RESULTS OF WATER QUALITY ANALYSES
Table-1

			Table-1				
BASIN - REAL	SAMPLING				STATIO		
RIVER PARAMETER	PERIOD	UNIT	R - 1 R. REAL	R-2	R - 3	RP - 1	RJ - 1
PARAMETER			73	R. REAL 8.1	R. REAL 8.1	R. PARIPE 7.3	R. JABIBER 7.2
pH ·	23		8.0	8.4	8.0	7.6	8.1
	13	mg/L	4.50	6.50	7.10	5.70	5.30
DO	23	mg/L	6.10	6.10	6.00	5.50	6.30
BOD	13	mg/L	2.40	1.00	0.60	0.40	1.40
BOD	2³	mg/L	0.40	1.00	0.80	1.60	0.60
Turbidity	l _a	UNT	21	16	16	10	35
	21	UNT	186	8	5	14	7
Elect. Condutivity	21	μmho/cm μmho/cm	1 398 2 147	1 219 1 631	840 589	210	302 524
	1, 1,	%	0.062	0.046	0.042	0.010	0.015
Salinity	23	%	0.107	0.082	0.030	0.101	0.026
Al-al F C-CO	l ₃	mg/L	ABSENCE		ABSENCE	ABSENCE	ABSENCE
Alcal. Fen. CaCO ₃	2'	mg/L	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE
Alcal. Met. CaCO ₃	1,	mg/L	109.20	138.00	95.20	43.20	37.20
Micar. Mici. Caco3	23	mg/L	125.60	170.40	81.60	62.80	50.80
Bicarb. HCO ₃	1*	mg/L	133.22	168.36	116.14	52.70	45.38
	2° 1°	mg/L	153.23	207.89	99.55	76.62	61.98
Chloride	23	mg/L mg/L	346.91 578.99	267.52 385.40	174.89 115.44	31.83 577.23	51.50 70.04
		mg/L	30.66	20.58	10.70	3.70	6.17
SO ₄	2'	mg/L	38.68	37.24	8.64	73.45	18.31
~	1 1	mg/L	48.22	38.58	22.84	7.36	9.64
Ca	23	mg/L	39.90	47.38	22.94	27.43	14.96
Mg	12	mg/L	23.84	27.56	17.69	5.39	4.47
mg	23	mg/L	32.17	46.91	11.60	39.73	6.06
Fe]3	mg/L	2.00	1.26	1.34	1.89	2.58
	23	mg/L	2.65	0.75	0.60	0.93	1.65
Mn	1 ^a	mg/L	< 0.10 0.27	< 0.10 < 0.10	< 0.10 < 0.10	<0.10 <0.10	<0.10 <0.10
	1 2	mg/l, mg/L	218.51	209.76	129.85	40.58	42.45
Hardness CaCO ₃	23	mg/L	232.01	311.38	105.01	232.01	62.28
	1 12	NMP/100mL	240	900	≥ 1 600	500	2
Fecal Coli.	23	NMP/100mL	1 600	1 600	≥ 1 600	≥ 1 600	2
Total Coli.	12	NMP/100mL	240	900	≥ 1 600	900	4
total Coll.	2ª	NMP/100mL	1 600	1 600	≥ 1 600	≥ 1 600	4
N-NO ₃	1.	mg/L	0.38	0.28	0.30	0.42	0.79
	2'	mg/L	2.46	0.28	0.37	0.85	0.21
Na	1,	mg/L	165.00	293.00	192.00	20.80	55.70
	12	mg/L mg/L	291.00 4.41	161.00 3.91	53.90 2.99	99.20 1.94	71.40 2.60
K	23	mg/L	12.30	5.83	1.84	5.83	2.51
n.	12	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pb	21	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Cu	14	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cu	21	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cd	j ^a	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	23	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cı	11	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	2°	mg/L	< 0.05 < 0.0002				
Hg	23	mg/L mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	1 1 2	mg/L	< 0.005	< 0.0002	< 0.005	< 0.002	< 0.005
As	23	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Air Tom-	11	°C	28.0	31.0	30.0	30.0	27.5
Air Temp.	21	°C	31.0	29.0	31.0	31.0	31.0
	1	°C	27.2	30.0	27.6	27.5	27.3
Water Temp				32.5	29.4	31.2	29.9
Water Temp.	2ª	°C	29.3				
	23	mm/dd/yy	08/18/98	08/18/98	08/18/98	08/18/98	08/18/98
Water Temp. Sampling Date	2ª						

			ě		Ta	Table-2						
MASIN - PIAUL RIVER					1 181	6.00	NOTIAN	75. 46	1 10	i,	I- Ad	. 44
ODMONTO TO	LES.	-			PIAULTINGA	PIACTTRICA	and Care	De Alle California	05/400 007/40	NDIAROBA	SPATIA STUTE	94CLO 91VFP
Valla Control		PIAUI RIVER	PLAUT.REVER	PIAUI RIVER	RIVER	RIVER	FUNIOUS KIVEK	FURNO KIVEN	יערעערי ען רע	RIVER		
+6	-	0.8	7.X	7.	2.4	7.3	×	×÷	o×,	7.1	* *	7
2	mv/L	999	6.20	(%) Q	6.50	6 X()	0.44	OX \$	1 /0	0.40	0 0	20 5
ROD	my/L	080	0.40	0.40	0.40	0.41)	8	070	0 00	0	080	
Turbidiry	UNI	16	10	9					7,7%	***	9	1
Elect Condutor	тручит	745	(5X	(Z)	200	W77	WIN C	WX 0	0.037	() (X())	0 (18.)	(OO)
Solimity	7.	1000 V	SENTA S	10000	AHADNOR	AHSENCE	ABSENCE	AHSENCE	AKSENCE	ABNENCE	ASSENCE	AHKENCE
Alcal reacto	, , , , , , , , , , , , , , , , , , ,	- VINCE	10.00	11.00	× × ×	(3) CP	7.20	1: 20	07.15	27.40	(34.40)	36.40
Alca wa Caco	mw.	25,030	13 67	3 /4	673	\$2.22	X0.0%	\$	97.111	(4)5	23061	44.4
Sicaro at O.	J/WIII	2018	X 1 7 X	77 XX	18.41	35.41	37.10	24 n.K	166) 22	20.46	3016	31.83
S Duoing	7,70	****	7.7	1 2	-	4 77	3),0	L) V	3 55 (1	45.44	1013	7.20
NO.		***	3.4%	17 ×5	3.0	¥.03	2.54	2.03	28 4.3	\$	53.50	533
512	1 // //	2.25	100 110	61.0%	\$	4	2 86	55	33.85	08.5	38.99	4.20
W.	7/8			77.		100	72	797	3.	2.33	40.0	2.25
Fe.	-1//km		•	W. 7.		01.77	0.02	01.05	01.05	× 0.10	0102	0/0>
Mh		0)02	01 0.7	217	0,00	10,77	10 10	- L	17 621	24.52	24.54	NC 07
Hardness CaCO,	1/8m	X/ 35	167.32	×	98.0	44.07				(8)	74	,
Fecal Coli	NMP/100ml,	170	Ē.	130	(XX)	LPAK	2000	200	*	(AP)	1879	Š
Total Cols	NMP/100ml,	000	ŝ	300	(X)X	(XX)		Na.	211	3	\$40	
N.NO.	1/am	600	0.87	Ó KO	6.47	3) X O	150		1/2 6.1	10/	1,7
Z.	J/Mw	202.00	1×4 (N)	70, 00	10.50	0.40	21.20	77.6	(X) AC	, , , , , , , , , , , , , , , , , , ,	, C. C.	- S
2	my/l	3.3%	113	3.03	11.1	D.XX	1.17	0.71	7,7	4		
1/2	√l/óm	€0.03	(0.0 >	<0.03	<.0.03	< 0.03	< 0.03	V 0.07	<0.03	¥00×	.000	(A)
ĵ	mø/C	<0.02	<0.02	₹0.05	70:0	<0.05	<0.02	<0.02	<0.02	×0.05	20.02	70.07
920	J/dE	190.0 >	< 0.001	1000	× 6.003	00.00	< 0.001	< 0.06)	< 0.001	(0) CV	1000	V 0.001
	.)/om	< 0.05	\$005	\$000	\$00×	\$0.0 >	500>	< 0.05	< 0.05	<0.05	\$00×	<000
i i	medi	< 0.000	< 0.0002	70000	< 0.002	< 0.000	< 0,0062	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	1/000	A-0.505	\$0.00	\$00.00	< 0.005	< 0.005	\$(X) Q >	\$00.0 ×	\$00 to =-	< 0.005	< 0.005	< 0.005
		1) "(040	24.0	27.0	250	26.0	2×0	0.83	0 •₹	240	240
The form	 	200	٥	1.	23	25.3	23 K	24.7	N 63	9.9	20.2	24.5
Camelon Date		ON/12/0x	04/27/w	187 2/0K	0x/13/4x	XVV I VVO	K6/1/30	(HK) 3/4K	(W) 2/W	0K/12/VR	OK/12/WK	UN/12/VK
Westher		e S	Kan	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy	Cood	Cloudy	Cloudy	Cloudy
Ic		S X	×.2		7.4	- ¥	7.6	\$ ¢	×		,	7.2
22	Wa/L	7 50	6,80	\$ 40	2.00	9 140	6.20	6.50	4 70	ŝ	5.30	X.
MON.	mu/L	04-1	1.20	9% -	0.40	09	0.20	06	l AÜ	0.80	040	0.80
Pacholics	20		٠	91	52	×	14	3.3			95	ę
Flore Condutto	mupoyum	1287	1,924	222	174	250	184	2×	1,474		XAX	223
Salar.	%	1400	0.013	600	A(X) C	6,013	6000	9000	0.074	000	0.00	0.01
Alcal For CaCOs	mark	ARSENCE	ABNENCE	AKING:	AHSENCE	AHNENCE	ABSENCE	ABSENCE	AESENCE	AHNENCE	ABSENCE	AHNENCE
Alcal Mer Carlo.	J/WW 1	164.20	104 00	09 501	14.40	54 XU	14(N)	13.20	158.40	(X) (Yr	0. (6	(V)
Mearly HCO.	. mw/t	20m 42	200 OK	12x x3	15.21	98'00	13 (18	01 41	(43.25	40 7X	%	7,7
Chloride	J/MH	243.27	302.2	124 60	37.19	3K AX	4 XX	24.04	12 12	\$ 5.0 X	1X X4	(NO 0)
SO.	my/l	23.K7	2X X	19.5(24.13	24.40	4.53	5.35	22 K4	\$ 2	\$ \$, , ,
Ca	mg/L	47.18	4 104	22.44	2.50	17.22	2.60	1.24	** **	r 23	\$ £	\$ 2.8
Mx	mg/l.	31.34	32.12	13.3%	2.49	× Λ×	3.0k	*	44 46 6	3	91 67	6
Fo	l/8m	0.33	0.42	[30 0	6.2	1 46	-c	1.22	2	*/	6.13	5
Min	J/84	CI 0.3	< 0.10	0107	0100	0102	01.0	01.0>	200	0.0		01.0
Hardness CaCO,	mg/L	247.27	24117	3		37.00	20.13	44	/			N.
Fecal Coli	NMP/100mL	300	O.Y.	(99,1 4	300	004	(XX	300	77	CV CV	3	200
Total Coli	NMP/10xmL	600	(30	(K)	Š	XX.	(XX)	008 ^	OX.	7	W	267
N-NO.	may	0.30	0.20	200	0.43	690	0.00	3	70	V. 0	100	, G. ;
K.Z.	mg/L	15.00	14X (X)	72.20	O# (1	X 4()	24,30	15.40	00 80	04.7.1	(0)	200
¥	J/gm	4.01	3.12	2 6K	57.	××	1.57	/A 0	// ;			\$ 100 m
q _d	J/mm !	< 0.03	¥00×	<003	<0.03	< 0.03	<0.00	¥00×	< 0.03	< 0.05	000	0.00
Çn	T/AW	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ZO 02	ZO 0>	70 05	20.05
Çq	J/dw	< 0 (0)	< 0.001	< 0.001	< 0.001	(O) (O)	¥ 0.(x) i	C 0 001	000	000 ×	10000	0000
Ç.	~1/aw	\$0.0>	\$0.0>	\$0.0>	<0.0>	< 0.05	CD 02	<000×	\$00V	400v	SO O Y	50.7
Hg	me/L	< 0.0002	< 0.00xi2	C (OO)	< 0.0002	< 0.0002	< 0 (xx)2	< 0.0002	< 0.0002	< 0.0002	< 0.000	< 0.000/
٠	mg/L	< 0.005	< 0.005	< 0.005	\$ 0.00 S	< 0.005	CO 00 2	\$000×	CO.00	× 0.00.×	20.00	0000
Анг Тетр	ပ	31.0	0.0	0.52	0.0	0.0%	2	0		3		2 %
Water Temp.	ر	31.2	2	0.00	70.7	7.2	97	1.0	0.077	0.57	0.07	100 LAN
Sampling Date		10/17/08	10/15/vx	10/2 I/VX	10/15/VX	10/ 5/VK	10/21/98	10/21/08	10/1. I/VK	NA/COVII	10/2 JVB	OVELVA:
Weather					-]

		<u> </u>	Table	÷3				
BASIN - VAZA-				,		LION		
BARRIS RIVER	SAMPLING	UNIT	V 1	V • 2	V -3	VB - 1	VC - I	VT-I
PARAMETER	PERIOD		R. VAZA BARRIS	R. VAZA BARRIS	R. VAZA BARRIS	Ř. TEJU PEBA	R. COMPRIDO	R.
	1.		8.3	8.4	7.9	6.8	7.4	8.0
pН	23		8.2	8.1	7.7	7.6	7.7	7.5
~~	j.	mg/L	7.00	6.00	6.10	6.60	6.40	7.01
DO	2	mg/L	7.30	7.30	6.10	7.00	4.80	5.90
BOD	j ^a	mg/L	0.20	0.20	0.40	0.40	0.60	0.60
DOD	21	mg/L	2.40	1.80	0.80	0.20	0.60	1.40
Turbidity	1° 2°	UNT	19	10	10	19	10	18
	13	UNT	2 6 200	2 280	5	215	5	6
Elect. Condutivity	23	μmho/cm μmho/cm	6 600	3 500	864 398	147	362 398	306 350
	ī.	%	0 000	-	0055	0.011	0.018	0.015
Salinity	23	%	0.350	0.180	0.090	0.007	0.020	0.018
Alcal. Fen. CaCO	1ª	mg/L	ABSENCE		ABSENCE		ABSENCE	ABSENCE
Alcai. Fen. CaCO3	23	mg/L	ABSENCE				ABSENCE	ABSENCE
Alcal. Met. CaCO,	13	mg/L	108.40	144.80	120.00	18.40	152.40	60.80
	2,	mg/L	90.80	108.00	112.80	14.80	175.60	98.00
Bicarb. HCO ₃	2,	mg/L	132.25	176.66	146.40	22.45	185.93	74.18
	12	mg/L mg/L	110.78 2 843.27	131.71 886.96	137.62 302.21	18.06 28.25	214.32 19.31	119.56 56.86
Chloride	2	mg/L	2 031,42	1 280.36	382.68	28.25	19.31	72.96
	1.	mg/L	410.27	124.68	39.30	5.35	6.79	7.00
SO ₄	2'	me/L	401.62	189.29	27.36	8.23	4.20	11.73
C-	18	mg/L	342.63	137.05	63.45	2.79	48.48	9.64
Ca	2ª	mg/L	336.62	184.52	82.28	3.24	59.34	14.96
Mg	12	mg/L	277.53	80.67	29.76	2.55	4.56	9.93
	2,	mg/L	225.99	113.54	31.67	2.34	3.75	14.36
l'e	23	mg/L	0.09	0.16 0.14	1.08	2.14	1.00	1.25
- 11/	1	mg/L mg/L	0.15 < 0.10	< 0.14	0.40 < 0.10	1.08 < 0.10	0.34 < 0.10	0.36 < 0.10
Mn	23	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	1	mg/L	1 997.76	674.24	280.94	17.48	139.84	64.93
Hardness CaCO ₃	23	mg/L	1 770.59	928.04	335.80	17.71	163.63	96.47
Fecal Coli	1ª,	NMP/100mL	170	170	170	≥ 1 600	240	23
i ccai con	2*	NMP/100mL	23	17	90	≥ 1 600	≥ 1 600	500
Total Coli	j.	NMP/100mL	300	≥ 1 600	300	≥ 1 600	≥ 1 600	110
	2³	NMP/100mL	170	27	140	≥ 1 600	≥ 1 600	1 600
N-NO ₃	2°	mg/L mg/L	0.77 1.49	0.36 1.12	0.87 0.53	0.93	0.60 0.51	1.06 0.50
	1*	mg/L	110.00	328.00	111.00	17.60	937	31.30
Na	23	mg/L	611.00	436.00	162.00	17.70	13.90	41.90
V	12	mg/L	15.20	5.37	4.36	1.07	0.59	3.71
K	21	mg/L	14.00	7.68	4.24	0.79	0.82	4.39
Pb	1*	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	23	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Cu	23	mg/L	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	<u> </u>	mg/L mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cd	21	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	1.	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cr	23	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hg	12	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
***	2	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
As	14	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	2'	mg/L °C	< 0.005 30.0	< 0.005 29.0	< 0.005 27.0	< 0.005 29.0	< 0.005 25.0	< 0.005 30.0
Air Temp.	2'	°C	30.0	30.0	29.0	28.0	28.0	29.0
	12	°C	26.5	27.0	28.4	25.0	27.0	26.5
Water Temp.	2ª	°C	28.1	28.3	31.6	25.0	28.0	29.9
Sampling Date	12	mm/dd/yy	08/04/98	05/08/98	08/04/98	08/04/98	08/04/98	08/04/98
ombing Date	2"	mm/dd/yy	10/06/98	10/06/98	10/06/98	10/07/98	10/06/98	10/06/98
Weather	1*		Good	Rain	Good	Good	Good	Good
	2,		• 1	•		-	•	
			the second secon	and the second second	and the second second			

	• .					Table-4							
BASIN - SERGIPE NIVER			,		,		VIV	2. O.	: 9:	1. AX48	· WXdS	. WS	1. V.
PARAMETER	FND		2- 7	020000000000000000000000000000000000000	advia sersons	COTINGUIBA	MCARECICA	MAKRECKA	PITANCARIVER	PONIMACU	P.MEROMRIMER	MARCELAWER	V DANGRARIVER
		SEKCIPE KIVEK	SEKCIPE KIVEK	SEKUITE KLVEK	SCHOOL PLANE	RIVER	KINIX	KIVEX	4.2	VANA V	7.5	7.4	4 6
H¢			× 2	×	, 4	5.5	3	(X) 9	\$ X()	()) 4). 	38.	(A)
8	πy/L	2	200	8 2	90.	08.0	200	3	00.	O XO	001	0.00	0 00
CON	7 (A) (3,	4	\$	۲-	7		111	33	35	07	ر د
AilDierili.	mo/oqui.	5) 100	4.770	2.750	(38)	246	315	414	ļγ	; <u>c</u>	(NA)	ŝ	
Salar Conductor	*			0.138	0.120		0.016	0.021	0,00	0.000	9100	(NO)	(C) (C)
Alex ten Caro	. Wall	ABSENCE	ABSENCE	ARSENCE	ABSENCE	ARSENCE	ABSENCE	AMSENCE	ABATACE ABATACE	ABSENCE	ABNENCE	ABNEWCE	A SOUTH A SOUT
Alcai Me CaCo.	mo/L	252.00	234 40	172.60	08.481	00 94	SX 5X	02 XI	× (3)	2	191 74	27, 72,	- C2424
Bigg HCO.	me/L	307.44	285.97	20%,84	188,86	X0.52	0.1	77 11	10.2	2 2	>6.74	67.516	10.03
Chloride	T/SGI	4.262.08	2,2×1.27	K15.43	KK6.00	47.42	45 4-	3 %	13.74	01.12	C7 47	10 / W	14.3
S	me/L	523.43	126.95	37.86	X0.04	17,60	4 32	× ×		6	25.50	32	
5	J/aw	645.26	228.42	Ub 44	31.22	17.26	-	14.61	76	, , ,	60 m	64.65	74.4
Σ	mp/L	1,025.33	263.40	N7.11	0.40	6.37	ç,	1.4 K.I.	0) }	3 6	3.45	7.70	
Fe	T/8W	6.25	0.81	7 4	2.35	7,7,7	١,٠	, A. 7	6,7	,	1/1/2	0.5	0100
Λin	J/KW	< 0.10	910>	< 0.10	<0.10	< 0.10	00.00	0100	01.0	20.00	12.17	25.616	
Hardness CaCO,	TABIL.	\$ 030 KS	654.40	\$66.33	474.47	0¥.¥0	2) X	77	# 1 T	100	0.07		(1)/9 4
Focat Coli	NMP/ IOUML	300	(44)	240	1,400	0.X-1	av.	AND THE	3	000			
Total Coli	NMP/IOOML	004,14	(09)[<	00≯ <	V (AX)	000	08	200	× ×	3	V. O	*6.1	3
	mg/L	0.42	0.62	980	-	5.0	0 80	/7	3 6	07 (22.00	10/12/	
e Z	mg/L	00 000	X62.00)	301.00	420.00	28.60	0 0	SO.		27	20.74		144
7	T/S/TH	31.70	10.8	*	13.20	80%	3.78	9)	06.1	50 O	0.00	200	200
P.	mg/L	< 0.03	< 0.03	< 0.07	< 0.03	< 0.03	< 0.03	€ 0.03	\$0.03	2002	30.00	000	
Çn	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	ZO 05	Z0 02	70.07	70.07	2000	18/8	100.4
	mo/L	100.00	00.00	100.05	100:0 >	100.0 >	< 0.061	(A)	<0.00	1000>	(A)(A)	1000	1000
	mo/l.	× 6.05	\$0.05	< 0.05	<0.0>	\$0.05	<0.05	< 0.05	₹0.05	<0.05	0.000	0000	5000
1	mo/l	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	20x00 >	20000	0.000
**	TION.	×00.00×	\$(0) (0) >	\$000 V	< 0.005	< 0.005	< 0.005	< 0.005	<0.00×	€000×	\$000 ×	< 0.000	(00.0 ×
A. P. Carro		27.5	90%	28.0	0.0%	27.0	25.0	26.0	24.0	27.0	0.77	n c	200
Water Temo	٥	240	28.7	27.0	26.0	24.0	25.6	2,72	7.4.7	0.67	200	2.67	2007
Vampling Date		08/06/498	R6/90/20	86/90/80	XP/90/K0	86/50/00	08/05/98	9K/05/9K	08/03/68	08/03/48	000000	WASON O	1,7%
Weather			, pool	pos S	Cood	Kam	Rain	Kan	Kain	Kann	Lie,	Kan	805
Ic		0.8	* 2	× /.	7.4	7.0	○ *	*	*	**			
00	7/8ш	8.70	7.70	8	20	3	2 9	OW C	0.0	() KQ	98.0	05.3	0,0
ROD	m8/L	007	2 40	98.0 0	2 %0	30	7,07	100	27.0	35	×		=
Turbidity	LZO.	7.	//			500	1497		9	CSC.	34.	1123	55
Elect, Condutiv.	hmho/cm	763,577	X-30	7.63.7	203	7777	2600	0.044	0.00	4100	0.017	9,00	0000
Salmity	*	200	SX N. C.	2/15/2014	2/12/01	A LICENSE	AHADA	ARNENCE	ABNENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE
Alcal Fm CACO	J./w	ABSENCE	ABSENCE	ADDRINGS.	164 d0	33.60	(X) (X)	\$ \$4 \$5.85	0%×	42.80	153.30	26× K0	0,10
Alcal Mer CaCO.	7/2E		22.075	2000	1700	33 (5	32.00	77.63	10.74	52.22	On 531	.27 w	11.71
Broard ACU	Jagur	77 067	10, 500 6	747	55 CAS 1	XX 11	71.77	17×11	[04]	21 10	37.19	285,40	12.16
Chlonde	mg/L	10 - C 2	2,165.00	15.63	10101	; × ×	===	\$0.5	2.20	×	4.32	4.84	2.67
	, A	2 477	7.16	74.81	2,04	10.22	35 02	19.45	3	14.46	2017	46.14X	2.24
	2/4	2 10	N. 1.C.	x 20	2×2.20	4 1 X	₹X.Þ	21.73	141	2.35	15.0%	43 5K	101
	mo/L	0.37	0.78	4Z 0	0.52	0.40	1.24	1.47	\$2.1		ž e	200	0.34
X	ms/L	< 0.10	01.0>	< 0.10	< 0.10	010>	< 0.10	< 0.10	< 0.10	< 0.10	0.03	01.00	0/03
Hardness CaCO,	mg/L	5,734.17	2,014.X2	525.07	4,090,69	42.74	62 KO	37.58	3	V 6.	50.00	727	× 1
Fecal Coli	NMP/100mL	176	220	900	120	000	(A)(4)	004,14	3	26	200.12	1,77	200
Total Coli	NMP/100mL	006	220	900	1,70	004	Ωξ. •	(SE)	300	300	O PO	24.0	140
N.V.O.	my/l.	0.43	ð: 4	0.53	760	0.7	V/ 0	0.0	650	14.10	02.66	80.62	% OF
₹Z	mg/L	3 444 (5)	1,402 (%)	215 (X)	4 /5/ (0	0, 4	30.50	200.00		65.0	30.0	3	< 0.50 >
¥	mg/L	(%) A.	2 10	79 7	742.0XI	57.03	50 O	-0.03	5003	£0.03	<003	< 0.03	60.05
£	mg/L	< 0.03	* 0.03	1000 y	00.0	(0) (0)	5000	20.05	¥0.02	<0.02	20.05	(0 g)	20 05 ◆
3	mg/L	70.00	70.05	70.00	1000	1000	100 o v	10000	(0.02)	(00.0)	100'0 >	1000>	< 0.003
2.0	T/SE	Y	34.12	000	\$0.0×	\$0.0 ×	\$0.05	\$0.0×	<0.05	\$0.0 ×	<0.05	\$0.05	< 0.05
5 3	may L	CONTRACT	COO.00	< 0.0002	< 0.0002	< 0 (XX)2	< 0.0002	< 0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.000,
A.	mo/l.	> 0.00	90 0 ×	<0.00.5	< 0.005	<0.00 >	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Air Iomp	٦	0 X	30.0	30.0	27.0	27.6	27.6	2K.0	31.0	36.0	0.00	o X	310
Water Temp	٠, ٥	27.7	29.3	30.8	2x.7	2.5	27.8	202	26.4	25.0	(C)	2	27.77
Sampling Date		X6/X0/01	10/13/98	TO/OX/VR	10/07/v×	14)77,74%	1007/08	10/0/AR	10/11/98	AND STATE	to word	### MANAGE	on some
Weather								-					
		:	-										

Table-5

BASIN -			<u> </u>		STATION		~~~~~~~~	
JAPARATUBA R.	SAMPLING	UNIT	1-1	J - 2	J-3	JS - 1	JS - 2	JM - 1
PARAMETER	PERIOD	ONII	R. JAPARATUBA	R. Japaratuba	R JAPARATUBA	R. ŞIRIRI	R. SIRIRI	R. J. MIRIM
pH	j,		8.1	7.4	7.6	7.3	7.2	7.5
	23		7.8	8.2	7.8	7.7	7.7	7.6
DO	1°	mg/L	8.10	6.80	6.30	6.80	6.00	6.40
		mg/L mg/L	5.50 0.80	5.90 0.20	6.20 0.20	5.40 0.20	5.80 0.60	5.60 0.80
BOD	2'	mg/L	0.40	2.60	0.80	1.40	1.00	0.60
T. 1.14	Į,	UNT	12	7	9	12	12	37
Turbidity	2'	UNT	5	19	4	29	17	48
Elect. Condutivity	10	µmho/cm	5 660	1 644	1 110	280	344	350
	2'	μmho/cm	10 600	8 500	949	445	860	315
Salinity	l' 2'	%	0.500	0.084	0.056	0.014	0.017	0.017
	1'	% mg/L	0.580 ABSENCE	0.058 ABSENCE	0.050 ABSENCE	0.022 ABSENCE	0.043	0.016
Alcal. Fen. CaCO,	21	mg/L	ABSENCE	ABSENCE	ABSENCE		ABSENCE ABSENCE	
	1	nig/L	331.60	150.00	130.80	42.80	60.40	60.40
Alcal. Met. CaCO ₃	21	mg/L	246.80	103.60	102.80	. 42.80	50.00	44.40
Bicarb. HCO ₃	1*	mg/L	404.55	183.00	159.58	52.22	73.69	73.69
Dicaro. HCC3	2.	mg/L	301.10	126.39	125,42	52.22	61.00	54.17
Chloride	1,	mg/L	2 485.62	425.60	248.56	50.00	89.05	92.63
· · ·	2* 1*	mg/L	3 605.05 55.96	313.30 19.34	210.29 26.54	81.90	74.75	60.44
2O1	21	mg/L mg/L	67.90	19.34	11.11	3.50 5.97	5.76	5.56 4.53
	1,	mg/L	203.04	40.61	32.99	7.11	14.22	8.63
Ca	21	mg/L	286.75	19.95	24.94	11.97	11.47	8,23
Ma	1*	nig/L	256.04	45.14	26.25	4.48	7.45	10.24
Mg	21	nig/L	367.52	33.59	22.25	5.50	5.65	5.98
Fe	la la	mg/L	0.37	1,24	1.52	2.36	3.22	3.42
	2'	mg/L	0.23	0.69	0.64	2.21	1.31	2.60
Mn	1°	mg/L	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10
	1°	mg/L mg/L	1 560.75	287.18	190.41	< 0.10 36.21	< 0.10 66.18	< 0.10 63.68
Hardness CaCO,	2'	mg/L	2 228.51	188.05	153.86	52.51	51.90	45.18
F 101	1'	NMP/100mL	≥ 1 600	1 600	130	1 600	1 600	≥ 1 600
Fecal Coli	21	NMP/100mL	130	170	280	1 600	≥ 1 600	≥ 1 600
Total Coli	1,	NMP/100mL	≥ 1 600	≥ 1 600	500	: ≥ 1 600	≥ 1 600	≥ 1 600
Total Con	2'	NMP/100mL	300	300	900	≥ 1 600	≥ 1 600	≥ 1 600
N-NO ₃	1'	mg/L	1.27	1.24	1.32	0.85	0.71	0.84
	2.	mg/L	0.49	0.44	0.55	0.36	0.45	0.45
Na	l* 2*	mg/L	918.00 1,517.00	200.00	129.00 105.00	32.50	51.20	55.20
	1,	mg/L mg/L	9.12	148.00 5.08	4.28	81.70 2.62	85.70 2.62	34.90 3.64
K	2'	mg/L	9.98	5.35	4.16	2.53	2.53	2.97
Рь	1.	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
10	2,	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Cu	<u>l'</u>	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	2'	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cd	1' 2'	mg/L mg/L	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001	< 0.001
	1'	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001 < 0.05	< 0.001
Cr	21	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
lla	1'	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg	21	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
As	1.	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	21	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Air Temp.	10	°C	27.0	28.0	30.0	30.5	28.0	30.0
	2'	°C	30.0 27.0	31.0 25.4	29.0 26.0	30.0 24.9	30.0 24.6	29.0 25.0
Water Temp.	21	°C	27.2	26.7	26.7	26.0	25,7	27.6
	1'	mm/dd/yy	08/11/98	08/11/98	08/11/98	08/11/98	08/11/98	08/11/98
Sampling Date	21	mm/dd/yy	10/13/98	10/15/98	10/13/98	10/13/98	10/13/98	10/13/98
Weather	1,	•	Good	Good	Good	Good	Good	Good
neauter	2'			F	3 3 4 ·		. •	

						1able-6						
BACIN SÃO PRANCISCO RIVER	ISCO RIVER	1. 48	₹- 48	84 .3	874	SFB •	SFA - 1	SERP -	1- 248	1 - 448 I	SFC - 1	NF) +1
PARAMETER	ENS	S.FRANCISCO	S.FKANCISCO RIVER	S.FRANCISCO	S.FKANCISCO RIVER	BETUME RIVER	ST. ANTONIO RIVER	PILÓES RIVER	GARARURIVER	POCÃO RIVER	CAPIVARA RIVER	JACARÉ RIVER
Ho	<u> </u>	7.8	1 ×	K.2	0*	4.2	3.5	8,0	x 2	* *	x 2	×
00	me/l.	2000	04.6	064	200	08 +	560	7.50	7.50	0.70	3,5	(S)
HOD	mg/L	0.20	0.20	0.80	(9.64)	001	0.40	OH O	0,40	980	Ę,	0 1
Turbidity	_ Z	91	4:	4	·			7	7	,		(S)-1
Elect Conditive	mmho/cm	*	20.4	001	7.3	3.7	27.3	/ // (2000	0.20	0700	0.410
National	*	3000	2000 C	S S S S S S S S S S S S S S S S S S S	AGGINA	3003NH V	AMSENCE	AMNINGS	AHNENGE	ARSENCE	ARNINGS	AXXINGE
Alcal real Carco	7 / /	Anaros E	7 20	10.00	0X X.C	06.11	0.00	16,3 60	17.63	247.40	30, 00	16.40
C 200 C	17/AL	64.57	34 14	2	3	٤.	7.12	33	45.87	363.07	372.K3	752 01
Contract Contract	, (Au	×5 ×	2, 4		h 711	9 0 0%	17.52	238 Q	30.0%	1,924.12	4,273 K4	7, 1×2, 2
Calcado	, /AE			1	1.1	41.61	11 6	73.43	21.9	167.07	33403	36130
100	, AE			*3.*			100	333	27.0	20,505	380 70	241.11
512	my/L	2000	***		74	2	11.1	2,4%		127.10	42 30	187 43
WK	- /sw		7000			80.0	0, 0	0.73	1 × 0	490	**	640
2	, (au	0.0	200		11.00		91.7	0100	010>	0107	010>	0 0 >
Alls	, Au	0107	27.42	27.75	00/ 20	1,6 3,1	10.01	16.0%	1.X.7.	A) 000 I	2 4 4 4 5	373.46
Hardness CaCO,	way.	77 07	1017	,	10.00	176		1 6000	χ	•	57	1 6(3)
Focal Coli	SAPAICON.	6	, POC	200	200		1000		1,7,7	18/2	1,700	(40)
Total Coh	NMP/100ml,	5.	- KK	(XX	200	C C CONT	100	(X)	, T.	377/	20	141
QN-7.	my/L	U.A.K	() 4()	0.43	0.47	9.0	0.41	9.0	***	101 64	270.3	(A) (A)
Z,	mg/L, 1	2.21	2 %	3 (3		0.4.50	× 4.4	121 00				200
[K	mg/L	(×	1.76	×	.7	50	0.22	3.02	X0 -	00.07	OI -	0) 6
44	mg/L	<0.63	€0.03 •	< 0.03	c 0.03	V () ()	50 0 ×	¥003	5003	10.0	50.0	200
Ç _n	my/l.	< 0.02	C 0.02	< 0.02	< 0.02	< 0.02	4 0 02	< 0.02	7007	7002	7002	70.07
3	7/4w	100.0 >	< 0.001	< 0.001	< 0.001	(000)	- 00 D >	< 0.001	100.0>	00.00	0000	1000
Ċ	1/6W	\$0.0 ×	< 0.05	<0.005	0.05	< 0.03	\$0.0 x	(00)	< 0.03	4004	<0.05	<0.05
H _X	1/6m	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	× 0.0007	< 0.0002	70000
٧.	1/Au	<0.000 >	<0.005	\$000	< 0.005	\$00.0V	¥000×	< 0.00%	40 0X)	<0.00	\$ (1.00)	<0.00
Air Tomp		0.00	2× 0	28.0	0.00	28.0	27.5	27.0) 4 2	25.0	5.72	30.0
Water Temp	٥.	28.7	25.6	25.K	25.7	27.0	26.4	27 ×	240	27 X	0 42	200
Sampling Onte		OK/ LO/WK	X0/6 (XI)	OX/20/9X	UK/20/VK	GK/20MA	UK/20/vk	OK/20/9K	08/19/08	UK/ WWK	(3K) (VX)	03/1/08
Weather		(1000)	Pow5	Cloudy	Cloudy	Closidy	Cloudy	Cloudy	Cloudy	Cloudy	gous)	David Contract
Ha		4.4	7.8	× ×	**	0.0	÷	7.2	×,	K.h		
<u>06</u>	-7/8ш	07.9	7.20	7.00	7.10	3.10	÷ 40	(S v.	930	A K()		
008		0.20	0.00	0.40	0.80	(34)	1.20	0 0 0	2.40	2 60		
Turbidity	UN'T	. 2	2	7	7	4.	4	v:	,			
Elect. Condutiv	mo/oumn	J 14	49	(9)	7.7	147	<u>\$</u>	- (54%	×	7,800		
Salinity	*	0.004	0003	0.003	0.604	0.007	6,005	0.052	0.0034	0.420		
Alcal Fon CaCO.	mo/l,	ABSENCE	ARSENCE	ABNEACE	ABSENCE	ABNENCE	ABSENCE	ARSENCE	ABSENCE	15.60		
Alcai Mor CaCo.	//ww	38.00	27.60	32.40	(1× ×)	10.20	5.60	00 021	33.60	302.40		
Beach HCO.	J/AW	44.30	33.67	5 93	35.14	27.42	6.83	145.40	30.04	440 00		
Chlonde	me/L	444	200	X 44.	4 43	20.05	17.25	60.00	10.21	2,450.74		
.05	1/201	\$0.65	A 3×	535	2.47	K 23	\$ 1¢	72.42	10.24	182.50	1)
	mv/L	X7.0	7 CX	× 73	* 5	4.74	2.74	46.83	K 23	187.01		
ŝ)/OE	ş	3	1 ×2	1.53	2.76	<u>e</u>	14.62	χĊ	14041	1	
93	,/vm	0.03	0.23	0.22	() (2)	2.2×	44.0	0.71	18.0	1.24	1	
Ma	- I/AE	01.0>	0.0>	01.0 >	010>	< 0.10	01.0>	0.0>	() () >	210		
Hardren CaCO.	1/AE	31.75	25.52	17.00	76 KA	23.20	9	L47 X2	27 47	1,251 63		
Hogs Col	NMW tooms.	×	9	280	003	1,660	009/14	240	009' <	008		
Floral Coli	NMP/100mC	*	0%	600	000	009°1⊀	009'18	300	0091<	90%		
OZ-Z	1/6W	11.0	6.32	0.40	0.21	\$ O	0.32	61.0	0.17	0.29		
	wo/	14.	2.73	4.33	2.3	17.70	7 XX	105 00	:6°	1,125.00		
	2007	200	20	×	2.07	1.4.1	0.27	44.0	02	31.16		
		2003	30.00	2002	000	5000	< 0.03	× 0.03	100>	5003		
97	, in the second	COLON	0000	(0.0)	00.00	CO 03	CO 03	60.03	20.05	<0.02		
	200	1000	0000	× 0.600	1000	(0) 0>	< 0.001	<0.000	1000>	100.00		
	1/54	\$00×	\$B G \$	×110×	1000	\$0.0×	<0.0>	\$0.0×	<0.0>	×0.0×		
-	mo/l	< 0.0002	< 0.0002	< 0.00X12	< 0.0002	< 0 (XII)2	< 0.0002	< 0 0XO2	< 0 0002	< 0.0002		
***	ma/i.	< 0.00b	< 0 (NIA	< 0.005	(A) 0 ×	40 00 ×	< 0.005	<0.00	< 0.005	< 0.00×		
Aur Temo	2	32.6	0.56	0.08	300	0.0%	31.0	7 1 5	32.0	902		
Water Comp	D,	24.5	27.4	27.4	2K (2× /	27.4	\$ 9 ?	20.5	30.4		
Sampling Date		. 34/M/)	I follows	X4/25/10	14/22/4K	10/.2/VX	10/7 J/VK	10/22/98	X6/70/11	K9/#(711		
Weether										•		

Γ.
J.
2
Δ
্ব

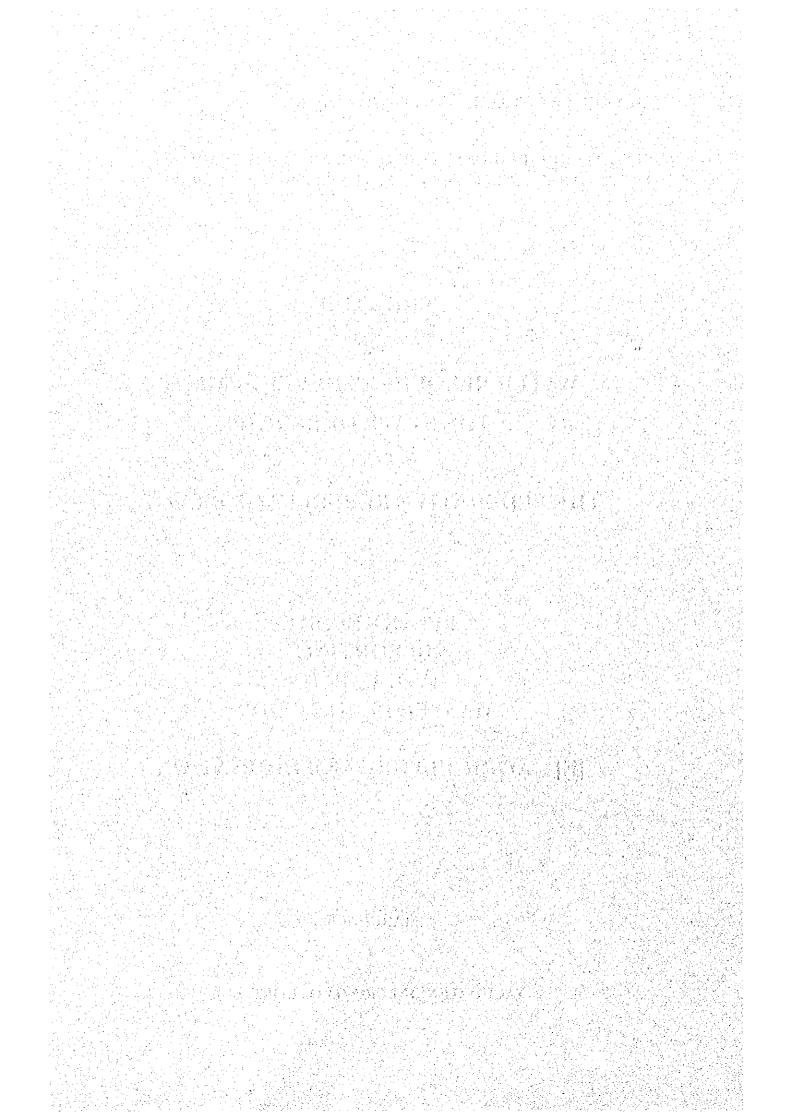
GROUNDWATER																		
PARAMETER	TINO	10	02	03	8	s	%	0.0	80	60	10	11	12	13 }	14	15	16	17
モ	-	8.9	6.7	9:2	1.0	7.5	5.8	4.4	7.1	5.6	7.1	7.0	6.4	5.8	7.2	8.9	9.9	6.7
8	π/Z/	2.00	0Ľ7:	015	2.00	2.80	4.40	3.30	3.40	1.00	5.90	6.70	2.50	.4.80	5.00	06.9	5.40	4.90
BOD	mø/L	0.20	2,20	0.20	0.20	0.40	0.20	1.00	. 09.0	0.20	0.20	09.0	2.40	0.20	0.20	0.20	0.20	09.0
Turbidity	TAD	42	1	11	0.		0	1	1	11	16	34	0 .	0	1	. 0	0	0
Elect. Condutiv.	umbo/cm	107.2	85.8	55.7	95.4	65.4	26.8	32.5	39.6	18.4	28.9	26.8	95.3	17.5	45.2	42.1	91.9	47.5
Salinity	%	. 0.042	0.043	870.0	0.048	0.033	0.013	0.016	0.020	.600:0	0.014	0.013	0.048	0.011	0.023	0.021	090.0	0.024
Alcal. Fen. CaCO,	ப∕த்ய	ABSENCE	ABSENCE	PARTENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE	ABSENCE
Alcal Met CaCO,	T/8m	376.80	.348.80	. 359.60	420.40	194.40	28.00	ABSENCE	233.60	28.40	38.40	00'96	140.00	09.61	191.20	144.00	156.40	96.00
Bicarb, HCO,	møÆ	459.69	425.54	438.71	512.89	237.17	34,16	ABSENCE	284.99	34.65	46.85	117.12	170.80	23.91	233.26	175.68	180.81	117.12
Chloride	møL	82.66	\$5.08	26.46	65.81	78.32	51.50	64.02	24.68	40.77	80.1I	21.10	195.99	38.98	64:02	56.86	260.36	62.59
'os	mg/L	39.50	20.78	7.82	19.55	11.52	3.50	2.47	4.32	4.32	3.70	5.97	23.45	10.29	7.41	9.26	13.17	7.00
ទ	T/am.		124.36	16.56	90.35	53.81	88.8	2.54	. 68.02	2.28	8.63	17.77	32.49	4.57	24.36	46.70	68.02	22.33
Mg	møT	9.44	76.7	23.42	38 62	12.86	6.44	4.22	11.82	1.65	66'5	99:9	26.40	2.38	10.70	5.95	43.07	13.45
Fe	mg/L	2.86	11.0	NOLIMIT	NOLIMIT	0.03	0.04	01.0	NOLIMIT	2.94	1.33	2:96	0.22	NOUNT	3.08	0.04	NOLIME	0.02
Mn	møL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	01'0.>	< 0.10	< 0.10	< 0.10	< 0.10	0.30	<0.11	< 0.10	01.0	< 0.10	< 0.10	< 0.10
Hardness CaCO,		362.09	330.88	330.88	. 384.57	187.29	48.70	23.72	218.51	12.49	46.20	-62:12	189.79	21.23	104.88	141.09	347.11	111.13
Fecal Coli	NMP/100mL	30	05	<2	<2	7	7	13	4	<2	8	<2	11	<2	<2	<2	<2	<2>
Total Coli	NWP/100mL	.∵ 0€	05	<2	<2	. 17	11	240	30	<2	8	<2	11	<2	. <2	<2	. <2	<2
N.NO.	mg/L	1.31	. 60'9	1.13	4.87	1.09	2.32	50'6.	1.62	0.82	2.64	2.21	5.78	2.81	1.70	2.98	9.11	4.62
Na	møL	20.00	57.70	14,00	57.70	49.20	258.00	33,20	10.30	18.00	40.80	13.60	108,00	11.90	65.40	36.90	123.00	35.40
X	møL	2.04	96'0	1.27	2.20	3.27	5.88	08.0	0.88	96.0	3.58	2.35	12.10	2.81	7.10	2,81	2.81	2.50
Pb	møL	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<.0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
On	mø/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<:0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cq	mg/L	. <00'0.>	< 0.001	< 0.001	. 100 0 >	< 0.001	< 0.001	. < 0.00T	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	v 0.001
ŏ	mg∕L · ·	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
He	mol	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
₽	møL	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Air Temp.	ာ.	27.0	27.0	25.0	28.0	30.0	27.0	24.0	28.0	28.0	30.0	27.0	31.0	30.0	28.0	30.0	30.0	30.0
Water Temp.	္ ၁.	25.4	27.1	26.2	27.0	31.6	26.2	25.5	28.5	29.5	27.0	26.8	28.1	28.6	29.7	27.3	26.8	26.7
Sampling Date	-	86/92/80	86/92/80	86/92/80	86/97/80	86/92/80	86/97/80	86/92/80	86/27/80	86/27/80	08/22/98	08/27/98	08/27/98	86/22/80	86/22/80	86/10/60	86/10/60	09/01/98

∞
ble-8
Ę

GROUNDWATER	×																	
PARAMETER	TING	18	61	20	21	22	23	24	25	56	27	28	29	30	31	32	33	35
Ho	ļ.	0,7	7.3	6.7	7.7	7.5	7,3	7.0	7.3	7.1	8,9	6.0	0.9	7.2	6.3	6.4	7.4	7.8
8	me/L	2.10	2.8	1.7	4,4	9,4	5.2	4,2	4.5	5.0	6,0	5.0	4.3	3.4	5.1	4.8	6.5	5.5
BOD	mo/L	1.80	0.40	1.20	0.20	08'0	0.20	0.20	0.20	0.40	0.20	0.20	0.40	0.20	0.20	0.20	0.20	0.20
Turbidity	LNS	7	٥	٥	0	3	0	8	2	0	6	0	0	2	0	2	•	
Elect. Condutiv.	umho/cm	88.4	49.0	84.8	50.7	82.9	261.7	234.0	194.1	27.7	20.7	9.19	9.89	222.7	32.3	24.3	121.9	7.3
Salinity	%	0.044	0.025	0.042	20.0	0.042	0.130	0.092	0.097	0.014	0.010	0.029	0.034	0.111	0.016	0.012	0.061	0.004
Alcal, Fen. CaCO.	Tam	ARKENCE	Ľ	ABSENCE	ABSENCE	ABSENCE	ABSTNC:	ABSENCE	AESENCE	ABSENCE	ABSENCE	ARSENCE						
Alcal, Met. CaCO,	n s/L	326.40	ı	287.60	300.08	262.40	482.40	512.40	576.80	76.00	31.60	15.60	26.40	449.60	26.40	17.60	254.00	34.80
Bicarb. HCO,	ms/L	298.21	274.26	350.87	366.98	320.13	588.53	625.13	703.70	92.72	38.55	19.03	32.21	548.51	32.21	21.47	309.88	42.46
Chloride	m¢/L	85.48	26.46	76.53	97.99	178.11	507.85	570.44	382.68	16.91	31.83	163.80	231.75	624.09	\$5.08	51.50	249.63	5.01
so.	m¢/L	22.84	11.52	28.80	22.02	19.34	126.74	101.02	261.92	5.56	12.96	6.17	6.17	112.96	8.85	1.23	44.24	8.64
្វ	ms/L	81.22	51.78	62.94	42.39	59.84	201.97	199.48	127.17	12.97	6.23	16.96	19.95	187.01	1.25	1.75	94.75	8.48
Mg	mø/L	22.01	21.07	32.80	30.66	45.59	73.28	92,60	44.49	5.19	5.57	17.60	22.31	52.69	0.73	0.72	17.87	0.94
Fe	mø/L	0.51	NO LIMIT	10.0	0.01	0.49	0.01	0.76	0.02	0.04	1,40	80.0	0.09	0.04	0.05	0.08	0.03	0.29
Ma	mg/L	0.53	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.48	< 0.10	< 0.10	< 0.10	< 0.10
Hardness CaCO,	T/2/II	293.42	216.01	292.17	232.01	337.02	805.93	879.19	590.65	53.73	38.46	114.78	141.65	683.82	6.10	7.33	310.16	25.03
Fecal Coli	NMP/100mL	4	42	~	2	4	20	08	240	<2	<2	<2	30	<2	<2	<2	8	21
Total Coli	NMP/100mL	6	<2 2 2	2	4	30	1,600	220	≥ 1,600	006	<2:	< 2	-05	200	<2	80	220	1,600
N-NO,	mø/L	2.01	2.72	4.43	2.54	2.81	12.74	9.74	6.65	1.23	3.03	7.73	13.74	13.99	3.17	5.87	3.36	1.8
Na	mg/L	73.10	16.90	67.30	92.30	75.40	308.00	219.00	577.00	20.80	16.90	82.70	96.20	354.00	43.80	53.80	138.00	2.28
×	mg/L	1.19	1.35	4.34	12.10	18.80	2.04	1,43	1.58	2.35	96.0	3.73	5.26	5.26	0.29	0,30	8.48	0.88
Pb.	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Ü	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
ਤ	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001
ŏ	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Жg	mg/L	< 0.0002	< 0.0002	< 0,0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
As	mg/L	< 0.005	> 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Air Temp.	၁.	30.0	29.0	29.0	28.0	29.0	30.0	30.0	29.0	27.0	29.0	29.0	29.0	28.0	27.0	26.0	31.0	31.0
Water Temp.	ပ်	26.8	28.7	26.6	28.0	25.6	25.8	24.9	25.0	26.7	25.0	27.4	26.0	26,4	25.4	28.4	30.1	28.4
Sampling Date		86/10/60	09/01/98	86/10/60	86/20/60	09/02/98	86/20/60	09/02/98	86/20/60	09/02/98	86/20/60	86/20/60	86/20/60	86/00/60	86/03/60	86/03/60	86/80/60	86/80/60

JAPAN INTERNATIONAL COOPERATION AGENCY

STATE SECRETARIAT OF PLANNING, SCIENCE AND TECHNOLOGY THE STATE OF SERGIPE, THE FEDERATIVE REPUBLIC OF BRAZIL


THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT
SUPPORTING
(VOLUME I)
MASTER PLAN STUDY

[E] AGRICULTURE AND IRRIGATION

MARCH 2000

YACHIYO ENGINEERING CO., LTD. (YEC)

THE STUDY ON WATER RESOURCES DEVELOPMENT IN THE STATE OF SERGIPE IN THE FEDERATIVE REPUBLIC OF BRAZIL

SUPPORTING REPORT(E) AGRICULTURE AND IRRIGATION

Table of Contents

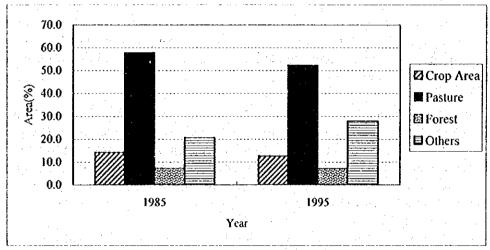
Table of Contents
List of Tables
List of Figures

	Page
CHAPTER 1 CURRENT AGRICULTURE AND IRRIGATION	N E-1
1.1 General Characteristics of Agriculture 1.1.1 State Agricultural Area 1.1.2 Crop Cultivation 1.1.3 Livestock	E-1 F-1
1.2 Irrigation	
CHAPTER 2 AGRICULTURAL WATER DEMAND WATER PROJE	СПОN E-9
2.1 Projection of Future Agriculture	E-9
2.2 Future Irrigation Areas	E-9 E-12 E-13
2.2.4 Sites for Future Irrigation Projects	and the second s
Water Demand for Livestock	E-18

APPENDICES

Appendix-1	Probable Rainfall
Appendix-2	Irrigation Requirement

	List of Tables
	Page
Table-1.1	Change in Harvested Areas of Primary Crops E-2
Table-1.2	Main Production Sites of Primary Crops and Fruits in 1996 E-3
Table-1.3	Livestock Population by Region (1995) E-5
Table-1.4	Existing Irrigation Projects E-7
Table-2.1	Soils Suitable for Irrigation E-10
Table-2.2	Potential Evapotranspiration E-12
Table-2.3	Irrigation Potential Sites E-14
Table-2.4	Water Demand of Existing and Future Irrigation Projects E-17
Table-2.5	Water Demand of Livestock E-19
	List of Figures
	and the commence of the contract of the contra
Figure-1.1	Agricultural Area E-1
Figure-1.2	Livestock Population (1976 ~ 1995) E-4
Figure-1.3	Existing Irrigation Projects E-8
Figure-2.1	Existing Irrigation Projects E-8 Irrigable Lands by Soil Properties and Topography E-11
Figure-2.2	Existing and Future Irrigation Projects E-16


CHAPTER 1 CURRENT AGRICULTURE AND IRRIGATION

Agriculture in Sergipe was examined to assess whether the further water resources development is necessary for agriculture sector. Inland fish culture has been recently promoted by CODEVASF; however, its extension is still negligibly small compared to other agriculture practices. Besides, its water consumption is expected to be not significant because it will be practiced in reservoirs and ponds for other purposes, such as hydropower and irrigation. Therefore, inland fish culture was excluded from the study.

1.1 General Characteristics of Agriculture

1.1.1 State Agricultural Area

As shown in Figure-1.1, approximately 14 % and 58 % of state land (2,205,030 ha) was cropland and pasture respectively in 1985, while both decreased to 13 % and 52 % in 1995. The reduction of agricultural areas is probably due to limited market and unfavorable prices. Urbanization also stipulates conversion of agricultural areas to other usage, such as residential areas and industrial areas.

Source: IBGE ("Census of Agriculture 1995-1996", 1996)

Figure-1.1 Agricultural Area

1.1.2 Crop Cultivation

Primary crops in Sergipe are corn, beans, cassava, sugarcane, cotton, coconut and orange. Variation of yields and harvested areas of those crops in the last 20 years are shown in Table-1.1. Significant change is decrease in cultivation of traditional field crops, such as cotton and sugarcane, and increase in fruit cultivation. The harvested area of cotton dropped from 33,800 ha in 1985 to 1,900 ha in 1996. Harvested area of sugarcane reached to the maximum in 1990 (38,100 ha) but it decreased to 22,400 ha in 1996. Cultivation of other field crops has fluctuated depending on market. Beans have the similar tendency of corn because they are normally secondary crops of corn in Sergipe.

In the contrast to the field crops, fruit culture has increased steadily. Harvested areas of coconut and orange have increased at the rate of 1.6 % and 4.0 %, respectively. As a result, production of orange is classified second in Brazil after Sao Paulo state.

Since beans and cassava are staple food in Brazil, those crops are cultivated in approximately 35 % of the state cropland. Considering the self-sufficiency of framers, areas of those crops will not decrease like cotton and sugarcane. At least, some areas for self-sufficiency will be maintained.

Table-1.1 Change in Harvested Areas of Primary Crops

-		Yield (ton/ha)		11	larvested Ar	ea (1,000 ha	1)
Crop Corn Beans Cassava Sugarcane Cotton Coconut 10	1981	1985	1990	1996	1981	1985	1990	1996
Corn	0.3	1.0	0.6	e. 1,4	54.9	98.5	29.8	81.6
Beans	0.2	0.2	0.4	0.5	47.6	50.1	36.9	67.0
Cassava	13.1	13.1	14.9	15.0	28.8	35.2	34.2	39.8
Sugarcane	57.5	60.6	57.3	59.9	22.7	26.5	38.1	22.4
Colton	0.1	0.4	0.3	0.4	19.7	33.8	2.7	1.9
Coconut 1)	1.9	1.9	2.0	1.9	39.3	42.6	43.1	50.2
Orange 1)	106.1	103.2	106.9	100.8	22.8	28.3	34.4	41.4

1): number of 1,000 fruits per hectare

Source: "Municipal Agricultural Production, 1981 - 1996" (IBGE) and EMDAGRO for Modification

Table-1.2 shows main production sites of primary crops and fruits in 1996 by micro-region and river basin. Since cotton is no longer a primary crop, it is excluded from the table. Expansion of fruit culture is recent tendency. Therefore, some minor fruits in terms of harvested area are also shown in the table.

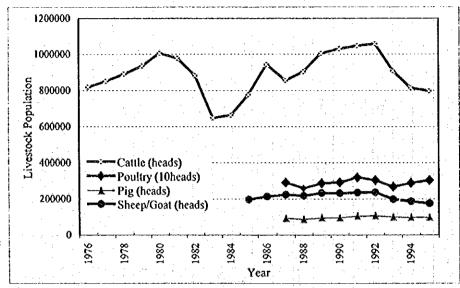
Beans, one of the staple foods, are cultivated in the semi-arid and tropical sub-humid climates, especially the upper reaches of Sao Francisco and Real rivers (Sergipana do Sertao do Sao Francisco and Tobias Barreto micro-regions). Beans are cultivated in same sites of corn because beans are secondary crops of corn. Main production site for cassava, another staple food, is Agreste de Lagarto micro-region located in the tropical sub-humid climate (middle reaches of Piaui River).

Sugarcane which was introduced in 17 century, immigration era, is still one of primary crops and mainly cultivated along coast in the north of Aracaju, Japaratuba micro-region. Since the climate class is the tropical humid, rain-fed agriculture satisfies sugarcane cultivation in the region.

Dominant fruit culture in Sergipe consists of orange, coconut, passion fruit and banana. Coconut farms are located along the coast, while banana is cultivated in most of state, except semi-arid area. More than 65 % of orange farms are located in Boquim microregion, and Agreste de Lagarto is the main region for passion fruit.

Other fruits, such as mango, lemon, watermelon and pineapple, are cultivated still in the small area. As mentioned before, the state agriculture in the last 20 years shows decrease in cultivation of traditional field crops and increase in cultivation of fruits. This tendency implies diversification of crops and extension of cash crop cultivation. Therefore, fruit culture will be more significant.

Main consumption of water in association with crop cultivation is irrigation. Irrigation is discussed in the section 1.2.


able-1.2 Main Production Sites of Primary Crops and Fruits in 1996

Micro-region		Com	Beans	Cassava	Sugarcane Coconut	Coconut	Orange	Passion	Banana	Mango	Lemon	Water	Pineapple
Sergipana do Sertao do Sao Francisco 30,250 25,440 0	30,250 25,440		0	-	0	0	0	0	0	0	0	70	60
Carira 750 6,655 750	6,655		750		0	0	0	0	0	0	0	0	0
Nossa Senhora das Dores 2,000 0 2,500	0.4		2,500		002	0	0	0	107	44	0	0	50
Agreste de Itabaiana 5,200	1,050		5,200		979	0	0	0	387	99	0	320	0
Tobias Barreto 3,117	18,250		3,117		0	0	0	145	170	0	0	0	0
Agreste de Lagarto 2,900 3,410 13,850	3,410	0)	13,850		0.0	0 -	9,030	3,271	295	0	23	0	70
Propria Propria	0	-	250		0	2,800	0	0	246	40	0	0	0
Cotinguiba 0 0 600	0	:17	009		1,950	0	0	0	244	9	O	0	0
Japaratuba 0 1,800	0		1,800		10,150	7,830	0	200	210	0	0	0	70
Baixo Cotinguiba 0 0 0	0		0		6,550	6,000	0	0	105	132	0	0	0
Aracaju 1988 1988 1989 1989 1989 1989	0		0		0	9,200	0	0	9	170	٥	0	0
Boquim 0 1,520	0 :-	<u>.</u>	1,520		0	0	25,877	481	490	0	528	0	0
Estancia 0 2,625	0		2,625		0	16,679	4,459	478	404	49	0	0	74
Sao Francisco 3,084	23,912	12	3,084		6,861	10,630	0	168	435	48	0	70	128
Japaratuba 0 1,387.	0		1,387		5,826	2,346	. 0	32	249	125	0	0	52
Sergipe 12,033 6,037 4,179	6,037		4,179	آ ر	7,078	10,450	0	4	655	280	0	185	0
Vaza Barris 10,194 5,484 6,310	5,484		6,310		205	4,532	1,242	719	153	8	0	135	0
Piaui 7,944 8,592 15,579	8,592		15,579		0	13,235	30,041	3,371	1,043	43	325	0	106
Real 10,902 10,781 1,973	10,781		1,973		0	1,317	8,083	281	. 183	7	226	0	38
Total 68,650 54,805 32,512	54,805		32,512		19,970	42,509	39,366	4,575	2,718	995	551	390	324
% to State Total 82% 82%	82%		82%		%68	%58	%56	%16	81%	79%	94%	%68	77%
State Total 81,649 67,016 39,833	67,016	9	39,833	. 1	22,412	50,193	41,445	5,016	3,346	718	589	437	421

Source: "Municipal Agriculture Production, 1996" (IBGE) and EMDAGRO for Modification Figures by river basin were calculated by JICA Study Team.

1.1.3 Livestock

Figure-1.2 shows state population of main livestock from 1976 to 1995. Main factors to fluctuate livestock population are price, climate and disease. According to "Brazil in Figures (IBGE, 1997)", sharp decline of cattle population in middle of 1980s is due to anti-inflationary price-control policies, while the local information explains that it is due to the severe drought.

Source: Municipality Livestock Population, 1976 ~ 1995 (IBGE) Modified by BMDAGRO

Figure-1.2 Livestock Population (1976 ~ 1995)

Since cattle raising in Sergipe mainly rely on pasture without irrigation system, unfavorable climate to pasture directly affects on cattle population. Recent decline of cattle population is probably explained by low precipitation.

Populations of pigs and poultry maintain almost constant at 0.1 million and 3 million heads, respectively. Total population of sheep and goats has slightly decreased since 1992.

Livestock is raised in all over the state as shown in Table-1.3. Sergipana do Sertao do Sao Francisco micro-region is one of dominant regions for cattle, poultry and pig raising, contributing to 16 %, 10 % and 14 % (highest) of total population, respectively. Estancia micro-region is ranked as the highest population in poultry, while Tobias Barreto micro-region has the highest population in sheep and goats.

Since irrigation has not been applied to pasture, water required for livestock is mainly consumption by animals, and water supply relies on local water resources, such as spring, small stream, well water and so on. Unlike irrigation, water resources development in large scale has not been applied.

Table-1.3 Livestock Population by Region (1995)

Unit: 1.000 heads

				Unit:	1,000 heads
	Division	Cattle	Poultry	Pigs	Sheep/Goat
	Division	(1995)	(1995)	(1995)	(1995)
	Sergipana do Sertao do São Francisco	131	- 384	13	12
	Carira	51	70	3	3
	Nossa Senhora das Dores	66	83	2	2
	Agreste de Itabaiana	37	329	5	4
g.	Tobias Barreto	75	336	24	- 86
Micro-region	Agreste de Lagarto	95	364	28	36
o r	Propria	33	46	4	2
ficr	Cotinguiba	53	143	1	1
2	Japaratuba	40	78	1	3
	Baixo Cotinguiba	35	175	1	1
	Aracaju	15	276	1	1
	Boquim	104	200	10	18
	Estancia	64	558	3	4
	Sao Francisco	187	446	16	15
	Japaratuba	95	168	3	4
asir	Sergipe	125	672	9	7
Щ h	Vaza Barris	80	530	12	13
River Basin	Piaui	211	961	39	60
<u> </u>	Real	99	264	20	76
	Sate Total	797	3,041	99	175

Source:

"Production by Municipal Livestock, 1995" (IBGE)

Figures by river basin were calculated by JICA Study Team.

1.2 Irrigation

Main execution agencies to study and implement irrigation projects in Sergipe are CODEVASF and COHIDRO. CODEVASF promotes irrigation in Sao Francisco River Basin only, while COHIDRO promotes it in all state area.

Based on data and information collected from relative government agencies, technical specifications of existing irrigation projects in Sergipe were studied and summarized in Table-1.4. Since Jacare-Curituba and Jacarecica II projects are still under the construction, those projects are included in the future projects discussed in Chapter 2.

Total irrigation area of 9 existing projects is approximately 17,000 ha; however, this area is not fully irrigated because settlement of farmers has not been completed in some projects. Problems associated with the settlement are mainly, 1) inadequate selection of crops due to fluctuation of market price, and 2) fail in formulating farmers' association for water management and market.

Existing irrigation projects are mostly located near Xingo dam, Propria and Neopolis where water intake from Sao Francisco River is available. 8 % and 79 % of the total irrigation area is located near Xingo dam and river mouth of Sao Francisco River (Propria and Neopolis), respectively. This is mainly due to surface water quality (see Supporting Report D). The surface water quality along the coast (tropical humid climate) is generally suitable for irrigation; however, quality of inland rivers in Sergipe, except Sao Francisco River, is mostly classified from slight to severe salinity.

Irrigation in Sergipe has been applied to cash crops because prices of staple food are not high enough for application of irrigation. CODEVASF projects was initially designed for paddy rice; however, they have encountered difficulty in keeping rice cultivation due to low price (approximately R\$0.25/kg of rice in the husk). Fruit culture, such as citrus, pineapple, mango, papaya etc., and vegetable culture, such as tomato, okra, lettuce, etc., are commonly cultivated in irrigation projects as cash crops.

Application of irrigation to orange culture is rare. Orange is mainly produced in Boquim and Agreste de Lagarto micro-regions. Since climate in these regions does not require irrigation and orange requires some water stress, irrigation has not been practiced for orange culture.

Project water requirement is a function of climate, altitude, latitude, crops to be irrigated, irrigation method, water distribution method, water quality and so on. Figures in Table-1.4 were adopted from reports concerned, except Cotinguiba project whose water requirement was estimated by data from Propria project. Since Propria, Cotinguiba and Betume projects were initially designed for paddy rice fully or partially, their annual requirements are twice or three times as much as that of Neopolis project, whose conditions are almost same as the former 3 projects, except crops (fruit culture) and irrigation method. Irrigation method (surface irrigation, such as furrow) and distribution system (open channel) of Jabiberi project result in the highest project water requirement per hectare.

Crops irrigated depend on market. For example, diversification of crops has been extended in the projects for paddy rice. Even inland fish culture has been promoted in those projects. Therefore, current water consumption of each project vary from project water requirement; however, since water supply system was designed for project water requirement, it is considered as maximum volume of irrigation water. This is a reason to adopt the original figurers from reports.

Projects in Sao Francisco river basin conduct water by direct intake, while projects in other river basins require dam due to insufficient river discharge for direct intake. Since high cost of dam construction is one of factors to limit application of irrigation, project scales in those basins are relatively small compared to projects along Sao Francisco River.

Method of irrigation depends on crops, topography, availability of water resources and so on. Paddy rice cultivated in flat alluvial plain requires surface irrigation (basin irrigation), while vegetable and fruit cultures on undulating land require sprinkle or trickle irrigation system. Propria, Cotinguiba and Betume projects employ both surface and sprinkle irrigation because designed crops are paddy rice, field crops and fruits. Sprinkle irrigation is applied to other projects for fruits, field crops and vegetable crops, except Jabiberi, which was designed for gravity irrigation instead of pressurized irrigation.

According to EMDAGRO ("Irrigated Agriculture in Sergipe State, Material for JICA Workshop", Jodemir, 1998), there are approximately 6,000 ha of private irrigation projects conducted by farmers themselves using mainly groundwater. These projects are small scale and located mostly in Itabaiana and Lagarto micro-regions. Since their exact locations and project specifications are unknown, they are excluded from Table-1.4.

Table-1.4 Existing Irrigation Projects

o	Jabiberi	COHIDRO	1987	225	Real	Jabiberi	Concrete	21.5	290	4.30	nonc	Open Channels	Surface	09.0	Fruits & Vegetable Crops	Ae		2,800	2,540	3.390	2,770	810	400	310	650	1,970	4,310	5.530	4.970	6.9	1.2	
8	Pratti	COHIDRO	1987	703	Piaui	Piaui River	Rock Fill	20	465	15.00	0.55	Pipelines	Sprinkle	0.70	Vegetable Crops	ΡV		720	160	1,220	720	190			120	1,200	2,460	2,090	1.620	7.8	1.7	
7	Pocao da Ribeira	COHIDRO	1987	1,100	Vaza Barris	Trairas River	Earth	26	200	16.50	1.00	Pipelines	Sprinkle	0.70	Vegetable Crops	LVd. PV		069	810	1,420	870	180			80	310	1,650	2.960	2,020	12.1	3.3	cal data.
9	Incarecica	COHIDRO	1987	252	Sergipe	Jacarecica River	Concrete	20	420	4.71	0.33	Pipelines	Sprinkle	0.70	Vegetable Crops	P.Le		3,210	2,590	2,520	1,580	06				\$30	1,680	2,650	3,160	4.5	0.8	low Podzolic Soil, PLe: Planosol, LVd: Red Yellow Latosol Cotinguiba whose requirement was calculated by Propria and Cotinguiba meteorological data.
\$	Benume	CODEVASF	1977	2,861	Sao Francisco	Sao Francisco River	none		A CONTRACTOR		8.80 NA	Open Channels	Surface	09'0	Paddy Rice & Field Crops	PV		2,350	1,300	988	950	1,700	1,500	1,000	750	850	1,000	2,550	2,900	48.9	8,3	ow Latosol Propria and Cotin
4	Neopolis	COHIDRO	1994	7,230	Sao Francisco	Sao Francisco River	none				3.74 123	Pipelines & Open Channels	Sprinkle & Trickle	AN	Fruits	PV		066	850	270	120			100	340	330	190	016	1,000	43,4	7.2	ol, LVd: Red Yello t was calculated by
3	Cotinguiba	CODEVASE	ı	2,215	Sao Francisco	Sao Francisco River	none				7.80 NA	Pipelines & Open Channels	Surface & Sprinkle	0.62	Paddy Rice, Fruits & Field Crops	Ac		1,810	1,640	240	810	450	500	820	940	220	1,440	1,470	1,640	25.9	4.0	c Soil, PLe: Planos whose requiremen
2.	Propria	CODEVASF	1975	1.177	Sao Francisco	压化	none				5.76 NA	Open Channels	Surface & Sprinkle	69'0	Paddy Rice & Field Crops	Ac	,	2,624	2,368		1,568	880	1,008	1,104	1,696		2,448	2,448	2,592	22.1	3.1]	ed Yellow Podzoli except Cotinguiba
	California	COHIDRO	1987	1.360	Sao Francisco	Sao Francisco River	none				1.50	Pipelines & Open Channels	Sprinkle	0.70	Fruits, Field & Vegetable Crops	NC		1,150	046	1,400	1,460	1,100	710	968	700	1.070	1.680	1,800	1.670	19.4	2.4	Alluvial Soil, PV; R ich project) d from the reports,
SZ.		X.	of Construction	n (ha)			Type	Height (m)	Crest Length (m)	Storage Volume (million m³)	p Total Capacity (m³/s) Pump Head (m)		p	Overall Imigation Efficiency for Design			Project Water Requirement (m³/ha/month)	ary	uary	tc.					ust	September	ber	November	December	Iotal Requirement (million m³/year)	Requirement (million m³/month)	Non Calcie Brown Soil, Ac: Butrophic Alluvial Soil, PV: Red Yellow Podzolic Soil, PLc: Planosol, LVd: Red Yellow Latosol COHIDRO & CODEVASF (report of each project) Project water requirements were adopted from the reports, except Cotinguiba whose requirement was calculated by Propria a
	Project Name	Execution Agency	Completed Year of Construction	Area of Irrigation (ha)	Watershed	Water Resources	Intake Dam				Pump	Distribution	Irrigation Method	Overall Impation	Designed Crops	Soil Class	Project Water Rea	January	February	March	April	May	June	劑	August		October			`	Maximum	Source: COHIC

Supporting Report: Master Plan Study

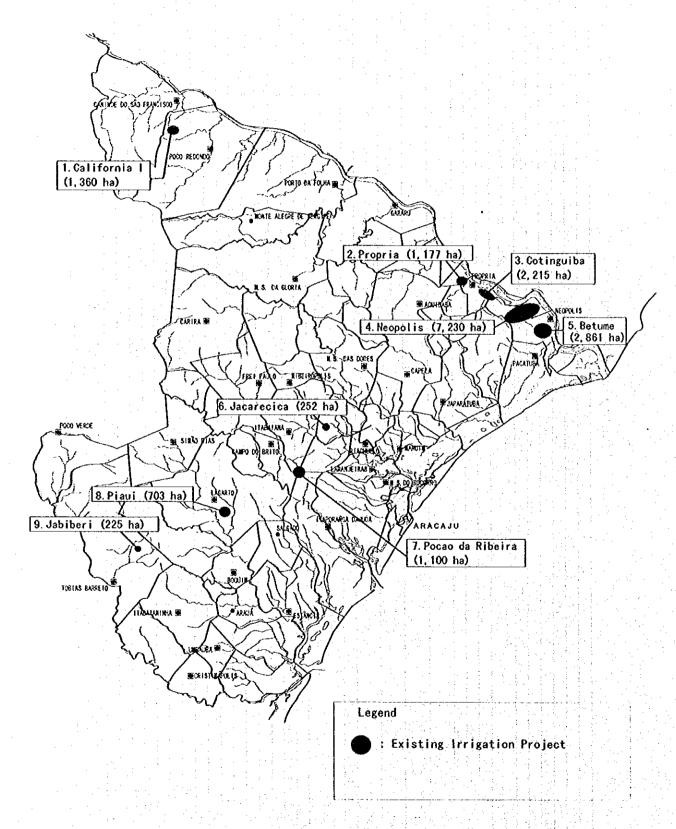


Figure-1.3 Existing Irrigation Projects

CHAPTER 2 AGRICULTURAL WATER DEMAND WATER PROJECTION

In general, agricultural waters to be evaluated for water resources development are irrigation, water consumption by livestock and fish culture. Since water consumption by fish culture itself will be negligibly small, only irrigation and water for livestock were examined to estimate future water demand.

2.1 Projection of Future Agriculture

To estimate water demand until the target year, 2020, it is necessary to project future agriculture in Sergipe. Based on analysis of agriculture statistics, the following projection and assumptions were made.

As discussed in Chapter 1, areas of cropland and pasture tend to decrease. In the last decade (1985 ~ 1995), 11 % of cropland and 9 % of pasture were changed to other uses. Labor force involved in agriculture also decreased from 161,000 in 1970 to 149,700 in 1980; however, it maintained almost constant between 1980 and 1991. Industrialization and urbanization will affect the further decrease of agricultural area and labor force.

- 1) Since crops are diversified depending on market, production of traditional field crops will be decreased. However, state self sufficiency of staple food, such as beans and cassava, will be maintained.
- 2) Production of fruits will be increased.
- 3) Cultivation of vegetables, such as tomato, cabbage, lettuce and so on, for the supply to urban areas will expand.
- 4) Irrigation will be applied to cash crops, such as fruits and vegetables, rather than traditional field crops (beans, sugarcane, etc.).
- 5) Production of livestock will fluctuate depending on the market; however, at least average figures in the last 10 years will be maintained.
- 6) Irrigation will not be applied to pasture due to its high cost in Sergipe, unless new breeds with good profit are introduced.
- 7) Increase of future GRDP will be achieved by expansion of irrigation projects.

2.2 Future Irrigation Areas

Irrigation potential areas were examined in terms of soil properties and topography, and successively future irrigation areas were determined for water demand projection in terms of climate, water quality and future agriculture projected.

2.2.1 Soil Properties and Topography

EMBRAPA ("Evaluation of Land Potential for Irrigation in Northeast Brazil", 1994) evaluated irrigation potential areas in the northeast Brazil, based on criteria and classification suggested by U. S. Bureau of Reclamation. Soils are categorized in 6 classes from 1 for the most suitable soils for irrigation to 6 for soils which irrigation is not applicable. Since the result of evaluation is shown in a 1/2,000,000 scale map, it is too rough to identify the irrigation potential areas in Sergipe for the Master Plan Study. Therefore, based on soil data and a soil map (1/400,000) available in "Exploratory Research – Recognition of Soils in Sergipe State" (EMBRAPA and SUDENE, 1975),

irrigation potential of soils in Sergipe were examined in cooperation with EMBRAPA, Recife. The soil map with scale of 1/400,000 is good enough for only initial identification of irrigable soils. Therefore, soil investigation in more detail is required for the further study.

The results are shown in Table-2.1 and Figure-2.1. In general, soils extended in the tropical humid region (near coast) show characteristics of low fertility and low salinity, while soils in the semi-arid region is fertile but their salinity ranges from medium to high. Table-2.1 shows that 15 % of the state land, 330,800 ha, is possible to be irrigated; however, Ce, BV, V, Ae and NC class soils require special management for salinity, such as leaching, selection of crops by salinity tolerance and so on. Existing irrigation projects are located mainly on PV, LV, PE and NC class soils. Projects on NC class are susceptible to saline problem.

Table-2.1 Soils Suitable for Irrigation

Soil Class	Name	Potential Area (ha)	Soil Depth	Drainage	Fertility	Salinity	Irrigation Class	
Ce	Eutrophic Cambisol	16,000	M	G	H.	M-H	3s, 2s, 4s	
BV	Reddish Brunizem	4,600	М	M~G	Н	M	3st, 2s, 4s	
ν	Vertisol	4,700	D	Р	Н	M-H	2s, 4s	
Ae	Eutrophic Alluvial Soil	8,200	D	P	Н	M~H	2s, 3s, 4s	
PE	Eutrophic Red Yellow Podzolic Soil	106,100	D	G	М	L	2s, 2st, 3s, 3st, 4s	
LV	Red Yellow Latosol	44,700	D	G	L	VL	3s	
PV	Red Yellow Podzolic Soil	74,900	D	G	L	٧L	3s, 3st	
NC	Non Calcic Brown Soil	37,200	М	М	Н	M~H	4s	
RE	Regosol	34,400	D	Ε	ւ	VL	4s	
	Total	330,800						
	Ratio to State Area (%)	15						

H: high, M: medium, L: low, D: deep, G: good, P: poor, E: excessive, VL: very low

Irrigation Class was determined based on criteria of U. S. Bureau of Reclamation. 1: most suitable \sim 6: not applicable

Subscripts of irrigation classes denote deficiency, s: soil, t: topography

Source: evaluated by EMBRAPA, Recife, based on "Exploratory Research' - Recognition of Sergipe Soil"

As shown in Figure-2.1, lands in the middle reaches (defined within Sergipe State) of Sao Francisco River and the upper reaches of Vaza Barris, Piaui and Real Rivers are non-arable due to hilly and rocky relief with very shallow soils (Lithosol). Soils with impermeable layer at shallow depth and high salt contents, such as Planosol, are also spread in those areas.

Eutrophic Red Yellow Podzolic Soil spread in the middle and upper reaches of Jacarecica River and in the upper reaches of Japaratuba River has wide range of irrigation potential from class 2 to 4, due to large variation of soil properties and relief. In general, main characteristics of this soil are low salinity, good drainage and medium fertility.

Most of Red Yellow Podzolic Soil (PV) spread in the lower reaches, except Piaui and Real Rivers, is non-irrigable due to hilly relief with high susceptibility to soil crosion. PV on level or gently undulating lands is irrigable.

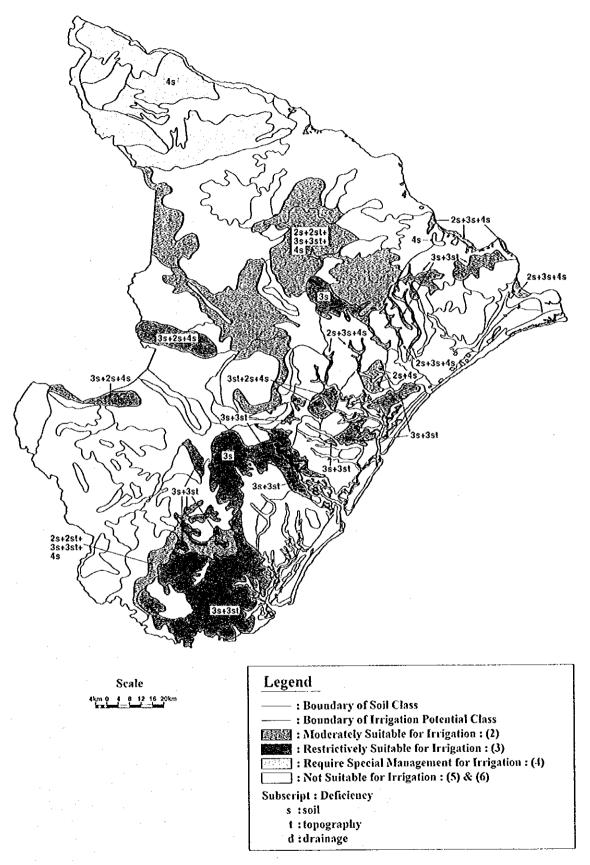


Figure-2.1 Irrigable Lands by Soil Properties and Topography