9.2 Implementation Schedule

9.2.1 Project Components and Construction Packaging

The project components are summarized as shown in Table-9.2 below. Considering the type of work and site location of the components, the project is divided into five (5) construction packages, which is the same division of the components shown in Table-9.2.

Project Components Construction Package	Specification
(1) Vaza Barris Multipurpose Dan	 A set of the set of
Main Dam	Type: Gravity concrete dam, Height: 48.2m, Crest Length::280.0m
Spillway the state of state of state	Type: Free overflow, Design discharge: Width: 15.00m, Height: 5.2m
Check Dam (or Intake Dam)	Type: Gravity concrete dam, Height: 20.0m, Crest Length: 127.0m Width of Overflow Section: 70.0m
Low Flow Bypass	Type: Concrete Box Culvert, Length: 27.7 km, Size: 1.05m x 1.05m Design discharge: 0.75m ³ /s
(2) Domestic/Industrial Water Sup	ply Facilities: < Itabaiana City Area >
Water Conveyance Pipeline	Raw water pump station: 0.546 m ³ /s, Ductile cast iron pipe: Diameter ϕ 500-700mm, Total length:25.4km
Treatment and distribution facilities	Municipalities: Itabaiana, Areia Branca, Campo do Brito, Macambira, Sao Domingos
(3) Domestic/Industrial Water Sup	ply Facilities: < Lagarto City Area >
Water Conveyance Pipeline	Raw water pump station: 0.52 m ³ /s, Ductile cast iron pipe: Diameter ϕ 500-700mm, Total length:24.0km
Treatment and distribution facilities	Municipalities: Lagarto, Poço Verde, Simao Dias, Riachao do Dantes
(4) Forestation for Environmental	Protection
Forestation	Total 300 ha (main dam site: 150 ha, check dam site: 50 ha reservoir: 100 ha)
(5) Irrigation Water Supply Faciliti	es
Water Conveyance Pipeline	Raw water pump station: 2.912 m ³ /s, Water Conveyance to agricultural land
Irrigation Facilities	Irrigation area: 4,553 ha, Beneficial municipalities: Lagarto, Itaporanga de Ajuda, Salgado

Table- 9.2	Project Com	nonents and	Construction	Packaging
	r toject com	ponento ana	Construction	LACRAGING

9.2.2 Procurement Method

(1) Consulting Services

The procurement of consulting services is to be made between January 2001 and December 2001. The recommended method for the selection of a competent consultant is the Short List method in accordance with the Guidelines for the Employment of Consultants by borrowers of a foreign soft loan. However, the direct appointment of a specific consulting company should be considered, as the JICA Study Team has already studied the project in some detail. Similarly, the contract with the consultant should be made in one package for both the design stage and construction stage, in order to assist in the coordination and smooth execution of the project.

(2) Construction Work

The procurement of contractors is to commence from July 2002 and to be completed by December 2003. In accordance with the Guidelines for Procurement under foreign soft loans, International Competitive Bidding (ICB) is proposed. The project involves the construction of a concrete dam, a check dam, a low flow bypass, water supply facilities, forestation works and irrigation facilities. ICB will be the best method for achieving the economic and efficient implementation of the project. In the interests of the broadest possible competition, contract packages have been made a reasonable size to attract bids on an international basis. Tenders will be limited to contractors who have pre-qualified and been accepted onto the short list.

9.2.3 Implementation Schedule

The project is composed of the following work items:

- 0) Project Preparation
- 1) Loan procedure for Foreign Soft Loan
- 3) Procurement for consulting services and construction work
- 3) Consulting services including project management, detailed design and construction supervision.
- 4) Construction work
- 5) Land acquisition and compensation

The overall implementation schedule is shown in Table-9.3. Following procurement of the consulting services, the total required period for the main works is five (5) years which comprises four (4) main stages: i) 24 months for the detailed design, ii) 12 months for land acquisition and compensation, iii) 18 months for procurement of contractors (overlapping with the design stage), iv) 36 months (3 years) for construction.

9.3 Financial Disbursement Schedule

Finance for the project is requested from the foreign soft loan with the exception of the costs for land acquisition and compensation, government administration and government tax which will be borne by the federal or state budget. Although loan amount to be borrowed is limited to 60 % of the total project cost, 50 % of that is assumed to be loaned taking into account of the State financial conditions.

The financial disbursement schedule of the project in phase-1 is summarized in Table-9.4.

Table- 9.3 Implementation Schedule: Project of Water resources Development and Supply in Vaza Barris River- Sergipe	ation Sc)	hedule: P	roject of	Water	resource	s Devel	opment	and Supp	ly in Vaz	a Barris	River-Se	ergipe	• • •
	(1)	(2)	(3)	(4)	(2)	. (9)	са (Д) с	(8)	(01)	(11)	. (12)-	(12)	(12)
Month - Month	6661	2000	2001	2002	2003	2004	2005	2006	2012	2013	2014	2015	2016
	1 4 7 10 1 3 6 9 12 3	4 7 10 1 6 9 12	3 6 9 12	4 7 10 1 3 6 9 12	3 6 9 12	3 6 9 12	3 6 9 12	3 6 9 12	1 4 7 10 3 6 9 12	2 3 6 9 12	1 4 7 10 1 3 6 9 12	1 4 7 10 1 3 6 9 12	3 6 9 13 9 12
Project Stages	Pre	ration Sta	ge ge	I.	Implementation Stage (Phase-1)	tion Stage	(Phase-1)			Implement	Implementation Stage (Phase-2)	(Phase-2)	
0 Project Preparation					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		· · · · ·						
(1) F/S of the Project				· · · · · · · · · · · · · · · · · · ·			-		·				
(2) Basic Design of Water Supply Facilities				- - -									
(3) F/S on Irrigation Project			-										-
(4) Formulation of RIMA							-						
(5) Approval of Project Implementation										- - - -			
(6) Formulation of I/P								*		5		· .	
1 Loan Arrangement			-			a sanatan a					1.00	·····	
(1) Project Identification	*								-				
(2) Pledge (Exchange of Note)		*											
(3) Loan Agreement			- - *							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		· · · · · · · · · · · · · · · · · · ·	
2 Procurement substantiant and a state and													
(1) Consulting Services													· ·
(2) Construction Work													
3 consulting Services											and the second sec		
(1) Assistance for Project Management			32										
(2) Detailed Design													-
(3) Construction Supervision													
4 Construction Works		Section 2.		an an an an		and the second							
(1) Dam, Check Dam and Low Flow Bypass													
(2) Urban Water Supply Facilities to Itabaiana													
(3) Urban Water Supply Facilities to Lagarto													
(4) Forestation for Environmental Protection													
(5) Irrigation Water Supply Facilities			· · ·										
5 Land Acquisition and Compensation													
(1) Land Acquisition and Compensation							_						

(11-127)

. . . .

The Study on Water Resources Development in the State of Sergipe, Brazil

Main Report

лţ

Item		Total	2002	2003	2004	2005	2006
Consulting Services	· · · · · · · · · · · · · · · · · · ·						
Construction Works			ana ak				
Land Acquisition & Compensation	1. 1. juli - 1.	The second			الجامع ولاي		
1. Construction Costs	Total	224,232	0	0	39,213	112,512	72,50
	Base Cost	176,253	0	0	32,229	a second a s	55,10
	Price Esc.	47,980	0	0	6,982	23,594	17,40
(1) Dam Construction	Total	83,597	0	0	38,337	45,260	
	Base Cost	67,280	0	0	31,510	35,770	
	Price Esc.	16,317	0	0		9,490	1 1
(2) Itabaiana Water Supply	Total	44,667	0	· · · · 0	. 0	21,444	23,22
	Base Cost	34,597	0	0	0	16,948	17,64
建物造成 化基本合物 计数字符的 法有法	Price Esc.	10,070	0	0	0	4,496	5,57
(3) Lagarto Water Supply	Total	47,419	0	0	0	22,439	24,98
	Base Cost	36,716	0	. 0	0	17,733	18,98
	Price Esc.	10,703	0	0	0	4,706	5,99
(4) Reforestation	Total	875	0	0	875	0	
	Base Cost	719	0	0	719	0	1.1.1
	Price Esc.	156	0	0	156	0	11 (
(5) Irrigation Water Supply	Total	47,675	0	0	0	23,370	24,30
	Base Cost	36,941	0	0	0	18,470	18,47
	Price Esc.	10,734	0	0	0	4,900	5,83
2. Land Acquisition & Compensation	Total	2,929	951	1,978	0	0	121 (
	Base Cost	2,536	845	1,691	0	0	(
	Price Esc.	393	. 106	287	0	0	inig (
3. Consulting Services	Total	21,906	3,644	3,789	3,940	5,163	5,370
and the former day in the state of the second state of the	Base Cost	17,877	3,239	3,239	3,239	4,080	4,08
	Price Esc.	4,029	405	550	701	1,083	1,289
4.Administration	Total	2,516	465	483	502	523	543
	Base Cost	: 2,065	: 413	413	413	413	413
	Price Esc.	451	52	70	89	110	130
5. Contingency	Total	12,452	235	292	2,163	5,876	3,880
电影响 化电路管管理器 医静脉	Base Cost	9,833	208	251	1,777	4,644	2,95
	Price Esc.	2,619	27	41	385	1,233	933
Total Project Costs	Total	264,038	5,294	6,542	45,818	124,075	82,308
美国 出行的过去分词 医水平的	Base Cost	208,564	4,705	5,593	37,658	98,057	62,548
naaliele aantale Hereitzij	Price Esc.	55,474	589	949	8,160	26,018	19,759
Foreign Soft Loan	il an e	132,019	2,647	3,271	22,909	62,037	41,154
Total Project Costs (US\$1000)		137,520	2,757	3,407	23,864	64,622	42,868
Foreign Soft Loan (US\$1000)		68,760	1,379	1,704	11,932	32,311	21,434

Table-9.4 Finance and Disbursement Schedule of Phase-1 Project

Note: - Exchange rate: US\$ 1 = R\$ 1.92 as of September 1999

- 4 % of annual price escalation is set since the year of 2000

- 50 % of the project cost is assumed to be raised with Foreign Soft Loan, taking into account of the state financial condition.

CHAPTER 10 PROJECT EVALUATION

10.1 Technical Evaluation

The Project of Water Resources Development and Water Supply Project in Vaza Barris River- Sergipe (PROVABASE) was planned according to the following technical information, standards, judgments and proper implementation procedures, and is assessed to be technically feasible as a result.

- The information necessary for planning was collected from the data and 1) information that the Federal Government and the State Government own and applied to the Plan after precise examination and careful selection. Moreover. additional information concerning the topographical, geological and environmental conditions was given through the topographic survey at the dam site and reservoir, geological survey, water quality survey and ecological survey at the dam site conducted by the Study Team. The standards established by the Federal Government were applied for the planning and design, as standards required in the Plan. For example, the Hydropower Generation Design Standards of CEMIG were used as the dam design standards in the Plan. However, the international standards such as in Japan and USA were also used when necessary.
 - 2) The following facilities were added in the proposed system to ensure the quality level for domestic water and irrigation due to the high-chlorine concentrated river water at the proposed dam site:
 - a) Additional storage volume system for dilution
 - b) Low-flow bypass for discharging particularly the low flow volume of highchlorine concentrated river water to downstream of the dam before inflowing to the dam reservoir.

The technical viewpoint of the system are as follows: 1) volume necessary for dilution, 2) chlorine concentration of river water, 3) design discharge for low flow bypass, 4) type of the low flow bypass, and 5) possibility of chlorine-density layer formation. As to 2), the formula related between flow volume and chlorine concentration was given from the study of the existing data and the survey data by the Study Team. 1) and 3) were decided after completing reservoir simulation based on the above formula and flow volume data during these 10 years. As to 4), the culvert type was selected from the technical, economic and environmental viewpoints after compared with other two types of open channel and pipeline. As to 5), intake pump facilities to abstract surface reservoir water were planned, avoiding the abstraction of high-chloride concentrated water in the bottom of the reservoir, because it is not yet confirmed that the chlorine-density layer could be formulated.

3) The information and opinions concerning the basic policy of the plan as well as alternative plans and designs were exchanged aggressively between the Study Team and organization related to the water sector of the State Government through 6 workshops in the feasibility study stage.

Although PROVABASE was assessed to be technically feasible, this technical assessment should be reviewed and re-confirmed in the study of a detail design stage according to the additional information and data such as river water quality, geological condition of the dam and detail topographical maps.

10.2 Social Evaluation

10.2.1 Social Benefits

(1) Increase of Employment and Activation of Regional Economy

Construction works of the dam, the pipelines for domestic/industrial water supply and irrigation water supply would offer a new labor opportunity to the people unemployed and underemployed. In general, unskilled worker living in or around the project site would be employed. The wages payable to unskilled workers in the project costs will be an amount of R\$ 18 million during the construction period. The annual amount will be R\$ 3.6 million, which is equivalent to 0.7% of 1998 GRDP of the project area. The effect would be greater if taking the skilled workers' wages and similar wages for the irrigation project into account.

In addition, basic materials for concrete such as cement and aggregate for dam construction could be procured at the project area, an amount of which is estimated at R\$ 30 million during the two years of construction. Annual amount of R\$ 15 million is equivalent to 3% of 1998 GRDP of the project area.

Generally, the workers' consumption behavior will stimulate the business activities of the related manufacturers and retail stores in the region. Thus, this increased income of both workers and manufacturers of the construction materials will induce a multiple economic effect to the region, which activates the regional economy as a whole.

(2) Improvement of Safe Water Coverage and Public Health

Upon completion of the project in 2020, all incremental urban population and 85 % of rural population in the project area will be provided with clean and sufficient potable water by the project. Moreover, the project is designed with 10-year return period that will make it possible to supply water safely even in a drought year.

According to the water use survey by the Study Team, almost rural inhabitants without residential water supply systems desired a private tap system in dwellings. A hygienic reason was the most remarkable. The expansion of potable water supply by the project could decrease water-borne diseases and mortality rate in the region.

(3) Mitigation of Economic Disparity and Alleviation of Centralization in the State Capital

The present industrial water supply rate through public water supply system is assumed at less than 1% of the industrial water demand in the project area. It could be lifted to 50% by the target year of 2020.

The proposed site of the irrigation project is located in Lagarto Municipality with total irrigation area of 4,519ha. Irrigated agriculture land could produce many benefits. According to pre-feasibility study of the irrigation water conducted by SEPLANTEC, the benefits of the with-project will increase almost by six times of the without-project within 5 years since the start of irrigation.

Thus the project will alleviate the impact of water scarcity in the project area of the state that will attract the manufacturers to build its plant in the region and also give farmers an

Main Report

incentive to cultivate harder. That will stimulate intensively regional economic activities and bring the inhabitants more sufficient living conditions. As a result, it could lead the mitigation of economic disparity among regions and the alleviation of economic and demographic centralization to metropolitan area of Aracaju.

10.2.2 Social Environment Impacts

The project could induce several social problems among societies and residents in the project area during the construction and operation period. The negative social impacts derived from the problems must be mitigated through appropriate implementation of the project. The careful planning of these measures will be necessary and effective to mitigate the social negative impacts, but should be disclosed and explained publicly, and should be discussed with the society and the residents. All of these entire implementations could minimize effectively the social environmental impacts.

The mitigation measures for these negative social impacts are discussed specifically in Chapter 6. And Environment Impact Assessment (EIA) is conducted in Section 10.5.

10.3 Economic Evaluation

10.3.1 Condition of Evaluation

In the economic evaluation, economic cost and benefit was estimated based on the conditions as shown in Table-10.1

The financial construction costs of the multi-purpose dam are R\$ 78.4 million. According to "Separable Cost Remaining Benefit Method", the dam construction costs are allocated as follows: 1) R\$ 37.6 million or 47.9 % for Domestic and Industrial Water Supply Project and 2) Irrigation Water Supply Project at R\$ 40.8 million or 52.1 %.

Items	Assumptions
1.Prices	September of 1999 for cost and benefit
2.Exchange Rate of Real	R\$ 1.92 = US\$ 1.00
3.Opportunity Cost of Capital	
4.Conversion Factor	1) Sector-specific: Material 0.88, Machinery & Equipment 0.80, Skilled
	Labor 0.81, Unskilled Labor 0.46
	2) Standard Conversion Factor 0.96
	3) Conversion factor for irrigation project: 0.85
5.Time Horizon for Evaluation	50 years
6.Economic Life	
1) Dam	80 years in the second s
2) Structures	40 years (to be replaced after life termination) assures as the assures when a
3) Equipment	15 years (ditto) the second additional additiona
4) Cast-iron pipeline	50 years
7.Benefits	
1) Residential Water	医试验检尿管理学说, 使抽答, 建筑过度过度的 网络中央管理中 植物叶
- Rural Area	3% of the monthly household income of R\$280: R\$ 2.1 / capita / month
- Urban Area	3% of the monthly household income of R\$680: R\$ 5.0 / capita / month
2) Commercial Water	Actual water charge base (R\$/capita): Urban 0.23, Rural 0.05
3) Public Water	Actual water charge base (R\$/capita): Urban 0.62, Rural 0.20
4) Industrial Water	Actual water charge base: R\$ 2.6 / m ³
5) Irrigation Water	Incremental Net Cash Flow under with/without Project
Note: SEPLANTEC conducted th	he pre-feasibility study on the irrigation project through the contract with a local
consultant. The assumption	ons in the table concerning with agriculture were applied in the pre-feasibility study.

Table-10.1	Condition	of Econom	ic Evaluation
	(A) 1 (A) 1 (A) 1 (A)		

Main Report

10.3.2 Results of Economic Evaluation

(1) Analysis on PROVABASE Project

The result of economic evaluation is shown in Table-10.2. The EIRR (Economic Internal Rate of Return) of the project of PROVABASE (the entire project) results in 14.9%, which exceeds opportunity cost of 10%. Thus, the project PROVABASE is assessed to be economically feasible.

According to the implementation schedule, the project was divided into two phases as below:

- 1) Phase-1: Dam, Domestic/Industrial Water Supply Project (Phase-1) and Irrigation Water Supply Project from year 2002 to 2006
- 2) Phase-2: Domestic/Industrial Water Supply Project (Phase-2) from year 2013 to 2016

The EIRR of each phase was also conducted, which respectively resulted in 16.0% and 10.7% that exceeds opportunity cost of 10%. In the analysis, the construction cost of the dam allocated to the Domestic and Industrial Water Supply Project as discussed above was evenly divided to the Phase-1 and Phase-2.

The EIRR of Domestic and Industrial Water Supply Project, and Irrigation Water Supply Project respectively resulted in 11.3% and 20.8%, which also exceeds opportunity cost of 10%.

Project	EIRR (%)	NPV at 10% (R\$ million)	B/C
PROVABASE	14.9	75.4	1.59
PROVABASE Phase 1 PROVABASE Phase 2	16.0 10.7	72.6 2.8	1.74 1.09
Domestic & Industrial Water Supply - Phase-1 - Phase-2	10.8 10.9 10.7	8.1 5.3 2.8	1.10 1.11 1.09
Irrigation Water Supply	20.4	67.3	2.37

Table-10.2 Result of Economic Evaluation of the Project

(2) Analysis on Each Project of PROVABASE

< Domestic and Industrial Water Supply Project >

The EIRR of 10.8% of the Project shows economic feasibility. However, it was a slight lower than 12.1% in the Master plan, mainly due to the increase of the construction cost of the low flow bypass and the pipeline system, as a result of precise cost estimation study in Feasibility Study. The results of economic analysis of each phase are given in Table-10.2, which shows economic viability respectively.

< Irrigation Water Supply Project >

Economic analysis was conducted on the basis of data and information in the prefeasibility study by SEPLANTEC. The EIRR of 20.4% shows sufficiently economic viability. It was higher than 15.0% in the Master Plan. The reason was derived particularly from the great difference of incremental benefits under the with/without project between in pre-feasibility study and in Master Plan, in spite of the increase of the project economic cost by 70% in the pre-feasibly study.

na a stafe de s

(3) Sensitivity Analysis

The sensitivity analysis is to examine the sensitivity of BIRR with respect to the major variables that may affect economic benefits and costs applied in the economic evaluation of the project. In this analysis, the sensitivity of the EIRR is ascertained by the price values considered as the major variables as shown below. Considering the inflation rate of 11.3% in 1996, 7.2% in 1997, 1.7% in 1998 and 8.5% in 1999/June, the price change is set at 10% as a foreseeable maximum level in the nation.

- Case-1: Construction costs increase by 10%.
- Case-2: Market prices of agriculture products decrease by 10%.

Table-10.3 shows the results of sensitivity analysis performed under the above variations. Almost all the projects still show economic feasibility in both cases, although EIRR of the Phase-2 project of PROVABASE in Case-1 results in 9.7%, slightly lower than opportunity cost of 10%.

D. 10	EIRR	K (%)	NPV at 10%	(R\$ million)
Project/Case	Case-1	Case-2	Case-1	Case-2
PROVABASE	13.8	13.6	63.5	55.1
(Base Case)	14.9	14.9	75.4	75.4
PROVABASE Phase 1	15.0	<i>14.4</i>	64.8	52.3
(Base Case)	16.0	16.0	72.6	72.6
PROVABASE Phase 2	9.7	10.7	-1.3	2.8
(Base Case)	10.7	10.7	2.8	2.8
Dom. & Ind. Water	10.0	10.8	0.3	8.1
(Base Case)	10.8	10.8	8.1	8.1
Phase 1	10.3	10.9	1.6	5.3
(Base Case)	10.9	10.9	5.3	5.3
Phase 2	9.7	10.7	-1.3	2.8
(Base Case)	10.7	10.7	2.8	2.8
Irrigation Water	19.1	17.6	63.2	47.0
(Base Case)	20.4	20.4	67.3	67.3

Table-10.3 Sensitivity Analysis of the Projects

Note:

- Case-1: Construction costs increase by 10%.

- Case-2: Market prices of agriculture products decrease by 10%.

10.4 Financial Evaluation

10.4.1 Financial Conditions of the State Government

(1) Basis for Financial Evaluation

The following financial schemes were confirmed through discussion with the State Government and were applied to financial analysis of this Study.

- 1) The construction of the dam, the domestic/industrial water supply systems and the irrigation water supply system will be conducted by UGP-PROVABASE. Accordingly, the State Government shall be entirely responsible for raising funds for the projects.
- 2) The State Government is planned to apply a foreign soft loan. Accordingly, source of funds for project costs will be composed as follows:
 - Soft Loan; 50% of the project cost in Phase-1

- Transfer from the Federal Government; 50% of the project cost in Phase-1 The Soft Loan in Phase-1 is set at 50% of the project cost, considering the debt limited by Legislation and other project progress.

3) After constructed by UGP-PROVABASE, the dam and the domestic/industrial water supply system will be transferred to DESO by the State Government as an increase of capital of the company. Also, the irrigation water supply system will be transferred to COHIDRO as an increase of capital of the company after constructed by UGP-PROVABASE.

(2) Project Costs and Disbursement of the Funds

Total investment amount of the project is R\$ 370.5 million, of which R\$ 174.6 million will be disbursed by the Federal Government as a transfer of the General Budget and R\$ 195.9 million from the Soft Loan. The amount of the Soft Loan in Phase-1 and Phase-2 will be respectively R\$132.0million and R\$63.9million.

(3) Interest Payment and Repayment Scheme of the Loan

In this analysis, the guideline of a foreign soft loan was applied for the term and conditions of the Soft Loan are as follows:

- Loan Period: 25 years (7 years of grace period and 18 years of repayment)
- Interest Rate: 2.5 % per annum payable semi-annually

Phase-1 Loan commences in 2002 and terminates in 2026. Phase-2 Loan commences in 2013 and terminates in 2037. The interests payable will be an amount of R\$65.2million in the aggregate.

(4) Debt Capacity of the State Government

(a) Indebtedness Limitation

 $\sqrt{2}$

The State Government owed loans equivalent to one year's net current revenue of the budget in 1998. However, the Debt Service Coverage Ratio was kept in lower level. It means that the state government financial condition is healthy in terms of the ratio. However, the state's indebtedness capacity is limited by Federal legislation.

The Federal Law No.9496 of September 11, 1997 prohibits the states owing outstanding debt amount superior to the real net revenue (Receita Liquida Real) from further credit operations. The internal and external outstanding debt amount of the State Government is R\$ 920 million as of July 1999, which exceeds the real net revenue of R \$ 760 million, calculated based on the amount announced by the Central Bank. Accordingly, further credit operations are not allowed for the State Government at the moment. Nevertheless, the external loans subject to projects are considered as exceptional cases.

To qualify for any credit operation, the State must meet the following two conditions established by Federal Senate Resolution No.78 of 1998:

a) The overall value of credit transactions may not exceed debt charges and amortization payment already due and payable in the year or, alternatively, 18% of real net revenue, this being the revenue received in the twelve months prior to the Central Bank's analysis.

b) In addition, the maximum annual expenditure for amortization, interest and other charges for all credit operations already contracted and to be contracted may not exceed 13% of real net revenue.

Thus, the State's total indebtedness capacity was estimated by applying these criteria on an annual basis with the following results:

Current capacity to assume an additional credit operation of up to R\$ 140 million and annual debt-service capacity of up to R\$ 100 million.

A. Real Net Revenue:	· · · ·	R\$	770	million	•				
B. Overall Debt Capacity (A x 0.18):		R\$	140	million		1		·	-
C. Debt Service Capacity (A x 0.13):	1	R\$	100	million		5 14 1			2

Note *: Real net revenue of the State of July 1999 announced by Central Bank was multiplied by 12 months.

Indebtedness Situation with the Soft Loan (b)

and and a failed of

The Soft Loan of R\$ 132.0 million in Phase-1 and R\$ 63.9 million in the phase-2 are respectively within the limited amount of R\$ 140 million.

According to the current debt service (total amount of repayment and interests) schedule prepared by the Secretary of Finance of the State, the debt service will decrease year by years and sharply from 2015. In spite of debt service increases with the Soft Loan, the total debt services will not exceed the annual limit of R\$ 100 million stipulated by the legislation. In addition, the State Government could maintain a healthy level of the debt service coverage ratio. The ratio is estimated at a peak of 10.4% in 2002. It means that the State Government could afford the overall debt services.

						Unit: R	\$ million
1999	2002	2005	2010	2015	2020	2030	2037
77.0	91.5	84.8	70.5	30.4	26.2	0.0	0.0
	0.0	1.5	10.5	10.3	13.8	4.3	3.6
77.0	91.5	86.3	81.0	40.7	40.0	4.3	3.6
8.7	10.4	9.8	9.2	4.6	4.5	0.5	0.4
	77.0 77.0	77.0 91.5 - 0.0 77.0 91.5	77.0 91.5 84.8 - 0.0 1.5 77.0 91.5 86.3	77.0 91.5 84.8 70.5 - 0.0 1.5 10.5 77.0 91.5 86.3 81.0	77.0 91.5 84.8 70.5 30.4 - 0.0 1.5 10.5 10.3 77.0 91.5 86.3 81.0 40.7	77.0 91.5 84.8 70.5 30.4 26.2 - 0.0 1.5 10.5 10.3 13.8 77.0 91.5 86.3 81.0 40.7 40.0	1999 2002 2005 2010 2015 2020 2030 77.0 91.5 84.8 70.5 30.4 26.2 0.0 - 0.0 1.5 10.5 10.3 13.8 4.3 77.0 91.5 86.3 81.0 40.7 40.0 4.3

Table-10.4 Debt Service Ratio of the State Government

Source of current debt services data: the Secretariat of Finance of Sergipe State

Net Current Revenue of the State Budget Balance of 1998 (R\$881.6million) was applied as base revenue. Note:

Project Cash Flow of the State Government (5)

Project cash flow of the State Government during 36 years from 2002 till 2037 of the loan termination year are shown in Table-10.5.

e de la companya de la servició de la companya de l			Unit: R\$ million
Item/Year	2002 to 2019	2020 to 2037	Total
Cash Flow from Investing Activities	-265.4	0.0	-265.4
Cash Flow from Financial Activities	-189.3	291.6	480.9
Transfer from Federal Gov.	127.0		127.0
Soft Loan	138.4 ·		3 3 5 1 7 A 138.4
Repayment of Loan	-63.7	-74.7	-138.4
Interest Payment	-33.4	-11.9	-45.3
Dividends Received	21.0	378.2	399.2
Cash increase/decrease	-76.1	291.6	215.5
Note: Soft Loan - R\$ 104.3 million in phase-1 a	and R\$ 34.1 million in pl	nase-2.	The second second

Project Cash Flow of the State Government Table-10.5

The aggregate net cash flow during the period of 2002/2019 will be a negative amount of R\$ 76.1 million, which should be made up by the State Government.

However, the yearly net cash flow will turn positive in 2020 due to estimated dividends which will be paid by the Domestic and Industrial Water Supply Company (DESO) from 2017. The accumulated cash surplus during the period of 2020/2037 will be an amount of R\$ 291.6 million

Accordingly, the Project generates accumulated cash surplus of R\$ 215.5 million till 2037 when the Loan terminates. Total project cost of R\$ 265.4 million could be entirely recovered by the year of 2040.

10.4.2 Financial Evaluation of the Public Companies concerned

In this analysis, financial evaluation is conducted independently on three companies to distinct each financial conditions: 1) Domestic and Industrial Water Supply Company, 2) Irrigation Water Supply Company and 3) Multi-purpose Dam Company.

(1) Domestic and Industrial Water Supply Company

(a) Basis for Financial Evaluation

Water charges per m^3 of domestic water are set up on the basis of the actual water and projected unit consumption rates. And the charges of industrial water are set up at the actual consumption basis. Incremental consumption volume in project area is set up on the basis of implementation schedule of the project.

Tenses a	A to Astronette	Water Charge	Increase Incre	emental Consur	nption (1000m ³ /	day) 📖 👘 🗄
II.	em	(R\$/m³)	2007	2010	2015	2020
Domestic	Urban	1.15	1.1	4.4	12.9	23.0
	Rural	1.05	0.2	0.6	2.2	3.8
Industrial		2.70	0.3	1.4	12.7	30.7
Total	1	ng transm <u>inen</u> teatus (†	1.6	6.4	27.8	57.5

 Table-10.6
 Water Charges and Incremental Consumption Volume

(b) Financial Analysis

The Company will start its operation in 2007. However, net income will continue negative till 2011. So the short-term bank loan should be raised during the period to run the company. Loan amount is estimated at R\$ 1.0 million in 2007, R\$ 1.2 million in 2008, R\$ 0.6 million 2009 and R\$ 0.6 million in 2010. In this analysis, short-term interest rates are set up at 20 % per annum.

The net income will turn positive from 2012. And retained earnings (accumulated net income) will turn to surplus from 2014. As a result, the Company could continue to pay dividends to the shareholders from 2017, judging from the Profit/Loss Statement and the Cash Flow Table.

The paid-in capital of the Company is R\$ 140.0 million. Dividend rate (dividend per share/face value of share) is estimated at 5 % till 2019 and at 20 % afterwards. Thus the accumulated dividends paid till 2037 are estimated at R\$ 399.2 million. The State Government is a big shareholder of the Company and will receive almost all the dividends paid.

The Study on Water Resources Development in the State of Sergipe, Brazil

	an a thuộc chiến c	es de la composición	All subtrained			Uni	it: RS million
Item/Year	2007	2008	2009	2010	2011	2012/16	2017/37
Operating Revenue	0.9	1.7	2.5	3.5	6.4	78.1	840.7
Operating Expenses	5.3	5.3	5.3	5.9	7.0	42.1	274.1
Non-operating Expenses	0.1	0.1	0.1	0.1	0.0	0.0	0.0
Income before Tax	-4.5	-3.7	-2.9	-2.5	-0.6	36.0	566.6
Net Income	-4.5	-3.7	-2.9	-2.5	-0.6	31.0	425.0
Dividends	0.0	0.0	0.0	0.0	0.0	0.0	399.2

Table-10.7 Profit and Loss Statement in Summary

Table-10.8Cash Flow Table in Summary

					en e	Uni	t: RS million
Item/Year	2007	2008	2009	2010	2011	2012/16	2017/37
CF from Operating Activities	-0.8	0.0	0.8	1.2	3.0	51.6	534.9
CF from Investing Activities	-79.4	0.0	0.0	0.0	0.0	-26.7	-49.8
CF from Financing Activities	80.3	0.0	-0.6	0.6	0.0	26.7	-371.6
Cash increase/decrease	0.1	0.0	0.2	0.6	3.0	51.6	113.5
Cash at end	0.1	0.1	0.3	0.9	3.9	55.5	169.0

According to the above financial data, replacement costs of the water supply system and recurrent costs of the Company incurred during the period could be recovered entirely with water charges. And the cash surplus in 2037 is estimated at R\$ 169 million, which should be retained as a reserve for forthcoming replacement of the pipelines and re-construction of the system.

(2) Irrigation Water Supply Company

The tariff for irrigation water is set by COHIDRO that is currently R 0.025/m³. However, the current tariff is too low to recover either the operating expenses or O&M/training expenses of the Company.

			Unit: R\$ 000
Operating Expenses	O&M/Training	Water Right Charge	Depreciation
3,517	1,623	280	1,615
· · · · · · · · · · · · · · · · · · ·		patha di si alla terbasi etti	No. 2 To find the second second

Table-10.9 Annual Operating Expenses

The tariff should be set at a level to recover the entire operating expenses of the Company, including depreciation that will be retained as a cash reserve for forthcoming replacement costs of equipment. All recurrent and replacement costs should be recovered by beneficiaries.

The projected irrigation water supply volume is set at 1.507 m^3 /sec on average. As a result, the tariff should be R\$ $0.074/\text{m}^3$, which is almost triple of the actual tariff. Thus, the Company could continue its operation without financial assistance from the State Government, though the Company could not generate enough profits to pay dividends.

The project site consists of 6 models. The financial evaluation of the each model in case of proposed tariff of R\$0.074/m³ is conducted and the FIRR of each model is shown in Table-10.10.

The Study on Water Resources Development in the State of Sergipe, Brazil

	1	Table-10.10	FIRR of	each Model	an de trasse	
Model	A	B1	B2	C	D	Е
Lot Area (ha)	3	5	5		20	50
FIRR (%)	20.8	29.6	21.5	57.2	37.2	33.1

All models resulted in high level of FIRR over 20% that shows financially feasible. Judging from it, the proposed tariff could be acceptable. However, when considering the long-term financial cost that is estimated at more than 15% in Brazil, the FIRR of 20.8% of the model A and 21.5% of the model B will be the bottom line.

(3) Multi-purpose Dam Company

Users should cover the project costs. However, the Irrigation Water Supply Company could not afford as discussed above. The costs will be covered indirectly with dividends paid to the State Government by the Domestic and Industrial Water Supply Company. Accordingly, the forthcoming re-construction expenditures could be covered with the cash reserve of the State Government as mentioned above.

The annual operating expenditure of the Company is estimated at R 1,637 thousands (R\$ 95 thousands of 0&M expenses and R\$ 1,542 thousands of depreciation). Users should cover the 0&M expenses of R\$ 95 thousand. Thus, the Company could continue its operation without financial assistance from the State Government during the project life.

10.5 Environmental Impact Assessment

10.5.1 Environmental Impacts

(1) Social Environment

(a) Resettlement

The Vaza Barris Dam reservoir will have a surface area of approximately 9.5 km² at normal water level. Because there are no villages in the inundated area, resettlement inhabitants are expected to be a small number. According to topographical maps (1:5,000 in 1985), there are 31 sheds and 13 houses within the inundated area of Vaza Barris Dam and Check Dam. Some of these houses must be barns for grazing activity. Actual number of resettlement, including three families identified by the field surveys, will be less than ten families. Some of them have no land and are employed by the farm owners, who have responsibility for their relocation. However, some of the families may obtain the relocation site in their own lands around the reservoir. Since the pipelines were planned along existing roads and extensive agricultural land, resettlement will not be needed.

(b) Economic Activity

The two dam sites and the reservoir areas are located in hilly area where agriculture is the only economic activity, but is not in a great scale. The land acquisition area is extensive pastureland or grassland including small cultivated-pasturelands and riverside forests. Therefore, the agricultural resources loss of the farmers seems not to be large. The inundated pastureland is about 600 hectares. Due to the reservoir barrier effect, pastureland will be divided. Moreover, bathing points for the livestock will be lost in this

1.1

area because the corridor from end of the reservoir to the check dam, about 9 km long will be dried up during dry season.

Pipeline construction needs acquisition of land use right along its alignment. This agricultural lands and products will be lost, but the area is not so large in the overall.

An increase of construction workers to the project area will put additional pressure on the social services and the medical facilities. On the other hand, dam construction works will bring additional income to the local residents in terms of the employment of workers, the local economy will be revitalized subsequently.

(c) Infrastructure Facilities and Cultural Property

State road (SE-110) crosses Vaza Barris River at about 20 km upstream of Vaza Barris Dam site. Although the reservoir reaches the bridge at normal water level, the bridge girder is far over the water level. There are several farm roads in the reservoir area. The impact of inundation to the roads is considered to be minor, because these roads are hard for automobiles to cross the river even in dry season and the users have been limited. There are no other infrastructure facilities or cultural properties in the inundated area.

In and around the dam sites, there are only farm roads that are possible to pass only by tractors and jeeps. As new construction road is planned, the impact of construction vehicles on the traffic around project area is considered to be minor.

(d) Public Health Condition

The reservoir might lead to an increase in the potential of water borne disease and provide breeding areas for mosquitoes that tend to breed in stagnant water and field edges. Therefore, the risk of water or mosquito borne disease such as schistosomiasis or dengue fever may increase. As the breeding areas in the reservoir are unavoidable, the local governments have to conduct a campaign and eradication program against dengue fever. However, there are no villages around the reservoir. Therefore these diseases will hardly break out.

(e) Waste

The volume of construction waste from the dam construction will be large. The waste includes excavated soils, rocks, cements and some bulky waste such as concrete piles. Excavation works for the pipelines will also generate surplus soils. These impacts can be mitigated by reuse plan and proper disposal plan, such as: 1) filling valleys with high permeability in the reservoir, 2) refilling the quarry site, and 3) providing waste as construction materials to local companies and people.

(2) Natural Environment

(a) Hazard and Soil Erosion

The two dam sites, the reservoir area and the pipeline alignments are located in hilly areas. There are no serious or large soil erosion sites such as gully erosion in the area. Storage of water into the reservoir may reduce the slope stability of the bank. However, according to the result of geological and topographical survey, large-scale landslide could not occur. During the construction period, due to cut slope, land clearing and soil stripping, the topsoil may be eroded more easily, but these soil erosions can be mitigated by proper design and construction plan.

(b) Groundwater

In Sao Domingos town located near the reservoir, groundwater is the main source of water supply. Some local people living around Vaza Barris River use well water. Storage of water into the reservoir may increase the recharge level. However, according to the result of hydrogeological survey, the impact on the present groundwater use will not occur.

(c) Water Quality

The outlet of wastewater from Sao Domingos town is located 3 km away from the reservoir. Because the wastewater is a small quantity and purified by the stabilization pond and natural purification, the effect on reservoir water quality may be negligible. There are no other significant pollution sources in the upper catchment area.

Because the concentration of phosphorus in Vaza Barris River is low, it will be hard for cutrophication of the reservoir to occur. However, for the first few years, the nutrient level in the reservoir will be influenced by the decay of the vegetation left at the time of first filling. Some pockets of anoxic water will occur in the shallow hollows of the reservoir where vegetation was dense at the time of inundation. Although it is impossible to completely remove the vegetation, land-clearing works in the inundated area will improve water quality of the reservoir. Even if some vegetation remains, the effect on the water quality is considered to be minor. The reasons for this are as follows:

The reservoir will have a high proportion of water volume to the vegetative biomass.

A high rate of flushing will be expected during floods.

en de la com 的现在分词 医马马氏管 建氯化物 医无外的 化化物

The sinking of the water level prior to the rainy season will flush out the nutrients released into the water by the decay of vegetation.

Consequently, the water quality of the reservoir will be essentially the same as that of the river under present condition except for the sediment load, and will be suitable for domestic/industrial and irrigation use. The study of reservoir water quality will show in the next section in detail.

(d) Hydrological Situation and Estuary

Hydrological situation of the downstream will alter after the dam is closed, The down flow and sediment load will be reduced. These effects are inevitable with the project implementation. The hydrological alternation by the project is shown in Figure-10.1. The total reservoir volume is equivalent to 34 % of the average annual flow at the dam site. The average annual flow at the dam site will decrease from 8.7 m³/s to 6.0 m³/s. This decrease volume is equivalent to 25 % of average annual flow at the end of the river (river mouth).

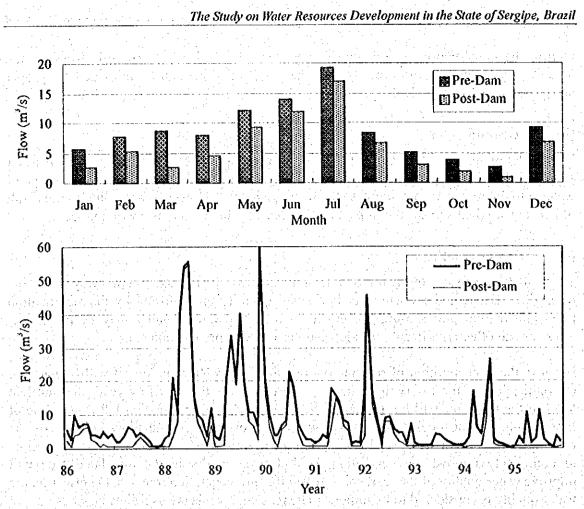


Figure-10.1 Effect of Average Monthly Discharge at the Dam Site (1986-1995)

Bed load sediment from the upstream will remain in the reservoir and most of wash load will also remain in the reservoir because of the long reservoir course and large reservoir volume.

There is a mangrove forest zone with high value as wild life habitat in the estuary. The alteration of river flow, sediment load and water quality may damage the ecosystem and the fisheries in the estuary. The actual effects on the mangrove zone by the project are described as follows:

- 1) Increase in concentration of salinity in the estuary water, due to decrease in the river flow.
- 2) Decrease in sediment load and nutrients.
- 3) Alterations of flood pattern.

According to the water quality analyses, the salinity in the mangrove forest zone is similar to that of seawater. In the estuary, the river flow contributes a very little to the total water volume of the estuary. Although there are no available data on the tidal condition, the average decrease volume of the river flow during one tide cycle will be equivalent to one-hundredth (1/100) order of the seawater inflow volume. Therefore, the impacts of the decrease in the river flow on the mangrove forests and its ecosystem is considered to be minor.

Decrease in sediment load may bring about long-term topographical transition in coastal area depending on the oceanographic condition. In general, this long-term transition is hard to estimate. About 70 % of the mangrove forests in the estuary are formed on the coastal sand. The mangrove zone is an inlet area rather than a river area. Because the river sediments are concentrated mainly in the upper area of the estuary, the large-scale topographical transition will not occur. Moreover, suspended solids including nutrients will not decrease substantially. Therefore, the impacts of decrease in sediment load and nutrients on mangrove forests will be limited within the upper area of the estuary and is considered not to be large scale.

In general, floods play important roles in the ecosystem of mangrove zones and the main roles are:

- 1) Transportation of sediments and nutrients from upstream area.
- 2) Supply of nutrients to surrounding area, due to hydrodynamic diffusion of detritus (organic sediment).
- 3) Supply of oxygen to anoxic bottom due to hydrodynamic diffusion.

Because the large part of floodwater in rainy season will flow through the spillway, the alternations of flood pattern will not be so large. However, depending on abnormal low precipitation, middle class floods will be stored in the reservoir except for the environmental discharge. Although this impact on the mangrove forests and its ecosystem can not be predict at this stage, after the precipitation returns to normal levels, the disturbed ecosystem will restore itself to original condition.

Consequently, serious negative impacts on the mangrove forests and its ecosystem might not occur. However, more detailed survey on the estuary and long-term monitoring program should be conducted.

(e) Flora and Fauna

State Sec. 16

min and

Construction works such as land clearing, excavation, blast and hauling operations will drastically change the physical environment and damage the wildlife. Although the suitable construction plans can minimize the effects to some extent, this impact cannot be avoided completely. Some wildlife in/around the dam site and the pipeline alignments will be lost.

Based on the limited available information from topographical maps, satellite image and site inspection, there are no extensive areas of undisturbed forest and wildlife habitat in the inundated area. Only scattered riverside forests remain along Vaza Barris River and the tributaries. These riverside forests have relatively high wildlife habitat value. Because rare or endangered species have not been identified in the project area, serious impacts on biodiversity would not occur. However, the riverside forests of about 90 hectares will be inundated. Although this biological loss is inevitable with the project implementation, the biological resources lost by the project can be restored by reforestation program.

自我和你的意义就是我们的你的意思的问题。""你的是我们不知道我们不知

1.1.2.6.7

After the dam is closed, migration of the fish will be obstructed. However, migratory fishes that swim up the river from the sea for spawning have not been identified in the project area. Adverse effect on the local fishes cannot be avoided, but the impact will be, to some extent, counteracted by the reservoir, as a newly created aquatic habitat. The fish will shift from species of rapid river type to species of pool or lake type.

As for newly created biological conditions around the reservoir, some qualitative change will occur in the vegetation along the edge of the reservoir over the next 20 or 30 years, due to the rise of groundwater level and humidity. Water level of the reservoir will change by about 15 m. The draw down zone of reservoir water level will not be covered with vegetation. Submerged aquatic plant also cannot grow under such condition. These water bodies will not get a chance to the complex food chains and species diversity. In areas where clearing is not performed, the bare skeletons of trees remain for many years, but eventually insects and bacteria will destroy them.

(f) Landscape

There are no scenic spots around the dam sites, the reservoir and the pipeline alignments. However, construction works such as clearing and excavation will drastically change the physical environment and damage the landscape. This impact that the artificial big objects, the two dams and reservoirs will be newly built, can be mitigated by reforestation program of the dam sites and the buffer zone of the reservoir. The reforestation activities will create the harmonious scenery.

(3) Environmental pollution

Dam construction operation may increase the SS level of the river. This impact can be minimized by providing a turbid water clearing plant during the construction works.

Improper disposal of the waste and accidental spilling of harmful materials such as petroleum, oil and cement cause water and soil contamination but these impacts can be minimized by implementation of proper disposal plan and maintenance of the construction equipment. Heavy equipment operation will generate dust, noise and vibration, which are harmful to the local residents and construction workers. Because the pipelines will pass several towns, temporary and localized disturbance to the residents will occur. These impacts can be mitigated by proper construction methods. With regard to the dam constructions, these impacts on the residents are negligible because the work sites are remote from the residential areas.

10.5.2 Analysis of Future Water Quality Behavior in Vaza Barris Dam Reservoir

(1) Possible Impacts of Agrotoxics

Some irrigation projects have been developed at the region of Canudos in the upstream of Vaza Barris River in Bahia State, using water from Cocorobo Dam. Recent commercialized agrotoxics types present the tendency to use more and more property with lower toxicity and susceptibility for decomposition by solar energy.

There is not disposal any useful data at the present moment about the real applied types and quantity of agrotoxics at that region. However, in the viewpoint of long watercourse of Vaza Barris River as well as the bypass system that should be adopted to avoid the great part of water originated from the upper semi-arid region to discharge out of the reservoir, it is reasonable to consider that the agrotoxics effects on the future reservoir would be practically null.

It must be stood out that as one of the provision to prevention and control, it is recommendable to propose the discussion with the local authority, even though the region does not belong to Sergipe State, basing on the federal water pollution control laws.

(2) Eutrophication

The accumulation of the water in the reservoir may cause the exaggerated algae proliferation, depending on the water quality. The result of the analysis of the main parameters regarding to nutrients (N and P) obtained at three stations on Vaza Barris River are shown in Table-10.11. The results inserted in this table indicate that the nutrient contribution originated from the upper basin at Ponte SE-302 is very restricted, comparing to that obtained at Fazenda Belem. This fact suggests an existence of significant sources of nutrient loads in the basin situated between Ponte SE-302 and Fazenda Belem.

The simulation of eutrophication evolution level in the future reservoir was held through Vollenweider model that is known it is representatively of eutrophication phenomenon related as follow.

$$P_{x} = \frac{P_{IN}}{Z/T_{W}(1+2\cdot T_{W})}$$

Where,

 P_x

 P_{IN} :

Z:

 T_{w} :

Total Phosphorous average concentration in reservoir (mg/l) Average concentration of total phosphorous in affluent (mg/l) Average depth (m) Detention time (year)

$$CHL - a = 0.28 \cdot P_x^{0.99}$$

all and the

감탄 모르 문

1241 52 19 19

Where, CHL-a:Chlorophyll-a concentration (mg/m³) P_x :Average Total Phosphorous concentration (mg/m³)

According to simulation performed based on the data obtained at Fazenda Belem station and equations above referred, the trophic level predicted for Vaza Barris Dam reservoir would correspond to the range of oligotrophic stage as can be seen in Table-10.12 where shows comparison of trophic level criterion. This simulated trophic category would not constitute any problems to multiple use of future Vaza Barris Dam reservoir.

It must be pointed out, however, that the domestic sewage of municipalities as well as the diffuse pollution found in Vaza Barris drainage basin could constitute an important source of eutrophication, requiring the implantation of the adequate treatment plants for mitigation of these pollution loads.

The decree-law CONAMA 20 that establishes the classification of water system on the Brazilian territory prohibits discharge of any type of sewage into the water basin where exists drinking water facilities.

建物的建筑物物和推进了和超少的分子的分子。

Sampli Sampli	ng Date	April 7th	April 13th	April 20th
Ponte SE-302 Station	ja posto	eran di tra kulu ny eksiya		ang ang kabupatén kab
Org. N	mg/l	0.5	1.1 1 1 0.3	
NH4-N	mg/l	0.019	0.009	
NO3-N	mg/l	ND	ND	ND
NO2-N	mg/l :	0.001	trace	trace
Total P	mg/l	0.052	0.06	0.05
PO4-P	mg/l	0.002	0.005	ND
Flow	m³/s	0.06	0.07	0.06
Total P flux	kg/d	0.27	0.363	0.259
Total N flux	kg/d	2.592	1.814 (1.814)	1.21
Sao Domingos Station				
Org. N	mg/l	0.4	0.2	0.5
NH4-N	mg/l	0.03	0.008	0.048
NO ₃ -N	mg/l	ND	ND and a	0.03
NO2-N	mg/l	trace	0.003	trace
Total P	mg/l	0.076	0.02	0.15
PO4-P	mg/l	0.002	ND	ND
Fazenda Belem Station				
Org. N	mg/l	0.5	0.4	0.3
NH4-N	mg/l	0.018	0.011	0.046
NO3-N	mg/l	ND	ND	0.02
NO ₂ -N	mg/l	0.004	0.001	trace
Total P	mg/l	0.043	0.1	0.039
PO ₄ -P	mg/l	0.014	0.005	ND
Flow the state	m³/s	1.5	1.3	1.2
Total P flux	kg/d	5.57	11.23	40.44
Total N flux	kg/d	64.8	44.93	33.18

Table-10.11	Results of Nutrients Anal	vses in	Vaza	Barris	River
THUIL TOTAL	110001000110000000000000000000000000000				

Table-10.12 Proposed Criterion of Trophic Category (Vollenweider, 1983)

法公司进行

Trophic Category	Average TP (mg/l)	Average Chlorophyll-a (mg/m ³)
Ultra-oligotrophic	< 4.0	1.0-2.5
Oligotrophic	< 10.0	2.5-8.5
Mesotrophic	10.0-35.0	8.5-25.0
Eutrophic Addition	146 10 Par 35.0- 100.0 Par 199	25.0-75.0
Hipertrophic	> 100.0	75.0 The second s
Vaza Barris reservoir	6.0	1.6 full states and states

(3) Water Color of the Reservoir

The water originated from the upstream of the basin presents normally good transparence without any objectionable color. Significant watercolor appears only after the rainfall that brings the soil erosion materials constituted mainly micro particles, colloidal form of soil and some part of the humic substances with brown color. The great part of these materials loose rapidly into the water body owning to precipitation process when water remains quiet in the reservoir even if some of dissolved substances stay for a long period. Although depending on the verification of the water characteristics, the color products in the future reservoir could not attain any harmful level for water use.

an an the state of the state of

10.5.3 Conclusion of Environmental Impact Assessment

Environmental impacts can be considered as falling in two categories. There are as follows:

< Unavoidable Adverse Impacts >

Unavoidable adverse impacts are impacts such as the land loss to reservoir inundation, alteration of downstream situation and change of physical environment in the dam site and the pipeline alignment site. These impacts are inevitable with project implementation and do not have avoidable actions without compromising the project.

< Manageable Effects >

Manageable effects are classified into direct/indirect and adverse/beneficial effects. Some sort of action plans can lessen these effects and enhance the secondary benefits. Vaza Barris Dam project has potentially adverse impacts on many environmental items. These environmental impacts will occur at operation stage as well as construction stage. However, the manageable adverse effects can be avoided by suitable mitigation plans. Considering no other useful water resources, Vaza Barris Dam project is judged to be environmentally feasible.

However, environmental investigation is not enough only in this Study and the following surveys should be conducted in the detail environmental impact assessment stage, to supplement this study results.

- 1) Fauna and Flora Survey at the Dam Site and the Reservoir Area
- 2) Land Use Survey in the Reservoir Area

341、An E (3)?

1111

فقيد الأربيري

energia (de 18

化氯化铁合物 计算法 计算法 化磷酸钙 经发行资源 化物

en de la presenta en el

- 3) Hydrological Situation (tide, current, seawater intrusion) Survey in the Estuary
- 4) Ecological Survey in the Estuary
- 5) Bed Load Sediment and Wash Load Survey at the Dam Site and the River Mouth
- 6) Water Quality Analysis of Vaza Barris River, Tributaries and Cajaiba Dam Reservoir.

an an dar

- 7) Economic Activity Survey in and around Reservoir Area
- 8) Environmental Monitoring in the Estuary of Vaza Barris River

新生产性的复数形式 医白色的 名

医液体 建立物 医鼻腔

CHAPTER 11 RECOMMENDATIONS

(1) Implementation of the Project of Water Resources Development and Supply in Vaza Barris River- Sergipe (PROVABASE)

The project of water resources development and supply for domestic and industrial water in Itabaiana and Lagarto areas and for irrigation water in the right side of Vaza Barris River was proposed. The project consists of:

- Vaza Barris Multi-purpose Dam
- Domestic and Industrial Water Supply Facilities for Itabaiana Water Supply Area
- Domestic and Industrial Water Supply Facilities for Lagarto Water Supply Area
- Irrigation Water Supply Facilities

The Low flow bypass system was introduced in the dam reservoir operation, while river water that could not be utilized before becomes clean and comes to be used as potable and irrigation water.

The population of these areas is 259,000 inhabitants in 1996 and is estimated to be 540,000 in 2020, which represents almost two thirds of population in Aracaju Capital Area at the same year (875,000 inhabitants). The lack of adequate water supply is a serious obstacle to the development of the so mentioned regions and creates a migratory pressure towards the State capital, worsening even more problems in Aracaju. Therefore, it's mandatory to try to stabilize the water supply for high-concentrated population, and is indispensable to boost its social-economical development and to improve the quality of life. The beneficial municipalities strongly requested the project and issued "Lagarto Declaration" to the Federal Government. Moreover, Sergipe Government has already proposed the consultation letter (Carta Consurta) to the Federal Government in order to progressively promote this project.

Although the expansion projects was proposed as PROAGUA in the same area, necessity of PROVABASE is still very high, because: 1) PROAGUA project cannot meet the future water demand in this area, 2) PROAGUA Project in Lagarto area will use the water of Piaui Dam, of which water is in high chlorine characteristics and is reserved by irrigation use.

(2) Financing of the Project Cost

The investment of the phase-1 project amounts to R\$ 264 million with a price escalation of 4 % per annum. The average share of water resources development investment to the tax revenue in the State budget was 3.1% during 5 years from 1994 to 1998. The funds of the State budget for the investment with the same increase rate of 5 % per annum as projected GRDP growth rate of the State were estimated at R\$ 390 million during ten (10) years. However, annual amount would be only R\$ 39 million, which is far from the project cost.

Nevertheless, the indebtedness capacity of the State Government is limited by the federal legislation and is estimated as follows: 1) R\$ 140 million of overall debt capacity and 2)

R\$ 100 million of debt service capacity. When considering current debt services of the State Government, the soft loan is required as a principal source of funds for the implementation of the project. Accordingly, the overall sources of funds are raised as follows:

- Soft Loan: 50% of the project cost in Phase-1
- Transfer from the Federal Government: 50% of the project cost in Phase-1

As for the phase-1 project, 50 % (R\$ 132 million or US\$ 69 million) of the project cost is recommended to be loaned by the foreign soft loan, considering the debt limited by federal legislation and the other project progress. Accordingly, the State Government should raise R\$ 132 million by itself.

(3) Necessity of Additional Study

Prior to the loan procedure and implementation of the project, the following additional studies are necessary and should be implemented by the State:

- Basic Design of Water Supply Facility in Itabaiana and Lagarto Areas
- Feasibility Study on Vaza Barris Irrigation Project
- Formulation and Approval of EIA Report (RIMA)
- -- Formulation of Implementation Program Integrated with this Study Results

(4) Necessity of Water Quality Monitoring

In the viewpoint of water quality in Vaza Barris River, Chlorine (Cl) concentration is high and critical for potable water, as well as Electric Conductivity (EC), Sodium (Na), Magnesium (Mg), Calcium (Ca), Carbonic Acid (HCO₃) and pH Value (pH) are important for irrigation planning. Water quality observation has been conducted during the Study.

However, it is noted that water quality data in Vaza Barris River is not yet enough to understand the water quality behavior. It is needed to continue observation of water quality such as the said parameters at least, not only at the existing observation stations but also at the proposed dam site and the check dam site.

(5) Arrangement between Sergipe and Bahia

Vaza Barris River is the federal river located in Bahia State upstream and Sergipe State downstream. Vaza Barris Dam is located in almost most downstream of the main stream of Vaza Barris River. Water resources development and management in the upstream, such as a dam construction, irrigation development and forestation, directly affects to the downstream river and to this project in Sergipe State. Therefore, the arrangement on basin development and management should be mutually discussed between Sergipe State and Bahia State. Responsible organization should be SRH/SE and SRH/BA.

The Study on Water Resources Development in the State of Sergipe, Brazil

APPENDICES

۱., ¹

Appendix - A List of JICA Advisory Committee Members

1. Chairperson

2. Member

: Jyosuke KASHIWAI

: Hiroki KATO

Appendix - B List of JICA Study Team Members

1. Team Leader / Water Supply	: Masatomo Watanabe
2. Water Resources Development	: Kenji Nagata
3. Agriculture and Irrigation	: Kazuhiko Otani
4. Hydrology and Hydraulics	: David Merrett
5. Facility Design / Cost Estimate	: Toshio Yano
6. Topographic Survey	: Manabu Kawaguchi
7. Operation and Maintenance	: Naoki Hara
8. Groundwater / Topography and Geology	: Hiroshi Nakamura
9. Water Quality Analysis	: Hideo Kawai
10. Environment	: Kanji Watanabe
11. Law and Institution	: Tatsuro Tashino
12. Socio-economy and Finance	: Noboru Osakabe
13. Interpreter / Regional Planning	: Atsuhiko Uehara
14. Coordinator (Master Plan Study)	: Tetsuhiro Imagawa
15. Dam Geology (Feasibility Study)	: Kei Ichikawa
16. Dam Design(Feasibility Study)	: Toru Fujita
17. Coordinator (Feasibility Study)	: Akihiro Shimomura

List of Steering Committee Members Appendix - C

(Master Plan Study)

Name	Institution	Post and Profession
Marcos Antonio de Melo, President	State Secretariat of Planning, Science and Technology – SEPLANTEC	Secretary/ Economist
Ailton Francisco da Rocha, Coordinator	Water Resources Superintendency – SRH	Superintendent/ Agricultural Engineer
Hélio Sobral Leite	Company for the Development of Water Resources and Irrigation in Sergipe COHIDRO	Director- President/ Agricultural Engineer
Luiz Simões de Faria	Company for Livestock and Agriculture Development of Sergipe – EMDAGRO	Director-President/ Agricultural Engineer
Luís Carlos Resende	State Environmental Administration – ADEMA	Executive- Secretary/ Chemical Engineer
Arivaldo Ferreira de Andrade Filho	Sanitation Company of Sergipe– DESO	Director- President/ Civil Engineer
Manoel Hora Batista	Project for Support to the Low Income Families of the Semi-arid Region in Sergipe – PRÓ-SERTÃO	General Coordinator/ Agricultural Engineer
João Augusto de Barros Nascimento	Company for Industrial and Mineral Resources Development in Sergipe – CODISE	Director- President/ Manager
Adalberto Pereira de Figueiredo	Civil Defense	Special Coordinator of Civil Defense/ Economist
Francisco Alves	State Management Unit for PROAGUA-UEGP	Coordinator/ Agricultural Engineer
(Feasibility Study)		

(Feasibility Study)

reasibility Study)		
Name	Institution	Post and Profession
Marcos Antonio de Melo Presidente	Secretaria de Estado do Planejamento e da Ciência e Tecnologia – SEPLANTEC	Secretário/ Economista
Ailton Francisco da Rocha, Coordenador	Superintendência de Recursos Hídricos – SRH	Superintendente/ Eng. Agrônomo
José Luís dos Santos Andrade	Companhia de Desenvolvimento de Recursos Hídricos e Irrigação de Sergipe	Diretor- Presidente/ Economista
José Wolney Soares de Brito	COHIDRO Empresa de Desenvolvimento Agropecuário de Sergipe EMDAGRO	Diretor-Presidente/ Veterinário
Luís Carlos Resende	Administração Estadual do Meio Ambiente – ADEMA	Secretário-Executivo/ Eng. Químico
Gilmar de Melo Mendes	Companhia de Saneamento de Sergipe – DESO	Diretor- Presidente/ Eng. Civil
Manoel Hora Batista	Projeto de Apoio às famílias de Baixa Renda da Região Semi-Árida de Sergipe – PRÓ-SERTÃO	Coordenador Geral/ Eng. Agrônomo
José Haroldo Sampaio Barros	Companhia de Desenvolvimento Industrial e de Recursos Minerais de Sergipe – CODISE	Diretor- Presidente/ Administrador
Carlos Tavares	Defesa Civil	Coordenador Especial de Defesa Civil / Economista
Francisco Alves	Unidade Estadual de Gestão do PROÁGUA – UEGP	Coordenador/ Eng. Agrônomo

Appendix - D List of Technical Committee Members

Name	Institution	Post / Profession
Ailton Francisco da Rocha, President	Water Resources Superintendency, SRH	Superintendent / Agricultural Engineer
José Walter de Aragão Menezes	Sanitation Company of Sergipe, DESO	Chief of Water Resources Div. / Geologist
Lucilene Tiyomi Takahashi	State Environmental Administration, ADEMA	Coordinator of Special Project / Geographer
Décio Garcez Vieira Filho	Company for Industrial and Mineral Resources Development in Sergipe, CODISE,	Director of Mineral Resources / Geologist
Elder Prudente Barbosa	Company for the Development of Water Resources and Irrigation in Sergipe, COHIDRO	Agricultural Engineer / Technical Assistant
Jodemir Antônio Pires Freitas	Company for Livestock and Agriculture Development of Sergipe, EMDAGRO	Agricultural Engineer /Assessor o the Presidency
Uitan Maynard de Oliveira	Project for Support to the Low Income Families of the Semi-arid Region in Sergipe, PRÓ-SERTÃO	Water Supply Assistant / Civil Engineer
Fátima Maria Diaz da Hora	Superintendency, IBAMA/SE	Forest Engineer
Nicanor Moura Neto	Civil Défense	Director of Engineering Service / Civil Engineer
Arisvaldo Vieira de Melo Júnior	State Management Unit for PROÁGUA UEGP	Agricultural Engineer / Consultant
Bergson Rodrigues Santiago	Company for Development of the São Francisco Valley, CODEVASF	Chief of the 4 th DPL/Economist
Ederlon Ribeiro de Oliveira	Brazilian Enterprise of Agriculture and Livestock Research/ Center of Research of the Coastal tablelands, EMBRAPA/CPATC	Auxiliary Chief CPATC / Veterinarian
Clóvis Roberto Pereira Franco	Federat University of Sergipe, UFS	Chief of the Biology Department - UFS/ Teacher
Antônio César Tavares Santana	National Department of Drought Alleviation, DNOCS	Director / Eng. Civil
Cláudia de Araújo Xavier	Institute of Technology and Research of Sergipe, ITPS	Assessor of the Presidency / Chemical Engineer
Roberto Sales Cardoso	State Company of Household and Public Works, CEHOP	Assessor of the Presidency / Chemical Engineer
Eduardo Gonçalves	National Institute of Meteorology, INMET	Chief of the 4 th DISME / Captain
Antônio de Pádua Louree Pereira	National Agency of Electrical Energy, ANEEL	Superintendent / Electrical Engineer

. .

Name and a	Institution	Post / Profession
Ailton Francisco da Rocha, Presidente	Superintendência de Recursos Hídricos, SRH	Superintendente/ Eng. Agrônomo
losé Walter de Aragão Menezes	Companhia de Saneamento de Sergipe, DESO	Chefe da Divisão de Recursos Hídricos / Geólogo
Lucilene Tiyomi Takahashi	Administração Estadual do Meio Ambiente, ADEMA	Coordenadora Projeto Especial/ Geógrafa
Décio Garcez Vicira Filho	Companhia de Desenvolvimento Industrial e de Recursos Minerais de Sergipe, CODISE	
Elder Prudente Barbosa	Companhia de Desenvolvimento de Recursos Hídricos e Irrigação de Sergipe, COHIDRO	Eng. Agrônomo/ Assist. Técnico
Jodemir Antônio Pires Freitas	Empresa de Desenvolvimento Agropecuário de Sergipe, EMDAGRO	Eng. Agrônomo/ Assessoria de Pesquisa
Uitan Maynard de Oliveira	Projeto de Apoio às famílias de Baixa Renda da Região Semi-Árida de Sergipe, PRÓ-SERTÃO	Assist. de Abastecimento de Água / Eng. Civil
Fátima Maria Diaz da Hora	Superintendência do IBAMA-SE	Eng. Florestal
Nicanor Moura Neto	Defesa Civil	Diretor de Serviço de Engenharia Eng. Civil
Arisvaldo Vieira de Melo Júnior	Unidade Estadual de Gestão do PROÁGUA – UEGP	Eng. Agrônomo/ Consultor
Bergson Rodrigues Santiago	Companhia de Desenvolvimento do Vate do São Francisco, CODEVASF	Chefe do 4º DPL/ Economista
Ederlon Ribeiro de Oliveira	Empresa Brasileira de Pesquisa Agropecuária / Centro de Pesquisa dos Tabuleiros Costeiros, EMBRAPA/CPATC	
Clóvis Roberto Pereira Franco	Universidade Federal de Sergipe, UFS	Chefe do Departamento de Biologia UFS/ Professor
Antônio César Tavares Santana	Departamento Nacional de Obras Contra a Seca, DNOCS	Diretor/ Eng. Civil
Cláudia de Araújo Xavier	Instituto de Tecnologia e Pesquisa de Sergipe, ITPS	Assessora Presidência Eng. Química
Roberto Sales Cardoso	Companhia Estadual de Habitação e Obras Públicas, CEHOP	Assessora da Presidência/ Eng Químico
Eduardo Gonçalves	Instituto Nacional de Meteorologia, INMET	Chefe do 4º DISME / Capitão
Antônio de Pádua Louree Pereira	Agência Nacional de Energia Elétrica, ANEEL	Superintendente / Eng.º Elétrico

(Feasibility Study) List of Technical Committee Members

5. y

Appendix - E List of Advisors for the Steering and Technical Committees

(Master Plan Study) Name	Institution	Post / Profession
JOSÉ LUIZ LIMA DE OLIVEIRA	Representative of Bahia State	Superintendent of Water Resources
JOSÉ CARLOS GUIDOLIN	Representative of MMARHAL / SRH	Consultant
JOSÉ THEODOMIRO DE ARAÚJO	Representative of CEEIVASF	President / Agricultural Engineer
ALEXANDER MAX FIGUEIREDO DE SÁ	Representative of CHESF	Chief of the Water Resources Management Division
JÚLIO FLORÊNCIO FILHO	Representative of Alagoas State	Coordinator of UEGP/ Agricultural Engineer
FRANCISCO BEZERRA SIQUEIRA	Representative of CODEVASF	Supervisor of Sub-Basins / Agricultural Engineer
CARLOS FERNANDO PINTO TEIXEIRA	Representative of SUDENE	Coordinator of Natural Resources Planning / Geologist

(Master Plan Study)

(Feasibility Study) Post / Profession Name Institution Representante do Estado da Bahia MILTON CEDRAZ Superintendente de Recursos Hidricos JOSÉ CARLOS Representante da MMARHAL / SRH Consultor GUIDOLIN **JOSÉ THEODOMIRO** Presidente Representante da CEEIVASF DE ARAÚJO Engº Agrônomo Chefe da Divisão da Gestão de **ALEXANDER MAX** Representante da CHESF **Recursos Hídricos FIGUEREDO DE SÁ** Representante do Estado de Alagoas Engº Agrônomo MURILO L. MARINHO FRANCISCO BEZERRA Representante da CODEVASF Supervisor de Sub-Bacias SIQUEIRA Engº Agrônomo Coordenador de Planejamento de **CARLOS FERNANDO** Representante da SUDENE **Recursos Hidtricos** PINTO TEIXEIRA

The Clubs on Water	Decourses	Dairalanneau	the stee Clarke -	Constant Darrell
The Study on Water	Resources	Development	i m me siaie g	i sergine, prazii

Appendix - F ··· List of Counterpart Personnel

Master Plan Study (1)

<List of Work Group -- A>

Work Target: Water Resources PotentialGroup Leader (JICA): DaviGroup Leader (Sergipe Side): João

: David J. Merret : João Carlos Santos da Rocha

Institution	Name - Post / Profession
JICA	David J. Merrett: Hydrology and Hydraulics
Study Team	Hiroshi Nakamura: Groundwater, Topography & Geology
	Hideo Kawai: Water Quality Analysis
	Kenji Nagata: Tetsuhiro Imagawa
SRH	João Carlos Santos da Rocha: Director / Geologist
	Overland Amaral Costa: Director de Coordination Office/ Geographer
	Roberto Barros: Assessor / Civil Engineer
DESO	José Walter Aragão Menezes: Chief of the Division /Geologist
	Cláudio Julio Machado: Operational Assistant / Geographer
ADEMA	Jorge Antônio Lima: Chief of the Division / Chemical Engineer
	José Alves Nunes: Chief of the Division / Civil Engineer
CODISE	Inajá Francisco de Souza: Meteorologist
	Gustavo Zambrana Campo Verde: Geologist
COHIDRO	Jorge Assis Fernandes dos Santos: Chief of COPRO / Geologist
	Maria Auxiliadora Santos Lima: Geologist
	Luís Marcolino Gonçalves Neto: Assistant of COPRO / Civil Engineer
EMDAGRO	Tânia Maria Delmontes Freitas Dias: Coordinator /Economist
an an an	Manoel Fernando de A. Dantas: Agricultural Engineer
CODEVASF	Fátima Cristina Salgueiro: Civil Engineer
	Francisco Carlos Góes da Costa: Agricultural Technician
UFS	José Patrocínio Hora Alves: Prof. / UFS – Chemical Engineer
ITPS	Cláudia de Araújo Xavier: Assessor of the Presidency /Chemical Engineer
INMET	Eduardo Gonçalves: Chief of 4° DISME /Captain
ANEEL	P Antônio de Pádua Louree ercira : Superintendent / Electrical Engineer
CPRM	Romulo Alves Leal: Geologist

<List of Work Group -- B>

 $\phi = \phi + A A$

Work Target: Plan and Design for Water Resources DevelopmentGroup Leader (JICA): Kenji NagataGroup Leader (Sergipe Side): Artemízio Cardoso de Rezende

Institution	ntel in the New Sector (Sector) Name - Post / Profession
JICA	Kenji Nagata
Study Team	Masatomo Watanabe
	Toshio Yano
	Kazuhiko Otani
	Hiroshi Nakamura
	Manabu Kawaguchi asa manang kanang
SRH	Artemizio Cardoso de Rezende: Assessor / Geologist
	Luiz Carlos Neto: Director of the Coordination Office / Agricultural Engineer
	Andrei Lopes Costa: Director of the Coordination Office / Economist
SEPLANTEC	Thieres Gonçalves Sobrinho: Chief de Services /Economist
DESO	Nancy Santana Barreto: Chefe de Dep. Assessor of Planning / Civil Eng.
	Wilson Lima Júnior: Chief of Department / Civil Engineer
CODÍSE	Carlos Aurélio Barreto: Director of CEPS / Geologist
	Cibele de Oliveira Correia: Coordinator of Lab / Geographer
COHIDRO	Elder Prudente Barbosa: Technical Assistant / Agricultural Engineer
	Clélio da Silva Araújo: Coordinator of CODEA / Agricultural Engincer
	Jailton Teles Barreto: Chief of ASPLAN / Economist
	Idalton Antônio Martins: Coordinator of COREF/ Cartography Eng.
EMDAGRO	Jodemir Antônio Pires Freitas: Assessor of Presidency / Agricultural Engincer
PRÓ-SERTÃO	Uitan Maynart de Oliveira: Technical Coordinator / Civil Engineer
DEFESA	Nicanor Moura Neto: Civil Engineer
CIVIL	
UFS	Francisco Sandro R. de Holanda: Teacher/UFS – Agricultural Engineer
UEGP	Arisvaldo Vieira de Melo Júnior: Consultant / Agricultural Engineer
CODEVASF	José Bizerra de Aguiar: Chief of the 4th DPLT / Economist
	Eduardo Alves Bastos: Chief of the 4th DPLA / Economist
DNOCS	Antônio César Tavares Santana: Director / Agricultural Engineer
ADEMA	Marly Menezes Santos: Biologist
	Lucilene Tiyomi Takahashi: Gepgrapher
СЕНОР	Roberto Sales Cardoso: Civil Engineer
PRONESE	Osvaldo Kasume: Chief of Nucleus / Civil Engineer
	Carmem Lúcia: Agricultural Engineer
FNS	Alvaro José Bastos Figueiredo: Chief of Services / Civil Enginner
	Rui Eduardo de Oliveira: Director of the SAAB / Civil Engineer

<List of Work Group -- C>

Work Target: Water Demand, Project Evaluation, Institution, Operation & MaintenanceGroup Leader (JICA): Atuhiko UeharaGroup Leader (Sergipe Side): Jessé Cláudio de Lima Costa

Institution	Name – Post / Profession
JICA	Atsuhiko Uehara
Study Team	Kazuhiko Otani
	Tatsuo Tashino
	Naoki Hara
	Kanji Watanabe
	Noboru Osakabe
SRH	Jessé Cláudio de Lima Costa: Director of Department / Teacher
	Luis Carlos Neto: Director de Coordenation Office / Agricultural Eng.
	Overland Amaral Costa: Director of Coordenation Office / Geographer
SEPLANTEC	Samuel Oliveira Ribeiro: Director of Dept. / Economist
	lêda Maria de Carvalho Oliveira: Consultant / Economist
	José Carlos Pereira: Economist
	Raimundo Rabelo Lucas: Chief of Services / Economist
DESO	Nilton Matos: Industrial Chemical Engineer
ADEMA	Gleidineides Teles dos Santos: Biologist de la constant de la constant de la constant de la constant de la const
	Lucilene Tiyomi Takahashi: Geographer
CODISE	Inajá Francisco de Souza: Geographera de la construction de la la construction de la construction de la construction
COHIDRO	José Albuquerque Cunha: Coordinator / Geologist
	Adnaldo Santana Santos: Coordinator of CENIR / Civil Engineer
EMDAGRO	Antônio Paulo Feitosa: Agricultural Engineer
UEGP	Moacyr Wanderley: Consultor / Geologist a 1973 A Standard Standard State State State
CODEVASE	Pedro de Araújo Lessa: Chief of the 4th DEG / Agricultural Engineer
	Orlando Tavares de Oliveira: Chief of Services / Agricultural Engineer
EMBRAPA	Luis Carlos Nogueira: Surveyor / Agricultural Engineer
UFS	Lilian Cunha Góes: Teacher / Civil Engineer
SEFAZ	Maria da Glória: Superintendent / Tributary Inspector
SEICT	Pedro Ferreira dos Anjos: Chief of Asplan / Economist
SEMA	Maria Luiza Santos: Coordinator / Biologist
IBAMA	Fátima Maria Diaz da Hora: Forest Engineer

(2) Feasibility Study

a dan dari

<List of Work Group - A>

Work Target: Plan and Design Group Leader (JICA)

: Toshio Yano

Group Leader (Sergipe Side) : Antônio Carlos de Aragão Resende (SRH)

	Nama	
Institution	Name	Post / Profession
JICA	Tashio YANO	
	Kenji NAGATA	
	Atsuhiko UEHARA	
	Masatomo WATANABE	
Provide Article 1	Toru FUJITA	
SRH	Ailton Francisco da Rocha	Superintendente/Eng. agrônomo
A Share and	Antônio Carlos de Aragão Resende	Assessor/Eng. Civil
	João Carlos Santos da Rocha	Diretor/Geólogo
	Jessé Cláudio de Lima Costa	Diretor / Historiador
	José Holanda Neto	Assessor/ Eng. Agrônomo
SEPLANTEC	Fernando Lopes Cruz	Superintendente/Eng. Agrônomo
	Tânia Resende	Diretora/Supes
D D D D D D D D D D		• • • • • • • • • • • • • • • • • • •
DESO	Nilton Dantas	
	Marcelo Monteiro	Diretor Técnico /Eng. Civil
an an an an an taona tao. Ang an an taona taona taon	Wilson Lima Júnior	Eng. Civil
	Roberto Leite	Diretor de Operações/Eng. Civil
ADEMA	Gleidineides Teles dos Santos	Bióloga
an an Aller Aller and	Lucilene Tiyomi Takahasshi	Geógrafa
CODISE	Inajá Francisco de Souza	Meteorologista
ter an	Luís Gonzaga Luna Reis	Eng. Agrônomo
COHIDRO	Élder Prudente barbosa	Eng. Agônomo
	Adnaldo Santana Santos	Eng. Civil
	Antônio Paulo Feitosa	Eng. agrônomo
	Luís Marcolino Gonçalves Neto	Eng. Civil
EMDAGRO	Jodemir Antônio Pires Freitas	Eng. Agrônomo
	João Serafim Pinto	Eng.º Agrônomo
	Jeferson Carvalho	Eng. Agrônomo
	Elisabeth Denise Campos	Eng. Agrônoma
CODEVASF	Fátima Cristina Salgueiro	Eng ^o Civil
	Pedro de Araújo Lessa	Eng. Agrônomo
	Eduardo Alves Bastos	Economista
	Orlando Tavares de Oliveira	Eng. Agrônomo
UFS	Francisco Sandro R. de Holanda	Prof. / UFS - Eng.º Agrônomo
	Antenor de Aguiar Neto	Prof/UFS Eng. Agrônomo
	Lilian Cunha Góis	Prof./UFS – Eng. Civil
CEHOP	Roberto Sales Cardoso	Eng. Civil
PRONESE	Osvaldo Kasume	Eng. Civil
	Carmem Lúcia	Eng. Agrônoma
ANEEL	Antônio de Pádua Louree Pereira	Superintendente / Eng.º Elétrico
EMBRAPA/	Luis Carlos Nogueira	Eng. Agrônomo
CPATC	Aurelir Nobre Barreto	Eng. Agrônomo
	Ederlon Ribeiro de Oliveira	Chefe Adjunto/ Veterinário
DNOCE		
DNOCS	Antônio César Tavares	Eng. Civil
FNS	Alvaro José Bastos Figueiredo	Eng. Civil
	Rui Eduardo de Oliveira	Eng. Civil
SAGRI	Eduardo Cabral de V. Barreto	Eng. Agrônomo
	João Amaral	Eng. Agrônomo
	Geraldo Sobrinho	Eng. Agrônomo
PRÓ-SERTÃO	Uitan Maynard de Oliveira	Eng. Civil

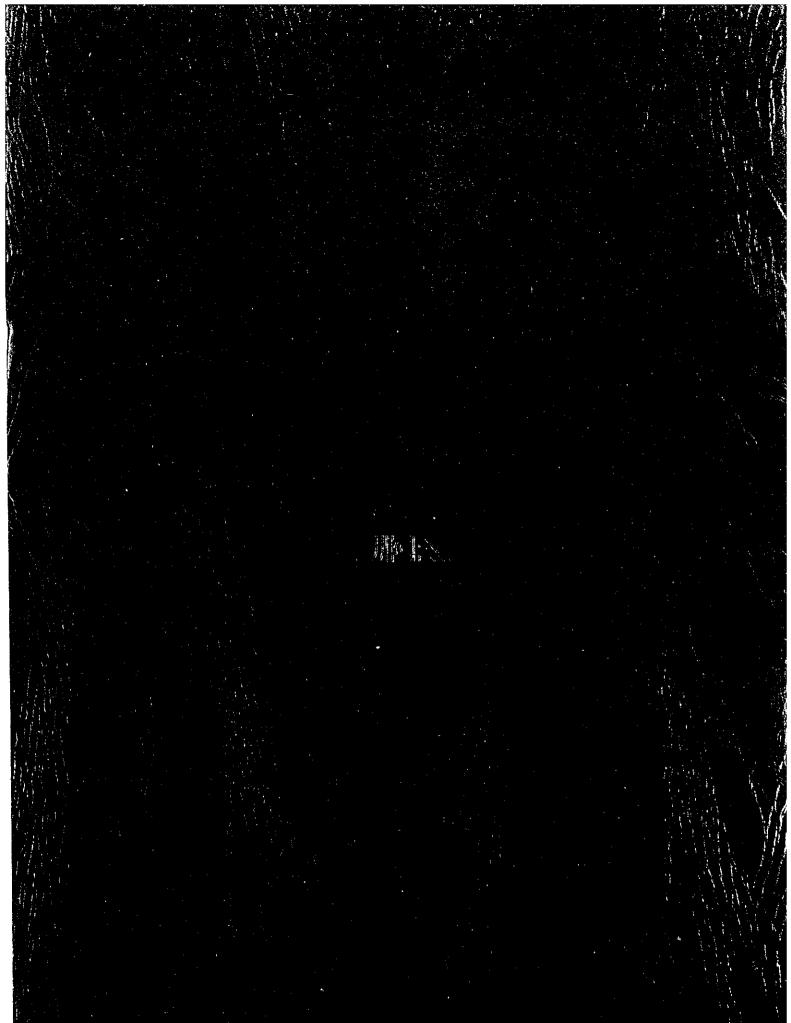
Main Report

58.3

<List of Work Group -- B>

Work Target: Survey and Analysis Group Leader (JICA) : Kenji NAGATA

Group Leader (Sergipe Side) : João Carlos Santos da Rocha (SRH)


Institution	Name	Post / Profession
JICA	Kenji Nagata	
	Hiroshi Nakamura	
	Manabu Kawaguchi	
	Ichikawa	
SRH	Artemizio Cardoso de Rezende	Assessor / Geólogo
	João Carlos Santos da Rocha	Diretor de Departamento/ Geólogo
	Overland Amaral Costa	Diretor de Coordenadoria/ Geógrafo
alan shiriki	Roberto Barros Filho	Assessor/ Eng. Civil
ITPS	Cláudia de Araújo Xavier	Assessora da Presidência
DESO	José Walter Aragão Menezes	Chefe de Divisão/ Geólogo
	Cláudio Julio Machado Mendonça Filho	Geógrafo
	Roberto Leite	Diretor/ Eng. Civil
	Frederico Souza	
	Nilton Matos	Químico Industrial
CODISE	Carlos Aurélio Barreto	Diretor do CEPS / Geólogo
	Gustavo Zambrana Campo Verde	Géólogo
	Cibele de Oliveira Correia	Coord. de Laboratório / Geógrafa
	Luís Gonzaga Luna Reis	Eng. Agrônomo
CPRM	Romulo Alves Leal	Geólogo
EMBRAPA/CP	Luís Carlos Nogueira	Eng. Agrônomo
ATC	Aurelir Nobre Barreto	Eng. Agrônomo
COHIDRO	Jorge Assis Fernandes dos Santos	Chefe da COPRO / Geólogo
COMDRO	Maria Auxiliadora Santos Lima	Geóloga
	Luís Marcolino Gonçalves Neto	Eng. Civil
	Idalton Antônio Martins	Coord, COREF/ Eng.° Cartógrafo
	José Albuquerque Cunha	Coordenador / Geologo
EMDAGRO	João Serafim Pinto	Eng. Agrônomo
PRÓ-SERTÃO	Uitan Maynart de Oliveira	Coord Técnico / Eng.º Civil
DEFESA CIVIL	Nicanor Moura Neto	Eng° Civil
UFS	Lilian Cunha Góis	Prof./UFS - Eng° Civil
Ura		
	José Patrocínio Hora Alves	Prof/UFS Eng. Químico
UEGP	João Sampaio D'Ávila	Prof/UFS – Eng. Químico
UEGP	Arisvaldo Vieira de Melo Júnior	Consultor / Eng.º Agrônomo
CODEVIOE	Moacyr Wanderley	Consultor / Geólogo
CODEVASF	Pedro de Araújo Lessa	Chefe da DEG / Eng. Agrônomo
	Orlando Tavares de Oliveira	Chefe de Serviço/ Eng. Agrônomo
DNIGOG	Fátima Cristina Salgueiro	Eng. Civil
DNOCS	Antônio César Tavares Santana	Diretor / Eng.º Agrônomo
ADEMA	Marly Menezes Santos	Bióloga
	Lucilene Tiyomi Takahashi	Geógrafa
	Jorge Antônio Lima	Eng. Químico
00000	José alves Nunes	Eng. Civil
СЕНОР	Roberto Sales Cardoso	Eng ^o Civil
IBAMA	Marluce Rocha M. de Sousa	
PRONESE	Osvaldo Kasume	Chefe do Núcleo / Eng.º Civil
	Carmem Lúcia	Eng ^a Agrônoma
FNS	Alvaro José Bastos Figueiredo	Chefe de Serviço / Eng.º Civil
	Rui Eduardo de Oliveira	Diretor da SAAE / Eng ^o Civil

Main Report

<List of Work Group - C>

Work Target: Project Evaluation and O & M Group Leader (JICA) : Naoki HARA Group Leader (Sergipe Side) : José Holanda Neto (SRH)

Institution	Name	Post / Profession
JICA	Naoki Hara	
	Tatsuo Tashino	
	Kanji Watanabe	
a she tasa ta	Noboru Osakabe	
SEPLANTEC	Samuel Oliveira Ribeiro	Diretor de Dept ^o / Economista
	Iêda Maria de Carvalho Oliveira	Consultora / Economista
	José Carlos Pereira	Economista
	Raimundo Rabelo Lucas	Chefe de Serviço / Economista
	Fernando Lopes Cruz	Superintendente/ Eng. Agrônomo
	João Alberto de Oliveira Rocha	Chefe de Departamento/ Economista
	Jussara Maynard Araújo	Superintendente
SRH	Jessé Cláudio de Lima Costa	Diretor de Departamento / Professor
	José Holanda Neto	Assessor/ Eng. Agrônomo
	Ailton Francisco da Rocha	Superintendente/Eng. Agrônomo
	Andrei Lopes da Costa	Diretor de Coordenadoria/ Economist
	Denise Teles Barreto	Diretora de Coordenadoria
DESO	Nilton Matos	
DESU	Beneti Nascimento	Químico Industrial
ADEMA		Jornalista
ADEMA	Gleidineides Teles dos Santos	Bióloga
	Lucilene Tiyomi Takahashi	Geógrafa
	Antônio Carlos de Andrade	
	Maria Luiza Santos	Bióloga
CODISE	Fernando Leite	
COHIDRO	Clélio da Silova Araújo	Eng. Agrônom
	Jailton Teles Barreto	Economista
	Vicente de Paula Primo	Eng. Agrônomo
EMDAGRO	Jodemir Antônio Pires Freitas	Eng Agrônomo
	Elisabeth Denise Campos	Eng. Agrônomo
UEGP	Moacyr Wanderley	Consultor / Geólogo
	Rui de Souza Mendonça	Consultor
CODEVASE	José Bizerra de Aguiar	Economista
	Eduardo Alves Bastos	Economista
	Bergson Rodrigues Santiago	Economista
	Antônio Augusto Correia Lima Filho	Eng. Civil
EMBRAPA	Edmar Ramos de Sigueira	Eng. agrônomo
	Antônio Carlos Barreto	Eng. Agrônomo
	Ederlon Ribeiro de Olíveira	Veterinário
UFS	Vânia Fonseca	Prof/UFS – Depto. de Geografia
	ClóvisRoberto Pereira Franco	Prof. UFS/ Depto. de Biologia
SEFAZ	Maria da Glória	
SEICT		Superintendente / Auditora Tributária
	Pedro Ferreira dos Anjos	Chefe da Asplan / Economista
INCRA	Emanuel Oliveira Pereira	Eng. Agrônomo
	Vicencia Maria Schettino	Bióloga
an state gete de	Maria Al;cione Dias	Assistente Social
PETROBRÁS	Ismael Quirino Trindade Neto	Gerente da Assessoria de Mei
· 영양 역 사가 있었는 것은	2.1.截回到19.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Ambiente
IBAMA	Fátima Maria Diaz da Hora	Eng ⁴ Florestal
	Marluce Rocha M. de Sousa	

