#### APPENDIX-9 GEOLOGICAL SURVEY

A geological survey was conducted to prepare basic information on the soil conditions, which are necessary to investigate the type of foundation and temporally work for planning of wastewater treatment plant and related facilities.

The geological survey consists of borings at the potential sites of the proposed wastewater treatment plant, and in-situ test and laboratory test to examine the soil characteristics. Contents of the survey are as follows:

Boring (depth: 10m) 2 sites
Boring (depth: 20m) 4 sites
Boring (depth: 30m) 1 site

Standard Penetration Test 7 boring sites

Physical Test at Laboratory (Specific gravity, Liquid/Plastic Limit and Grain Size)

6 samples

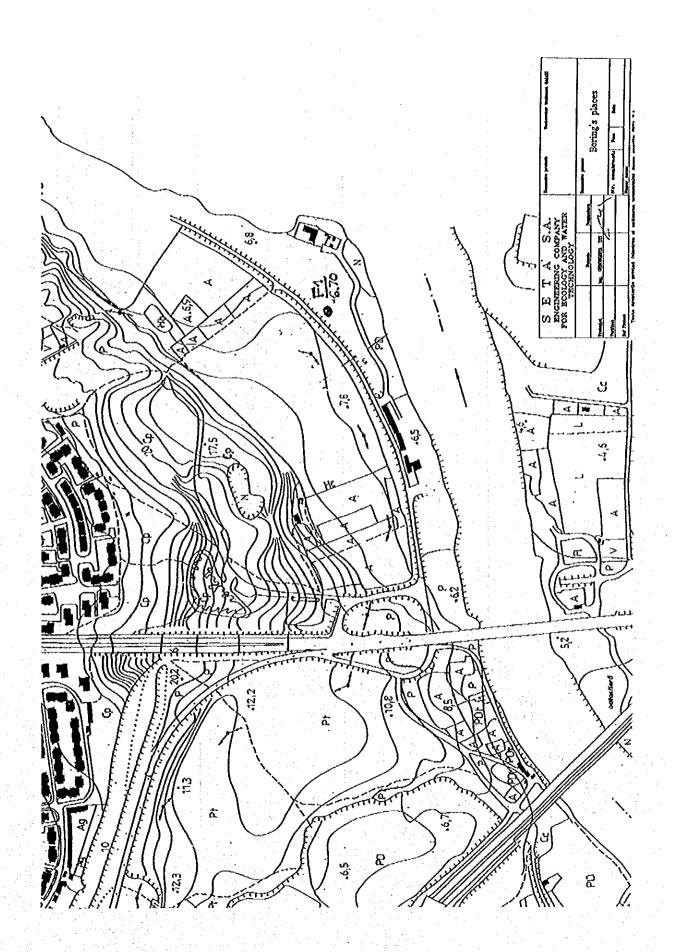
Unconfined compression test at Lab. 6 samples
Consolidation test at Lab. 6 samples

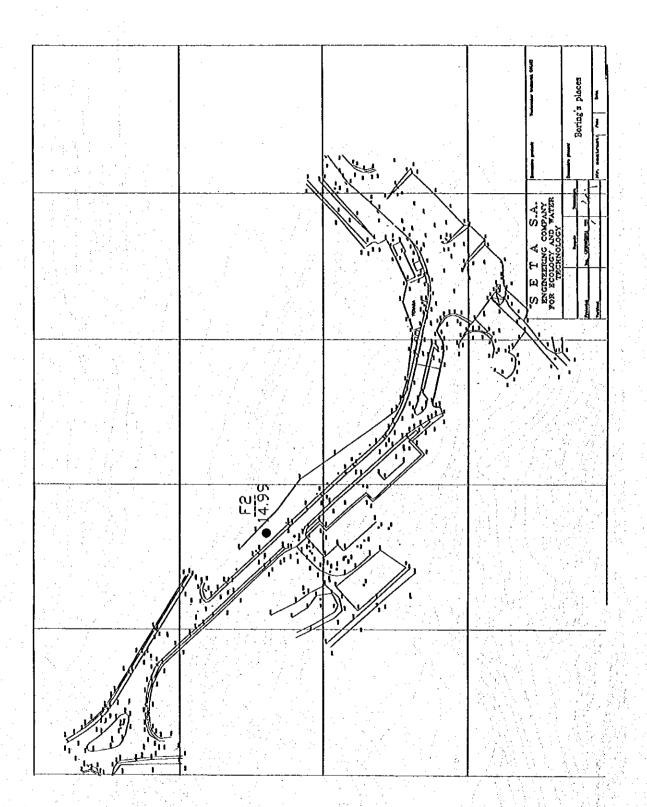
A report of the geological survey, which was prepared by the contractor "SETA S.A.", is attached hereinafter, and the contents of the report consists of location maps of sampling points, geological results, dynamic penetration test, analytical results of laboratory and result of consolidation test.

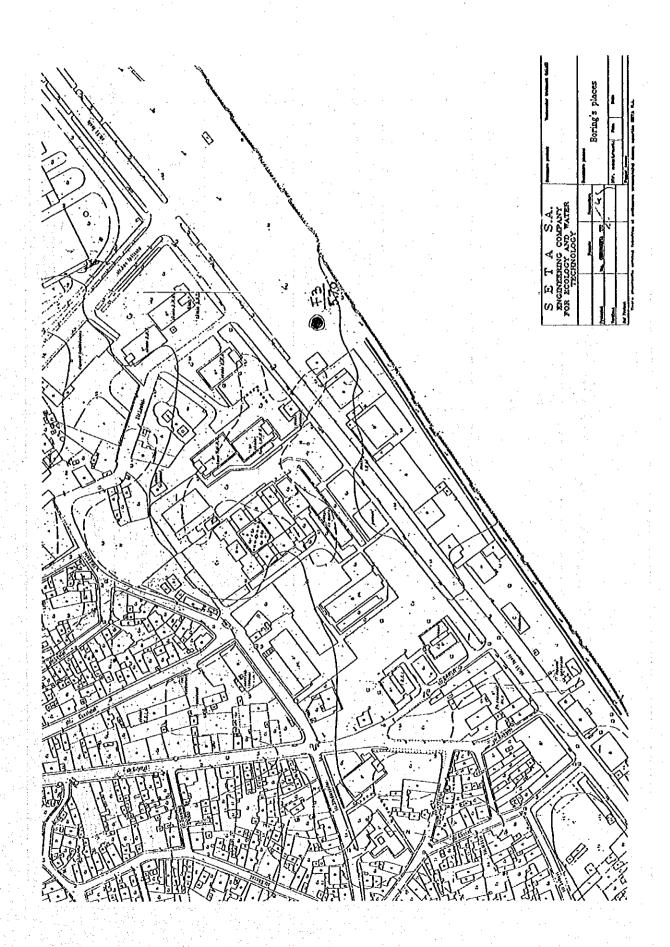


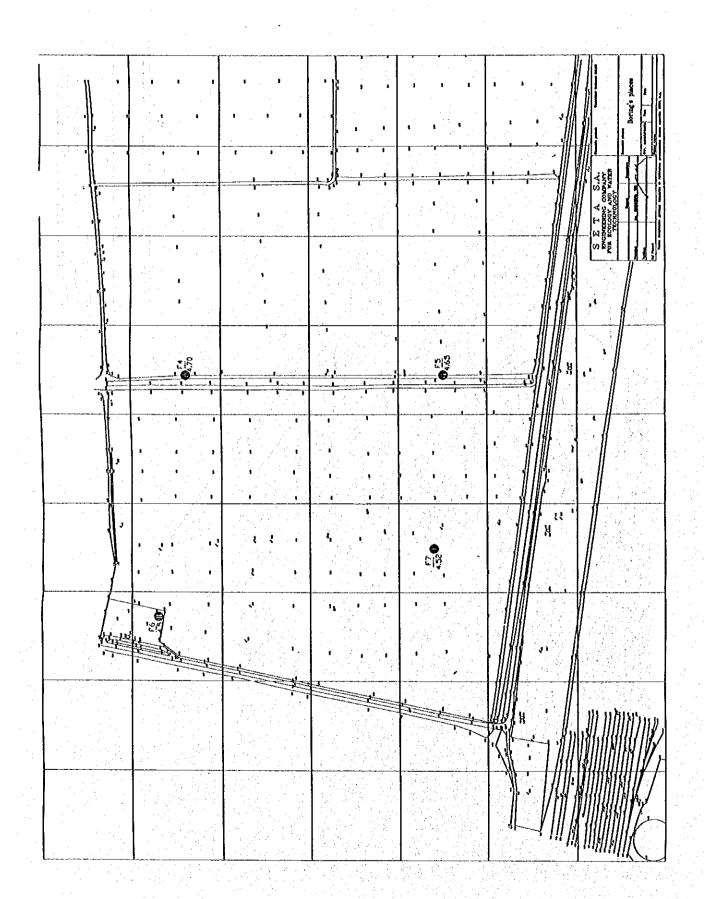
#### SOCIETATE DE ECOLOGIE <sup>a</sup>I TEHNOLOGIE A APEI

SEDIUL: str. Tudor Arghezi, nr.21 Sector 2, 70132, Bucure¿ti - J 40/4771/1995 - Cod fiscal R 7470611 Tel/fax: 211.32.20; 211.41.77; E-mail: Error! Reference source not found.


### GEOLOGICAL SURVEY


Subject: THE FEASIBILITY STUDY ON


WASTEWATER TREATMENT


Locality: GALATI

To : JAPAN INTERNATIONAL COOPERATION AGENCY









Comanda:Wastewater treatment

Working place: Galati Date: August 1999

### GEOTEHNICAL RESULTS BOREHOLE Nr. F.1: 6.70 rbs

|                               |          | -         |                     | CHARLES COMES FOR A PLANT COME - COMPANY AND ASSESSMENT COMPANY COMES CO |       | Translation of the later      |
|-------------------------------|----------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|
| Mark of the underground water | borehole | the layer | Layers<br>structure | THE NAME OF LAYER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth | Dynamic<br>penetration<br>SPT |
| m                             | m        | m         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m     | shocks                        |
|                               | 0.80     | 0.80      | 71131               | Vegetable soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı     | 21                            |
| NH: 2.15                      | - 1      |           |                     | Grey or yellow clayish silt, consistent plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | 18                            |
|                               | 3.20     | 2.40      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3     | 19                            |
|                               |          |           |                     | Yellow fine, immerged sand, with medium compaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4     | 26                            |
|                               | 4.80     | 1.60      | 63734               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5     | 24                            |
|                               | 6.50     | 1.70      |                     | Grey, consistent plastic clay, with broken shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6     | 24                            |
|                               | 0.30     | 1.70      | 1.1.1.1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7     | 18                            |
|                               |          |           |                     | Grey clayish silt, soft plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8     | 19                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | 21                            |
|                               | 9.50     | 3.00      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10    | 18                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11    | 19                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12    | 21                            |
| :                             |          |           |                     | Grey sandy clayish silt, soft plastic to consistent plastic, with shells end thin sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13    | 20                            |
|                               | 1        |           | 1414                | lenses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14    | 22                            |
| 1<br>  <b>1</b><br>  1        |          |           | <i>}}}}/</i>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15    | 21                            |
|                               |          |           | 扫动                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16    | 23                            |
|                               | 17.20    | 7.70      | ATAH.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17    | 28                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18    | 27                            |
|                               | 20.00    | 2.80      |                     | Grey fine-medium, immerged sand with medium compaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19    | 27                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20    | 28                            |
|                               |          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |

DRAFTED: Eng. T. Gheorghild

Comanda:Wastewater treatment Working place: Galati Date: August 1999

### GEOTEHNICAL RESULTS BOREHOLE Nr. F2:14.99 rBS

| Mark of the underground water |       | Bigness of<br>the layer | Layers<br>structure                          | THE NAME OF LAYER                                                                    | Depth      | Dynamic penetration SPT |
|-------------------------------|-------|-------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|------------|-------------------------|
| m                             | m     | m                       |                                              |                                                                                      | m          | shocks                  |
| NH: -                         | 0.80  | 0.80                    | 3113                                         | Vegetable soil                                                                       | 1          | 50                      |
|                               |       |                         | /////                                        |                                                                                      | 2          | 50                      |
|                               |       |                         |                                              |                                                                                      | 3          | 50                      |
|                               |       | ( ) / <sub>N</sub>      | <i>[]]]</i>                                  | Yellow clayish silt, strong to soft plastic begeted by wind 's action. Between 1-5 m | 4          | 50                      |
|                               |       | y je egy                | <i>     </i>                                 | depth, with broken briks interlayers.                                                | 5          | 50                      |
|                               |       |                         |                                              |                                                                                      | 6          | 50                      |
|                               |       |                         | ###                                          |                                                                                      | 7          | 47                      |
|                               |       |                         | <i>†                                    </i> |                                                                                      | 8          | 16                      |
|                               |       |                         | <i>[]</i>                                    |                                                                                      | 9          | 7                       |
|                               | 10.00 | 9.20                    | 74747                                        |                                                                                      | 10         | 2                       |
|                               | '     |                         |                                              |                                                                                      | W 14 174 1 |                         |
|                               |       |                         |                                              |                                                                                      |            |                         |
|                               |       |                         |                                              |                                                                                      | 4          |                         |
|                               |       |                         |                                              |                                                                                      |            |                         |
|                               |       | :                       |                                              |                                                                                      |            |                         |
|                               |       |                         | :                                            |                                                                                      |            |                         |

DRAFTED: Eng. T. Gheorghita

### SETA SA BUCURESTI

Comanda: Wastewater treatment

Working place: Galati Date: August 1999

### GEOTEHNICAL RESULTS BOREHOLE Nr. F3:5.70 rbs

| un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ark of the<br>iderground<br>ater |       | he layer | Layers<br>structure                    | THE NAME OF LAYER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Dynamic<br>penetration<br>SPT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                | m     | . m      |                                        | NOTE STATE AND A STATE OF THE S | m           | shocks                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |          | 4 7                                    | Unhomogeneous filling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           |                               |
| j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IH: 1.90                         |       |          | 4                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2           |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 2.80  | 2.80     | A                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           | 19                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |          | († † † † † † † † † † † † † † † † † † † |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4           | 18                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |          | \ <i>† ‡ </i>                          | Grey, clayish silt soft plastic, with shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5           | 18                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |          | 1777                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6           | 17                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 7.50  | 4.70     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7           | 18                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 8.60  | 1.10     |                                        | Grey , soft plastic clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8           | 19                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 10.00 | 1.40     |                                        | Grey - yellow, immerged, fine- medium sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br><br>10 | 27<br>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               |
| and the second s |                                  |       |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               |

DRAFTED: Eng. T. Gheorghita

Working place: Galati Date: August 1999

### GEOTEHNICAL RESULTS BOREHOLE Nr. F 4: 4.70 rBS

| Mark of the<br>underground<br>water | 0.00<br>borehole       |      | Layers<br>structure                     | THE NAME OF LAYER                                               |    | Dynamic<br>penetration<br>SPT |
|-------------------------------------|------------------------|------|-----------------------------------------|-----------------------------------------------------------------|----|-------------------------------|
| m                                   | m                      | m    | 22.5                                    |                                                                 | m  | shocks                        |
|                                     | 1.20                   | 1.20 | 11; 1;<br>1; 1; 1;                      | Yellow silty sand, with strong compaction                       | 1  | 33                            |
| NH: 2.00                            |                        |      |                                         |                                                                 | 2  | 27                            |
|                                     |                        |      |                                         |                                                                 | 3  | 28                            |
|                                     |                        |      |                                         | Yellow or grey, consistent plastic clay, with shells and snails | 4  | 25                            |
|                                     |                        |      |                                         |                                                                 | 5  | 30                            |
|                                     |                        |      |                                         |                                                                 | 6  | 31                            |
|                                     |                        |      |                                         |                                                                 | 7  | 31                            |
|                                     |                        |      |                                         |                                                                 | 8  | 22                            |
|                                     | 9.40                   | 8.20 |                                         |                                                                 | 9  | 19                            |
|                                     | Establish<br>Section 1 |      |                                         | Grey, silty sand, soft plastic                                  | 10 | 18<br>18                      |
|                                     | 11.60                  | 2.20 |                                         |                                                                 | 12 |                               |
|                                     |                        |      | ., , , , , .                            | Grey, consistent plastic clay, with thin sandy lenses           | 13 |                               |
|                                     | 13.50                  | 1.90 | : · · · · · · · · · · · · · · · · · · · |                                                                 | 14 | 21                            |
|                                     |                        |      | ////<br>/_//,                           |                                                                 | 15 | 22                            |
|                                     |                        |      | /-/-/-/<br>/-/-/-                       | Grey silty clay, consistent plastice to soft plastic            | 16 | 23                            |
|                                     |                        |      |                                         |                                                                 | 17 |                               |
|                                     | 18.10                  | 4.60 | <i>- - - </i>                           |                                                                 | 18 |                               |
|                                     | 20.00                  | 1.90 |                                         | Grey, consistent plastic clay                                   |    | 24                            |
|                                     | 20.00                  | 1.90 |                                         |                                                                 | 20 | 23                            |
|                                     |                        | , 1  |                                         |                                                                 |    |                               |

DRAFTED:

Comanda:Wastewater treatment

# Working place: Galali Date: August 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F5: 4.65 rBS

| Mark of the underground water |                |                                     | Layers<br>structure | THE NAME OF LAYER                                                                             | ep(          | Dynamic<br>penetration<br>SPT         |
|-------------------------------|----------------|-------------------------------------|---------------------|-----------------------------------------------------------------------------------------------|--------------|---------------------------------------|
| m                             | m              | m                                   |                     |                                                                                               | m            | shocks                                |
|                               |                |                                     |                     |                                                                                               | 1            | 50                                    |
| NH: 2.10                      |                | 表示する。                               |                     | Yellow - grey sandy clayish silt sturdly plastic to consistent plastic                        | 2            | 36                                    |
|                               | 3.30           | 3.30                                |                     |                                                                                               | 3            | 33                                    |
|                               | 161 a 64       |                                     |                     |                                                                                               | 4            | 27                                    |
|                               |                |                                     |                     |                                                                                               | 5            | 29<br>30                              |
|                               |                | :                                   |                     | Grey consistent plastic clay, with snails.<br>Between 11.8 - 12.4 m depth, grey sandy clayish |              | 31                                    |
|                               |                |                                     |                     | silt, soft plastic.                                                                           | 8            | 26                                    |
|                               |                | e e e e e e<br>E e e e e<br>E e e e |                     |                                                                                               | 9            | 20                                    |
|                               |                |                                     |                     |                                                                                               | 10           |                                       |
|                               |                |                                     | : :-T: /. /-A       |                                                                                               | 11<br><br>12 | 21<br><br>22                          |
|                               |                |                                     |                     |                                                                                               | 13           | 34                                    |
|                               | 14.20          | 100                                 |                     |                                                                                               | 14           | 35                                    |
|                               | 14.20          | 10.9                                | ;;;<br>;;;          |                                                                                               | 15           | 20                                    |
|                               | 16.70          | 2.50                                |                     | Grey clayish sand, consistent plastic                                                         | 16           | 22                                    |
|                               | 10.70          | 2.30                                |                     |                                                                                               | 17           | 26                                    |
|                               |                |                                     |                     | Grey. silty clay, consistent plastic                                                          | 18<br><br>19 | 24<br>26                              |
|                               | 19.10<br>20.00 | 0.90                                |                     | Grey sandy clayish silt, consistent plastic                                                   | 20           | · · · · · · · · · · · · · · · · · · · |
|                               | 20.00          | 0.70                                | 7,7,4,4,4           |                                                                                               | 1            |                                       |

DRAFTED:

## GEOTEHNICAL RESULTS BOREHOLE Nr. F6: 4.50 rBS

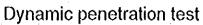
| Mark of the<br>underground<br>water |       | Bigness of<br>the layer | Layers<br>structure                           | THE NAME OF LAYER                                                      |            | Dynamic<br>penetration<br>SPT |
|-------------------------------------|-------|-------------------------|-----------------------------------------------|------------------------------------------------------------------------|------------|-------------------------------|
| m                                   | m     | m                       |                                               |                                                                        | m          | shocks                        |
|                                     | 0.60  | 0.60                    | 30511                                         | Vegetable soil                                                         | i          | 47                            |
| NH: 1.80                            |       |                         |                                               | Yellow - red sandy silt, sturdly plastic                               | 2          | 49                            |
|                                     |       |                         |                                               |                                                                        | 3          | 50                            |
|                                     | 3.50  | 2.90                    | /////                                         |                                                                        | 4          | 36                            |
|                                     | 4.80  | 1.30                    | <i>[]</i>                                     | Yellow - grey clayish silt, consistent plastic                         | 5          | 28                            |
|                                     |       |                         |                                               |                                                                        | 6          | 28                            |
|                                     |       | al same                 |                                               |                                                                        | 7          | 22                            |
|                                     |       |                         |                                               |                                                                        | . <u>.</u> | 22                            |
|                                     |       |                         |                                               | Grey, consistent plastic clay, with snails and                         | 9          | 21                            |
|                                     |       |                         | 12:56.7                                       | shells. Between 8.8 - 9.4 m depth, grey silty sand, consistent plastic |            |                               |
| *                                   |       |                         |                                               |                                                                        | 10         |                               |
|                                     |       |                         |                                               |                                                                        | 11         | 27                            |
|                                     |       |                         |                                               |                                                                        | 12         | 28                            |
|                                     | 13.40 | 8.60                    |                                               |                                                                        | 13<br>     |                               |
|                                     |       |                         |                                               |                                                                        | 14         |                               |
|                                     |       |                         |                                               | Grey silty sand or fine-medium sand, immerged                          | 1 .        |                               |
|                                     |       |                         |                                               | strong compaction, with shells                                         | 16<br>     | 35<br>                        |
|                                     |       |                         |                                               |                                                                        | 17         | 35                            |
|                                     | 18.60 | 5.20                    | <u>                                      </u> |                                                                        | 18         | 35                            |
|                                     |       |                         |                                               | Grey, consistent plastic clay.                                         | 19         | 32                            |
|                                     | 20.00 | 1.40                    |                                               |                                                                        | 20         | 30                            |
|                                     |       |                         |                                               |                                                                        | 1          |                               |
|                                     |       |                         |                                               |                                                                        | -;         |                               |

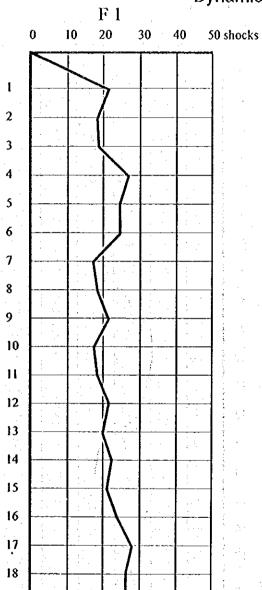
DRAFTED:

Comanda:Wastewater treatment Working place: Galati Date: August 1999

### GEOTEHNICAL RESULTS BOREHOLE Nr. F 7: 4.50 rBS

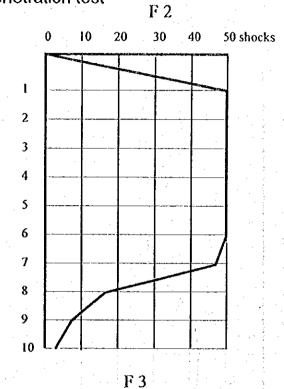
| Mark of the          | Marks to | Bigness of | Layers                                                   | AMERICA CONTRACTOR SECTEMBER SEASON SEASON CONTRACTOR CONTRACTOR SECTEMBER SEASON CONTRACTOR SECTEMBER SEASON CONTRACTOR SECTEMBER SECTEMBER SECTEMBER SEASON CONTRACTOR SECTEMBER SECTEMBE | æ        | Dynamic            |
|----------------------|----------|------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|
| underground<br>water |          |            | structure                                                | THE NAME OF LAYER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth    | penetration<br>SPT |
| m                    | m .      | m          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m        | shocks             |
|                      | 0.50     | 0.50       | テルテル<br>ナナナ                                              | Vegetable soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 7                  |
| NH: 2.20             |          |            | <i>[]]</i>                                               | Grey, sandy clayish silt, soft plastic, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 8                  |
|                      | 2.00     | 2.20       | <i>[-[-</i> -[-]                                         | vegetable remainings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        | 12                 |
|                      | 3.80     | 3.30       | 1                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        | 20                 |
|                      |          |            | 7//                                                      | Grey, clayish silt, with shells, soft plastic to consistent plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        | 12                 |
|                      | 6.50     | 2.70       | <i>  <del>                                    </del></i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6        | 10                 |
|                      | 0.50     | 2.70       | AAA                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7        | 12                 |
|                      |          |            |                                                          | Grey and brown sandy clayish silt, consistent plastic, with vegetable remainings. Between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8        | 10                 |
|                      | 9.00     | 3.50       | 144                                                      | 8.0-8.5 m depth, black or brown peat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9        | 12                 |
|                      |          |            | <i>† † </i>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 9                  |
|                      |          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11       | 15                 |
|                      |          |            | '.H.F'.<br>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12       | 7                  |
|                      |          |            | <i>;</i> ∓; <i></i> ∓;                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 8                  |
|                      |          |            |                                                          | Grey, sandy clayish silt alternanting with clayish silty sand, consistent plastic, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14       | 18                 |
|                      |          |            | <i>\``\`\\</i>                                           | shells and snails.Between 12.8-14.5 m depth, grey, fine-medium sand, flowing plastic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15       |                    |
|                      |          |            |                                                          | Between 20.0-20.5 m depth, gravel add sand, with shells. Between 21.6-22.0 m depth,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 28                 |
|                      |          |            | 744                                                      | black peat. Between 24.0-30.0 m depth, thin, silty clay lenses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17       | 24                 |
|                      |          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18       | 16<br>17           |
|                      |          |            | <u>                                    </u>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19       | 15                 |
|                      |          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20       | 18                 |
|                      |          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>22 | 27                 |
| <u> </u>             |          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44       | 41                 |

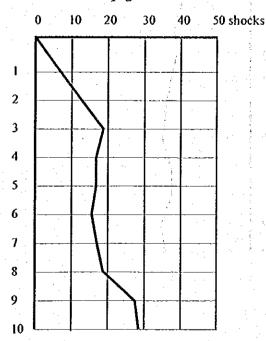

DRAFTED:


| SETA SA                       |                              | ing sets<br>Sings |                     | Comanda:Wastewater tre<br>Working place: Galati<br>Date: August 1999 | ealment                       |
|-------------------------------|------------------------------|-------------------|---------------------|----------------------------------------------------------------------|-------------------------------|
| GEOTE                         | HNICA                        | L RESI            | JLTS BO             | OREHOLE Nr. F 7                                                      |                               |
| Mark of the underground water | Marks to<br>0.00<br>borehole |                   | Layers<br>structure | THE NAME OF LAYER                                                    | Dynamic<br>penetration<br>SPT |
| m                             | m                            | m                 |                     | m                                                                    | shocks                        |
|                               |                              |                   |                     | 23                                                                   | 21                            |
|                               |                              |                   | !                   | 24 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                           | 25                            |
|                               |                              |                   |                     | 25                                                                   |                               |
|                               |                              |                   |                     | $egin{array}{c} 26 \\ 27 \end{array}$                                |                               |
|                               |                              |                   |                     | $\frac{27}{28}$                                                      |                               |
|                               |                              |                   |                     | 29                                                                   |                               |
|                               | 30.00                        | 21.0              | 1,11                |                                                                      | 28                            |
|                               |                              |                   |                     |                                                                      |                               |
|                               |                              |                   |                     |                                                                      |                               |

DRAFTED:

Comand: Wastewater treatment


Working place: Galati Date: August 1999

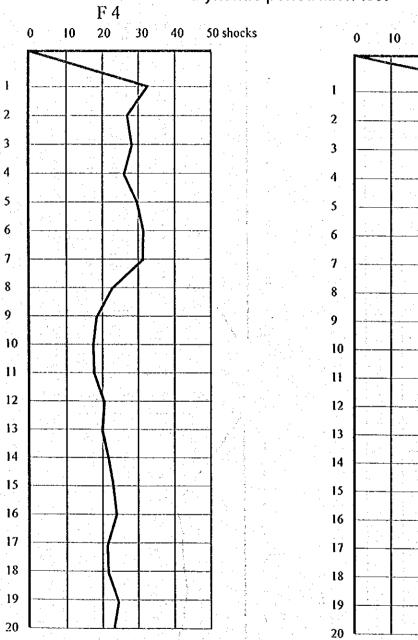


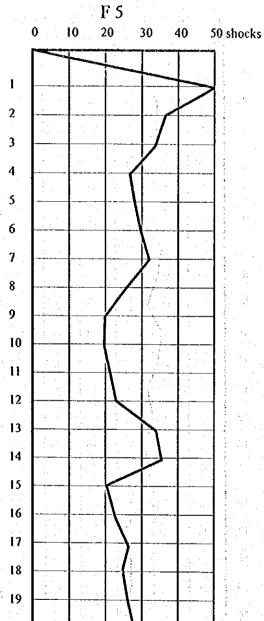



19

20







DRAFTED:

Comand: Wastewater treatment

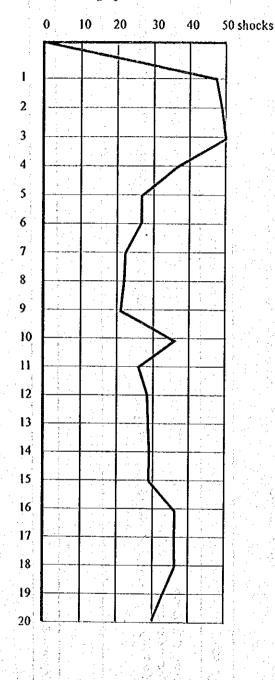
Working place: Galati Date: August 1999

#### Dynamic penetration test



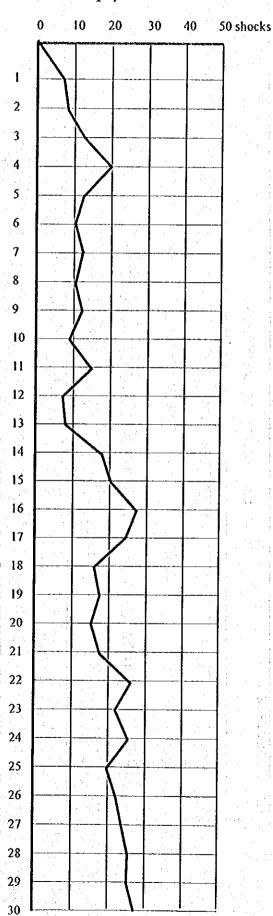


DRAFTED: Eng.. T. Gheorghita


Comand: Wastewater treatment

Working place: Galati Date: August 1999

#### Dynamic penetration test


F 6

F 7



DRAFTED: Eng.. T. Gheorghita

AII-9-17



|                                                                              |                                   |                                     |                      |            |                       |        |                                         |        | • • •        |         | · · · ·          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------------|------------|-----------------------|--------|-----------------------------------------|--------|--------------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | istance<br>ng                     | Cohesion                            | ပ <b>မိ</b>          |            | И                     |        |                                         |        | 3            |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br> ±                                                                       | Resista<br>to<br>cutting          | elgns noizarda lantele              | ိခ                   |            | 12.D                  |        |                                         |        | 20           |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| satmer                                                                       |                                   | Specific compression                | K /0 /               | 34.5       | ις.<br>100            | 1.7    |                                         | 01     | 3            | 7.6     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comanda: Wastewater treatment<br>Working place: Galați<br>Date : August 1999 | u<br>O                            | Specific supplementary              |                      | 100.0      | 0.001                 | 0.0005 |                                         | 850000 | 29000        | 50000   |                  | \<br><del>.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Comanda: Wastew<br>Working place: Ga<br>Date: August 1999                    | Consolidation                     | Primary consolidation<br>coeficient | 5-4<br>10-4<br>cm²/s |            | 3.0                   | 4.3    |                                         | 3.5    | 3.6          | 2.0     | 1 1 1            | 51.1.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nda: V<br>ng plac<br>Augus                                                   | Con                               | Primary consolidation               | ၁ s<br>%%ာ           | 176 9      |                       | 40501  |                                         | £'£48  | 5/5          |         |                  | A STATE OF S |
| Coma<br>Norki<br>Date :                                                      |                                   | Pressure                            |                      | 1002       | 300 4905              | 1001   |                                         | 200    | 300          | 188 007 |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                              |                                   | Specific weigh                      | 7s o<br>KN/m³ KPa    |            |                       |        |                                         |        | 26.2.3       | - 2     |                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                              |                                   | Humidity level                      | 'S                   |            | 0,97 26.6             |        |                                         |        |              | 277     |                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·                                                                            |                                   | Your index                          |                      |            | 203                   |        |                                         |        | 0.63 0.83    |         |                  | Titi Gheorghita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              |                                   | Porosity                            | ۶<br>د ا             |            | 7.62                  |        |                                         |        | 38.8         |         |                  | Ghe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              |                                   | Ory volume weigh                    |                      |            | /33                   |        |                                         |        | 16.0         |         |                  | g Tit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Z.Y.                                                                         |                                   | dęisw smulçV                        |                      |            | 309 353 029 18.1      |        |                                         |        | 76/          |         |                  | Eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N ST                                                                         |                                   | Consistency index                   | Q                    |            | 30.2                  |        |                                         |        | 19.0 6.61    |         | <u> </u>         | ation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| l log                                                                        |                                   | VijelinuH                           | » %                  |            | 25                    |        |                                         |        |              |         |                  | Verification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RESULTS OF LABORATORY                                                        | <u>.</u>                          | Plasticity index                    | cl qw<br>% %         |            |                       |        |                                         |        | 1.53         | 1       |                  | \<br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 %                                                                          | Plasticity<br>limits              | Flow limit                          | × °                  |            | 1.7.                  |        | - : : : : : : : : : : : : : : : : : : : |        | 7/           | 1       | <u>. 14.</u><br> | gradiant description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| )<br>[]                                                                      |                                   | Great sand                          |                      |            | 48                    |        |                                         |        | 29.8         |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              | anulometric<br>mponents<br>in mm) | Medium sand                         |                      | <u> </u>   |                       |        |                                         |        |              |         |                  | e til fragerige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sis                                                                          | anulometr<br>mponents<br>in mm)   | Fine sand                           | 62.0 - 60.0          |            | 7                     |        |                                         |        | ୍ଦ           |         |                  | April model for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANALY                                                                        | ខ្មុន្ត                           |                                     | 90.0 - 800.0         |            | 7.7                   |        |                                         | 1 1    | 9            |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AN                                                                           | <u>-</u>                          | Clay                                |                      |            | 4 65 0.6              |        | · · ·                                   |        | 6            |         |                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                              | ☐ Bottle☐ Sleeve☐ Monolith        | Depth                               |                      |            | 6.                    |        |                                         |        | 9            |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              | 000                               | No. samples                         |                      |            |                       |        |                                         | ŝ      | <u> </u>     |         | 3 %              | escr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SETA SA BUCURESTI                                                            |                                   | Name of layer                       | Drilling - no: 1/9// | Grey, soft | plastic siliy<br>alay |        | Drilling NO: 2/8"                       | ~ ~ ~  | 51/t((10ess) |         |                  | Elaboration: Eng. Ana Stefanescu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ည်                                                                           |                                   | гэлега                              |                      | 111        | 1111                  | И      | :<br>•••                                | 111    | ŢŢ,          |         |                  | Elab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ×<br>B<br>B                                                                  |                                   | Undergriound water depth            | 4 7 5                | 1          |                       |        |                                         |        |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TAS                                                                          |                                   | rayer thickness                     |                      |            |                       |        |                                         | . 14.  |              |         | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SE                                                                           |                                   | 00.0 leyel gnilling                 |                      |            |                       |        | 4.77                                    |        |              |         | 1,7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                              | _           | ·7                                    |                         | جدهره المدني الرياضيات |           | rint Calpharing go | t-Categoria |          |                  |               | -             | سو سو    |          |                                  |
|----------------------------------------------|-------------|---------------------------------------|-------------------------|------------------------|-----------|--------------------|-------------|----------|------------------|---------------|---------------|----------|----------|----------------------------------|
|                                              | ance        |                                       | Cohesion                | U                      | χ         |                    | 4           |          |                  |               | 6             |          |          |                                  |
|                                              | Resistance  | orting<br>orting                      | elgne noizerde lemela   | , °9                   |           |                    | W           |          |                  |               | 12            |          |          | ]                                |
|                                              |             | 42                                    | Specific compresion     | ×. 6                   | cm/s      | 32.6               | 6.0         | 15       |                  | 39            | 12.3          | 3.3      |          |                                  |
| 1470                                         |             |                                       | compression by damping  |                        |           | 9/000              | 22000       | 9/00'0   |                  | 0.0011        | 71000         | 0.0007   |          |                                  |
| Sala<br>39                                   |             | ation                                 | Specific supplementary  | ් ්                    |           |                    |             |          |                  | <u></u>       | 0.            | 0        |          | }                                |
| st 199                                       |             | Consolidation                         | Primary consolidation   | 3-0                    | cm²/s     | 14.41              | 1.44        | 0.54     |                  | 2,            | 8             | 1.36     |          | 7                                |
| Working place: :Galaţi<br>Date : August 1999 |             | ខ័                                    | Primary consolidation   | t <sub>20</sub> %      | 8         | 200 286.8          | 665         | 400 2019 | :                | 214           | 215           | 1/24     |          |                                  |
| Nork<br>Sate                                 |             | , , , , , , , , , , , , , , , , , , , | Pressure                | ь                      | ΚΡα       | 8                  | 300 799     | 100      |                  | 200           | 80            | 700      |          |                                  |
|                                              | -           | :                                     | Specific weigh          | ٤                      | KN/m³ KPa |                    | 263         |          |                  |               | 262           |          |          | 7                                |
|                                              | _           |                                       | Humidity level          | ιÿ                     |           | :                  | 860         |          |                  | •             |               |          | :        | ,<br>,                           |
|                                              |             | :                                     | Pore index              | 0                      |           |                    | 7.33        |          |                  |               | 001 860 464   |          | ì        | Eng. Titi Gheorghita             |
|                                              |             |                                       | Porosity                | c                      | %         |                    | 27          |          |                  |               | 484           |          | <u> </u> | ghe.                             |
|                                              | Γ           |                                       | Dr. volume weigh        | P.                     | KN/m      |                    | 11.3        |          |                  |               | /3.2          |          |          | 星                                |
| Υ                                            |             | į.                                    | Volume weigh            | ,                      | KN/H KN/H |                    | 16.8        |          |                  |               | 8             |          |          | Ē                                |
| LABORATORY                                   |             |                                       | Consistency Index       | ō                      |           |                    | 0           |          |                  |               | 23.3 36.6 0/8 |          |          | ton:                             |
| SOR.                                         |             | -                                     | thumid:                 | - ≥                    | *         |                    | 4.87        |          |                  |               | 3             |          |          | Verification:                    |
| Ž                                            |             | 1                                     | Plasticity Index        | ö                      | %         | 11.                |             |          |                  |               |               |          |          | ۶                                |
| Ŕ                                            | Plasticity  | limits                                | Knesa limit             | å<br>≯                 | %         |                    |             |          |                  |               | 17.5          |          |          |                                  |
| ANALYSIS RESULTS OF                          | Pla         | 'Z                                    | Flow limit              | ₹                      | %         |                    |             |          |                  |               | 408           | 1        |          |                                  |
| ns:                                          | ပ္ည         | , .                                   | Sreal sand              | 00.5 - 2.00            |           | ,                  | <u> </u>    |          |                  |               | <u> </u>      |          |          |                                  |
| œ                                            | anulometric | mponents<br>in mm)                    | Medium sand             | 9.0 - 65.0             | ) ·       | 2                  | <u> </u>    |          |                  |               | 11.           |          | <i>,</i> |                                  |
| SIS                                          | 200         | in mm)                                | Fine sand               | 92.0 - 90.             | 0         |                    | 30          |          |                  |               | D             |          |          |                                  |
| ž                                            | Gra         | 85                                    | 1suO                    | S0.0 - 800             | 0         |                    | 48          | -        |                  |               | 96            | <u>.</u> | 1 .      |                                  |
| \$                                           | ١           | ÷                                     | Clay                    | \$00.0>                | •         |                    | 22 43       |          |                  |               | 92            |          |          | 1/3                              |
| 4                                            | 5           | C Sleeve                              | Qeb(y                   | £                      |           | 1 1                | 0,0         |          |                  |               | 150 26        |          |          | 7                                |
|                                              | □ Bo        | 8 8                                   | valgmes .oV             |                        |           |                    |             |          |                  |               |               |          |          | escu                             |
| SEIA SA BUCUKESII                            |             |                                       | Name of layer           | Drilling - no: 3/8 *   |           | 6.                 | sict sonay  |          | Vrilling no:4/2" | Grey, running | 10,00         |          |          | Elaboration: Eng. Ana Stefanescu |
| <u> </u>                                     |             |                                       | ayera                   | <b></b>                |           | XXX                | 191         | 11       |                  | 1777          | 11/           | 21       |          |                                  |
| SA :                                         |             | 1                                     | Juderground water depth |                        |           |                    | · .         | <u> </u> |                  | 1             | - 1 - 1 -     |          |          | -                                |
| ₫ .                                          |             |                                       | .ayer thickness         | <del> </del>           |           | ļ                  |             |          |                  | 8 4 2         |               |          |          | -                                |
| Ϋ́,                                          | 1           |                                       | 00.0 level gnilln(      | 3                      |           |                    |             |          |                  |               |               |          | 3 3      | 1                                |

|                                             |                                    | والمراقع |                                                         |                        |                     |            |                  |                  |           |                  |          |           |                                  |
|---------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------|---------------------|------------|------------------|------------------|-----------|------------------|----------|-----------|----------------------------------|
|                                             | 8                                  | Cohesion                                                                                                             | o (                                                     | \$                     |                     | 12.5       |                  |                  |           | 10.              |          |           |                                  |
|                                             | Resista<br>to<br>cutting           | Internal abrasion angle                                                                                              | °6                                                      |                        |                     | 1          | 4.               |                  | 1 1       | 125              | :        |           |                                  |
|                                             | -                                  | Specific compression                                                                                                 | ×,6                                                     | 8                      | 6.0                 | 4.2        | 8.               |                  | 35        | %<br>%           | 0.       |           |                                  |
| Working place: Galaţi<br>Date : August 1999 |                                    | compression by damping                                                                                               |                                                         | _                      | 0.0024              | 0.000      | 92000            |                  | 0:00:0    | 3/000            | 0.00/7   |           |                                  |
| Galați<br>999                               | datio                              | coeficient<br>Specific supplementary                                                                                 | 0'                                                      | ┰┼                     |                     |            |                  |                  |           |                  |          |           |                                  |
| lace:<br>just 1                             | Consolidation                      | noine<br>Primery consolidation                                                                                       | 36 ,                                                    | s/s                    | 7.5                 | 1.03       | 90               |                  | 2.2       | 144              | 0.68     |           |                                  |
| Working place: Ga<br>Date: August 1999      | ŭ                                  | Primary consolidation                                                                                                | %g.                                                     | n                      | 200 1019            | 300 1366   | 2018             |                  | 069       | 146              | 1922.6   |           |                                  |
| Worl                                        |                                    | Pressure                                                                                                             |                                                         | X<br>G                 | 28                  |            | 700              |                  | 200       | 8                | 007      |           |                                  |
|                                             |                                    | Specific weigh                                                                                                       |                                                         | KN/MY<br>KPa           |                     | 267        | * **<br>**       |                  |           | 26.6             |          | and Arrow | \<br>\<br>'                      |
| 1                                           |                                    | Humidity level                                                                                                       | <i>ග</i> ්                                              |                        |                     | 0.         | 1.5              | -                |           | 0.               |          |           |                                  |
|                                             | ;                                  | Pore index                                                                                                           | 0                                                       | _                      |                     | 589 143    |                  |                  |           | 55, 1.23         |          | 1         | Gheorghita                       |
|                                             |                                    | Porosity                                                                                                             |                                                         | %<br>"=                |                     |            |                  | · -              |           |                  |          |           | i Si                             |
|                                             |                                    | ny volume weigh                                                                                                      | P.                                                      | KN/m <sup>1</sup> KN/m | 1311<br><del></del> | 2110       |                  | + 5              |           | 6://             |          |           | Eng. Titi                        |
| )RY                                         |                                    | Volume weigh                                                                                                         |                                                         | Ž                      |                     | 6/35       | · · · · · · ·    | * 3              |           | 176              |          |           | ł                                |
| 3ATC                                        |                                    | Consistency index                                                                                                    | <u>ਨ</u>                                                | 4                      |                     | 1 046      |                  | # 12 h           |           | 9                | -        |           | ation:                           |
| SIS RESULTS OF LABORATORY                   |                                    | Plasticity Index<br>Humidity                                                                                         |                                                         | %                      |                     | 145 267    | 1 1              |                  |           | 941 540 9:44 614 |          |           | Verification:                    |
| ř<br>Σ                                      | <u>}</u>                           | Knesd limit                                                                                                          |                                                         | %                      |                     | 27.3 4     |                  |                  |           | 748 41           |          |           |                                  |
| ίν<br>O                                     | Plasticity<br>limits               | Flow limit                                                                                                           | <del></del>                                             | *                      |                     | 77.0/2     |                  |                  |           | 66.5 2%          |          |           |                                  |
| בוטפ                                        |                                    |                                                                                                                      |                                                         | +                      |                     | <i>U</i> , |                  | •                |           | <u> v</u>        | <u>:</u> | 1         |                                  |
| Ä                                           | Granulometric components (d in mm) | Medium sand                                                                                                          | 9.0 - 62.0                                              |                        |                     |            |                  | <u> 1</u> - 1    |           |                  |          | i i       |                                  |
| SIS                                         |                                    | Fine sand                                                                                                            |                                                         |                        | 1 :                 | 14         |                  | 2.8.4            |           | 5                |          | ji .      |                                  |
| ANALY                                       | 2 8 2                              | lsua                                                                                                                 | 20.0 - 200.0                                            | _                      | 13 12               | 26         | - 1 <sup>4</sup> |                  |           | 5,0 47 58        |          |           |                                  |
| AN                                          |                                    | Clay                                                                                                                 | \$00.0>                                                 | _                      | <u> </u>            | 67         |                  | _                |           | 7                |          |           | A                                |
|                                             | Bottle     Sleeve     Monolith     | Оеріл                                                                                                                |                                                         | _                      |                     | 5,0 67     |                  |                  |           | 0;0              |          |           | 7                                |
|                                             | 000                                | No. samples                                                                                                          | 1= 31 3                                                 | _                      |                     | _          |                  |                  |           | . `              |          |           | SSC                              |
|                                             |                                    | Name of layer                                                                                                        | الله الله عند عالم الله الله الله الله الله الله الله ا |                        | Grey, Saft plastic  | snoits and | Shells           | Driching-No:6/8" | Grey soft | with snoils      |          |           | Elaboration: Eng. Ana Stefanescu |
| 5                                           |                                    | -ayers                                                                                                               |                                                         | $\dashv$               |                     |            | ПП               | 7                |           | <u> </u>         | )  <br>  |           | Slabor                           |
| SETA SA BUCUKEST                            |                                    | Juderground water depth                                                                                              |                                                         |                        | 11111               | 111        | !!!!             |                  |           |                  |          |           |                                  |
| ۶<br>۲                                      |                                    | ayer (hickness                                                                                                       | ε                                                       |                        |                     |            |                  | - 44             | ag tai    |                  |          |           |                                  |
| ň                                           | 1                                  | 00.0 level eniling                                                                                                   |                                                         |                        |                     |            |                  |                  |           |                  |          |           | - 12 j                           |

34.5.10 K Cm/s Elaboration: Eng. Ana Stefanescu Att 2 400 G'KPa 0.9022 8,1.104 0.0010. ပ္ပ Ç, Cm²/s Comanda: Wastewater treatment Working place: Galati 300 H<sub>50</sub>% Drilling: F1/ Depth: Date: August 1999 30 30% Sec 941 90 κ Υ Υ Β 200 Cv 10-cm<sup>3</sup>/s 24h 748h72h 96h log t EDOMETRIC CONSOLIDATION 4h .. 8h CURBE 30' th 2h 15, . ‰ 4 2 10" 15" 30" 1" SETA SA BUCURESTI

Verification: Eng. Titi Gheorghita

%

7.3.10 1070.7 0.8561 1.3.10 4 0.0015 4.1.10 = Elaboration: Eng. Ana Stefanescu 400 G'KPa 1190.5 0.8747 3.0.104 0.0011 ပ္ပံ Cm<sup>2</sup>/s Comanda: Wastewater treatment 300 H<sub>50</sub>% Working place: Galati Drilling: デルタ" Date: August 1999 300 tso% Drilling: 901 Depth ( 400 300 δ<sup>R</sup> α Cv 10 cm<sup>3</sup>/s 4h 8h 24h 48h72h 96h log t EDOMETRIC CONSOLIDATION CURBE 10" 15" 30" 1' 2' 4' 8' 15' 30' 1h 2h SETA SA BUCURESTI

Cm/s

Verification: Eng. Titi Cheorghita

10.2.10 K Cm/s Elaboration: Eng. Ana Stefanescu Ind 0.9557 2.0.10-4 0.0003 7.5.104 0.0038 400 G'KPa Ĵ 0.9646 3.6.10 Ç. Cm²/s Comanda: Wastewater treatment
Working place: Galati

Drilling: F2/8

Depth: 600 m

Date: August 1999 စ္တ ₩. Cm 0.973 . 500 22.7.7 t<sub>50</sub>% 5/5 188 004 9 200 300 р В Cv 10-1cm<sup>2</sup>/s 24h 48h72h 96h log t EDOMETRIC CONSOLIDATION 쫎 CURBE 4 선 30, Jh 5 4 SETA SA BUCURESTI 10" 15" 30"

Verisication: Eng. Titi Gheorghita

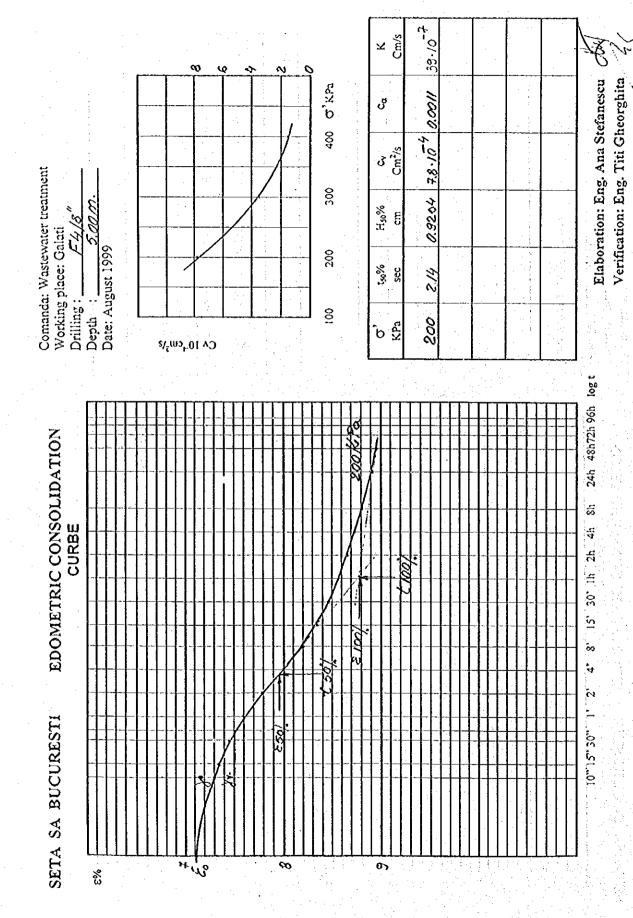


р кРа 400 Comanda: Wastewater treatment 300 Working place: Galati Drilling: 73/8 Depth: 5.00/ Date: August 1999 200 8 Cv 10.1cm<sup>3</sup>/s EDOMETRIC CONSOLIDATION CURBE

SETA SA BUCURESTI

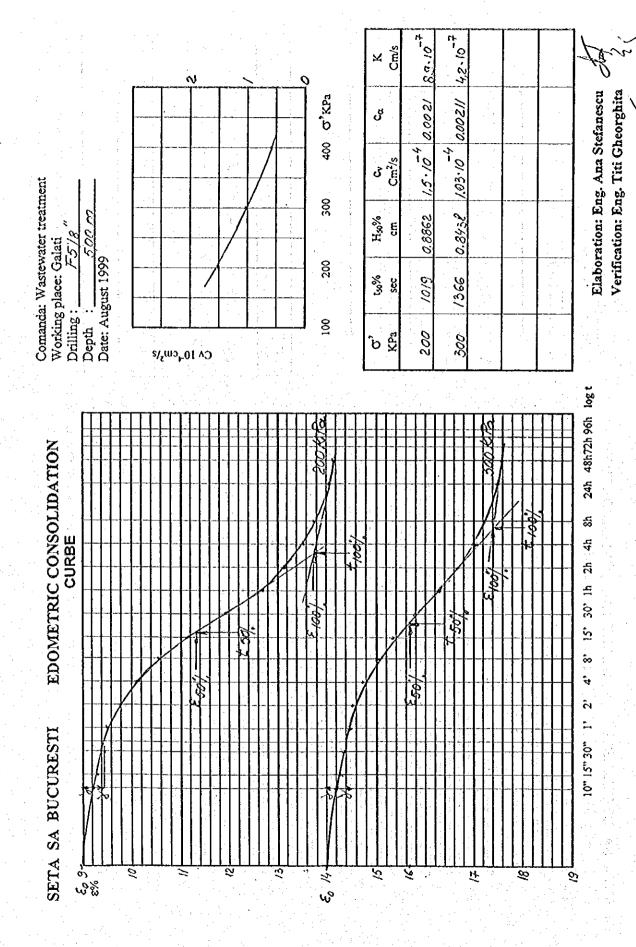
| K<br>Cm/s                 | 60.10           | 1.5.10 7.     | - / |      |
|---------------------------|-----------------|---------------|-----|------|
| ာဘ                        | 0.0022          | 0.0016        |     |      |
| c,<br>Cm <sup>2</sup> /s  | 1.44.104 0.0022 | 0.54.10,00016 |     |      |
| H <sub>50</sub> %         | 0.765           | 0.7434        |     |      |
| tso%<br>Sec               | £33             | 20/9          |     | -1 - |
| νς αχ<br>κ <sub>P</sub> α | 300             | 004           | ,   |      |

Elaboration: Eng. Ana Stefancscu & Verification: Eng. Titi Gheorghita


24h 48h72h 96h log t

30' 1h 2h 4h 8h

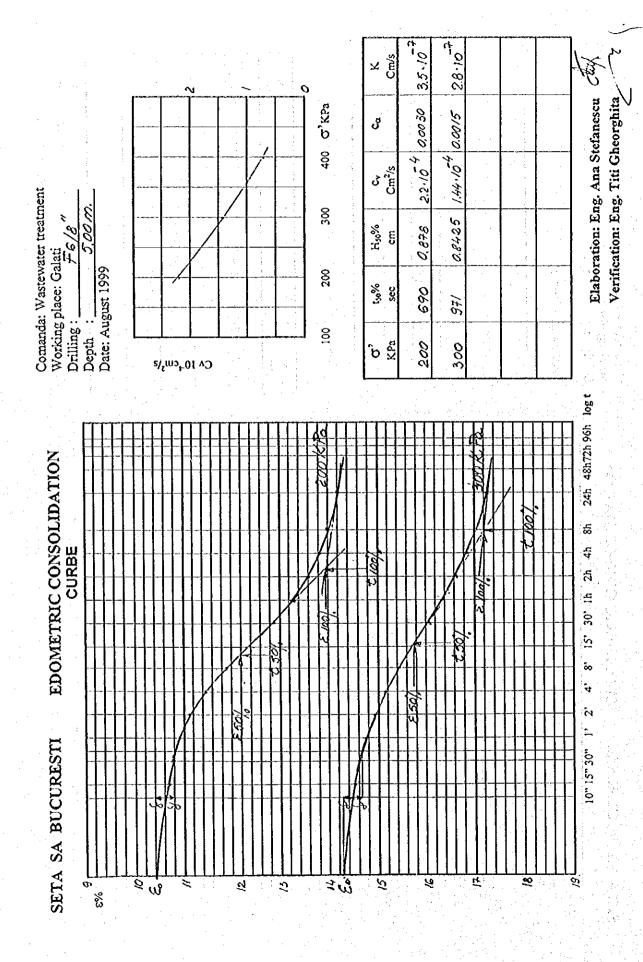
4, 8, 15,


10" 15" 30" 1" 2"

AII-9-25

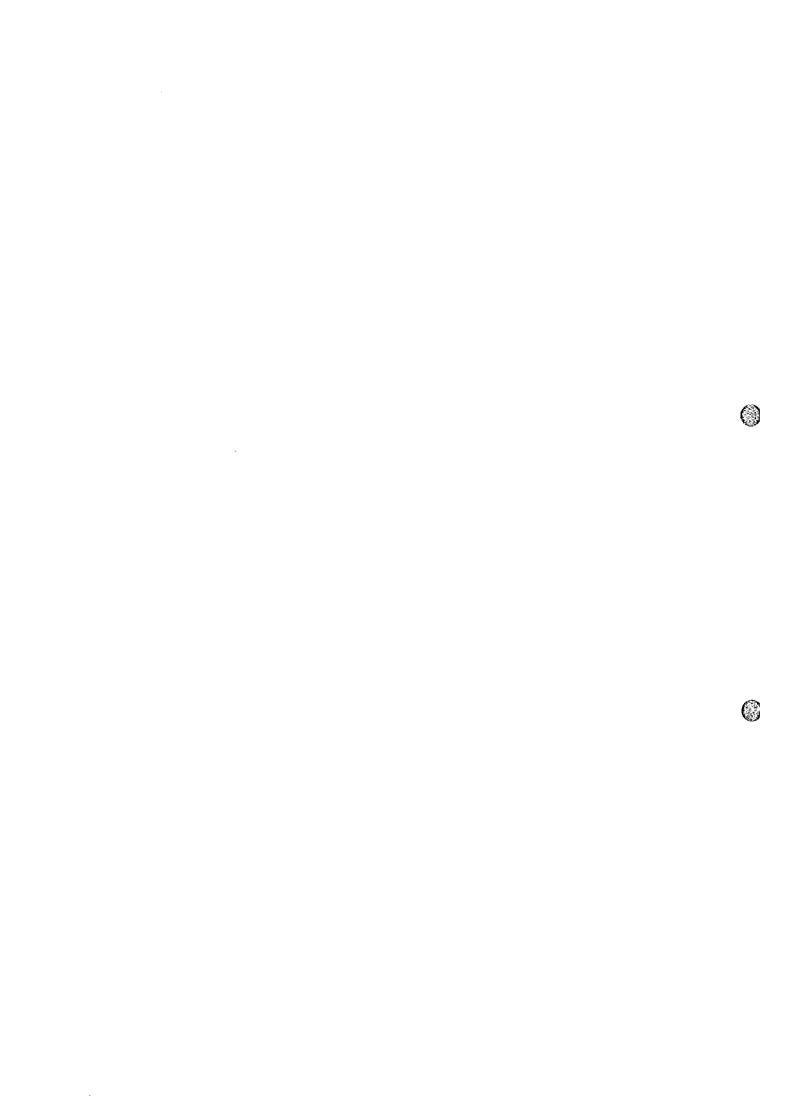


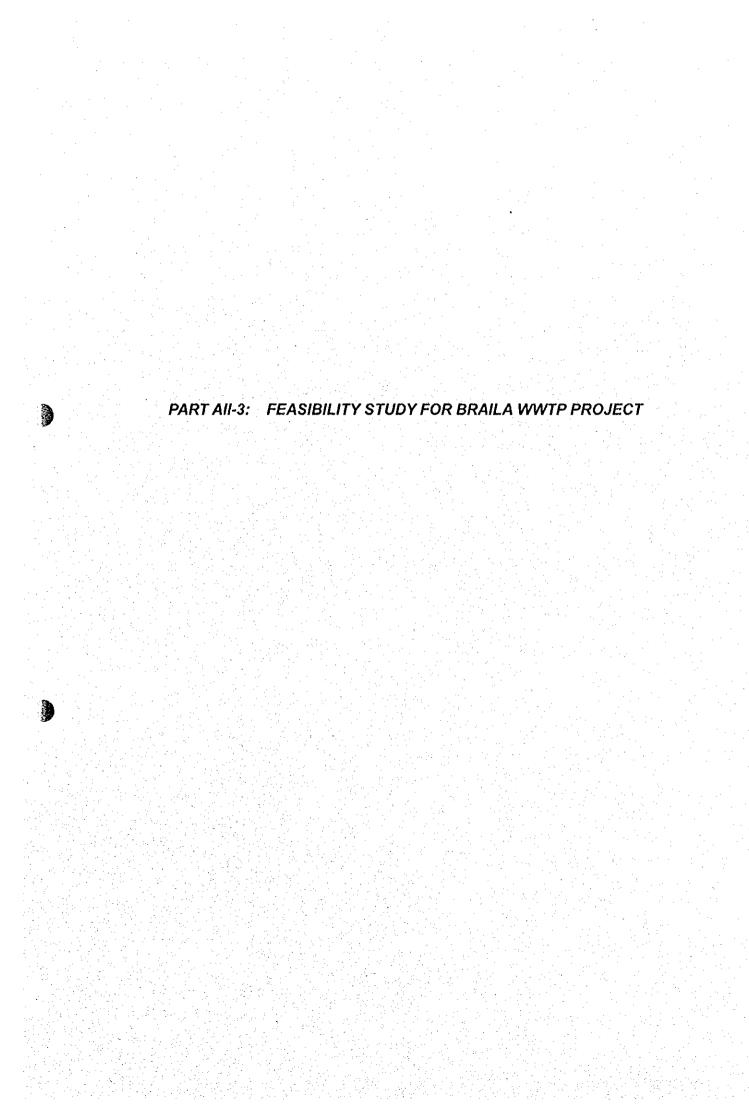
13.3.107 12.8.107 K Cm/s Elaboration: Eng. Ana Stefanescu 3.1.10-4 00014 400 G'KPa 136.104 0,0007 చ ილ²/s Comanda: Wastewater treatment 300 0.8939 H<sub>50</sub>% 0.853 Working place: Galati Drilling: F4/8" Date: August 1999 200 tso% 1124 5/5 Depth : 90 300 0017 ့်မှာ ဇ္ဇီ Cv 10.4cm<sup>2</sup>/s 24h 48h72h 96h log t EDOMETRIC CONSOLIDATION 4h 8h CURBE ~ 30° 1h 5 50 4 Ŝ SETA SA BUCURESTI 10" 15" 30" رن ر

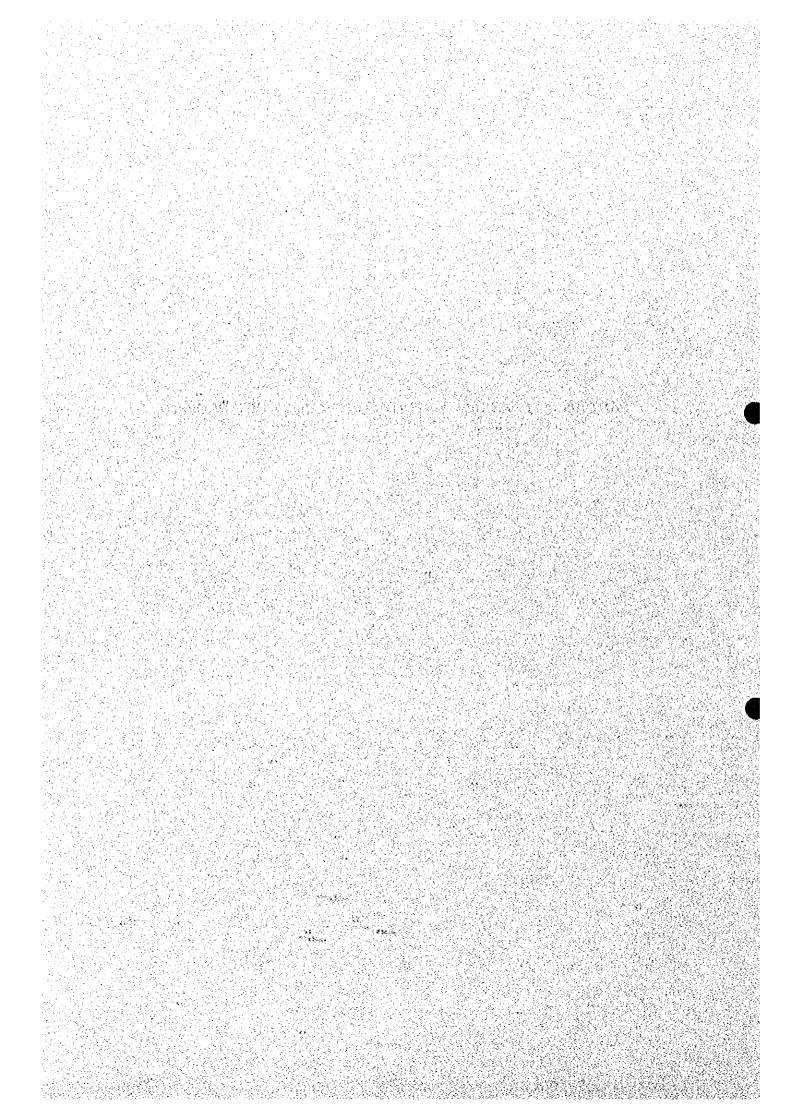

Verissention: Eng. Titi Gheorghita



0


0.8.10 Cm/s Elaboration: Eng. Ana Stefanescu q KPa 0.0029 Ö 9 1 4-01.9.0 Cm²/s Comanda: Wastewater treatment Working place: Galati Prilling: \frac{\pi \in \lambda \rangle}{\pi \in \lambda \rangle} Depth : \frac{\pi \in \lambda \lambda \lambda \lambda \rangle}{\pi \in \lambda \lambda \lambda \rangle} Date: August 1999 300 H<sub>50</sub>% 0.8/3/ 200 , t<sub>50</sub>% 2018 100 004 ğ ğ Cv 104cm²/s 24h 48h72h96h logt EDOMETRIC CONSOLIDATION CURBE Sh 44 4 30' lh 13, ò 4 'n 10" 15" 30" 1" SETA SA BUCURESTI


Verification: Eng. Titi Gheorghita




16.10-2 Cm/s Elaboration: Eng. Ana Stefanescu Atty N Q KPa 0.68.10 0.0017. ပ္ပ 400 Ç, Cm²/s Comanda: Wastewater treatment Working place: Galati F6/8"
Drilling: F6/8"
Depth: 5.00.77
Date: August 1999 90 0.8156 H20% Ę 200 1922.6 ts% 200 004 p & Cv 104cm<sup>2</sup>/s 24h 48h72h96h log t EDOMETRIC CONSOLIDATION င္မ 47 CURBE 2h 30° 1h 2 SETA SA BUCURESTI 10" 15" 30" %

Verification: Eng. Titi Gheorghita







#### APPENDIX-1

#### PLANNING BASIS FOR BRAILA WWTP

#### 1. PROCESS TO DETERMINE THE DESIGN BASIS

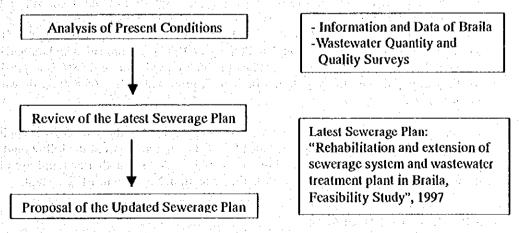
The following design basis for the Braila WWTP is reviewed and updated:

- Population

Total Administrative Population

Service Population of Public Water Supply and Sewerage Systems

- Design Flow


Wastewater Generation, Average Daily Flow, Maximum Daily Flow, Maximum Hourly Flow, and Wet Weather Flow

- Wastewater Characteristics

Wastewater Pollutant Loads

Design Influent Quality for the WWTP

Under the following process shown in the following figure, the design basis is reviewed and updated. First, the present situations are analyzed based on the data and information provided by the Braila city, the public water company "RA APTERCOL Braila", and related organizations. Results of wastewater quantity and quality surveys are also used to understand the present conditions of wastewater generation and pollutant loads. Second, the design basis proposed in the latest sewerage plan will be reviewed. The latest plan is "Rehabilitation and extension of sewerage system and wastewater treatment plant in Braila, Feasibility Study", prepared by RA PRODOMUS Design Institute Braila in 1997, hereinafter referred to as "the 1997 F/S". Finally, the design basis for this F/S is updated and proposed.



Process to Update The Design Basis

#### 2. POPULATION

#### 2.1 ADMINISTRATIVE POPULATION

The administrative population of Braila city is 234,763 in 1998, based on the data available from the bureau of statistics in Braila. Figure All.1.1 shows the population data from 1985 to 1998 obtained from the bureau of statistics. It indicates that there are two growth patterns before and after the year of 1992. Before 1992, the population was increased with high annual growth rate of 1.04%, but after 1992, the population was once decreased about 15,500 in 1992 (because workers at factories left the city and returned to their home land when their premises (lands) were returned to their original owner from the government), and since 1992 the population has been nearly constant about 235,000.

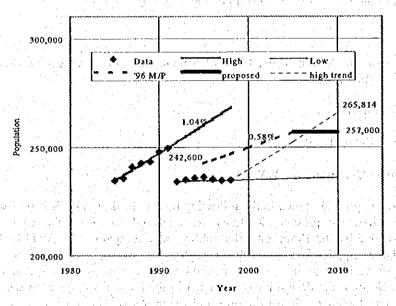



Figure All.1.1 Population Projection for Braila City

According to a study on population projection for the Master Plan of General Urban Planning prepared in 1996 by PRODOMUS (hereafter referred as "the 1996 M/P"), the future population was projected 257,000 in the year 2005. This projection is based on the population data of 242,600 in the year 1995, with the annual growth rate of 0.58% from 1995 to 2005. The population data in the year 1995 was confirmed and authorized by the police department in Braila. When the high growth rate of 0.58% is applied to the present population, the population in 2010 is projected to be 265,800 as shown in *Figure All.1.1*.

It is proposed that the administrative population of 257,000 in the year 2010 is applied the same as that in 2005 projected for the 96 M/P, taking into account the following two points. First, the projected population of 257,000 in 2005 is authorized and used for the urban planning. Second, since 1992 the population has been nearly constant.

#### 2.2 SERVICE POPULATION

The water company "RA APTERCOL" provides the water supply and sewerage services. *Table All.1.1* shows the present water supply conditions based on the recent three months records. The number of service population is based on the registered number of the users union. Because the number of service population, category 4,

whose water measured by individual meters is not identified, the number is estimated as follows.

The recent three months data of the water supplied through 2,337 meters is 583 m³/d, the water volume per unit meter is 250 L/unit/day. When the per capita water consumption is assumed 200 lpcd, the service population can be estimated about 3,000. Thus, the total service population is estimated about 204,200. Since all citizens has an access to the water supply system, i.e. the service population shall be 234,763, about 30,600 of population is not included in the table.

Table All.1.1 Registered Service Population of the Public Water Supply

| Category<br>(Norm) | Water                  |                          | Present Water Supply Service Population*(as of 1998) |           |                     | Estimated Unit<br>Water Consumption |
|--------------------|------------------------|--------------------------|------------------------------------------------------|-----------|---------------------|-------------------------------------|
|                    | Consump<br>-tion (led) | Meteted Mon- Lotal Lotal |                                                      | , ,       |                     |                                     |
| 1                  | 65                     |                          | 13,362                                               | 13,362    | - v - v - i - v - i |                                     |
| 2                  | 110                    | • ***                    | 37,051                                               | 37,051    | •                   |                                     |
| 3                  | 170                    |                          | 4,072                                                | 4,072     | -                   |                                     |
| 4                  | 295                    | (**3,000)                | 27                                                   | (3,027)   | 583                 | 250 L/unit/d                        |
| 5                  | 380                    | 146,693                  | -                                                    | 146,693   | 40,556              | 277 lcd                             |
|                    |                        | (149,693)                | 54,512                                               | (204,205) |                     |                                     |

Note: \* indicates the data is based on the registered number of users

Table AII.1.2 shows a summary of the planned service population of water supply and sewerage systems. In the 1997 F/S, the service population for each category of water supply is not considered but only the total administrative population in the year 2050 is taken into account. The service population in the year 2010, proposed for the design basis for the Braila WWTP under this JICA Study, is based on the present service population estimated for futher study on the 1996 M/P. All the population of categories 3, 4, and 5 does not have access to the public sewer networks. The present sewerage service population is estimated by ratios of the area of sewered to the total area. The detailed calculation is shown in Table AII.1.3.

Table All.1.2 Estimated Service Population based on a further study for the 1996 M/P

| Category<br>(Norm)     | Per Capita<br>Water<br>Consump-<br>tion (Icd) | Present Service<br>of 1998 | Population* as | Service<br>Population in<br>the year 2050<br>(1997 I/S) | Service<br>Populationin<br>the year 2010<br>(Proposed) |
|------------------------|-----------------------------------------------|----------------------------|----------------|---------------------------------------------------------|--------------------------------------------------------|
|                        | 20 0 20 20 20 20 20 20 20 20 20 20 20 20      | Water Supply               | Sewerage       |                                                         | 24 4 1 1 1 1                                           |
| 1/1 2500 2500          | 65                                            | 7,533                      |                |                                                         |                                                        |
| 2 3 1 VALUE            | 110                                           | 27,963                     | 21647449341474 |                                                         |                                                        |
| 3                      | 170                                           | 7,152                      | **3,480        |                                                         | Table AII.1.4                                          |
| 41 993-13-25           | 295                                           | 42,197                     | **41,750       |                                                         | Table All.1.4                                          |
| <b>5</b> A. Barta (41) | 380                                           | 149,918                    | **149,020      | <u> 1</u> 41 (14 (14 (14 (14 (14 (14 (14 (14 (14 (      | Table All.1.4                                          |
| Total                  |                                               | 234,763                    | **194,250      | 275,000                                                 | Table All.1.4                                          |
| Administrative pop.    |                                               | 234,763                    |                | 275,000                                                 | 257,000                                                |

Note: \* data is based on the General Urban Planning, "Plan de urbanism general (PUG)

<sup>\*\*</sup> shows the estimated value based on the assumption that the per capita water consumption is 200 lpcd. The water volume of 583 m3/d delivered through 2,337 meters is divided the per capita consumption of 200 lpcd.

<sup>\*\*\*</sup> shows the water volume metered recent three months, data source: RA APTERCOL

<sup>\* \*\*</sup> shows the estimated values based on the area ratio of sewered area to total area. Please refer to Table All.1.3 in detail.

We propose three scenarios for the sewerage service development, taking into account of the present status of sewer networks development:

Scenario A-1: No expansion of the present sewer networks in the urban area, but expansion to sub-urban (peri-urban) area, this is the plan based on the urban planning.

Scenario A-2: Expansion of sewer networks in the urban area and the sub-urban (peri-urban) area, by which the sewerage services are provided to all users of category 3, 4, and 5.

Scenario B: Expansion of water distribution networks and sewer networks to improve the services to all category users.

The proposed service population for each scenario is shown in *Table AII.1.4*, for comparison the present sewerage service population is also presented.

Table All.1.4 Proposed Sewerage Service Population in 2010

| Category<br>(Norm) | Per Capita<br>Water<br>Consump-<br>tion | Present<br>Population<br>(as of 1998 |              | Sewerage<br>Service Populin the year 2<br>(Proposed) | and the second of the second o |               |
|--------------------|-----------------------------------------|--------------------------------------|--------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                    | (lped)                                  | Water<br>Supply                      | Sewerage     | Scenario<br>A-1                                      | Scenario<br>A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scenario<br>B |
| 1                  | 65                                      | 7,533                                | <u>-</u>     | -                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |
| 2                  | 110                                     | 27,963                               | <u>-</u> * ; |                                                      | • 14 july 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             |
| 3                  | 170                                     | 7,152                                | **3,480      | 3,600                                                | 7,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31,500        |
| 4                  | 295                                     | 42,197                               | **41,750     | 64,400                                               | 64,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64,400        |
| 5                  | 380                                     | 149,918                              | **149,020    | 150,000                                              | 150,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150,000       |
| Total              |                                         | 234,763                              | **194,250    | 218,000                                              | 221,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245,900       |
| Administra         | tive Pop.                               | 234,763                              | 100          | 257,000                                              | in the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sta Park V    |

Note: \* data is based on the General Urban Planning, "Plan de urbanism general (PUG)

# 3. DESIGN FLOW

#### 3.1 INTRODUCTION

The sewerage system of the Braila city is combined, thus the collectors installed in the city convey both wastewater and storm-water and finally discharge to the Danube River. The wastewater shall be intercepted and conveyed by interceptors and finally treated at a wastewater treatment plant.

To make a design of the required interceptors and wastewater treatment plant, it is necessary to determine the wastewater flows at dry weather conditions and the intercepted flows at wet weather conditions. The intercepted flow is generally a few times as large as the maximum hourly flow at dry weather conditions. In Romanian practice, two times as large as the maximum hourly flow at dry weather conditions is used to determined the intercepted flow. Thus, in the following discussion, the dry weather flows are studied and determined

As the design wastewater flows at dry weather conditions, the following flows shall be determined: Average Daily Flow, Maximum Daily Flow, and Maximum Hourly Flow.

The Average Daily Flow will be used as the basis for the estimation of pollutant loads,

sludge volume generation, and O/M requirements etc. The Maximum Daily Flow will be used for the design of wastewater treatment units. The Maximum Hourly Flow will be used for the design of interceptors and pipes and channels in wastewater treatment plant.

In order to estimate the present wastewater generation and to determine the design flows for necessary interceptors, pumping stations and wastewater treatment plant, the following Romanian Standards are used in principle, STAS 1343 (Water Supply – Determination of water supply volumes) and STAS 1846-90 (Sewerage – Calculation of the wastewater flow). Because the standard methods are judged to be appropriate for a planning purpose. Regarding a per capita water consumption is reviewed in the following section briefly.

## 3.2 Design Flows in the 1997 F/S

In the 1997 F/S, the design flow is determined on the basis of the water production of the public water supply system as follows:

The production capacity of maximum hourly flow: 2,000 L/s.

The production capacity of maximum daily flow: 1,800 L/s (=2,000 / 1.1)

The wastewater generation of maximum daily flow: 1,500 L/s (=1,800 x 0.8)

The wastewater generation of maximum hourly flow: 1,650 L/s (=1,500 x 1.1)

The intercepted wastewater flow at wet weather conditions: 3,300 L/s (=2 x 1,650)

Based on the information above, it is not easy to evaluate the design flow is appropriate, in other words, the scale of scheme.

# 3.3 DOMESTIC, COMMERCIAL AND INSTITUTIONAL WASTEWATER

#### 3.3.1 Wastewater Generation

Table All.1.5 shows a summary of the estimated present domestic, commercial and institutional wastewater generation using the data of General Urban Planning. The consumers of categories 3, 4, and 5 have access to the public sewerage system. The total wastewater generation is estimated about 71,700 m³/d, and the amount of 61,900 m³/d is collected by the public sewerage system, i.e. about 86% of the wastewater generated are collected by the existing sewerage system. The wastewater generation is calculated as 80% of water demand at water source (intake volume). Table All.1.5 also shows that the ratio of water consumption to wastewater generation is about 100: 97.

Table All.1.5 Present Wastewater Generation except Industrial Wastewater (Estimated)

| Category | Per                | Present            | Present                          | Water       | Water        | Wastewater | Wastewater |
|----------|--------------------|--------------------|----------------------------------|-------------|--------------|------------|------------|
| (Norm)   | Capita             | Service            | Sewerage                         | Consumption | Demand       | Generation | Collected  |
|          | Water              | Population         | Service                          |             | at Source ** | ***        |            |
|          | Consumption (Ipcd) | (Table<br>All.1.2) | Population<br>(Table<br>All.1.2) | (m³/d)      | (m³/d)       | (m³/d)     | (m³/d)     |
| 1        | 65                 | 7,533              | _                                | 490         | 592          | 474        | - 1        |
| 2        | 110                | 27,963             | _                                | 3,076       | 3,716        | 2,973      | <u> </u>   |
| 3*)      | 170                | 7,152              | 3,480                            | 1,216       | 1,469        | 1,175      | 571        |
| 4*)      | 295                | 42,197             | 41,750                           | 12,448      | 15,037       | 12,030     | 11,903     |
| 5*)      | 380                | 149,918            | 149,020                          | 56,969      | 68,819       | 55,055     | 49,351     |
| Total    |                    | 234,763            | 194,250                          | 74,199      | 89,633       | 71,707     | 61,825     |

Note: \*: the category includes sewerage services

Ks=1.208

Table AII.1.6 shows the present water supply conditions based on the estimation of RA APTERCOL. Totally 92,000 m<sup>3</sup>/d of water is supplied to the consumers through the distribution networks. The domestic water demand estimated in *Table AII.1.5* is satisfied with the present production.

Table All.1.6 Present Water Supply Conditions as of 1998

|                                   | Yearly     | Daily    | Remarks               |
|-----------------------------------|------------|----------|-----------------------|
|                                   | (m³/year)  | (m³/d)   |                       |
| Water Intake Volume               |            | 45 14 15 |                       |
| Surface Water                     | 43,105,495 | 118,100  |                       |
| Groundwater                       | 9,917,444  | 27,200   |                       |
| Total                             | 53,022,939 | 145,300  | 89,700(Table AII.1.5) |
| Water Treatment Loss              | 7,953,441  | 21,800   |                       |
| Water to the Distribution Network | 45,069,498 | 123,500  |                       |
| Unaccounted-for Water             | 11,546,666 | 31,700   |                       |
| Accounted-for Water               | 33,522,832 | 91,800   | 74,200(Table AII.1.5) |

Data Source: RA APTERCOL

The Per capita water consumption for domestic, commercial and institutional purposes in the standards is reviewed briefly in the followings:

The per capita water consumption for each category already contains domestic, commercial and institutional water consumption as shown in *Table AII.1.7*. The domestic water consumption rate is reasonable for the design basis, taking into account the living standard and easy access to the surface water source, the Danube River. A ratio of commercial and institutional water consumption to domestic water consumption is set about 21% to 40% for consumers of house connections. The ratios are appropriate for the level of urban development of the city. The standards also give some allowance to add some commercial and institutional water consumption up to 15 or 25% depending on local conditions and population size of municipalities.

<sup>\*\*:</sup> Water Demand at Source = Kp x Ks x Water Consumption, where, Ks=1.05, Kp=1.15, Kp x

<sup>\*\*\* :</sup> Wastewater Generation = Kw x Water Demand at Source, where Kw=0.8

Table All.1.7 Per Capita Consumption of Domestic, Public and Commercial Water (STAS 1343)

| Category<br>No. | Classification                                                            | Domestic<br>Consumption | Public and<br>Commercial<br>Consumption<br>q <sub>e</sub> (Icd) | Total<br>q (lcd) | q, to q,<br>Ratio |
|-----------------|---------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|------------------|-------------------|
| 1               | Water distributed through street taps                                     | 40                      | 25                                                              | 65               | 0.625             |
| 2               | Water distributed through yard taps                                       | 80                      | 30                                                              | 110              | 0.375             |
| 3               | Houses with plumbing and sewer pipes                                      | 140                     | 30                                                              | 170              | 0.214             |
| 4               | Houses with plumbing and sewers, with in-house water heating system       | 210                     | 85                                                              | 295              | 0.405             |
| 5               | Houses with plumbing and sewers, with provisions of central water heating |                         | 100                                                             | 380              | 0.357             |

Note: The value of  $q_p$  can be increased depending local conditions, but not exceeds the followings by the size of the city;

- up to 15% for cities ranging in population from 300,000 to 1,000,000
- up to 25% for cities having the population more than 1,000,000

### 3.3.2 WASTEWATER TO BE COLLECTED BY SEWERAGE SYSTEM

Table AII.1.8 shows the average flows of domestic, commercial and institutional wastewaters to be generated and to be collected by the public sewerage system in the year 2010.

Table All.1.8 Average Daily Flow of Wastewater in the year 2010 (Scenario A-1)

|                    | Per              | Generation            |                 | Sewerage              |                 | Sewerage              |
|--------------------|------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------------|
| Category<br>(Norm) | Capita<br>Water  | Service<br>Population | Average<br>Flow | Service<br>Population | Average<br>Flow | Service<br>Population |
|                    | Demand<br>(lpcd) |                       | (m³/d)          |                       | (m³/d)          | Coverage              |
| 1                  | 65               | 7,500                 | 472             | 0 3543 243            | 0 (             |                       |
| 2                  | 110              | 27,900                | 2,966           | 0                     | 0               |                       |
| 3                  | 170              | 7,200                 | 1,183           | 3,600                 | 591             | 50%                   |
| 4                  | 295              | 64,400                | 18,360          | 64,400                | 18,360          | 100%                  |
| 5                  | 380              | 150,000               | 55,085          | 150,000               | 55,085          | 100%                  |
| Total              |                  | 257,000               | 78,066          | 218,000               | 74,036          | 85%                   |

Note:

To estimate the wastewater generation, the following coefficient is used:

Water Demand at Source = Kp x Ks x Water Consumption, where, Ks=1.05, Kp=1.15, Kp x

Ks=1.208

Wastewater Generation = Kw x Water Demand at Source, where Kw=0.8

Table All.1.8 (continued) Average Daily Flow of Wastewater in the year 2010 (Scenario A-2)

|        | Per                                 | Generation            |                           | Sewerage              |                           | Sewerage                          |
|--------|-------------------------------------|-----------------------|---------------------------|-----------------------|---------------------------|-----------------------------------|
| (Norm) | Capita<br>Water<br>Demand<br>(Ipcd) | Service<br>Population | Average<br>Flow<br>(m³/d) | Service<br>Population | Average<br>Flow<br>(m³/d) | Service<br>Population<br>Coverage |
| 1      | 65                                  | 7,500                 | 472                       | 0                     | 0                         |                                   |
| 2      | 110                                 | 27,900                | 2,966                     | 0                     | 0                         |                                   |
| 3      | 170                                 | 7,200                 | 1,183                     | 7,200                 | 1,183                     | 100%                              |
| 4      | 295                                 | 64,400                | 18,360                    | 64,400                | 18,360                    | 100%                              |
| 5      | 380                                 | 150,000               | 55,085                    | 150,000               | 55,085                    | 100%                              |
| Total  |                                     | 257,000               | 78,066                    | 221,600               | 74,628                    | 86%                               |

Table All.1.8 (continued) Average Dally Flow of Wastewater in the year 2010 (Scenario B)

|                    | Per                                 | Generation            |                           | Sewerage              |                           | Sewerage                          |
|--------------------|-------------------------------------|-----------------------|---------------------------|-----------------------|---------------------------|-----------------------------------|
| Category<br>(Norm) | Capita<br>Water<br>Demand<br>(Ipcd) | Service<br>Population | Average<br>Flow<br>(m³/d) | Service<br>Population | Average<br>Flow<br>(m³/d) | Service<br>Population<br>Coverage |
| 1                  | 65                                  | 3,000                 | 189                       | 0                     | 0                         |                                   |
| 2                  | 110                                 | 8,100                 | 861                       | 0                     | 0                         | tal to                            |
| 3                  | 170                                 | 31,500                | 5,175                     | 31,500                | 5,175                     | 100%                              |
| 4                  | 295                                 | 64,400                | 18,360                    | 64,400                | 18,360                    | 100%                              |
| 5                  | 380                                 | 150,000               | 55,085                    | 150,000               | 55,085                    | 100%                              |
| Total              |                                     | 257,000               | 79,670                    | 245,900               | 78,620                    | 96%                               |

Maximum Daily Flow and Maximum Hourly Flow of the domestic, commercial and institutional wastewaters are calculated with using the coefficients set forth in the Romanian Standard (STAS 1343/1) as follows. The results of calculation are summarized in *Table AII.1.9*.

Table All.1.9 Design Flows for the Domestic, Commercial and Institutional Wastewater, Scenario A-1

| Wastewater Flow     | Design Flow: J      | CA Study | Coefficient       | Remarks |
|---------------------|---------------------|----------|-------------------|---------|
|                     | (m³/d)              | (L/s)    | STAS 1343/1       |         |
| Average Daily Flow  | 74,036<br>=> 74,100 | 860      |                   |         |
| Maximum Daily Flow  | 82,418<br>=> 82,500 | 950      | 1.10* to<br>1.20* |         |
| Maximum Hourly Flow | 94,779<br>=> 94,800 | 1,100    | 1.15              |         |

Note: \* indicates that the coefficient for each category 3, 4, and 5 is 1.20, 1.15 and 1.10, respectively.

Table All.1.9 Design Flows for the Domestic, Commercial and Institutional Wastewater, Scenario A-2 (continued)

| Wastewater Flow     | Design Flow: J      | ICA Study | Coefficient       |  |
|---------------------|---------------------|-----------|-------------------|--|
|                     | (m³/d)              | (L/s)     | STAS 1343/1       |  |
| Average Daily Flow  | 74,628<br>=> 74,700 | 870       | -                 |  |
| Maximum Daily Flow  | 83,128<br>=> 83,200 | 960       | 1.10* to<br>1.20* |  |
| Maximum Hourly Flow | 95,595<br>=> 95,600 | 1,110     | 1.15              |  |

Note: \* indicates that the coefficient for each categories 3, 4, and 5 is 1.20, 1.15 and 1.10, respectively.

Table All.1.9 Design Flows for the Domestic, Commercial and Institutional Wastewater, Scenario B

| Wastewater Flow     | Design Flow : Jl      | ICA Study | Coefficient       | Remarks |
|---------------------|-----------------------|-----------|-------------------|---------|
|                     | (m³/d)                | (L/s)     | STAS 1343/1       |         |
| Average Daily Flow  | 78,620<br>=> 78,700   | 910       |                   |         |
| Maximum Daily Flow  | 87,918<br>=> 88,000   | 1,020     | 1.10* to<br>1.20* |         |
| Maximum Hourly Flow | 101,105<br>=> 101,100 | 1,170     | 1.15              |         |

Note: \* indicates that the coefficient for each categories 3, 4, and 5 is 1.20, 1.15 and 1.10, respectively.

### 3.4 INDUSTRIAL WASTEWATER

# 3.4.1 PRESENT CONDITIONS

According to information provided by the Braila City, the industrial wastewater from major industries is about 16,000 m<sup>3</sup>/d as shown in *Table AII.1.10*. These industrial wastewaters are independently pre-treated at the sources to the degrees acceptable to the public sewers or directly disposed off to the nearby drains, ponds, or rivers.

Table All.1.10 Industrial Wastewater Discharging from Major Industries

| Industry              | Daily Discharge<br>(m³/d) | Remarks |
|-----------------------|---------------------------|---------|
| Slaughter House       | 443                       |         |
| Brewery               | 2,680                     |         |
| Wood Industry         | 4,050                     |         |
| Metal Industry        | 3,750                     |         |
| Shipbuilding Industry | 1,250                     |         |
| Engineering           | 3,835                     |         |
| Total                 | 16,008                    |         |

Note) data source: Braila City

泰爾·基爾斯斯斯 (1981年) 1880年 - 1886年 (1982年)

A questionnaire survey for major manufactures and companies is conducted by JICA

Study Team with the assistance of RA APTERCOL. About 12 companies replied to the questionnaire and the results are summarized in *Table AII.1.11*. It shows that the total industrial wastewater is 11,800 m<sup>3</sup>/d, in which the amount of 5,200 m<sup>3</sup>/d is discharged through the public sewers, and the remained 6,600 m<sup>3</sup>/d is discharged to the Danube River directly.

#### 3,4,2 WASTEWATER TO BE RECEIVED BY THE SEWERAGE SYSTEM

As it is shown in *Table All.1.10* and *Table All.1.11*, the present amount of industrial wastewater discharging from major industries is about 12,000 to 16,000 m<sup>3</sup>/d.

To determine the amount of industrial wastewater to be received by the public sewerage system, the following assumptions are taken into consideration.

First, the present industrial wastewater is about 16,000 m³/d. Second, the industrial wastewater discharging from the listed factories shown in Table 11 is defined as the point source origin. The point source wastewater of 12,000 m³/d is received and treated by the public sewerage system. Third, the remained 4,000 m³/d of industrial wastewater is defined as the non-point source origin, mainly discharging from small factories. Fourth, the future amount of industrial wastewater to be received by public sewerage system becomes 30% higher than the present one. These are summarized in Table AII.1.12.

Table All.1.12 Design Average Dally Flow of Industrial Wastewater

unit: m3/d

| Industrial<br>Wastewater | Present (1998) | Proposed for the year 2010 | Remarks                               |
|--------------------------|----------------|----------------------------|---------------------------------------|
| Point Source             | 12,000         | 16,000                     | 1.3 times higher than the present one |
| Non-point Source         | 4,000          | 5,000                      | 1.3 times higher than the present one |
| Total                    | 16,000         | 21,000                     | 1.3 times higher than the present one |

The following flow variation coefficients are proposed, taking into account the scale of the manufactures and companies.

Table All.1.13 Flow Variation Coefficients Set For Industrial Wastewater

| Industrial        | Average | Maximum | Maximum | Remarks                                |
|-------------------|---------|---------|---------|----------------------------------------|
| Wastewater source | Daily   | Daily   | Hourly  | ्रे के अंतु विदेश स्टब्स्ट्रेस स्टब्स् |
| Point Source      | 0.75    | 1.00    | 1.25    | Medium to small scale                  |
| Non-point Source  | 0.67    | 1.00    | 2.00    | Small scale                            |

The design flows of maximum daily and maximum hourly flows are calculated using the above flow variation coefficients and the results are summarized in the table below.

Table All.1.14 Summary of Design Flow of Industrial Wastewater

| Industrial<br>Wastewater | Ave. Daily<br>(m³/d) | Max. Daily (m³/d) | Max. Hourly (m³/d) | Remarks        |
|--------------------------|----------------------|-------------------|--------------------|----------------|
| Point Source             | 16,000               | 21,300            | 26,600             | 0.75:1.00:1.25 |
| Non-point Source         | 5,000                | 7,500             | 15,000             | 0.67:1.00:2.00 |
| Total                    | 21,000               | 28,800            | 41,600             |                |

### 3.5 GROUNDWATER INFILTRATION

The most of urban area of the city has been developed in hilly area, the groundwater infiltration may be negligible small. Based on the information of the length of existing sewers installed under the groundwater table, the amount of groundwater infiltration is estimated about 2,250 m<sup>3</sup>/d as follows:

- Total length of sewers installed: 227 km
- Unit groundwater infiltration: 0.5 to 1.0 L/s/km of sewers installed (Romanian Standards)
- Length of sewers installed under the groundwater table: 26 km
- Groundwater Infiltration:  $26 \text{ km x } 1.0 \text{ L/s/km} = 26 \text{ L/s} => 2,250 \text{ m}^3/\text{d}$

Therefore, the groundwater infiltration of 2,300 m<sup>3</sup>/d is applied for the sewerage plan.

# 3.6 SUMMARY OF DESIGN WASTEWATER FLOW

In summary, the design flows of domestic, commercial, institutional and industrial wastewater is combined and summarized in the table below. The figure of each category of wastewater is rounded at thousands.

Table All.1.15 Summary of the Design Flow, Scenario A-1

unit: m³/d

| Wastewater           | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum | Maximum | Wet     | Remarks |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|
|                      | Daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Daily   | Hourly  | Weather |         |
| Domestic,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |         |
| commercial and       | 74,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82,500  | 94,800  |         |         |
| Institutional Wastes | => 74,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =>      | =>      |         |         |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83,000  | 95,000  |         |         |
| Industrial Wastes    | a de la companya de l |         |         | *       | 100     |
| Point Source         | 16,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,300  | 26,600  |         |         |
| Non-point Source     | 5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,500   | 15,000  |         |         |
| Sub-total            | 21,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28,800  | 41,600  |         |         |
|                      | =>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =>      | =>      |         |         |
|                      | 21,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29,000  | 42,000  |         |         |
| Groundwater          | 2,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,300   | 2,300   | AND SEE |         |
| Infiltration         | => :: ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =>      | =>      |         |         |
|                      | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,000   | 2,000   |         |         |
| Total                | 97,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113,600 | 138,700 | 277,400 |         |
|                      | <b>=&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =>      | =>      | =>      |         |
|                      | 97,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114,000 | 139,000 | 278,000 |         |

Table All.1.15 (continued) Summary of the Design Flow, Scenario A-2

unit: m3/d

| Wastewater           | Average<br>Daily | Maximum<br>Daily | Maximum<br>Hourly | Wet<br>Weather | Remarks                               |
|----------------------|------------------|------------------|-------------------|----------------|---------------------------------------|
| Domestic,            |                  |                  |                   | ·              |                                       |
| commercial and       | 74,700           | 83,200           | 95,600            |                |                                       |
| Institutional Wastes | => 75,000        | =>               | =>                |                | ·                                     |
|                      |                  | 84,000           | 96,000            |                |                                       |
| Industrial Wastes    |                  |                  |                   |                |                                       |
| Point Source         | 16,000           | 21,300           | 26,600            |                |                                       |
| Non-point Source     | 5,000            | 7,500            | 15,000            |                |                                       |
| Sub-total            | 21,000           | 28,800           | 41,600            |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                      | =>               | =>               | =>                |                | 4 (1) (1)                             |
|                      | 21,000           | 29,000           | 42,000            |                |                                       |
| Groundwater          | 2,300            | 2,300            | 2,300             |                |                                       |
| Infiltration         | <b>=&gt;</b>     | =>               | =>                |                |                                       |
|                      | 2,000            | 2,000            | 2,000             |                |                                       |
| Total                | 98,000           | 114,300          | 139,500           | 279,000        |                                       |
|                      | =>               | =>               | =>                | =>             |                                       |
|                      | 98,000           | 115,000          | 140,000           | 280,000        |                                       |

Table All.1.15 (continued) Summary of the Design Flow, Scenario B

unit: m³/d

| Wastewater                     | Average<br>Daily       | Maximum<br>Daily       | Maximum<br>Hourly      | Wet<br>Weather | Remarks |
|--------------------------------|------------------------|------------------------|------------------------|----------------|---------|
| Domestic, commercial and       | 78,700                 | 88,000                 | 101,100                |                | 4.6     |
| Institutional Wastes           | => 79,000              | =><br>88,000           | =><br>111,000          |                |         |
| Industrial Wastes Point Source | 16,000                 | 21,300                 | 26,600                 |                |         |
| Non-point Source<br>Sub-total  | 5,000                  | 7,500                  | 15,000                 |                |         |
| Suv-total                      | 21,000<br>=><br>21,000 | 28,800<br>=><br>29,000 | 41,600<br>=><br>42,000 |                |         |
| Groundwater Infiltration       | 2,300<br>=>            | 2,300                  | 2,300                  | ****           |         |
|                                | 2,000                  | 2,000                  | =><br>2,000            |                |         |
| Total                          | 102,000<br>=>          | 119,100<br>=>          | 145,000<br>=>          | 290,000<br>=>  |         |
| •                              | 102,000                | 119,000                | 145,000                | 290,000        |         |

# 3.7 Proposed Design Flows for Braila WWTP

It is proposed that the following design flows are to be applied for the F/S study on the Braila WWTP.

Table All.1.16 Summary of the Design Flow, Scenario A-2

unit: m³/d

| Wastewater                     | Average<br>Daily       | Maximum<br>Daily         | Maximum<br>Hourly        | Wet<br>Weather           | Remarks   |
|--------------------------------|------------------------|--------------------------|--------------------------|--------------------------|-----------|
| Domestic,<br>commercial and    | 74,700                 | 83,200                   | 95,600                   |                          |           |
| Institutional Wastes           | => 75,000              | =><br>84,000             | =><br>96,000             |                          |           |
| Industrial Wastes Point Source | 16,000                 | 21,300                   | 26,600                   |                          |           |
| Non-point Source<br>Sub-total  | 5,000<br>21,000        | 7,500<br>28,800          | 15,000<br>41,600         |                          | t i satur |
|                                | =><br>21,000           | =><br>29,000             | =><br>42,000             |                          |           |
| Groundwater<br>Infiltration    | 2,300<br>=>            | 2,300<br>=>              | 2,300<br>=>              |                          |           |
|                                | 2,000                  | 2,000                    | 2,000                    | 270.000                  |           |
| Total                          | 98,000<br>=><br>98,000 | 114,300<br>=><br>115,000 | 139,500<br>=><br>140,000 | 279,000<br>=><br>280,000 |           |

Table AII.1.17 shows the design flows proposed for JICA Study to compare with the one in 1997 F/S.

It shows that the maximum hourly flow and the wet weather flow proposed are approximately equal to the flows proposed in 1997 F/S.

Table All.1.17 Comparison of Design Flows

| Design         | This S  | This Study |           | F/S   | Remarks     |
|----------------|---------|------------|-----------|-------|-------------|
| Flows          | (m³/d)  | (L/s)      | (m³/d)    | (L/s) |             |
| Average Daily  | 98,000  | 1,135      |           | N.A.  |             |
| Maximum Daily  | 115,000 | 1,330      | (129,600) | 1,500 | 11% reduced |
| Maximum Hourly | 140,000 | 1,620      | (142,560) | 1,650 |             |
| Wet Weather    | 280,000 | 3,240      | (285,120) | 3,300 |             |

Note: The design flows proposed in the 1997 F/S are expressed as Liter per second (L/s).

### 4. WASTEWATER CHARACTERISTICS

# 4.1 PRESENT WASTEWATER CHARACTERISTICS

Table All.1.18 shows the average monthly wastewater quality monitored at each collector. The concentration of BOD<sub>5</sub> and SS ranges from 31 to 162 mg/L and 53 to 408 mg/L, respectively.

Table All.1.18 Monthly Average Quality of Wastewater in Major Outfalls (1996 to 98)

| lD  | Name of Collector | BOD <sub>5</sub> | SS         | Remarks  |
|-----|-------------------|------------------|------------|----------|
| No. |                   | (mg/L)           | (mg/L)     | E NACHAR |
| 1   | Braila Sud        | 38 to 158        | 53 to 276  |          |
| 2   | Germany           | 31 to 135        | 139 to 408 |          |
| 3   | Cezar Petrescu    | 38 to 162        | 107 to 257 |          |
| 4   | Targoviste        | 38 to 137        | 119 to 295 |          |

Note: Data was obtained from Braila City (or RA APTERCOL)

A wastewater quality survey was conducted by JICA Study Team during February to March in 1999. The samples were taken at two sites: one is a manhole at Buzau street and another one is the outfall of Germany. The resulted four water quality parameters: BOD<sub>5</sub>, SS, T-N, and T-P are presented in *Table AII.1.19* and *Figures AII.1.2* and AII.1.3. Those concentrations are varied as shown in the figures, a weighed average concentration for each parameter was calculated and presented in *Table AII.1.19*. The BOD<sub>5</sub> concentration has the same magnitude as those in *Table AII.1.18*.

Table All.1.19 Results of Wastewater Quality Surveys (24 hours, one sample every 3 hours)

|                               | Manhole at Buz | au st.              | Germany     |                     |            |
|-------------------------------|----------------|---------------------|-------------|---------------------|------------|
| Parameters                    | Range          | Weighted<br>Average | Range       | Weighted<br>Average | Remarks    |
| BOD <sub>5</sub> conc. (mg/L) | 30 - 147       | 94                  | 25 - 98     | 68                  | *31 to 162 |
| SS conc. (mg/L)               | 45 - 126       | 94                  | 23 - 85     | 62                  | *53 to 408 |
| T-N conc. (mg/L)              | 8.8 - 20.3     | 15.4                | 11.9 - 22.4 | 17.4                |            |
| T-P conc. (mg/L)              | 0.52 - 2.44    | 1.64                | 0.50 - 3.79 | 2.06                |            |

Note: \* the average concentration of BOD, and SS shown in Table 18 is presented.

The pollutant loads discharged to the Danube were estimated and summarized in *Table AII.1.20*.

Table All.1.20 Estimated Pollutant Loads based on Wastewater Quantity

and Quality Surveys

| Sampling<br>Location | Average<br>Flow | Weight<br>Concer |    |      |      | Polluta<br>(kg/d) | nt Loads |       |       | Remarks   |
|----------------------|-----------------|------------------|----|------|------|-------------------|----------|-------|-------|-----------|
|                      | (m³/d)          | BOD <sub>5</sub> | SS | T-N  | T-P  | BOD₅              | SS       | T-N   | T-P   | i essasei |
| The manhole          | 2,664           | 94               | 94 | 15.4 | 1.64 | 250               | 250      | 41.0  | 4.37  |           |
| Germany              | 52,008          | 68               | 62 | 17.4 | 2.06 | 3,537             | 3,224    | 904.9 | 107.1 |           |

Because residential area is the predominant in the service area of the sewer of manhole at Buzau street and any factories are not identified in the area, the samples are typical examples of domestic wastewater. While in the service area of Germany, there are flats, offices, restaurants, factories, thus the wastewater is a mixture of domestic, commercial, institutional and industrial wastewater. Therefore, the wastewater measured at the manhole at Buzau street is domestic origin, the measured flow rate and calculated pollutant loads are used to calculate the per capita wastewater generation and

unit pollutant loads. The results are summarized in *Table All.1.21*. The per capita wastewater generation is 266 L/capita/day (lpcd). According to the norm (Romanian Standards, STAS 1343, referred to *Table All.1.7*), the domestic water consumption is 280 lpcd from the users of the category 5, mostly living in flats, the estimated per capita wastewater generation is the same level as the norm. The unit pollutant loads are 25 g/capita/d as of BOD<sub>5</sub>, 25g/capita/d as of SS, 4.1g/capita/d as of T-N and 0.44g/capita/d as T-P.

Table All.1.21 Estimated Per Capita Unit Loads and Generation Rate of

### **Domestic Wastewater**

| Manhole at Buzau street Remarks |  |
|---------------------------------|--|
| 2,664                           |  |
| 10,000                          |  |
| r Generation (lcd) 266          |  |
| 250                             |  |
| 250                             |  |
| V)<br>Γ-P) 41.0<br>4.37         |  |
| s (g/capita/d)                  |  |
| 25                              |  |
| 25                              |  |
| (1) A 1                         |  |
| r-P) 0.44                       |  |

Note: \* shows that the service population is based on the information provided by RA APTERCOL

#### 4.1.2 INDUSTRIAL WASTEWATER

Table AII.1.22 shows industrial wastewater characteristics measured for 12 manufacturers and companies in 1998. The quality data of BOD<sub>5</sub> and SS were mainly obtained from RA APTERCOL, combined with the information obtained through a questionnaire survey conducted by JICA Study Team with cooperation of RA APTERCOL.

Based on the information of flow and quality (pollutant loads), the overall average concentration of BOD<sub>5</sub> and SS is about 105 and 480 mg/L, respectively.

#### 4.2 Design Influent Quality

#### 4.2.1 Introduction

Design wastewater quality is used as the basis for evaluation of effects of wastewater treatment as well as for making design of wastewater treatment facilities. As for the design wastewater quality, influent quality and treated quality shall be determined. The latter quality, treated water quality is regulated by the Romanian Effluent Standards, as shown in *Table All.1.23*. The detailed discussion on the treated wastewater quality for the design will be conducted in later opportunities when we will discuss wastewater treatment methods and propose an appropriate wastewater treatment method.

Table All.1.23 Major Effluent Quality Standards to Public Receiving Water Bodies.

| No.    | Quality Parameters                            | Units                     | Max.<br>Admissible | Methods of Analysis |
|--------|-----------------------------------------------|---------------------------|--------------------|---------------------|
| A. Phy | sical Parameters                              |                           |                    |                     |
| 1.     | Temperature                                   | °C                        | 30°C               | -                   |
| B. Che | mical Parameters                              |                           |                    |                     |
| 2.     | Hydrogen ion concentration (pH)               | Unit pH                   | 6.5 - 8.5          | STAS 8619/3-90      |
|        | For Danube River                              |                           | 6.5 – 9.0          |                     |
| 3.     | Total Suspended Solids                        | mg/dm³                    | 60.0               | STAS 6953-81        |
| 4.     | Biochemical Oxygen Demand (BOD <sub>5</sub> ) | mg/dm³                    | 20.0               | STAS 6560-82        |
| 5.     | Chemical Oxygen Demand (COD-Mn)               | mg/dm³                    | 40.0               | STAS 9887-74        |
| 6.     | Chemical Oxygen Demand (COD-Cr)               | mg/dm³                    | 70.0               | STAS 6954-82        |
| 7.     | Ammonium Nitrogen (NH <sub>3</sub> '-N)       | mg/dm³                    | 2.0                | STAS 8683-70        |
| 8.     | Total Nitrogen (N)                            | mg/dm³                    | 10.0               | STAS 7312-83        |
| 9.     | Nitrates (NO <sub>3</sub> )                   | mg/dm³                    | 25.0               | STAS 8900/1-71      |
| 10.    | Nitrites (NO <sub>2</sub> )                   | mg/dm³                    | 1.0                | STAS 8900/2-71      |
| 11.    | Sulfides (as H <sub>2</sub> S)                | mg/dm³                    | 0.1                | STAS 7510-66        |
| 12.    | Sulphites (SO <sub>3</sub> <sup>2</sup> )     | mg/dm³                    | 1.0                | STAS 7661-89        |
| 13.    | Phenols (C <sub>6</sub> H <sub>5</sub> OH)    | mg/dm³                    | 0.05               | STAS 7167-92        |
| 14.    | Oil and Fats                                  | mg/dm³                    | 5.0                | STAS 7587-66        |
| 16     | Phosphates (PO <sub>4</sub> <sup>3</sup> ·)   | mg/dm³                    | 4.0                | STAS 10064-75       |
| 17.    | Total phosphorus (P)                          | mg/dm³                    | 1.0                | STAS 10064-75       |
| C. Bac | teriological Parameters                       |                           |                    |                     |
| 42.    | Total coliform (MPN)                          | Nr/100<br>cm <sup>3</sup> | 1 mil              | STAS 3001-91        |
| 43.    | Feeal coliform (MPN)                          | Nr/100<br>cm <sup>3</sup> | 10,000             | STAS 3001-91        |
| 44.    | Fecal streptococci (MPN)                      | Nr/100 cm <sup>3</sup>    | 5,000              | STAS 3001-91        |

Source: ORDER No. 730/1997, Norms for establishing the limits of pollutants in the wastewater before to be discharged into water resources, NTPA 001/1997

# 4.2.2 DESIGN INFLUENT QUALITY IN THE 1997 F/S

In 1997 F/S, the design influent quality is set at 150 mg/L as of BOD<sub>5</sub> and 250 mg/L as of SS. The quality was determined taken into account the present conditions based on surveys results. Unfortunately, no information available to know how to determine the design influent quality.

#### 4.2.3 DESIGN INFLUENT QUALITY

In the followings, we will discuss the design influent quality, especially BOD<sub>5</sub>, SS, T-N, and T-P. The design figures will be determined take into consideration the present wastewater concentrations, present pollutant loads, and future increments of pollutant loads, and data and information available from some references.

## (1) Domestic, Commercial and Institutional Wastewater

The per capita unit loads of domestic wastewater is as follows. But it should be noted that the per capita loads can only be used for domestic wastewater.

Table All.1.24 Estimated Per Capita Unit Loads

| Wastewater Parameter   | Per Capita Unit Loads (g/capita/d) | Remarks |
|------------------------|------------------------------------|---------|
| BOD <sub>5</sub>       | 25                                 |         |
| SS                     | 25                                 |         |
| Total Nitrogen (T-N)   | 4.1                                |         |
| Total Phosphorus (Γ-P) | 0.44                               |         |

The resulted per capita loads are used to predict the future wastewater quality as shown in the following *Table AII.1.25*. The table shows an example of the Scenario A-2. In the table, the per capita loads is used for the present domestic wastewater. The per capita unit loads for commercial and institutional wastewater is assumed 30% of the domestic one as the same as the flows. Total per capita units loads are increased from 10% to 50% from the present level.

Table All.1.25 Estimated BOD₅ and SS Concentration in Domestic,

Commercial and Institutional Wastewater based

on Per Capita Loads, Scenario A-2

| 1        | Per Capita Loads<br>(g/capita/d) |       |        |        |                  |  |  | Remarks |
|----------|----------------------------------|-------|--------|--------|------------------|--|--|---------|
| Domestic | Commercial and Institutional *   | Total | (kg/d) | (mg/L) |                  |  |  |         |
| 25.0     | 7.5                              | 32.5  | 7,202  | 96     | Present Level*** |  |  |         |
| 27.5     | 8.3                              | 35.8  | 7,933  | 106    | 10% increase     |  |  |         |
| 30.0     | 9.0                              | 39.0  | 8,642  | 116    | 20% increase     |  |  |         |
| 32.5     | 9.8                              | 42.3  | 9,374  | 125    | 30% increase     |  |  |         |
| 35.0     | 10.5                             | 45.5  | 10,083 | 135    | 40% increase     |  |  |         |
| 37.5     | 11.3                             | 48.8  | 10,814 | 145    | 50% increase     |  |  |         |

Note: \*: The per capita loads of commercial and institutional wastewater is assumed 30% of that of domestic wastewater

Taking into consideration the survey results from other cities, the following per capita unit loads is used to estimate the influent quality of domestic, commercial and public wastewater. It is assumed that the increase of the per capita loads is assumed to be about 30% within the target year. The influent quality is calculated as shown in *Table All.1.26*.

<sup>\*\*:</sup> The planned service population is 221,600 and the design average flow is 74,700 m<sup>3</sup>/d

<sup>\*\*\*:</sup> Domestic Per Capita Load is at present level

Table All.1.26 The Design Influent Quality of Domestic, Commercial, and Institutional Wastewater, Scenario A-2

| Quality<br>Parameter | Planned<br>Service<br>Population         | Per Capita<br>Loads | Loads  | Design<br>Average<br>Flow | Influent<br>Quality | Remarks |
|----------------------|------------------------------------------|---------------------|--------|---------------------------|---------------------|---------|
|                      | en e | (g/capita/d)        | (kg/d) | (m³/d)                    | (mg/L)              |         |
| BOD <sub>5</sub>     |                                          | 44                  | 9,750  |                           | 131                 |         |
| SS                   | 221,600                                  | 51                  | 11,302 | 74,700                    | 150                 |         |
| T-N                  |                                          | 7.7                 | 1,706  |                           | 23                  |         |
| T-P                  |                                          | 1.01                | 224    |                           | 3.0                 |         |

Note: The Domestic wastewater includes commercial and institutional wastewater.

## (2) Industrial Wastewater

The listed 12 factories are categorized by their products and the present industrial wastewater discharges by product categories are summarized as shown in *Table 27*.

Table All.1.27 Present Industrial Wastewater Discharges by Product Category

| Category        | Present Discharge<br>Flow (m³/d) | Share<br>(%) | Remarks                                                                        |
|-----------------|----------------------------------|--------------|--------------------------------------------------------------------------------|
| Food Processing | 3,389                            | 28.8         | Meat products, dairy products,<br>Canned fish, Canned vegetable,<br>Fruit etc. |
| Beverage        | 873                              | 7.4          | Beer                                                                           |
| Machinery       | 4,500                            | 38.2         | Construction Machine, Ship building                                            |
| Metal Products  | 2,115                            | 17.9         | Nail, Steel wire                                                               |
| Furniture       | 680                              | 5.8          | Furniture, matches                                                             |
| Others          | 231                              | 2.0          | Service industries                                                             |
| Total           | 12,348                           | 100.0        |                                                                                |

The share of each category for the target year is assumed to be the same as the present one, the design discharge flow to the sewerage system is set as shown in *Table Alt. 1.28*. The design discharge flow is calculated by the design flow of 16,000 m<sup>3</sup>/d multiplied with the share of each category.

Table All.1.28 Design Industrial Wastewater Discharge Flow by Categorized Factories

| Category        | Share<br>(%) | Design Discharge<br>Flow (m³/d) | Remarks             |
|-----------------|--------------|---------------------------------|---------------------|
| Food Processing | 29.0         | 4,640                           |                     |
| Beverage        | 7.0          | 1,120                           |                     |
| Machinery       | 38.0         | 6,080                           |                     |
| Metal Products  | 18.0         | 2,880                           |                     |
| Furniture       | 6.0          | 960                             |                     |
| Others          | 2.0          | 320                             |                     |
| Total           | 100.0        | 16,000                          | Design Average Flow |

For the design purpose, the industrial wastewater quality to be discharged by each category is set as shown in *Table AII.1.29*. The quality is set taking into account the present data available, the maximum permissible level set forth in the National Effluent Quality Standards for the Wastewater Discharge to Public Wastewater Systems as shown in *Table AII.1.30*, and some typical values for each category in references.

Table All.1.29 Design Industrial Wastewater Characteristics
Classified by Product Category

| Category        | Quality Par      | Remarks |     |     |             |
|-----------------|------------------|---------|-----|-----|-------------|
|                 | BOD <sub>5</sub> | SS      | T-N | T-P | .e. se 194. |
| Food Processing | 300              | 300     | 40  | 10  | 1, 44 1, 46 |
| Beverage        | 300              | 300     | 30  | 10  |             |
| Machinery       | 100              | 200     | 15  | 3   |             |
| Metal Product   | 80               | 100     | 10  | 5   |             |
| Furniture       | 100              | 200     | 20  | 3   |             |
| Others          | 100              | 200     | 5   | 1   |             |

The maximum permissible concentrations of BOD<sub>5</sub> and SS are set at 300 mg/L as the same as the national effluent quality standards for the wastewater discharge to public wastewater systems as shown in *Table AII.1.30*. However, regarding the concentration of total nitrogen and total phosphorus, the national effluent standards are not applied. Because the national standards do not provide any maximum permissible concentration of total nitrogen but that of ammonium nitrogen of 30 mg/L and provide that of total phosphorus of 5.0 mg/L.

Table All.1.30 Major Permissible Effluent Quality Standards for the Wastewater Discharged Into Public Wastewater Systems

| No. | Quality Parameter               | Units  | Permissible<br>Values | Methods of Analysis |
|-----|---------------------------------|--------|-----------------------|---------------------|
| 1.  | Temperature                     | °C     | 40°C                  | -                   |
| 2.  | Hydrogen ion concentration (pH) | -      | 6.5 – 8.5             | STAS 8619/3-90      |
| 3.  | Suspended Solids                | mg/dm³ | 300                   | STAS 6953-81        |
| 4.  | BOD <sub>5</sub>                | mg/dm³ | 300                   | STAS 6560-82        |
| 5.  | COD-Cr                          | mg/dm³ | 500                   | STAS 6954-82        |
| 6.  | Ammonium Nitrogen (NH, '-N)     | mg/dm³ | 30                    | STAS 8683-70        |
| 7.  | Total Phosphorus (as P)         | mg/dm³ | 5.0                   | STAS 10064-75       |

Source: Norms regarding the discharge conditions of wastewater into sewerage, NTPA 002/1997

The design loads from the listed 12 companies are estimated as shown in *Table AH.1.31*; the design discharge flows multiplied with the concentrations. The average concentration is estimated, total loads are divided with the total flow: BOD<sub>5</sub> of 168 mg/L, SS of 218 mg/L, T-N of 22 mg/L, and T-P of 5.8 mg/L.

Table All.1.31 Design Quality of Industrial Wastewater by Categorized Factories

|                       | Design    | Concentration    |                                                                                                               | Loads            |         |       |
|-----------------------|-----------|------------------|---------------------------------------------------------------------------------------------------------------|------------------|---------|-------|
| Category              | Flow      | (mg/L)           | e de la companya de | (kg/d)           | Remarks |       |
|                       | (m³/d)    | BOD <sub>5</sub> | SS                                                                                                            | BOD <sub>5</sub> | SS      |       |
| Food Processing       | 4,640     | 300              | 300                                                                                                           | 1,392            | 1,392   |       |
| Beverage              | 1,120     | 300              | 300                                                                                                           | 336              | 336     | ·     |
| Machinery             | 6,080     | 100              | 200                                                                                                           | 608              | 1,216   |       |
| Metal Products        | 2,880     | 80               | 100                                                                                                           | 230              | 288     |       |
| Furniture             | 960       | 100              | 200                                                                                                           | 96               | 192     |       |
| Others                | 320       | 100              | 200                                                                                                           | 32               | 64      |       |
| Total                 | 16,000    |                  |                                                                                                               | 2,694            | 3,488   | 1.11  |
| Average Concentration | on (mg/L) | 168              | 218                                                                                                           |                  |         | 11.01 |

Table All.1.31 Design Quality of Industrial Wastewater by Categorized Factories (Continued)

| Category              | Design<br>Flow | Concentration (mg/L) |     | Loads<br>(kg/d) | Remarks |                 |
|-----------------------|----------------|----------------------|-----|-----------------|---------|-----------------|
|                       | (m³/d)         | T-N                  | T-P | T-N             | T-P     |                 |
| Food Processing       | 4,640          | 40                   | 10  | 186             | 46.4    |                 |
| Beverage              | 1,120          | 30                   | 10  | 34              | 11.2    |                 |
| Machinery             | 6,080          | 15                   | 3   | 91              | 18.2    | er is the group |
| Metal Products        | 2,880          | 10                   | 5   | 29              | 14.4    |                 |
| Furniture             | 960            | 2                    | 3   | 2               | 2.9     | 9 3113          |
| Others                | 320            | 5 11611              | 1   | 2               | 0.3     |                 |
| Total                 | 16,000         |                      |     | 344             | 93.4    |                 |
| Average Concentration | n (mg/L)       | 22                   | 5.8 |                 |         |                 |

The design quality of overall industrial wastewater is estimated as shown in *Table 32*. In the table, the design quality of industrial wastewater originated from non-point source is assumed to be the same as the domestic, commercial and institutional wastewater, i.e. BOD<sub>5</sub> of 131 mg/L, SS of 150 mg/L, T-N of 23 mg/L, and T-P of 3.0 mg/L. The design quality of overall industrial wastewater is estimated as follows: BOD<sub>5</sub> of 159 mg/L, SS of 201 mg/L, T-N of 22 mg/L, and T-P of 5.0 mg/L.

Table All.1.32 Design Quality of Industrial Wastewater

| Source                  | Design<br>Flow | Concentration (mg/L) |     | Loads<br>(kg/d)  | Remarks |  |
|-------------------------|----------------|----------------------|-----|------------------|---------|--|
|                         | (m³/d)         | BOD₅                 | SS  | BOD <sub>5</sub> | SS      |  |
| Point Source            | 16,000         | 168                  | 218 | 2,694            | 3,488   |  |
| No-point Source         | 5,000          | 131                  | 150 | 655              | 750     |  |
| Total                   | 21,000         | 100                  |     | 3,349            | 4,238   |  |
| Average Concentration ( | mg/L)          | 159                  | 201 |                  |         |  |

Table All.1.32 Design Quality of Industrial Wastewater (Continued)

|                              | Design Flow (m³/d) | Concentration (mg/l) |     | Loads (kg/d) |       |
|------------------------------|--------------------|----------------------|-----|--------------|-------|
| Source                       |                    | T-N                  | T-P | T-N          | T-P   |
| Point Source                 | 16,000             | 22                   | 5.8 | 344          | 93.4  |
| No-point Source              | 5,000              | 23                   | 3.0 | 115          | 15.0  |
| Total                        | 21,000             |                      |     | 459          | 108.4 |
| Average Concentration (mg/L) |                    | 22                   | 5.0 |              |       |

Combine the design quality of domestic, commercial, and institutional wastewater shown in *Table AII.1.26* with that of industrial wastewater discharged to the public sewerage system shown in *Table AII.1.32*, the overall influent quality to the wastewater treatment plant is estimated as shown in *Table AII.1.33*.

Table All.1.33 Design Influent Quality

| Wastewater                                    | Design Flow | Loads (kg/d)     |        | Concentration (mg/L) |                |
|-----------------------------------------------|-------------|------------------|--------|----------------------|----------------|
|                                               | (m³/d)      | BOD <sub>5</sub> | SS     | BOD <sub>5</sub>     | SS             |
| Domestic,<br>Commercial, and<br>Institutional | 74,700      | 9,750            | 11,302 | 131                  | 150            |
| Industrial                                    | 21,000      | 3,349            | 4,238  | 159                  | 201            |
| Groundwater<br>Infiltration                   | 2,300       | 0                | 0      | 0                    | 0              |
| Total                                         | 98,000      | 13,099           | 15,540 |                      | And the second |
| Average Concentration                         | n (mg/L)    |                  |        | 135                  | 160            |

Table All.1.33 Design Influent Quality (Continued)

| Wastewater                                    | Design Flow<br>(m³/d) | Loads (kg/d) |       | Concentration (mg/L) |     |
|-----------------------------------------------|-----------------------|--------------|-------|----------------------|-----|
|                                               |                       | T-N          | T-P   | T-N                  | T-P |
| Domestic,<br>Commercial, and<br>Institutional | 74,700                | 1,706        | 224.0 | 23                   | 3.0 |
| Industrial                                    | 21,000                | 459          | 108.4 | 22                   | 5.0 |
| Groundwater<br>Infiltration                   | 2,300                 | 0            | 0     | 0                    | 0   |
| Total                                         | 98,000                | 2,165        | 332.4 | # 1 m                |     |
| Average Concentratio                          | n (mg/L)              |              |       | 22                   | 3.4 |

The design influent quality for Braila WWTP is determined, taking into consideration the calculation results shown in *Table AII.1.33* and that proposed in the 1997 F/S. The proposed design influent quality of BOD5 and SS in the 1997 is based on the results of series of quality surveys of wastewaters. Consequently, the following design influent quality is proposed for the design of Braila WWTP:

- BOD<sub>5</sub> concentration: 150 mg/L
- SS concentration: 180 mg/L
- T-N concentration: 25 mg/L, and
- T-P concentration: 4 mg/L